
Fundamental group and covering spaces: the facts.

Intro.

I assume all spaces nice.

Details of all of the facts asserted here can be found in any

of the standard references.  They are collected here for your

convenience.

Suppose Z is a space, and * a point of Z.  We define !1(Z,*)

as homotopy classes of maps f:[0,1] -> Z, such that f(0) =

f(1) = *.

(Homotopy here means that one views as equivalent two

functions which lie on a 1-parameter family of functions

ft:[0,1] ->Z, all of which satisfy the boundary condition ft(0) =

ft(1) = *.)

These boundary conditions are absolutely critical for getting

a nontrivial theory. !1(Z,*) is a group using concatenation of

paths; the constant path is the identity and “going backwards

is the inverse. !1(Z,*) is referred to as the fundamental group

of Z.  (If Z is path connected, the choice of * is irrelevant, in



the sense that for a different choice of points, one gets an

isomorphic group.)

Example:  If Z is the circle S1 = {u in C | |u| = 1}, we can

define a map !1(S
1,1) -> Z (the integers) by sending a map f

to (log(f)(1) – log(f)(0))/2!i.  This is referred to as the winding

number.

You’ll want to check that this makes sense, i.e. that one can

define log(f) continuously on the interval, and that the above

definition is independent of all choices, once one decides

that log(f)(0) = 0 – and that the winding number doesn’t

change during a homotopy.

If f and g have the same winding number then

ft(x) = exp(tlog(f)(x) + (1-t)log(g)(x))

is a homotopy between g and f.  (What goes wrong if they

have different winding number?).

The maps x -> exp(2!inx) have winding numbers n, so this

homomoprhism is an isomorphism.



By the way,we say that a space is simply connected if

its fundamental group is trivial.

Categorical Nonsense

If f:(X,x) -> (Y,y) is a map, (this notation means that f(x) = y)

then there is an induced homomorphism, defined in the most

obvious way, f*: !1(X,x) -> !1(Y,y).

If g: (Y,y) -> (Z,z) is another map, then (gf)* = g* f*.  This is

both obvious and useful.  The first is clear and the second

will be shown countless times in class.

Pointedly homotopic maps of pointed spaces, i.e. f,g :(X,x) ->

(Y,y) homotopic through such maps, induce the same

homorphisms on fundamental group, i.e. f* = g*.  This implies

a homotopy invariance property of !1.

Covering Spaces

Fundamental group is important for at least two reasons.

The first is the connection to covering spaces.  We assume



here that all spaces are connected (unless they arise in the

middle of a proof, or something).

Definition.  A map p: A -> B is a covering space, if:around

each point b in B, there is a neighborhood N of b, so that

p-1(N) is a disjoint union of sets Ai each of which is mapped

homeomorphically onto N by p.

The map exp: R -> S1 considered before is a good example.

Let us pick a point b in B and fix a point a in A which maps to

B.  In other words, let us refine our perspective and consider

covering spaces as maps p:(A,a) -> (B,b).  This way, to

every cover one can unambiguously assign the subgroup p*

(!1(A,a)) inside of !1(B,b).

If we did not pin down a basepoint in A, a covering space

would only give a well defined conjugacy class of subgroup

of !1(B,b).

Theorem (Classification of Covers):  To every subgroup of

!1(B,b) there is a covering space of B so that the induced

subgroup is the given one.



Moreover if (A,a, p) and (A’,a’, p’) are two different

covers corresponding to the same subgroup, then there is a

(unique) homeomorphism h:(A,a) -> (A’,a’) so that p = p’h.

Note that a cover of a cover is a cover, so that smaller

subgroups correspond to “higher” covers.

The trivial subgroup corresponds to the “universal

cover” of B.  Theorems stated below imply that all of the

maps p* on fundamental groups are 1-1 (for covering maps!!!

–not for maps in general!!).  So the universal cover is the

only simply connected cover that a space has.

Note too, that if p:(A,a) -> (B,b) is a universal cover,

then for any a’ in p-1(a), there is a unique homeomorphism

ha’:A -> A so that

• ha’(a) = a’

• p ha = p.

The set of homeomorphisms which satisfy the second

condition form a group (sometimes called the group of

covering transformations or the group of deck

transformations), and we are essentially saying that one can

determine the group element by seeing where a goes.  It

turns out that this group is isomorphic to the fundamental

group of B.



Remark:  There is a nice analogy to field theory.  Let F be a

field; covering spaces are like algerbaic extension fields.

The universal cover is like the algebraic closure.  The

fundamental group is like the Galois group of the algebraic

closure.  The relation between covers and subgroups of the

fundamental group is just like ordinary Galois theory.  There

are situations where this analogy is actually implemented

geometrically, but let’s not digress.....

Examples:  The 2-sphere S2 is simply connected.  The

projective plane RP2 has fundamental group Z/2Z since it is

the quotient of S2 by making the identifications x = -x.  The

projection map is a covering map, and the group of covering

transformations is just Z/2Z = {id, x -> -x}.  The nontrivial

element in the fundamental group of RP2 can be thought of

as the quotient of a great chord on S2 that connects the north

pole to the south pole.

The torus R2/Z2 has fundamental group Z2.  Again, elements

of the fundamental group can be thought of as the

projections of chords connecting the origin to (m,n) in the

lattice Z2.



An example that takes more work to think through is the

universal cover of the figure 8.  It is the unique tree where

every vertex has 4 edges emanating from it.  It is easy to see

that this space is simply connected (indeed it is contractible,

i.e. homotopy equivalent to a point).  If one colors the edges

blue and green, so that at each vertex two edges are blue

and two green, then one can use this to define a covering

map to 8, where the top loop is colored blue and the bottom

green.  What are the covering translations in this example?

In general, you should have little trouble using the the

method of the calculation of !1(S
1) to show that if one has a

simply connected space A and a group of homeomorphisms

! of A so that A -> A/! is a covering map (this condition is

called proper discontinuity of the action.  It can be phrased

as the condition that for each a in A there is a neighborhood

N of a, so that for all g not the identity in !, gN and N are

disjoint), then the quotient A/! has fundamental group !.

What requires more thought is why this is the general

case, i.e. how does one construct universal covers and how

does one get the group of deck transformations.

More on covering spaces.



Suppose that p:(A,a) -> (B,b) is a covering map.  Then for

any f: [0,1] -> (B,b) such that f(0) = b, there is a unique lifting

f^: [0,1] -> (A,a) such that f^(0) = a and pf^ = f.

Now suppose that f: (X,x) -> (B,b) is an arbitrary map with

f(x) = b, X path connected.  We can try to use the previous

remark to try to lift f to a map f^: (X,x) -> (A,a) simply by

defining f^(x’) to be the result of lifting the composite of f with

any path connecting x to x’.  Of course there will be many

different paths connecting these two points, and this

indeterminacy causes an obstruction.  However, the analysis

of this gives rise to the following critically important theorem:

Lifting condition for Covering Spaces: Suppose p:(A,a) ->

(B,b) is a covering map, and f:(X,x) -> (B,b) is given.  Then

there is an f^:(X,x) ->(A,a) so that pf^ = f (and, of course,

f^(x) = a, as is included in this notation) if and only if

f* !1(Z,z) is a subgroup of p* !1(A,a).

The proof is actually straightforward and it has many

corollaries, which I leave to you.



Definition/Corollary:  Say that a cover p:(A,a) -> (B,b) is

normal if there are deck transformation sending any element

of p-1(b) to any other.  The cover p is normal iff p* !1(A,a) is a

normal subgroup of !1(B,b).

Corollary:  The uniqueness statement in the classification

theorem holds.

Corollary:  If Z is simply connected, then any map f:(Z,z) ->

(B,b) can be lifted to any cover.

Corollary: For any cover, p:(A,a) -> (B,b), the induced map,

p* is 1-1.

Now for existence of covers.... we will only explain the

universal cover, since other covers can be obtained as

quotients of it by subgroups of !1(B,b).

Part of B being a nice space includes the fact that two

nearby (in the C0 topology) functions are homotopic.  I leave

it to you to decide if the spaces you know and love are nice

this way.  (I bet they all are.)  We will assume that nearby

paths conncting b to b’ are homotopic through paths



connecting these points.  (Using an embedding in Euclidean

space and the tubular neighborhood theorem, you should be

able to check this for manifolds.  For cell complexes, you

might want to do an induction...)

Given (B,b) we will build a new space, called A.  The

points of A are equivalence classes of maps a:[0,1] -> B, so

that a(0) = b.  Two paths a,a’ define the same point in A if

• a(1) = a’(1)

• a and a’ are homotopic relative to their endpoints.

Note that without the second condition, the space obtained

would just be B.  With both of them, one can check that the

map a -> a(1) is a covering map, and that a map from a

circle to B lifts to A iff it is homotopic to a constant.  By the

lifting criterion, this implies that A is simply connected.  So it

is a universal cover.

Remark:  This construction is not as bad as it looks.  After a

while you can really do it.  As an exercise, do it to 8 to get

the universal 4-valent tree as described above.

Of course, after a while, with experience you can “see”

universal covers of lots of things.  Practice on your friends

and on household items.



Computation of fundamental group.

I had said that fundamental group was important for at

least 2 reasons, the first being its connection to covering

space theory.  The second is that it is quite computable (in

one sense anyway).

Example:   If X is contractible then the fundamental group is

trivial.

Example:  If one sees the universal cover and group of deck

transformations, then one also knows the fundamental

group.

But actually, the key practical tool is Van Kampen’s

theorem.  It describes the fundamental group of a union in

terms of the fundamental groups of the pieces.  I will

describe a pretty useful, but not the most general version of

it.

Van Kampen’s theorem.  Let Z denote the union of A and B,

and X denote their intersection.  We assume A, B, and X are

all connected (and nonempty), and that the inclusions of X in

A and B are “nice”.  Then !1(Z,x) is generated by !1(A,x) and



!1(B,x).  The only relations among the elements of !1(A,x)

and !1(B,x) are the ones forced by the fact that the elements

of !1(C,x) can be thought of as elements of both of these

groups.

Examples.

1. If A and B are simply connected, and their intesection

is connected, then their union is simply connected.

(Give an example where this fails when the intersection

is disconnected.)

2. If X is simply connected, then !1(Z,x) is the free product

!1(A,x)* !1(B,x).  The elements of the free products are

just finite strings of elements of !1(A,x) and !1(B,x), and

one multiplies strings by concatenting them, ignoring

the identity, and combining contiguous elements of the

same group.

As a special case, consider the free group on two

generators F2 = Z*Z.  A typical element of that group looks

like xyx-3y2x.  Its inverse is x-1y-2x3y-1x-1.  Do you see it?



3.  These things can be tricky if !1(X,x) is nontrivial.  The

group described is called a free product with

amalgamation and is denoted by !1(A,x)* !1(X,x) !1(B,x).

There is a nice interpretation of what the elements of this

look like when the induced maps of !1(X,x) into the other

two pieces are injective, but without this it can get

complicated.  As a simple example suppose that X is a

circle and that !1(A,x) = Z/2Z and !1(B,x) = Z/3Z, so that

the induced homomorphisms are the obvious surjections.

(By the way, can you build such spaces?)  Then, Van

Kampen’s theorem tells us that Z is simply connected.  Do

you see why?

The fundamental groups of both A and B are generated by

that of the circle, i.e. there is one generator, say g.  From

A we learn that g2 = e and from B we learn that g3 = e.  So

in the amalgamated free product (i.e. !1(Z,x)) g = e, so the

who group vanishes.

In principle any space that can be broken up into pieces

can have its fundamental group described by generators

and relations via Van Kampen’s theorem.



For more, see the usual references.


