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1 Introduction

Since early 1980s, great progress has been made on the classification of finite group actions
on the sphere. Deep but indirect connections to representation theory were discovered.
The indirectness is reflected by the existence of non-linear similarities between some lin-
early inequivalent representations [3], via the equivariant signature operator [MR] (see
also [HP??] [4]). Whitehead torsion, which was the cornerstone of the classical theory of
lens spaces, plays almost no role at all, especially in the presence of fixed points [12, 13].

On the other hand, the action of positive dimensional groups on topological manifolds
has been largely left alone, aside from action by the circle. This paper, inspired by the
beautiful results of M. Davis and W. C. Hsiang [8] on concordance classes of smooth
multiaxial actions on the homotopy sphere, shows that the classification theory in the
topological setting is both completely different and quite comprehensible.

For the purposes of this introduction, we will assume that G = U(n) acts on M locally
smoothly. In other words, every orbit has a neighborhood equivariantly homeomorphic to
an open subset of an orthogonal representation of G. We will concentrate on multiaxial
actions, which means that the representations are of the form kρn ⊕ jε, where ρn is the
defining representation of U(n) on Cn, and ε is the trivial representation R. While this
may allow different choice of k and j at different locations in the manifold, the results
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presented in the introduction will assume the same k and j everywhere. In such setting,
we say the manifold is modeled on kρn ⊕ jε.

The isotropy subgroups of multiaxial actions are conjugate to unitary subgroups U(i)
of U(n). Then M is stratified by M−i = U(n)MU(i), the set of points fixed by some
conjugation of U(i). Correspondingly, the orbit space X = M/U(n) is stratified by
X−i = MU(i)/U(n− i).

Our goal is to study the isovariant structure set SU(n)(M). In general, the structure set
S(X) of a compact topological manifold X is the homeomorphism classes of topological
manifolds simple homotopy equivalent to X. The notion can be extended to SG(M) for
equivariant G-manifolds M and isovariant simple homotopy equivalences. It can also be
extended to S(X) for stratified spaces X and stratified simple homotopy equivalences.
We have SG(M) = S(M/G) when the orbit space M/G is homotopically stratified.

Let Xα be the strata of a stratified space X. The pure strata

Xα = Xα −X<α, X<α = ∪Xβ(XαXβ

are generally noncompact manifolds, and we have natural restriction maps

S(X)→ ⊕Sproper(Xα).

Here Sproper denotes the proper homotopy equivalence version of the structure set. If
we further know that all pure strata of links between strata of X are connected and
simply connected (or more generally, the fundamental groups of these strata have triv-
ial K-theory, according to Quinn [12] or Steinberger [13]), then the complement X̄α of
(the interior of) a regular neighborhood of X<α is a topological manifold with boundary
∂X̄α and interior Xα, and the restriction maps natually factor through the structures of
(X̄α, ∂X̄α)

S(X)→ ⊕S(X̄α, ∂X̄α)→ ⊕Sproper(Xα).

The difference between the simple homotopy structure of (X̄α, ∂X̄α) and the proper ho-
motopy structure of Xα is captured by the finiteness obstruction at infinity. If, in addition
to the simple connectivity of the pure strata of links, all strata of X are also simply con-
nected, then these finiteness obstructions vanish, and we get S(X̄α, ∂X̄α) = Sproper(Xα).

The pure strata of links are indeed connected and simply connected for multiaxial
U(n)-manifolds. Our main result states that the stratified simple homotopy structure on
X = M/U(n) is almost determined by the restriction to S(X̄−i, ∂X̄−i) for half of strata
X−i. More general versions are given by Theorems 5.1, 5.2, 5.3.

Theorem 1.1. Suppose M is a multiaxial U(n)-manifold modeled on kρn⊕ jε, and X =
M/U(n) is the orbit space. If k ≥ n and k − n is even, then we have natural splitting

SU(n)(M) = ⊕i≥0S(X̄−2i, ∂X̄−2i).

If k ≥ n, k − n is odd and M = WU(1) for a multiaxial U(n + 1)-manifold modeled on
kρn+1 ⊕ jε, then we have natural splitting

SU(n)(M) = Salg(X)⊕
(
⊕i≥0S(X̄−2i−1, ∂X̄−2i−1)

)
.
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The condition k ≤ n was always assumed in [7, 8, 9]. In this case, we have SU(n)(M) =
SU(k)(M

U(n−k)). Since MU(n−k) is a multiaxial U(k)-manifold modeled on kρk ⊕ jε, the
first part of the theorem can be applied.

The algebraic structure set Salg in the second part of the theorem means the following.

Definition. For any topological space X, let Salg(X) be the homotopy fibre of the surgery
assembly map H∗(X;L)→ L(π1X). Then Salg(X) = π0Salg(X).

In the definition, L(π) is the (simple) surgery obstruction spectrum for the fundamen-
tal group π, and H∗(X;L) is the homology theory associated to the spectrum L = L(e).
If X is a topological manifold of dimension ≥ 5 (or dimension 4 in case π1X is not too
bad), then Salg(X) is the usual structure set that classifies topological (in fact, homo-
logical) manifolds simple homotopy equivalent to X. For a general topological space X,
however, Salg(X) no longer carries such geometrical meaning and is only the result of
some algebraic computation.

For a taste of what to expect when k and j are not assumed constant, the following
is the simplest case of Theorem 5.2. The proof is given at the end of Section 5.

Theorem 1.2. Suppose the circle S1 acts semifreely on a topological manifold Mm, such
that the fixed points MS1

is a locally flat submanifold. Let MS1

0 and MS1

2 be the unions of
those connected components of MS1

that are respectively of dimensions m mod 4 and m+2
mod 4. Let N be the complement of (the interior of) an equivariant tube neighborhood
of MS1

, with boundaries ∂0N and ∂2N corresponding to the two parts of the fixed points.
Then

SS1(M) = S(MS1

0 )⊕ S(N/S1, ∂2N/S
1, rel ∂0N/S

1).

We note that N/S1 is a manifold with boundary divided into two parts ∂0 and ∂2. The
second factor means the homeomorphim classes of manifolds simple homotopy equivalent
to N/S1 that restricts to a simple homotopy equivalence on ∂2 and a homeomorphism on
∂0. We also note that it is a special feature of the circle action that the condition of the
extendability of M to a multiaxial U(2)-manifold is not needed.

The terms in the decomposition in Theorem 1.1 have the following interpretation in
terms of the isovariant structure set

S(X̄−i, ∂X̄−i) = SU(n−i)(M
U(i), relU(n− i)MU(i+2)).

Here MU(i) is actually a multiaxial U(n− i)-manifold modeled on kρn−i ⊕ jε, and U(n−
i)MU(i+2) is the stratum of the multiaxial U(n− i)-manifold two levels down. The right
side classifies those U(n− i)-manifolds isovariantly simple homotopy equivalent to MU(i),
such that the restriction to the stratum two levels down are already equivariantly home-
omorphic. The decomposition in Theorem 1.1 is then equivalent to the decomposition

SU(n)(M) = SU(n)(M, relU(n)MU(i))⊕ SU(n−2i)(M
U(i)),

where i and k − n have the same parity. The map to the second factor is the obvious
restriction. The fact that this restriction is onto has the following interpretation.

Theorem 1.3. Suppose M is a multiaxial U(n)-manifold modeled on kρn ⊕ jε. Suppose
k ≥ n > i and one of the following holds.
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1. k − n and i are even.

2. k − n and i are odd, and M = WU(1) for a multiaxial U(n + 1)-manifold modeled
on kρn+1 ⊕ jε.

Then for any U(n − i)-isovariant simple homotopy equivalence φ : V → MU(i), there is
a U(n)-isovariant simple homotopy equivalence f : N → M , such that φ = fU(i) is the
restriction of f .

The theorem means that half of the fixed point subsets can be homotopically replaced.
The homotopy replacement of the fixed point subset of the whole group has been studied
in [5, 6]. Here the replacement is for the fixed point subsets of certain subgroups and is
therefore a new kind of replacement.

The algebraic calculation can be explicitly carried out for the special case that M is
the unit sphere of the representation kρn ⊕ jε. For k ≥ n, let An,k be the numbers of
Schubert cells of dimensions 0 mod 4 in the complex Grassmannian G(n, k), and let Bn,k

be the number of cells of dimensions 2 mod 4. Specifically, An,k is the number of n-tuples
(µ1, . . . , µn) satisfying

0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n,
∑

µi is even,

and Bn,k is the similar number for the case
∑
µi is odd. Then the following computation

is carried out in Section 6.

Theorem 1.4. Suppose S(kρn ⊕ jε) is the unit sphere of the representation kρn ⊕ jε,
k ≥ n.

1. If k − n is even, then we have

SU(n)(S(kρn ⊕ jε)) = Z
∑

0≤2i<n An−2i,k ⊕ Z
∑

0≤2i<nBn−2i,k

2 ,

with the only exception that there is one less copy of Z in case n is odd and j = 0.

2. If k − n is odd, then we have

SU(n)(S(kρn ⊕ jε)) = ZAn,k−1+
∑

0≤2i+1<n An−2i−1,k ⊕ ZBn,k−1+
∑

0≤2i+1<nBn−2i−1,k

2 ,

with exceptions that there is one less copy of Z in case n is even and j = 0, and
there is one more copy of Z2 in case n is odd and j > 0.

The computation generalizes the classical computation for the fake complex projective
space [14, Section 14C].

If N is isovariant simple homotopy equivalent to the representation sphere S(kρn⊕jε),
then joining with the representation sphere S(ρn) give a manifold N ∗ S(ρn) isovariant
simple homotopy equivalent to the representation sphere S((k + 1)ρn ⊕ jε). This gives
the suspension map

∗S(ρn) : SU(n)(S(kρn ⊕ jε))→ SU(n)(S((k + 1)ρn ⊕ jε)).
A consequence of the calculation in Theorem 1.4 is the following. The detailed about the
suspension map is given in Section 7.

Theorem 1.5. The suspension map is injective.

Finally, in Section 8, we extend all the results to the similarly defined multiaxial
Sp(n)-manifolds.
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2 Strata of Multixial U(n)-Manifold

The concept of multiaxial manifold was introduced and studied in [7, 8, 9]. Our definition
is more general in that the actions are not assumed to be locally smooth, and the local
model may be different at different parts of the manifold.

Let U(n) be the unitary group of linear transformations of Cn preserving the Euclidean
norm. By a unitary subgroup, we mean the specific subgroup U(i) of U(n) that fixes the
last n − i coordinates. Although it is more intrinsic to define a unitary subgroup more
generally as a subgroup fixing a linear subspace of Cn, such a unitary subgroup is always
conjugate to some U(i) in U(n). We fix specific unitary subgroups only to accommodate
simpler presentation in this paper.

The normaliser of the unitary group is NU(i) = U(i) × U(n − i), where U(n − i) =
NU(i)/U(i) is the Weyl group that fixes the first i coordinates. It is usually clear from
the context when U(k) is a unitary subgroup (fixing the last n−k coordinates) and when
U(k) is a Weyl group (fixing the first n− k coordinates).

Definition. A topological U(n)-manifold M is multiaxial, if any isotropy group is conju-
gate to a unitary subgroup U(i), and for any i > j, M−i = M−i −M−i−1 is a locally flat
submanifold in M−j.

In the definition, the multiaxial manifold M is stratified by M−i = U(n)MU(i), the
set of points fixed by some conjugations of U(i). Correspondingly, the orbit space X =
M/U(n) is stratified by X−i = M−i/U(n).

The locally flat assumption can be relaxed. What we really need is the homotopy
consequence of the assumption. Specifically, we need the links between adjacent strata to
be spheres, and the fundamental groups of the pure strata of the links of M−i in M to be
connected and simply connected (with the exception that the link of M−1 in M can be the
circle). Quinn [12] showed that such homotopy properties imply that the orbit space is
homotopically stratified. Then the pure stratum M−i = M−i−M−i−1 is an open manifold
that can be completed into a manifold with boundary U(n) ×U(n−i) (M̄U(i), ∂M̄U(i)), by
deleting (the interior of) regular neighborhoods of lower strata. The pure stratum X−i =
X−i −X−i−1 is a homological manifold [2], and can also be completed into a homological
manifold with boundary (X̄−i, ∂X̄−i).

For a multiaxial U(n)-manifoldM , the fixed setMU(i) is a multiaxial U(n−i)-manifold,
where U(n − i) is the Weyl group. The following is some sort of “hereditary property”
for multiaxial manifolds.

Lemma 2.1. If M is a multiaxial U(n)-manifold, then M−i/U(n) = MU(i)/U(n− i).

The lemma shows that, as far as the orbit space is concerned, the study of a stratum
of a multiaxial manifold is the same as the study of a “smaller” multiaxial manifold. In
particular, if a multiaxial U(n)-manifold M does not have free points, then the minimal
isotropy groups are conjugate to U(m) for somem > 0, and the study of the U(n)-manifold
M is the same as the study of the U(n−m)-manifold MU(m). Since the U(n−m)-action
on MU(m) has free points, we may always assume the existence of free points without
loss of generality. In the setting of multiaxial manifolds modeled on kρn ⊕ jε studied in
[7, 8, 9], this means that we may always assume k ≥ n. We remark that k ≤ n was
assumed in these earlier works.
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Lemma 2.1 is a consequence of the two subsequent propositions.

Proposition 2.2. If H ⊂ K ⊂ G = U(n) are conjugate to unitary subgroups, then the
NH-action on (G/K)H is transitive. In other words, if H ⊂ K and g−1Hg ⊂ K, then
g = νk for some ν ∈ NH and k ∈ K.

Proof. The subgroups K and H consist of the unitary transformations of Cn that respec-
tively fix some subspaces VK and VH . Then H ⊂ K means VK ⊂ VH and g−1Hg ⊂ K
means gVK ⊂ VH . Therefore there is a unitary transformation ν that preserves VH and
restricts to g on VK . Then ν−1g preserves VK , so that ν−1g ∈ K. Moreover, the fact that
ν preserves VH means that ν ∈ NH.

The transitivity of the NH-action on (G/K)H means that if gK ∈ (G/K)H , then
gK = νK for some ν ∈ NH. Since gK ∈ (G/K)H means g−1Hg ⊂ K, and gK = νK
means g = νk for some k ∈ K, we see that the transitivity is the same as the group
theoretical property above.

Proposition 2.3. If G acts on a set M , such that every pair of isotropy groups satisfy
the property in Proposition 2.2, then GMH/G = MH/NH for any isotropy group H.

Proof. We always have the natural surjective map MH/NH → GMH/G. Over a point
in GMH/G represented by x ∈ MH , the fibre of the map is (Gx)H/NH. Therefore the
map is one-to-one if and only if the action of NH on (Gx)H = (G/Gx)

H is transitive.

3 Homotopy Property of Multixial U(n)-Manifold

Although our definition of multiaxial U(n)-manifold is more general than those in [7, 8, 9]
that are modeled on linear representations, many homotopy properties of the linear model
are still preserved.

First we consider the link between adjacent strata of the orbit space X = M/U(n)
of a multiaxial U(n)-manifold M . By the link of X−j in X−j+1, we really mean the link
of the pure stratum X−j = X−j −X−j−1 in X−j+1 (same for the strata of M), and this
link may be different along different connected component of X−j. So for any x ∈ X−j,
we denote by Xx

−j the connected component of X−j containing x. By the link of Xx
−j in

X−j+1, we really mean the link of Xx
−j −X−j−1 in X−j+1. We also denote by MU(j),x the

corresponding connected component of MU(j), so that Xx
−j = MU(j),x/U(n− j).

Lemma 3.1. For any x ∈ X−i and 1 ≤ j ≤ i, the link of Xx
−j in X−j+1 is homotopic to

CP rxj , and rxj = rxj−1 + 1.

The lemma paints the following picture for the strata in a (connected) multiaxial
U(n)-manifold. For any x ∈ X−i, the stratification near x is given by

X = Xx
0 ⊃ Xx

−1 ⊃ · · · ⊃ Xx
−i.

The first gap rx1 of x depends only on the connected component Xx
−1 and determines the
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homotopy type CP rx1+j−1 of the link of Xx
−j in Xx

−j+1. Moreover, we have

dimMU(j−1),x − dimMU(j),x

= dimXx
−j+1 + dimU(n− j + 1)− dimXx

−j − dimU(n− j)
= dimCP rx1+j−1 + 1 + (n− j + 1)2 − (n− j)2

= 2(rx1 + n).

The picture also shows that, near a point of M with isotropy group gU(i)g−1, gU(j)g−1

is the isotropy group of some nearby point for any 1 ≤ j ≤ i.
If the multiaxial manifold is modeled on kρn ⊕ jε, then the first gap is independent

of the connected component, and r1 = k − n in case k ≥ n. On the other hand, mul-
tiaxial U(1)-manifolds are nothing but semi-free S1-manifolds, for which any fixed point
component has even codimension 2c, and the first (and the only) gap of the component
is c− 1.

Proof. The link of Xx
−j in X−j+1 is the quotient of the link of M−j in M−j+1 by the

free action of the Weyl group NU(j)U(j − 1)/U(j − 1) = S1. Since M−j is a locally flat
submanifold of M−j+1, the link is a sphere. The quotient of the sphere by a free S1-action
must be homotopic to a complex projective space CP rj .

Let mj = dimMU(j),x and xj = dimXx
−j. By Xx

−j = MU(j),x/U(n− j), we have

xj = dimMU(j),x − dimU(n− j) = mj − (n− j)2.

Since the link of Xx
−j in Xx

−j+1 is homotopic to CP rj , we also have

xj−1 − xj = 2rj + 1.

Since the isotropy group in a multiaxial manifold is always conjugate to some unitary
subgroup, we know MU(j) = MT j for the maximal torus T j of U(j). Here T j is the specific
torus group acting by scalar multiplication on the first j coordinates of Cn. Now we fix j
and consider M as a T j-manifold. By the multiaxial assumption, the isotropy groups of
the T j-manifold M are the tori that are in one-to-one correspondence with the choices of
some coordinates from the first j coordinates of Cn. The number k of chosen coordinates
is the rank of the isotropy torus. Since all the tori of the same rank k are conjugate to
the specific torus group T k, their fixed point components containing x̃ ∈ MU(j) (whose
image in X−j is x) have the same dimension, which is dimMU(k),x = mk.

For the case k = j − 1 (corank 1 in T j), there are j such isotropy tori. By a formula
of Borel [1, Theorem XIII.4.3], we have

m0 −mj = j(mj−1 −mj).

Written in terms of xj, we have

x0 + n2 = j(xj−1 + (n− j + 1)2)− (j − 1)(xj + (n− j)2),

or
(j − 1)−1(xj−1 − x0)− j−1(xj − x0) = 1.

This gives xj − x0 = j(a− j) and

xj−1 − xj = 2j − 1− a.

Combined with xj−1 − xj = 2rj + 1, we get rj = rj−1 + 1.
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What about the links between any two (not necessarily adjacent) strata of a multiaxial
manifold? For multiaxial manifolds modeled on kρn ⊕ jε, the pure strata of the links
are actually homotopy equivalent to the Grassmannians. We expect that, under our
more general assumption, the homotopy type of the pure strata of the links remain the
Grassmannians. However, we only need the following weaker statement in the present
paper.

Lemma 3.2. All strata and pure strata of the links in the orbit space X are connected
and simply connected, and

π1(X−i −X−j) = π1(X−i), j > i.

In particular, we have π1X
−i = π1X−i.

The lemma is an immediate consequence of Lemma 3.1 and Proposition 3.5. The proof
of Proposition 3.5 is based on some well known general observations on the fundamental
groups about homotopically stratified spaces.

In a homotopically stratified space, the neighborhoods of strata are stratified systems
of fibrations over the strata. The fundamental groups are related as follows.

Proposition 3.3. Suppose E → X is a stratified system of fibrations over a homotopically
stratified space X. If the fibres are nonempty and connected, then π1E → π1X is surjec-
tive. If the fibres are (nonempty and) connected and simply connected, then π1E → π1X
is an isomorphism.

Proof. If E → X is a genuine fibration, then the two claims follow from the exact sequence
of homotopy groups associated to the fibration.

Inductively, we only need to consider X = Z ∪∂Z Y , where Y is the union of lower
strata, Z is the complement of a regular neighborhood of Y , and ∂Z is the boundary
of a regular neighborhood of Y as well as the boundary of Z. Correspondingly, we have
E = EZ∪E∂ZEY , such that EZ → Z is a fibration that restricts to the fibration E∂Z → ∂Z,
and EY → Y is a stratified system of fibrations. Then we consider the map

π1E = π1EZ ∗π1E∂Z π1EY → π1X = π1Z ∗π1∂Z π1Y.

If the fibres of E → X are connected, then π1EZ → π1Z and π1E∂Z → π1∂Z are surjective
by the genuine fibration case, and π1EY → π1Y is surjective by induction. Therefore the
map π1E → π1X is surjective. If the fibres of E → Z are connected and simply connected,
then all the maps are isomorphisms, so that π1E → π1X is an isomorphism.

The proof makes use of the Van-Kampen theorem, which requires Y to be connected
(which further implies that ∂Z is connected). In general, the argument can be carried
out by successively adding connected components of Y to Z.

Proposition 3.4. If X is a homotopically stratified space, such that all pure strata are
connected, and all links are not empty, then X is connected. Moreover, if all pure strata
are connected and simply connected, and all links are connected, then X is simply con-
nected.
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We remark that a link L of a stratum Xβ in another stratum Xα is stratified, with
strata Lγ corresponding to the strata Xγ satisfying Xβ ( Xγ ⊂ Xα. Moreover, the link
of Lγ in Lγ′ is the same as the link of Xγ in Xγ′ . The proposition implies that, if the pure
strata of the link between any two strata sandwiched between Xβ and Xα are (nonempty
and) connected and simply connected, then the link of Xβ in Xα is simply connected.

Proof. If the links are not empty, then any pure stratum is glued to higher pure strata.
Therefore the connectivity of all pure strata implies the connectivity of the union, which
is the whole X.

Now assume that all pure strata are connected and simply connected, and all links are
connected. Let Y be a minimum stratum. Then we have decomposition X = Z ∪∂Z Y
similar to the proof of Proposition 3.3. The complement Z of a regular neighborhood of
Y is a stratified space, with the pure strata the same as the pure strata of X, except the
stratum Y . Moreover, the links in Z are the same as the links in X. By induction, we
may assume that Z (which has one less stratum than X) is simply connected. Moreover,
Y is a pure stratum and is already assumed to be simply connected. If we know that
∂Z is connected, then we can apply Van-Kampen theorem and conclude that π1X =
π1Z ∗π1∂Z π1Y is trivial.

To see that ∂Z is connected, we note that the base of the fibration ∂Z → Y is
connected. So it is sufficient to show that the fibre L of the fibration is also connected.
The fibre is the link L of Y in X, and is a stratified space with one less stratum than X.
Moreover, L has the same link as X. Since all pure strata of X are connected, by the
first part of the proposition, L is connected.

Proposition 3.5. Suppose X is a homotopically stratified space, and Y is a closed union
of strata of X. If for any link between strata of X, those pure strata of the link that are
not contained in Y are connected and simply connected, then π1(X − Y ) = π1X.

Proof. We have decomposition X = Z ∪∂Z Y similar to the proof of Proposition 3.3. The
fibre of the stratified system of fibrations ∂Z → Y is a stratified space Ly depending
on the location of the point y ∈ Y . If Y y is the pure stratum containing y, then the
pure strata of Ly are the pure strata of the link of Y y in X that are not contained in
Y . By Proposition 3.4 and the remark afterwards, the assumption of the proposition
implies that Ly is connected and simply connected. Then we may apply Proposition 3.3
to get π1∂Z = π1Y . Further application of the Van-Kampen theorem gives us π1X =
π1Z ∗π1∂Z π1Y = π1Z = π1(X − Y ).

4 General Splitting Theorem

The homotopy properties in the last section fit into a general scheme for splitting the
structure set of certain stratified spaces. We will use the spectra version of the surgery
obstruction, homology and structure set. The equality of spectra really means homotopy
equivalence.

Theorem 4.1. Suppose X = X0 ⊃ X−1 ⊃ X−2 ⊃ · · · is a homotopically stratified space,
satisfying the following properties:

1. The link of X−1 in X is homotopic to CP r with even r.
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2. The link fibration of X−1 in X is orientable.

3. For any i, the top two pure strata of the link of X−i in X are connected and simply
connected.

Then there is a natural homotopy equivalence of surgery obstructions

L(X) = L(X, relX−2)⊕ L(X−2).

Moreover, we have
L(X, relX−2) = L(π1X, π1X−1),

and
π1X = π1(X −X−1) = π1X̄

0, π1X−1 = π1X
−1 = π1∂X̄

0.

It will be clear from the subsequent argument that CP r is only used to get the period-
icity for the classical surgery obstructions. Therefore it can be replaced by any orientable
manifold of signature one.

To prove the theorem, we first establish the following result, which is essentially a
reformulation of the periodicity for the classical surgery obstruction [14, Theorem 9.9].

Proposition 4.2. Suppose X is a two-strata space, such that the link fibration of X−1 in
X is an orientable fibration with fibre homotopy equivalent to CP r with even r. Then

L(X) = L(π1X, π1X−1), π1X = π1(X −X−1).

Proof. Let Z be the complement of a regular neighborhood of X−1 in X. Let E be the
boundary of Z as well as boundary of the regular neighborhood. Then X = Z ∪ E ×
[0, 1] ∪ X−1, and E → X−1 is an orientable fibration with fibre homotopy equivalent to
CP r.

The surgery obstruction L(X) of the two-strata space X fits into a fibration

L(E × [0, 1] ∪X−1)→ L(X)→ L(Z,E),

where the mapping cylinder E×[0, 1]∪X−1 is a regular neighborhood of X−1 in X and is a
two-strata space with X−1 as the lower stratum. The surgery obstruction of the mapping
cylinder further fits into a fibration

L(E × [0, 1] ∪X−1)
res−→ L(X−1)

trf−→ L(E),

given by the restriction and the transfer. Since E → X−1 is an orientable fibration with
fibre homotopy equivalent to CP r with even r, by the fibration version of the classical pe-
riodicity for the surgery obstruction [10, 11], the transfer map is a homotopy equivalence.
Therefore the second fibration tells us that L(E × [0, 1] ∪X−1) is contractible, and then
the first fibration tells us that the spectra L(X) and L(Z,E) are homotopy equivalent.

It remains to compute L(Z,E). The fibration CP r → E → X−1 implies π1E = π1X−1.
By Van-Kampen theorem, we have π1X = π1Z ∗π1E π1X−1 = π1Z = π1(X −X−1).
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Figure 1: Regular neighborhood of X−2 in X

Proof of Theorem 4.1. Let Z be the complement of a regular neighborhood of X−2 in X.
Let E be the boundary of the regular neighborhood. Then Z and E are two-strata spaces
with lower strata Z−1 = Z ∩X−1 and E−1 = E ∩X−1. Moreover, E is the boundary of
Z in the sense that E has a collar neighborhood in Z. We will use Z and E to denote
the two-strata spaces, and use (Z,E) to denote the space Z considered as a four-strata
space, in which the two-strata of E are also counted.

Consider a commutative diagram of natural maps of surgery obstructions.

L(Z)
'−−−→ L(Z,E) −−−→ L(E)y' x

L(X, relX−2) −−−→ L(X) −−−→ L(X−2)

Both horizontal lines are fibrations of spectra. The vertical ' is due to the fact that the
inclusion Z → X − X−2 of two-strata spaces is a stratified homotopy equivalence. The
horizontal ' will be a consequence of the fact that L(E) is homotopically trivial. The two
equivalences give natural splitting to the map L(X, relX−2) → L(X). Then the bottom
fibration implies L(X) is naturally homotopy equivalent to L(X, relX−2)⊕ L(X−2).

To see the triviality of L(E), we note that the link of E−1 in E is the same as the link
CP r of X−1 in X. Therefore we may apply Proposition 4.2 to E and get

L(E) = L(π1(E − E−1), π1E−1).

Let L be the link of X−i in X, then we have stratified systems of fibrations

L− L−1 → E − E−1 → X−2, L−1 − L−2 → E−1 → X−2.

By the third condition, the fibres are always connected and simply connected, and we
may apply Proposition 3.3 to get π1(E −E−1) = π1E−1 = π1X−2. By the π-π theorem of
the classical surgery theory, we conclude that L(E) is homotopically trivial.

Like E, the link of Z−1 in Z is also the same as the link CP r of X−1 in X. Then
Proposition 4.2 tells us

L(X, relX−2) = L(Z) = L(π1Z, π1Z−1).

By Z ' X −X−2, Z−1 ' X−1 −X−2 = X−1 and Lemma 3.2, we have

π1Z = π1(X −X−2) = π1(X −X−1) = π1X, π1Z−1 = π1X
−1 = π1X−1.

11



By X − X−1 ' X̄0 and applying Proposition 3.3 to ∂X̄0 → X−1, which is a stratified
system of fibrations with the top strata of X−i in X as fibres, we get

π1Z = π1X̄
0, π1Z−1 = π1∂X̄

0.

The natural splitting for the surgery obstruction in Theorem 4.1 induces similar nat-
ural splitting for the structure set.

Theorem 4.3. Suppose X = X0 ⊃ X−1 ⊃ X−2 ⊃ · · · is a homotopically stratified space,
satisfying the following properties:

1. The link of X−1 in X is homotopic to CP r with even r.

2. The link fibration of X−1 in X is orientable.

3. The pure strata of all links are connected and simply connected..

Then there is a natural homotopy equivalence of structure sets

S(X) = S(X, relX−2)⊕ S(X−2).

Moreover, we have

S(X, relX−2) = S(X̄0, ∂X̄0) = Salg(X,X−1).

The third condition can be replaced by the (weaker) third condition in Theorem 4.1,
plus the requirement that the fundamental groups of the pure strata of all links have
trivial K-theory.

Proof. By the topological h-cobordism theory [12, 13], the third condition implies that the
neighborhoods of strata have block bundle structure, the stratified space can be considered
as being of the “PT category”, and the structure set can be computed by the “unstable
surgery fibration” [15, Chapter 8]

S(X)→ H(X;L(locX))→ L(X).

By Theorem 4.1, we have natural splitting of the surgery spectra

L(X) = L(X, relX−2)⊕ L(X−2) = L(π1X, π1X−1)⊕ L(X−2).

Since the splitting is natural, it can be applied to the coefficient L(locX) in the homology
and induces compatible assembly maps

H(X;L(loc(X, relX−2)))→ L(X, relX−2), H(X;L(locX−2))→ L(X−2).

The stratified surgery theory tells us that the homotopy fibre of the first assembly map is
the structure set S(X, relX−2). Moreover, we have H(X;L(locX−2)) = H(X−2;L(locX−2))
because the coefficient spectrum L(locX−2) is concentrated on X−2. Therefore the ho-
motopy fibre of the second assembly map is the structure set S(X−2). Then we have the
decomposition of S(X) as stated in the theorem.

It remains to compute S(X, relX−2). The coefficient L(loc(X, relX−2)) of the homol-
ogy depends on the location.
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1. At x ∈ X0 = X − X−1, the coefficient is L(Dp) = L(e), where Dp is a ball neigh-
borhood of x in the manifold pure stratum X0.

2. At x ∈ X−1, the coefficient is L(cCP r ×Dp), where cCP r is the cone on the link of
X−1 in X, and Dp is a ball neighborhood of x in the manifold pure stratum X−1.
Since r is even, the surgery obstruction L(cCP r×Dp) is contractible by Proposition
4.2.

3. At x ∈ X−2, we have x ∈ X−i for some i ≥ 2. Let L be the link of X−i in X, and
let Dp be a ball neighborhood of x in the manifold pure stratum X−i. Then the
coefficient is

L(cL×Dp, rel cL−2 ×Dp) = L(cL×Dp − c×Dp, rel cL−2 ×Dp − c×Dp)

= L(L× [0, 1]×Dp, relL−2 × [0, 1]×Dp)

= Ωp+1L(L, relL−2).

We may apply Theorem 4.1 to get L(L, relL−2) = L(π1L
0, π1L

−1). By the third con-
dition, the pure strata L0 and L−1 are connected and simply connected. Therefore
the surgery obstruction is contractible.

Thus the coefficient is the surgery obstruction spectrum L = L(e) on the top pure stratum
X0 = X −X−1 and is trivial on X−1. Therefore the homology is

H(X;L(loc(X, relX−2))) = H(X,X−1;L).

Moreover, Theorem 4.1 tells us

L(X, relX−2) = L(π1X, π1X−1).

Therefore the homotopy fibre of the assembly map is Salg(X,X−1).
By excision, we have H(X,X−1;L) = H(X̄0, ∂X̄0;L). By Theorem 4.1, we also know

L(π1X, π1X−1) = L(π1X̄
0, π1∂X̄

0). Therefore the homotopy fibre of the assembly map is
also the structure set S(X̄0, ∂X̄0) of the manifold (X̄0, ∂X̄0).

We note that, in the setup of Theorem 4.3, the restriction to X−2 factors through X−1.
Then the fact that the restriction S(X)→ S(X−2) is naturally split surjective implies that
the restriction S(X−1)→ S(X−2) is also naturally split surjective, and we get

S(X−1) = S(X−1, relX−2)⊕ S(X−2).

Another way of looking at this is that, if a stratified space X is the singular part of a
stratified space Y satisfying the conditions of Theorem 4.3, i.e., X = Y−1, then we have
the natural splitting

S(X) = S(X, relX−1)⊕ S(X−1).

The following computes S(X, relX−1) for the case relevant to the multiaxial manifolds.

Theorem 4.4. Suppose X = X0 ⊃ X−1 ⊃ X−2 ⊃ · · · is a homotopically stratified space,
such that for any i, the top pure stratum of the link of X−i in X are connected and simply
connected. Then

S(X, relX−1) = Salg(X).
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Proof. Similar to the proof of Theorem 4.3, the simple connectivity assumption implies
that the structure set S(X, relX−1) is the homotopy fibre of the assembly map

H(X;L(loc(X, relX−1)))→ L(X, relX−1),

and the coefficient L(loc(X, relX−1)) = L. We also get π1(X −X−1) = π1X from Propo-
sition 3.5. Therefore the assembly map is H(X;L)→ L(π1X), and the homotopy fibre is
Salg(X).

5 Structure Set of Multiaxial Action

Let M be a multiaxial U(n)-manifold. By Lemma 3.2, the pure strata of links in the orbit
space X = M/U(n) are all connected and simply connected. Since U(n) is connected,
the link fibrations are always orientable.

Recall the concept of the first gap defined after the statement of Lemma 3.1. The
number r = rx1 depends only on the connected component of the singular part X−1. For
any connected component Xx

−1, the number is characterized as the link of Xx
−1 in X being

homotopy to CP r. The number is also characterized by the equality dimMU(j−1),x −
dimMU(j),x = 2(r + n).

It is easy to see that Theorem 4.3 remains true in case X−1 has several connected
components, and perhaps with different CP r for different components, as long as all r are
even. Therefore if all the first gaps of a multiaxial U(n)-manifold M are even, then we
have natural splitting

SU(n)(M) = SU(n)(M, relM−2)⊕ SU(n)(M−2).

By the computation in Theorem 4.3, we have

SU(n)(M, relM−2) = S(X̄0, ∂X̄0) = Salg(X,X−1).

By deleting an equivariant regular neighborhood of M−1 = U(n)×U(n−1) M
U(1) from M ,

we get a free U(n)-manifold with boundary (M̄0, ∂M̄0), and

S(X̄0, ∂X̄0) = SU(n)(M̄
0, ∂M̄0).

On the other hand, by Lemma 2.1, we have SU(n)(M−2) = SU(n−2)(M
U(2)), where

MU(2) is a multiaxial U(n− 2)-manifold. Moreover, Lemma 3.1 further tells us that, for
x ∈ MU(i), i > 2, the first gap of x in MU(2) is rx3 = rx1 + 2, where rx1 is the first gap of x
in M . This can also be seen from

dimMU(j−3),x − dimMU(j−2),x = dim(MU(2))U(j−1),x − dim(MU(2))U(j),x

= 2(rx3 + (n− 2)),

where we use n − 2 on the right because MU(2) is a multiaxial U(n − 2)-manifold. The
upshot of this is that all the first gaps of MU(2) remain even, and we have further natural
splitting

SU(n)(M−2) = SU(n−2)(M
U(2)) = SU(n−2)(M

U(2), relM
U(2)
−2 )⊕ SU(n−2)(M

U(2)
−2 ).
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Moreover, we have

SU(n−2)(M
U(2), relM

U(2)
−2 ) = SU(n−2)(M̄

U(2), ∂M̄U(2)) = Salg(X−2, X−3),

and
SU(n−2)(M

U(2)
−2 ) = SU(n−4)(M

U(4)).

The splitting continues and gives us the general version of the first part of Theorem
1.1 in the introduction. The mod 4 condition is a rephrasement of the even first gap.

Theorem 5.1. Suppose M is a multiaxial U(n)-manifold, such that the dimension of any
connected component of MU(1) is dimM − 2n mod 4. Then we have natural splitting

SU(n)(M) = ⊕i≥0SU(n−2i)(M̄
U(2i), ∂M̄U(2i)) = ⊕i≥0Salg(X−2i, X−2i−1).

In general, a multiaxial manifold may have even as well as odd first gaps. Denote
by M

U(1)
even the union of the connected components of MU(1) of dimension dimM − 2n

mod 4. Denote by M
U(1)
odd the union of the connected components of MU(1) of dimension

dimM − 2(n+ 1) mod 4. Then we have

MU(i) = MU(i)
even ∪M

U(i)
odd , MU(i)

even = MU(i) ∩MU(1)
even , M

U(i)
odd = MU(i) ∩MU(1)

odd ,

such that the components in M
U(i)
even have even first gaps, and the components in M

U(i)
odd

have odd first gaps. This leads to

M−i,even = U(n)×U(n−i) M
U(i)
even , M−i,odd = U(n)×U(n−i) M

U(i)
odd .

We also have the corresponding decompositions

X−i = X−i,even ∪X−i,odd, M̄U(i) = M̄U(i)
even ∪ M̄

U(i)
odd .

By the same proof as Theorem 5.1, we get the same natural splitting for those with
even first gaps

SU(n)(M) = Salg(X, relX−2,even)⊕ Salg(X−2,even)

Here the multiaxial U(n − 2)-manifold M
U(2)
even satisfies the condition of Theorem 5.1, so

that the second factor can be further split

Salg(X−2,even) = ⊕i≥1Salg(X−2i,even, X−2i−1,even).

In terms of the multiaxial manifold, this splitting is

SU(n−2)(M
U(2)
even ) = ⊕i≥1SU(n−2i)(M̄

U(2i)
even , ∂M̄

U(2i)
even ).

On the other hand, the first factor

Salg(X, relX−2,even) = SU(n)(M, relM−2,even).

Let Neven and Nodd be equivariant neighborhoods of M−1,even and M−1,odd. Then by the
same proof as Theorem 5.1, we have

SU(n)(M, relM−2,even) = SU(n)(M −Neven, ∂Neven).

Combining everything, we get the following decomposition.

15



Theorem 5.2. Suppose M is a multiaxial U(n)-manifold. Then we have natural splitting

SU(n)(M) = Salg(X, relX−2,even)⊕
(
⊕i≥1Salg(X−2i,even, X−2i−1,even)

)
.

Moreover,
Salg(X, relX−2,even) = SU(n)(M −Neven, ∂Neven)

and
Salg(X−2i,even, X−2i−1,even) = SU(n−2i)(M̄

U(2i)
even , ∂M̄

U(2i)
even ).

In the theorem above, U(n− 2i) acts freely on M̄
U(2i)
even , and the structure set is about

the ordinary manifold M̄
U(2i)
even /U(n− 2i). In the first factor SU(n)(M −Neven, ∂Neven), all

the gaps in the multiaxial U(n)-manifold M −Neven are odd.
Assume M is a multiaxial U(n)-manifold, such that all the first gaps are odd. We

may use the idea presented before Theorem 4.4. Suppose M = WU(1) for a multiaxial
U(n+ 1)-manifold W . Let Y = W/U(n+ 1) be the orbit space of W . Then X−i = Y−i−1.
By Lemma 3.1, for any x ∈ X−1 = Y−2, the first gap of x in Y is one less than the first
gap of x in X. Therefore the first gap of x in Y is even, and the natural splitting of S(Y )
induces the natural splitting

S(X) = S(X, relX−1)⊕ S(X−1).

Since the first gap in the U(n − 1)-manifold MU(1) is one more than the first gap in M
and is therefore also even, we may apply Theorem 5.1 to get further natural splitting

S(X−1) = ⊕i≥0Salg(X−2i−1, X−2i−2).

On the other hand, by the computation in Theorem 4.4, the first factor is

S(X, relX−1) = Salg(X).

Then we get the general version of the second part of Theorem 1.1 in the introduction.

Theorem 5.3. Suppose M is a multiaxial U(n)-manifold, such that the dimension of
MU(1) is dimM − 2(n+ 1) mod 4. If M = WU(1) for a multiaxial U(n+ 1)-manifold W ,
then we have natural splitting

SU(n)(M) = Salg(X)⊕
(
⊕i≥0Salg(X−2i−1, X−2i−2)

)
.

Moreover,
Salg(X−2i−1, X−2i−2) = SU(n−2i−1)(M̄

U(2i+1), ∂M̄U(2i+1)).

We remark that, if M = WU(1) and M is connected, then there is only one first gap r
in M , uniquely determined by

dimW − dimM = 2(r + n+ 1).

In case r is odd, there is actually no M
U(1)
even .
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There is another case that we can split off S(X−1) from S(X) with all the first gaps odd
but not necessarily unique. If n = 1, then multiaxial U(1)-manifolds are simply semi-free
S1-manifolds. In this case, M−1 = MS1

is the fixed point of the action. Moreover,

MS1

0 = MS1

odd

consists of those connected components of codimension being multiples of 4, and

MS1

2 = MS1

even

consists of those connected components of codimension being 2 mod 4. Correspondingly,
we have equivariant neighborhoods N0 and N2 of MS1

0 and MS1

2 . Then Theorem 5.2
simply tells us

SS1(M) = SS1(M −N2, ∂N2).

Now the fixed points M −N2
S1

= MS1

0 has codimension (perhaps different codimension
for different components) being a multiple of 4. Therefore we can invoke the replacement
theorem [5, Theorem 2.5], which essentially says that the natural map

SS1(M −N2, ∂N2)→ SS1(M −N2
S1

) = SS1(MS1

0 )

is split surjective. Since SS1(M −N2, ∂N2, rel ∂N0) is the kernel of the natural map, we
get Theorem 1.2 in the introduction.

6 Structure Set of Multiaxial Representation Sphere

Let ρn be the defining representation of U(n). Let ε be the real 1-dimensional trivial
representation. Then for any natural number k, the unit sphere

M = S(kρn ⊕ jε) = S(kρn) ∗ Sj−1

of the representation kρn⊕ jε is a multiaxial U(n)-manifold. In this section, we compute
the structure set of this representation sphere.

If k < n, then M = U(n)×U(k) S(kρk ⊕ jε), and the problem is reduced to the U(k)-
representation sphere S(kρk ⊕ jε). Without loss of generality, therefore, we will always
assume k ≥ n in the subsequent discussion.

The fixed point subsets are

MU(i) = S(kρU(i)
n ⊕ jε) = S(kρn−i ⊕ jε) = S(kρn−i) ∗ Sj−1.

We have

dimMU(i) = 2k(n− i)− 1 + j, dimMU(i−1) − dimMU(i) = 2k.

Therefore the first gap is k−n. If k−n is even, then we can use Theorem 5.1 to compute
the structure set. If k−n is odd, then we may use M = S(kρn+1⊕jε)U(1), where k−(n+1)
is even, so that Theorem 5.3 can be applied.

We first assume k−n is even and compute the top piece Salg(X,X−1) in the decompo-
sition for S(X) = SU(n)(S(kρn ⊕ jε)) in Theorem 5.1. Since the representation sphere is
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the link of the origin in the representation space kρn⊕jε = Ckn⊕Rj, by Lemma 3.2, both
X and X−1 are connected and simply connected. If the action is neither trivial nor free,
then we have X−1 6= ∅, and the surgery obstruction L(π1X, π1X−1) = L(e, e) is trivial.
Therefore the top piece is the same as the homology

Salg(X,X−1) = H(X,X−1;L).

Let
Y = S(kρn)/U(n), d = dimY = 2kn− 1− n2.

Then
(X,X−1) = (Y, Y−1) ∗ Sj−1, dimX = d+ j,

and
Salg(X,X−1) = πd+jSalg(X,X−1) = πd+jH(X,X−1;L) = Hd(Y, Y−1;L).

Proposition 6.1. If k ≥ n, then for Y = S(kρn)/U(n), we have

HdimY (Y, Y−1;L) = ZAn,k ⊕ ZBn,k2 ,

where An,k is the number of n-tuples (µ1, . . . , µn) satisfying

0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n,
∑

µi is even,

and Bn,k is the number of n-tuples satisfying

0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n,
∑

µi is odd.

Proof. The homology can be computed by a spectral sequence

E2
p,q = Hp(Y, Y−1; πqL(e)) =


Hp(Y, Y−1;Z), if q = 0 mod 4,

Hp(Y, Y−1;Z2), if q = 2 mod 4,

0, if q is odd.

Since the top pure stratum Y − Y−1 is a manifold, by the Poincaré duality, we have
Hp(Y, Y−1;R) = Hd−p(Y − Y−1;R). The homotopy type of Y − Y−1 is well known to be
the complex Grassmanian G(n, k). Therefore we have

E2
p,q =


Hd−p(G(n, k);Z), if q = 0 mod 4,

Hd−p(G(n, k);Z2), if q = 2 mod 4,

0, if q is odd.

Using the CW structure of G(n, k) given by the Schubert cells, which are all even dimen-
sional, E2

p,q vanishes when either q or d− p is odd. This implies that all the differentials
in E2

p,q vanish, so that the spectral sequence collapses, and we get

Hd(Y, Y−1;L) =
(
⊕q≤d, q=0(4)H

q(G(n, k);Z)
)
⊕
(
⊕q≤d, q=2(4)H

q(G(n, k);Z2)
)
.
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Since G(n, k) is a closed manifold, we always have q ≤ dimG(n, k) ≤ dimY = d. Of
course this is nothing but q ≤ 2n(k − n) ≤ 2kn− 1− n2 = d. Therefore the requirement
q ≤ d is automatically satisfied in the summation above, and we have

Hd(Y, Y−1;L) = ZAn,k ⊕ ZBn,k2 ,

where An,k is the number of Schubert cells in G(n, k) of dimension 0 mod 4, and Bn,k is
the number of Schubert cells of dimension 2 mod 4. The description of An,k and Bn,k in
the proposition is the well known numbers of such Schubert cells.

The unitary group U(n) acts trivially on S(kρn ⊕ jε) only when n = 0 and j > 0. In
this case, we have Salg(X,X−1) = Salg(X) = S(Sj−1). (Here the first S in S(Sj−1) means
the structure set, not the sphere.) By Poincaré conjecture, the structure set of the sphere

is trivial. This means that we should require n > 0 in the notation ZAn,k ⊕ ZBn,k2 .
The action is free only when n = 1 and j = 0. In this case, we have Salg(X,X−1) =

Salg(X) = S(CP k−1). The homology is still ZA1,k ⊕ ZB1,k

2 . But the surgery obstruction
is L2(k−1)(π1X, π1X−1) = L2(k−1)(π1X) = L2(k−1)(e) = Z. Here we recall that k − 1 =
k − n is assumed even. Since this piece of surgery obstruction is simply the summand
H0(G(1, k);Z) in the computation of the homology, this reduces the number of copies of
Z by 1. The computation is exactly the fake complex projective space studied in [14,
Section 14C].

If k − n is even, then Proposition 6.1 and the subsequent discussion about the excep-
tions can be applied to the pieces Salg(X−2i, X−2i−1) in the decomposition for S(X) =
SU(n)(S(kρn ⊕ jε)) in Theorem 5.1, simply by replacing n with n − 2i. The exception is
that, in case n is odd and j = 0, the U(1)-action on MU(n−1) is free, so that X−n = ∅.
The exception happens to the last piece Salg(X−n+1, X−n) = Salg(X−n+1) = Salg(CP k−1),
and the number of copies of Z is reduced by 1. This concludes the first part of Theorem
1.4.

If k−n is odd, then Proposition 6.1 can be applied to all pieces except the top one in
the decomposition for S(X) in Theorem 5.3, simply by replacing n with n− 2i− 1. The
exception is that, in case n is even and j = 0, the last piece is Salg(X−n+1) = Salg(CP k−1),
and the number of copies of Z should be reduced by 1. The top piece Salg(X) may be
computed by the surgery fibration

Salg(X)→ H(X;L)→ L(π1X).

Since X is simply connected, L(π1X) is the usual surgery specturm L, and the assembly
map is induced by the map from X to the single point. Therefore

Salg(X) = H̃d+j(X;L) =

{
Hd(Y ;L), if j > 0,

H̃d(Y ;L), if j = 0.

The reduced homology is given by Proposition A.1 of the appendix by Jared Bass. Since
k − n is odd, we have

H̃d(Y ;L) = ZAn,k−1 ⊕ ZBn,k−1

2 .

The unreduced homology is modified from the reduced one accordingly to Corollary A.2
of the appendix. This concludes the second part of Theorem 1.4.
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7 Suspension of Multiaxial Representation Sphere

Let us first review the suspension map for the structure set of the complex projective
space

∗S(ρ1) : SU(1)(S(kρ1)) = S(CP k−1)→ SU(1)(S((k + 1)ρ1)) = S(CP k).

Equivariantly, we have

S((k + 1)ρ1) = S(kρ1)×D(ρ1) ∪ S(ρ1).

The orbit space under the action of U(1) = S1 is CP k = E ∪ pt, where pt = CP 0 is the
base point and E is a disk bundle over CP k−1

D2 → E = (S(kρ1)×D(ρ1))/S
1 p−→ S(kρ1)/S

1 = CP k−1.

The fibre of the bundle is the unit disk of the “last” ρ1 that we use to suspend. We
know that CP k−1 has one cell B2i at each even dimension 2i ≤ 2(k − 1), consisting of
points of form [0, . . . , 0, 1, ∗, . . . , ∗] of length k, with 1 in the (k − i)-th position. Then
E2(i+1) = p−1(B2i) is the corresponding cell of dimension 2(i + 1) in CP k, consisting of
points of form [0, . . . , 0, 1, ∗, . . . , ∗, ∗] of length k + 1, which is obtained by adding one
more term (i.e., the last ρ1) at the end. We also note that the base point E0 = pt is
[0, . . . , 0, 1].

The classical surgery sequence for the structure set (including homological manifolds)
of the complex projective space is

0→ S(CP k)→ [CP k;L] = ⊕i≤kL2i(e)→ L2k(e)→ 0.

Here we view the normal invariants [CP k;L] = H0(CP k;L) as the cohomology given by
the spectrum L. The suspension map on the normal invariant is then induced by the
projection of the canonical unit disk bundle

H0(CP k−1;L)
p∗−→ H0(E;L)→ H0(CP k;L).

If we apply the generalised Poincaré duality, then we get the surgery sequence in terms
of the homology assembly map

0→ S(CP k)→ H2k(CP k;L)→ L2k(e)→ 0.

We have (from spectral sequence computation, for example)

H2k(CP k;L) = ⊕i≤kH2(k−i)(E
2(k−i), ∂E2(k−i);L2i(e)) = ⊕i≤kL2i(e),

or one copy of L2i(e) = Z or Z2 associated to each cell E2(k−i). We have the similar
computation

H2(k−1)(CP k−1;L) = ⊕i≤k−1H2(k−1−i)(B
2(k−1−i), ∂B2(k−1−i);L2i(e)) = ⊕i≤k−1L2i(e).

Then under the Poincaré duality, the map on cohomology induced by the projection p
becomes the map on the homology that takes the copy of L2i(e) associated to B2(k−1−i)
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to the same copy of L2i(e) associated to E2(k−i). Combinatorially, we see that, in the ho-
mological computation, the suspension takes the copy of L2i(e) associated to the cell B2i =
{[0, . . . , 0, 1, ∗, . . . , ∗]} to the copy of L2i(e) associated to the cell E2(i+1) = {[0, . . . , 0, 1, ∗, . . . , ∗, ∗]}.

The picture we saw for the suspension of complex projective spaces carries to the
suspension of multiaxial U(n)-spheres. To simplify the discussion, we assume j = 0. We
have

S((k + 1)ρn) = S(kρn)×D(ρn) ∪ S(ρn), S((k + 1)ρn)/U(n) = E ∪ pt,

where E is a stratified system of bundles over S(kρn)/U(n)

D(ρn)/Gx → E = (S(kρn)×D(ρn))/U(n)
p−→ S(kρn)/U(n).

A CW structure of the orbit space S(kρn)/U(n) is given by Jared Bass in the proof
of Proposition A.1. We have one cell B(m1, . . . ,mr) corresponding to each n × k row
echelon form, with the label satisfying

k ≥ m1 > · · · > mr > 0, r ≤ n.

Using the same CW structure for S((k + 1)ρn)/U(n), we have

p−1(B(m1, . . . ,mr)) =

{
B(m1 + 1, . . . ,mr + 1) ∪B(m1 + 1, . . . ,mr + 1, 1), if r < n,

B(m1 + 1, . . . ,mn + 1), if r = n.

Geometrically, the preimage p−1 means adding one more column. For r < n, this means

p−1


λ1 · · · ∗ · · ·

. . .
...
λr · · ·

 =


λ1 · · · ∗ · · · ∗

. . .
...

...
λr · · · ∗

λr+1


Here λi > 0 for 1 ≤ i ≤ r and λr+1 ≥ 0. The generic case is λr+1 > 0, which corresponds
to the cell B(m1 + 1, . . . ,mr + 1, 1). The reduced case is λr+1 = 0, which gives B(m1 +
1, . . . ,mr + 1) and is part of the boundary of B(m1 + 1, . . . ,mr + 1, 1). If r = n, then
there is no (r + 1)st row, and we only have the reduced case.

Like the complex projective space, in the homological computation of the normal in-
variant, the suspension takes the cell B(m1, . . . ,mr) to the generic cell B(m1+1, . . . ,mr+
1, 1) for r < n and takes the cell B(m1, . . . ,mr) to the only cell B(m1 + 1, . . . ,mn + 1)
for r = n.

Suppose k − n is even. By Theorem 1.4, we have

SU(n)(S(kρn)) = Z
∑

2i<n An−2i,k ⊕ Z
∑

2i<nBn−2i,k

2 .

By the proof of Proposition 6.1, each copy of Z in the factor ZAn−2i,k is associated with
a Schubert cell of G(n − 2i, k) of dimension 0 mod 4. In fact, we may also use the
CW structure of Jared Bass to directly compute the homology in Proposition 6.1. The
difference from Proposition A.1 is that we no longer require mn > 1 for the generators of
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the homology. Then each copy of Z in ZAn−2i,k is associated with a cell B(m1, . . . ,mn−2i)
of S(kρn)/U(n) with codimension (and allowing mn−2i = 1)

2bk(m1, . . . ,mn−2i) = dimS(kρn−2i)/U(n− 2i)− dimB(m1, . . . ,mn−2i) = 0 mod 4.

Here

bk(m1, . . . ,mr) =
1

2
[dimS(kρr)/U(r)− dimB(m1, . . . ,mr)]

= kr − 1

2
r(r − 1)− (m1 + · · ·+mr).

Similarly, each copy of Z2 is associated with a cellB(m1, . . . ,mn−2i) with odd bk(m1, . . . ,mn−2i).
By Theorem 1.4, we also have

SU(n)(S((k + 1)ρn)) = ZAn,k+
∑

2i−1<n An−2i+1,k+1 ⊕ ZBn,k+
∑

2i−1<nBn−2i+1,k+1

2

Each copy of Z in ZAn−2i+1,k+1 is associated with a cell B(m1, . . . ,mn−2i+1) of S((k +

1)ρn)/U(n) with even bk+1(m1, . . . ,mn−2i+1), and each copy of Z2 in ZBn−2i+1,k+1

2 is asso-
ciated with a cell B(m1, . . . ,mn−2i+1) with odd bk+1(m1, . . . ,mn−2i+1).

For i > 0, like the suspension of the complex projective space, the suspension takes
the copy of Z or Z2 in SU(n)(S(kρn)) associated with B(m1, . . . ,mn−2i) to the same copy
of Z or Z2 in SU(n)(S((k + 1)ρn)) associated with B(m1 + 1, . . . ,mn−2i + 1, 1). Note that
by

bk+1(m1 + 1, . . . ,mr + 1, 1) = bk(m1, . . . ,mr) + k − r,
bk(m1, . . . ,mn−2i) and bk+1(m1 + 1, . . . ,mn−2i + 1, 1) have the same parity. Therefore, Z
is sent to Z and Z2 is sent to Z2.

For i = 0, the factors ZAn,k and ZBn,k2 in SU(n)(S((k+ 1)ρn)) come from the homology
in Proposition A.1. Therefore each copy of Z or Z2 in the factors is associated with a
cell B(m1, . . . ,mn) of S((k + 1)ρn)/U(n) satisfying mn > 1. On the other hand, each

copy of Z or Z2 in the factors ZAn,k and ZBn,k2 of SU(n)(S(kρn)) is associated with a cell
B(m1, . . . ,mn) of S(kρn)/U(n) without requiring mn > 1. The suspension takes the cell
B(m1, . . . ,mn) of S(kρn)/U(n) to the cell B(m1 + 1, . . . ,mn + 1) of S((k + 1)ρn)/U(n).
We note that mn + 1 > 1 is satisfied, and

bk(m1, . . . ,mn) = bk+1(m1 + 1, . . . ,mn + 1).

So we have interpreted the suspension as a map that sends specific cells in SU(n)(S(kρn))
to specific cells in SU(n)(S((k + 1)ρn)). Next we give explicit description of the effect

of this map in sending the factors ZA∗,∗ or ZB∗,∗2 in SU(n)(S(kρn)) to similar factors in
SU(n)(S((k + 1)ρn)).

We use the definition of An,k and Bn,k in terms of the n-tuples (µ1, . . . , µn) in Propo-
sition 6.1. The numbers also include A0,k = 1 and B0,k = 0, which count the number of
cells in G(0, k) = pt. We claim the following relation

An,k = An−1,k−1 + A′n,k−1, A′n,k =

{
An,k, if n is even,

Bn,k, if n is odd,
for k > n ≥ 1.

The reason is that, in counting the number of n-tuples (µ1, . . . , µn) for An,k, we consider
two possibilities:
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1. In case µ1 = 0, we delete µ1 and get an (n− 1)-tuple µ′i = µi+1 satisfying

0 ≤ µ′1 ≤ · · · ≤ µ′n−1 ≤ k − n = (k − 1)− (n− 1),
∑

µ′i =
∑

µi is even.

The total number of such (n− 1)-tuples is An−1,k−1.

2. In case µ1 > 0, we get an n-tuple µ′i = µi − 1 satisfying

0 ≤ µ′1 ≤ · · · ≤ µ′n ≤ (k − 1)− n,
∑

µ′i =
∑

µi − n is even.

The total number of such n-tuples is An,k−1 when n is even, and is Bn,k−1 when n
is odd.

The case of n = 1 can be directly verified. By similar reason, we have

Bn,k = Bn−1,k−1 +B′n,k−1, B′n,k =

{
Bn,k, if n is even,

An,k, if n is odd,
for k > n ≥ 1.

For k − n even, we find the following interpretation of the suspension.

1. For i > 0, the suspension takes the factors ZAn−2i,k and ZBn−2i,k

2 in SU(n)(S(kρn⊕jε))
isomorphically onto the first components of the factors ZAn−2i+1,k+1 = ZAn−2i,k ⊕
ZA
′
n−2i+1,k and ZBn−2i+1,k+1

2 = ZBn−2i,k

2 ⊕ Z
B′n−2i+1,k

2 in SU(n)(S((k + 1)ρn ⊕ jε)).

2. For i = 0, the suspension takes the factors ZAn,k and ZBn,k2 in SU(n)(S(kρn ⊕ jε))
isomorphically onto the factors ZAn,k and ZBn,k2 in SU(n)(S((k + 1)ρn ⊕ jε)).

The statements above also include ⊕jε. In case k, n odd and j = 0, the factor ZA1,k in
SU(n)(S(kρn ⊕ jε)) should be changed to ZA1,k−1. The lost copy of Z corresponds to the
base point. This does not affect the description of the suspension. In case n odd and

j > 0, the factor ZBn,k2 in SU(n)(S((k + 1)ρn ⊕ jε)) should be changed to ZBn,k+1
2 . The

extra copy of Z2 also corresponds to the base point and does not affect the description of
the suspension.

Now we turn to the case k − n is odd. The suspension maps

SU(n)(S(kρn)) = ZAn,k−1+
∑

2i+1<n An−2i−1,k ⊕ ZBn,k−1+
∑

2i+1<nBn−2i−1,k

2

to
SU(n)(S((k + 1)ρn)) = Z

∑
2i<n An−2i,k+1 ⊕ Z

∑
2i<nBn−2i,k+1

2 .

In more details, the suspension takes the factors ZAn−2i−1,k and ZBn−2i−1,k

2 in SU(n)(S(kρn))

to the factors ZAn−2i,k+1 and ZBn−2i,k+1

2 in SU(n)(S((k+1)ρn)), by takingB(m1, . . . ,mn−2i−1)
to B(m1 + 1, . . . ,mn−2i−1 + 1, 1). This has the same interpretation in terms of the row
echelon form as the case k−n is even. Moreover, the suspension takes the factors ZAn,k−1

and ZBn,k−1

2 in SU(n)(S(kρn)) to the factors ZAn,k+1 and ZBn,k+1

2 in SU(n)(S((k+ 1)ρn)), by
taking B(m1, . . . ,mn) (where mn > 1) to B(m1 + 1, . . . ,mn + 1). In terms of the row
echelon form, this is λ1 · · · ∗ · · · ∗

. . .
...

...
λn · · · ∗

 ∗S(ρn)−−−−→

 λ1 · · · ∗ · · · ∗ ∗
. . .

...
...

...
λn · · · ∗ ∗


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Here a column occupied by ∗ means a non-echelon column. Therefore the row echelon
forms on the right have mn > 2.

Translated into (µ1, . . . , µr), we find the following interpretation of the suspension in
case k − n is odd. The statements also include ⊕jε.

1. The suspension takes the factors ZAn−2i−1,k and ZBn−2i−1,k

2 in SU(n)(S(kρn ⊕ jε))
isomorphically onto the first components of the factors ZAn−2i,k+1 = ZAn−2i−1,k ⊕
ZA
′
n−2i,k and ZBn−2i,k+1

2 = ZBn−2i−1,k

2 ⊕ Z
B′n−2i,k

2 in SU(n)(S((k + 1)ρn ⊕ jε)).

2. The suspension takes the factors ZAn,k−1 and ZBn,k−1

2 in SU(n)(S(kρn⊕jε)) isomorphi-

cally onto the last components in the factors ZAn,k+1 = ZAn−1,k ⊕ZA
′
n−1,k−1 ⊕ZAn,k−1

and ZBn,k2 = ZBn−1,k ⊕ ZB
′
n−1,k−1 ⊕ ZBn,k−1 in SU(n)(S((k + 1)ρn ⊕ jε)).

In the second part, we use An,k+1 = An−1,k + A′n,k = An−1,k + A′n−1,k−1 + An,k−1 and the
similar decomposition for Bn,k+1. In the decomposition of An,k+1, which counts all the
n × (k + 1) row echelon forms, An−1,k counts those with mn = 1, A′n−1,k−1 counts those
with mn = 2, and An,k−1 counts those with mn > 2.

In case k odd, n even and j = 0, the factor ZA1,k in SU(n)(S(kρn ⊕ jε)) should be
changed to ZA1,k−1. The lost copy of Z corresponds to the base point and does not

affect the description of the suspension. In case n odd and j > 0, the factor ZBn,k−1

2 in

SU(n)(S(kρn⊕ jε)) should be changed to ZBn,k−1+1
2 . The extra copy of Z2 also corresponds

to the base point. The suspension of the base point is

[
λ1
]
∗S(ρn)−−−−→

 λ1 ∗
λ2


Since bk(1) = k − 1, bk+1(2, 1) = 2k − 2, and k is odd, we see that bk(1) and bk+1(2, 1)
have the same parity. Since the result of the suspension has m2 = 1, the suspension takes
the extra copy of Z2 in SU(n)(S(kρn ⊕ jε)) isomorphically onto a copy of Z2 in the first

component of the factor ZBn,k2 = ZBn−1,k ⊕ZB
′
n−1,k−1 ⊕ZBn,k−1 in SU(n)(S((k+ 1)ρn⊕ jε)).

8 Multiaxial Sp(n)-manifold

The symplectic group Sp(n) consists of n × n quaternionic matrices that preserve the
standard hermitian form on Hn

〈x, y〉 = x̄1y1 + x̄2y2 + · · ·+ x̄nyn.

We call an Sp(n)-manifold multiaxial, if any isotropy group is conjugate to a symplectic
subgroup Sp(i), and lower strata are locally flat submanifolds of higher strata. As illus-
trated by the discussion in [7, 8], all our discussion about multiaxial U(n)-manifolds is
still valid.

The role played by U(1) = S1 is replaced by Sp(1) = S3, the group of quaternions of
unit length. If S3 acts freely on a sphere, then the dimension of the sphere is 3 mod 4,
and the quotient is homotopic to HP r. The quaternionic version of Lemma 3.1 still holds
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because MSp(j) = MT j and all tori in Sp(n) of the same dimension are conjugate, and
the first gap is given by

dimMSp(j−1),x − dimMSp(j),x = 4(rx1 + n).

Since HP r is always connected and simply connected, Lemma 3.2 remains true for mul-
tiaxial Sp(n)-manifolds.

For even r, HP r is a manifold of signature one. Therefore the results in Section 4 still
hold after replacing CP r by HP r. As a consequence, the splitting theorems in Section 5
for the structure sets of multiaxial manifolds remain true for Sp(n).

Theorem 8.1. Suppose M is a multiaxial Sp(n)-manifold, such that the dimension of
any connected component of MSp(1) is dimM − 4n mod 8. Then we have natural splitting

SSp(n)(M) = ⊕i≥0SSp(n−2i)(M̄Sp(2i), ∂M̄Sp(2i)) = ⊕i≥0Salg(X−2i, X−2i−1).

Theorem 8.2. Suppose M is a multiaxial Sp(n)-manifold, such that the dimension of
MSp(1) is dimM − 4(n + 1) mod 8. If M = W Sp(1) for a multiaxial Sp(n + 1)-manifold
W , then we have natural splitting

SSp(n)(M) = Salg(X)⊕
(
⊕i≥0Salg(X−2i−1, X−2i−2)

)
.

Moreover,
Salg(X−2i−1, X−2i−2) = SSp(n−2i−1)(M̄Sp(2i+1), ∂M̄Sp(2i+1)).

Theorem 5.2 can also be extended. Moreover, we have the quaternonic version of
Theorem 1.2 (?????).

Theorem 8.3. Suppose the quaternionic sphere S3 acts semifreely on a topological man-
ifold Mm, such that the fixed points MS3

is a locally flat submanifold. Let MS3

0 and MS3

2

be the unions of those connected components of MS3
that are respectively of dimensions

m mod 8 and m+ 4 mod 8. Let N be the complement of (the interior of) an equivariant
tube neighborhood of MS3

, with boundaries ∂0N and ∂2N corresponding to the two parts
of the fixed points. Then

SS3(M) = S(MS3

0 )⊕ S(N/S3, ∂2N/S
3, rel ∂0N/S

3).

We can also compute the structure sets of multiaxial Sp(n)-representation spheres.
The dimensions of the Schubert cells of quaternionic Grassmannians GH(n, k) are multi-
ples of 4, so that the analogue of Proposition 6.1 gives copies of L4i(e) = Z, regardless of
the parity. Since the total number of Schubert cells in GH(n, k) is An,k + Bn,k =

(
k
n

)
, we

have
Hd(S(kρn)/Sp(n), S(kρn)−1/Sp(n);L) = Z(kn), k ≥ n,

where
d = dimS(kρn)/Sp(n) = 4kn− 1− n(2n+ 1).

On the other hand, the CW structure by Jared Bass can also be applied to the orbit
space S(kρn)/Sp(n). The reason is that the unique representative by row echelon form is
a consequence of the fact that GL(n,C) = U(n)N , where U(n) is the maximal compact
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subgroup of the semisimple Lie group SL(n,C) and N is the upper triangular matrix with
positive diagonal entries. This is a special example of the Iwasawa decomposition. When
the decomposition is applied to the semisimple Lie group SL(n,H), for which Sp(n) is
the maximal compact subgroup, we get GL(n,H) = Sp(n)N . Therefore the orbit space
S(kρn)/Sp(n) has cells B(m1, . . . ,mr) similar to the orbit space S(kρn)/U(n), except that

dimB(m1, . . . ,mr) = 4(m1 + · · ·+mr)− 3r − 1.

This leads to the analogue of Proposition A.1

H̃d(S(kρn)/Sp(n);L) = Z(k−1
n ), k ≥ n.

For the case k − n is odd, this is the top piece

Salg(S(kρn)/Sp(n)) = H̃d(S(kρn)/Sp(n);L)

in the decomposition of the structure set SSp(n)(S(kρn)). If k − n is odd and j > 0, then
the top piece is

Salg((kρn ⊕ jε)/Sp(n)) = H̃d+j(X;L) = Hd(S(kρn)/Sp(n);L)

= H̃d(S(kρn)/Sp(n);L)⊕H0(Y ; πdL).

The extra homology at the base point is

H0(Y ; π4kn−1−n(2n+1)L) = L4kn−1−n(2n+1)(e) =


Z, if n = 1 mod 4,

Z2, if n = 3 mod 4,

0, if n is even.

Finally, we need to consider the case the last piece in the decomposition is S(HP k−1),
which happens when k, n odd and j = 0, or k odd, n even and j = 0. In this case, the
number of copies of Z should be reduced by 1.

In summary, the quaternionic analogue of Theorem 1.4 is the following.

Theorem 8.4. Suppose k ≥ n and ρn is the canonical representation of Sp(n).

1. If k − n is even, then

SSp(n)(S(kρn ⊕ jε)) = Z
∑

0≤2i<n ( k
n−2i),

with the only exception that there is one less Z in case n is odd and j = 0.

2. If k − n is odd, then

SSp(n)(S(kρn ⊕ jε)) = Z(k−1
n )+

∑
0≤2i+1<n ( k

n−2i−1),

with the following exceptions: (i) Ihere is one less Z in case n is even and j = 0;
(ii) There is one more Z in case n = 1 mod 4 and j > 0; (iii) There is one more
Z2 in case n = 3 mod 4 and j > 0.

Finally, the discussion on the suspension

∗S(ρn) : SSp(n)(S(kρn ⊕ jε))→ SSp(n)(S((k + 1)ρn ⊕ jε))

can be carried out just like Section 7 and conclude that the suspension is injective. The
discussion is actually simpler, without the need to pay attention to the distinction between
Z and Z2 caused by the parity.
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A Homology of a Sphere Mod the Axial Action

Following earlier notation, we say

Y = S(kρn)/U(n), d = dimY = 2kn− 1− n2.

Through an explicit CW decomposition, we will compute the reduced homology H̃d(Y ;L).

Proposition A.1. If k ≥ n, then for Y = S(kρn)/U(n), we have

H̃dimY (Y ;L) = Zan,k ⊕ Zbn,k2 ,

where an,k is the number of n-tuples (µ1, . . . , µn) satisfying

0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n− 1,
∑

µi + kn is even,

and bn,k is the number of n-tuples satisfying

0 ≤ µ1 ≤ · · · ≤ µn ≤ k − n− 1,
∑

µi + kn is odd.

In the case k − n is odd, which is what we are really interested in, we note that∑
µi + kn and

∑
µi have the same parity, so that an,k = An,k−1 and bn,k = Bn,k−1 from

Proposition 6.1. In the case k− n is even,
∑
µi + kn and

∑
µi + n have the same parity.

Proof. An element in S(kρn) is a k-tuple ξ = (v1, . . . , vk) of vectors in ρn satisfying
‖ξ‖2 = ‖v1‖2 + · · ·+ ‖vk‖2 = 1, with the U(n)-action gξ = (gv1, . . . , gvk). We may regard
ξ as a complex k × n-matrix. We claim that we can find a unique representative for ξ of
in the row echelon form

ξ̄ =



λ1 · · · ∗ · · · ∗ · · · ∗ · · ·
λ2 · · · ∗ · · · ∗ · · ·

λ3 · · · ∗ · · ·
. . .

... · · ·
λr · · ·


,

where the empty spaces are occupied by 0, ∗ and dots mean complex numbers, λi > 0, and
the total length of all the entries is 1, as it was for ξ. To get ξ̄, apply the Gram-Schmidt
process to the columns of ξ to obtain an orthonormal basis for Cn (adding extra vectors if
necessary). If we then apply to ξ the unitary matrix taking this new basis to the standard
basis, we get ξ̄ as desired. The orbit space Y is the collection of all matrices ξ̄ of the
above form.

If λj appears mj places from the right end of the matrix (i.e., λj lies in the k−mj + 1
column), then we say that the matrix has shape (m1, . . . ,mr). Note that r is the rank of
the matrix ξ. For any r ≤ n, k ≥ m1 > · · · > mr > 0, all ξ̄ of the shape (m1, . . . ,mr)
form a cell B(m1, . . . ,mr) of dimension

dimB(m1, . . . ,mr) = 2(m1 + · · ·+mr)− r − 1.
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Geometrically, the cell is the subset of a sphere of the above dimension determined by
r coordinates being nonnegative. The boundary of this cell consists of those shapes
(m′1, . . . ,m

′
r′) satisfying r′ ≤ r and m′i ≤ mi, with at least one inequality being strict.

In homological computation, only those shapes of one dimension less matter. This only
occurs when

mr = 1, r′ = r − 1, m′i = mi for 1 ≤ i < r.

Therefore, the only nontrivial boundary map of the cellular chain complex is

∂B(m1, . . . ,mr−1, 1) = B(m1, . . . ,mr−1).

The homology is then freely generated by the shapes that are neither (m1, . . . ,mr−1, 1)
nor (m1, . . . ,mr−1) in the equality above. These are exactly the shapes satisfying r = n
(meaning ξ has full rank) and mn > 1, and the shape (1) (meaning r = 1 and m1 = 1).
The shape (1) is the base point of Y .

The reduced homology H̃∗(Y ;L) is the limit of a spectral sequence with

Ep,q
2 = H̃p(Y ; πqL) =


H̃p(Y ;Z), if q = 0 mod 4,

H̃p(Y ;Z2), if q = 2 mod 4,

0, if q is odd.

Note that the reduced homology H̃pY is freely generated by shapes satisfying r = n and
mn > 1. Since the dimensions of such cells have the same parity as n+1, H̃pY is nontrivial
only if p has the same parity as n+ 1. This implies that Ep,q

2 already collapses and

H̃d(Y ;L) = (⊕q=0(4)H̃d−q(Y ;Z))⊕ (⊕q=2(4)H̃d−q(Y ;Z2)).

We have
⊕q=0(4)H̃d−q(Y ;Z) = Zan,k ,

where an,k is the number of shapes (m1, . . . ,mn) satisfying

mn > 1, 2(m1 + · · ·+mn)− n− 1 = d = 2kn− 1− n2 mod 4.

Let µi = mn−i+1−(i+1), so this condition can be interpreted in terms of the nondecreasing
sequence of nonnegative integers (µ1, . . . , µn), as in the statement of the proposition.
Through a similar computation we get the description of bn,k for the case q = 2 mod
4.

For the unreduced homology Hd(Y ;L), we also need to consider the basepoint. So we
need to further take the direct sum with the homology at the base, H0(Y ; πdL) = Ld(e).
In our case of interest, when k − n is odd, we have d = n2 + 1 mod 4. This yields the
following.

Corollary A.2. For k − n odd, the unreduced homology HdimY (Y ;L) is given by Propo-
sition A.1 with an additional factor of

H0(Y ; πdL) = Ld(e) =

{
Z2, if n is odd,

0, if n is even.
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