Arithmetic over the ring of
all algebraic integers

To the memory of Julia Robinson

By Robert S. Rumely*) at Athens

In this note we will establish two theorems about diophantine equations over the
ring of all algebraic integers. Let V' be a geometrically irreducible affine variety defined
over a number field K; let @ denote the ring of all algebraic integers, and for each finite
place v of K, let @, be the ring of integers in the algebraic closure of K,. The first
theorem is a general local-global principle: V has points over @ if and only if it has
points over @,, for every v. The second is an application of the first: Hilbert’s Tenth
Problem has a positive solution over .

Both results had been conjectured by David Cantor, and proved by him and
Roquette ([2]) for rationally parametrizable varieties. Our proof of the local-global
principle follows the same lines as theirs, the main new ingredient being a Fekete-Szegd
theorem on algebraic curves given by the author in ([11]). The local-global principle
generalizes an old theorem of Skolem ([147]), which gave a criterion for a polynomial in
several variables to represent units over (. It also implies some of the results proved by
Estes and Guralnick ([3], [5]) concerning equivalence of modules and similarity of
matrices over @. The solution to Hilbert’s Tenth Problem is a consequence of the
existence of a decision procedure for the first-order theory of valued, algebraically closed
fields (Robinson [10], Weispfenning [18]), together with effective constructions in
algebraic geometry (Seidenberg [12], van den Dries [15], [16]). These, combined with
the local-global principle, yield an algorithm for determining when a system of
diophantine equations and inequalities is solvable over @. This was anticipated in ([2]).

Our notations are standard. In addition to those above, K, is the algebraic closure
of the completion K,, K is the algebraic closure of K, and Oy is the ring of integers
of K.

The author would like to thank Roy Smith and Robert Varley for their help with
algebraic geometry, and Professors Cantor and Roquette for their encouragement and
receptiveness. The publication of these results has been delayed, and several people have
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suggested improvements. Especially, Jan Denef supplied the reference to Weispfenning’s
work, which makes the algorithm for Hilbert’s problem primitive recursive. Robert
Guralnick pointed out the applications noted above. Finally, Professor Roquette has
obtained a self-contained proof of the local-global principle, which he will publish soon.

I. The idea for the local-global principle is simple. One direction is trivial. If V
has points over @, then clearly it has points over @, for every v. Conversely, suppose V
has points over @, for all v. To produce a point over @, we first reduce to the case of a
curve, cutting V by hypersurfaces, using Bertini’s theorem to maintain irreducibility.
Then we apply the Fekete-Szegd theorem on the curve to prove that the global
algebraic points are dense in the adelic points. Note that ¥ need not be smooth.

Theorem 1 (Local-global principle for @). Let V be a geometrically irreducible
affine variety defined over K. Then V (0)=+ 0 if and only if V(0,)+0, for all finite places v
of K.

For use with Hilbert’s problem, it is useful to formulate a slightly more general
version in algebraic guise.

Theorem 1'. Let F,(X,5)€ K[Xg,..-s Xpns V1s---5 Ynls i=1,...,7, be polynomials
which define a geometrically irreducible affine variety V<A™™". Then V has points
belonging to O™ x K" if and only if it has points belonging to O™ x K" for every finite
place v of K.

Both of these are immediate consequences of the following density theorem. Let V
be an geometrically irreducible variety over K (not necessarily affine), and for each place
v of K (finite or not), let B, be a non-empty open subset of V(K,) in the v-topology. We

suppose that each B, is stable under Gal(K,/K,), and that [][B, is large in the

following sense: there is some affine open W< V defined over K ‘such that for all but
finitely many v, W (0,) < B,.

Proposition (Density theorem). Fix a place vy of K. Then there exists a point
{ € V(K) such that for every v=uv,, all the conjugates of { over K belong to B,.

The condition that the conjugates belong to B, is independent of the choice of
embedding K . K,, since B, is galois stable. By replacing V with W, and B, with
B, W(K,), it suffices to prove the proposition when V is affine. The next step is to
reduce from V to a curve CcV. Some care is needed to insure that C(K,)n B, is
nonempty for every v, and that C is irreducible.

To do this, we first produce a finite, galois stable set of points in V(K), at least
one of which belongs to B,, for every v, and then arrange for C to pass through these
points. Fix some o€ V(K). There is a finite set S of places of K such that for every
v ¢ S, o or some conjugate of « over K belongs to V({,). By enlarging S, we can assume
it contains all v such that B, does not contain V({,), as well as all archimedean v. For
each v e S, choose o, € B, so that «, is algebraic over K. This is possible since V' (K) is
dense in V(K,) for any embedding K <, K,. Let o/ be the set of conjugates of a and
the «, over K.

Suppose V is embedded in A", and let 7 be its closure in /PY. Let Y be the variety
obtained by blowing up ¥ at each of the points in /. Since & is galois stable, ¥ is
defined over K. It is also irreducible and projective. Let p: ¥ — ¥ be the natural
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projection. Embed Y in /M for an appropriate M; we can assume it is not contained in
any hyperplane. By Bertini’s theorem (see Fulton and Lazarsfeld ([4], Theorem 1. 1), for
a version without extraneous hypotheses), if V has dimension =2, then a generic
hyperplane section H of Y is irreducible. Here ‘generic’ means all hyperplanes in a
nonempty Zariski-open subset, when the hyperplanes are parametrized by /. Every
such subset meets /PV(K) as K is an infinite field. Hence we may take H over K. Note
that H intersects each of the exceptional divisors, as their dimension is >1. Hence
V'=p(HnY)nV is an irreducible proper subvariety of V, defined over K, which
contains /. Replace ¥V by V', and each B, by B, n V'(K,). Repeating the process a finite
number of times, we arrive at a curve C. Let % be the normalization of C, embedded in
[P" for some n.

Now we apply the Fekete-Szegd theorem, which uses that € is smooth. € will be
said to have good reduction at a place v of K (with respect to the given embedding
in [P") if, when the equations defining ¢ are reduced modu, they define a smooth
connected reduced curve over the residue field. It is known (see Shimura-Taniyama
([13], section 12)) that % has good reduction for almost all v. Let ¥ = %(K) be a finite
set of points, stable under Gal (K/K). Call a subset of ¢(K,) X-adequate if € has good
reduction at V, if the points in X reduce to distinct points (modv), and if the subset
contains all the points of %(K,) which do not reduce to the same point as any
x € X(modv). (Such a set contains an X-trivial set, in the sense of [11].) For each v of K,
let U, be an open, Gal (K,/K,)-stable subset of % (K,), such that almost all of the U, are

X-adequate. Put U=]] U,=[] 4(K,). The following is a reformulation of the Fekete-

Szegb theorem for cur:/es ([lllfl, Theorem 6. 2. 2):

Theorem. There is a quantity y(U, X), called the capacity, such that if y(U, X)>1,
then U contains infinitely many K-conjugate sets of points of €(K).

(The capacity here is the sup of the capacities of closed sets contained in {J, as
defined in [11].) The only fact one needs to know about capacity is that y(ZJ, X) can be
made arbitrarily large, with U, fixed for v+uv,, by taking U,, to be the complement in
%(K,,) of sufficiently small discs about the points in ¥.

To prove the proposition, let p: ¢ — C be the natural projection. Let X, be the
set of points at infinity on C, and put X=p~!(X,). For each v+, let U,=p~1(B,), and
take U,, large enough that y(, X¥)>1, as explained above. Our hypotheses on the B,
guarantees that all but finitely many U, are ¥-adequate. Hence there are infinitely many
algebraic points, which, together with their conjugates over K, belong to /. Choose
such a point ¢, and let {=p(¢). It is a point in V(K) whose conjugates lie in B,, for
all v=v,.

It may be worth remarking that some irreducibility condition on V is needed for
the theorems above, as the trivial example of the variety in A2 determined by
; ; 1 1 suc 2
(2x—1) 3x—1)=0 shows. This has the points (5, 0) s <§, O), at least one of which is
integral for every p, but it has no points over @. It is of course sufficient to assume that
each irreducible component of V contains a point rational over @,, if V is not
irreducible.
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II. The solution to Hilbert’s Tenth Problem follows rather formally from the
local-global principle. Briefly, it is this: given an affine variety V/K, decompose it into
geometrically irreducible components V; (whlch may be defined over an extension field
£/K). For each V;, find some point {; € V; (#). This point will belong to V;(0 @,) for all
but a finite set of places w of £. For each remaining nonarchimedean place w, apply the
decision procedure for the valued algebraically closed field Z,,. If V; .(0,) is nonempty for
every w, then by the local-global principle V; (@) is nonempty. Check this for each V;:
V(@) is nonempty if and only if some V;(0) is nonempty.

Theorem 2. There is a primitive recursive algorithm to solve Hilbert’s Tenth
Problem over the ring of all algebraic integers.

In more detail, let X=(x,,..., X,,) and consider the decidability of a statement of
the type

@AXe ™ (fiE)=0AAf(X)=0Ag (X)+0A A2, (X)%0)

where the f;(X) and the g;(X) are polynomials with coefficients in K. By introducing
auxiliary variables y,,..., y, we can reduce this to the decidability of

@% e ™) 37 R (D) =0A-ALE)=0Ay; g F)=1A Ay g,()=1)

in which only equalities occur. Let .# be the ideal in K [X;,..., Xp, V15--» V] generated
by the polynomials f;(X) and y;g;(X)—1, and let V be the variety in A™*" that it
determines.

In order to decompose V into irreducible components, one needs to know first
that it is possible to compute in @: to carry out arithmetic operations, to determine
when two elements are equal or unequal, and to factor polynomials in one variable into
irreducible factors. This point will be dealt with in section IIl. Now results of
Seidenberg ([12], sections 5, 19, 36, and 42) make it possible to effectively calculate
generators for the minimal prime ideals PB,,..., P, associated to . in A%, y1.

Let # be the field generated over K by the coefficients of generators for the %;,
and for each i let V,c A™*" be the varlety determined by ‘B;. We wish to determine
whether ¥, has points belonging to 0™x #" By elimination theory (see van der
Waerden, [17], pp. 116ff.), one can construct a point {; € V;(£) or else conclude that
V;(#)=0. One can then compute a bound M; so that {; belongs to V; (@, for all primes
w of £ with norm >M, (for example, by considering the leading coefficient of the
minimal polynomials over Z of the coordinates of {;). For each of the finitely many w
with Nw = M;, apply Weispfenning’s ([18]) decision procedure for the valued algebrai-
cally closed field #, to decide whether V; has a point belonging to Omx £*. 1If the
answer is yes for each w, then there is a point in V;(0™x £"); otherwise there is not.
V has a point if and only if some V; does.

There is one technical issue to deal with in applying the decision procedure for
£, it is necessary to express the fact that the coefficients of the polynomials generating
the 9B, are regarded as embedded in #,,. This can be done as follows. Let p,, be the
prime ideal of ¢, determined by w. An appropriate high power pf, is principal; let = be
a generator. Also, let o be a primitive element for the extension £/@. (It is well known
that h, = and o can be effectively computed; see for example Borevich and Shafarevich
[1], pp. 119—123, 225—227 and 404.) The language of valued fields contains the
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valuation function w and the ordering relation > on the value group. Write = and the
coefficients of the generators for the ; as rational linear combinations of powers of «:
then add the relations w(n)>0 and P,(x)=0, where P,(x) is the monic irreducible
polynomial over @ satisfied by «. Because n is divisible only by the prime p,,, all other
facts about the valuation w on elements of £ =@ () are determined.

Finally, we consider bounds in the algorithm above.

Seidenberg ([12]), correcting work of Herman (and himself corrected in minor
ways by Lazard and Masser-Wiistholz; see [9]), gave effective algorithms for basic
constructions in algebraic geometry. In this construction of the minimal prime ideals
associated to an ideal .#, the number of prime ideals, the number of their generators,
and the degrees of those generators are explicitly bounded in terms of the number of
variables m+n and the number and degrees of the generators for .#. Also, the number of
arithmetic steps (additions, subtractions, multiplications, divisions, or comparisons) in
the calculations are bounded in terms of the same quantities. As will be seen in section
III, the number of basic steps (say, Turing machine cycles) needed to carry out an
‘arithmetic step’ is bounded in terms of the sizes of the operands. Hence constructions in
algebraic geometry over (@ are primitive recursive. We note that van den Dries ([15])
and van den Dries-Schmidt ([16]) have given much simpler proofs for the existence of
effective bounds in geometrical constructions. Moreover, their bounds are field
independent. Unfortunately, they do not seem to be primitive recursive, and so do not
yield the sharpest results here.

Robinson ([10]) was the first to show that the first-order theory of a valued,
algebraically closed field is decidable. His decision procedure was an enumeration of
proofs, based on the fact that the theory is complete. However, recently Weispfenning
([18], corollary 3. 3 ii) has given a primitive recursive decision procedure using quantifier
elimination.

Thus, as claimed, our algorithm is primitive recursive. It does not, however,
explicitly construct an element belonging to V(@) if there is one: the proof of the
Fekete-Szegé theorem is not at present constructive, and consequently neither is
application of the local-global principle.

IIL It seems to be generally known that @ is a computable field. However, I am
not aware of a reference. The representation indicated here has the merit that the
operations are clearly primitive recursive.

We will show that @ is an ‘explicitly given field’ in the sense of Seidenberg. This
means that one can effectively carry out the field operations and determine when two
elements are equal. We will also see that @ satisfies Seidenberg’s conditions (F) and (P):
a field satisfies condition (F) if, given a polynomial in one variable f(x) € K [x], one can
construct the complete factorization of f(x) into irreducible factors over K[x]. It
satisfies condition (P) if, given a finite system of linear homogeneous equations
Y. a;;x;=0 with the g, ; € K, one can decide whether this system has a nontrivial solution
in K?, and if it does, find one (here p is the characteristic of K). This is, of course, trivial
in characteristic 0.
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It is well known that @ is explicitly given and satisfies (F) and (P). (The
factorization can even be carried out in polynomial time; see ([8]).) Also, if K satisfies
(F) and (P), then so does a finite extension K (x), where o is given as satisfying an
explicit monic irreducible polynomial f(x)e€ K [x]: see ([12], section 41).

The difficulty is that @ is not a simple extension of @. It is necessary to specify
how elements of different subextensions are related to each other. One way to do this is
to regard @ as embedded in C, and represent each « € @ by a pair (P,(x), a+ bi), where
P,(x) is the monic irreducible polynomial over @ satisfied by o, and a+bi is a
sufficiently good finite decimal approximation to o to distinguish it from its conjugates.
This approximation can be refined as needed, so that numbers can be added, subtracted,
multiplied, divided, and compared.

How good an approximation is ‘good enough’?

Let f(x)=x"+a;x" '+ +a,e @[x], and put || /| =1+ |a;. It is trivial that
every root a; of f(x) satisfies |o;| < || f||. On the other hand, let D(f) be the discriminant
of f:

D(f) =TT (—2)* =(~ 17" Resultant (£(x), f"(x))-

i<j

Put B(f)=|Z—D-(—D——‘. Clearly, for any i+j we have |o;—a)=2B(f). Hence if

20 £y

|« —(a+b")| < B(f), then a+ bi is close enough to o to distinguish it from its conjugates.
Note also that the approximation may be refined as needed (see Henrici ([6], pp. 457—
552) for several methods).

Clearly, given two pairs o= (f(x), a+ bi) and p=(g(x), u+vi), they represent the
same algebraic number if and only if f(x)=g(x) and |(@+ bi)—(u+vi)|<2B(f). To
perform an arithmetic operation on o and B, first factor g(x) into irreducible factors

over @Q (o):
g(x)=ngi(x)-

Let G be the maximum absolute value of any coefficient of g(x), and G; the
corresponding quantity for each g;(x). By Lang ([7], Proposition 2, p. 47),

max (G;) <4929 . G.

Hence by refining u+vi if need be, we can determine which factor g;(x) is satisfied
by B. Then form @ (x, f) = @ () [x]/(g:(x)). Within @ (o, ) we can compute o+ f, & — f,
o-f and 2

p

representing multiplication by 7y relative to the basis o'’ of @(x, ). Compute
H(x)=det(xI — M): this is a monic polynomial satisfied by y. Factor it over @: the
result will be a power of an irreducible polynomial h(x), which is the: minimal
polynomial of y. Also compute an approximation w+ yi which is within B(h) of 7, by
using the approximations a + bi and u + vi to « and f (refining these if needed). We can
represent y by (h(x), w+ yi).

. Let y be one of these elements, and let M be the matrix over @
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To factor a polynomial f(x)e @[x], first let L be the field generated over @ by
the coefficients of f(x), and factor f(x) algebraically into irreducible factors f;(x) over L.
For each j, form the extension L[x]/(f;(x)), and determine the minimal polynomial of x
(mod fj(x)) over @ by the method of the preceding paragraph. Our representation of
elements of L also includes specification of their embedding in C. Determine analytically
approximations aj +byi to the roots y of f;(x). The roots of f(x) in @ will be
represented by the various pairs (h,(x), a;, + b, i), where h,(x) is the minimal polynomial
of y over @.
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