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Introduction

Let 7 be a finite group and 2’ a simply-connected closed manifold which is a
Z/\n| homology sphere. An object of this paper is to prove:

Theorem A. Assume r is odd and r+3. Then w acts freely on the r-sphere if and
only if m acts freely on X" so that the induced action on H,(Z") is trivial.

This can be stated in a more symmetric manner. Let r be any positive
integer not equal to 3. Then = acts freely and homologically trivially on 2" iff =
acts freely and homologically trivially on S". In fact, there is a one-to-one
correspondence between such actions on X" and such actions on §". (The
classification of such actions is discussed in §7.) In addition the actions con-
structed have the property that every group element is isotopic to the identity.
‘Theorem A holds in the topological or piecewise-linear categories. Well-known
counterexamples exist in the smooth category even for homotopy spheres.

Theorem A would be false without the assumption of homological triviality
or without the assumption of simple-connectivity (see remark 8.8). In fact, there
exist groups 7 and simply-connected Z/|n| homology spheres 2", such that =
acts freely on X", but not on S". Also there are groups n which act freely on S,
but do not act freely on certain lens spaces L,,, with p prime to |n].

If the group = is cyclic, a result similar to our main theorem was first
proved by Loffler [L] by different methods. The second author independently
established the cyclic case in [Wel], by a method that extends to cyclic group
actions on more general manifolds (see [C-W1]), and, via this paper, to general
finite groups. However the difficulties in making this extension have appli-
cation elsewhere.

The main theorem is motivated by the philosophy that all of the geometry
of a group action is present at the order of the group. Thus, it is only natural
to expect that any manifold “homologically resembling” a sphere admitting a
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210 J.F. Davis and S. Weinberger

n-action should admit a n-action as well. Nonetheless, there are obstructions to
realizing this philosophy for general manifolds. The main technical burden of
this paper is to avoid these obstructions in the cases discussed here.

It might be of interest to compare our method of proof with the com-
plementary theorem of Madsen et al. [M-T-W] on the spherical space form
problem, which constructs free n-actions on spheres. In very broad outline,
they are similar. One first constructs Poincaré complexes whose covers have
the appropriate homotopy type. Then it is necessary to compute a surgery
obstruction and verify that the universal cover is a sphere (or the homology
sphere X"). However, for the two problems each of these steps is done dif-
ferently.

For instance, in the space form problem one uses Swan’s work on periodic
resolutions to construct the desired finite Poincaré complexes. On the other
hand, we use the methods of [Wel] which are more homotopy theoretic than
algebraic to establish the same conclusion. Madsen-Thomas-Wall compute
their surgery obstruction by hyperelementary induction taking advantage of
“obvious” linear actions on the sphere. However, homology spheres have no
obvious symmetries making a different approach necessary. We make essential
use of the results of [D2] on numerical surgery invariants and construct
explicit surgery problems (rather than ones which exist for homotopy theoretic
reasons) so that we can compute these invariants. The last step, identifying the
universal cover, in the space form case follows from the generalized Poincaré
conjecture, while in our case this step requires further computations with the
surgery exact sequence.

We now outline the paper. In §1 we use the ideas of propagation of group
actions to show that the main theorem is true in the homotopy category of
(finite) CW complexes. In §2 we make some surgery theoretic constructions
which suffice to prove theorem A in simpler case where r=1(mod4). In §3 we
give invariants for deciding when a Poincaré complex has the homotopy type
of a closed manifold, using the Quinn-Ranicki assembly map and the work of
Taylor-Williams on the oozing problem. The key computational techniques are
in §4. The idea is that given a surgery problem f: M—X such that the
universal covering f is a Z,,-homology equivalence there are “numerical in-
variants” depending only on the Zm, X-modules H,(f) which determine the
surgery obstruction. For odd dimensions this depends on reciprocity laws from
number theory and Galois cohomology (see [D2] for the full account). The
problem is then to construct explicit surgery problems so that we can use these
ideas to obtain trivial surgery obstructions. In §5 we develop further technical
material in preparation for the proof of theorem A given in §6.

In §7 the classification of free, homologically trivial group actions on a
simply-connected Z/|n| homology sphere X" is given. The classification of the
possible homotopy types is determined by two invariants lying in (Z/|zn])*, a
torsion Euler characteristic and a local k-invariant. The question of which
homotopy types are actually realized is reduced to algebraic questions in K
and L-theory. Some of these results are new even in the classical spherical
space form case X"=S". In §8 we discuss extensions of theorem A and non-free
actions. A future paper [D-W] will apply the results of this paper to give new
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homological conditions on the possible fixed sets of smooth semifree n-actions
on spheres.

These “propagation” ideas have recently been powerful tools for the con-
struction of group actions on manifolds, as evidenced by the works of many
authors (see the references in §1 or the survey [We3]). Generally these tech-
niques involve constructing Poincaré complexes and then evaluating surgery
obstructions lying in the L-groups. The results of this paper (cf. [D2], [D-W])
give effective methods for evaluating the surgery obstructions arising from
propagation.

§ 1. General constructions — homotopy theory

The following notation will be in force throughout this paper: = is a finite
group, r is an odd number, and X is a simply-connected closed manifold with
H (Z;Z,)=H,(S";Z.,) We abbreviate Z,, and Z[1/|n|] by Z,, and Z[1/n]
respectively. The notation X ~ Y means X and Y have the same homotopy type.

In this section we apply the “propagation of group actions” techniques to
show that theorem A is true in the category of (finite) CW complexes (up to
homotopy type). The proposition below has been proved independently in
varying degrees of generality in [J, Q, A-V, C-W1, L-R]. We review one
argument for the service of the reader — the ideas will be useful later.

Proposition 1.1. Let f: X—>Y be a Z-homology equivalence between simply-
connected CW complexes and suppose n acts freely and homologically trivially on
Y. Then there is a CW complex X' with a free homologically m-action such that

X
x5y

homotopy commutes, h is a homotopy equivalence, and ' is equivariant. Further-
more, if X and Y/r are finitely dominated, then so is X'/n.

An action of # on a space Y is R-homologically trivial if the representation
n—Aut H_(Y; R) is trivial. The above proposition is valid if R=Z or R
=Z[1/x].

The idea of the proof is to “mix” Y/n at the primes dividing |n| with X at
the remaining primes using localization theory. Let Wbe a CW complex and P
a set of primes. Using the fibrewise localization functor of Bousfield and Kan
[B-K], one can construct a complex W, and a map W- W4, inducing an
isomorphism on 7, and a localization of the higher homotopy groups.

Then Y/ is the homotopy pullback of

(Y/m)[1/n]

(Y/n)(n) E—— (Y/n)(or
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Furthermore, the “plus” construction of [Wel, I, Lemma 3.1] shows that since
n acts Z[1/n]-homologically trivially on Y, there is a homotopy equivalence

(Y/m)[1/n]—=— Y[1/n] x Bm,
where Bn=K(m, 1). Then let X'/n be the pullback of
X[1/n] x Bn

(Y/R)(gy— X, X Bm.

Exactly the same reasoning shows:
Propeosition 1.2. One can change the roles of X and Yin 1.1.

In other words one can push actions forward as well as pull them back. (In
the terminology of [C-W1], actions propagate in both directions.) By applying
this to the degree one collapse map X —S’, one obtains:

Corollary 1.3. The main theorem is true in the category of finitely dominated CW
complexes (up to homotopy type). That is, n acts freely and homologically
trivially on a complex X'~ X iff m so acts on a complex (S'Y ~S".

Thus any such = satisfies H"*!(n)=Z/|n|, has periodic cohomology, and has
cyclic or generalized quaternionic 2-Sylow subgroup [C-E].

If M is a finitely generated Zn-module such that M®Z, =0, then a
theorem of [Rim] shows that there is an exact sequence

where the P are projective Zzn-modules. Schanuel’s lemma then shows that
o(M)=[P]—[P]eK,(Zn) depends only on the module M. The following
proposition follows from this fact and the theory of the Wall finiteness obstruc-
tion [W]eK,(Zn, W) associated to a finitely dominated CW complex W. (See

[Wal])

Proposition 1.4. (Mislin [Ms]). Let X and Y be finitely dominated CW complexes
with fundamental group n. Let f: X—Y be m-equivariant and a Z-homology
equivalence. Then

[Y1=[X]+ Y (- o(H,(Y, X))eK o(Zn).

Corollary 1.5. The main theorem is true in the category of finite complexes (up to
homotopy type).

Proof of 1.5. If one applies 1.1 or 1.2 to a Z-homology equivalence f: 2 —§"
to obtain f': 3'/n—S"/n then

[8"/n]=[2"/n]—o(Z/(deg ) —ri (1) o(H(2)).

i=1
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It is not difficult to show that

o(Z/s)+ o(Z/t)=o(Zst)
o(Z/(k|n| + 1)) =0.

Thus one can choose the degree of f so that [S"/n]=[2"/n] and the corollary
follows.

§ 2. General constructions — surgery theory

In this section we make general remarks which suffice to prove theorem A
when r=1(mod 4). The methods in this section follow those of [Wel] in rough
outline.

Recall that a Poincaré complex X has a Spivak normal bundle v4: X —BG.
There are fibrations of infinite loop spaces

G/TOP—BTOP—BG
BTOP-BG— B(G/TOP).

A necessary and sufficient condition for the existence of a surgery problem (or
degree one normal map) over X is that v, lifts to some map ¥: X >BTOP, or
equivalently, the map vy: X—B(G/TOP) is trivial. Fixing a lift ¥, normal
bordism classes of surgery problems over X are in one-to-one correspondence
with elements of [X, G/TOP]. Such an element is called a normal invariant.

(For background on the surgery classifying spaces we recommend [M-M]).

Proposition 2.1. If n acts freely on S', and freely and homologically trivially on a
complex X ~Z, then X/n is a Poincaré complex whose Spivak bundle lifts.

Proof. X/n satisfies Poincaré duality since (X/n), satisfies Poincaré duality for
all primes p. We next need to check that the map vy, : X/n—B(G/TOP) is
nullhomotopic, an issue which can be studied one prime at a time. It follows
easily from Sullivan’s analysis of p-local spherical fibrations that the local
classifying map of the Spivak bundle of a Poincaré complex Y—BG , depends
only on the p-local homotopy type of Y. (See [Su2], also [K, Wel].) If p||=l,
(X/n),~(8"/m),) and S"/n is a manifold so the map to B(G/TOP),, is nullho-
motopic. If p does not divide |n|, then (X/n),~Z,, x Bn so the map is again
nullhomotopic.
Our next result only holds true for PL or topological actions.

Proposition 2.2. If © acts freely and homologically trivially on a closed manifold
2’, homotopy equivalent to X(=2", r>3), then n so acts on X.

Proof. 1t suffices to show that the homotopy equivalence (Z—2X")e¥(Z’)
(=FHop(Z") is in the image of the transfer tr: &(2'/n)— S (Z'). Consider the
Sullivan-Wall surgery exact sequence:



214 J.F. Davis and S. Weinberger

L, @ ——>%E) — [Z,G/TOP] —— 0

] I

L, ,(Zn)—— &(2'/n)—— [2¥'/n, G/TOP]—— Ly(Zn).

To complete the proof it is necessary to note three facts. First, I*(Zn) is |n|-
torsion. Indeed for r odd, L%(Zn) is 2-torsion for |r| even and O for |r| odd (see
[Wa3]). Second, [Z, G/TOP] is torsion prime to |n| (since [Z',G/TOP]QRZ,,,
=[S", G/TOP]® Z,,=0). Finally, we show the map

[2'/n, G/TOP]®Z[1/n]->[2',G/TOP]Q Z[1/n]

is an isomorphism. Indeed the map H*(2'/n)QZ[1/n]->H*(2)®Z[1/xn] is an
isomorphism and since G/TOP is an infinite loop space we can apply the
Atiyah-Hirezbruch spectral sequence to deduce this.

Proof of theorem A for r=1(mod4)

Recall that if = acts freely and homologically trivially on 2" or S', then
H™*1(n)=1Z/|n|. The classification of groups of period congruent to 2 modulo 4
(see e.g. [D-M]) shows that = is a direct product of Z,. and a group of odd
order. By [Wa3], L,(Z[Z . X t4,])=0 and L,(Zn)— [*,(Zr) is surjective. Thus
I (Zn)=0. Theorem A follows from 1.5, 2.1, the fact that L' (Zn)=0 (all
surgery obstructions are zero!), and 2.2.

Remark. For r=3(mod4), things are more difficult. The finite Poincaré com-
plexes X/rn constructed by propagation need not have the homotopy type of
manifolds. Our proof in the general case will require choosing the homotopy
type of X/rn carefully, e.g. studying the degree of the maps X/n—S"/n and the
effect on surgery obstructions. It will be necessary to construct explicit surgery
problems over X/x.

§3. Ooze and Poincaré complexes

A surgery problem over a Poincaré complex X is a degree one normal map
f: M—X. In this section we apply some results on the “oozing” problem, the
determination of which elements of L (Zn) arise from surgery problems over
closed manifolds. Define C,(Z=n) to be the subgroup of L,(Zn) given by all
surgery obstructions 6(f) where f: M—N is a surgery problem over some
closed manifold N", with n; N=n. Just as with L-theory there are variant
groups CS(Zn), C'(Zn), and CE(Zn). Of course if X is an n-dimensional
Poincaré complex and f:M—-X is a degree one normal map with
0(f)¢C,(Zr), then clearly X cannot have the homotopy type of a closed
manifold. The main point of this section is that a converse is sometimes true.
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Let X be an n-dimensional Poincaré complex whose Spivak bundle lifts.
Define
2(X)eL,@n, X)/C,(&n, X)

to be the image of the surgery obstruction of any surgery problem over X.
(This is a well-defined invariant by 3.2 and 3.3 below.) An interesting problem
is to identify this invariant somehow intrinsically. For n=Z,xZ, and n
=3(mod 4), this is the Z-invariant of [C-W2, I] and will be a sequel, expressed
in terms of Poincaré transversality obstructions in which in particular define
the invariant for all Poincaré complexes (with or without reduction of the
Spivak bundle). Can this be done more generally?

After describing the work of Quinn-Ranicki and Taylor-Williams we show:

Theorem 3.1. Let X**3 (k>0) be a Poincaré complex whose Spivak bundle lifts.
Assume that the 2-Sylow subgroup of n=mn, X is abelian, generalized quaternion,

dihedral, or semidihedral. Then X has the homotopy type of a manifold iff Z*(X)
=0.

Interesting special cases are n=Qg or Z,, for which C%, , ;(Zn)=1%,,, ;(Zn),
so that X is homotopy equivalent to a closed manifold iff the Spivak bundle of
X lifts to BTOP. This gives an alternate proof of theorem A when r=3(mod4)
and n=Qg or Z,,.

Quinn and Ranicki have constructed an Q-spectrum L, whose 0O-th space
has the homotopy type of G/TOP. It comes equipped with natural “assembly”

maps

o,.H/(X:Ly)-L,(Zn,X).
The relation of the assembly map with ooze is given by:
Lemma 3.2. [Ra3, p. 557]. C,(Zn)=0,(H,(B=n;L,)).

If X is an n-dimensional Poincaré complex, then by duality one can identify
H,(X;L,) with H(X; Ly)=[X, G/TOP] and conclude:

Lemma 3.3 [Ral]. If f: M— X is a degree one normal map, then the coset

is equal to the set of all elements of L (Zn, X) representing surgery obstructions
of surgery problems over X.

Both lemmas hold with p, h, or s decorations.
Taylor and Williams [T-W1, 2] study a splitting of (L,), as a wedge of
Eilenberg-Maclane spectra. This splitting gives a decomposition

Hn(X§Lo(2))=[ @ Hn——4i(X;Z(2))]®[( @ Hn—4i—2(X;ZZ)]‘

n/4)2i20 n—2)/42i20
The induced homomorphisms

I,_4i(X): H,_4(X; z(z))_’Ln(Z”q X)®Z<2)
Knai—2(X): H,_4; (X3 Zy)>L,(Zn; X)RZ,,,
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depend only on the differences n—4i, n—4i—2. Since L, (Zn) has no odd
torsion for m, X finite, no information is lost by tensoring with Z,,. If
i:m,—m, X is the inclusion of a 2-Sylow subgroup, transfer arguments show
L(X)=i, 1, (X/n,) and x,(X) =i, K, (X/n).
Theorem 3.4. [T-W2]. Let = be finite.

i) I"(Bn)=0 for n>0 and x?(Bn)=0 for n>1.

ii) If the 2-Sylow subgroup of m is abelian, generalized quaternion, dihedral,
or semi-dihedral then k"(Brn)=0 for n>3.

Proof of 3.1.
CZ,H_3(Z1r)=a*(H4k+3(B7r;_I=o)) (by 3.2)
=im (k" (Br)) (by 3.9
=im (k" (X)) (H,(X;Z,)~H,(Bn;Z,) is surjective)

=0, (H ., 3(X; L)) (by 3.4 and naturality).
The result then follows by 3.3.

Remark. The above can be accomplished by a specific geometric construction
as follows. Let f: M—»X**3 be a degree one normal map whose surgery
obstruction is represented by x,(X)() where acH,(X;Z,). Let CcM be a
circle such that f,[C]=a. C has a tubular neighborhood C xD**+2 Let
(K*+2 9)—(D*+*2, ) be the Kervaire problem. Then the composite

M4 C x dD*+2(C x (K**2,0)) > M — X

has vanishing surgery obstruction. This is “modifying by a codimension-one
Arf invariant” and is used in the papers [Wel, 2]. This geometric construction
can be done in PL category.

§4. Torsion surgery invariants

One way of detecting information about surgery obstructions is through tor-
sion invariants. In this section we prove that if f: M— X**3 is a degree one
normal map whose surgery kernels K;,(M)=ker ( f*:Hi(M)aHi()? )) are torsion
prime to the order of n=m, X, then the surgery obstruction 0(f)el’y(Zn) is
completely determined by the Zn-modules K;(M).

Let = be a finite group. Let S denote the set of primes which do not divide
the order of n. Thus S™'Zn=Z, n. Let K,(Zn, S) denote the abelian group
resulting from the Grothendieck construction on the category of finitely gener-
ated S-torsion Zzn-modules. (Note that all finitely generated S-torsion modules
have homological dimension one by Rim’s theorem [Rim].) Bass [Ba] gives an
exact sequence

K ,(Zn)—>K,(Z,n)—K,(Zn,S)—"> Ky(Zn)—> K(Z )

Let K, (A)=K (A){—1). Let A=im(K,(Zn)—K,(Z ). The following
theorem will be our major algebraic tool:
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Theorem 4.1 (Davis [D2]). The map Ly(Zn)—LA(Z, 7) is injective if the in-
volution on Zn is the “oriented” involution gr—g~"! for all gem.

The proof involves using localization exact sequences and reciprocity laws
to compare the L-theory of Zn and Z, n; the corresponding result with Z =
replaced by the p-adic completion Z = is false. Also the corresponding result
in I% is false for m=Q(8), but it is true for many other groups (including =
=Q(2"), n>3).

If M is a Z[Z/2]-module we write H"(M) for the Tate cohomology
H™(Z/2; M). There is a Rothenberg exact sequence

oL (& ) HY (ke 0)> LAZ oy ) > Ly(Z y 1) ...

The existence of such sequences involving intermediate L-groups was an idea
of Cappell. A proof of exactness is given in [Ra2, [, 9].

Theorem 4.2. Let f: M— X" be a degree one normal map with X finite and =
=mn,X. Assume the surgery kernels are torsion prime to the order of m. Then if
0(f)eL:(Zr) is the surgery obstruction,

im 0(f)=im y(K ,(M))e L4(Z,, 7).

Here (K, (M)) is the torsion characteristic ) (—1)'[K;(M)]e H"* (ker o).

Combining Theorems 4.1 and 4.2, we see that if n=4k+ 3, then the surgery
obstruction 6(f) is determined by the torsion Zn-modules K, (M) - no infor-
mation about the linking form is needed. This generalizes the “numerical
invariants” of Pardon [P2] in three ways: from the highly connected case to
the general case, from the 2-group case to the general finite group case, and
most importantly from I to I

We will prove 4.2 in greater generality than stated. Let T be a central
multiplicative subset of a ring with involution A. By a (A, T)-module we mean
a finitely generated T-torsion module of homological dimension one. Let C
={C,—...»C,} be a chain complex of finitely generated free A-modules such
that C is T-acyclic (ie. T"'C=T"'A®,C has no homology). Then the
Reidemeister torsion (see [Mi])

A(C)eK (T~ A)/K (A)=ker (0: K (A, T)>K (A1)

is defined by giving C any A-base and computing the torsion of the based
acyclic complex T~ ! C. Now suppose further than H;(C) is a (4, T)-module for
all i.

Proposition 4.3. The Reidemeister torsion A(C) is equal to the Euler characteris-
tic x(C)=Y.(—1)'[H,;(C)]ekero.

Proof. The proof is by induction on the dimension of C. If the dimension of C
is 1 then there is a short exact sequence

0—C,—15 Cy—Hy—0.

By definition of the map K,(T~'A)-»K,(A,T) we have [f]—[H,]. Thus
A(Cy—»Co)=im[f]=[H,]
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We next consider the case where H,(C)=0. Then
Cx{C,—..»C,»C}@{C,—>C,}

and the result is true for both summands by induction.
We now consider the case where By=ker(C,—H,(C)) is free over A. Then
we have a chain map

¢,——..——C,——B

8n 81 go

C,——..—C,— (C,
where g, becomes an isomorphism after localization. Thus
4(C)=4(B,—» Cp)+4(C,—»...»C,—>By)
=[Ho(O+ Yis o —D'[H(O)]:

The last equality follows from the previous case.
For the general case we need a lemma.

Lemma 4.4. Given a (A, T)-module M, there is a T-acyclic complex D
={D,—D,—D,} of finitely generated free A-modules such that H,(D)=M and
such that A(D)=[H ,(D)]—[H,(D)].

Proof. Choose a projective resolution of M
0-P->F->M-0

where F is free. Let Q be a module such that P@®Q is A-free and T-!Q is
T~ A-free. Let F' be a free submodule of Q such that there is a teT~* such
that FFcQctF'. Let

F'-Q
D= @
P>F

To compute 4(D) we use
FF—— Q®P ——F

|

F——tF®F——F.

Then
A(D)= —[tF'/F]+[tF'/Q]+[F/P]
=[F/P]—-[Q/F']
=[Ho(D)]—-[H,(D)].
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Now back to the general case of Proposition 4.3. Choose an M such that
[Hy(C)]+[M]ekera. Use 4.4 to find a 2-dimensional complex D such that
ker (C,@® D,— H,(C@® D)) is free. The proposition then follows by applying the
previous case to C@® D.

We now need a lemma which in the group ring case dates back to J.
Shanenson’s thesis [Sh].

Lemma 4.5. Let X <Y <K, (A) where A is a ring with involution. Let (C,y) be
an n-dimensional algebraic Poincaré complex in the sense of Ranicki [Ra2, 3]. If
C is acyclic with torsion 1(C)eY, then [C,¥]=im1(C) in the Rothenberg se-

quence
o H YY) X) - EE(A) - LY (A)> ...

Proof. Let (C',y/')=im1(C). Then C’ is acyclic with t(C’)=1(C). According to
Ranicki’s formalism ((0, 0),(C’, ")+ (C, —)) is a Poincaré pair so that [C', ]
=[C,yJeL}(A).

To deduce Theorem 4.2 from 4.3 and 4.5 we note that a degree one normal
map f: M— X gives an algebraic Poincaré complex [C, Yy]el(Zn) where C is
the algebraic mapping cone of f,: C (M)—»C (X). In our case Z,®C is
acyclic with Reidemeister torsion ) (— 1)‘ [K; (M)]

Motivated by Theorem 4.1 we make the following definitions:

Definition 4.6. The quadratic torsion group
QT(n)=coker (Ly(Z,,, m)— H® (ker o)) = ker (LY(Z,,,, 7)— L'y (Z ) 7)).
By 4.1, ker(I4(Zn)-I4(Z w™ injects to QT(n). If f:M—-X is a Z, -
homology equivalence with n=m, X, then the quadratic torsion of f is
=2 (=1)'[H;(f; Zn)]eQT (n).

In particular if f is a degree one normal map the g,(f)=).(—1)'[K;(M)].
We now give criterion for the vanishing of the quadratic torsion. We
suppose the order of = is even.

Lemma 4.7. (A) If (s,|nl)=1, then Zn®Z, represents the trivial element of
QT(n).

(B) If t—1 is a multiple of LCM(8,2-|n|) then Z, (with trivial m-action)
represents the trivial element of QT (m).

Proof. Let e be the identity of n. Let k be the integer so that s= +(1+ 4k). The
symmetric even matrix
[2ke e ]
e —2e

represents an element of L 0(Z ™) with discriminant
[+5-e]eK,(Zy,m/K,(Zn),

which corresponds to Zn ® Z in ker 0. This proves (A).
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Let N=) .8 Then the symmetric even matrix

[2aN e+bN]
e+bN —2e

represents an element of L, 0(Z,, m) with discriminant
[e+(4a+2b+b*|n)) N]eK (Z,,, n)/K (Zn).

Its image in kero is [Z/1+(4a+2b+b?|n|)|n|]. Such elements generate the
subgroup of ker o given by [Z/t] with t=1(mod LCM (8, 2|nl)).

Remark 4.8. If [Z]eker g, we call the corresponding element of QT(n) a Swan
formation. The class of [Z,]eQT(n) depends only on the residue class of s
modulo LCM (8, 2|n|).

§ 5. BG-maps and degree n maps

In the proof of theorem A, two generalizations of degree 1 normal maps arise;
we weaken degree 1 to degree n and the notion of a normal map to a BG-map,
a map of Spivak bundles. In this section we develop these concepts.

Definition 5.1. A map f: X - Y between Poincaré complexes is a BG-map if

x—L .y

A/

Remark. By Sullivan’s analysis of p-local spherical fibrations, to see that the
above diagram commutes, it suffices to check that for each prime p it com-
mutes when localized at p.

commutes up to homotopy.

Theorem 5.2. Let X be a finite Poincaré complex of dimension r=4k+3 whose
Spivak bundle lifts to BTOP and whose fundamental group m is finite. Let
f: M—X be a degree one BG-map where M is a closed manifold and f is a Z,, -
homology equivalence. Then there exists a degree one normal map f': M'->X
whose surgery obstruction 0(f)el'(Zn) maps to the quadratic torsion
qr(f)eL‘;‘(Z(m n). In particular if q,(f)=0, then X has the homotopy type of a
closed manifold.

Proof. Let ¥y: X —»W(k) be a lift of the Spivak bundle v, to a topological
block bundle. Then ¥,=f*%, is a lift of v,. Choose an element
PMET, . w(T(vy)) such that h(p,)nU=[M] where h:=n, ,—H,,, is the Hu-
rewicz homomorphism and UeH"(T(v,,)) is the Thom class. Then the Brow-
der-Novikov transversality construction [Br] gives a degree one normal map
g: N> M, and a class pyem, (T (vy)) such that g, py=py. If we let py=f, py
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then we have a composite of normal maps in the sense of [Ra2, II]:

(N5 vN’ pN)—g’(M5 vM9 pM)__—f_}(X’ vX9 Px)

Hence by the composition formula of Ranicki [Ra2, II 4.3],
0(f<g)=0(g)+0(f)eLy(Zm).

By the results of §4, 0(f) is given by ¢,(f) and hence does not depend on p,,
and py. Note that fog and g are honest degree one normal maps. Hence

0(g)eimage (o, : H,(M; Lo)— Ly(Zn)) = 0, (H,(X; Lo))-

The last inclusion is true since M—Bn factors through X —Bn. Then 0(fog)
=0(f)eL';(Zn)/o*(H,(X; L,). The theorem follows by applying Lemma 3.3.

We now require a result of lan Hambleton and Ib Madsen which general-
izes a result of Wall. Let m, be a 2-Sylow subgroup of a finite group n and
i:m,—7 the inclusion map. Given a m-cover (resp. m,-cover) X of X, let i*X
=X/n, (resp. i,X=mnx_X). These induce functors between categories of
spaces with reference maps to Bnm and Bm, and hence natural maps of L-
groups.

Lemma 5.3. Given f: M—N*, a degree n normal map between closed manifolds,
and a m-cover of N, then the local surgery obstruction

0(f)=Im: m,| - i, (0G* /)Ly (Z[1/n] 7).

Proof. In [H-M] a classifying space (QS°/TOP), for degree n maps between
closed manifolds was constructed. There is a commutative diagram

Q,(Bn x(QS°/TOP),) —*— L (Z[1/n]7)

Q, (B, x (QS°/TOP),) —*— L (Z[1/n]n,)

I i

Q,(Bn x (QS°/TOP),) —%— L (Z[1/n]m).

For a finite group L, (Z[1/n]n)—>L (Z[1/n]7)®Z,,, is injective. The result
follows from tensoring the above diagram with Z,, and using the bordism
theory fact (see e.g. [M-M]) that

i oi*: Q BrxY)QZ,—~Q,BrxY)QRZ,,

is multiplication by |n: =,| for any Y.

§6. Proof of theorem A

The aim of this section is to prove theorem A when r=3(mod4). In both the
“if” and “only if” directions the 2-group case is easier and the general case
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involves a reduction to the 2-group case. Let ¥ =2" be a simply-connected
Z/|n| homology sphere. If || is odd, I*(Zr) is zero hence we assume |r| is even.

Lemma 6.1. There exists a BG-map S"—ZX of degree prime to |n|.

Proof. Recall ©,(BG) is finite (see e.g. [M-M]). The desired map is a composite
sr—L,8—%,5 where (degf) - (n,(BG)®Z[1/n])=0 and degg is relatively
prime to |r| (g exists by the mod-C Hurewicz theorem). One checks that gof'is
a BG-map by checking at each prime p.

We first assume 7 acts freely and homologically trivially on X and try to
construct a free action on S". m has periodic cohomology so the 2-Sylow
subgroup is cyclic or generalized quaterionic and hence n, acts freely on S".

Definition 6.2. For a space M of finite type define

2°"(M) =[] ltorsion H,(M)|"= V",

If M is a Z/|n| homology sphere then x'*"(M)eZ,.

Choose a BG-map ¥: S"—2 so that degy =x""(2)(mod 4|n|Z,). Then degy
=y""(Z)- (a/b) where a and b are integers congruent to 1 modulo 4|r|. Propa-
gation (1.1) gives a BG-map g: X/n—X/n where X ~8". One computes the
finiteness obstruction by 1.4 and the proof of 1.5:

[X/n]=[Z/n]+0o(Z/degy)—Y (—1) o(torsion H,(X))
=0+0(Z/a)—a(Z/b)
=0eK ,(Zn).
Thus we may assume X is a finite complex. By Lemma 4.7(B), the quadratic

torsion g,(g) is zero. As in the proof of 5.2, we can choose bundle reductions
Vs/n> Vx/» and use the Browder-Novikov transversality construction to get

N-—L X/m—53/n
so that f and gof are degree one normal maps and
0(gof)=0(f) +qr(g)ELf(Z(n) 7).
The surgery obstruction 6(f) can be evaluated as follows:
6(f)=0(g-f) (since ¢.(g)=0)
=|n:m,|i, (0(*(g<f)) (by 5.3)
=|m:m,| i, (0G*(f)) (since q.(i* g)=0).

The range of i*f is X/n, and hence has the homotopy type of a closed
manifold. (Indeed any finite complex Y with =, Y a 2-group and Y ~S" has the
homotopy type of a spherical space form, cf. § 7, Ex. B.) Thus 0(f)e C*(Zr). By
3.1, X/n has the homotopy type of a closed manifold M. The generalized
Poincaré conjecture implies M is homeomorphic to S"/z.
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We now prove the converse in theorem A. Assume 7n acts freely on S"; we
wish to construct a free m-action on X. The idea behind the proof is clear.
First, propagation gives a Poincaré complex X'/n with ¥ ~2’. We then con-
struct an explicit degree 1 BG-map f over X'/ with torsion kernels. If correct
choices are made then the quadratic torsion will be trivial which implies 7 acts
on a manifold having the homotopy type of X, thus by 22 on X as well
However there are several technical difficulties. We thank Jim Milgram for
helping us overcome one of them.

There are two cases - depending on whether or not 7 is a 2-group. To unify
the exposition we make the following hypothesis:

Hypothesis 6.3. There exists a BG-map g: M—S"/n where g is a Z_,, n-homology
equivalence, M is a closed manifold, (deg g)- *(2)=1(mod 4|n| Z ), and
(a) if m is a 2-group and M is the induced m-cover of M, then

r—1
Y (= 1(CH{(M)] - [H,(2)]) =0€QT(m),
i=1

(b) if m is not a 2-group, g is actually a normal map.
We postpone the construction of M.

Proposition 6.4. Assuming hypothesis 6.3, if & acts freely on S', then w acts freely
and homologically trivially on X.

Proof. Apply 6.1 to construct a BG-map yY:S'-Z so that
(deg¥)=y""(2)(mod 4|n|Z ). Apply propagation to get a BG-map
S'/n—»2X'/n where Z'~X and X' is a finite complex. Composing with the
hypothesized map one obtains a BG-map h: M—Z2'/n whose degree is con-
gruent to 1(mod 4|x).

Define a degree one BG-map

MumE-Z2'/n

where mZ is the disjoint union of m=((degh)—1)/|n| copies of X with the
orientation reversed. The map Z—Z'/n comes from the covering map. By doing
0-dimensional surgery one obtains a BG-map

fIM#Z4.. #3-2n
Then

r

4.(N)=Y (~)[KM#Z4...%Z)]

i=0

=Y (~1(CH)] +z (— 1) [ker (Zn)" ® H,(Z)» H(Z))]

i

_

r—1
— /([H(M)] + ._Zl(— ' (m[Zn® H(Z)] - [H(Z)])

r
i
r

—D{([HM]~[H(Z)]) (by 47(A)).

X
X

i
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Thus for 7 a 2-group, q.(f)=0 by the hypothesis. By 5.2 and 3.1, X’ has the
homotopy type of a closed manifold so by 2.2, n acts freely and homologically
trivially on X.

If  is not a 2-group, recall that g: M—S"/r is a normal map. Thus by 5.3,

0(g)=Im: m,| i, (0(*g))e L} (Z 1y m).

Computing quadratic torsions, one obtains

r—1 r—1

21( — 1 ([H(M)]=[H(2)D) =In: 7y)iyoi* Y. (—1)'([H,(M)] —[H,(2)])eQ T (x).
i= i=1

By the previous computation this yields

0(f) =Im: 7,| i, (OG*(f))-

But X'/, has the homotopy type of a closed manifold (by the 2-group case!)
so by 5.2, 0(i*f)eC*(Zn,). Thus 6(f)eC*(Zn). Hence by 3.1, X’/ has the
homotopy type of a closed manifold, and by 2.2 = acts on Z.

Lemma 6.5. If n is a 2-group, there exists a BG-map g: M—S"/n satisfying
hypothesis 6.3.

Proof. Since = is a 2-group, there is a free action of n xZ/p on S” for any odd
number p. Choose p so that yx''(Z)-p"~"?=1(mod4|n|Z,) and so that
S"/(Z/p) is stably-parallelizable [E-M-S-S]. Letting M =S"/n x Z/p, we see that
6.3(a) is satisfied. By applying the ideas of §1, we propagate across a map
S"/Z/p)—S" of degree congruent to yx'(X)”'(mod4|n|Z,) to get a
map g': M - X /n with X a finite complex of the homotopy type of S". But then
X/n has the homotopy type of a spherical space form S"/r since = is a 2-group.
This gives the desired BG-map g.

Lemma 6.6. If n is not a 2-group, there exists a normal map g: M —S"/n
satisfying hypothesis 6.3.

Proof. Choose meZ so that mzx“"(z)"(mod4|n|Z(n)). Consider the (trivial)
covering map f:m(S"/nr)—S"/n. To construct a degree m normal map
g: M—S8"/n which is a Z ,, n-homology equivalence it suffices to show the local
surgery obstruction (f)eL}(Z,, n) is zero. The techniques of Pardon [P2],
show that L",(Z(n) 7t)-+(—BpL",(]Fp n/rad) is an injection. According to [D1], the
image of 6(f) under this map can be expressed as a difference of semi-
characteristics. Hence

im 0(f)=(m—1)y,,,(8";F, n/rad)e L}(IF, n/rad).

But this is zero since m —1 is even and L",(IFP n/rad) has exponent 2.

§7. Classification

We now discuss the classification of free, homologically trivial n-actions on
Z/|n|-homology spheres. Our starting point is this: Fix a free n-action on S" (r
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odd, r>3). Fix a closed, simply-connected manifold £ =2" which is a Z/|r|-
homology sphere. Our classification proceeds in four steps. The first step is to
classify the possible homotopy types. Morte precisely, the classification of
(polarized) homotopy types of n-dimensional CW-complexes X'/n with X'~ X
and trivial induced m-action on H_(X’) is given by a k-invariant ky, €Z/|n|".
The second step is to find which homotopy types contain finite complexes -
this depends only on kg, and x'*"(Z)eZ/n|*. The first two steps are motivated
by Swan’s paper [Sw], which deals with the case of the sphere. The next step is
also motivated by [Sw], but is new even in the case £ =S". This is to determine
the set of homotopy types which contain closed manifolds. This depends on
algebraically defined L-theoretic obstructions, which are determined by k;. .,
¥°"(2)eZ/|n|*. The final step is a formal argument which gives a 1-1 cor-
respondence between free n-actions on S (within the original fixed homotopy
type) and free, homologically trivial n-actions on X (within a specified ho-
motopy type).

Definition 7.1. A polarized (w, X)-complex X'/n is an r-dimensional CW complex
2" equipped with a free, cellular, homologically trivial =-action and a ho-
motopy equivalence By : X'—2X. Two polarized (n, X)-complexes X’/n, X”/n have
the same polarized homotopy type if there is an equivariant homotopy equiva-
lence g: 2'—>2" such that fy ~f; og.

Lemma 7.2. Let X'/m be a polarized (m,X)-complex. There is a map
[ (Z'/1) = (8"/7) ) inducing the identity on m,. Any such map is a homotopy
equivalence and the degree of any two such maps are equal modulo |n|Z .

Proof. The discussion of the Eilenberg-MacLane k-invariant in the space form
case (see e.g. [T]) leads immediately to this result so we will be brief. The
existence of a map f follows from obstruction theory. The last statement
follows from the identification of the image of the fundamental class [X'/n]eZ
in Z/|n|=H"*"(n; Z,,) with the Eilenberg-MacLane k-invariant of (X'/r), and
the fact that this k-invariant is an additive generator of Z/|x|.

We define kg ,€Z/|n|* to be the degree of any such f. Since the n-action is
homologically trivial, Lemma 7.2 and the discussion in §1 imply that X'/z has
the homotopy type of the homotopy pullback of a diagram

Z[1/n] xB=n

I
ZQXBn:

fqQ

v

(8"/m)y— SoxBm

where the degree of the patching map f; is an element of Z;, which equals k.,
in Z/|n|*. Conversely the pullback of any such diagram with deg foeZ;, gives
a polarized (n, Z)-complex. Since (S"/n),, has self homotopy equivalences (in-

ducing the identity on =,) of any degree =1(mod|xn|) (see [T]) we see that if
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deg fy=deg fy the two resulting pullbacks are homotopy equivalent. Sum-
marizing:

Theorem 7.3. The correspondence X'/n—ky., is 1-1 between polarized homotopy
types of (m, X)-complexes and elements of Z/|n|*. Given any integer n such that n
=ky €Z/|n|*, there is a map f: X'/n—S"/n of degree n inducing the identity on
.

Remark. Suppose f: X —Y induces an isomorphism on the fundamental group
m, is a Z, n-homology equivalence, and 7 acts trivially on H*(f sZ[1/x]).
Then if one of the two spaces is a finitely dominated Poincaré complex whose
Spivak bundle lifts to BTOP, then so is the other.

The Swan map t1:Z/|n|*—>K,(Zn) can be defined in terms of the Bass
localization map o: K,(Zn, S)— K ,(Z ) by defining t(k)=a(Z/k). The following
is a mild generalization of [Sw, 7.4].

Lemma 74. A (n, 2)-complex X'/n has the homotopy type of a finite complex if
and only if ©(x'*"(2) - ky,) =0.

Proof. Apply Mislin’s result 1.4 to a map X’/m—S"/n inducing the identity on
7.

Remark. By 2.2, if a (n, Z)-complex has the homotopy type of a closed manifold
then it has the homotopy type of a orbit space of a free n-action on X. If
r=1(mod 4), then any finite (n, )-complex is homotopic to a closed manifold
since [!(Zn)=0. We thus assume r=3(mod4). We assume |r| is even for the
same reason.

Lemma 7.5. For any acZ/4|n|*, there exists a simply-connected closed manifold
T with the Z/|n|-homology of S, with ¥ (T)=a(mod4|n|), and with
vp: T->BG[1/xn] trivial.

Proof. Choose a prime p so that p-a=1(mod4|r|) and the lens space S"/Z, is
stably parallelizable [E-M-S-S]. Doing surgery to make S"/Z, (r—1)/2-
connected gives T.

Corollary 7.6. If = acts freely on S" and a=1(mod|x|), then [Z/a]
=0eQT(n)/im C*(Zr).

Proof. Note that the free m-action on T constructed in the proof of theorem A
satisfies x''(T)-kp,=1€Z/|n|*. Thus there is a degree one BG-map
[ T/n—>S"/n with q,(f)=[Z/a]. By 5.2, there is a degree one normal map with
the same obstruction.

Thus there is a map t,:kert—>QT(n)/im C"(Zn) defined by ,(k)=[Z/k].
The major result of this section is:

Theorem 7.7. A (=, Z)-complex X'/n has the homotopy type of a quotient of a free
m-action on X if and only if t(x**"(2)-ky,,)=0eK,(Zn) and t,("(2) ky/,)
=0eQT(n)/im C*(Zn).

Remark. For n a space form group the groups C!(Zn) have been completely
computed by Taylor and Williams in [T-W2]. Thus this conclusion of the
theorem reduces to purely algebraic questions in K and L-theory.
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Proof of 7.7. Equivalently we prove that a finite (n, X)-complex X'/n has the
homotopy type of a closed manifold iff 7,(x**"(£)- k) =0. Construct a BG-map
g:8"/n—2'/n inducing the identity on n,. Apply 7.5 (with a=k;/§reZ/InI" and
theorem A to get a BG-map h: T/n—2X'/n such that degree h=1(mod |r|) and
x°"(T)=kg}.€Z/|n|. Then, as in the proof of 6.4,

fTn4Z4#.. 4X-3n

gives a degree one BG-map with ¢,(f)=y""(T)- x**"(2)~ ' =(x*"(X) - ky )~ ". The
result follows from 5.2 and 2.2.

Fix now a polarized homotopy type of a (m, X)-complex (resp. (m,S’)-
complex) which contains a quotient of a free n-action on X (resp. S"). Our final
classification result is:

Proposition 7.8. For r=3, free homologically trivial n-actions on X within the
fixed polarized homotopy type are in one-to-one correspondence with such actions
on S" within its fixed polarized homotopy type.

In our case this is essentially an exercise in the surgery exact sequence. It
also follows from a general property of propagations proven in [C-W1].

Examples

(A4) Cyclic groups. In this case all homotopy types of (m,S")-complexes are
realized as lens spaces. If in addition |n| is odd, fake lens spaces are classified
by their Reidemeister torsion and p-invariant [Wa2]. Thus all homotopy types
of (n, 2)-complexes contain the quotient space of a free n-action on 2. If |r| is
odd, free, homologically trivial n-actions on X are classified by Reidemeister
torsions and p-invariants.

(B) Generalized quaterion groups Q(2"). By [F-K-W], 7(a)=0 if and only if a=
+1(mod8). Furthermore, any homotopy type of (m, S")-complex contains a
linear space form provided the k-invariant is congruent to +1(mod?g8). Thus t,
is the trivial map. A (w, X)-complex contains the homotopy type of a quotient
space of a free m-action on X if and only it contains the homotopy type of a
finite complex.

(C) Binary diherdral groups Q(4p), p prime. Computations show that 7 is the
zero map and 1,(a) is zero if and only if a is a quadratic residue modp (cf. D
below). Thus every (n, 2)-complex has the homotopy type of a finite complex.
One-half of the homotopy types contain closed manifolds.

(D) Metacyclic groups. Using different techniques, Hambleton and Madsen [H-
M] did extensive computations of the possible homotopy types of free =-
actions on S" for m metacyclic. Via 7.7, their results can be interpreted as
computations of the maps 7 and 7,, and thus one can read off results on
classification of free, homologically trivial n-actions on Z.

(E) General groups. If a=b?*(mod |n|) where t(b)=0, then 7,(a)=0 (essentially
by definition of the quadratic torsion). Since im<t is relatively small (for
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example its exponent divides the Artin exponent of n) this provides many
homotopy types of free homologically trivial n-actions. In particular this result
can be used in many different cases to deduce the existence of manifolds whose
universal cover is S” which do not have the homotopy type of linear spherical
space forms.

More generally, the results of [D2] show that if a=b*(mod|xl), then t,(a) is
in the image of 7(b) under the map H'*'(K,(Zn))—L*(Zn) in the Ranicki and
Rothenberg [ —I? exact sequence.

§8. Further results and applications

In this section we consider extensions and refinements of our main theorem
and then give applications of the techniques developed here to certain other
problems in the theory of transformation groups.

Theorem 8.1. If n acts freely and homologically trivially on S" (r+3), then  acts
freely and homologically trivially on X in such a way that all elements are
isotopic to the identity.

Proof. We will show that the =m-action constructed in the earlier sections
automatically satisfies our conclusion. Since X' is simply-connected it suffices to
show that the action is pseudoisotopic to the identity because of Cerfs well
known results in pseudoisotopy theory. The argument then follows Sullivan’s
proof that homotopy implies pseudoisotopy for homeomorphisms complex
projective spaces [Sul].

Let M be a closed n-manifold with n=5 and H(M) the group of homemor-
phisms of M homotopic to the identity modulo those pseudoisotopic to the
identity. The structure set & (M x I, 0) can be interpreted, by the s-cobordism
theorem, as the set of homeomorphisms with given homotopies to the identity
modulo those which are homotopic (rel d) to a pseudoisotopy. Now let M be
our simply-connected Z/|n| homology sphere X. The surgery exact sequence

o B (@) —F M x1,0)~[Y M, G/TOP]> L, , | (Z)— ...

shows that (M x I, 0) is a finite set whose cardinality is prime to that of x.
This set (M x 1, 0) is a group by composition and the forgetful map

& (M x1,0)—»H(M)

in an epimorphism. Thus H(M) is a finite group of order prime to |n|.

Note that the = action constructed on M(=X) is, in fact, homotopic to the
identity (this is true because the action on S" has this property and the
pullback diagrams used in propagation preserve this). This gives a homeomor-
phism n— H(M) which is necessarily trivial, hence the zn-action is pseudoisot-
opic to the identity.

Remark 8.2. Although we have made statements of the type “the z-action is
isotopic to the identity”, all we mean is that the individual elements of the
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group are. No compatibility of the isotopy with the group action is asserted. In
fact, for effective group actions it is easily seen that this is never possible.

We now turn to non-free actions and show the existence of PL or topolo-
gically-locally-linear actions on X quite generally. A sample result is:

Theorem 8.3. Let p: n—>SO(r+ 1) be a faithful representation with a fixed set (on
S") of dimension at least 1 and codimension greater than 2. Then X admits a PL
n-action such that X% ~(SH¥ for all 1+ Hcn if and only if

r—1

Y 6(H,(2))=0eK,(Zn).

i=1

In general, 2 always admits a topologically-locally-linear action with represen-
tation at a fixed point p — 1.

Proof. We first do the easier PL case. Puncture that problem by removing an
invariant open ball around a fixed point on §’, to obtain a G-disk D. Note that
the singular set U, ,,.,D¥ is contractible by a Mayer-Vietoris argument.
(Remember: the action is linear.) Consider the problem of extending an action
from the boundary of a regular neighborhood of the singular set to D4 2. This
can be done if and only if the K, obstruction vanishes (by extension across
homology collars [Wel] or [A-V]). Once one has the action on D# X, coning
the boundary produces an action on X. Moreover, this argument did not
depend on the normal structure around the singular set, so the K, condition is
necessary for any PL action with that singular set. (Note: the action con-
structed above need not be PL locally-linear. This is a much harder problem,
see [We3] and the papers cited there for more discussion.)

For the topological case, rather than removing an open disk and coning,
one removes a fixed point and one-point compactifies. The details of such an
argument, such as topological-local-linearity and the construction of an exten-
sion, are done in the semifree case in [We3, 6C].

Remark 8.4. Note that the proof works in greater generality than stated; for
example, the action of © on S" need not be linear, rather one could require that
U, + <. D" be mod|n| acyclic.

Remark 8.5. If Fix(p) is O-dimensional then the result is PL correct and to-
pologically false - the K,-condition is necessary at least for topological semi-
free actions. (The general case presumably will depend on forthcoming work of
Steinberger and West on equivariant topological projective class and White-
head groups.) If Fix(p) is empty, then the existence problem is quite difficult
the major result known presently being the main result of this paper.

One can also vary the singular set using other techniques. Rather than
discuss complicated singular data we record the semifree case for comparison:

Theorem 8.6. ((We3]). Let n>0, k>2. Let X{ = X%** be an inclusion of one Z -
homology sphere in another simply-connected one. Let p:mn—SO(k) be a free
representation. Then there is a topologically-locally-linear semifree m-action on
X, with fixed set X, and normal representation p at any fixed point. There is a
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PL action iff
Y (=1e(H/(Z,—pt,Z, —pt) =0eK o(Z 7).

Remark 8.7. The n=0 case depends on algebraic invariants. There is a PL
action if Z(—l)ia(Hi(Z »—pt))=0eK(Zm). This is also necessary for a topolo-
gical-locally-linear action. At least for X, with trivial Spivak bundle, a further
necessary condition which together with the K -obstruction is sufficient is that
the image of
Y (=1Yo(H(Z,))eH"  (Ro(Zn)
0<i</2
in [*(Zn)/L"(Z) vanishes.
Our final remark concerns the hypothesis of theorem A.

Remark 8.8. According to Milgram’s computations of the Swan finiteness ob-
struction [M] the group n=0(24,5,1) (or in the notation adopted in his paper
0(12,5,1)) does not act freely on S** (or even on a finite complex homotopic
to S''). According to Pardon [P1], this group acts freely on a simply-connect-
ed mod|n| homology sphere X. Thus in our main theorem, homological
triviality is necessary.

According to computations of S. Bentzen [Bn], the group n =Q(24,313,1)
acts freely on S'!, but nxZ., cannot act freely on any finite complex homo-
topic to S''.In particular, = cannot act freely on X=S'!/Z.. Thus simple-
connectivity is also necessary.
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