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1. Introduction

If M is an n-dimensional manifold endowed with a Riemannian metric g , then its scalar curvature κ:M → R satisfies
the property that, at each point p ∈ M , there is an expansion

VolM (Bε(p)) = VolRn (Bε(0))
(
1−

κ(p)
6(n+ 2)

ε2 + · · ·

)
for all sufficiently small ε > 0. A complete Riemannian metric g on a manifold M is said to have uniformly positive scalar
curvature if there is a fixed constant κ0 > 0 such that κ(p) ≥ κ0 > 0 for all p ∈ M . For compact manifolds, obstructions
to such metrics are largely achieved in one of two ways: (1) the minimal hypersurface techniques in dimensions at most
7 by Schoen–Yau [40] and in dimension 8 by Joachim and Schick [24]; (2) the Dirac index method for spin manifolds by
Atiyah–Singer and its generalizations by Connes–Moscovici, Hitchin, Gromov, Lawson, Roe and Rosenberg, among others.

In the realm of noncompact manifolds it is now well recognized that the original approach by Gromov–Lawson [19] and
Schoen–Yau [40], which proves that no compact manifold of nonpositive sectional curvature can be endowed with a metric
of positive scalar curvature, is actually based on a restriction on the coarse quasi-isometry type of complete noncompact
manifolds. Connes and Moscovici [10] develop a higher index theory that proves that any aspherical manifold whose
fundamental group is hyperbolic does not have a metric of positive scalar curvature. Roe [33] subsequently introduces
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a coarse index theory to study positive scalar curvature problems for noncompact manifolds. Block and Weinberger [4]
investigate the problem of complete metrics for noncompact symmetric spaces when no quasi-isometry conditions are
imposed. They prove that, if G is a semisimple Lie group with maximal compact subgroup K and irreducible lattice Γ , then
the double quotient M = Γ \G/K can be endowed with a complete metric of uniformly positive scalar curvature if and
only if Γ is an arithmetic group with rankQΓ ≥ 3. This theorem includes, in light of the work of Borel and Harish-Chandra
[5], previous results of Gromov–Lawson [19] in rational rank 0 and 1. In the case when the rational rank exceeds 2, Chang
proves that any metric on M with uniformly positive scalar curvature fails to be coarsely equivalent to the natural one [6].

The Gromov–Lawson–Rosenberg conjecture states that a closed spin manifold Mn with n ≥ 5 has a metric of positive
scalar curvature if, and only if, its Dirac index vanishes in KO∗(C∗r π ), where π = π1(M). While this conjecture is known
to be false in general, it has been verified in number of cases. To study compact manifolds (M, ∂M) with boundary with
respect to a positive scalar curvature metric that is collared at the boundary, one would ideally like to produce a C∗-algebra
that encodes information about both π1(M) and π1(∂M). In this paper we show that such an algebra can be constructed
with the appropriate properties, and apply it to obtain information about noncompact manifolds.

In the first section, we use the notion of localization algebras [47] and generalized asymptotic morphisms to define a
relative group C∗-algebra C∗max(π1(M), π1(∂M)) along with a homomorphism

µmax: KO∗(M, ∂M)→ KO∗(C∗max(π1(M), π1(∂M)))

which we call the maximal relative Baum–Connes map. The usual Baum–Connes conjecture has many different guises, the
simplest of which is that the Baum–Connes map KOΓ

∗
(EΓ )→ KO∗(C∗r Γ ) is an isomorphism. The classical Strong Novikov

conjecture states that the Baum–Connes map is injective. One may similarly hope that the map µmax above is an injection
if M and ∂M are both aspherical. In line with the compact case, we show that, if M has a metric of positive scalar curvature
that is collared near the boundary, then the relative index of the Dirac operator in KO∗(M, ∂M) belongs to the kernel of
µmax. In this section, we also formulate a relative Gromov–Lawson–Rosenberg conjecture for manifolds with boundary,
which is a converse to the above statement. We prove that the relative Gromov–Lawson–Rosenberg conjecture holds for
torsion-free amenable groups satisfying certain conditions on their cohomological dimensions.

In the next sections, we offer a new index theory for noncompact manifolds with so-called admissible exhaustions. We
combine this theory with the machinery built in the first part of the paper to give various geometric applications: we
first construct a noncompact manifold M with an exhaustion

⋃
∞

i=1(Mi, ∂Mi) by compact submanifolds (of codimension 0)
with boundary such that each (Mi, ∂Mi) has a metric of positive scalar curvature collared at the boundary, but M itself
has no metric of uniformly positive scalar curvature. Next, we construct a noncompact manifold N whose space PS(N) of
uniformly positive scalar curvature metrics has uncountably many connected components.

A companion paper [7] will use the techniques of this paper and more complicated topology to obtain a contractible
manifold that has a positively curved exhaustion, but no metric of positive scalar curvature.

The authors are grateful to the University of Chicago, the Shanghai Center for Mathematical Sciences and the
Mathematical Sciences Research Institute for hosting their stays when the research for this paper was conducted. The
authors thank John Roe and Jonathan Rosenberg for useful comments and conversations. They also thank Eric Hilt and
Phil Hirschhorn for help in document formatting. Finally the authors wish to thank the referee for many useful suggestions
which helped to improve the exposition of this article.

2. The relative group C∗-algebra and the relative Gromov–Lawson–Rosenberg conjecture

In this section, we introduce the concept of relative group C∗-algebras and formulate a relative version of the Gromov–
Lawson–Rosenberg conjecture. The K -theory of the relative group C∗-algebras serves as the receptacle of the relative
higher index of the Dirac operators.

In this paper all C∗-algebras are real. We deal only with metric spaces X that are locally compact and uniformly
metrically locally simply connected; i.e. for all ε > 0 there is ε′ ≤ ε such that every ball in X of radius ε′ is simply
connected.

If G is a discrete group, denote by C∗r (G) and C∗max(G) the usual reduced and maximal real C∗-algebras of G, respectively.
Let Y ⊆ X both be compact (metric) spaces. We wish to define a Baum–Connes map from the relative KO-homology
group KOlf

∗ (X, Y ) to the KO-theory of some relative C∗-algebra encoding the fundamental groups of both Y and X and the
homomorphism between them. Here we assume that both X and Y are path connected. Let φ: C∗max(π1(Y ))→ C∗max(π1(X))
be the map induced by the homomorphism j∗:π1(Y )→ π1(X). Consider the mapping cone C∗-algebra of φ given by

Cφ,max = {(a, f ): f ∈ C0([0, 1), C∗max(π1(X))), a ∈ C∗max(π1(Y )), f (0) = φ(a)}.

Define C∗max(π1(X), π1(Y )) to be the seventh suspension S7Cφ,max of Cφ,max, i.e. Cφ,max⊗C0(R7), where C0(R7) is the C∗-algebra
of continuous real-valued functions on R7 which vanish at infinity. The seventh suspension is chosen because KO-theory
is eight-periodic. We call this algebra the maximal relative group C∗-algebra of (π1(X), π1(Y )). If in fact the homomorphism
j∗ is an injection, we can define a reduced relative C∗-algebra C∗red(π1(X), π1(Y )) in the same way.

If M is a metric space, we say that a Hilbert space H is an M-module if there is a representation of the continuous
functions C0(M) in H , that is, a C∗-homomorphism C0(M) → B(H), the algebra of bounded operators on H . We will say
that an operator T : H → H is locally compact if, for all ϕ ∈ C0(M), the operators Tϕ and ϕT are compact on H . We define



S. Chang, S. Weinberger and G. Yu / Journal of Geometry and Physics 149 (2020) 103575 3

the support, Supp(ϕ), of ϕ ∈ H as the complement of the largest open subset U ⊆ M such that, if f ∈ C0(M) and f is
supported on U , then f ϕ = 0. An operator T :H → H on an M-module H has finite propagation if there is R > 0 such that
ϕTψ = 0 whenever ϕ, ψ ∈ C0(M) satisfy d(Supp(ϕ), Supp(ψ)) > R. The smallest such R is called the propagation of T ,
denoted by prop(T ).

Recall that a locally compact metric space Z is said to have bounded geometry if there is a discrete subset Y ⊆ Z such
that (1) Y is c-dense for some c ≥ 0, i.e. d(z, Y ) ≤ c for all z ∈ Z; (2) for all r > 0 there is N in the natural numbers such
that, for all p ∈ Y , we have #{y ∈ Y : d(y, p) ≤ r} ≤ N . In the remainder of the article, we assume that all spaces have
bounded geometry.

Definition 2.1. Let Z be a locally compact metric space. Let H be a Hilbert space and B(H) the algebra of bounded operators
on H .

(1) Denote by R(Z) the Roe algebra, i.e. the algebra of locally compact, finite propagation operators on some ample
Z-module H . Here a Z-module is called ample if ρ(f ) is not a compact operator for any non-zero f ∈ C0(Z), where
ρ: C0(Z)→ B(H) is the ∗-homomorphism in the definition of Z-module H (see Roe [33, Definition 4.5]).

(2) Denote by C∗red(Z) and C∗max(Z) the completions of R(Z) with respect to the reduced and maximal norm completions,
respectively. Here we define the maximal norm in the following way. If a ∈ R(Z), then let ∥a∥max = supψ ∥ψ(a)∥,
where the supremum is taking over all ∗-homomorphisms ψ:R(Z)→ B(W ), where W is real Hilbert space. By the
bounded geometry assumption, the quantity ∥a∥max is finite by Gong–Wang–Yu [17, Lemma 3.4]. Note that, if Z is
compact, then the two completions are the same and coincide with K, the C∗-algebra of compact operators, as R(Z)
is already all of K.

(3) Let π1(Z) act on Z̃ by deck transformations and let R(̃Z)π1(Z) be the algebra of operators in R(̃Z) that are invariant
under this action. We endow R(̃Z)π1(Z) with a maximal norm by defining ∥a∥max = supψ ∥ψ(a)∥, where the
supremum is taken over all ∗-homomorphisms ψ:R(̃Z)π1(Z) → B(H), where H is a Hilbert space. Note that, although
R(̃Z)π1(Z) is a subalgebra of R(̃Z), this maximal norm might be different from the one defined in (2) because the
domain of ψ is different. We also mention that we are not assuming that the group π1(Z) is acting on the Hilbert
space H and the algebras defined here are independent of the choice of the base point in the fundamental group
(up to an isomorphism).

(4) Denote by C∗red (̃Z)
π1(Z) and C∗max (̃Z)

π1(Z) the closure of the algebra R(̃Z)π1(Z) with respect to the reduced and maximal
norms, respectively. Here the maximal norm is taken as in (3).

Definition 2.2. For continuous bounded maps g: [0,∞) → R(Z), we define norms ∥g∥red = supt∈[0,∞) ∥g(t)∥red and
∥g∥max = supt∈[0,∞) ∥g(t)∥max. Suppose that

(a) g is uniformly bounded and uniformly continuous, and
(b) the propagation of g(t) tends to 0 as t →∞.
We define the following sets:

(1) Denote by RL(Z) the collection of maps g satisfying (a) and (b).
(2) Denote by C∗L,red(Z) the closure of RL(Z) with respect to ∥ · ∥red, called the reduced localization algebra of X .
(3) Denote by C∗L,max(Z) the closure of RL(Z) with respect to ∥ · ∥max, called the maximal localization algebra of X . Here

the maximal norm is taken as in (2) in the previous definition.
(4) Denote by C∗L,red (̃Z)

π1(Z) and C∗L,max (̃Z)
π1(Z) the closure of the algebra RL (̃Z)π1(Z) with respect to the reduced and

maximal norms, respectively. Here the maximal norm is taken as in (3) in the previous definition.

Remark 2.3. When Z is compact, then the two localization algebras in (2) and (3) coincide.

For the rest of this paper, we will simplify notation and simply write C∗L (Z) for either the reduced or maximal
localization algebra.

Let X be a locally compact metric space. We shall briefly recall the local index map

ind L: KOlf
∗
(X)→ KO∗(C∗L (X)),

first introduced by Yu in [47]. We assume that ∗ ≡ 0mod 8. The other cases can be handled in a similar way with the
help of suspensions. Here KOlf

∗ (X) ≡ KO∗(C0(X)).
Let (H, F ) represent a cycle for KOlf

0 (X), where H is a standard nondegenerate X-module and F is a bounded operator
acting on H such that F∗F − I and FF∗− I are locally compact, and φF − Fφ is compact for all φ ∈ C0(X). For each positive
integer n, let {Un,i}i be a locally finite and uniformly bounded open cover of X such that diam(Un,i) < 1

n . Let {φn,i}i be a
continuous partition of unity subordinate to the open cover. Define

F (t) =
∑

i

((n− t)φ
1
2
n,iFφ

1
2
n,i + (t − (n− 1))φ

1
2
n+1,iFφ

1
2
n+1,i)

for all positive integers n and t ∈ [n− 1, n], where the infinite sum converges in the strong topology. If prop denotes the
propagation of an operator, then notice that prop(F (t))→ 0 as t →∞.
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Observe that F (t) is a multiplier of the localization algebra C∗L (X) and is invertible modulo the localization algebra.
Hence the standard index construction in K -theory gives

ind L([(H, F )]) = [PF ] −
[(

1 0
0 0

)]
∈ KO0(C∗L (X)),

where PF is a certain idempotent in the matrix algebra of C∗L (X)
+ constructed as follows. We call this class ind L([(H, F )])

the local index of F . We choose PF (t) to be the matrix(
F (t)F∗(t)+ (1− F (t)F∗(t))F (t)F∗(t) F (t)(1− F∗(t)F (t))+ (1− F (t)F∗(t))F (t)(1− F∗(t)F (t))
(1− F∗(t)F (t))F∗(t) (1− F∗(t)F (t))2

)
.

See also Definition 4.2, page 1392, in Willett–Yu [45]. We write PF for PF (t) for simplicity. For the rest of this paper, we
also abbreviate [(H, F )] as [F ] and ind L[(H, F )] as ind L[F ].

The following isomorphism is proved in Yu [47, Theorem 3.2] in the case when X is a CW complex and for general
metric space X in Qiao–Roe [30, Theorem 3.4].

Proposition 2.4. The local index map ind L: KO∗(X)→ KO∗(C∗L (X)) is an isomorphism.

Definition 2.5. Let Y ⊆ X be compact metric spaces. In the definitions of C∗L (Y ) and C∗L (X), we choose the Y -module and
X-module to be ℓ2(ZY )⊗ H and ℓ2(ZX )⊗ H such that ZY ⊆ ZX are countable dense subsets of Y and X , respectively, and
H is a separable and infinite-dimensional Hilbert space. The isometric inclusion from ℓ2(ZY )⊗ H to ℓ2(ZX )⊗ H induces a
homomorphism i: C∗L (Y )→ C∗L (X).

Remark 2.6. The choices of X-module and Y -module are not canonical. However i induces a canonical KO-theory
homomorphism.

Let Ci be the mapping cone of i given by

Ci = {(a, f ): f ∈ C0([0, 1), C∗L (X)), a ∈ C∗L (Y ), f (0) = i(a)}.

Define the relative KO-homology group of (X, Y ) to be KO∗(X, Y ) ≡ KO∗(S7Ci).
This definition of relative KO-homology gives rise to a long exact pair sequence

· · · → KO∗(Y )→ KO∗(X)→ KO∗(X, Y )→ · · · .

Lemma 2.7. Let X be a compact space and let K be the C∗-algebra of compact operators on a separable, infinite-dimensional
Hilbert space. Then there are isomorphisms

C∗red (̃X)
π1(X) ∼= C∗r (π1(X))⊗ K

and

C∗max (̃X)
π1(X) ∼= C∗max(π1(X))⊗ K.

Proof. In Roe [34, Lemma 2.3] the ∗-isomorphism

(RX̃)π1(X) ∼= (Rπ1(X))⊗ K

is proved. This algebraic ∗-isomorphism extends to the required ∗-isomorphism in both the reduced and maximal case,
since K is a nuclear C∗-algebra. □

Proposition 2.8. Let X be a compact metric space with universal cover X̃ . There is ε > 0 depending only on X such that, if
b is an operator in R(X) with propagation at most ε, then b lifts to a π1(X)-invariant operator b̃ of propagation at most ε in
R(̃X) and the lifting is unique.

Proof. In the definition of R(X), we choose the X-module to be ℓ2(ZX )⊗ H such that ZX is a countable dense subset of X
and H is a separable and infinite-dimensional Hilbert space. Let p: X̃ → X be the projection map. We define ZX̃ = p−1(ZX ).
We choose the X̃-module to be ℓ2(ZX̃ ) ⊗ H in the definition of R(̃X). Every operator b ∈ R(X) can be represented by a
kernel k(·, ·) such that k(x, y) belongs to K for all (x, y) ∈ ZX × ZX and Supp(k) is contained in {(x, y) ∈ X × X: d(x, y) < r}
for some r > 0. The smallest such r is the propagation of b. Now let k′(x′, y′) = k(p(x′), p(y′)) for all (x′, y′) ∈ ZX̃ × ZX̃
satisfying d(x′, y′) < r and k′(x′, y′) = 0 for all (x′, y′) ∈ ZX̃ × ZX̃ satisfying d(x′, y′) ≥ r . By the compactness of X , there is
ε > 0 such that, if b has propagation at most ε, then k′ represents an element b̃ of R(̃X) and b̃ has the same propagation
as b.

This discussion shows that there exists ε > 0 such that, if b ∈ R(X) and prop(b) < ε, then there is a unique lifting of
b in R(X) to φ(b) in R(̃X). □
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Note that, if the propagations prop(b1), prop(b2) < ε/2, then this lifting respects multiplication and addition,
i.e. φ(b1b2) = φ(b1)φ(b2) and φ(b1 + b2) = φ(b1)+ φ(b2).

Definition 2.9. Let s ∈ [0,∞) and let X be a compact metric space. For all b ∈ RL(X), denote by bs ∈ RL(X) the operator
given by bs(t) = b(s+ t) for all t ∈ [0,∞). Let ε be as in the above proposition. For each b ∈ RL(X), there is sb > 0 such
that prop(bs) < ε when s > sb. We define φs(b) = b̃s ∈ RL (̃X)π1(X) when s > sb.

The next result indicates that φs is an asymptotic morphism in the following generalized sense.

Lemma 2.10. Let X be a compact metric space. For all b ∈ RL(X), let sb be given as in the previous definition.

(1) There is C > 0 such that, for all b ∈ RL(X), if s > sb, then

∥φs(b)∥red ≤ C∥b∥red and ∥φs(b)∥max ≤ C∥b∥max.

(2) For all b ∈ RL(X), if s > sb, then φs(b)∗ = φs(b∗).
(3) For all b1, b2 ∈ RL(X), the operator

φs(b1b2)− φs(b1)φs(b2)

is zero for s bigger than a constant depending on b1 and b2.

Proof. Let {Ui}
N
i=1 be a finite open cover of X such that, for each i, the diameter of the union of all Uj satisfying Uj∩Ui ̸= ∅

is less than ε, where ε is as in Proposition 2.8. Let {ϕi}i be the continuous partition of unity subordinate to {Ui}. We have
φs(b) =

∑N
i=1 φs(ϕib).

In the reduced case, by the definition of φs and the choice of ϕi, we have

∥φs(ϕib)∥red = ∥ϕib∥red ≤ ∥b∥red.

It follows that

∥φs(b)∥red ≤ N∥b∥red

if s > sb.
In the maximal case, we have the following natural ∗-isomorphism:

C∗ (̃X)π1(X)max
∼= K ⊗ C∗max(π1(X)),

where K is the C∗-algebra of all compact operators on L2(D) for some fundamental domain of X̃ . In the above isomorphism,
φs(ϕib) corresponds to k⊗ 1 for k ∈ K , where 1 is the identity element in the maximal group C∗-algebra C∗max(π1(X)). As
a consequence, we have

∥φs(ϕib)∥max = ∥ϕib∥max ≤ ∥b∥max.

It follows that

∥φs(b)∥max ≤ N∥b∥max

if s > sb.
This proves (1). The proofs of (2) and (3) are straightforward. □

For any π1(X)-invariant operator a ∈ RL (̃X)π1(X), if the propagation of a is sufficiently small, then there exists a unique
b ∈ RL(X) such that a = b̃, where b̃ is as in Proposition 2.8. The map ψ : a→ b, gives a pushdown RL (̃X)π1(X) → RL(X)
for operators with small propagation. Such a pushdown induces homomorphisms

KO∗(C∗L,max (̃X)
π1(X))→ KO∗(C∗L (X))

and

KO∗(C∗L,red (̃X)
π1(X))→ KO∗(C∗L (X)),

which are inverses to the homomorphisms induced by the liftings. These homomorphisms can be defined as follows. By an
argument similar to the proof of Lemma 2.10, there exists a constant c ≥ 1 such that ∥ψ(a)∥ ≤ c∥a∥ if the propagation of
a is sufficiently small. For simplicity, we only describe the homomorphisms for KO0. By an approximation, each element
in KO∗(C∗L (̃X)

π1(X)) can be represented by a quasi-projection q ∈ R∗L (̃X)
π1(X) satisfying q∗ = q and ∥q2 − q∥ < 1

10c . Let
qs ∈ R∗L (̃X)

π1(X) be defined by qs(t) = q(t + s) for any non-negative number s. We choose s to be large enough so that qs
has sufficiently small propagation. We now define the homomorphism

KO0(C∗L (̃X)
π1(X))→ KO∗(C∗L (X))



6 S. Chang, S. Weinberger and G. Yu / Journal of Geometry and Physics 149 (2020) 103575

by mapping [q] to [ψ(qs)], where ψ is the pushdown map and [ψ(qs)] is the K-theory element represented by the quasi-
projection ψ(qs). Observe that ψ(qs) is a quasi-projection since the pushdown map ψ is norm-decreasing (up to the
constant c) for operators with small propagations.

Lemma 2.10 implies that the liftings φs induce isomorphisms KO∗(C∗L (X)) → KO∗(C∗L,max (̃X)
π1(X)) and KO∗(C∗L (X)) →

KO∗(C∗L,red (̃X)
π1(X)).

Definition 2.11. Let j∗:π1(Y )→ π1(X) be the homomorphism induced by the inclusion Y → X . Then j∗ induces a map
η: Ỹ → X̃ such that η(gy) = i∗(g)η(y) for all g ∈ π1(Y ) and y ∈ Ỹ .

Note that such η exists because X and Y are metrically locally simply connected.
Let p be the covering map X̃ → X and let Y ′ = p−1(Y ). Let p′: Ỹ → Y be the covering map from the universal cover Ỹ .

Let Y ′′ be the Galois covering of Y corresponding to the subgroup ker(j∗) of π1(Y ). The deck transformation group of Y ′′

is π1(Y )/ker(j∗), isomorphic to j∗π1(Y ). For simplicity, we will denote π1(Y )/ker(j∗) by j∗π1(Y ).
We have Y ′ = π1(X)×j∗π1(Y ) Y

′′. This decomposition gives rise to a natural ∗-homomorphism

ψ ′: C∗max(Y
′′)j∗π1(Y ) → C∗max(Y

′)π1(X).

Choose countable dense subsets ZY of Y and ZX of X such that ZY ⊆ ZX . Let H be a separable and infinite-dimensional
Hilbert space. We use the modules ℓ2(p−1(ZY ))⊗H , ℓ2(p−1(ZX ))⊗H , ℓ2((p′)−1(ZY ))⊗H , and ℓ2((p′′)−1(ZY ))⊗H , respectively,
to define C∗max(Y

′)π1(X), C∗max (̃X)
π1(X), C∗max (̃Y )

π1(Y ), and C∗max(Y
′′)j∗π1(Y ).

Lemma 2.12. There exists a ∗-homomorphism

ψ ′′: C∗max (̃Y )
π1(Y ) → C∗max(Y

′′)j∗π1(Y )

such that there is ε > 0 for which, if k ∈ C∗ (̃Y )π1(Y ) is an operator with propagation at most ε and is represented as a kernel
k on (p′)−1(ZY ) with values in K, then there is a unique kernel kY on ZY with values in K such that k(x, y) = kY (p(x), p(y))
for all x, y ∈ p−1(ZY ) satisfying d(x, y) ≤ ε and ψ ′′(k) is represented by a kernel k′′ on (p′′)−1(ZY ) with values in K such that
k′′(x, y) = kY (p′′(x), p′′(y)) for all x, y ∈ (p′′)−1(ZY ) satisfying d(x, y) ≤ ε.

The homomorphism ψ ′′ in the above lemma can be considered as a folding construction. In the special case when
j∗π1(Y ) is trivial, we have C∗max (̃Y )

π1(Y ) ∼= C∗max(π1(Y )) ⊗ K and C∗max(Y
′′)j∗π1(Y ) ∼= K, where K is the algebra of compact

operators. Then ψ ′′ is equivalent to the homomorphism induced by the canonical ∗-homomorphism from C∗max(π1(Y )) to
C taking each finite sum

∑
g∈π1(Y )

cgg to
∑

g∈π1(Y )
cg , where cg ∈ C for all g .

Proof. Let H be the kernel of the homomorphism j∗:π1(Y ) → π1(X). Let k be an operator in R(̃Y )π1(Y ) represented
by a kernel k(x, y) on (p′)−1(ZY ). We define a kernel ka(x, y) on (p′)−1(ZY ) by the formula ka(x, y) =

∑
h∈H k(hx, y) for

all x, y ∈ (p′)−1(ZY ). Note that the above sum is finite since k has finite propagation. We have ka(h1x, h2y) = ka(x, y)
for all h1, h2 ∈ H and x, y ∈ (p′)−1(ZY ). For each x, y ∈ (p′)−1(ZY ), let [x], [y] be the corresponding pair of equivalence
classes in (p′′)−1(ZY ) = (p′)−1(ZY )/H . We let k′′([x], [y]) = ka(x, y). Note that k′′ is well-defined. We now define
a ∗-homomorphism ψ ′′:R(̃Y )π1(Y ) → R(Y ′′)j∗π1(Y ) given by ψ ′′(k) = k′′. By maximality, this map ψ ′′ extends to a
∗-homomorphism C∗max (̃Y )

π1(Y ) → C∗max(Y
′′)j∗π1(Y ). We choose ε > 0 small enough such that d(hx, x) > 10ε for all h ̸= e

in H and all x ∈ Ỹ . If d([x], [y]) > ε, then d(hx, y) > ε for all h ∈ H . Therefore if k has propagation at most ε, then k′′

has propagation at most ε. If ε is small enough, there is a unique kernel kY on ZY such that k(x, y) = kY (p(x), p(y)) for all
x, y ∈ p−1(ZY ) satisfying d(x, y) ≤ ε and kY has propagation at most ε. If d(x, y) ≤ ε, then d(hx, y) < ε for all h ̸= e in H
and x, y ∈ Ỹ . Therefore ka(x, y) = k(x, y) if d(x, y) ≤ ε. It follows that k′′(x, y) = kY (p′′(x), p′′(y)) for all x, y ∈ (p′′)−1(ZY )
satisfying d(x, y) ≤ ε. □

Let ψ ′′ be as in Lemma 2.12 above and let ψ ′ be as previously defined. We now define a ∗-homomorphism

ψmax = ψ
′
◦ ψ ′′: C∗max (̃Y )

π1(Y ) → C∗max (̃X)
π1(X). (2.13)

This homomorphism can in turn be used to construct a ∗-homomorphism

ψL,max : C∗L,max (̃Y )
π1(Y ) → C∗L,max (̃X)

π1(X).

Let CψL,max be the mapping cone of ψL,max given by

{(a, f ): f ∈ C0([0, 1), C∗L,max (̃X)
π1(X)), a ∈ C∗L,max (̃Y )

π1(Y ), f (0) = ψL,max(a)}.

Recall that i: C∗L (Y )→ C∗L (X) is the homomorphism induced by the inclusion Y → X , and Ci is its mapping cone. For each
(b, f ) ∈ Ci with uniformly finite propagation, i.e. prop(b) <∞ and sup0≤t≤1(prop(f (t))) <∞, there is s(b,f ) > 0 such that
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prop(bs) < ε and prop(f (t)) < ε for all s > s(b,f ). We define

χs,max(b, f ) = (φs(bs), φs(f (·)s)) ∈ CψL,max

for all s > s(b,f ), where φs is as in Lemma 2.10. The map χs,max induces a homomorphism

(χs,max)∗: KO∗(S7Ci)→ KO∗(S7CψL,max ).

This homomorphism can be defined as follows. For simplicity, we only consider the KO0 case. Each element in KO0(S7Ci)
can be represented by a quasi-projection q in (S7Ci)+ with uniform finite propagation satisfying q∗ = q and ∥q2−q∥ < 1

10C ,
where C is as in Lemma 2.10 and (S7Ci)+ is obtained from S7Ci by adjoining a unit. Lemma 2.10 implies that q′ = χs,max(q)
is a quasi-projection satisfying (q′)∗ = q′ and ∥(q′)2 − q′∥ < 1

10 . We now define [χs,max(q)] to be the K-theory element in
KO∗(S7CψL,max ) represented by the quasi-projection q′.

Let e be the evaluation homomorphisms induced by the evaluation maps at 0 from C∗L,max (̃X)
π1(X) to C∗max (̃X)

π1(X) and
from C∗L,max (̃Y )

π1(Y ) to C∗max (̃Y )
π1(Y ). These homomorphisms induce maps e∗: KO∗(S7CψL,max )→ KO∗(S7Cψmax ) at the level of

KO-theory.
Define µmax to be the composition given by

KO∗(S7Ci)
(χs,max)∗
−−−−→ KO∗(S7CψL,max )

e∗
−→ KO∗(S7Cψmax ).

By definition, µmax is then a map

µmax: KO∗(X, Y )→ KO∗(C∗max(π1(X), π1(Y )))

which we call the maximal relative Baum–Connes map. A reduced relative Baum–Connes map

µred: KO∗(X, Y )→ KO∗(C∗red(π1(X), π1(Y )))

can be similarly constructed if the homomorphism j from π1(Y ) to π1(X) is injective.

Conjecture 2.14. Let Y ⊆ X and suppose that X and Y are both aspherical compact spaces.

(1) (Relative Novikov conjecture) The maximal relative Baum–Connes map

µmax: KO∗(X, Y )→ KO∗(C∗max(π1(X), π1(Y )))

is an injection.
(2) (Relative Baum–Connes conjecture) If j:π1(Y )→ π1(X) is an injection, then the reduced relative Baum–Connes map

µred: KO∗(X, Y )→ KO∗(C∗red(π1(X), π1(Y )))

is an isomorphism.

Remark 2.15. If the classical Baum–Connes conjecture holds for π1(X) and π1(Y ), then statement (2) is true for the pair
(π1(X), π1(Y )). In general the maximal relative Baum–Connes conjecture may not be an isomorphism. The real version
(KO) of the Baum–Connes conjecture follows from the classic (complex version) of the Baum–Connes conjecture (see
Baum–Karoubi [2]). After inverting 2, even the injectivity of the complex Baum–Connes map implies the injectivity of the
real Baum–Connes map (see Schick [38, Corollary 2.13]).

Recall that the notion of K -amenability was formulated by Cuntz [11, Definition 2.2]. This notion can be extended to
the KO-setting.

Theorem 2.16. Suppose that Y ⊆ X are aspherical compact spaces such that π1(Y ) and π1(X) are K-amenable and satisfy
the Baum–Connes conjecture.

(1) Then µmax is an isomorphism.
(2) Assume also that π1(Y )→ π1(X) is an injection. Then µred is an isomorphism.

Proof. By the definition of K -amenability, the natural homomorphisms C∗max(π1(X)) → C∗r (π1(X)) and C∗max(π1(Y )) →
C∗r (π1(Y )) induce KK -equivalences. If π1(X) and π1(Y ) are K -amenable and satisfy the Baum–Connes conjecture, and if
π1(Y ) injects into π1(X), then the KO-theory of the reduced relative group C∗-algebra coincides with the KO-theory of the
maximal relative group C∗-algebra.
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The theorem is proved from the following commutative diagram and the five-lemma.

KOn+1(Y ) →→

↓↓

KOn+1(C∗(π1(Y )))

↓↓
KOn+1(X) →→

↓↓

KOn+1(C∗(π1(X)))

↓↓
KOn+1(X, Y ) →→

↓↓

KOn+1(C∗(π1(X), π1(Y )))

↓↓
KOn(Y ) →→

↓↓

KOn(C∗(π1(Y )))

↓↓
KOn(X) →→ KOn(C∗(π1(X))) □

We now prove that the existence of positive scalar curvature implies that a particular index vanishes in the
KO-theory of the relative group C∗-algebra. For the rest of this section, the C∗-algebras involved are maximal. If the
reduced relative group C∗-algebra is well defined, then the rest of this section extends to the reduced case as well. We
will use C∗(π1(X), π1(Y )) to denote both the reduced and maximal relative group C∗-algebra when the use of such a
notation does not cause confusion.

Let M be a spin manifold with boundary N = ∂M . We assume that the dimension of M is 0mod 8. The other cases can
be handled in a similar way with the help of suspensions. More specifically, in dimension k mod 8 for some 0 ≤ k < 8,
we consider the manifold M × R8−k. We can define a relative higher index of the Dirac operator associated to the space
M×R8−k in KO0(C∗(π1(M), π1(∂M))⊗C∗L (R

8−k)). We can apply the same argument below to show that this relative index
vanishes in KO0(C∗(π1(M), π1(∂M)) ⊗ C∗L (R

8−k)) if (M, ∂M) is a compact spin manifold with boundary endowed with a
metric of positive scalar curvature that is collared at the boundary. This relative higher index corresponds to the relative
index of the Dirac operator associated to M under the isomorphism

KO0(C∗(π1(M), π1(∂M))⊗ C∗L (R
8−k)) ∼= KOk(C∗(π1(M), π1(∂M))).

The above isomorphism can be implemented by the external product formula for the index of the Dirac operator
on a product of two manifolds. As a consequence, the relative index of the Dirac operator associated to M vanishes in
KOk(C∗(π1(M), π1(∂M))) if (M, ∂M) is a compact spin manifold with boundary endowed with a metric of positive scalar
curvature that is collared at the boundary.

We extend the manifold by attaching a cylinder W = N × [0,∞) to the boundary, forming a noncompact manifold Z .
Let D be the Dirac operator on Z . Let f be an odd smooth real-valued chopping function in the sense of Roe on the real
line satisfying the following conditions: (1) |f (x)| ≤ 1 for all x and f (x) → ±1 as x → ±∞; (2) g = f 2 − 1 ∈ S(R), the
space of Schwartz functions, (3) if f̂ and ĝ are the Fourier transforms of f and g , respectively, then Supp(̂f ) ⊆ [−1, 1] and
Supp(̂g) ⊆ [−2, 2]. Such a chopping function exists (cf. Roe [32, Lemma 7.5]). We define

FD = f (D) =
1
2π

∫
∞

−∞

f̂ (t) exp(itD)dt (2.17)

We remark that the above formula is well defined in our real Hilbert space setting since f is a real-valued function. By
condition (3) above, it follows that the propagation of FD is at most 1. Let

FD =
(

0 F
F∗ 0

)
.

Let [F ] be its homology class in KOlf
0 (Z) = KO0(C0(Z)). We simplify the notation by replacing PFD with PD. We write

ind L([F ]) = [PD] −
[(

I 0
0 0

)]
∈ KO0(C∗L (Z)),

where PD is an idempotent in the matrix algebra of C∗L (Z)
+ and ind L is the local index map. The element PD−

(
I 0
0 0

)
belongs to the matrix algebra of the localization algebra C∗L (Z).

Let v be an invertible element in the matrix algebra of C0(R7)+ representing the generator in KO−1(C0(R7)) ∼=
KO0(C0(R8)) (see Atiyah [1] or Schröder [41, Proposition 1.4.11]). Let τD = v ⊗ PD + I ⊗ (I − PD). Then we have
τ−1D = v−1 ⊗ PD + I ⊗ (I − PD). If χM is the characteristic function on M , let τD,M = (1 ⊗ χM )τD(1 ⊗ χM ) and
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(τ−1D )M = (1 ⊗ χM )τ−1D (1 ⊗ χM ). In the future pages, we will simply write χM for 1 ⊗ χM . For all s ∈ [0, 1], define
wD,M (s) to be the product(

I (1− s)τD,M
0 I

)(
I 0

−(1− s)(τ−1D )M I

)(
I (1− s)τD,M
0 I

)(
0 −I
I 0

)
.

Define

qD,M (s) = wD,M (s)
(

I 0
0 0

)
w−1D,M (s).

Now define C∗L (N ⊆ M) to be the closed two-sided ideal of C∗L (M) generated by C∗L (N) considered as a subalgebra of C∗L (M).
Then τD,M and (τ−1D )M both lie in C∗L (M)⊗ C0(R7). Both τD,M (τ−1D )M − I and (τ−1D )MτD,M − I lie in C∗L (N ⊆ M)⊗ C0(R7). As
a consequence qD,M (0) is an element in the matrix algebra of (C∗L (N ⊆ M)⊗ C0(R7))+.

Let P0 =
(

I 0
0 0

)
and τ = v ⊗ P0 + I ⊗ (I − P0). We have

τ−1 = v−1 ⊗ P0 + I ⊗ (I − P0).

For all s ∈ [0, 1], define w(s) to be the product(
I (1− s)τ
0 I

)(
I 0

−(1− s)τ−1 I

)(
I (1− s)τ
0 I

)(
0 −I
I 0

)
.

Let

q(s) = w(s)
(

I 0
0 0

)
w−1(s).

We define [qD] to be the KO-theory element

[(qD,M (0), qD,M (·))] − [(q(0), q(·))]

in KO0(S7Cj), where Cj is the mapping cone associated with j: C∗L (N ⊆ M)→ C∗L (M) and S7Cj = Cj ⊗ C0(R7). The inclusion
map i : C∗L (N)→ C∗L (N ⊆ M) induces an isomorphism

KO∗(C∗L (N)) ∼= KO∗(C∗L (N ⊆ M)).

The above isomorphism can be proved as follows. Let N ′ be a closed subspace of M such that N ′ is diffeomorphic to
N×[0, 1] and the diffeomorphism maps N×{0} to N . Let i1 be the inclusion map from N to N ′ and let i2 be the inclusion
map from N ′ to M . The inclusion map i1 induces a homomorphism

(i1)∗ : KO∗(C∗L (N))→ KO∗(C∗L (N ⊆ N ′)).

By a Lipschitz homotopy argument, we know that the map (i1)∗ is an isomorphism. The map i2 induces a homomorphism:

(i2)∗ : KO∗(C∗L (N ⊆ N ′))→ KO∗(C∗L (N ⊆ M)).

We can show that the map (i2)∗ is an isomorphism by constructing the following inverse homomorphism π from
KO∗(C∗L (N ⊆ M)) to KO∗(C∗L (N ⊆ N ′)). For simplicity, we describe the construction of π when ∗ = 0. By an approximation,
each element in KO0(C∗L (N ⊆ M)) can be represented as a quasi-projection q with finite propagation in C∗L (N ⊆ M)
satisfying q∗ = q and ∥q2 − q∥ < 1/10. For any s ∈ [0,∞), let qs be an element in C∗L (N ⊆ M) defined by qs(t) = q(t + s).
[q] is equivalent to [qs] in KO0(C∗L (N ⊆ M)). When s is sufficiently large, qs is supported near N and is therefore an
element in C∗L (N ⊆ N ′). We define π ([q]) = [qs] ∈ KO0(C∗L (N ⊆ N ′)). Note that the K-theory class [qs] ∈ KO0(C∗L (N ⊆ N ′))
is independent of the choice of s for sufficiently large s. It is now straightforward to check that (i2)∗ and π are inverses
to each other. We have

i∗ = (i2)∗ · (i1)∗.

It follows that the map i∗ is an isomorphism.
As a consequence, we have the isomorphism KO0(S7Cj) ∼= KO0(M,N).
We call the class [qD] the relative KO-homology class of D. We define the relative higher index of D to be µ(qD) ∈

KO0(C∗(π1(M), π1(N))).



10 S. Chang, S. Weinberger and G. Yu / Journal of Geometry and Physics 149 (2020) 103575

W = N × [0,∞)∂M = N
M

Zn = M ∪N (N × [0, n])

Tn = N × [ n2 , n]

Theorem 2.18. If (M, ∂M) is a compact spin manifold with boundary endowed with a metric of positive scalar curvature that
is collared at the boundary, then the relative higher index of the Dirac operator is zero in KO∗(C∗(π1(M), π1(∂M))).

Proof. As before, let N = ∂M and Z = M ∪N (N × [0,∞)). Denote by Zn and Z ′n the truncations Zn = M ∪N (N × [0, n]),
Z ′n = M ∪N (N × [0, n

2 ]), and let Tn be the subset of Zn given by Tn = N ×
[ n
2 , n

]
. We assume that the dimension of Z is

0mod 8. The other cases can be handled in a similar way with the help of suspensions (refer back to the section after
Theorem 2.16).

Let u ∈ [1,∞) and write

ind L(uD) = [PuD] −
[(

I 0
0 0

)]
∈ KO0(C∗L (Z)).

We define wD,Zn (s) and qD,Zn (s) by replacing M with Zn in the definitions of wD,M (s) and qD,M (s), respectively, before
Theorem 2.18. By the propagation speed of the wave equations associated to D, we know that the propagation of exp(itD)
is less than or equal to |t|. It follows that the propagation of PuD is less than or equal to 100u. This estimate is based on
the matrix formula before Proposition 2.4 and the formula of FD given by (2.17).

Claim 2.19. For all u > 0, there exists Nu > 0 such that, for all n > Nu, we have

χZ ′n

(
quD,Zn (0)−

(
I 0
0 0

))
χZ ′n = 0,

χTn

(
quD,Zn (0)−

(
I 0
0 0

))
χZ ′n = 0,

χZ ′n

(
quD,Zn (0)−

(
I 0
0 0

))
χTn = 0.

Proof. Let α = τuD,Zn and β = (τ−1uD )Zn . We can compute

wuD,Zn (0)
(

I 0
0 0

)
w−1uD,Zn (0)

=

(
(2α − αβα)β (2α − αβα)(I − βα)
(I − βα)β (I − βα)2

)
.

We note that (2α − αβα)β = α(I − βα)β + (αβ − I) + I . Let Nu = 100u. Let pi: Z × Z → Z be the projection onto
the ith coordinate; i.e. p1: (z1, z2) ↦→ z1 and p2: (z1, z2) ↦→ z2. Using the formulas for α and β , and the fact that PuD has
propagation at most 100u, we know that the images under pi of the supports of the elements αβ − I , βα − I , (I − βα)β
and α(I−αβ) are all disjoint from Z ′n when n > Nu. As a consequence, the elements χZ ′n (αβ− I), χZ ′n (βα− I), (αβ− I)χZ ′n ,
(βα − I)χZ ′n , (I − βα)βχZ ′n and χZ ′nα(I − αβ) are all zero when n > Nu. Now our claim follows. □

Let P (n)
uD = χZnPuDχZn , where χZn is the characteristic function on Zn. By the construction of PuD we have ∥PuD∥ ≤ 10. As

a result, we have ∥P (n)
uD ∥ ≤ 10, giving an upper bound for ∥quD,Zn∥. Together with the above claim, this implies that, for all

u > 0,
[∏

n quD,Zn (0)
]
∈
∏

n(S
7C∗L (Zn))

+/
⨁

n(S
7C∗L (Zn))

+ belongs to the image of the inclusion map∏
n

(S7C∗L (Tn))
+/
⨁
n

(S7C∗L (Tn))
+
→

∏
n

(S7C∗L (Zn))
+/
⨁
n

(S7C∗L (Zn))
+,
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where (S7C∗L (Zn))
+ and (S7C∗L (Tn))

+ are respectively obtained from S7C∗L (Zn) and S7C∗L (Tn) by adjoining a unit. We introduce
this quotient of an infinite product by the direct sum to have a convenient place to encode vanishing for all sufficiently
large n.

Identify
[∏

n quD,Zn (0)
]
with the corresponding element in∏

n

(S7C∗L (Tn))
+/
⨁
n

(S7C∗L (Tn))
+.

Now
(∏

n quD,Zn (0),
∏

n quD,Zn (s)
)
gives an element in the matrix algebra of∏

n

(S7Cjn )
+/
⨁
n

(S7Cjn )
+,

where s ∈ [0, 1] is the variable and Cjn is the mapping cone of the homomorphism jn: S7C∗L (Tn)→ S7C∗L (Zn).
Recall that W = N × [0,∞) and let W ′ = N × R be the double of W . Let D′ be the Dirac operator on W ′. Let W̃ ′ be

the universal cover of W ′ and D̃′ be the lifting of D′ to W̃ ′. Let D̃ be the lifting of D to Z̃ , the universal cover of Z . Recall
that PuD̃′ (0) and PuD̃(0) can be expressed in terms of the wave operators exp(itD̃′) and exp(itD̃) (respectively PuD′ (0) and
PuD(0) can be expressed in terms of the wave operators exp(itD′) and exp(itD)). As a consequence, we know that PuD̃′ (0)
and PuD̃(0) are respectively liftings of PuD′ (0) and PuD(0). Define

xn,u(s) = quD̃,̃Zn (s),

where P (n)
uD̃
= χZ̃nPuD̃χZ̃n . Note that T̃n is a subset of W̃ ′ and Z̃n is a subset of Z̃ . Define

yn,u = quD̃′,W̃ ′n (0),

where W ′n = N × (−∞, n]. By an argument similar to the proof of Claim 2.19, we know that
[∏

n yn,u
]
is an operator in

the image of the inclusion map:∏
n

(S7C∗ (̃Tn)π1(N))+/
⨁
n

(S7C∗ (̃Tn)π1(N))+ →
∏
n

(S7C∗(W̃ ′)π1(N))+/
⨁
n

(S7C∗(W̃ ′)π1(N))+.

We identify
[∏

n yn,u
]
with an element in

∏
n(S

7C∗ (̃Tn)π1(N))+/
⨁

n(S
7C∗ (̃Tn)π1(N))+.

By Lemma 2.12 and Formula (2.13), there is a natural ∗-homomorphism

φn: C∗ (̃Tn)π1(N)
→ C∗ (̃Zn)π1(M).

Note that here it is crucial to use the maximal C∗-algebras.
For each n, the map φn induces a natural ∗-homomorphism

S7C∗ (̃Tn)π1(N)
→ S7C∗ (̃Zn)π1(M),

which we still denote by φn. We have[∏
n

φn(yn,u)

]
=

[∏
n

xn,u(0)

]
in
∏

n(S
7C∗ (̃Zn)π1(M))+/

⨁
n(S

7C∗ (̃Zn)π1(M))+. The above identity can be seen as follows. Let g be any real valued function
in S(R), the space of Schwartz functions, such that its Fourier transform ĝ is compactly supported. Our desired identity
would follow from

φn(χT̃ng (̃D
′)χT̃n ) = χZ̃ng (̃D)χZ̃n

when n is sufficiently large relative to the size of the support of ĝ . The above formula follows from the fact that exp(itD̃′)
and exp(itD̃) are respectively unique solutions to the heat equations associated to D̃′ and D̃ and the following identities:

g (̃D′) =
1
√
2π

∫
∞

−∞

ĝ(t)exp(itD̃′)dt,

g (̃D) =
1
√
2π

∫
∞

−∞

ĝ(t)exp(itD̃)dt.

Denote by Cφn the mapping cone of the map φn. The element
∏

n(yn,u, xn,u(s)) gives a KO-theory element[∏
n

(yn,u, xn,u(s))

]
in KO0

(∏
n S

7Cφn/
⨁

n S
7Cφn

)
.
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Let V1,n: L2[0, n] → L2[0, 1] be the isometry given by f (·) ↦→ 1
√
n f (n·) for all f ∈ L2[0, n]. Let V2,n: L2[ n2 , n] → L2[ 12 , 1]

be the isometry given by f (·) ↦→ 1
√
n f (n·) for all f ∈ L2[0, n

2 ]. We can similarly construct isometries V ′1,n: L
2 (̃Zn)→ L2 (̃Z1)

and V ′2,n: L
2 (̃Tn)→ L2 (̃T1). Conjugation by V ′1,n and V ′2,n gives us a ∗-isomorphism Cφm → Cφ1 . Recall that

C∗ (̃Tn)π1(N) ∼= C∗max(π1(N))⊗ K ,

C∗ (̃Zn)π1(M) ∼= C∗max(π1(M))⊗ K .

The map φ1 can be naturally identified with φ ⊗ Id via the above isomorphisms. Hence Cφ1 is naturally isomorphic to
Cφ ⊗ K . Identifying (S7Cφm )

+ with (S7Cφ ⊗ K )+ for sufficiently large n, we have the equation [(yn,u, xn,u(s))] = µ([qD]) in
KO0(S7Cφ), where K is the algebra of all compact operators. Note that here we are using the fact that the C∗-algebra S7Cφ
is stable. The above equation can be seen as follows. We have a natural ∗-isomorphism: S7Cj ∼= S7Cjn , where Cjn is defined
as in the paragraphs after Claim 2.19. This algebra isomorphism induces an isomorphism at the K-theory level:

KO0(S7Cj) ∼= KO0(S7Sjn ).

In the above isomorphism, when n is large enough, [qD] corresponds to [(quD,Zn (0), quD,Zn (s))], where [(quD,Zn (0), quD,Zn (s))]
is defined as in the paragraphs after Claim 2.19. This implies that

µ([qD]) = µ([(quD,Zn (0), quD,Zn (s))]).

By definition, we have

µ([(quD,Zn (0), quD,Zn (s))]) = [(yn,u, xn,u(s))].

Combining the above equations, we have the desired equation.
It follows from the above paragraph that there is a natural isomorphism

ψ: KO0

(∏
n

S7Cφn/
⨁
n

S7Cφn

)
→ KO0

(∏
n

S7Cφ/
⨁
n

S7Cφ

)
such that

ψ

([∏
n

(yn,u, xn,u(s))

])
=

[∏
n

µ(qD)

]
,

where µ(qD) ∈ KO0(S7Cφ) ∼= KO0(C∗(π1(M), π1(N))) was defined as the relative higher index of D before Theorem 2.18
and KO0(

∏
n S

7Cφ/
⨁

n S
7Cφ) is identified with∏

n

KO0(S7Cφ)/
⨁
n

KO0(S7Cφ).

When M has a metric of uniform positive scalar curvature, then by the Lichnerowicz formula we know that P (n)
uD̃

(0)

converges to
(

I 0
0 0

)
in the operator norm as u → ∞, n → ∞ and n ≥ Nu. More precisely, for any given ϵ > 0,

there exists uϵ ≥ 1 for which, given any u > uϵ , there is a natural number Nu such that

∥P (n)
uD̃

(0)−
(

I 0
0 0

)
∥ < ϵ

for all n ≥ Nu. We remark that here we are using the fact the operator D̃ is a regular and essentially self-adjoint operator
acting on the maximal Roe algebra viewed as a Hilbert module over itself (see [21]).

As a consequence, we know that

τuD̃,W̃ ′n → v ⊗

(
I 0
0 0

)
+ I ⊗

(
0 0
0 I

)
and

yn,u → exp
(
2π i

(
I 0
0 0

))
= I

in the operator norm as u → ∞, n → ∞ and n ≥ Nu. Together with the formula for xn,u(s), we then have[∏
n(yn,u, xn,u(s))

]
= 0 in KO0

(∏
n S

7Cφ/
⨁

n S
7Cφ
)
. Therefore it follows that µ(qD) = 0. □

As mentioned in the introduction, the Gromov–Lawson–Rosenberg conjecture states that a closed spin manifold Mn

with n ≥ 5 has a metric of positive scalar curvature if, and only if, its Dirac index vanishes in KO∗(C∗r π ), where π = π1(M).
We formulate now a relative version of this conjecture.
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Remark 2.20. A recent article of Schick–Seyedhosseini provides a different proof for a weaker version of the above
vanishing theorem [39].

Conjecture 2.21 (Relative Gromov–Lawson–Rosenberg). Let (N, ∂N) be a compact spin manifold with boundary. Let n be the
dimension of N. If the relative higher index of the Dirac operator D is zero in KOn(C∗(π1(N), π1(∂N))), then there is a metric
of positive scalar curvature on N that is collared near ∂N.

Remark 2.22.

(1) This conjecture is made by analogy to surgery theory, where obstructions to surgery for degree one normal maps
have this formal structure.

(2) By the Gromov–Lawson surgery theorem [19, Theorem A] and Schoen–Yau [40, Corollary 6] as improved by
Gajer [16], the π-π case of the conjecture is correct.

(3) Because of the failure of stability for the ordinary Gromov–Lawsonconjecture (Schick [37, Example 2.2] and Dwyer–
Schick–Stolz [12]), we recognize that, in general, this statement cannot be true as stated. One should either interpret
it as a stable conjecture (i.e. after crossing with some number of Bott manifolds, see Rosenberg–Stolz [35]) or as
a guide to formulate the correct statement in the unstable situation. We hope to address this matter in a future
paper.

In Rosenberg–Stolz [35], the index map α:Ω spin
n (Bπ )→ KOn(C∗r π ) is factored in the following way:

Ω spin
n (Bπ )

D∗
−→ kon(Bπ )

p
−→ KOn(Bπ )

A
−→ KOn(C∗r π )

where p: kon(Bπ ) → KOn(Bπ ) is the canonical map from connective to periodic KO-homology and A is the standard
assembly map. This sequence can be generalized to pairs. Let (N, ∂N) be a manifold with boundary and let π = π1(N)
and π∞ = π1(∂N). Then we have a composition

Ω spin
n (Bπ, Bπ∞)

D∗
−→ kon(Bπ, Bπ∞)

p
−→ KOn(Bπ, Bπ∞)

A
−→ KOn(C∗(π, π∞)).

Let Posspinn (Bπ, Bπ∞) be the subgroup of Ω spin
n (Bπ, Bπ∞) consisting of bordism classes represented by pairs (Mn, ∂Mn, f )

for which M admits a metric of positive scalar curvature that is collared near the boundary.
There is a map from ∂M to Bπ∞ classifying its universal cover ∂̃M . By elementary homotopy theory, the composite

map to Bπ coincides up to homotopy with the map M → Bπ classifying its universal cover M̃ . The homotopy extension
principle then implies that we have a map of pairs (M, ∂M)→ (Bπ, Bπ∞).

Theorem 2.23. Let (M, ∂M) be a spin manifold with boundary of dimension ≥ 6. Let π = π1(M) and π∞ = π1(∂M). Let
u: (M, ∂M)→ (Bπ, Bπ∞) be the map described above. Then (M, ∂M) has a positive scalar curvature metric which is collared
near the boundary ∂M if, and only if, the index D∗[(M, ∂M), u] lies in Poskon (Bπ, Bπ∞), where Poskon (Bπ, Bπ∞) is the image
under D∗ restricted to Posspinn (Bπ, Bπ∞).

Proof. First we will explain that the capacity of a spin manifold Mn for n ≥ 6 to admit a positive scalar curvature metric
depends only on its spin cobordism class. As in the closed case, this result follows from the Gromov–Lawson surgery
theorem, or equivalently the reduction to spin cobordism. For manifolds (M, ∂M) with boundary whose boundary is
collared, there is a relative surgery theorem that follows from an improvement by Gajer [16] of the usual Gromov–
Lawson surgery theorem. Gajer’s theorem provides a positive scalar curvature metric which is a product on a collared
neighborhood for the trace of the surgery. We remind the reader that the Gromov–Lawson theorem holds if the spin
cobordism respects fundamental group and the dimension is at least 5. The proof of our theorem requires two applications
of the Gajer/Gromov–Lawson Theorem, as we will now demonstrate. Let (M, ∂M) and (M ′, ∂M ′) be cobordant and suppose
that (M ′, ∂M ′) has a metric of positive scalar curvature that is collared near the boundary.

Gromov–Lawson surgery for the boundary allows to change the cobordism boundary W from boundary M to boundary
M ′ by another one, cobordant to the first, which has a positive scalar curvature metric that is product near boundary M
and boundary M ′, extending the positive scalar curvature metric on M ′. We get a new cobordism W from M to M ′ which
has a positive scalar curvature metric on M ′ and boundary W , and near boundary M ′ the metric is a product metric with
a quadrant, which we can straighten (metrically) to a half space H . We can modify the interior bordism in such a way
that Gromov–Lawson/Gajer surgery allows to extend the positive scalar curvature metric on M ′ over the new bordism.
This construction is sufficiently local to leave the metric untouched on boundary W an M ′.

As a next step, we need to show that all the elements of the kernel of the map from relative spin bordism to relative
ko have positive scalar curvature, i.e. that kerD∗ ⊆ Posspinn (Bπ, Bπ∞). Both away from the prime 2 and at the prime 2, the
inclusion can be obtained from the relative versions of existing theorems. Away from 2, the result holds by readapting the
result of Führing [15] on Baas–Sullivan theory. This result was stated in Rosenberg–Stolz [36] as unpublished work of Jung.
Führing proves that a smooth spin closed manifold M of dimension n ≥ 5 admits a metric of positive scalar curvature if
its orientation class in kon(Bπ ) lies in the subgroup consisting of elements which contain positive representatives. At the
prime 2, we can extend Theorem B (2) of Stolz [43]. Here he proves the following. Let X be a topological space. Suppose
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that Tn(X) is the subgroup of Ω spin
n (X) consisting of bordism classes [E, f ◦ p], where p: E → B is an HP2-bundle over a

spin closed manifold B of dimension n − 8 and f is a map B → X . Then the map Ω spin
n (X)/Tn(X) → kon(X) is a 2-local

isomorphism. In the papers of both Führing and Stolz it is effectively shown that the kernel of D∗ is a homology theory.
As such we can extend these results to pairs. □

Corollary 2.24. Let p: kon(Bπ, Bπ∞)→ KOn(Bπ, Bπ∞) and

A: KOn(Bπ, Bπ∞)→ KOn(C∗(π1, π
∞

1 ))

be as above, with n ≥ 6. The Relative Gromov–Lawson–Rosenberg conjecture holds if p and A are both injective.

Theorem 2.25. Let n ≥ 6. Let Nn be a manifold with boundary such that π1(N) and π1(∂N) are both amenable. Suppose that
π1(∂N)→ π1(N) is an injection and that the cohomological dimensions of π1(N) and π1(∂N) are less than n. If the classifying
spaces Bπ1(N) and Bπ1(∂N) are finite complexes, then the Relative Gromov–Lawson–Rosenberg conjecture holds for the pair
(N, ∂N).

Proof. Let A = π1(N) and B = π1(∂N). The E2 term for the Atiyah–Hirzebruch spectral sequence for KOn(K (A, 1), K (B, 1))
is Hp(A, B; KOq). Similarly the E2 term for kon(K (A, 1), K (B, 1)) is Hp(A, B; koq). The groups coincide when q ≥ 0. There
is a comparison map between the spectral sequences from the ko-sequence to the KO-sequence (for instance, see page
180 of [14]) which is an isomorphism on E2 for q ≥ 0. The reason that this map may fail to be an isomorphism on
E∞ is that there are differentials for the KO-sequence that can start in the fourth quadrant and end in the first. For this
reason, a nonzero element in kon can vanish in KOn. But if n > max{cd(A), cd(B)}, differentials can only come from the
line p+ q = n+ 1 with p ≤ max{cd(A), cd(B)}. But then q is positive and the map is therefore an isomorphism.

Using Higson–Kasparov [22, Theorem 1.1] extended into the KO setting, we see that the KO-theory groups of C∗max(π )
and C∗max(π

∞) are given by the KO-theories of their classifying spaces. Thus the relative assembly map A: KOn(Bπ, Bπ∞)→
KOn(C∗(π1, π

∞

1 )) is an isomorphism. The rest of the proof is as the last paragraph of Theorem 2.23. □

Remark 2.26. This unstable version of Conjecture 2.21 for large n obviously implies the stable version of the conjecture
for all n.

3. A new index theory for noncompact manifolds

In this section we will develop a new index theory for a noncompact manifold. Our index theory will depend on a
choice of an exhaustion.

Definition 3.1. Let (Y , d) be a noncompact, complete metric space. Suppose that Y is also metrically locally simply
connected, i.e. for all ε > 0 there is ε′ ≤ ε such that every ball in X of radius ε′ is simply connected. Let Y1 ⊆ Y2 ⊆ Y3 ⊆ · · ·

be a sequence of connected compact subsets of Y . We say that {Yi} is an admissible exhaustion if

(1) Y =
⋃
∞

i=1 Yi;
(2) for each j > i, there is a connected compact subset Yi,j ⊆ Y such that Yj = Yi,j ∪ Yi and Yi,j ∩ Yi = ∂Yi, where

∂Yi = Yi − Y̊i for all i and Y̊i denotes the interior of Yi;
(3) d(∂Yi, ∂Yj)→∞ as |j− i| → ∞.

Often we will write {Yi; Yi,j} for the exhaustion.

Let {Yi; Yi,j} be an admissible exhaustion of Y . Define D∗i to be the C∗-algebra inductive limit given by

D∗i ≡ lim
j→∞, j>i

C∗max(π1(Yj), π1(Yi,j))⊗ K,

where K is the C∗-algebra of compact operators. Let
∞∏
i=1

D∗i =
{
(a1, a2, . . .): ai ∈ D∗i , sup

i
∥ai∥ <∞

}
.

There is a natural homomorphism ρi+1:D∗i+1 → D∗i induced by the group homomorphisms given by inclusions of the
corresponding spaces. Let ρ be the homomorphism from

∏
∞

i=1 D
∗

i to
∏
∞

i=1 D
∗

i mapping (a1, a2, . . .) to (ρ2(a2), ρ3(a3), . . .).
We now define the C∗-algebra A(Y ) by:

A(Y ) ≡

{
a ∈ C

(
[0, 1],

∞∏
i=1

D∗i

)
: ρ(a(0)) = a(1)

}
.

Notice that A(Y ) is the C∗-algebra inverse limit of the D∗i in a certain homotopical sense. In particular, this C∗-algebra
encodes dynamical information about how the fundamental groups of the pieces of the exhaustion interact with each



S. Chang, S. Weinberger and G. Yu / Journal of Geometry and Physics 149 (2020) 103575 15

other. We emphasize that the definition of A(Y ) depends on the exhaustion {Yi} of Y . We will now define an index map
σ : KOlf

∗ (Y ) = KO0(C0(Y ))→ KO∗(A(Y )).
There exists ε0 > 0 such that, for any closed subspace Z of Y , any operator on a Z-module with propagation less than

or equal to ε0 > 0 can be lifted to the universal cover of Z . One can prove that the above constant ε0 exists because Y is
metrically locally simply connected (as defined in the beginning of Section 2). The proof is similar to that of Proposition 2.8.

If an operator F represents a class in KOlf
0 (Y ), for each ε < ε0

100 , we can choose another operator Fε representing
the same K -homology class such that the propagation of Fε is smaller than ε. Fε can be constructed as follows. Let
{φi}i be a continuous partition of unity subordinate to an open cover {Ui}i of Y satisfying diameter(Ui) < ϵ. We define
Fε =

∑
i(φi)

1
2 F (φi)

1
2 , where the convergence is in strong operator norm. Fε is equivalent to F in the K -homology group.

Let

ind L([Fε]) = [PFε ] −
[(

I 0
0 0

)]
∈ KO0(C∗L (Y )),

where PFε is the idempotent in the matrix algebra of C∗L (Y )
+ as given in the definition of the local index such that the

propagation of PFε (t) is less than 100ε < ε0 for all t ≥ 0.
Let P (j)

Fε = χYjPFεχYj and let P̃ (j)
Fε be the lifting of P (j)

Fε to Ỹj, the universal cover of Yj. Let v be an invertible element
in the matrix algebra of C0(R7)+ representing the generator in KO−1(C0(R7)) ∼= KO0(C0(R8)) (see Atiyah [1] or Schröder
[41, Proposition 1.4.11]). Let

τ
(j)
Fε = v ⊗ P̃ (j)

Fε (0)+ I ⊗ (I − P̃ (j)
Fε (0))

and let

(τ−1Fε )(j) = v−1 ⊗ P̃ (j)
Fε (0)+ I ⊗ (I − P̃ (j)

Fε (0)).

For all s ∈ [0, 1], define w(j)
Fε (s) to be the product(

I (1− s)τ (j)Fε
0 I

)(
I 0

−(1− s)(τ−1Fε )(j) I

)(
I (1− s)τ (j)Fε
0 I

)(
0 −I
I 0

)
.

For each k, there exist jk > k and a sequence of positive numbers {εk} converging to 0 such that 100εk < ε0 and

yk = w
(jk)
Fεk

(0)
(

I 0
0 0

)
(w(jk)

Fεk
(0))−1 has propagation less than ε0 for all k, and there is a unique zk with propagation at

most ε0 in the matrix algebra of (S7C∗max (̃Yk,jk )
π1(Yk,jk ))+ such that yk = φk,jk (zk), where φk,jk is the ∗-homomorphism from

the matrix algebra of (S7C∗max (̃Yk,jk )
π1(Yk,jk ))+ to the matrix algebra of (S7C∗max (̃Yjk )

π1(Yjk ))+. Note that the existence of such
a ∗-homomorphism follows from Lemma 2.12 and Formula (2.13). The existence and uniqueness of such zk is a result of
the following claim, Proposition 2.8, and the assumption that yk has small propagation and the requirement zk has small
propagation.

Claim 3.2. Let Ỹjk be the universal cover of Yjk and let πk: Ỹjk → Yjk be the covering map. Then we have

yk = χπ−1k (Yk,jk )
ykχπ−1k (Yk,jk )

⊕ (I − χ
π−1k (Yk,jk )

)

when k and jk are sufficiently large.

Proof. This proof is identical to that of Claim 2.19. □

Let λ ∈ [0, 1]. We define zk(λ) by replacing P (jk)
Fεk

with (1 − λ)P (jk)
Fεk
+ λP (jk+1)

Fεk+1
in the above definition of zk. Define

yk(λ) = φk,jk (zk(λ)). Letψk be the natural homomorphismψk: S7C∗max (̃Yjk )
π1(Yjk ) → S7C∗max (̃Yjk+1 )

π1(Yjk+1 ). Again, the existence
of ψk follows from Lemma 2.12 and Formula (2.13). Let

τk(λ) = v ⊗
(
(1− λ)ψk (̃P

(jk)
Fεk

)+ λ̃P (jk+1)
Fεk+1

)
+ I ⊗ I −

(
(1− λ)ψk (̃P

(jk)
Fεk
+ λ̃P (jk+1)

Fεk+1
)
)

and

τ ′k(λ) = v
−1
⊗

(
(1− λ)ψk (̃P

(jk)
Fεk

)+ λ̃P (jk+1)
Fεk+1

)
+ I ⊗ I −

(
(1− λ)ψk (̃P

(jk)
Fεk
+ λ̃P (jk+1)

Fεk+1
)
)

for all λ ∈ [0, 1]. Recall that P̃ (jk)
Fεk

is an element in the equivariant localization algebra and P̃ (jk)
Fεk

(0) is its evaluation at 0.
For all s, λ ∈ [0, 1], define (wk(s))(λ) to be the product(

I (1− s)τk(λ)
0 I

)(
I 0

−(1− s)τ ′k(λ) I

)(
I (1− s)τk(λ)
0 I

)(
0 −I
I 0

)
.

Define

(ck(s))(λ) = (wk(s))(λ)
(

I 0
0 0

)
((wk(s))(λ))−1.
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Note that (1 − λ)ψk (̃P
(jk)
Fεk

) + λ̃P (jk+1)
Fεk+1

is an idempotent outside a small neighborhood of π−1k+1(Yjk,jk+1 ), i.e. if χ is the
characteristic function of the complement of the small neighborhood, then

χ ((1− λ)ψk (̃P
(jk)
Fεk

)+ λ̃P (jk+1)
Fεk+1

)2 = χ ((1− λ)ψk (̃P
(jk)
Fεk

)+ λ̃P (jk+1)
Fεk+1

)

and

χ ((1− λ)ψk (̃P
(jk)
Fεk

)+ λ̃P (jk+1)
Fεk+1

)2 = χ (1− λ)ψk (̃P
(jk)
Fεk

)+ (λ̃P (jk+1)
Fεk+1

).

As a consequence, the pair (zk(λ), (ck(·))(λ)) lies in (S7D∗k)
+, where D∗k is as in the definition of A(Y ). Let ak = (zk(·), ck(·)).

Let b = (q(0), q) be as in the definition of the relative K -homology class of D in Section 2. Let

p = (b, b, . . . , b, . . .)

viewed as an element of (A(Y ))+. We finally define the index of F in KO0(A(Y )) to be

σ ([F ]) = [(a1, a2, . . .)] − [(p(0), p)] ∈ KO0(A(Y )).

One can similarly define the index map σ : KOlf
n (Y )→ KOn(A(Y )) when n ̸≡ 0mod 8 with the help of suspensions (refer

back to the section after Theorem 2.16).
The proof of the following vanishing theorem contains some of the same elements as are found in Section 2, but now

in the context of a noncompact manifold M .

Theorem 3.3. Let Y be a noncompact space with an admissible exhaustion {Yi}. Let M be a noncompact manifold. Assume
that there is a uniformly continuous proper coarse map f :M → Y with an admissible exhaustion {Mi;Mi,j} of M such that
each Mi is a compact manifold with boundary ∂Mi, f −1(Yi) = Mi, f −1(Yi,j) = Mi,j and f −1(∂Yi) = ∂Mi. Suppose that M is spin
and let DM be the Dirac operator on M. If M admits a metric of uniform positive scalar curvature, then the index σ (f∗[DM ]) of
DM is zero in KO∗(A(Y )), where f∗: KO

lf
∗ (M)→ KOlf

∗ (Y ) is the homomorphism induced by f .

Proof. We assume that the dimension of M is 0mod 8. The other cases can be handled in a similar way with the help
of suspensions (refer back to the section after Theorem 2.16).

Let Yi, Mi, Yi,j and Mi,j be given as in the statement of the theorem. In this proof, all C∗-algebras are the maximal ones.
Let f be an odd smooth chopping function on the real line satisfying the following conditions: (1) f (x) → ±1 as

x → ±∞; (2) g = f 2 − 1 ∈ S(R), the space of Schwartz functions, (3) if f̂ and ĝ are the Fourier transforms of f and
g , respectively, then Supp(̂f ) ⊆ [−1, 1] and Supp(̂g) ⊆ [−2, 2]. As stated earlier, such an odd chopping function exists
(cf. Roe [32, Lemma 7.5]).

Let DM be the Dirac operator on M . We define

F = f (DM ) =
1
2π

∫
∞

−∞

f̂ (t) exp(itDM )dt.

Let

ind L([F ]) = [PF ] −
[(

I 0
0 0

)]
∈ KO0(C∗L (M)),

where PF is the idempotent in the matrix algebra of (C∗L (M))+ as given in the definition of the local index.
Recall that there exists ε0 > 0 such that, for any closed subspace Z of Y , any operator on a Z-module with propagation

less than or equal to ε0 can be lifted to the universal cover of Z . Define P (j)
F = χMjPFχMj , where χMj is the characteristic

function of Mj. Let n0 be the smallest natural number such that n0 >
10
ε0
. We write

exp(itDM ) = exp
(

it
n0

DM

)
· · · exp

(
it
n0

DM

)
  

n0

. (∗)

Let j′ > j be the smallest integer such that

d(M −Mj′ ,Mj) > 10n0ε0.

Here n0ε0 is roughly 10. We emphasize that the condition of admissible exhaustion implies the existence of such j′. Let M̃j′

be the universal cover of Mj′ . Using the formula for PF in terms of exp(itDM ), the identity (∗) and the fact that exp( it
n0
DM )

has propagation less than ε0 for all t ∈ [−2, 2], we obtain a lifting of P (j)
F to M̃j′ . We denote this lifting by P̃ (j)

F . We claim that
P (j)
F is an element in (C∗L (M̃j′ )

π1(Mj′ ))+. This follows from the formula for P (j)
F in terms of χ

π−1
j′

(Mj)
exp(itD̃M̃j′

)χ
π−1
j′

(Mj)
, where

πj′ is the covering map M̃j′ to Mj′ and χπ−1
j′

(Mj)
is the characteristic function of π−1j′ (Mj). The operator exp(itD̃M̃j′

)χ
π−1
j′

(Mj)
is

well defined for all −2 ≤ t ≤ 2 using the unique local solution to the heat equation associated to D̃M̃j′
.



S. Chang, S. Weinberger and G. Yu / Journal of Geometry and Physics 149 (2020) 103575 17

For any i < j, let mi,j = i+ [ j−i2 ] and m′i,j = i+ [ j−i4 ], where [ j−i2 ] and [
j−i
4 ] are respectively the integer parts of j−i

2 and
j−i
4 .
We define

P (i,j)
F = χMm′i,j,j

PFχMm′i,j,j
,

where χMm′i,j,j
is the characteristic function of Mm′i,j,j

. Let v be an invertible element in the matrix algebra of C0(R7)+

representing the generator in

KO−1(C0(R7)) ∼= KO0(C0(R8)).

Define

τi,j = v ⊗ P (i,j)
F (0)+ I ⊗ (I − P (i,j)

F (0)).

We have

τ−1i,j = v
−1
⊗ P (i,j)

F (0)+ I ⊗ (I − P (i,j)
F (0)).

Define

xi,j =
(

I τi,j
0 I

)(
I 0
−τ−1i,j I

)(
I τi,j
0 I

)(
0 −I
I 0

)
and

ui,j = xi,j

(
I 0
0 0

)
x−1i,j .

Let |j− i| be large enough such that

d(Mi,M −Mmi,j ) > 10n0ε0.

We define vi,j ∈ (S7C∗(Mi,mi,j ))
+ and wi,j ∈ (S7C∗(Mmi,j,j))

+ by:

vi,j = χMi,mi,j
ui,jχMi,mi,j

+ (I − χMi,mi,j
),

wi,j = χMmi,j,j
ui,jχMmi,j,j

+ (I − χMmi,j,j
).

By the propagation of PF and the formula for ui,j, we have

ui,j = (vi,j − I)⊕ (wi,j − I)+ I.

This equality is proved exactly in the same manner as Claims 2.19 and 3.2. From the definitions of vi,j and wi,j, we then
have prop(vi,j) < 100n0ε0 and prop(wi,j) < 100n0ε0.

Let j′ be as in the construction of P̃ (j)
F . Let M̃i,j′ be the universal cover of Mi,j′ and let πi,j′ be the covering map from M̃i,j′

of Mi,j′ . Again using the identity (∗) and the formula for PF in terms of exp(itDM ) and the small propagation of exp( it
n0
DM ),

we can lift P (i,j)
F to an element P̃ (i,j)

F in (C∗(M̃i,j′ )
π1(Mi,j′ ))+, where j′ is defined as in the construction of the lifting of P (j)

F . Let
ũi,j be the lifting of ui,j to M̃i,j′ . Let |j− i| be large enough such that

d(Mi,M −Mmi,j ) > 100n0ε0.

We define ṽi,j ∈ (S7C∗(M̂i,mi,j )
π1(Mi,j′ ))+ and w̃i,j ∈ (S7C∗(M̂mi,j,j′ )

π1(Mi,j′ ))+ to be the liftings of vi,j and wi,j respectively, where
M̂i,mi,j = π

−1
i,j′ (Mi,mi,j ) and M̂mi,j,j′ = π

−1
i,j′ (Mmi,j,j′ ). We have

ũi,j = (̃vi,j − I)⊕ (w̃i,j − I)+ I.

Next we shall represent the index class σ ([DM ]) as a KO-theory element explicitly constructed using the above liftings.
Let {jk} be a sequence of integers such that jk > k for each k and jk − k → ∞ as k → ∞. Let zk be the image of

w̃k,jk under the inclusion map from (S7C∗(M̂mk,jk ,j
′
k
)
π1(Mk,j′k

)
)+ to (S7C∗(M̃k,j′k

)
π1(Mk,j′k

)
)+. Let πj′k

be the covering map from the

universal cover of M̃j′k
to Mj′k

, where j′k be as in the construction of P̃ (jk)
F . Let yk be the element in the image of the inclusion

map from (S7C∗(π−1j′k
(Mk,j′k

))
π1(Mj′k

)
)+ to ((S7C∗(M̃j′k

))
π1(Mj′k

)
)+ defined by

yk = φk,j′k
(zk),

where φk,j′k
is the homomorphism from (S7C∗(M̃k,j′k

)
π1(Mk,j′k

)
)+ to (S7C∗(M̃j′k

)
π1(Mj′k

)
)+. Note that this homomorphism is

constructed in Lemma 2.12 and Formula (2.13).



18 S. Chang, S. Weinberger and G. Yu / Journal of Geometry and Physics 149 (2020) 103575

As before, let ψk be the natural map : S7C∗(M̃j′k
)
π1(Mj′k

)
→ S7C∗(M̃j′k+1

)
π1(Mj′k+1

)
. We similarly define zk(λ) by replacing

P (jk)
F (0) with (1−λ)P (jk)

F (0)+λP (jk+1)
F (0) in the definition of zk. Note here that P (jk)

F is an element in the localization algebra
and P (jk)

F (0) is its evaluation at 0. We define yk(λ) = φk,jk (zk(λ)).
Let

τk(λ) = v ⊗
(
(1− λ)ψk (̃P

(jk)
F (0))+ λ̃P (jk+1)

F (0)
)
+ I ⊗

(
I −

(
(1− λ)ψk (̃P

(jk)
F (0))+ λ̃P (jk+1)

F (0)
))

and

τ ′k(λ) = v
−1
⊗

(
(1− λ)ψk (̃P

(jk)
F (0))+ λ̃P (jk+1)

F (0)
)
+ I ⊗

(
I −

(
(1− λ)ψk (̃P

(jk)
F (0))+ λ̃P (jk+1)

F (0)
))

for all λ ∈ [0, 1]. For all s, λ ∈ [0, 1], define (wk(s))(λ) to be the product(
I (1− s)τk(λ)
0 I

)(
I 0

−(1− s)τ ′k(λ) I

)(
I (1− s)τk(λ)
0 I

)(
0 −I
I 0

)
.

Define

(ck(s))(λ) = (wk(s))(λ)
(

I 0
0 0

)
((wk(s))(λ))−1.

Note that (1− λ)ψk (̃P (jk)(0))+ λ̃P (jk+1)
F (0) is an idempotent outside a small neighborhood of π−1j′k+1

(Mj′k,j
′
k+1

), where π−1j′k+1
is the covering map from M̃j′k+1

to Mj′k+1
.

As a consequence, for each λ ∈ [0, 1], the pair (zk(λ), (ck(·))(λ)) lies in (S7D∗k)
+, where D∗k is as in the definition of A(Y ).

Let ak = (zk(λ), (ck(·))(λ)). Let b = (q(0), q) be as in the definition of the relative K -homology class of D in Section 2.
Let

p = (b, b, . . . , b, . . .)

viewed as an element of (A(Y ))+. By a homotopy invariance argument, we have

σ ([DM ]) = [(a1, a2, . . .)] − [(p(0), p)] ∈ KO0(A(Y )).

In the above construction, for each α ≥ 1, we can replace respectively the Dirac operator DM by αDM , n0 by [αn0] + 1,
and j′k by another natural number j′k,α satisfying d(M −Mj′k,α

) > 10αn0ε0 to obtain the index of αDM :

σ ([αDM ]) = [(a1,α, a2,α, . . .)] − [(p(0), p)] ∈ KO0(A(Y )).

Notice that the KO-theory class σ ([αDM ]) ∈ KO0(A(Y )) is independent of the choice of α.
For all k, we write ak,α = (zk,α, ck,α). Let τk,α be obtained by replacing D with αD in the definition of τk. By the

assumption that M has uniform positive scalar curvature and the local nature of the Lichnerowicz formula, we have

τk,α → v ⊗

(
I 0
0 0

)
+ I ⊗

(
0 0
0 I

)
in the operator norm when α→∞. This result implies the vanishing of σ ([DM ]). □

Using the above notation D∗i , we note that, by Guentner–Yu [20], there is a Milnor exact sequence given by

0→ lim
←−

1KO∗(D∗i )→ KO∗(A(Y ))→ lim
←−

KO∗(D∗i )→ 0. (∗)

This sequence gives rise to a commutative diagram

0 →→ lim
←−

1KO∗(Yi, ∂Yi) →→

↓↓

KOlf
∗ (Y ) →→

↓↓

lim
←−

KO∗(Yi, ∂Yi) →→

↓↓

0

0 →→ lim
←−

1KO∗(D∗i ) →→ KO∗(A(Y ))
φ
→→ lim
←−

KO∗(D∗i ) →→ 0

where the map φ: KO∗(A(Y ))→ lim
←−

KO∗(D∗i ) is induced by the ∗-homomorphism πi: A(Y )→ D∗i from

A(Y ) ≡

{
a ∈ C

(
[0, 1],

∞∏
i=1

D∗i

)
: ρ(a(0)) = a(1)

}
to D∗i obtained from the ith component of the evaluation at 0. We will use this diagram in the next section.
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4. A manifold with exotic positive scalar curvature behavior

We will now construct a noncompact manifold M endowed with a nested exhaustion of compact subsets Mi, such that
the Mi can be endowed with positive scalar metrics which are in totality incompatible in the sense that M itself has no
metric of uniformly positive scalar curvature.

In the last section we introduced a Milnor exact sequence with a lim
←−

1 term. We quickly review some properties of
this functor. If {Gi} is an inverse system of abelian groups indexed by the positive integers together with a coherent
family of maps fj,i:Gj → Gi for all j ≥ i, then lim

←−

1Gi is defined in category theory to be the first derived functor of lim
←−

.
Eilenberg–Moore [13] also provides a description as follows. If Ψ :

∏
Gi →

∏
Gi is defined by Ψ (gi) = (gi − fi+1,i(gi)),

then lim
←−

1Gi is defined by lim
←−

1Gi ≡ coker(Ψ ). Gray [18] proves that, if each Gi is countable, then lim
←−

1Gi is either zero or
uncountable.

An example of an inverse system with a nontrivial lim
←−

1 term is

S =
{
Z
×3
←− Z

×3
←− · · ·

}
in which case we have the uncountable group lim

←−

1 S = Ẑ3/Z. Let S1 denote the standard circle. Consider the composite
mapping cylinder BS of the infinite composite

S1
← S1

← S1
← · · ·

which is capped off at the left end (see picture below), where each map takes z ∈ S1 to z3.

· · ·

BS
S1
× I S1

× I S1
× I

  
Y1  

Y2  
Y3

Let Yj be the given exhaustion of BS . For each i, let φi: (Yi+1, ∂Yi+1) → (Yi, ∂Yi) be the obvious collapse map. Notice
that Yi is contractible and that ∂Yj is a circle for all j, but the comparison map ∂Ya → ∂Yb has degree 3b−a. Consider the
sequence

0→ lim
←−

1KOn(Yj, ∂Yj)→ KOlf
n (BS)→ lim

←−
KOn(Yj, ∂Yj)→ 0.

Proposition 4.1. The group lim
←−

1KO2(Yj, ∂Yj) is nontrivial.

Proof. We have an exact sequence

K̃O2(Yi)→ K̃O2(Yi/∂Yi) ∼= KO2(Yi, ∂Yi)→ K̃O1(∂Yi)→ K̃O1(Yi)

By the contractibility of Yi, we have K̃O2(Yi) = 0 and K̃O1(Yi) = 0. Therefore KO2(Yi, ∂Yi)→ KO1(∂Yi) is an isomorphism.
Consider the commutative square:

KO2(Yi, ∂Yi)
∂

∼=

→→

φ∗

↓↓

K̃O1(∂Yi)

×3
↓↓

KO2(Yi−1, ∂Yi−1)
∂

∼=

→→ K̃O1(∂Yi−1)

It follows that φ∗ is multiplication by 3. □

Theorem 4.2. Let c ∈ KOlf
∗ (BS), where BS is endowed with the exhaustion by compact sets {Yi} as above. There is (M, f ) ∈

Ω spin,lf (BS) such that M is a non-compact spin manifold and f is a proper map from M to BS satisfying
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(1) f∗[DM ] = c;
(2) the inverse images (Mi, ∂Mi) = f −1(Yi, ∂Yi) are compact manifolds with boundary such that the induced maps π1(Mi)→

π1(Yi) and π1(∂Mi)→ π1(∂Yi) are all isomorphisms.

Proof. We can replace BS by a properly homotopy equivalent manifold with boundary by thickening an embedding of
it in a high-dimensional Euclidean space. Consider a class (W n, g) where g:W n

→ BS is surjective and proper. We also
suppose that n > dim(BS)+ 4. Note that, by Wall [44] section 1A, all compact spin manifolds of dimension at least 4 are
spin cobordant to simply connected ones. Moreover, spin manifolds with boundary are cobordant rel boundary to simply
connected ones. We can use this notion inductively over the skeleta of a triangulation of BS to arrange (by a cobordism)
that, for each simplex ∆, the transverse inverse image of ∆ in W is simply connected. Recall that, after an arbitrarily small
perturbation, maps can be made transverse to given sub-objects of manifolds; the inverse images of the perturbed maps
are called the transverse inverse images. (See also the picture on page 122 of Wall [44] for the extension of solutions on
a skeleton to the whole space).

Then one obtains a map f :M → BS from a noncompact spin manifold M so that the inverse image of each simplex is
simply connected, and therefore, for every subcomplex T of BS , the inverse image f −1(T ) has the same fundamental group
as T . In particular, for the transverse inverse images A′ of annular regions As = Ys − Ys+1 of BS , we have π1(A′) = Z, with
inner and outer boundary components mapping in by the identity and ×3, respectively. In other words, we have proven
property (2). □

Theorem 4.3. Let ξ be a nonzero class lim
←−

1KOn+1(Yj, ∂Yj) and consider ξ also as an element of KOlf
n (BS). Let M be as given

in the above theorem with the exhaustion (Mi, ∂Mi). Then each Mi has a metric of positive scalar curvature which is collared
at the boundary, but M itself does not have a metric of uniformly positive scalar curvature.

Proof. We can choose a metric on Y = BS such that the map f in Theorem 4.2 is a uniformly continuous proper coarse
map.

We have a commutative diagram

0 →→ lim
←−

1KOn+1(Mi, ∂Mi) →→

↓↓

KOlf
n (M) →→

↓↓

lim
←−

KOn(Mi, ∂Mi) →→

↓↓

0

0 →→ lim
←−

1KOn+1(Yi, ∂Yi) →→

↓↓

KOlf
n (BS) →→

↓↓

lim
←−

KOn(Yi, ∂Yi) →→

↓↓

0

0 →→ lim
←−

1KOn+1(D∗i ) →→ KOn(A(BS)) →→ lim
←−

KOn(D∗i ) →→ 0.

By the definition of D∗i and homotopy invariance of the fundamental group, we have

D∗i ∼= C∗max(π1(Yi), π1(∂Yi))⊗ K.

Since the Yi are contractible and the ∂Yi are circles, the outer vertical arrows from the second to third row are
isomorphisms by Theorem 2.16, so the map KOlf

n (BS) → KOn(A(BS)) is also an isomorphism. Note that by the choice
of M , the element ξ in KOlf

n (BS) will lift to the Dirac class [DM ] in KOlf
n (M). By the commutativity of the diagram, the image

of [DM ] is zero in lim
←−

KOn(Yi, ∂Yi) so it is zero in lim
←−

KOn(D∗i ). Therefore it is zero in each KOn(D∗i ).
Finally note that the relative Gromov–Lawson–Rosenberg conjecture holds in our case. The relevant group at any point

in the exhaustion is Ω spin
n (e,Z), where e is the trivial group. However since

Ω
spin
n−2(e)

×D2
−−→ Ω spin

n (e,Z)

is an isomorphism, and since the index-theoretic obstruction is not lost by crossing with S1, the conclusion follows from
the Gromov–Lawson surgery theorem and Stolz’s classification of high-dimensional simply connected spin manifolds with
positive scalar curvature (Stolz [42]) for n ≥ 7. Therefore there is a positive scalar curvature metric on each piece Mi of
the exhaustion that is collared around the boundary. Moreover the image of [DM ] is nonzero in KOn(A(BS)) so M itself has
no metric of uniformly positive scalar curvature by Theorem 3.3. □

5. A manifold with uncountably many connected components of positive scalar curvature metrics

In this section we use the previously developed theory to identify a connected noncompact manifold M such that
PS(M), the space of complete positive scalar curvature metrics on M equipped with the C∞-topology, has uncountably
many connected components.
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In various spin cases, it can be shown using index theory that PS(M) has infinitely many concordance classes. In fact,
one can prove that the 7-sphere S7 is such a manifold (see Gromov–Lawson [19] or Lawson–Michelsohn [3]). Because the
set of positive scalar curvature metrics is open in the space of all Riemannian metrics, it is a point-set topological fact
that PS(M) has at most countably many components when M is compact. These properties may fail in the noncompact
case. In the compact open topology, positivity is not necessarily an open condition. In the uniform topology, we do not
have separability.

In the proof of the following theorem, we refer the reader to the paper of Xie–Yu [46, Theorem A], which develops
the notion of a relative higher index indDg1,g2 on a closed spin manifold N with two Riemannian metrics g1 and g2.
This relative index is defined to be the higher index of the Dirac operator Dg1,g2 on the infinite cylinder N × R, where
the cross section N × {x} is endowed with g1 if x < −1 and with g2 if x > 1 and the metric in N × [−1, 1] can be
chosen to be arbitrary. See Xie–Yu [46]. The nonvanishing of this relative index in KO∗(C∗r π1(N)) gives information about
the concordance classes of positive scalar curvature metrics on N . In the case when the manifold M is not compact but
has an admissible exhaustion by compact sets, a similar theory shows that a relative higher index can be constructed in
KO∗(A(M)), where A(M) is the algebra constructed in Section 3.

Prior to the theorem we also make the following observation. Let π be a fixed finitely presented group with generators
g1, . . . , gs and relations r1, . . . , rt . Let n ≥ 5, Execute s successive 0-surgeries on Sn to produce a manifold K ′ with
fundamental group Fs, the free group on s generators. The process of surgery on maps (see Wall [44] section 1A for
explicit details) shows that one can then perform a 1-surgery on K ′ to produce a manifold with fundamental group Fs/⟨r1⟩,
where ⟨r1⟩ is the subgroup of Fs normally generated by r1. After performing these 1-surgeries successively with respect to
r2, . . . , rt , we obtain a manifold K with fundamental group π . Since K is constructed from the sphere Sn from surgeries
of codimension at least 3, it follows from the Gromov–Lawson surgery theorem [19, Theorem A] that K also has a metric
of positive scalar curvature.

A trivial example of a manifold with uncountably many components of positive scalar curvature metrics is the disjoint
union of countably many copies of S7. Here we present a connected example.

Theorem 5.1. There is a connected noncompact manifold M for which the set PS(M) of components of uniformly positive
scalar curvature metrics on M is uncountable.

Proof. Let β and β ′ be two non-concordant metrics of positive scalar curvature on S7 detected, as in Gromov–Lawson [19]
by a relative index; they give rise to two non-concordant metrics α and α′ of positive scalar curvature on N = S1

× S7

detected by relative higher index. Consider the iterated connected sum given by

M = N#N# · · ·

with the obvious exhaustion Mi = (N# · · ·#N  
i

) − Dn. On each summand N we make a choice to endow N with either α

or α′. Apply the Gromov–Lawson surgery theorem to modify the metric near each glueing so that M is positively curved
at every point. Clearly the number of metrics on M constructed in this way is uncountable, and these metrics are all
in different connected components of PS(M) by an application of our relative higher index, which lies in KO∗(A(M)) as
explained in the following. If β, β ′ are two distinct metrics on M defined in this way, let Dβ,β ′ be the Dirac operator on
the product M × R. Here the metric on M × (−∞,−1) is defined using the product metric of β on M and the standard
metric on (−∞,−1), and the metric on M × (1,∞) is defined using the product metric of β ′ on M and the standard
metric on (1,∞). The metric on M × [−1, 1] can be an arbitrary complete metric. We can define a relative higher index
ind(Dβ,β ′ ) of Dβ,β ′ in KO∗(A(M)). By the relative higher index theorem in Xie–Yu [46, Theorem A], the relative higher
index ind (Dα,α′ ) does not lie in the image of the map i∗: KO∗(R) → KO∗(C∗r π1(N)), where R is the one-dimensional real
C∗-algebra and i:R→ C∗r π1(N) is the inclusion map. The Pimsner Theorem (see [29, Theorem 18]) allows us to compute
KO∗(D∗i ). The above facts and the relative index theorem of [46] imply that if β, β ′ are two distinct metrics on M defined
as above, then (πi)∗(ind(Dβ,β ′ )) is nonzero in KO∗(D∗i ) for i sufficiently large. Here πi: A(M)→ D∗i is the ∗-homomorphism
defined in Section 3. The restriction map to lim

←−
in the Milnor sequence (∗) given after Theorem 3.3 tells us that the index

is nonzero in KO∗(A(M)). Therefore β and β ′ are two metrics of M that lie in different connected components of PS(M).
Since β and β ′ are arbitrary, it follows that PS(M) has uncountably many components. □

Remark 5.2. A more general construction that provides a host of examples can be given as follows. Let W be an
(n + 1)-dimensional spin manifold with nontrivial higher Â-genus. For example, we may take W to be the torus T n+1.
Let π = π1(W ). By the discussion above, we can produce a manifold Nn with a positive scalar curvature metric α and
π1(N) = π . We can perform a 0-surgery on the disjoint union of N × I and W to create a connected manifold X ′. Execute
additional surgeries (via surgery on maps) on X ′ to arrive at a manifold X with fundamental group π and two boundaries
components both homeomorphic to N . (In other words, since π ′ = π ∗ π , we kill each element of π ′ of the form g1g−12 ,
where g1 and g2 represent the same element of π .)

Let α′ be the positive scalar curvature metric on N as the other boundary component of X , as constructed by the
Gromov–Lawson surgery theorem. Let Dα,α′ be the Dirac operator on N×R. Here the Riemannian metric on N×(−∞,−1)
is defined using the product metric of α on N and the standard metric on (−∞,−1), and the metric on N × (1,∞) is



22 S. Chang, S. Weinberger and G. Yu / Journal of Geometry and Physics 149 (2020) 103575

defined using the product metric of α′ on N and the standard metric on (1,∞). The metric on N×[−1, 1] can be arbitrary.
From the nontriviality of the higher Â-genus for W , we can infer that the relative higher index indDα,α′ of N is nonzero
in KO∗(C∗r π ). We then form the iterated connected sum M = N#N# · · · and proceed as before.

In [7], we provide examples of noncompact contractible spaces with exotic positive scalar curvature behavior. In
particular, for certain Davis manifolds, the universal cover has uncountably many nonconcordant positive scalar curvature
metrics.

We refer the readers to following articles for useful general background information relevant to this article: [8,9,23,
25–28,31].
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