Theorem 1.9 (Tarski-Seidenberg – first form) There exists an algorithm which, given a system of polynomial equations and inequalities in the variables $T = (T_1, \ldots, T_p)$ and X with coefficients in \mathbb{R}

$S(T, X) : \begin{cases} S_1(T, X) \triangleright_1 0 \\ S_2(T, X) \triangleright_2 0 \\ \vdots \\ S_t(T, X) \triangleright_t 0 \end{cases}$

(where the \triangleright_i are either = or \neq or $>$ or \geq), produces a finite list $C_1(T), \ldots, C_t(T)$ of systems of polynomial equations and inequalities in T with coefficients in \mathbb{R} such that, for every $t \in \mathbb{R}^p$, the system $S(t, X)$ has a real solution if and only if one of the $C_j(t)$ is satisfied.

Theorem 2.3 (Tarski-Seidenberg – second form) Let A be a semialgebraic subset of \mathbb{R}^{n+1} and $\pi : \mathbb{R}^{n+1} \rightarrow \mathbb{R}^n$, the projection on the first n coordinates. Then $\pi(A)$ is a semialgebraic subset of \mathbb{R}^n.

Theorem 2.6 (Tarski-Seidenberg – third form) If $\Phi(X_1, \ldots, X_n)$ is a first-order formula, the set of $(x_1, \ldots, x_n) \in \mathbb{R}^n$ which satisfy $\Phi(x_1, \ldots, x_n)$ is semialgebraic.

Oddly enough Seidenberg replace elimination of quantifiers with elimination on "non-equalities".
\[p > q \quad \exists \mathbb{Z}, t \]
\[p - q = t \]
\[p \neq q \quad t(p - q) = 1. \]
\[\varepsilon \neq 0 \iff \exists \neq 0. \]

\[f = 0 \quad \text{or} \quad g = 0 \]
\[\iff f \circ \sigma = 0 \]
\[f = 0 \land g = 0 \]
\[\iff f^2 + g^2 = 0. \]
0 Remember Rolle's theorem

\[p'(x) = 0 \]

So e.g. \(p(x) \) has a 1 root (at most) if \(p'(x) \) has no roots.

Remark: # of real roots can be bounded by # of monomials (Khovanskii)

Exercise (Descartes): \(\sum a_i x^i \) has at most the number of alternations of signs in the coefficients positive roots.
Multiple roots are harder to see.

If \(p \) has a root, so does \(p^2 \)

but "small perturbation" \(p^2 + \epsilon \)

might not.

Remark: \(\mathbb{R} \) differs from \(\mathbb{C} \) in terms of instability of roots.

This is a serious "practical" problem.

Moduli? Coefficients, up to equ. in char. not so important in deg.?
\[y = x^3 - 2x^2 + x = x(x-1)^2 \]

Is the zero at \(x = 1 \) an experimental error?

\[\text{sign}(f) > 0 \]

\(\text{for } x > 0 \) a.e. unlike a stable case.
2) \(p(x) \) has a double root iff
\[
gcd(p, p') \neq 1.
\]

\(\gcd \) can be determined alg.
by Euclidian algorithm.
3. **Resultant**

\[\gcd(f, g) = 1 \]

\[\iff \exists a, b \in \mathbb{F}[x] : af + bg = 1 \]

and \(\deg a < \deg g = q \)
and \(\deg b < \deg f = p \).

Make a matrix

\[\begin{align*}
\text{Deg} < p + \text{Deg} < q & \quad \Rightarrow \quad \text{Deg} < p + q \\
(g, b) & \quad \rightarrow \quad af + bg \\
\text{and check if } \det = 0 \text{ or not.}
\end{align*} \]
Example: \(ax^2 + bx + c \) vs \(dx + c \)

\[
\begin{vmatrix} a & b & c \\ 0 & d & e \\ d & e & 0 \end{vmatrix} = 0
\]

\(\text{if } (b+e) \neq 0 \)

\(\text{gcd} \left(ax^2 + bx + c, \right)
\]

\(\frac{dx+c}{a+b+c} \)

\(+ \text{const} \)

\((x^2 + 1)^2\)
4 Sturm's theorem. \[\text{GCD} \left(p(x), p'(x) \right) = \frac{1}{\prod (x - p_k)} \]

In case \(f(x) \) has no multiple roots. (So all roots are between the roots of \(f'(x) \))

Informally, look for whether

\[f(p_1) f(p_2) < 0 \]

But then you'd need to find the \(\hat{p}_1 < p < \hat{p}_2 \) where \(f(p) = 0 \).

to continue to do the next degree.

This can be done algorithmically.

(elegantly?)
STURM'S THEOREM

Better approach:

Start \((p, p', p_2 = ap' - p, p_3, \ldots)\)

\(v(a) = \text{number of alternations of sign at } a\)

\(v(b) = \ldots \) at \(b\).

\(c < b\); the roots in \([a, b]\) = \(v(a) - v(b)\).

Example: \(p(x) = x^3 - x\)

\(p'(x) = 3x^2 - 1\)

\(p_2 = \frac{4}{3} x\)

\(p_3 = 1\).

Given \((x, x, 3x^2 - 1, \frac{4}{3} x, 1)\)

\(v(-\infty) = (-, +, -, +) = 3\)

\(v(-1.5) = (-, -, +, +) = 1\)

\(v(2) = (+, +, +, +) = 0\)

Idea of proof: look at what happens to this as you pass a root of \(p(x)\). If all zeroes are simple,

or a root of some \(p_i\). \(\prod(x-p_i)\)
Going through a root at \(p \) of \(p(x) \).

Change through a root at \(p \).

- Sign of \(p_{i+1}(a) \).
- \(p_{i+1}(a) \) unchanged.
- \(p_{i+1}(a) \) changed.

Quad. \(\geq 0 \)
KEY PROPERTIES:

1. $P = P_0$, and P_K is a nonzero constant.
2. If c is a root of P_0, the product $P_0 P_1$ is negative on some interval $(c - \varepsilon, c)$ and positive on some interval $(c, c + \varepsilon)$.
3. If c is a root of P_i, $0 < i < K$, then $P_{i-1}(c)P_{i+1}(c) < 0$.

So do the same for P with multiple roots -

$$P \overset{\text{gcd}}{\underset{d}{\rightarrow}} \frac{P}{d} = \frac{P_0}{d} P_1 P_2 \cdots P_r = \text{gcd}(P_1, P_2).$$

$\text{gcd}(P_0^2)$ has the same number of alternations of signs as

$$\frac{1}{P_r} \overset{\text{gcd}}{\underset{d}{\rightarrow}} \frac{1}{P_{r-1}} \overset{\text{gcd}}{\underset{d}{\rightarrow}} \cdots \overset{\text{gcd}}{\underset{d}{\rightarrow}} \frac{1}{P_1} \overset{\text{gcd}}{\underset{d}{\rightarrow}} 1$$

when dividing at any a not a root of P.

Thus, Sturm works even if P has multiple roots.
SYLVESTER'S THEOREM

Definition 1.2.8. Let R be a real closed field, and let f and g be in $R[X]$. The Sturm sequence of f and g is the sequence of polynomials (f_0, \ldots, f_k) defined as follows:

$f_0 = f, \quad f_1 = f'g,$
$f_i = f_{i-1}q_i - f_{i-2}$ with $q_i \in R[X]$ and $\deg(f_i) < \deg(f_{i-1})$ for $i = 2, \ldots, k$,
f_k is a greatest common divisor of f and $f'g$.

Theorem 1.2.9 (Sylvester's Theorem). Let R be a real closed field and let f and g be two polynomials in $R[X]$. Let $a, b \in R$ be such that $a < b$ and neither a nor b are roots of f. Then the difference between the number of roots of f in the interval $]a, b[$ for which g is positive and the number of roots of f in the interval $]a, b[$ for which g is negative, is equal to $v(f, g; a) - v(f, g; b)$.

SEIDENBERG’S METHOD.

Reduce to existence of real points on varieties. Generalize the following method from plane curves.

Use a resultant to get a 1 variable equation for x and solve with Sturm.
WHAT CAN GO WRONG?
6. Additional remarks

(a) Originally we had an idea for a proof which is practically immediate if \(K \) is the field of real numbers and which in any event makes the reason for the truth of the decision method especially clear. Instead of asking whether a hypersurface \(f(x_1, \cdots, x_n) = 0 \) carries a real point, we ask whether a variety \(V \) given by \(f_1(x_1, \cdots, x_n) = 0, \cdots, f_s(x_1, \cdots, x_n) = 0 \) carries one. It does, obviously in the case \(K \) is the field of real numbers, if and only if there is on \(V \) a real point nearest the origin. Arranging matters so that the origin is not the center of any sphere containing a component of \(V \) of positive dimension, the minimum condition stated determines a subvariety \(V_0 \) of \(V \), of dimension less than the dimension of \(V \) if \(V \) is of positive dimension, such that \(V \) carries a real point if and only if \(V_0 \) does. In this way it comes to deciding whether a 0-dimensional variety contains a real point: after appropriate projections one has that the ambient space is 1-dimensional, and then Sturm’s Theorem is applicable.
Notation 1.4.3. Let f_1, \ldots, f_s be a sequence of polynomials in $R[X]$ and let $x_1 < \ldots < x_N$ be the roots in R of all f_i that are not identically zero. By convention we define $x_0 = -\infty$, $x_{N+1} = +\infty$. If $I_k = [x_k, x_{k+1}]$, $\text{sign}(f_i(x))$ is constant for $x \in I_k$, and is denoted $\text{sign}(f_i(I_k))$.

The matrix with s rows and $2N + 1$ columns whose ith row is

$$\begin{align*}
\text{sign}(f_i(I_0)), \text{sign}(f_i(x_1)), \text{sign}(f_i(I_1)), \ldots, \text{sign}(f_i(x_N)), \text{sign}(f_i(I_N))
\end{align*}$$
is denoted $\text{SIGN}_R(f_1, \ldots, f_s)$. Note that $\text{SIGN}_R(f_1, \ldots, f_s)$ is a matrix with entries in $\{-1, 0, 1\}$.

If $m = \max(\{\deg(f_i) \mid i = 1, \ldots, s\})$ then $N \leq sm$. The disjoint union of the sets of matrices with entries in $\{-1, 0, 1\}$ having s rows and $2\ell + 1$ columns, for $\ell = 0, \ldots, sm$, is denoted $W_{s,m}$.

Lemma 1.4.4. Let ϵ be a function from $\{1, \ldots, s\}$ to $\{-1, 0, +1\}$. Then there exists a subset $W(\epsilon)$ of $W_{s,m}$ such that for every real closed field R and every sequence f_1, \ldots, f_s of polynomials in $R[X]$ of degrees $\leq m$, the system

$$\begin{align*}
\text{sign}(f_i(X)) &= \epsilon(1) \\
\vdots \\
\text{sign}(f_i(X)) &= \epsilon(s)
\end{align*}$$

has a solution x in R if and only if $\text{SIGN}_R(f_1, \ldots, f_s) \in W(\epsilon)$.

Proof. $W(\epsilon)$ is the subset of $W_{s,m}$ whose elements are matrices having one of their columns coinciding with the sequence $\epsilon(1), \ldots, \epsilon(s)$. \qed
The importance of the concept of \(\text{SIGN}_R \) is that the \(\text{SIGN}_R \) of a sequence of polynomials \(f_1, \ldots, f_s \) is completely determined by the \(\text{SIGN}_R \) of a new and simpler sequence.
The importance of the concept of \("SIGN_R\)" is that the \("SIGN_R\)" of a sequence of polynomials \(f_1, \ldots, f_s\) is completely determined by the \("SIGN_R\)" of a new and simpler sequence.

Lemma 1.4.5. There exists a mapping \(\varphi\) from \(W_{2s,m}\) to \(W_{s,m}\) such that for every real closed field \(R\) and every sequence \(f_1, \ldots, f_s\) of polynomials in \(R[X]\) of degrees \(\leq m\), with \(f_s\) nonconstant and none of the \(f_1, \ldots, f_{s-1}\) identically zero, we have:

\[
SIGN_R(f_1, \ldots, f_s) = \varphi(SIGN_R(f_1, \ldots, f_{s-1}, f'_s, g_1, \ldots, g_s)),
\]

where \(f'_s\) is the derivative of \(f_s\), and \(g_1, \ldots, g_s\) are the remainders of the euclidean division of \(f_s\) by \(f_1, \ldots, f_{s-1}, f'_s\), respectively.

Proof. Let \(x_1 < \ldots < x_N\) with \(N \leq 2m\), be the roots in \(R\) of those polynomials among \(f_1, \ldots, f_{s-1}, g_1, \ldots, g_s\) that are not identically zero. Extract from these roots the subsequence \(x_1 < \ldots < x_{2m}\) of the roots of the polynomials \(f_1, \ldots, f_s, f'_s\). The sequence \(x_1, \ldots, x_M\) depends only on \(w = SIGN_R(f_1, \ldots, f_s, f'_s, g_1, \ldots, g_s)\). By convention, let \(x_0 = -\infty\) and let \(x_{2M+1} = +\infty\). For \(k = 1, \ldots, M\) one of the polynomials \(f_1, \ldots, f_{s-1}, f'_s\) vanishes at \(x_k\). It is enough to know \(w\) in order to choose a function \(\theta : \{1, \ldots, M\} \to \{1, \ldots, n\}\) such that \(f_\theta(x_k) = g_{\theta(k)}(x_k)\). We show that the existence of a root of \(f_s\) in an interval \([x_{k-1}, x_k]\), for \(k = 0, \ldots, M\), depends only on \(w\). The polynomial \(f_s\) has a root

\[\text{in } [x_k, x_{k+1}], \text{ for } k = 1, \ldots, M-1, \text{ if and only if }\]

\[\text{sign}(g_{\theta(M)}(x_k)) \cdot \text{sign}(g_{\theta(M+1)}(x_k)) = -1,\]

1.4 The Tarski-Seidenberg Principle

- In \([-\infty, x_1]\) if \(M \neq 0\), if and only if
 \[
 \text{sign}(f'_s((-\infty, x_1])) \cdot \text{sign}(g_{\theta(1)}(x_1)) = 1,
 \]
- In \([x_1, +\infty]\) if \(M \neq 0\), if and only if
 \[
 \text{sign}(f'_s([x_1, +\infty])) \cdot \text{sign}(g_{\theta(M)}(x_1)) = -1,
 \]
- In \([-\infty, +\infty]\) always if \(M = 0\).

Now let \(y_1 < \ldots < y_{2L}\) be the roots in \(R\) of the polynomials \(f_1, \ldots, f_s\). As before, let \(y_0 = -\infty, y_{2L+1} = +\infty\). Define the function

\[
p : \{0, \ldots, L+1\} \to \{0, \ldots, M+1\} \cup \{(k, k+1) \mid k = 0, \ldots, M\}
\]

\[
f : \{0, \ldots, L+1\} \to \{(k, k+1) \mid y_k \in [x_k, x_{k+1}]\}
\]

From what we have seen before, the number \(L\) and the function \(p\) depend only on \(w\). We are now ready to verify that \(SIGN_R(f_1, \ldots, f_s)\) depends only on \(w\).

For \(j = 1, \ldots, s-1\), we have

- if \(p(j) = k\), sign\(f_j(y_k) = -\text{sign}(f_j(x_k))\),
- if \(p(j) = (k, k+1)\), sign\(f_j(y_k) = \text{sign}(f_j(x_k, x_{k+1}))\).

We also have

- if \(p(j) = k\), sign\(f_j(y_k) = -\text{sign}(g_{\theta(k)}(x_k))\),
- if \(p(j) = (k, k+1)\), sign\(f_j(y_k) = \text{sign}(g_{\theta(k)}(x_k))\).

We now deal with the case \(j = s\). We have

- if \(p(s) = k\), sign\(f_s(y_k) = -\text{sign}(g_{\theta(s)}(x_k))\),
- if \(p(s) = (k, k+1)\), sign\(f_s(y_k) = \text{sign}(g_{\theta(s)}(x_k))\).

The most delicate case concerns sign\(f_s([y_k, y_{k+1}])\) :

- if \(t \neq 0\), \(p(s) = k\), sign\(f_s([y_k, y_{k+1}]) = -\text{sign}(g_{\theta(s)}(x_k))\)
- if \(t \neq 0\), \(p(s) = (k, k+1)\), sign\(f_s([y_k, y_{k+1}]) = \text{sign}(g_{\theta(s)}(x_k))\)
- otherwise,

- if \(t = 0\), \(p(s) = k\), sign\(f_s([y_k, y_{k+1}]) = -\text{sign}(f'_s((-\infty, y_k]))\),
- if \(t = 0\), \(p(s) = (k, k+1)\), sign\(f_s([y_k, y_{k+1}]) = \text{sign}(f'_s((-\infty, y_k]))\).
Proposition 1.4.6. Let \(f_i(X,Y) = h_{i,m_i}(Y)X^{m_i} + \cdots + h_{i,0}(Y) \), for \(i = 1, \ldots, s \), be a sequence of polynomials in \(n + 1 \) variables with coefficients in \(\mathbb{Z} \), where \(Y = (Y_1, \ldots, Y_n) \), and let \(m = \max(\{m_i \mid i = 1, \ldots, s\}) \). Let \(W' \) be a subset of \(W_{s,m} \). Then there exists a boolean combination \(B(Y) \) of polynomial equations and inequalities in the variables \(Y \) with coefficients in \(\mathbb{Z} \), such that, for every real closed field \(R \) and every \(y \in R^n \), one has

\[
\text{SIGN}_R(f_1(X,y), \ldots, f_s(X,y)) \in W' \iff B(y) \text{ is satisfied in } R.
\]

This enables eliminating variables one at a time.

Worth pausing to think about the complexity of this algorithm.
Proof. Without loss of generality, we may assume that none of the polynomials \(f_1, \ldots, f_s \) is identically zero and that \(h_{i,m_i}(y) \) is not identically zero for \(i = 1, \ldots, s \). We associate to the sequence of polynomials \((f_1, \ldots, f_s) \) the sequence \((m_1, \ldots, m_s) \) of their degrees in \(X \). To compare these finite sequences of integers, define a strict order as follows:

\[
\sigma = (m_1', \ldots, m_t') \prec \tau = (m_1, \ldots, m_s)
\]

if there exists \(p \in \mathbb{N} \) such that, for every \(q > p \), the number of times \(q \) appears in \(\sigma \) is equal to the number of times \(q \) appears in \(\tau \), and the number of times \(p \) appears in \(\sigma \) is smaller than the number of times \(p \) appears in \(\tau \). This gives a well-ordering of the set of sequences of integers: there is no infinite chain \(\sigma_1 \succ \sigma_2 \succ \sigma_3 \succ \ldots \). We proceed now by induction with respect to the order \(\prec \).

Let \(m = \max\{m_1, \ldots, m_s\} \). If \(m = 0 \), then the result is straightforward, since \(\text{SIGN}_R(f_1(X,y), \ldots, f_s(X,y)) \) is the list of signs of “constant terms” \(h_{1,0}(y), \ldots, h_{s,0}(y) \).

Suppose that \(m \geq 1 \) and \(m_s = m \). Let \(W'' \subset W_{2s,m} \) be the inverse image of \(W' \subset W_{s,m} \) under the mapping \(\varphi \) defined in Lemma 1.4.5. By this lemma, for every real closed field \(R \) and for every \(y \in R^n \) such that \(h_{i,m_i}(y) \neq 0 \) for \(i = 1, \ldots, s \), the property

\[
\text{SIGN}_R(f_1(X,y), \ldots, f_s(X,y)) \in W'
\]

is equivalent to the property

\[
\text{SIGN}_R(f_1(X,y), \ldots, f_{s-1}(X,y), f_s'(X,y), g_1(X,y), \ldots, g_s(X,y)) \in W''
\]

where \(f_s' \) is the derivative of \(f_s \) with respect to \(X \) and \(g_1, \ldots, g_s \) are the remainders in the euclidean division (with respect to \(X \)) of \(f_s \) by \(f_1, \ldots, f_{s-1}, f_s' \), respectively, multiplied by appropriate even powers of \(h_{1,m_1}, \ldots, h_{s,m_s} \), respectively, in order to clear the denominators. Now, the sequence of degrees in \(X \) of \(f_1, \ldots, f_{s-1}, f_s', g_1, \ldots, g_s \) is smaller than \((m_1, \ldots, m_s) \) with respect to the order \(\prec \). On the other hand, if at least one among the \(h_{i,m_i}(y) \) is zero, we can truncate the corresponding polynomial \(f_i \) and obtain a sequence of polynomials, whose sequence of degrees in \(X \) is smaller than \((m_1, \ldots, m_s) \) with respect to the order \(\prec \). This completes the proof of Proposition 1.4.6 and proves the Tarski-Seidenberg principle as well. \(\square \)
DEFINITION. A real-valued function \(f(x_1, \ldots, x_n) \) is effective if there is a primitive recursive procedure which to every polynomial relation \(A(y_1, t_1, \ldots, t_m) \) assigns a polynomial relation \(B(x_1, \ldots, x_n, t_1, \ldots, t_m) \) such that

\[A(f(x), t_1, \ldots, t_m) \iff B(x_1, \ldots, x_n, t_1, \ldots, t_m). \]

We observe some simple facts about effective functions. The effective functions are closed under composition. The functions \(x + y, x \cdot y, \text{sgn } x \) are effective. If \(f(x) \) takes only finitely many values, all of which are integers, then \(f \) is effective if and only if for each \(k \) the relation \(f(x) = k \) is equivalent to a polynomial relation \(B(x) \). If \(f \) is effective and takes only the values 0 and 1, and if \(g_1 \) and \(g_2 \) are effective, and if \(h \equiv g_1 \) if \(f = 0 \), \(h \equiv g_2 \) if \(f = 1 \), then \(h \) is effective.

Lemma 1.1. \(f(x_1, \ldots, x_n) \) is effective if there is a primitive recursive function which assigns to every \(d \) a polynomial relation \(A(\epsilon_0, \ldots, \epsilon_d, x_1, \ldots, x_n, \lambda) \) such that

\[A(\epsilon, x, \lambda) \iff \lambda = \text{sgn } (\epsilon f^d + \cdots + \epsilon_d). \]

Proof: This is just a simple consequence of the fact that all polynomial relations are constructed from inequalities \(p(x) > 0 \). A rigorous proof proceeds by induction on the number of terms in the polynomial relation.
Definition. Let $p(x)$ be a polynomial in one variable. By a graph for $p(x)$ we mean a k-tuple $t_1 < t_2 < \cdots < t_k$ such that, in each interval of the form $(-\infty, t_i), (t_i, t_{i+1}), (t_k, \infty)$, p is monotonic. By the data of the graph we mean the k-tuple $(t_1, \cdots, t_k), \text{sgn} \, p(t_i)$ for $1 \leq i \leq k$, $\text{sgn} \, p(t_1 - 1)$, and $\text{sgn} \, p(t_k + 1)$.

We shall now prove the following two theorems by induction on n.

Theorem A$_n$. There are effective functions of a_0, \cdots, a_n which give the data for a graph of $p(x) \equiv a_n x^n + \cdots + a_0$. More precisely, there are $2n$ effective functions of a_0, \cdots, a_n, namely, $t_i(a), \text{sgn} \, p(t_i(a))$, where $1 \leq i \leq n - 1, \text{sgn} \, p(t_i(a) - 1)$ and $\text{sgn} \, p(t_{n-1}(a) + 1)$, such that $t_1(a) < \cdots < t_{n-1}(a)$ form a graph for $p(x)$.

Theorem B$_n$. Let $p(x) \equiv a_n x^n + \cdots + a_0$. There are $n + 1$ effective functions of a_0, \cdots, a_n, namely $k(a)$ and $\xi_1(a) < \xi_2(a) < \cdots < \xi_n(a)$, such that $\xi_1(a), \cdots, \xi_n(a)$ are all the roots of $p(x)$.

In the proofs of these theorems we shall use without proving it the fact that certain simple functions we encounter are indeed effective. The case $n = 0$ of the theorem being trivial, assume both theorems have been proved for all values less than a given n. We now prove Theorem A$_n$ as follows: Consider the polynomial $p'(x)$. Its coefficients are effective functions of those of p. By Theorem B$_{n-1}$, its zeros lie among ξ_1, \cdots, ξ_{n-1}, where ξ_i are effective. These ξ_i can be taken as defining a graph for p and since ξ_i are effective, so are $\text{sgn} \, p(\xi_i), \text{sgn} \, p(\xi_i - 1), \text{sgn} \, p(\xi_{n-1} + 1)$.
To prove Theorem B_n, let \(t_1 < \cdots < t_{n-1} \) define an effective graph for \(p \), which is possible by virtue of Theorem A_n. By examining \(\text{sgn} \ p(t_1), \text{sgn} \ p(t_1 - 1), \text{sgn} \ p(t_{n-1} + 1) \), we can determine the number of roots of \(p \) effectively. In each interval \((-\infty, t_1), (t_1, t_{n-1}), (t_{n-1}, \infty)\) there is at most one root of \(p \), and there is also the possibility that some of the \(t_i \) are roots of \(p \). To show that the roots of \(p \) are effective, we consider for example the case of a possible root \(\xi \) between \(t_i \) and \(t_{i+1} \). The other cases are handled quite similarly. By virtue of Lemma 1.1, it is sufficient to show that if \(q(x) \equiv c_0 x^n + \cdots + c_m, \text{sgn} \ q(\xi) \) is an effective function of \(c_i \) and the coefficients of \(p \). Let \(\tilde{q}(x) \) be the remainder obtained by dividing \(p(x) \) into \(q(x) \). Its coefficients are effective functions of the coefficients of \(p \) and the \(c_i \). Also \(\deg \tilde{q} < n \), and \(\tilde{q}(\xi) = q(\xi) \). This means that by replacing \(q \) by \(\tilde{q} \) we can assume that \(\deg q < n \). Let \(u_1 < u_2 < \cdots < u_n \) define an effective graph for \(q \). We now claim that there is an effective function of the coefficients of \(p \) and \(q \) which gives us the position of \(\xi \) relative to the \(u_i \), i.e., tells us, for which \(i \), \(u_i > \xi \) or whether \(u_i = \xi \). This, of course, will in turn determine \(\text{sgn} q(\xi) \) and prove the theorem. Suppose, for definiteness, \(t_1 < \xi < t_2 \). There are two cases to distinguish:

(i) no \(u_i \) is in \([t_1, t_2]\),

(ii) only \(u_n, u_{n-1}, \cdots, u_{n+1} \) are in \([t_1, t_2]\).

Since the \(u_i \) and \(t_j \) are given effectively, these cases can be distinguished effectively. In the first case, the position of \(\xi \) relative to \(u_i \) is determined by the position of \(t_1 \) and \(t_2 \) relative to \(u_i \). In the second case, by examining \(\text{sgn} \ p(u_n), \cdots, \text{sgn} \ p(t_2) \) and \(\text{sgn} \ p(t_1) \) we can determine the position of \(\xi \) relative to the \(u_i \). Thus, Theorem B_n is proved.

We can now prove Tarski's theorem. Let \(A(x_1, \cdots, x_n) \) be a polynomial relation. Then \(A \) is a Boolean function of finitely many relations \(\rho_i(x_1) > 0 \), where each \(\rho_i \) is a polynomial whose coefficients are polynomials in \(x_2, \cdots, x_n \). Since the roots of \(\rho_i \) are effective functions of \(x_2, \cdots, x_n \), and there exist graphs for \(\rho_i \) which are effective functions of \(x_2, \cdots, x_n \), it is clear that by examining the relative position of these various points one can easily determine what the various possibilities are for the sequence \(\{\text{sgn} \ \rho_i(x)\} \) for arbitrary \(x \). This in turn means that we can find a polynomial relation \(B(x_2, \cdots, x_n) \) such that \(\exists x_1 A(x_1, \cdots, x_n) \equiv B(x_2, \cdots, x_n) \).
QE via counting roots (Tarski)

- Algorithmic reduction to an equivalent prenex form
 \[Q_1 X_1 Q_2 X_2 \ldots Q_\ell X_\ell \Psi(Y_1, \ldots, Y_k, X_1, \ldots, X_\ell), \]
 where \(Q_i \) are quantifiers and \(\Psi \) is quantifier-free.

- It suffices to eliminate one quantifier at a time, and to deal with an existential quantifier.

- \(\exists X S(Y_1, \ldots, Y_k, X) \) where \(S \) is a system of polynomial equations and inequalities.

- Case of \(P(Y, X) = 0, Q_1(Y, X) > 0, \ldots, Q_\ell(Y, X) > 0 \): variants of Sturm to produce Boolean combinations \(T_c \) of sign conditions on the coefficients (depending on \(Y \)) satisfied iff the number of solutions in \(X \) is \(c \).

- Primitive recursive complexity.

QE via CAD (Cylindrical Algebraic Decomposition - Collins)

- Starting with \(Q_1 X_1 Q_2 X_2 \ldots Q_\ell X_\ell \Psi(Y_1, \ldots, Y_k, X_1, \ldots, X_\ell) \), where \(\Psi \) is a Boolean combination of sign conditions on polynomials in a finite family \(\mathcal{P} \).

- Construct a CAD of \(R^{k+\ell} \) adapted to \(\mathcal{P} \). The formula describes a union of cells in \(R^k \). Already OK for decision algorithm.

- For quantifier elimination, a quantifier-free description of cells is needed. This is provided by Thom’s lemma: if \(Q \subset R[X] \) is a finite family of polynomials closed under derivation, \(\bigcap_{Q \in \mathcal{Q}} \{ x \in R \mid Q(x) > 0 \} \) (where \(> \) is either \(>, =, < \)) is empty, or a point or an open interval.

- Better complexity: doubly exponential in the number of variables (free and bound).
QE via critical points

- Instead of eliminating one quantifier after the other, eliminate one block of existential quantifiers at a time using a parametric version of critical point method.
- Complexity: doubly exponential in the number of alternations of quantifiers (Grigoriev-Vorobjov, Renegar, Basu-Pollack-Roy).
Back to real ordered fields.

\[(F, 0, 1, +, >) \]

- \(P < F = \) positive cone.
- \(F = P \cup \log u N, \ N = -P \)
 all three disjoint.

Theorem: (Artin)

1. \(F \) is orderable \(\iff -1 \) is not \(\Sigma f_i^2 \)
2. The order can be chosen so that if \(e + \Sigma f_i^2 \)
 we can make \(e \) negative.

Proof. (Using Zorn's Lemma)
Order Positive cones and take a maximal one.

Theorem: \((F, >)\) can always be embedded in a real closed field.

Note: Can't be picked out of \(F\).

Examples of orderings of \(E\):

\[E \]

\[1 \]

\[Q \]
\(Q(x)\)

\(R(x)\)

\[x = 0^+ \quad y = 0^+\]

\(\emptyset(x, y)\) \quad \text{and} \quad \omega(x)\gamma(y).

\(\mathbb{R}(x, y),\)

[worth recalling the classical idea of a generic point]
A basic idea in the classical theory is the following.

(1.3) **Definition.** Let $k \subset C$ be a subfield, and let \mathfrak{P} be a prime ideal. A k-generic point $x \in V(\mathfrak{P})$ is a point such that every polynomial $f(X_1, \ldots, X_n)$ with coefficients in k that vanishes at x is in the ideal \mathfrak{P}, hence vanishes on all of X.

Example: In example (b) above if the coefficients of the g_i are in \mathbb{Q}, the point $(\pi, g_2(\pi), \ldots, g_n(\pi))$ is a \mathbb{Q}-generic point of this rational curve.

(1.4) **Proposition.** If C has infinite transcendence degree over k, then every variety $V(\mathfrak{P})$ has a k-generic point.

Proof. Let f_1, \ldots, f_m be generators of \mathfrak{P}. We may enlarge k if we wish by adjoining the coefficients of all the f_i without destroying the hypothesis. Let

$$\mathfrak{P}_0 = \mathfrak{P} \cap k[X_1, \ldots, X_n]$$

and let

$$L = \text{quotient field of } k[X_1, \ldots, X_n]/\mathfrak{P}_0.$$

Then L is an extension field of k of finite transcendence degree. But any such field is isomorphic to a subfield of C; i.e., \exists a monomorphism ϕ

If $\overline{X}_i = \text{image of } X_i$ in L and $a_i = \phi(\overline{X}_i)$, I claim $a = (a_1, \ldots, a_n)$ is a k-generic point. In fact, $f_i \in \mathfrak{P}_0$. $1 \leq i \leq k$, hence $f_i(\overline{X}_1, \ldots, \overline{X}_n) = 0$ in L. Therefore $f_i(a_1, \ldots, a_n) = 0$ in C and a is indeed a point of X. But if $f \in k[X_1, \ldots, X_n]$ and $f \notin \mathfrak{P}_0$, hence $f(\overline{X}_1, \ldots, \overline{X}_n) \neq 0$ in L. Therefore $f(a_1, \ldots, a_n) = \phi(f(\overline{X}_1, \ldots, \overline{X}_n)) \neq 0$ in C.

QED

For any subset $S \subset C^*$, let $I(S)$ be the ideal of polynomials $f \in C[X_1, \ldots, X_n]$ that vanish at all points of S. Then an immediate corollary of the existence of generic point is:

(1.5) **Hilbert's Nullstellensatz.** If \mathfrak{P} is a prime ideal, then \mathfrak{P} is precisely the ideal of polynomials $f \in C[X_1, \ldots, X_n]$ that vanish identically on $V(\mathfrak{P})$, i.e., $\mathfrak{P} = I(V(\mathfrak{P}))$. More generally, if \mathfrak{P} is any ideal, then $\sqrt{\mathfrak{P}} = I(V(\mathfrak{P}))$.

Proof. Given any $f \in C[X]$, let k be a finitely generated field over \mathbb{Q} containing the coefficients of f and let $a \in V(\mathfrak{P})$ be a k-generic point. If $f \notin \mathfrak{P}$, then $f(a) \neq 0$ hence f does not vanish identically on $V(\mathfrak{P})$; the 2nd assertion reduces to the 1st by means of (f) on p. 2.
Another application is to Hilbert's seventeenth problem which may be found in [6]. We repeat it here. We use the fact about real fields that, if \(K \) is a real field and \(a \in K \) is not a sum of squares, then in some ordering of \(K \), \(a \) is negative. Let \(f(x_1, \ldots, x_n) \) be a rational function with real coefficients which is non-negative for all real values of \(x_i \) for which the denominator is not zero. Let \(S \) be any real-closed field containing the field of real numbers. The decision procedure for real-closed fields may be applied to the statement

\[
A \equiv \exists x_1 \cdots x_n (f(x_1, \ldots, x_n) < 0 \text{ and the denominator of } f \text{ is not zero}).
\]

This will yield a polynomial relation involving the coefficients of \(f \) which is necessary and sufficient for \(A \) to hold in \(S \). Since the order relation of the reals is unique and the coefficients of \(f \) are real, this polynomial relation holds in \(S \) if and only if it holds in the real numbers. Thus we have shown that \(f \) is non-negative if the \(x_i \) range over any real-closed field \(S \). Since every real field can be extended to a real-closed field, \(f \) is non-negative if the \(x_i \) range over any real field. Let \(K \) be the field of rational functions in \(x_1, \ldots, x_n \) with real coefficients. Assume \(f \) is not a sum of squares. Then we can order \(K \) so that \(f \) is negative since \(K \) is a real field. This means that if we think of \(f \) as an element of \(K(t_1, \ldots, t_n) \), then \(f \) assumes a negative value when the variables are replaced by the elements \(x_i \) lying in the real field \(K \). This is a contradiction, so \(f \) must be a sum of squares.
Pfister’s Theory of
Multiplicative QF’s.

Corollaries:

1. In any field \((\sum_{i=1}^{2^k} x_i^2)\) is closed under multiplication.

2. \(f \in \mathbb{R}[x_1, \ldots, x_n] \mu \geq 0 \)

 \text{iff } f = \sum_{i=1}^{a^2} r_i^2

 (Best lower bound \(\geq n+2\) approximately)

3. Variations for \(f \in \mathbb{R}[V]\)

 for a real variety:
Example:

given by the equation $x^3 = z(x^2 + y^2)$. Then $f = x^2 + y^2 - z^2 \in \mathcal{P}(V)$ is negative on the stick $x = y = 0$ outside the origin. Nevertheless, f is a sum of squares in $\mathcal{K}(V)$:

$$f = x^2 + y^2 - \frac{x^6}{(x^2 + y^2)^2} = \frac{3x^4y^2 + 3x^2y^4 + y^6}{(x^2 + y^2)^2}.$$
§ 4. Multiplicative Inner Product Spaces

The results in this section are due to Pfister. (Compare [Scharlau, 1969] and [Lorenz].) However for convenience we will modify Pfister’s definitions.

If \(x \) belongs to an inner product space \(X \), it will be convenient to call \(x \cdot x \) the norm of \(x \). Thus a field element \(\alpha \) is a norm from \(X \) if \(\alpha = x \cdot x \) for some \(x \).

\((4.1)\) Definition. An inner product space \(X \) is multiplicative if

\[X \cong \langle \alpha \rangle \otimes X \]

for every field element \(\alpha \neq 0 \) which is a norm from \(X \).

(This is not the usual definition.)

§ 4. Multiplicative Inner Product Spaces

One important property of multiplicative spaces is the following.

\((4.2)\) Lemma. If \(X \) is multiplicative, then the set of all field elements \(\alpha \neq 0 \) which are norms from \(X \) forms a subgroup of \(F^* \).

\[\text{Proof. If } \alpha = x \cdot x \neq 0 \text{ and } \beta = y \cdot y \neq 0, \text{ choose an isomorphism } \]

\[f : X \to \langle \beta \rangle \otimes X. \]

Setting \(f(x) = e \otimes z \), where \(e \cdot e = \beta \), we obtain

\[x \cdot x = f(x) \cdot f(x) = \beta z \cdot z. \]

Therefore the quotient \(\alpha / \beta = z \cdot z \) is also a norm from \(X \), which completes the proof. \(\square \)
LEMMA 2. Let Q be a strongly multiplicative quadratic form, a an element of F^*. Let $Q_a \sim \text{diag} \{1, a\}$. Then $Q_a \otimes Q$ is strongly multiplicative.

Proof. It is clear that $Q_a \otimes Q$ is equivalent to $Q \oplus aQ$. Hence, it suffices to show that the latter is strongly multiplicative. We now use the notation \sim also for equivalence of quadratic forms and if $Q_1 \sim \text{diag} \{a, b\}$, then we denote $Q_1 \otimes Q_2$ by $\text{diag} \{a, b\} \otimes Q_2 \sim aQ_2 \oplus bQ_2$. Let k be an element of F^* represented by $Q \oplus aQ$, so $k = b + ac$ where b and c are represented by Q (possibly trivially if b or c is 0). We distinguish three cases:

Case I. $c = 0$. Then $k = b$ and $Q \sim bQ$. Hence $Q \oplus aQ \sim bQ \oplus abQ = bQ \oplus bQ = kQ \oplus aQ$.

Case II. $b = 0$. Then $k = ac$ and $kQ \oplus aQ = aQ \oplus a^2 cQ \sim aQ \oplus Q$ since $cQ \sim Q$ by hypothesis and $Q \sim a^2 Q$ for any $a \in F^*$. Thus $kQ \oplus aQ \sim Q \oplus aQ$.

Case III. $bc \neq 0$. We have $Q \oplus aQ \sim bQ \oplus acQ \sim \text{diag} \{b, ac\} \otimes Q$. Since $k = b + ac$ is represented by $bx_1^2 + acx_2^2$ and bac and $k^2 abc$ differ by a square, it follows from Lemma 1 that $\text{diag} \{b, ac\} \sim \text{diag} \{k, kab\}$. Hence $\text{diag} \{b, ac\} \otimes Q \sim \text{diag} \{k, kab\} \otimes Q \sim kQ \oplus kabcQ \sim kQ \oplus kabcQ = kQ \oplus aQ$.

In all cases we have that $Q \oplus aQ \sim kQ \oplus aQ$, so $Q \oplus aQ$ is strongly multiplicative. \qed

2x2 Diag are equivalent if 1 diag prediction is represented by det other than (det/1)^2.
THEOREM 11.11. Suppose that every Pfister form of dimension 2^n represents every non-zero sum of two squares in F. Then every Pfister form of dimension 2^n represents every non-zero sum of k squares in F for arbitrary k.

Proof. By induction on k. Since any Pfister form represents 1, the case $k = 1$ is clear and the case $k = 2$ is our hypothesis. Now assume the result for $k \geq 2$.

It suffices to show that if Q is a Pfister form of dimension 2^n and a is a sum of k squares such that $c = 1 + a \neq 0$, then c is represented by Q. This will follow if we can show that $Q \oplus -cQ$ represents 0 non-trivially. For then we shall have vectors u and v such that $Q(u) = cQ(v)$ where either $u \neq 0$ or $v \neq 0$. If either $Q(u) = 0$ or $Q(v) = 0$, then both are 0 and so Q represents 0 non-trivially. Then Q is universal and hence represents c. If $Q(u) \neq 0$ and $Q(v) \neq 0$, then these are contained in F_Q^o and hence $c = Q(u)Q(v)^{-1}$ in F_Q^o, so c is represented by Q. We now write $Q = x^2 \oplus Q'$. Since Q represents a, we have $a = a_1^2 + a$ where Q' represents a'. We have $\text{diag} \{1, -c\} \otimes Q \sim Q \oplus (-cQ) \sim x^2 \oplus Q' \oplus (-cQ)$ and $Q' \oplus (-cQ)$ represents $a' - (1 + a_1^2 + a') = -(1 + a_1^2)$. If this is 0, then $c = a'$ is represented by Q. Hence we may assume that $1 + a_1^2 \neq 0$.

Then by Theorem 11.10, $\text{diag} \{1, -c\} \otimes Q \sim \text{diag} \{1, -1 - a_1^2\} \otimes Q''$ where Q'' is a Pfister form of dimension 2^n. By the hypothesis, this represents $1 + a_1^2$.

It follows that $\text{diag} \{1, -1 - a_1^2\} \otimes Q''$ represents 0 non-trivially. Then $Q \oplus -cQ \sim \text{diag} \{1, -1 - a_1^2\} \otimes Q''$ represents 0 non-trivially. This completes the proof. □

THEOREM 11.12. Let R be a real closed field and let Q be a Pfister form on a 2^n-dimensional vector space over the field $R(x_1, \ldots, x_n)$. Then Q represents every non-zero sum of two squares in $R(x_1, \ldots, x_n)$.

Proof. Let Q be a Pfister form on a 2^n-dimensional vector space V over $R(x_1, \ldots, x_n)$. We have to show that if $b = b_1^2 + b_2^2 \neq 0$, $b \in R(x_1, \ldots, x_n)$, then b is represented by Q. Since Q represents 1, the result is clear if $b_1b_2 = 0$.

Hence we assume $b_1b_2 \neq 0$. Let $C = R(\bar{i})$, $i^2 = -1$, and consider the extension field $C(x_1, \ldots, x_n)$ of $R(x_1, \ldots, x_n)$ and the vector space $\overline{V} = V_{C(x_1, \ldots, x_n)} = C(x_1, \ldots, x_n) \otimes \overline{V}(x_1, \ldots, x_n)$. If (e_1, e_2) is a base for C/R, then this is a base for $C(x_1, \ldots, x_n)$ over $R(x_1, \ldots, x_n)$. Moreover, every element of \overline{V} can be written in one and only one way as $e_1u_1 + e_2u_2$, $u_i \in V$ (identified with a subspace of \overline{V} in the usual way). The quadratic form Q has a unique extension to a quadratic form \overline{Q} on \overline{V}. Evidently \overline{Q} is a Pfister form. Now put $q = b_1 + b_2i$.

Then $(1, q)$ is a base for C/R and $q^2 - 2b_1q + b = q^2 - 2b_1q + (b_1^2 + b_2^2) = 0$. There exists a vector $\overline{u} = u_1 + qu_2$, $u_i \in V$, such that $\overline{Q}(\overline{u}) = q$. Then $Q(u_1) + 2qQ(u_2) + q^2Q(u_2) = q$. Since $(1, q)$ is a base for $C(x_1, \ldots, x_n)/R(x_1, \ldots, x_n)$ and $q^2 - 2b_1q + b = 0$, this implies that $Q(u_1) = bQ(u_2)$. It follows that b is represented by Q. □
Here is the lovely Tsen-Lang theorem

Let K/F be a field extension of transcendence degree n. The theorem of Tsen-Lang (cf. [G, p. 22]) says that if F is an algebraically closed field then K is a C_n-field, i.e., any homogeneous polynomial of degree d over K with more than d^n variables has a non-trivial solution in K. This can be restated

Chevalley-Warning is that

Finite fields are C_1.
In number theory, the **Chevalley–Warning theorem** implies that certain polynomial equations in sufficiently many variables over a finite field have solutions. It was proved by Ewald Warning (1935) and a slightly weaker form of the theorem, known as **Chevalley's theorem**, was proved by Chevalley (1935). Chevalley's theorem implied Artin's and Dickson's conjecture that finite fields are quasi-algebraically closed fields (Artin 1982, page x).

Statement of the theorems

Let \mathbb{F} be a finite field and $\{f_j\}_{j=1}^r \subseteq \mathbb{F}[X_1, \ldots, X_n]$ be a set of polynomials such that the number of variables satisfies

$$n > \sum_{j=1}^r d_j$$

where d_j is the total degree of f_j. The theorems are statements about the solutions of the following system of polynomial equations

$$f_j(x_1, \ldots, x_n) = 0 \quad \text{for } j = 1, \ldots, r.$$

- **Chevalley–Warning theorem** states that the number of common solutions $(a_1, \ldots, a_n) \in \mathbb{F}^n$ is divisible by the characteristic p of \mathbb{F}. Or in other words, the cardinality of the vanishing set of $\{f_j\}_{j=1}^r$ is 0 modulo p.

- **Chevalley's theorem** states that if the system has the trivial solution $(0, \ldots, 0) \in \mathbb{F}^n$, i.e. if the polynomials have no constant terms, then the system also has a non-trivial solution $(a_1, \ldots, a_n) \in \mathbb{F}^n \setminus \{(0, \ldots, 0)\}$.

Contents

- Statement of the theorems
- Proof of Warning's theorem
- Artin's conjecture
- The Ax–Katz theorem
- See also
- References
- External links
Chevalley’s theorem is an immediate consequence of the Chevalley–Warning theorem since p is at least 2.

Both theorems are best possible in the sense that, given any n, the list $f_j = x_j, j = 1, \ldots, n$ has total degree n and only the trivial solution. Alternatively, using just one polynomial, we can take f_1 to be the degree n polynomial given by the norm of $x_1a_1 + \ldots + x_na_n$ where the elements a form a basis of the finite field of order p^n.

Warning proved another theorem, known as Warning’s second theorem, which states that if the system of polynomial equations has the trivial solution, then it has at least q^{n-d} solutions where q is the size of the finite field and $d := d_1 + \cdots + d_r$. Chevalley’s theorem also follows directly from this.

Proof of Warning's theorem

Remark: If $i < q - 1$ then

$$\sum_{x \in \mathbb{F}} x^i = 0$$

so the sum over \mathbb{F}^n of any polynomial in x_1, \ldots, x_n of degree less than $n(q - 1)$ also vanishes.

The total number of common solutions modulo p of $f_1, \ldots, f_r = 0$ is equal to

$$\sum_{x \in \mathbb{F}^n} (1 - f_1^{q-1}(x)) \cdot \ldots \cdot (1 - f_r^{q-1}(x))$$

because each term is 1 for a solution and 0 otherwise. If the sum of the degrees of the polynomials f_i is less than n then this vanishes by the remark above.

Artin's conjecture

It is a consequence of Chevalley’s theorem that finite fields are quasi-algebraically closed. This had been conjectured by Emil Artin in 1935. The motivation behind Artin’s conjecture was his observation that quasi-algebraically closed fields have trivial Brauer group, together with the fact that finite fields have trivial Brauer group by Wedderburn’s theorem.

The Ax–Katz theorem

The Ax–Katz theorem, named after James Ax and Nicholas Katz, determines more accurately a power q^b of the cardinality q of \mathbb{F} dividing the number of solutions; here, if d is the largest of the d_j, then the exponent b can be taken as the ceiling function of

$$n - \sum_j d_j$$

over d.

The Ax–Katz result has an interpretation in étale cohomology as a divisibility result for the (reciprocals of) the zeroes and poles of the local zeta-function. Namely, the same power of q divides each of these algebraic integers.

See also

- Combinatorial Nullstellensatz

References

External links

This page was last edited on 5 March 2020, at 09:46 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Outline of Artin's proof

• Suppose P is not a sum of squares of rational functions.
• Sums of squares form a proper cone of the field of rational functions, and does not contain P.
• Using Zorn, get a total order on the field of rational functions which does not contain P.
• Taking the real closure of the field of rational functions for this order, get a field in which P takes negative values (when evaluated at the variables, which are elements of the real closure).
• Then P takes negative values over the reals. First instance of a transfer principle in real algebraic geometry. Based on Sturm's theorem, or Hermite quadratic form.

• Our work '14: another constructive proof \implies elementary recursive degree bound:

\[2^{2^{2\omega_1}}. \]

Why a tower of five exponentials?

• outcome of our method ... no other reason ...
• cylindrical decomposition gives univariate polynomials of doubly exponential degrees
• dealing with univariate polynomials of degree d (real root for odd degree, complex root by Laplace) already gives three level of exponentials
• we are lucky enough that all the other steps do not spoil this bound
• long paper (85 pages) ... currently under review.
What can be hoped for ??

- Nullstellensatz : single exponential (..., Kollar, Jelonek, ...).
- Nullstellensatz: single exponential lower bounds (....,Philippon , ...).
- Positivstellensatz: single exponential lower bounds [GV].
- Best lower bound for Hilbert 17th problem : degree linear in k (recent result by [BGP]) !
- Deciding emptyness for the reals (critical point method : more sophisticated than cylindrical decomposition) : single exponential [BPR].
Applications:

(i) Triangulation of Real Algebraic Sets (and semi-algebraic)

(ii) Lojasiewicz inequality.

(iii) Piano Mover problem

(iii) Can an ellipse with semi-axes 1 and $\frac{1}{3}$ pass a right angle corner in a corridor with width 1?
④ A lot of Real Alg geo and Complexity see.

⑤ “Exotic Spheres and bordism of anharmonic manifolds” (S. Cappell, J. Davis, and SW)

Etc...
References:

1. Bochnak, Coste, Roy
2. Basu, Pollack, Roy
3. Coste talk at UCLA
4. Jacobson Basic Algebra I, II
5. Milnor - Husemoller, Symm. Bilinear Forms
6. Cohen, CPAM
7. Seidenberg, Annals
[8. Tarski, Rand Corp paper
9. Marker, Model Theory]