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Abstract. We survey current work relating to isoperimetric functions and isodia-
metric functions of finite presentations.

§1. Introduction and Definitions

Isoperimetric functions are classical in differential geometry, but their use in
group theory derives from Gromov’s seminal article [Gr] and his characterization
of word hyperbolic groups by a linear isoperimetric inequality. Isodiametric func-
tions were introduced in our article [G1] in an attempt to provide a group theoretic
framework for a result of Casson’s (see Theorem 3.6 below). It turned out subse-
quently that the notion had been considered earlier under a different name [FHL].
We have learned since that the differential geometers also have their isodiametric
functions and they mean something different by them. However the analogy is too
suggestive to abandon this terminology and we shall retain it here. Up to an appro-
priate equivalence relation (Proposition 1.1 below), isoperimetric and isodiametric
functions are quasiisometry invariants of finitely presented groups. Hence these
functions are examples of geometric properties, in the terminology of [Gh].

If P = ⟨x1, x2, . . . , xp | R1, R2, . . .Rq⟩ is a finite presentation, we shall denote
by G = G(P) the associated group; here G = F/N , where F is the free group
freely generated by the generators x1, . . . , xp and N is the normal closure of the
relators. If w is an element of F (which we may identify with a reduced word in
the free basis), we write ℓ(w) for the length of the word w and w̄ for the element of
G represented by w. We shall use freely the terminology of van Kampen diagrams
[LS, p. 235ff] in the sequel.

We write AreaP(w) for the minimum number of faces (i.e 2-cells) in a van Kam-
pen diagram with boundary label w. Equivalently, AreaP(w) is the minimum num-
ber of relators or inverses of relators occurring in all expressions of w as a product
(in F ) of their conjugates. The function f : → is an isoperimetric function for
P if, for all n and all words w with ℓ(w) ≤ n and w̄ = 1, we have AreaP(w) ≤ f(n).
The minimum such isoperimetric function is called the Dehn function of P.
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2 ISOPERIMETRIC

If D is a van Kampen diagram with boundary label w, we choose the base point
v0 in the boundary of D corresponding to where one starts reading the boundary
label w and one defines

Diamv0(D) = max
v∈D(0)

dD(1)(v0, v).

Here dD(1) denotes the word metric for the 1-skeleton of D, so that every edge has
length 1. The function f : → is called an isodiametric function for P if, for
all n and all reduced words w with ℓ(w) ≤ n and w̄ = 1, there exists a based van
Kampen diagram (D, v0) for w with Diamv0(D) ≤ f(n). A more algebraic way of
formulating this is as follows. Let M denote the maximum length of a relator of P.
Let f be an isodiametric function for P. If w̄ = 1, then one can write

w =
m∏

i=1

Rϵiui
ji

,

where Rji is a relator, ϵi = ±1, ui ∈ F and ℓ(ui) ≤ f(ℓ(w)) + M . Here we write
ab = bab−1 for elements a and b in a group.

A word of caution is necessary here. A diagram of minimal area is always re-
duced, in the sense of [LS]. However this will not be the case in general for a diagram
of minimal diameter. This complicates considerably the problem of proving that a
diagram is diametrically minimal. Consequently we do not introduce a diametric
analog of the Dehn function.

Next we discuss the question of change of presentation.

Proposition 1.1, [Al][Sh]. Let P and P ′ be finite presentations for isomorphic
groups. If f is an isoperimetric function (resp. isodiametric function) for P, then
there exist positive constants A, B, C, D, and E such that n &→ Af(Bn+C)+Dn+E
is an isoperimetric (resp. isodiametric) function for P ′.

In fact, isoperimetric (resp. isodiametric) functions transform in the same way
for quasiisometric presentations, so, up to the obvious equivalence relation, these are
quasiisometry invariants (for the notion of quasiisometry, see [Gh]). In particular
it makes sense to speak of a finitely presented group possessing a linear, quadratic,
polynomial, exponential, etc., isoperimetric (resp. isodiametric) function, or more
loosely, to speak of the group satisfying the the appropriate isoperimetric (resp.
isodiametric) inequality.

Example. If one takes P to be a presentation with no relators, then the area
function is identically zero, so the Dehn function is zero. However, a presentation
of a free group with defining relators will have a nonzero Dehn function. Thus the
awkward constants D and E in Proposition 1 are in general necessary.

Remark. An interesting variation on the notion of isoperimetric function was
suggested by Gromov. We consider words w which are boundary labels of dia-
grams whose domains are compact orientable surfaces of some (variable) genus.
Equivalently, we may assume there are words u1, u2, . . . , ug, v1, v2, . . . , vg such that
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w′ = w
∏g

i=1[ui, vi] represents 1 in the group G of our finite presentation P; here
[ui, vi] denotes the formal commutator uiviu

−1
i v−1

i , where u−1
i denotes the formal

inverse of the word ui (invert each letter and write them in the reverse order);
write w ∼ 0 if there exists g ≥ 0 such that this condition is satisfied. We de-
fine Area′P(w) = min

w′
AreaP(w′), where the minimum is taken over all words w′

constructed from w in this way. Then we define

f ′(n) = max
w∼0

ℓ(w)≤n

Area′P(w).

Gromov remarks that the function f ′ is closer in spirit to the differential geometric
notion of minimal surface spanned by a loop, where one cannot control the genus
of the (orientable) surface spanned.

§2. Relation with the Word Problem

The functions introduced in §1 are important for discussing the complexity of
the word problem for a finitely presented group.

Theorem 2.1. The following are equivalent for a finite presentation P.
2.1.1. G(P) has a solvable word problem.
2.1.2. P has a recursive isoperimetric function (in which case, the Dehn function

itself is recursive).
2.1.3. P has a recursive isodiametric function.

Let us sketch the argument. For the implication (1)⇒(2), we solve the word
problem for all words of length at most n, thereby obtaining for each word w
satisfying ℓ(w) ≤ n and w̄ = 1 in G some expression

w =
k(w)∏

i=1

Rϵiui
ji

in the free group F . Let us define a function f by

f(n) = sup
ℓ(w)≤n

w̄=1

k(w).

Then f is a recursive isoperimetric function for P.
The implication (2)⇒(3) follows from the following elementary result.

Lemma 2.2. If f is an isoperimetric function for P, then n &→ Mf(n) + n is an
isodiametric function for P, where M is the maximum length of a relator.

Proof. Let w be a word of length n representing 1 in G = G(P) and let D be a van
Kampen diagram of minimal area for w. If V and F denote the number of vertices
and faces of D, we observe that the length of the longest edge path in D(1) which
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does not contain a circuit is at most V − 1 ≤ MF + n. From this it follows that
Diamv0(D) ≤ Mf(n) + n, and n &→ Mf(n) + n is an isodiametric function for P.

The implication (3)⇒(1) proceeds as follows. Let f be an isodiametric function
for P. Suppose ℓ(w) = n and w̄ = 1, with G = G(P). Then there is a description

w =
m∏

i=1

Rϵiui
ji

,

with ℓ(ui) ≤ f(n) + M , with M as above. But the set Sm = {Ru |
R a relator, ℓ(u) ≤ m} is finite and generates a finitely generated subgroup
Nm < N < F . Since the problem of deciding whether or not a word lies in a
given finitely generated subgroup of the free group F is effectively solvable, we first
calculate m = f(n) + M and then apply this algorithm to decide whether or not
w ∈ Nm. This solves the word problem for G.

A particularly attractive geometric way of deciding whether or not w ∈ Nm

as above has been given by Stallings [St1]. His algorithm amounts to using an
immersion of finite graphs as a finite state automaton. Note that the automaton
depends on the word w being tested.

Remark. It is somewhat mysterious that one has to proceed from Theorem 2.1.3 to
2.1.2 via 2.1.1, thereby involving the complications of general recursive functions. A
more satisfying situation is to have a formula for an isoperimetric function in terms
of an isodiametric function. One conjecture, which does not contradict any known
example, is that there should be an isoperimetric function of the form n &→ af(n)+n,
for a constant a (Stallings raised this question in the special case when f is linear).
In this connection, D. E. Cohen has recently shown [C] that if f is an isodiametric
function for a finite presentation P, then there are positive constants a, b so that
n &→ abf(n)+n

is an isoperimetric function for P. His proof makes use of an analysis
of Nielsen’s reduction process for producing a basis for a subgroup of a free group
(see also [G4] for a different treatment involving Stallings’ folds).

Here is a striking example, which shows that the complexity of the word problem
for 1-relator groups, as measured by the growth of an isodiametric function, can be
quite large.

Example. Each isodiametric and each isoperimetric function for the presentation
P = ⟨x, y | xxy

= x2⟩ grows faster than every iterated exponential [G1].

Remark. Magnus showed that all 1-relator groups have a solvable word problem
[LS]. However his argument gives no indication of the complexity of the algorithm.
It is of interest to determine how fast the Dehn function of a 1-relator presentation
can grow. We have shown (unpublished) that Ackermann’s function fω is (up to the
equivalence relation of Proposition 1.1) an isoperimetric function for every 1-relator
presentation. Here one defines functions fα : → for ordinals α ≤ ω (where ω

is the first infinite ordinal) inductively by f1(s) = 2s, fn+1(s) = f (s)
n (s), where f (s)

n

denotes the s-fold iterate of fn, and fω(s) = fs(s).
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The central tool in proving these upper bounds for the Dehn functions of 1-
relator presentations is the rewrite function for a pair (G, H), where H is a finitely
generated subgroup of the finitely generated group G. We suppose A, B are finite
sets of generators for G, H, respectively, and we let |g|G,A denote the distance of
g ∈ G from the identity in the word metric, and similarly define |h|H,B for h ∈ H.
We let

fG,H(n) = max
h∈H

|h|G,A≤n

|h|H,B,

and we call fG,H the rewrite function. We calculate fG,H inductively for a 1-
relator presentation and Magnus subgroup and then apply the result to calculate
an isoperimetric function. The rewrite function bears the same relation to the
generalized word problem that the Dehn function bears to the word problem.

It is an open question whether for each n one can find a 1-relator presentation
whose Dehn function grows at least as fast as fn. The Dehn function for the
presentation xxy

= x2 grows at least as fast as f3, but this is the fastest growth we
have actually proved can be realized for 1-relator presentations [G2].

§3. Examples and Applications

By Proposition 1.1, the simplest invariant condition on isoperimetric functions
is that they be linear. In this case there is a satisfactory characterization. If we
have a given finite set of generators A for a finitely presented group G, then for
sufficiently large N , the presentation PN , with generators A and relators consisting
of all relations among the generators of length at most N , will be a presentation of
G.

Theorem 3.1. The following are equivalent for a finitely presented group G.
3.1.1. G has a linear isoperimetric function.
3.1.2. G is word hyperbolic.
3.1.3. There exists a finite presentation for G which satisfies Dehn’s algorithm.
3.1.4. If A is a finite set of generators for G, then for all sufficiently large N , the

presentation PN for G satisfies Dehn’s algorithm.

The unexplained terms in the theorem are as follows. Let A be a finite set
of generators for G and let Γ be the associated Cayley graph, equipped with the
word metric. The group G is called word hyperbolic if Γ is δ-hyperbolic for some
δ ≥ 0; here Γ is called δ-hyperbolic if every geodesic triangle ∆ in it satisfies Rips’s
condition Rδ: every point on one side of ∆ is at distance at most δ from the union
of the other two sides. The finite presentation P for G is said to satisfy Dehn’s
algorithm if, given any nonempty word w with w̄ = 1, there is a relator R of P
such that w contains greater than 1

2 of the word R as a contiguous subword.
The proof of Theorem 3.1 is very attractively presented in [ABC].
The next step beyond linear is subquadratic isoperimetric functions. In this

case, Gromov asserts that a finite presentation with a subquadratic isoperimetric
function also possesses a linear isoperimetric function [Gr, 2.3.F]. A. Yu. Ol’shanskii
recently found an elementary proof of this important result [Ol].
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In order to explain how quadratic isoperimetric functions arise, it is necessary
to introduce new notions.

Definition 3.2. Let G be a finitely generated group with finite set A of semigroup
generators and associated Cayley graph Γ. One has the evaluation mapping A⋆ →
G, w &→ w̄, where A⋆ is the free monoid on A. Such a word w can be viewed as
a path w(t), t ≥ 0, parametrized by arc length for t ≤ ℓ(w), starting at the base
point 1 (where G is identified equivariantly with the vertex set of Γ), moving over
an edge in unit time, until it reaches its end point w̄ at time ℓ(w); from then on,
w(t) remains constant at the vertex w̄. A combing is a section σ : G → A⋆ of the
evaluation mapping such that there exists a constant k > 0 such that

(3.2.1) ∀g ∈ G ∀a ∈ A ∀t ≥ 0 one has |σ(ga)(t)− σ(g)(t)| ≤ k;

here |x − y| denotes the distance from x to y in Γ. The condition (3.2.1) is called
the k-fellow traveller condition. The finitely generated group G is called combable
if it admits a combing. In addition we say that σ is linearly bounded if there are
constants C, D > 0 such that ℓ(σ(g)) ≤ C|g|+ D for all g ∈ G, where |g| := |1− g|.

The combing σ is called an automatic structure if the subset σ(G) ⊂ A⋆ is a
regular language; that is, σ(G) is the precise language recognized by a finite state
automaton. It is a result of [ECHLPT] that an automatic structure σ is linearly
bounded.

Remark. The definition of combing adopted in [ECHLPT] is more restrictive than
the one we have adopted, following [Gh, p. 26] [Sh]: the former definition implies
linear boundedness. It is known that both combability and the existence of a lin-
early bounded combing are quasiisometry invariant conditions [Sh]. It is unknown
whether the existence of an automatic structure is quasiisometry invariant, although
one of the results of [ECHLPT] is an algorithm which enables one to translate an
automatic structure from one finite set of semigroup generators to another.

Theorem 3.3. If G is a finitely generated group with a linearly bounded combing,
then G is finitely presented and admits a quadratic isoperimetric function.

We give the proof, which is due to Thurston, of this important result; the reader
may consult [ECHLPT], where the result is proved in conjunction with higher
dimensional isoperimetric inequalities.

Suppose that A is a finite set of semigroup generators for G and that σ : G → A⋆

is a linearly bounded combing. Let σ satisfy the k-fellow traveller condition. Let
w ∈ A⋆ be such that w̄ = 1, so w represents a closed path based at the vertex 1 in
the Cayley graph Γ and let ℓ(w) = n. We shall construct a finite presentation P for
G and a van Kampen diagram for w in P. Let σi = σ(w(i)) for integers 0 ≤ i ≤ n,
so σi is a path in Γ from 1 to w(i). Observe that

|σi(j) − σi+1(j)| ≤ k,

for each integral time j. This means that we can consider the vertices σi(j),σi(j+1),
σi+1(j + 1), and σi+1(j) as lying on a quadrilateral Qij whose boundary label is a
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relation of length at most 2k + 2. If we take the presentation P to consist of A as
generators and as relators, all relations among these generators of length at most
2k + 2, then we see that w is a consequence of these relators. Consequently P is
a finite presentation for G. Observe that we have only used the k-fellow traveller
property so far and not the linear boundedness of the combing.

The quadrilaterals Qij fit together to form a van Kampen diagram D for w.
Observe that for fixed i we can cut off j at time max(ℓ(σi), ℓ(σi+1)), since both
paths, σi and σi+1, will have reached their end points by then. But ℓ(σi) ≤ Ci+D,
since |w(i)| ≤ i. It follows that the total number of quadrilaterals in D is at most

n∑

i=0

(Ci + D) ≤ An2 + B

for constants A, B > 0. Thus AreaP(w) ≤ Aℓ(w)2 + B, and the theorem is estab-
lished.

Remark. Thurston asserts that the (2n+1)-dimensional integral Heisenberg group
for n ≥ 2 and Sln( ), for n ≥ 4, satisfy the quadratic isoperimetric inequal-
ity [ECHLPT]; no details are available at this time. It would appear then that
there was no simple characterization of groups satisfying the quadratic isoperimet-
ric inequality. It is proved in [ECHLPT] and [G2] that the 3-dimensional integral
Heisenberg group satisfies a cubic isoperimetric inequality (see also Section 5 be-
low). Furthermore, it is shown in [ECHLPT] that an isoperimetric function for
Sl3( ) must grow at least exponentially. Compare also the arguments sketched in
[Gr2].

Proposition 3.4. If the group G is combable, then it satisfies the linear isodia-
metric inequality.

Proof. Let σ : G → A⋆ be a combing, where A is a finite set of semigroup generators.
Suppose σ satisfies the k-fellow traveller property. As in the first part of the proof
of Theorem 3.3, we obtain a finite presentation for G whose relators are all words
in w ∈ A⋆ satisfying w̄ = 1 and such that ℓ(w) ≤ 2k + 2. Furthermore, we obtain
a van Kampen diagram D for w, as in the second part of the proof, except now
we have no bounds on the lengths of the paths σi. Nevertheless, if we consider a
vertex σi(j), then by holding j fixed and letting i vary, we arrive at the boundary
of D in at most kℓ(w) steps; once we arrive at the boundary, then we can follow it
in at most ℓ(w) additional steps to arrive at the base point. Since no vertex of D is
farther than k from a vertex of type σi(j), it follows that the distance in the word
metric of D(1) from the base point to any vertex is bounded by (k + 1)ℓ(w) + k.
This establishes the linear isodiametric inequality.

Remark. It is asserted in [Gh, p. 27] that Sl3( ) is not combable, where the
definition of combability adopted there is the same as ours. Thurston’s result
(Theorem 3.3) is quoted for the proof. However, this last result applies only for a
linearly bounded combing, so it must be considered open whether Sl3( ) is com-
bable or not. We proved in [G3] that all combable groups satisfy an exponential
isoperimetric inequality, and this is the best result known to date in this generality.
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Remark. There is an analogous notion of asynchronously combable group, where
one has a section σ : G → A⋆ satisfying the k-asynchronous fellow traveller prop-
erty : after a monotone reparametrization, the paths σ(g) and σ(ga) are k-fellow
travellers, for g ∈ G and a ∈ A. The asynchronous combing σ is called an asyn-
chronously automatic structure if the language σ(G) ⊂ A⋆ is regular. M. Shapiro
has recently proved that the definition just given is equivalent to that of [ECHLPT]
for an asynchronously automatic structure on a group [Sp2]. One can show that
every asynchronously combable group is finitely presented and satisfies a linear iso-
diametric inequality . Furthermore, if G is asynchronously automatic, then it has
an exponential isoperimetric function[ECHLPT][BGSS].

Remark. In the original version of this survey, we raised the question whether
the integral Heisenberg group was combable. Gromov asserted at the conference
that the real Heisenberg group is combable. There are several arguments sketched
in [Gr2], but our attempts to fill in the details have only succeeded in proving
the weaker result that the group is asynchronously combable; so we regard this as
an open question of great interest. In this connection, we mention a recent result
of M. Bridson’s [Bd], that the group n

φ is asynchronously combable for all
φ ∈ Gln( ).

Theorem 3.5. The following finitely presented groups all have linear isodiametric
functions.
3.5.1. Lattices in the 3-dimensional Lie group Nil.
3.5.2. Lattices in the 3-dimensional Lie group Sol.
3.5.3. π1(M), where M is a compact 3-manifolds for which Thurston’s geometriza-

tion conjecture [Th] holds.

The statements about lattices in Nil and Sol are proved in [G1]. Here is an
extremely rough sketch for lattices in Sol. The problem is reduced to showing that

the “Fibonacci group” 2
φ , where φ =

(
1 1
1 0

)
, satifies a linear isodiametric

inequality. This is deduced from arithmetic properties of the Fibonacci sequence.
The argument for 3.5.3 is as follows. A result of [ECHLPT] states that if no

geometric piece in the Thurston decomposition is a Nil or Sol group, then the
fundamental group is automatic. Since the Nil and Sol pieces in the Thurston de-
composition occur only as connected summands, it follows that the fundamental
group π1(M) of a compact 3-manifold M for which Thurston’s geometrization con-
jecture holds is the free product of an automatic group with a finite free product
of Nil and Sol groups. Since each of these free factors satisfies the linear isodiamet-
ric inequality and since the class of finitely presented groups satisfying the linear
isodiametric inequality is closed under finite free products, it follows that π1(M)
satisfies the linear isodiametric inequality.

Remark. Bridson’s recent results [Bd] strengthen Theorem 3.5, showing that the
fundamental group of every compact 3-manifold satisfying Thurston’s geometriza-
tion conjecture is asynchronously combable. Bridson raises the question of the
“logical complexity” of the language of the combing.
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Remark. It is not known how wide the class of finitely presented groups satisfy-
ing a linear isodiametric inequality is. For instance, we do not know an example
of a finitely presented linear group which does not satisfy a linear isodiametric in-
equality (the example xxy

= x2 given in §2 is not a linear group). Since a finitely
presented linear group has a solvable word problem, Theorem 2.1 will be of no help
in constructing an example.

Remark. It follows from results of [ECHLPT] that if a compact 3-manifold sat-
isfies Thurston’s geometrization conjecture, then its fundamental group has an ex-
ponential isoperimetric function. If, in addition, there are no Nil or Sol pieces, it is
automatic and satisfies the quadratic isoperimetric inequality.

Question. If φ is an automorphism of the finitely generated free group F and
if G = F φ is the corresponding split extension, does G satisfy the quadratic
isoperimetric inequality? The result of [BF], that G is word hyperbolic if and only
if it contains no subgroup isomorphic to 2, can be viewed as positive evidence.
Furthermore, G is automatic if φ is geometric (that is, if φ is induced by a home-
omorphism of a compact surface with nonempty boundary). For in this case, G is
π1(M), where M is a compact Haken 3-manifold, and Thurston’s geometrization
conjecture is known to hold for such M [Th]. A cohomological dimension argument
shows that M has no Sol or Nil pieces, whence, by the preceding Remark, G is
automatic.

That this question may be delicate is suggested by our result (unpublished)
that if φ ∈ Aut(F (a, b, c)) is given by φ(a) = a, φ(b) = ba, φ(c) = ca2, then
G = F (a, b, c) φ cannot act properly discontinuously and cocompactly on any ge-
odesic metric space satisfying Gromov’s condition CAT(0) (see [GH] for the CAT(0)
property).

The original motivation for introducing isodiametric functions was a result
proved by Casson in 1990. We shall state a weaker version of his result which
falls naturally within our framework. We say that the finite presentation P sat-
isfies condition ID(α), where α > 0, if there is an ϵ ≥ 0 so that n &→ αn + ϵ is
an isodiametric function for P. This is of course just a reformulation of a linear
isodiametric inequality.

Theorem 3.6, [SG]. Let M be a closed, orientable, irreducible, aspherical 3-
manifold whose fundamental group admits a finite presentation satisfying condition
ID(α), where α < 1. Then the universal cover of M is homeomorphic to 3 .

For example, a combable group G whose combing σ is such that each word σ(g)
is geodesic has a finite presentation satisfying condition ID( 1

2 ). Every finitely pre-
sented group which possesses an almost convex Cayley graph, in the sense of Cannon
[Ca], has an ID( 1

2 ) presentation [G1] (see also §4 below). Since it is known that
every Nil group has at least one almost convex Cayley graph [Sp1], it follows that
Nil groups have ID( 1

2 ) presentations. Another argument, proving that Nil groups
have ID( 3

4 ) presentations, appears in [G1]. The difficulty with these conditions of
course is that they are not invariant under change of generators.
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We should also cite additional work in connection with Casson’s theorem
[P][Br][St2].

§4. Relation with Peak Reduction Algorithms

In this section, G will denote a finitely presented group with finite set of semi-
group generators A and associated Cayley graph Γ.

Definition 4.1. Let µ : G → be a function such that S = {g ∈ G | µ(g) = 0}
is a finite subgroup of G with S ⊂ A. Let P be a finite presentation for G with
generators A and such that P contains all cyclic conjugates of its relators and their
inverses and, in addition, P contains the group table for the finite group S. We
say that P admits a peak reduction algorithm with respect to the function µ if the
following condition holds: if w ∈ A⋆ is such that µ(w̄) ≤ µ(w̄a) > µ(w̄aa′) for some
pair of generators a, a′ ∈ A, then there is a relator of P of the form aa′ = a1a2 . . . ak,
with ai ∈ A, such that µ(w̄a1 . . . ai) < µ(w̄a) for all 1 ≤ i ≤ k.

Define a function fµ : → by fµ(n) = sup
|g|≤n

µ(g).

Theorem 4.1, [G1]. Suppose that P admits a peak reduction algorithm for the
function µ : G → . If M denotes the length of the longest relator of P, then
4.1.1. the function n &→ Mfµ(n) + n

2 is an isodiametric function for P, and
4.1.2. the function n &→ n · M fµ(n)+1 is an isoperimetric function for P.

We shall now give some examples of peak reduction algorithms. With G, A, Γ as
above, let PN be the finite presentation with generators A and relators all words
w ∈ A⋆ with w̄ = 1 and ℓ(w) ≤ N . Note that it follows from the fact that G is
finitely presented that PN is a presentation of G for all N sufficiently large. We
set Bn and Sn to be the set of vertices in the ball and sphere of radius n at the
identity element in Γ.

We recall [Ca] that Γ is called almost convex iff for all n and for all pairs of
points x, y ∈ Sn which are joined by a path of length at most 3 in Γ there is a path
in Bn joining these points of bounded length (where the bound is independent of
n, x, and y).

Proposition 4.2, [G1]. The Cayley graph Γ is almost convex if and only if there
exists N > 0 such that PN satisfies peak reduction for the function µ(g) = |g|.

The proof is not difficult from the definitions.

Corollary 4.3. If G has an almost convex Cayley graph, then it has a linear
isodiametric function and an exponential isoperimetric function.

Theorem 4.4. The groups Aut(F ) and Out(F ), where F is a finitely generated
free group, have exponential isodiametric functions and isoperimetric functions of
the form n &→ ABn

.

This is a consequence of results of Whitehead, Higgins and Lyndon, and McCool
on the automorphism group of a finitely generated free group. For instance, for the
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group Aut(F ) one chooses a free basis x1, x2, . . . , xr for F and one takes µ(φ) =∑r
i=1 L(φ(xi)) − r. Here L(w), for a word w in F , is the length of a cyclically

reduced word conjugate to w. The generators for Aut(F ) are taken to be the
Whitehead automorphisms [LS]. The function fµ is seen to grow exponentially
with n. McCool’s algorithm [Mc] is a peak reduction algorithm for these data, so
the assertion for Aut(F ) follows from Theorem 4.1. The argument for Out(F ) is
similar.

Remark. These results for Aut(F ) and Out(F ) are surely not best possible. It
is an open question whether Out(F ) is automatic; if this were true, then the qua-
dratic isoperimetric inequality would hold. In this connection, we have shown
(unpublished) that neither Aut(F ) for rank(F ) ≥ 3 nor Out(F ) for rank(F ) ≥ 4
can act properly discontinuously and cocompactly on a geodesic metric space which
satisfies Gromov’s condition CAT(0). The situation for Out(F ) when rank(F ) = 3
is still open.

Theorem 4.5. Sl3( ) has an exponential isodiametric function and an isoperimet-
ric function of the form n &→ ABn

.

This follows from a result of Nielsen’s [N], that the group Sl3( ) satisfies a
peak reduction algorithm for the function µ given by µ(x) = (

∑
x2

ij) − 3, for
x ∈ Sl3( ). The generators here are the elementary transvections Eij(1) and the
signed permutation matrices. In this case the function fµ grows exponentially.

Remark. It follows from results of [ECHLPT] that any isoperimetric function
for Sl3( ) must grow at least exponentially. Thus from Theorem 4.5 we deduce
that the Dehn function for a finite presentation of Sl3( ) has somewhere between
exponential and twice-iterated exponential growth. Which, if either, is it?

Question. Can Nielsen’s argument for Sl3( ) be generalized to a peak reduction
algorithm for Sln( )? The answer is surely ‘yes’, but it seems this has never been
written down (compare [Mi, §10] where a related result is established).1 Does Sl3( )
have a linear isodiametric function?

§5. Lower bounds for Isoperimetric Functions

The methods of this section for establishing lower bounds for the Dehn function of
a finite presentation are due to [BMS] (other methods for finding lower bounds can
be found in [G2]). We shall prove that the Dehn function of the free nilpotent group
on p ≥ 2 generators of class c grows at least as fast as a polynomial of degree c+1.
Since it is known that every finitely generated nilpotent group has a polynomial
isoperimetric function [G1], it follows that arbitrary high degree polynomial growth
is exhibited by these free nilpotent groups as c → ∞.

Let P = ⟨x1, x2, . . . , xp | R1, R2, . . . , Rq⟩ and let F be the free group freely
generated by the generators x1, x2, . . . , xp and let N ▹ F be the normal closure of
the relators. We let G = G(P) = F/N as earlier.

1We have in the meantime received the preprint [Ka] which contains the peak reduction lemma
for the general linear groups.
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Proposition 5.1. The group N/[F, N ] is a finitely generated abelian group.

Proof. The identity Ru
i = [u, Ri]Ri ∈ [F, N ]Ri shows that the cosets of the relators

Ri generate the factor group N/[F, N ]. Since [F, N ] ⊃ [N, N ], this factor group is
abelian, and consequently it is a finitely generated abelian group.

Definition. Let V = ⊗N/[F, N ], considered as a finitely generated vector space
over . If v1, v2, . . . vd is a basis for V , we define the ℓ1-norm |v|1 of a vector v ∈ V

with respect to this basis to be
∑d

i=1 |ai|, where v =
∑d

i=1 aivi, ai ∈ .
If w ∈ N , then we define |w|1 to be the ℓ1-norm of 1⊗ [w], where [w] is the coset

w[F, N ] ∈ N/[F, N ].

Theorem 5.2. With the notations above, there is a constant C ≥ 0 so that for all
w ∈ N we have

|w|1 ≤ CAreaP(w).

Proof. Let C = max1≤i≤q |Ri|1. This is the number C of the theorem.
Suppose now that w ∈ N , so w =

∏k
j=1 R

ϵjuj

ij
, where ϵj = ±1 and uj ∈ F and

where k = AreaP(w). Observe that since R
uj

ij
∈ [F, N ]Rij , we have [Rϵjuj

ij
] = ϵj [Rij ]

in V . From this it follows that |w|1 = |
∑k

j=1 ϵj [Rij ]|1 ≤ Ck ≤ CAreaP(w). This
completes the proof.

Remark. If we change the basis of V above and calculate the ℓ1-norm with respect
to the new basis, the effect is to change the constant C in Theorem 5.2.

Next we recall some facts about nilpotent groups. A central series for a group
G is sequence of subgroups

Hn < Hn−1 < . . .H0 = G

so that [G, Hi] < Hi+1 for all i. The group G is called nilpotent if it has such a
central series with Hn = 1 for some n, and the minimum such number n for all
central series is called the class of nilpotence. For example, a nontrivial abelian
group has class 1 and the Heisenberg group has class 2. The lower central series
{Gn, n ≥ 0} for any group G is defined inductively by G0 = G, Gn+1 = [G, Gn].
One has that Gi < Hi for any central series Hi as above, so the lower central series
descends at least as fast as any central series for G.

In particular we can apply these notions to the free group F freely generated by
x1, x2, . . . , xp, where p ≥ 2, to get the lower central series {Fn} of the free group.
The group F/Fc is called the free nilpotent group on p generators of class c. It is
a standard result that the normal subgroup Fc ▹ F is generated by all left normed
commutators of length c + 1, ad(u1) ◦ ad(u2) ◦ · · · ◦ ad(uc)(uc+1), where ui ∈ F .
Here ad(u)(v) = [u, v]. As an example, using this observation it is easy to see that
the free nilpotent group on 2 generators of class 2 is the Heisenberg group.

Theorem 5.3. The free nilpotent group on p ≥ 2 generators of class c ≥ 1 has
the property that its Dehn function grows at least as fast as a polynomial of degree
c + 1.
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Proof. † Since the free nilpotent group on p ≥ 2 generators and class c re-
tracts to that on 2 generators and class c, it suffices to prove the result for 2
generators. Let F = F (a, b) be the free group freely generated by a, b and let
wn = ad(an)(c)(bn) ∈ Fc. One checks that ℓ(wn) grows linearly with n. However,
when [wn] is considered in V = ⊗Fc/[F, Fc] = ⊗Fc/Fc+1, one has by multilin-
earity [wn] = nc+1[ad(a)(c)(b)]. But it is known that the Engel element ad(a)(c)(b)
of the free abelian group Fc/Fc+1 is an element of a -basis [MKS, §5.7 Problem
4], so [ad(a)(c)(b)] ≠ 0 in V . It follows that |wn|1 = nc+1|[ad(a)(c)(b)]|1 ≠ 0, so
|wn|1 grows like a polynomial in n of degree c+1. It follows from Theorem 5.2 that
AreaP(wn) grows at least as fast as a polynomial in n of degree c + 1, where P is
a finite presentation for F/Fc. Since ℓ(wn) is linear in n, it follows that the Dehn
function for F/Fc must grow at least as fast as a polynomial of degree c + 1. This
completes the proof.

Remark. If N < [F, F ] above, then N/[F, N ] ∼= H2(G, ), as one sees from Hopf’s
formula. In this case the vector space V is H2(G, ).

Remark. Taking p = 2 and c = 2 in Theorem 5.3, we recover the result of
[ECHLPT] and [G2] that the Dehn function for the 3 dimensional integral Heisen-
berg group grows at least as fast as a cubic polynomial. The next result shows
that this result is optimal (other proofs that the 3 dimensional integral Heisenberg
group has a cubic polynomial for its Dehn function are given in [ECHLPT] and
[G2]).

Proposition 5.4. The Dehn function for the 3 dimensional integral Heisenberg
group H grows like a cubic polynomial.

Proof. We have already shown that the Dehn function grows at least as fast as
a cubic polynomial. We shall obtain now a cubic polynomial upper bound. A
presentation for H is P = ⟨x, y, t | xt = xy, yt = y, xy = yx⟩. Let Q = ⟨x, y, t | xt =
xy, yt = y⟩ and let R = ⟨x, y | xy = yx⟩. Observe that Q is a presentation for the
split extension F (x, y) φ of the free group F (x, y), where φ(x) = xy, φ(y) = y.

Let w be a word in the generators of P with with ℓ(w) = n and such that w̄ = 1
in H. We shall find a van Kampen diagram for w in two steps. First, using only the
relations of Q, we find a sequence of cyclic words w = w0, w1, . . . , wn−1 = w′, where
each is obtained from the preceding by at most a single t-reduction (viewing t as the
stable letter in the HNN extension F (x, y) φ with base group F (x, y)), until one
runs out of t-letters. If ℓx, ℓy, ℓt denote respectively the number of letters x±, y±, t±

in a free word, we see inductively that ℓx(wi) ≤ ℓx(w), ℓy(wi) ≤ ℓx(wi−1)+ℓy(wi−1),
and ℓt(wi) ≤ max(ℓt(wi−1) − 2, 0). It follows that ℓy(wi) ≤ iℓx(w) + ℓy(w) ≤
(i + 1)n, and there is an annular diagram Ai in Q connecting wi−1 with wi of area
Area(Ai) ≤ ℓ(wi−1) ≤ in. If we fit these annular diagrams together, we obtain an
annular diagram D1 in Q with boundary components labelled w and w′ such that
Area(D1) ≤

∑n−1
i=1 in = O(n3)

†H. Short told me the statement of Theorem 5.3 at the Sussex conference, from which I worked
out the proof given here. Baumslag, Miller, and Short wrote me subsequently that this argument
was one of several they had in mind.
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Since ℓx(w′) ≤ n, ℓy(w′) ≤ n2, and ℓt(w′) = 0, we can find a disc diagram
D2 for w′ in R with Area(D2) ≤ n3. If we fit D1 and D2 together along their
common boundary component labelled w′, we obtain a disc diagram D for w with
Area(D) ≤ O(n3) + n3 = O(n3). This completes the proof of the proposition.

The same method as in Theorem 5.3 suffices to prove the following result.

Proposition 5.5. If G is a finitely generated nilpotent group of class c given by
the exact sequence 1 → N → F → G → 1, with F finitely generated and free (so
Fc < N), and if the canonical map Fc → N/[F, N ] has infinite image, then the
Dehn function for G grows at least as fast as a polynomial of degree c + 1.

Example. The (2n + 1)-dimensional integral Heisenberg group 2n+1 is given by
the presentation

⟨x1, x2, . . . , xn, y1, y2, . . . yn, z | [xi, xj] = 1, [yi, yj] = 1 for all i, j,

[xk, yl] = 1 for all k ≠ l,

[xm, ym] = z for all m,

z central ⟩.

It is more convenient to use another presentation for 2n+1 obtained by Tietze
transformations from the preceding by eliminating the central generator z. This
new presentation has generators x1, x2, . . . , xn, y1, y2, . . . yn freely generating the
free group F of rank 2n. The normal subgroup of relations N is contained in
[F, F ] = F1 for this second presentation, and since 2n+1 is nilpotent of class 2, we
have F2 ⊂ N . We have then the next result.

Proposition 5.6. With the notations preceding we have
5.6.1. if n ≥ 2, the canonical homomorphism F2/F3 → N/[F, N ] = H2( 2n+1, )

is the zero map, whereas
5.6.2. if n = 1, then we have F2/F3

∼=−→ H2( 3, ).

Proof. The second assertion (5.6.2) follows from earlier remarks since 3 is the free
nilpotent group of class 2 on 2 generators. We proceed then to the proof of (5.6.1).

The group F2/F3 is generated by elements [u, [v, w]] where each of u, v, w is
in the set {xi, yi; 1 ≤ i ≤ n}. Since we have [xi, yj] ∈ N for i ≠ j and since
[xk, xl], [yk, yl] ∈ N for all k, l, it follows that we have [u, [xi, yj]] ∈ [F, N ] for i ≠ j
and [u, [xk, xl]] ∈ [F, N ], [u, [yk, yl]] ∈ [F, N ] for all k, l, where u ∈ {xi, yi; 1 ≤ i ≤
n}.

It remains to prove that [xj, [xi, yi]] ∈ [F, N ] and [yj , [xi, yi]] ∈ [F, N ] for all i, j.
We shall prove the first assertion, since the second follows symmetrically. If j ≠ i,
this assertion is a consequence of an identity attributed variously to E. Witt or P.
Hall,

[b, [a−1, c]]a[a, [c−1, b]]c[c, [b−1, a]]b = 1,

for all elements a, b, c in a group. We remind the reader here that our convention
for commutators is [a, b] = aba−1b−1 and ab = bab−1. If we substitute b = xj , a =



GERSTEN 15

x−1
i , c = yi in this identity, we find that two terms of the product are in [F, N ],

whence the third, a conjugate of [xj, [xi, yi]], is also in [F, N ].
It remains then to prove that [xi, [xi, yi]] ∈ [F, N ]. Since n ≥ 2, there is an index

j ≠ i. Observe first that [xixj , yiy
−1
j ] ∈ N , as one sees by an elementary computa-

tion in 2n+1, so we have [xi, [xixj , yiy
−1
j ]] ∈ [F, N ]. The commutator [xixj , yiy

−1
j ]

can be expanded as the product of four commutators, making use of the relation
[a, bc] = [a, b][a, c]b; we obtain [xixj , yiy

−1
j ] = [xj , yi]xi [xi, yi][xj, y

−1
j ]yixi [xi, y

−1
j ]yi .

When we expand the expression [xi, [xixj , yiy
−1
j ]] and make use of the commutator

identities (and the fact that F2 < N , so F3 < [F, N ]), we obtain that this class
in N/[F, N ] is that of the product of four classes, those of [xi, [xj, yi]], [xi, [xi, yi]],
[xi, [xj, y

−1
j ]], and [xi, [xi, y

−1
j ]]. The first, third, and fourth terms have already been

shown to be in [F, N ]. Since the product lies in [F, N ], it follows that the second
term, [xi, [xi, yi]], is also in [F, N ]. This completes the proof of the Proposition.

Remark. The proposition just proved shows that Thurston’s assertion, that 2n+1

satisfies the quadratic isoperimetric inequality for n ≥ 2, is consistent with Proposi-
tion 5.5: if the homomorphism F2/F3 → N/[F, N ] in (5.6.1) had had infinite image,
then the Dehn function for this group would have been a cubic polynomial and not
quadratic.

Remark. It is proved in [G1] that a finitely generated nilpotent group has a poly-
nomial isoperimetric function of degree 2h, where h is the Hirsch number. The
bound on the degree was improved in [Co] to 2 · 3c, where c is the class of nilpo-
tence. We do not know an example of a finitely generated nilpotent group where
there does not exist an isoperimetric polynomial of degree c + 1.

Acknowledgment. I wish to thank Alexander Ol’shanskii, Hamish Short, and
John Stallings for their helpful criticisms.
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[Al] J. Alonso, Inégalités isopérimétriques et quasi-isométries, C. R. Acad. Sci. Paris, Série
1, 311 (1991), 761–764.

[Bd] M. Bridson, Combing the fundamental group of a Haken 3-manifold, preprint, Prince-
ton Univ., April 1992.

[BF] M. Bestvina and M. Feighn, A combination theorem for negatively curved groups,
Jour. Diff. Geom. 35 (1992), 85–101.

[BGSS] G. Baumslag, S. M. Gersten, M. Shapiro, and H. Short, Automatic groups and amal-
gams, Jour. Pure Appl. Alg 76 (1991), 229–316.

[BMS] G. Baumslag, C. F. Miller III, and H. Short, Isoperimetric inequalities and the ho-
mology of groups, preprint, CUNY 1992.

[Br] S. Brick, Filtrations of universal covers and a property of groups, preprint, Univ. of
Cal., Berkeley, 1991.

[Ca] J. W. Cannon, Almost convex groups, Geometriae Dedicata 22 (1987), 197–210.
[C] D. E. Cohen, Isodiametric and isoperimetric inequalities for group presentations, In-

ternat. J. Algebra and Comput. 1 (1991), 315–320.



16 ISOPERIMETRIC

[Co] G. Conner, Ph. D. thesis, Univ. of Utah, 1992.
[ECHLPT] J. W. Cannon, D. B. A. Epstein, D. Holt, S. Levy, M. Paterson, and W. P. Thurston,

Word processing in groups, Jones and Bartlett, Boston, 1992.
[FHL] W. J. Floyd, A. H. M. Hoare, and R. C. Lyndon, The word problem for geometrically

finite groups, Geometriae Dedicata 20 (1986), 201–207.
[G1] S. M. Gersten, Isodiametric and isoperimetric inequalities in group extensions,

preprint, Univ. of Utah 1991.
[G2] S. M. Gersten, Dehn functions and ℓ1-norms of finite presentations, to appear in

Proceedings of a Workshop on Algorithmic Problems, eds. G. Baumslag and C. F.
Miller III Springer-Verlag, MSRI series, 1991.

[G3] S. M. Gersten, Bounded cohomology and combings of groups, preprint, Univ. of Utah,
1991.

[G4] S. M. Gersten, The double exponential theorem for isodiametric and isoperimetric
functions, Internat. J. Algebra and Comput. 1 (1991), 321–327.

[Gh] E. Ghys, Les groupes hyperboliques, Sem. Bourbaki, no. 722, 1989–1990.
[GH] E. Ghys and P. de la Harpe, editors, Sur les groupes hyperboliques d’après Mikhael

Gromov, Birkhäuser, 1990.
[GLP] M. Gromov, J. Lafontaine and P. Pansu, Structures métriques pour les variétés rie-

manniennes, Cedic/F. Nathan, Paris, 1981.
[Gr] M. Gromov, Hyperbolic groups, Essays in group theory (S. M. Gersten, ed.), MSRI

series, vol. 8, 1987, Springer-Verlag.
[Gr2] M. Gromov, Asymptotic invariants of infinite groups, preprint, IHES 1992.
[Ka] S. Kalajdz̆ievski, PRL for general linear groups, preprint, Univ. of Manitoba 1992.
[LS] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, 1977.
[Mc] J. McCool, A presentation for the automorphism group of a free group of finite rank,

Jour. London Math. Soc. 8 (1974), 259–266.
[Mi] J. Milnor, Algebraic K-Theory, Annals of Math. Study, vol. 72, Princeton Univ. Press,

1971.
[MKS] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, J. Wiley, 1966.
[N] J. Nielsen, Die Gruppe der Dreidimensionalen Gittertransformationen, Jakob Nielsen,

Collected Mathematical Papers, Vol. 1 (1913–1932), Birkhäuser, 1986, pp. 147–173.
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