TARSXI-SETDENBERG

Theorem 1.9 (Tarski-Seidenberg - first form) There exists an algorithm which, given a system of polynomial equations and inequalities in the variables $T=\left(T_{1}, \ldots, T_{p}\right)$ and X with coefficients in \mathbb{R}

$$
\mathcal{S}(T, X):\left\{\begin{array}{l}
S_{1}(T, X) \triangleright_{1} 0 \\
S_{2}(T, X) \triangleright_{2} 0 \\
\cdots \\
S_{\ell}(T, X) \triangleright_{\ell} 0
\end{array}\right.
$$

(where the \triangleright_{i} are either $=$ or \neq or $>$ or \geq), produces a finite list $\mathcal{C}_{1}(T), \ldots$, $\mathcal{C}_{k}(T)$ of systems of polynomial equations and inequalities in T with coefficients in \mathbb{R} such that, for every $t \in \mathbb{R}^{p}$, the system $\mathcal{S}(t, X)$ has a real solution if and only if one of the $\mathcal{C}_{j}(t)$ is satisfied.

Theorem 2.3 (Tarski-Seidenberg - second form) Let A be a semialgebraic subset of \mathbb{R}^{n+1} and $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$, the projection on the first n coordinates. Then $\pi(A)$ is a semialgebraic subset of \mathbb{R}^{n}.

Theorem 2.6 (Tarski-Seidenberg - third form) If $\Phi\left(X_{1}, \ldots, X_{n}\right)$ is a first-order formula, the set of $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ which satisfy $\Phi\left(x_{1}, \ldots, x_{n}\right)$ is semialgebraic.

$$
\begin{array}{ll}
p>q & \exists z-t \\
p \neq \phi=z & +(p-q)=1 . \\
\Sigma \neq \phi & \Leftrightarrow \hat{\sum} \neq \phi .
\end{array}
$$

$$
\begin{aligned}
& f=0 r g=0 \\
& \Leftrightarrow f_{g}=0 \\
& f=0 \wedge g=0 \\
& \Leftrightarrow f^{2}+g^{2}=0 .
\end{aligned}
$$

- Remember Pole', theorem

So cig. $p(x)$ has a ! root (ab most) if $p^{\prime}(x)$ has no roots.
Renfork; \#of real roots in be bounded by \# 4 monocinals (Khovanskii)
Exercise (Descartes): $\sum_{i=0} a_{i} x^{i}$ has al ono st th number of aitcernetions of soles in the cofflinents positive roots.
(2) Multiph roots are harder to see.

If p has a root, so dues p^{2} but "small perturbation" $p^{2}=\varepsilon$ might not.

Remark: \mathbb{R} differs from \mathbb{C} in terms of instability of roots.

This is a serious practical" problem.
" p to equ.1 15 cont. nit nu Important
Moduli? Coefficients.

Is the zero at $x=1$ an experimental error?

$$
\begin{aligned}
& \operatorname{sign}(f)>0 \\
& \text { for } x>0 \text { are. unlike }
\end{aligned}
$$

a stable case.
(2) $p(x)$ has a donble root iff

$$
\operatorname{gcd}\left(p, p^{\prime}\right) \neq 1
$$

ged can be determined alg. by Enclidean algorit hm .
(3) Resultant

$$
\begin{aligned}
& \operatorname{gcd}(f, g)=1 \\
& \Leftrightarrow \\
& \exists a, b \in \mathbb{F}[x] \quad \Leftrightarrow \exists a, b \\
& \text { of low debra } \\
& \text { with } \\
& a f+b g=0 \text {. } \\
& \text { and } \operatorname{deg} a<\operatorname{deg} g=q \\
& \text { and } \operatorname{dog} b<\log f_{0}=p \text {. } \\
& \text { Male } a \text { mayo ix } \\
& \operatorname{Deg}<p+\operatorname{Deg}<g \rightarrow \operatorname{Deg}<p+q \\
& (a, b) \longrightarrow a t+b g
\end{aligned}
$$

and check if set $=0$ not.

Eximole

$$
\begin{aligned}
& a x^{2}+b x+c \\
& \text { vs } \quad d x+e \\
& \begin{array}{l}
1 \\
x
\end{array}\left|\begin{array}{ccc}
a-b & c \\
0 & d & e \\
d & e & 0
\end{array}\right|=0 \quad \operatorname{citf}(b a+e)\left(a x^{2}+b+c,\right. \\
& \lambda x+e) \\
& \text { \& const. } \\
& \left(x^{2}-1\right)^{2}
\end{aligned}
$$

(4) Stern's theorms.
$\operatorname{GCD}\left(p(x), p^{\prime}(x)\right)=$
$f^{(x)} \approx f(x)$ has no multiple roots $\Pi(x-j)^{d-1}$ In case $f(x)$ has no mutipale roots. $p \mathbf{e c}$. (so all roots are between the roots of $f^{\prime}(x)$)

INFORMALLK look for whetter ∞ $f\left(p_{1}\right) f\left(f_{2}^{n}\right)<0$ or not.
But then yon'd need to find the $\rho_{1}^{\prime}<\rho<\rho_{2}^{\prime}$ where $f(\rho)=0$. to continue. to do the next degree.

This cos be done algorithmically. (le jasatly?)

STURH'S THEOREM
(Better approach:
Stand. $\left(P, P, P_{3}=a P^{\prime}-P, P_{4} d k\right)$
$r(a)=$ nvester of ettermatoins of sizes at a
$v(b)$. $\quad . \quad \circ \quad \sim$ at b.
$a<b$; \#d root, is $[a, b]$ is $v(a)-v(t)$.
Excmomple.

$$
\begin{aligned}
& p(x)=x^{3}-x \\
& p^{\prime}(N)=3 x^{2}-1 \\
& p_{3}=\frac{4}{3} x \\
& p_{4}=1 .
\end{aligned}
$$

Gives $\left(x^{3}-x, 3 x^{2}-1, \frac{4}{3} x, 1\right)$

$$
\begin{aligned}
& v(-\infty)=(-,+,-,+)=3 \\
& v(.5)=(-,-,+,+)=1 \\
& v(2)=(+,+,+,+)=0
\end{aligned}
$$

It fan of proof: look et whet happen to thin as you pass a root of $p(x)$ if all zeroes are simple.
or a root of some $p_{i} i>1$.

$$
p(x)=\prod\left(x-p_{i}\right)
$$

KEy PROPERTIES:

1. $P=P_{0}$, and P_{K} is a nonzero constant.
2. If c is a root of P_{0}, the product $P_{0} P_{1}$ is negative on some interval $(c-\varepsilon, c)$
and positive on some interval $(c, c+\varepsilon)$.
3. If c is a root of $P_{i}, 0<i<K$, then $P_{i-1}(c) P_{i+1}(c)<0$.

So do the same for P with multiple roots -

$$
\frac{p=q}{} \quad P_{1} P_{2} P_{3} \cdots P_{r}=\underline{\left(G C D\left(P_{1}, P_{2}\right) .\right.}
$$

GCD(PY) Hes the same \# d alternations of signs as
who fiticulorg at any a not a root of P.
\therefore Storm rooks even it P has multiple roots.

SYLVESTER's THEOREM
Definition 1.2.8. Let R be a real closed field, and let f and g be in $R[X]$. The Sturm sequence of f and g is the sequence of polynomials $\left(f_{0}, \ldots, f_{k}\right)$ defined as follows:

$$
\begin{aligned}
& f_{0}=f, \quad f_{1}=f^{\prime} g, \\
& f_{i}=f_{i-1} q_{i}-f_{i-2} \text { with } q_{i} \in R[X] \text { and } \operatorname{deg}\left(f_{i}\right)<\operatorname{deg}\left(f_{i-1}\right) \text { for } i=2, \ldots, k,
\end{aligned}
$$

f_{k} is a greatest common divisor of f and $f^{\prime} g$.
Theorem 1.2.9 (Sylvester's Theorem). Let R be a real closed field and let f and g be two polynomials in $R[X]$. Let $a, b \in R$ be such that $a<b$ and neither a nor b are roots of f. Then the difference between the number of roots of f in the interval $] a, b[$ for which g is positive and the number of roots of f in the interval $] a, b[$ for whit $h g$ is negative, is equal to $v(f, g ; a)-v(f, g ; b)$.

solve with Storm.

What Can Go Wrong?

What Can Go Wrong?

Annale of Moth. 1954.

6. Additional remarks

(a) Originally we had an idea for a proof which is practically immediate if K is the field of real numbers and which in any event makes the reason for the truth of the decision method especially clear. Instead of asking whether a hypersurface $f\left(x_{1}, \cdots, x_{n}\right)=0$ carries a real point, we ask whether a variety V given by $f_{1}\left(x_{1}, \cdots, x_{n}\right)=0, \cdots, f_{s}\left(x_{1}, \cdots, x_{n}\right)=0$ carries one. It does, obviously in the case K is the field of real numbers, if and only if there is on V a real point nearest the origin. Arranging matters so that the origin is not the center of any sphere containing a component of V of positive dimension, the minimum condition stated determines a subvariety V_{0} of V, of dimension less than the dimension of V if V is of positive dimension, such that V carries a real point if and only if V_{0} does. In this way it comes to deciding whether a 0 -dimensional variety contains a real point: after appropriate projections one has that the ambient space is 1-dimensional, and then Sturm's Theorem is annlicable.

