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Abstract. In this paper we address the existence of smooth manifolds proper

homotopy equivalent to nonuniform arithmetic manifolds M = Γ\G/K that

are not homeomorphic to it. While the manifolds M are properly rigid if

rankQ(Γ) ≤ 2, we show that the so-called “virtual structure group” has infinite

rank as a Q-vector space if rankQ(Γ) ≥ 4.
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The Borel conjecture asserts that closed aspherical manifolds are topologically rigid;

i.e. if M is closed and aspherical and f : M ′ →M is a homotopy equivalence, then

f is homotopic to a homeomorphism. This statement is a topological analogue of

Mostow rigidity, which in its simplest version asserts that, in the situation where

both manifolds are hyperbolic of dimension at least 3, such a map f is in fact

homotopic to an isometry. The Borel conjecture has been verified in locally sym-

metric situations by Farrell-Jones [24] (aside from dimension four cases) and for

many non-classical aspherical manifolds by Bartels-Lück [6].

In light of Prasad’s extension of Mostow rigidity from uniform to non-uniform

lattices [42], it becomes natural to inquire whether there is a proper analogue to

the Borel conjecture. Here we define a noncompact manifold M to be properly

rigid if every proper homotopy equivalence f : M ′ →M is properly homotopic to a

homeomorphism. Already in 1982, Farrell and Hsiang [23] showed that, for n > 176,
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if Γ ⊆ SLn(Z) is torsion-free, then Γ\SLn(R)/SOn(R) is not properly rigid. In our

earlier paper [18] we proved the following.

Theorem 0.1. Let M be a locally symmetric manifold Γ\G/K, where G is a

semisimple Lie group, K is its maximal compact subgroup and Γ is an irreducible

lattice.

(1) If Γ is not arithmetic then it is properly rigid.

(2) If Γ is arithmetic and its Q-rank at most 2, then the twisted Borel conjecture

for Γ implies its proper rigidity.

(3) If Γ has Q-rank at least 3 then M has a finite-sheeted cover M ′ = Γ′\G/K
for which proper rigidity fails.

The proofs of these statements use a combination of methods from surgery, super-

rigidity, and strong approximation for linear groups. The recent paper of Bartels-

Lück-Reich-Rüping [7] proves the relevant twisted Borel conjecture that establishes

(2) unconditionally. Notice that (3) shows that the Borel conjecture fails system-

atically in the noncompact proper setting.

There are a number of issues that the above theorem and its proof do not resolve.

We will introduce some terminology to address some new ideas.

Definition 0.2. Let M be a noncompact manifold. We say that M is (properly

topologically) strongly nonrigid if there is a element f : N → M in STop(M) such

that N is not homeomorphic to M . In this case, we say that N is an exotic version

of M . If f : N →M is a nontrivial element in STop(M) with N homeomorphic to

M , we say that f is exotic; i.e. f is not properly homotopic to a homeomorphism.

The trivial element of STop(M) is merely the class containing the identity map

i : M →M .

Let M = Γ\G/K be a locally symmetric manifold with Γ irreducible and let M ′ =

Γ′\G/K be a finite-sheeted cover which is properly nonrigid. We can ask the

following questions.

(a) Are there any exotic versions of M ′ in STop(M ′), or is it the case that every

f : N →M ′ in STop(M ′) is merely exotic?

(b) If exotic versions of M ′ exist, do they have smooth structures?

(c) Suppose that f : N → M ′ is a nontrivial element of STop(M ′). Is there

finite-sheeted lift M̃ ′ of M ′ such that the induced lift f̃ : Ñ → M̃ ′ is trivial

STop(M̃ ′)?

We can produce a reducible example related to question (c). Let Π be a product

of three noncompact surfaces. Then for any cover Π′, the set of manifolds proper

homotopy equivalent to Π′ is finite, but all of these manifolds become homeomorphic

upon passing to an appropriate further finite cover. Although the examples here

are all smoothable, the method of the authors’ previous work [18], which makes use

of topological characteristic classes, is definitely topological in nature. Moreover,
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all of the examples in [18] actually do become trivial on passing to a further finite

cover. Amusingly, they are all nontrivial upon passing to odd-fold covers.

The following theorem addresses questions (a) and (b) in the irreducible case.

Theorem 0.3. Let M = Γ\G/K be an arithmetic manifold with Γ irreducible

and Q-rank at least 6. Then for all integers A, there is a finite-sheeted cover NA
of M such that the number of smooth exotic versions of NA is at least A. As a

consequence, the proper topological structure set STop(NA) can be made arbitrarily

large. In addition, these exotic versions can be distinguished from each other by

their first Pontrjagin class.

The proof of the last statement above implicitly makes use of a refinement of

Novikov’s theorem on the topological invariance of rational Pontrjagin classes pi.

Because of the rational equivalence of the map F/O → F/Top, in each dimension d,

there is a positive integer Cd so that Cdpd is a topological invariant. Therefore, we

can make use of torsion elements in H4(N ;Z) to distinguish topological manifolds.

The goal of this paper is to strengthen the nonrigidity of Theorem 0.1(3) by address-

ing the questions above. By using higher Pontrjagin classes and modular symbols,

we obtain the following substantial improvement, showing that strong nonrigidity

holds when the Q-rank is at least 4.

Theorem 0.4. Let Γ be a lattice in a semisimple algebraic group G over Q with

Q-rank at least 4. Let K be a maximal compact subgroup of G. Then there is Γ′ ≤ Γ

such that Γ′\G/K is strongly nonrigid.

The proof of Theorem 0.3 is a case-by-case argument while that of Theorem 0.4 is

a general argument.

Among the examples presented in this paper is the special case of Hermitian locally

symmetric spaces. Such a space M is a Riemannian symmetric space with a parallel

complex structure with respect to which the Riemannian metric is Hermitian. Here

we exploit the projectivity of the Baily-Borel compactification and the observation

by Jost-Yau [32] that the codimension of the singular set is usually reasonably large.

With these notions, we can prove that, when the complex dimension is at least 3,

the space M is properly nonrigid. The converse is also true.

Theorem 0.5. If M = Γ\G/K is a Hermitian locally symmetric manifold of real

dimension at least 5, then the following are equivalent:

(1) The Q-rank of Γ is at least 3.

(2) The space M is properly topologically nonrigid.

If these conditions are satisfied, then infinitely many elements in STop(M) are

in fact detected by a rational topological version of the first Pontrjagin class in

H4(M ;Q). Also in this case, the space M is properly nonrigid among smooth

manifolds (where the conclusion is still homeomorphism).
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In other words, for the case of Hermitian symmetric manifolds, Theorem 0.5 strength-

ens Theorem 0.1 in all of the ways discussed, without requiring that any covers be

taken.

Having established the nonvanishing of the proper structure sets, we are interested

to know whether they grow, in any sense, when the symmetric space becomes larger.

This notion suggests that we can define a set Svirt(M), a virtual structure group of

a manifold M . Neither the methods used for Hermitian symmetric spaces nor the

argument of Farrell-Hsiang can be used to bound this object, since these techniques

are based on cohomology classes arising from the compact dual, and in this case

there are only finitely many. However, using modular symbols we can prove that

Svirt(Γ\G/K) is not only nontrivial, but has infinite rational rank as a Q-vector

space. We remark additionally that STop(Γ\G/K) has a natural abelian group

structure. Note that in this theorem we do not assume that Γ\G/K is irreducible.

Theorem 0.6. Suppose that Γ\G/K is an arithmetic manifold with Q-rank at least

4. Then Svirt(Γ\G/K)⊗Q is an infinite-dimensional Q-vector space.

The size of the group STop(Γ\G/K)⊗Q usually grows sublinearly in the covolume

of Γ. The methods of L2-cohomology imply that linear growth occurs in a tower

precisely when dim(G/K) is a multiple of 8 and rankCG = rankCK. The charac-

terization should either be interpreted as the condition for the existence of discrete

series representations, or equivalently for the compact dual of G/K to have nonzero

Euler characteristic (which is then the ratio of the order of the Weyl groups). How-

ever, even when the growth is sublinear, when one passes up the congruence tower,

the ranks of these abelian groups do grow like a positive power of the volume.

Our methods give some information even if the Q-rank is 3. For example, if OF is

a ring of algebraic integers, then the arithmetic manifold associated to SLn(OF) is

nonrigid, with infinitely generated virtual structure set. However, there are different

phenomena that arise in general. For example, the virtual structure set vanishes for

product lattices in SL2(R) × SL2(R) × SL2(R), as mentioned previously. It would

be interesting to clarify the Q-rank 3 situation fully.

The paper is organized as follows. The first section gives some basic remarks about

the surgery theory required in this examination. Section 2 discusses SLn(Z) from

several points of view and gives the proof of Theorem 0.3 in this case. (Note that,

when O is a number ring, we obtain the optimal results of nonrigidity for SLn(O)

when n ≥ 4.) The modifications for the more general case are given in section 3.

The key idea is to identify deep lattices of a simple algebraic group G over Q that

represents nonzero cycles in appropriate homology groups. Ideas of this sort appear

in papers of Lee-Szczarba [34], Charney [19] and Church-Farb [21]. We also quickly

show, using a Bockstein argument, that the elements constructed in [18] by strong

approximation represents the zero element in its virtual structure set. Section 4

discusses the Hermitian locally symmetric case, while section 5 defines the virtual
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structure set of an arithmetic manifold and proves its infinite size when the Q-rank

is at least 4. The last section gives a list of the numerical calculations required in

section 5.

Most of this paper was done while the authors visited MSRI in Fall 2012 for the

special semester on Quantitative Topology. We thank MSRI for its hospitality. We

also thank Tom Church and Benson Farb for useful conversations. We give special

acknowledgment to David Witte Morris for helping us the calculations involved in

Section 6 of the paper.

1. The surgery set-up

As given in Wall [48] the surgery exact sequence for a given compact manifold1 M

of dimension n is given by

· · · → Ln−1(Zπ1(M))→ STop(M)→ [M : F/Top]→ Ln(Zπ1(M)),

where the L∗(Zπ1(M)) denote the Wall L-groups and STop(M) is the topologi-

cal structure set, i.e the collection of pairs (N, f), where N is an n-manifold and

f : N →M is a homotopy equivalence, modulo h-cobordism.2

Let N = Γ\G/K be a locally symmetric space formed as the double quotient of an

irreducible Lie group G with its maximal compact subgroup K and an arithmetic

lattice Γ. As observed by Block and Weinberger [9], this N can be compactified

(via the Borel-Serre compactification) to a π-π manifold N with boundary when the

Q-rank is at least 3. By a π-π manifold we mean a manifold whose fundamental

group coincides with the fundamental group of its boundary. This observation

of Block-Weinberger follows from the identification of the homotopy type of the

Γ-cover of the boundary with a wedge of (q − 1)-spheres using the Solomon-Tits

theorem [10]. According to Siebenmann’s thesis [46], any manifold that is properly

homotopy equivalent to M will have the same property. By way of the h-cobordism

theorem, one can show that any such manifold has a unique compactification so

that the extension of the proper homotopy equivalence to the compactification is

a simple homotopy equivalence. We can then identify the structure set STop(N)

with the proper structure set STop(N). (Here we suppress the p for proper in the

notation when it is clear that the space is noncompact.)

Thus by Wall’s π-π theorem [48], the structure set STop(N) of N is isomorphic

to [N,F/Top]. Since F/Top(2)
∼=
∏∞
n=1K(Z2, 4n − 2) ×

∏∞
m=1K(Z, 4m) and

F/Top[1/2] ∼= BO[1/2] (see Madsen-Milgram [36]), we then have

STop(N)(2) = S(N)(2) = [N,F/Top](2) = [N,F/Top](2)

=
∏∞
n=1H

4n−2(N ;Z2)×
∏∞
m=1H

4m(N ;Z(2))

1We ignore issues of orientation.
2In our situation, the difference between h-cobordism and homeomorphism can be safely

ignored.



6 STANLEY CHANG, SHMUEL WEINBERGER

and STop(M)[1/2] ∼= KO0(X)[1/2]. To prove that the proper structure set is nontriv-

ial, it suffices to show that some cohomology group H4n−2(N ;Z2) or H4m(N ;Z(2))

is nontrivial.

In [18] we proved that any M = Γ\G/K with Q-rank at least 3 has a lift N for

which H2(N ;Z2) is nontrivial, thereby showing that STop(N) is also nontrivial.

The topological nonrigidity of N , however, does not rule out the case in which each

nontrivial element N ′ of STop(N) is merely a homeomorphic copy of N equipped

with a proper homotopy equivalence f : N ′ → N that is not proper homotopic to a

homeomorphism. If there is N ′ homotopy equivalent to N but not homeomorphic,

we say that N ′ is an exotic version of N . One goal of this paper is to identify exotic

versions of arithmetic manifolds Γ\G/K.

To identify such exotic types, we shall give several different methods, all of which

exploit the H4i(−;Z(2)) summand. One method is associated with i = 1 and

uses a topologically invariant Pontrjagin class p1 to obtain flexibility. In general

these obstructions will be torsion elements and can vanish in the cohomology groups

associated to higher covers. Using varying i and various rational cohomology classes

we will be able to identify infinitely many obstructions of a fixed level and elements

that persist in the cohomology groups associated to deeper sublattices.

2. Lattices commensurable with SLn(Z) for n ≥ 5

In this section we will assume that n ≥ 5. Our arguments can readily be modified

to SLn(O), where O is any ring of integers. If R is a ring, denote by Mn(R) the

collection of n × n matrices with entries in R. Denote by Zr the cyclic group of

order r. If A ∈ Mn(R) and r ≥ 2 is a positive integer, we will denote by [A]r its

projection in Mn(Zr). Let p be a prime and consider the (principal) congruence

subgroup Γp of SLn(Z) given by

Γp → SLn(Z)→ SLn(Zp).

In other words we have Γp = {A ∈ SLn(Z) : [A]p = I}. Since the Q-rank of SLn(Z)

in SLn(R) is n − 1, it follows that the Q-rank of Γp in SLn(R) is at least 3. Our

previous theorem states that some lift of Mp = Γp\SLn(R)/SOn(R) is properly

nonrigid, but does not give any additional information about Mp itself. Note that,

at the moment, we are working with general p but later we will choose p more

precisely.

We will restrict ourselves first to the discussion of n = 5. The reader will see that

the general case is treated in exactly the same manner. As a matter of notation,
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let the matrix 
1 a b c d

0 1 e f g

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


be denoted by

wwww a b c d

1 e f g

wwww. Note that all matrices in SLn(Z) of the formwwww a b 0 0

1 e 0 0

wwww can be identified with the Heisenberg group and, for all primes

p, those matrices of the form

wwww pa pb 0 0

1 pe 0 0

wwww form the p-multiple Heisenberg

group Heisp. We distinguish two other subgroups of SLn(Z). The subgroup of all el-

ements of the form

wwww 0 pb pc pd

1 0 0 0

wwww will be denoted Ap, and the subgroup of all

elements of the form

wwww pa pb pc pd

1 pe 0 0

wwww will be denoted Heis+
p . Note that Heis+

p ,

Ap and Heisp are all subgroups of Γp. In addition, denote by 〈pb〉, 〈pc〉 and 〈pd〉 the

infinite cyclic subgroups generated by

wwww 0 pb 0 0

1 0 0 0

wwww,

wwww 0 0 pc 0

1 0 0 0

wwww andwwww 0 0 0 pd

1 0 0 0

wwww, respectively, in SLn(Z).

There is a surjection φ : Γp → Mn(Zp) ∼= Zn2

p of the congruence subgroup to an

additive matrix group given by φ(A) =
[

1
p (A− I)

]
p
. In other words, since A ∈ Γp,

it is of the form A = I + pC, for some unique square matrix C. Then we define

φ(A) = C. Indeed, this map φ is a homomorphism because φ(AA′) = φ((1+pC)(1+

pC ′)) = φ(I + p(C +C ′) +O(p2)) = [C +C ′ +O(p)]p = [C +C ′]p = φ(A) + φ(A′).

Because of cross terms, the induced map φ∗ is nontrivial in mod p homology.

Proposition 2.1. The group H3(Γp;Z) contains a nontrivial element of finite order

p.

Proof. The element 〈pb〉 is nonzero in H1(Heisp;Z) because its image under the

map φ∗ : H1(Γp;Z) → H1(Zn2

p ;Z) induced by φ is nonzero. But p〈pb〉 is zero in

H1(Heisp;Z), so 〈pb〉 is 0 in H1(Heisp;Q). In other words, this copy of Z is not

integrally zero but is rationally zero. It is clear that Heis+
p
∼= Heisp × (pZ)2. Then

〈pb〉 × 〈pc〉 × 〈pd〉 is integrally nonzero but is 0 in H3(Heis+
p ;Q). Indeed, the 〈pb〉

bounds some Q, and so 〈pb〉 × 〈pc〉 × 〈pd〉 bounds T2 × Q. It is therefore also

rationally zero and so has finite order in H3(Γp;Z). �

Proposition 2.2. The group H4(Γp;Z) is nontrivial.

Proof. We have a universal coefficient theorem for cohomology given by

H4(Γp;Z) = Hom(H4(Γp;Z),Z)⊕ Ext(H3(Γp;Z),Z).
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The previous proposition gives a nontrivial Ext term. �

Therefore, to identify a non-equivalent manifold structure in STop(Mp), we start

by studying the collection NTop(BΓp) of normal invariants.

Proposition 2.3. For p sufficiently large, there is a map ν : BΓp → F/O so that

p1[1/2](ν) is nontrivial, where p1[1/2] is defined via the diagram as follows:

F/O // BSO

��

p1
// K(Z, 4)

��

BSTop
p1[1/2]

// K(Z[1/2], 4)

Remark 2.4. The fact that H4(BSTop; Z[1/2]) → H4(BSO; Z[1/2]) is an isomor-

phism follows from the calculations that πi(Top/PL) = 0 for i 6= 3 and π3(Top/PL) =

Z2 and that πi(PL/O) = 0 for i < 7. See Kirby-Siebenmann [33]. The lift of

p1 ∈ H4(BSO; Z) to H4(BSTop; Z[1/2]) will be called p1[1/2].

Proof. (of Proposition) We know that BΓp is a finite complex of some finite dimen-

sion k, independent of p. If p > k then πi(BF )⊗Z(p) = 0 for all i ≤ k+ 1. Assume

that p is sufficiently large so that πi(PL/O) ⊗ Z(p) = 0 for all i ≤ k + 1. Then,

upon localizing at p, we have the equivalences

(F/O)≤k+1
(p)

��

// BSO≤k+1
(p)

��

(F/Top)≤k+1
(p)

// BSTop≤k+1
(p)

where the superscript ≤ k + 1 refers to the stage in the Postnikov decomposition.

Note that Bott periodicity (formulated in terms of the Chern character inducing an

isomorphism π2n(BU)→ Z) implies that, for p > k+1, the map ⊕pi : BSO≤k+1 →∏
K(Z, 4i)≤k+1 is a Z(p)-equivalence. The result now follows. �

As a consequence, for p large, we can find a smooth normal invariant of a proper ho-

motopy equivalence (by the π-π theorem) such that the underlying tangent bundles

can be distinguished using p1[1/2], a topological invariant.

By Theorem 3 of Anderson-Hodgkin [1], there is no map K(Z, 4)→ F/Top that is

nontrivial on the finite skeleta. For this reason, we need to restrict ourselves to a

finite complex mapping into K(Z, 4) and then split it (after multiplying by some

appropriate constant).

Theorem 2.5. Let n ≥ 5 and G = SLn(R). Let Γp be the principal p-congruence

subgroup of G. Then for p sufficiently large, the manifold M = Γp\SLn(R)/SOn(R)

is properly strongly nonrigid; i.e. there is a N proper homotopy equivalent to M

that is not homeomorphic to M .



THE TOPOLOGICAL NONRIGIDITY OF ARITHMETIC MANIFOLDS 9

Proof. Construct Γ = Γp as above. Mostow’s rigidity theorem implies that all

self-equivalences of arithmetic manifolds come from isometries. In particular the

Pontrjagin class p1 is preserved under pullback. Therefore the constructed mani-

folds in the previous discussion are genuinely non-homeomorphic to the standard

Γ\G/K. �

Remark 2.6. The Bass-Milnor-Serre Theorem states that SLn(Z) satisfies the Con-

gruence Subgroup Property with n ≥ 3; i.e. given a subgroup Γ ≤ SLn(R) of finite

index, we can find a principal congruence subgroup Γk ≤ Γ of finite index. Note

that whenever k|`, we have Γ` ≤ Γk. Therefore we can find a sublattice Γ` ≤ Γ of

finite index such that ` is divisible by a sufficiently large prime. The results of this

section can then be extended to lattices commensurable with SLn(Z). Recall that

two lattices ∆ and ∆′ are commensurable if their intersection is of finite index in

both of them.

The argument in the proof of Theorem 2.5 fails when n = 4, but we will deal with

this case in a later section.

3. Proof for large Q-rank

Now we consider the case of general arithmetic lattices in a semisimple Lie group

G. We rely on a theorem of Farb and Shalen [22] to prove the existence of an

appropriate abelian sublattice isomorphic to Z3.

Theorem 3.1. (Farb-Shalen) Let Γ be a lattice in a simple algebraic group G over

Q. Let d = rankGQ (Γ) ≥ 6 (can be reduced to 5 if we omit type D5). Then Γ contains

two commuting subgroups A and B which are isomorphic to irreducible lattices with

Q-ranks 2 and d− 3.

Proof. By the Margulis Arithmeticity Theorem, we can assume that Γ is the Z-

points of such a group G. If G is simple, then the Dynkin diagrams for the root

system Φ of G show that, when d ≥ 7, one can remove a vertex of the diagram

to obtain a graph with two components: one with two vertices and one with at

least d − 3 vertices. Let G1 and G2 be the root subgroups corresponding to these

components of the Dynkin diagram. Then G1 commutes with G2. The group of

Q-points of G1 has Q-rank at least 2, and the group of Q-points of G2 has Q-rank

at least d− 3. Results by Borel and Harish-Chandra (see for example Zimmer [53])

show that A = Γ∩G1 and B = Γ∩G2 are arithmetic lattices in G1 and G2. Then

A and B have the necessary properties. �

Proposition 3.2. Let Γ be a lattice in a semisimple algebraic group G over Q with

Q-rank at least 6. There is a nontrivial element in H3(Γ;Z) which is rationally

zero.

Proof. According to Farb-Shalen, we have two commuting subgroups represented

by irreducible lattices Γ1 and Γ2 with Q-ranks at least 2, corresponding to two
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disjoint subgraphs of the Dynkin diagram of G. Since the rank of Γ1 is 2, we can

identify an abelian sublattice in Γ1 isomorphic to Z2. Since the other component is

associated with a lattice of Q-rank at least 2, then Γ2 has a finite abelianization by

property T (see the general discussion in [8]). Therefore there is a nonzero element

in H1(Γ2;Z) of finite order. The three-dimensional class in H3(Γ;Z) that emerges

from this computation is rationally trivial. �

The techniques of the previous section give the following:

Theorem 3.3. Let Γ be a lattice in a semisimple algebraic group G over Q with

Q-rank at least 6. Let K be a maximal compact subgroup of G. Then there is Γ′ ≤ Γ

of finite index such that Γ′\G/K is strongly nonrigid.

Proof. Let Γ be the integer points of a rational algebraic group. We will consider,

as in the previous section, a congruence subgroup associated to a large prime. As

before, it has a homomorphism onto the Lie algebra of a finite field. Going deeper

by powers of p, we obtain similar homomorphisms for these deeper subgroups as

well. It is clear that this tower converges to the trivial group, so given a free abelian

group in our lattice, one can find a level so that the intersection of that group with

the relevant lattice has as its image a free abelian p-group with the same number

of factors. �

Theorem 3.4. If rankGQΓ ≥ 5 there is a nontrivial N ∈ STop(Γ\G/K) which is

smooth.

Proof. As before, the three-dimensional torsion homology class gives rise to an

element in H4(−;Z). If it is p-torsion for a large enough prime (depending on

dimension) we are guaranteed (as in Proposition 2.3) a lifting to F/O, giving us a

smooth normal invariant detected by a topologically invariant Pontrjagin class. �

It is meaningful to ask whether the elements constructed here become trivial upon

passing to further covers. We believe that they do, and only know of very occasional

elements constructed by finite-order methods that continue to be nontrivial upon

passing to finite covers. We note here that the elements constructed in our previous

paper [18], upon passing to appropriate finite covers, all become trivial.

Proposition 3.5. The elements constructed in [18] by strong approximation rep-

resent the zero element in Svirt(Γ\G/K); i.e. if N = Γ\G/K is an arithmetic

space constructed by strong approximation and if (P, f) is a nontrivial element in

STop(N), then there is a finite lift N ′ = Γ′\G/K of N for which the corresponding

Γ′-lift (P ′, f ′) of (P, f) is the trivial element in STop(N ′).

Proof. By the strong approximation of Lubotzky, there is a subgroup Γ′ ≤ Γ with

an epimorphism φ : Γ′ → Z2. For each k ≥ 1, we say that φ lifts to stage k if there
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is a commutative diagram

Γ′
φk
//

φ
  

Z2k

��

Z2

Our proof in [18] shows that there is a minimum n for which φ does not lift to

stage n. Consider then the lift to Γ′ → Z2n−1 . This lift gives an element u in

H1(Γ′;Z2n−1) whose Bockstein element (associated to 0 → Z2 → Z2n → Z2n−1 →
0) is nontrivial in H2(Γ′;Z2). Otherwise it would lift nontrivially higher. In other

words, if βΓ′ : H
1(Γ′;Z2n−1)→ H2(Γ′;Z2) is the Bockstein map, then βΓ′(u) 6= 0.

Now let ∆ be the kernel of the map φn−1 : Γ′ → Z2n−1 . Since the restriction map

φn−1|∆ : ∆→ Z2n−1 is zero, it lifts further to Z2n . If v represents the map φn−1|∆ in

H1(∆;Z2n−1) and the Bockstein map is given by β∆ : H1(∆;Z2n−1)→ H2(∆;Z2),

then the commutative diagram

H1(Γ′;Z2n−1) //

βΓ′

��

H1(∆;Z2n−1)

β∆

��

H2(Γ′;Z2) // H2(∆;Z2)

gives β∆(v) = 0 by naturality. �

4. The Hermitian symmetric case

In this section we completely classify properly nonrigid Hermitian locally symmet-

ric manifolds in high real dimension. Hermitian locally symmetric manifolds are

Riemmanian symmetric spaces with a parallel complex structure with respect to

which the Riemannian metric is Hermitian. In terms of the classification of Rie-

mannian symmetric spaces, the Hermitian symmetric spaces are the four infinite

series AIII, BDI with p = 2 or q = 2, DIII and CI, and two exceptional spaces,

namely EIII and EVII. See Helgason [29] for additional information on Hermitian

symmetric spaces.

Manifold Complex dimension

AIII SL(p+ q,C) pq

BDI (q = 2) SL(p+ 2,C) p

DIII SL(2n,C) 1
2
n(n− 1)

CI Sp(2n,C) 1
2
n(n+ 1)

EIII EC
6 16

EVII EC
7 27

In the following theorem, we demonstrate that a Hermitian locally symmetric man-

ifold, when it is properly rigid, is properly rigid for fairly simple reasons.

Theorem 4.1. If M = Γ\G/K is a Hermitian locally symmetric manifold of real

dimension at least 5, then the following are equivalent:
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(1) The Q-rank of Γ is at least 3.

(2) The space M is properly topologically nonrigid.

If these conditions are satisfied, then infinitely many elements in STop(M) are

in fact detected by a rational topological version of the first Pontrjagin class in

H4(M ;Q). Also in this case, the space M is properly nonrigid among smooth

manifolds (where the conclusion is still homeomorphism).

Proof. Suppose that rankQ(Γ) ≤ 2. Then the topological rigidity of M = Γ\G/K
can be inferred from the work of Farrell-Jones [24] and Bartels-Lück-Reich-Rüping

[7] by the following argument. In Block-Weinberger [9], Theorem 1.3 shows that

proper rigidity of the relevant assembly map depends on an isomorphism statement

for the manifold at infinity. By Borel-Serre [10] there is an exact sequence 1 →
F∞ → π1(∂M)→ Γ→ 1, where F∞ is the free group of countably infinitely many

generators and ∂M is the Borel-Serre boundary. We identify H∗(Bπ1(∂M),L(e))

withH∗(BΓ;H(BF∞;L(e))) and then further identify this group withH∗(BΓ;L(F∞))

by the Borel conjecture for free groups (infinite rank makes no difference by a limit

argument). Finally the isomorphism H∗(BΓ;L(F∞)) ∼= L∗(π1(∂M)) is exactly the

conclusion of the Farrell-Jones isomorphism conjecture in the nontrivial coefficient

system ZF∞.

If rankQ(Γ) ≥ 3, then we are in the π-π situation, so it suffices to prove that

H4(Γ\G/K;Z) is nontrivial. When X = Γ\G/K is a Hermitian symmetric space,

one can take its Baily-Borel compactification X, constructed by adding to X a

singular set Σ, to obtain a singular projective variety. It has a nontrivial even-

dimensional fundamental class [X] ∈ Hd(X;Z) (see Baily-Borel [5] and Borel-Ji

[14]). In fact, by taking hyperplane sections, one can find nontrivial elements in

homological dimensions d− 2k for all k. It is known that the complex codimension

of Σ ↪→ X in our case is at least 3 (see Jost-Yau [32]), in which case there is an

isomorphism H∗(X;Z) ↪→ H∗(X,Σ;Z) above the dimension of Σ. In particular we

have an isomorphism if ∗ = d − 4. By excision, the above group is isomorphic to

H∗(MΣ, ∂MΣ;Z), where MΣ is the complement of a tubular neighborhood of Σ and

∂MΣ is its boundary. The boundary is in fact the Borel-Serre boundary and MΣ

is a manifold. We then have Hd−4(X;Z) ∼= Hd−4(MΣ, ∂MΣ;Z) ∼= H4(MΣ;Z) ∼=
H4(Γ\G/K;Z), so that H4(Γ\G/K;Q) is nontrivial. Of course this result implies

that Γ\G/K is properly nonrigid and its topological structure set is infinite. More-

over, as in Proposition 2.3 and Theorem 3.4, infinitely many of these elements are

smoothable. �

In addition, when (1) and (2) are satisfied, there are infinitely exotic versions N

of M such that, for all ∆ ≤ Γ of finite index, the lifts N∆ and M∆ are (still) not

homeomorphic.

Remark 4.2. Now that we know that the structure set is infinite for a reason based

on p1, we can actually realize a subset containing a lattice in H4(Γ;Z)/tors coming

from smooth exotic versions of Γ\G/K. It is easy to see that the automorphisms

of Γ, lying in SL(H4(Γ;Z)/tors), must have infinitely many orbits in our set, and
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therefore we produce infinitely many manifolds, not just proper homotopy equiva-

lences.

5. The virtual structure set

Having examined the proper rigidity or nonrigidity of locally symmetric spaces in a

number of different cases, we now wish to define a notion of a virtual structure set

associated to the covers of a manifold of the form Γ\G/K. Suppose that Γ and Γ′ are

both torsion-free lattices of G with Γ′ ≤ Γ. Suppose that the index [Γ: Γ′] is finite.

There is an induced covering map Γ′\G/K → Γ\G/K, called a lift of Γ\G/K,

which induces a map STop(Γ′\G/K) → STop(Γ\G/K) of topological structure

sets. There is then a transfer map STop(Γ\G/K) → STop(Γ′\G/K). Suppose Λ

denotes the inverse system of inclusions Λ: · · · → Γ3 → Γ2 → Γ1 = Γ with each

Γi ≤ G torsion-free and each index [Γi : Γi+1] finite. We will say that Λ is a finite

index sequence of torsion-free lattices in G. In this case, the induced direct system

STop(Γ\G/K) = STop(Γ1\G/K) → STop(Γ2\G/K) → STop(Γ3\G/K) → · · · of

transfer maps gives rise to a limit object SvirtΛ (Γ\G/K) ≡ lim−→STop(Γi\G/K), called

the virtual structure set of Γ\G/K with respect to Λ. Note that SvirtΛ (Γ\G/K) has

a group structure because each STop(Γi\G/K) can be given a group structure for

which all the transfer maps are homomorphisms.

There are several natural examples of sequences Λ that can be studied.

(1) Let ∆k be the intersection of all subgroups of Γ of index at most k. Define

by Svirt(Γ\G/K) the structure set associated to the particular sequence

Λ: · · · → ∆3 → ∆2 → ∆1 → Γ. If Λ′ : · · · → Γ3 → Γ2 → Γ1 → Γ is a

finite index sequence of torsion-free lattices of G, then there is an increasing

sequence ni of positive integers with maps Γi → ∆ni such that all relevant

compositions commute. Therefore Λ can be regarded as the terminal object

in the collection of all finite index sequences of torsion-free lattices in G.

We then suppress the mention of Λ in the notation Svirt(Γ\G/K), which we

then call the universal virtual structure set. Our attention will be mainly

be spent on the determination of this set. In the arithmetic case, this set

is an invariant of G(Q).

(2) Let Γ be a lattice in a linear algebraic group. We can then embed Γ as a

subgroup of SLN (Z) for large N . In SLN (Z) we have the sequence of princi-

pal m-congruence subgroups given by ∆(m) = ker(SLN (Z) → SLN (Zm)),

and we can then consider the corresponding congruence subgroups of Γ

given by Γm = Γ ∩ ∆(m). An interesting sequence is then given by

Λ: · · · → Γm3 → Γm2 → Γm1 , where, for all i, there is a prime pi for

which mi = pimi+1.

(3) Using the notation in (2), fix a positive prime p ∈ Z and consider the

sequence Λp : · · · → Γp3 → Γp2 → Γp.
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Example 5.1. Let Λ as in (2) above. When the Q-rank of Γ is large, then SvirtΛ (Γ\G/K)

contains an infinitely generated torsion group (as we showed in Section 3).

Example 5.2. Let Π be a product of a product of three punctured tori. We men-

tioned in the introduction that the universal virtual structure set Svirt(Π) vanishes.

However, using the notation in (3) above, we note that the virtual structure set

SvirtΛ2
(Π) is trivial while, when p is an odd prime, the structure set SvirtΛp

(Π) is an

infinite sum of copies of Z2.

At this stage we turn to a discussion of the final goal of the paper: the determination

of the universal virtual structure set Svirt(Γ\G/K) in a variety of cases. We begin

with some terminology and a theorem of Ash.

Notation 5.3. Suppose that G is a semisimple algebraic group defined over Q with

maximal compact subgroup K ⊆ G(R) and Γ0 ⊆ G(Q) a torsion-free arithmetic

subgroup. Let Γ be a subgroup of Γ0 of finite index and let eP (Γ) be the number

of distinct double cosets (P ∩ Γ0)\Γ0/Γ for each fixed Q-parabolic subgroup P of

G and let d be the real dimension of the R-unipotent radical of such a P .

Our main tool in computing the virtual structure set is the following theorem of

Ash.

Theorem 5.4. (Ash [3] and Schwermer [45]) In the situation given above, we have

dimHd(Γ;R)/Hd
(2)(Γ;R) ≥ eP (Γ).

In addition, the term eP (Γ) increases as Γ decreases, so the number of linearly

independent non-square-integrable cohomology classes will tend to infinity.

We note that, if X is a space and Y is a finite-sheeted cover of X, then the rational

cohomology of X injects into the rational cohomology of Y , so any nonzero elements

in the former persist into the latter. Our discussion in Section 1 indicates that,

using the result of Ash above, the virtual structure set of an arithmetic manifold

Γ\G/K will be infinite if we can find a Q-parabolic whose unipotent radical has

real dimension d divisible by 4. Our analysis involves a calculation for each Lie

group via its Dynkin diagram. These computations are relegated to Section 6 of

the paper. In the following lemma and thereafter, the term “horospherical” refers

to a unipotent radical of a parabolic subgroup.

Lemma 5.5. Let G be a connected, semisimple algebraic group over Q. If rankQG ≥
4, then G has a nontrivial horospherical Q-subgroup U such that dimR U is divisible

by 4.

Proof. Suppose G does not have such a horospherical Q-subgroup. Write G =

G1 × · · · × Gk with k ≥ 2, where each Gi is almost simple. We may assume that

each Gi is isotropic (since Q-anisotropic factors do not affect the Q-rank).

Case 1. Assume that k = 1. Inspection of the calculations verifies that every

almost-simple group of Q-rank ≥ 4 has an appropriate horospherical Q-subgroup.

More precisely, the only almost-simple Q-groups G of Q-rank ≥ 3 for which there
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does not exist a nontrivial horospherical Q-subgroup whose dimension is divisible

by 4 are:

(1) type Cn or 1,2Dn of Q-rank 3, with d = 2 (i.e. constructed from a quaternion

division algebra), or

(2) type E7 of Q-rank 3.

Case 2. Assume that k = 2. From Case 1, we know that rankQGi ≤ 3 for all i.

Suppose that rankQG1 = 3. Let m be the dimension of a nontrivial horospherical

Q-subgroup U2 of G2. Then m 6≡ 0 mod 4. Also, we know that G1 is one of

the groups listed in Case 1, so, by inspection of the calculations, we see that it

has a horospherical subgroup U1 such that dimR U1 ≡ − dimR U2 mod 4. Then

dim(U1 × U2) is divisible by 4.

We may now assume rankQG1 = rankQG2 = 2. As was mentioned above, inspection

of the calculations establishes that there is a nontrivial horospherical subgroup Ui
of Gi such that dimR Ui is even. Then either dimR U1 or dimR U2 or dim(U1 × U2)

is divisible by 4.

Case 3. Assume that k = 3. There must exist k ∈ {1, 3} such that, for each i,

the dimension of every nontrivial horospherical Q-subgroup of Gi is congruent to

kmod 4. Since groups of rank at least 2 have a horospherical subgroup of even

dimension, we have rankQGi = 1. Therefore rankQG = k = 3, contradicting the

fact that rankQG ≥ 4.

Case 4. Assume that k ≥ 4. Every collection of at least four integers has a nonempty

subset whose sum is divisible by 4. �

Remark 5.6. The calculations show that any group of rank at least 2 has a nontrivial

horospherical Q-subgroup of even dimension. Therefore, if G = ResF/QH is a

restriction of scalars with rankQG ≥ 2, and G does not have a horospherical Q-

subgroup of dimension divisible by 4, then F must have odd degree over Q.

The lemma directly proves the following theorem about the virtual structure set.

Theorem 5.7. Let G be a connected, semisimple algebraic group over Q and Γ

an arithmetic lattice in G. If rankQG ≥ 4, then Svirt(Γ\G/K) ⊗ Q has infinite

Q-dimension. If rankQG ≥ 3 and Γ is irreducible, then the same result holds as

long as G is not of the types listed in Case 1 of the previous lemma. If Γ = SLn(O)

for a number ring O, or if Γ is the result of restriction by scalars for an extension

Q→ F, where [F : Q] is even, then the conclusion holds.

Remark 5.8. Let T be the punctured torus, which has Q-rank 1. The triple product

T ×T ×T has Q-rank 3 (e.g. using coarse volume growth) but the virtual structure

set is trivial. So without the irreducibility criterion, this theorem is false. However

it may be the only example.

One may ask, in the case when Ash’s theorem can be applied to prove that Svirt(M)⊗
Q has infinite as a Q-vector space, how quickly the rank grows as a function of Γ.

In other words, suppose that G = Γ\G/K has Q-rank ≥ 4. Using the notation
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of (1) in Section 5, we let ∆k be the intersection of all subgroups of Γ of index at

most k. Let ak(M) the rank of STop(∆k\G/K) as a vector space over Q. It is

a consequence of the paper of Ash [2] that in fact the quantity ak(M) grows as a

power of the index [Γ: ∆k] (or volume). One may then try to identify the manifolds

M = Γ\G/K for which the growth rate is linear.

Proposition 5.9. Let M = Γ\G/K have Q-rank at least 3, and let Mu be the

compact dual of M . Then ak(M) grows linearly in the index [Γ : ∆k] iff the Euler

characteristic χ(Mu) is nonzero and dimM ≡ 0 mod 8.

Proof. This theorem is a consequence of Lück’s approximation theorem relating L2-

cohomology of universal covers of compact spaces and the ordinary cohomology of

their finite covers, together with the fact (first established by Cheeger and Gromov

[20], but proved more conceptually by Gaboriau [26]) that, for nonuniform lattices,

the L2-cohomology of the universal covers of their Borel-Serre compactification is

the same as that of the symmetric space. The details are as follows. The only

nontrivial L2-cohomology group arises in the middle dimension (see e.g. Olbrich

[39]). Therefore the Betti numbers other than the middle one grow sublinearly.

Consequently, linear growth occurs in a dimension that is a multiple of 4 iff the

middle dimension is a multiple of four; i.e. dim(G/K) is a multiple of 8, and the

Euler characteristic is nonzero. However, by Gauss-Bonnet, the Euler characteristic

of M and of the compact dual are proportional (via the ratios of their volumes),

completing the proof. �

6. Computations

There is a method by which one can easily calculate the real dimension of the

unipotent radical of a Q-parabolic. The dimension of the unipotent radical asso-

ciated to the Borel subgroup is the number of positive roots in the root system.

For a smaller parabolic, we just need to subtract the number of positive roots that

are in the Levi subgroup of the parabolic. The diagrams in Tits’ Classification of

algebraic semisimple groups [47] can be used to identify the Levi subgroup of each

parabolic subgroup. The table on page 66 of Humphreys [30] tells us the number

of positive roots there are in each simple factor of the Levi subgroup.

The complete list of Dynkin diagrams of semisimple groups over algebraically closed

fields is given below. Each diagram determines a strict isogeny class of semisimple

groups over any given field k.
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Dynkin diagram Positive roots µ

An • • · · · • •
(
n+1

2

)
Bn • • · · · • • > • n2

Cn • • · · · • • < • n2

Dn • • · · · • •
•

n2 − n

E6 • • • • •
•

36

E7 • • • • • •
•

63

E8 • • • • • • •
•

120

F4 • • > • • 24

G2 • > • 6

There is a natural one-to-one correspondence between the conjugacy classes of

parabolic subgroups of G and the subsets of the set ∆ of all simple roots. In the

following, we denote by n the absolute (real) rank and r the relative (rational)

rank of the considered group, i.e. the total number of vertices and the number of

distinguished orbits of the diagram. Note that 0 ≤ r ≤ n. See Platonov-Rapinchuk

[41] for a general treatment.

In the following pages, we examine each type of Lie group G and calculate the real

rank of the unipotent radical for various classes parabolic subgroup. We enumerate

the Lie groups according to the subtypes given by Tits: 1An, 2An, Bn, Cn, 1Dn,
2Dn, 3,6D4, 1E6, 2E6, E7, E8, F4, G2. The reader should refer to [47] for the

subscripting and superscripting in this notation. For each of these types we use the

Satake-Tits diagrams which classify real forms of the complex Lie algebra corre-

sponding to the Dynkin diagrams. Our list of such diagrams is taken from Helgason

[29], Satake [44], Onishchik-Vinberg [40] and Tits [47]. The nodes colored black cor-

respond to the simple roots of the anisotropic kernel. We list the possible parabolic

subgroups according to rational rank, which is given by the number of open circles

(i.e. non-black nodes) in each diagram. A parabolic Q-subgroup is determined by

choosing any subset of these circles. Since we only want proper parabolics, our cal-

culations always involve a nonempty subset. We then compute the real dimension

of the associated unipotent radical by calculating the positive roots of the original

diagram and then subtracting the positive roots of the subdiagrams that result

upon deleting the open nodes.

Recall that, by Theorem 5.4 and Section 1, it suffices to find a parabolic whose

unipotent radical has real dimension divisible by 4. In the case of Q-rank at least

4, if we find one whose dimension is divisible by 4, then we calculate no further.

Otherwise we consider cases of larger parabolics by filling in various open nodes

and calculating the real dimension of unipotent radical corresponding to the new

Satake-Tits diagram. The number of positive roots of particular Lie group G is

denoted by µ.
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The calculations below are done only for absolutely simple groups over Q. For a

restriction of scalars, the answers are to be multiplied by the degree of the field

extension.

Type 1An: Here we have the special linear group SLr+1(D), where D is a central

division algebra of degree d over k. These constants satisfy d(r + 1) = n + 1 and

d ≥ 1.

• • · · · • ◦ • · · · • ◦ • · · · · · · · • ◦ • · · · • ◦ • · · · • •︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d−1

(1) rank 1: • • · · · • ◦ • · · · • •

dimR U = µ(An)− 2µ(Ad−1)

=

(
n+ 1

2

)
− 2

(
d

2

)
=

(
2d

2

)
− 2

(
d

2

)
= d2 ≡

{
1 mod 4 if d odd,

0 mod 4 if d even.

(2) rank 2: • • · · · • ◦ • · · · • ◦ • · · · • •

dimR U = µ(An)− 3µ(Ad−1)

=

(
n+ 1

2

)
− 3

(
d

2

)
=

(
3d

2

)
−
(
d

2

)
−
(

2d

2

)
= 2d2 ≡

{
2 mod 4 if d odd,

0 mod 4 if d even.

If we color in one of the two white circles, we have

dimR U = µ(An)− µ(Ad−1)− µ(A2d−1)

=

(
n+ 1

2

)
−
(
d

2

)
−
(

2d

2

)
=

(
3d

2

)
− 3

(
d

2

)
= 3d2 ≡

{
3 mod 4 if d odd,

0 mod 4 if d even.

(3) rank r ≥ 3: ◦—◦— · · ·—◦ if d = 1 and •—◦—•—◦—•— · · ·—◦—• if d = 2
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dimR U = µ(An)− µ(A(k+1)d−1)− (r − k)µ(Ad−1)

=

(
n+ 1

2

)
−
(

(k + 1)d

2

)
− (r − k)

(
d

2

)
=

(
d(r + 1)

2

)
−
(

(k + 1)d

2

)
− (r − k)

(
d

2

)
=
d2

2
(r2 + r − k(k + 1))

=
d2

2
(r + k + 1)(r − k).

This quantity is 0 mod 4 when r ≡ kmod 8 or r ≡ (7− k) mod 8. For each

r, one can choose an appropriate k so that dimR U ≡ 0 mod 8.

Type 2An: Here we have the special unitary group SU(n+1)/d(D,h), where D is

a central division algebra of degree d over a quadratic extension k′ of k with an

involution of the second kind σ such that k = {x ∈ k′ : xσ = x} and h is a

nondegenerate Hermitian form of index r relative to σ. The constants satisfy d|(n+

1) and d ≥ 1. Also 2rd ≤ n+ 1.

• • · · · • ◦ • · · · • ◦ • · · · · · · · • ◦ • · · · • ◦ • · · · • •
• • · · · • ◦ • · · · • ◦ • · · · · · · · • ◦ • · · · • ◦ • · · · • •︸ ︷︷ ︸

2(d−1)

︸ ︷︷ ︸
2(d−1)

︸ ︷︷ ︸
2(d−1)

︸ ︷︷ ︸
n−2rd

�



�
	

�



�
	

�



�
	

�



�
	

or
• • · · · • ◦ • · · · • ◦ • · · · · · · · • ◦ • · · · • ◦ • · · · • •
• • · · · • ◦ • · · · • ◦ • · · · · · · · • ◦ • · · · • ◦ • · · · • •

•︸ ︷︷ ︸
2(d−1)

︸ ︷︷ ︸
2(d−1)

︸ ︷︷ ︸
2(d−1)

︸ ︷︷ ︸
n−2rd

�



�
	

�



�
	

�



�
	

�



�
	

When n + 1 = 2rd, the right end of the second picture is replaced with an open

circle.

(1) rank 1: ◦—•—•—•— · · · for d = 1 and •—◦—•—•—•— · · · for d = 2

dimR U = µ(An)− 2µ(Ad−1)− µ(An−2d)

=

(
n+ 1

2

)
− 2

(
d

2

)
−
(
n− 2d+ 1

2

)
= 2dn+ 2d− 3d2

=


0 if d even,

1 if d and n odd,

3 if d odd and n even.

(2) rank r ≥ 2:

◦—◦—•—•—•— · · · for d = 1 and •—◦—•—◦—•—•—•— · · · for d = 2
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dimR U = µ(An)− 2rµ(Ad−1)− µ(An−2rd)

=

(
n+ 1

2

)
− 2r

(
d

2

)
−
(
n− 2rd+ 1

2

)
=

{
r(2n− 2r + 1) if d = 1,

4rn− 8r2 if d = 2.

When d = 2 we have dimR U = 4rn − 8r2 ≡ 0 mod 4. For d = 1, the

quantity r(2n − 2r + 1) may not be divisible by 4. In this latter case,

we take the larger parabolic associated to •—◦—•—•—•— · · · , for which

dimR U = µ(An) − 2µ(A1) − An−4. This calculation has been done in the

rank 1 case (with d = 2), and is congruent to 0 mod 4.

Type Bn or Cn: Here Bn is the special orthogonal group SO2n+1(k, q), where q

is a quadratic form of index r, and defect 1 in case char k = 2. Here Cn is the

special unitary group SU2n/d(D,h), where D is a division algebra of degree d over

k, and h is a nondegenerate antihermitian sesquilinear form of index r relative to

an involution σ of the first kind such that Dσ (the space of symmetric elements)

has dimension
(
d
2

)
. When d = 1, the group is simply Sp2n(k). For Cn, we have

d = 2a|2n and d ≥ 1. If d = 1, then n = r.

• • · · · • ◦ • · · · • ◦ • · · · · · · · • ◦ • · · · • ◦ • · · · • • •︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
n−rd

<

When n = rd, the right end becomes • • < ◦
(1) rank 1: ◦—•—•—•— · · · for d = 1 and •—◦—•—•—•— · · · for d = 2

dimR U = µ(Bn)− µ(Ad−1)− µ(Bn−d)

= n2 −
(
d

2

)
− (n− d)2

= 2dn− d2 −
(
d

2

)
=

{
1 if d and n odd,

3 otherwise.

(2) rank 2:

(a) ◦—◦—•—•—•— · · · for d = 1

dimR U = µ(Bn)− µ(Bn−2) = n2 − (n− 2)2 = 4n− 4 ≡ 0 mod 4.

(b) •—◦—•—◦—•—•—•— · · · if d = 2

dimR U = µ(Bn)−2µ(A1)−µ(Bn−4) = n2−2(1)−(n−4)2 = 8n−18 ≡ 2

mod 4.

Since we do not have 0 mod 4, we compute larger parabolics by turning

white nodes black. The case in which we fill in the leftmost white node
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has been computed in (1). The remaining case is

•—•—•—◦—•—•—•— · · ·

for which dimR U = µ(Bn)− µ(A3)− µ(Bn−4) = n2 − 6− (n− 4)2 =

8n− 22 ≡ 2 mod 4.

(3) rank 3: We can assume d = 2, since we have 0 above for d = 1 (see 2a).

◦—◦—◦—•—•— · · · for d = 1 and •—◦—•—◦—•—◦—•—•—•— · · · for d = 2

(a) For d = 1, we immediately resort to the larger parabolic by blackening

the third white dot. This case is computed in 2a to yield 0 mod 4.

(b) For d = 2, we have dimR U = µ(Bn) − 3µ(A1) − µ(Bn−6) = n2 −
3(1) − (n − 6)2 = 12n − 39 ≡ 1 mod 4. Since we do not have 0 mod

4, we compute the dimension related to the higher parabolics that are

previously unconsidered.

(i) •—•—•—•—•—◦—•—•—•— · · ·
dimR U = µ(Bn) − µ(A5) − µ(Bn−6) = n2 − 15 − (n − 6)2 =

12n− 51 ≡ 1 mod 4.

(ii) •—◦—•—•—•—◦—•—•—•— · · · or •—•—•—◦—•—◦—•—•—•— · · ·
dimR U = µ(Bn)−µ(A1)−µ(A3)−µ(Bn−6) = n2−1−6− (n−
1)2 = 12n− 43 ≡ 1 mod 4.

(4) rank 4: The d = 1 can be handled as in (3a). We may then assume

d = 2. In this case, we immediately consider the larger parabolic obtained

by blackening the three leftmost white nodes:

•—•—•—•—•—•—•—◦—•—•—•— · · ·

dimR U = µ(Bn) − µ(A7) − µ(Bn−8) = n2 −
(

8
2

)
− (n − 8)2 = 16n − 92 ≡ 0

mod 4.

Type 1Dn: Over Q there are only the possibilities d = 1 and 2. If char k 6= 2, we

have the special unitary group SU2n/d(D,h), where D is a central division algebra

of degree 2 over k, and h is a nondegenerate Hermitian form of discriminant 1 and

index r, relative to an involution σ of the first kind such that Dσ (the space of

symmetric elements) has dimension
(
d
2

)
. Here d = 2a|2n and d ≥ 1. Also rd ≤ n

and n 6= rd+ 1.

• • · · · • ◦ • · · · • ◦ • · · · · · · · • ◦ • · · · • ◦ • · · · • •
•

•︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d−1 ︸ ︷︷ ︸

n−rd

When n− rd ≤ 2, the right end has one of the following forms. Note that the case

n = rd+ 1 does not occur. In the cases (i) (n, d) = (r, 1), (ii) (n, d) = (2r, 2), (iii)

n = rd and d ≥ 3, (iv) n = rd+ 2, we have the following, respectively:

◦
◦
◦

•
◦
◦

•
•
◦

•
◦
•
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(1) rank 1: ◦—•—•—•— · · · for d = 1 or •—◦—•—•— · · · for d = 2

dimR U = µ(Dn)− µ(Ad−1)− µ(Dn−d)

= (n2 − n)−
(
d

2

)
− ((n− d)2 − (n− d))

= 2nd− d2 − d−
(
d

2

)

=


1 if d = 2,

2 if n even and d = 1,

0 if n and d odd.

(2) rank 2: ◦—◦—•—•—•—•— · · · for d = 1 and •—◦—•—◦—•—•—•— · · · for

d = 2

dimR U = µ(Dn)− 2µ(Ad−1)− µ(Dn−2d)

= (n2 − n)− 2

(
d

2

)
− ((n− 2d)2 − (n− 2d))

= 4nd− 4d2 − 2d− 2

(
d

2

)
≡ 2d− 2

(
d

2

)
mod 4

≡
{

2 mod 4 if d = 1,

2 mod 4 if d = 2.

Since we do not have 0 mod 4, we consider the cases of larger parabolics.

•—◦—•—•—•— · · · for d = 1 and •—•—•—◦—•—•— · · · for d = 2

dimR U = µ(Dn)− µ(A2d−1)− µ(Dn−2d)

= (n2 − n)−
(

2d

2

)
− ((n− 2d)2 − (n− 2d))

≡
{

1 mod 4 if d = 1,

2 mod 4 if d = 2.

(3) rank 3: Given the situation in rank 1, we may assume that d or n is even.

◦—◦—◦—•—•—•— · · · for d = 1 and •—◦—•—◦—•—◦—•—•—•— · · · for d = 2

dimR U = µ(Dn)− 3µ(Ad−1)− µ(Dn−3d)

= (n2 − n)− 3

(
d

2

)
− ((n− 6)2 − (n− 6))

= 6dn− 9d2 − 3d− 3

(
d

2

)
≡
{

0 mod 4 if d = 1 (here n even),

3 mod 4 if d = 2.

Given this calculation, we now compute the dimension for larger parabolics

when d = 2. We only list the cases that have not been previously computed.
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(a) •—•—•—•—•—◦—•—•—•— · · · for d = 2

dimR U = µ(Dn)− µ(A5)− µ(Dn−6)

= (n2 − n)−
(

6

2

)
− ((n− 6)2 − (n− 6))

= 12n− 21 ≡ 3 mod 4.

(b) •—◦—•—•—•—◦—•—•—•— · · · and •—•—•—◦—•—◦—•—•—•— · · ·
for d = 2

dimR U = µ(Dn)− µ(A1)− µ(A3)− µ(Dn−6)

= (n2 − n)−
(

2

2

)
−
(

4

2

)
− ((n− 6)2 − (n− 6))

= 12n− 49 ≡ 3 mod 4.

(4) rank ≥ 4. We may assume that d = 2. •—◦—•—◦—•—◦—•—◦—•—•—•— · · ·

dimR U = µ(Dn)− µ(Dn−8)− 4µ(A1)

= (n2 − n)− ((n− 8)2 − (n− 8))− 4

(
2

2

)
= 16n− 76 ≡ 0 mod 4.

Type 2Dn: The same as 1Dn except that all forms in question have now discriminant

6= 1. Here d = 2a|2n and d ≥ 1. Also rd ≤ n− 1.

• • · · · • ◦ • · · · • ◦ • · · · · · · · • ◦ • · · · • ◦ • · · · • •
•

•︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d−1

︸ ︷︷ ︸
d−1 ︸ ︷︷ ︸

n−rd

When n = rd+ 1, then d = 1 or 2, and the right end becomes respectively:

◦
◦◦◦

�
�

�

 ◦

◦•◦
�
�

�



Calculations are the same as for 1Dn except that the Dynkin diagram is slightly

different if n = rd + 1, where r is the rank under consideration. We have the

following cases. Recall that the two rightmost white nodes are always clustered as

one.

(1) When d = 1, we have r = n−1. Now note that µ(A1) ≡ 1 mod 4, µ(A2) ≡ 3

mod 4 and µ(A3) ≡ 2 mod 6. Therefore dimR U = µ(Dn) − µ(Aj) ≡ 0

mod 4 for an appropriate choice of j ∈ {0, 1, 2, 3}.
(2) When d = 2, we have 2r = n− 1, so that n is odd.
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(a) r = 2 and n = 5.

◦
• ◦ •

◦
dimR U = µ(D5)− 2µ(A1) = 20− 2 = 18 ≡ 2 mod 4.

Since we do not have 0 mod 4, we compute the dimension for the larger

parabolic

◦
• • •

◦
dimR U = µ(D5)− µ(A3) = 20− 6 = 14 ≡ 2 mod 4.

(b) r = 3 and n = 7.

◦
• ◦ • ◦ •

◦
dimR U = µ(D7)− 3µ(A1) = 42− 3 = 39 ≡ 3 mod 4.

Since we do not have 0 mod 4, we compute the dimension for larger

parabolics.

(i)

◦
• • • ◦ •

◦
and

◦
• ◦ • • •

◦
dimR U = µ(D7)− µ(A3)− µ(A1) = 42− 6− 1 = 35 ≡ 1 mod 4.

(ii)

◦
• • • • •

◦
dimR U = µ(D7)− µ(A5) = 42− 15 = 27 ≡ 2 mod 4.

(c) Let r ≥ 4. Then let j be the least residue of rmod 4, and select

the parabolic associated to D2r+1 − jA3 − (k − 2j)A1. Then we have

dimR U = (2r+1)2−(2r+1)−j
(

3
2

)
−(r−2j) = 4k2 +k−j ≡ 0 mod 4.

Type 3,6D4: The subtype involving Dn when n = 4 requires special consideration.

(1) rank 1: ••
•◦

dimR U = µ(D4)− 3µ(A1) = 12− 3 = 1 ≡ 1 mod 4.

(2) rank 2: ◦◦
◦◦

�
 �	 Note that here we have the Borel subgroup.

dimR U = µ(D4) = 12 ≡ 0 mod 4.

Type 1E6: Here 1E28
6,2 is the form which can be realized as a collineation group of a

Cayley plane, and 1E16
6,2 is the form constructed by means of an associative division

algebra of degree 3. There is nothing of rank 1.

(1) first group of rank 2

•
◦ • • • ◦

dimR U = µ(E6)− µ(D4) = 36− 12 = 24 ≡ 0 mod 4.

(2) second group of rank 2

◦
• • ◦ • •

dimR U = µ(E6)− 2µ(A2) = 36− 2(3) = 30 ≡ 2 mod 4.

Since we do not have 0 mod 4, we consider larger parabolics.

(a)

◦
• • • • •

dimR U = µ(E6)− µ(A5) = 36−
(

6
2

)
= 21 ≡ 1 mod 4.
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(b)

•
• • ◦ • •

dimR U = µ(E6)− 2µ(A2)− µ(A1) = 36− 2(3)− 1 = 29 ≡ 1 mod 4.

(3) In higher rank cases, we can always pass to the larger parabolic associated

to the first group of rank 2 (Case 1).

Type 2E6: There are five subtypes in this case.

(1) first group of rank 1 ••
•• •◦

dimR U = µ(E6)− µ(A5) = 36−
(

6
2

)
= 21 ≡ 1 mod 4.

(2) second group of rank 1 ◦•
•• ◦•

�
�

�



dimR U = µ(E6)− µ(D4) = 36− 12 = 24 ≡ 0 mod 4.

(3) first group of rank 2 ◦•
•• ◦◦

�
�

�



Here we resort to the larger parabolic associated with the diagram in Case

2 above and obtain 0 mod 4.

(4) second group of rank 2 ••
•◦ •◦

This calculation has been done in the case of 1E6 in the second group of

rank 2, in which we obtain 1 or 2 mod 4.

(5) higher rank: ◦◦
◦◦ ◦◦

dimR U = µ(E6) = 36 ≡ 0 mod 4.

Type E7: Here E28
7,3 is the form constructed by means of a Cayley division algebra.

There are no subtypes of rank 1.

(1) rank 2:

•
• ◦ • • • ◦

dimR U = µ(E7)− µ(A1)− µ(D4) = 63− 1− (42 − 4) = 50 ≡ 2 mod 4.

Since we do not have 0 mod 4, we consider larger parabolics.

(a)

•
• • • • • ◦

dimR U = µ(E7)− µ(D6) = 63− (62 − 6) = 33 ≡ 1 mod 4.

(b)

•
• ◦ • • • •

dimR U = µ(E7)−µ(A1)−µ(D5) = 63− 1− (52− 5) = 42 ≡ 2 mod 4.

(2) rank 3:

•
◦ ◦ • • • ◦

dimR U = µ(E7)− µ(D4) = 63− (42 − 4) = 51 ≡ 3 mod 4.

Since we do not have 0 mod 4, we consider larger parabolics.

(a)

•
◦ • • • • •

dimR U = µ(E7)− µ(E6) = 63− 36 = 27 ≡ 3 mod 4.
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(b)

•
◦ • • • • ◦

dimR U = µ(E7)− µ(D5) = 63− (52 − 5) = 43 ≡ 3 mod 4.

(c) The remaining case is handled in (1).

(3) higher rank:

•
• ◦ • ◦ ◦ ◦ and

◦
◦ ◦ ◦ ◦ ◦ ◦

dimR U = µ(E7)− 3µ(A1) = 63− 3 = 60 ≡ 0 mod 4.

Type E8: Here E28
8,4 is the form constructed by means of a Cayley division algebra.

There are only two subtypes under consideration:
•

◦ ◦ ◦ • • • ◦ and

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

dimR U = µ(E8)− µ(D4) = 120− (42 − 4) = 108 ≡ 0 mod 4.

Type F4: A group of this type is always the automorphism group of an exceptional

simple Jordan algebra J . There are only two subtypes under consideration.

(1) rank 1: • ◦ > ◦ ◦
dimR U = µ(F4)− µ(B3) = 24− 32 = 15 ≡ 3 mod 4.

(2) higher rank: ◦ ◦ > ◦ ◦
dimR U = µ(F4) = 24 ≡ 0 mod 4.

Type G2: A group of type G2 is always the automorphism group of a Cayley

algebra.

rank 2: ◦ > ◦ dimR U = µ(G2) = 6 ≡ 2 mod 4.

Since we do not have 0 mod 4, we compute the case of the larger parabolic

• > ◦ for which dimR U = µ(G2)− µ(A1) = 6− 1 = 5 ≡ 1 mod 4.

Conclusion: When the Q-rank is at least 4, there is always a parabolic subgroup for

which the real dimension of the unipotent radical is divisible by 4. When Q-rank

is 3, there are some exceptions.

Remark 6.1. There is a rank-3 form of E7 that does not have a unipotent radical

whose dimension is divisible by 4. This Q-form of G could be split over R. So both

the Hermitian symmetric real form and the split real form of E7 have arithmetic

lattices in which no nontrivial horospherical Q-subgroup has dimension divisible by

4. In the Hermitian case, the structure set is nontrivial and infinite, but we do not

know more.
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