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Detecting Topological Structure

Shmuel Weinberger
University of Chicago

A number of researchers have been applying geometric techniques
in the study of large data sets with the goal of obtaining more
topological and qualitative information. In this talk, I will explain
some of the issues involved in trying to discern geometric
information from random samples, especially in the presence of
noise, and give some situations where despite noise, it is possible
to discover some underlying geometric structure. Such theoretical
guarantees help provide tools for measuring the statistical
significance of results obtained by this methodology.
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Basic Motivating Question

Question

Is there a geometry underlying a data set, and if so, how can we
detect it and how can we use it?

Remark

Topology should have relevance because it is
relatively insensitive to “small perturbations”
both in terms of

the qualitative nature of its equivalence
relations and

a set of adjectives that are crude enough
to be quickly identified.
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Application: Pattern recognition

114 V. Robins et al.

of subsets of 2D, and simplicial complexes in three or more dimensions. See
Munkres[16] for further details.

In order to put these hole-related ideas into computational practice, we use
the α-shape algorithm developed by Edelsbrunner[12], which computes the Betti
numbers from triangulations that capture the topology of the coarse-grained
data at different resolutions. The full algorithm involves some fairly complex
computational geometry techniques, but the basic idea is to “fatten” the data
by forming its α-neighborhood: that is, to take the union of balls of radius α
centered at each data point. When α is large (on the order of the diameter of
the data) this α-neighborhood is a single connected blob. As α decreases, the
α-neighborhood shrinks and more shape detail is resolved in the data. When
α is just small enough that a ball of radius α can fit inside the data without
enclosing any data points, a hole is created in the α-neighborhood. For very small
α—less than half the minimum spacing of the data—the individual data points
are resolved. The associated calculations are non-trivial, but fast algorithms have
been developed for α-shapes of 2D and 3D data[8], and associated software is
available on the world-wide web[2].

(a) (b) (c)

Fig. 2. Computing holes: α-neighborhoods can be used to detect whether the image
in part (a) contains a bay, and, if so, how wide its mouth is. Images (b) and (c) show
α-neighborhoods of the set of white (ice) pixels in (a) for a few interesting α values.

As in the connectedness discussion above, one can compute the number of
holes in an α-neighborhood of a data set while varying α, and then use that
information to deduce the topological properties of the underlying set[19,20].
There is one important difference, however. The geometry of the set can cre-
ate holes in the α-neighborhoods, even if the set contains no holes. This effect
is demonstrated in Figure 2. Mathematically, this problem can be resolved by
incorporating information about how the set maps inside its α-neighborhood.
This leads to the definition of a persistent Betti number, which was introduced
in [19]: for ε < α, bk(ε, α) is the number of holes in the α-neighborhood for which
there are corresponding holes in the ε-neighborhood (equivalently, the number
of holes in the ε-neighborhood that do not get filled in by forming the fatter α-

V. Robins, J. Abernethy, N. Rooney, Elizabeth Bradley. Topology and intelligent data

analysis. Intelligent Data Analysis. Volume 8, 2004. 505–515.

Here one has a universe of possible types and seeks useful
invariants for distinguishing objects.



Motivation Applications Theorems Noise

Example: Dimension.

Questions

How many degrees of freedom are there?

Are there any laws to be discovered?
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Example: Dimension

A pair of points on the circle is equivalent to a point on the
Möbius band — 2 degrees of freedom.
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Example: Dimension

An asymmetric rigid body on the surface of the Earth is equivalent
to a point in RP3 — 3 degrees of freedom.

loading

Why RP3? Conjugating x i + y j + z k by a unit quaternion

q = cos θ + u i + v j + w k

rotates (x , y , z) by angle 2θ around the axis (u, v ,w).
Note that q and −q induce the same rotation.


sphere.avi
Media File (video/avi)
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Example: Dimension

Problem

What can you do in the absence of a model for the data?

And what can you do if the data has some noise?

Is this the surface of a ball (a 2-sphere) or noise around a point?
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Topological type

versus

Almost all of the previous examples are topological properties, or
are illuminated by topological invariants.
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Topological invariants

Clustering is the theory of H0, e.g., how many components?

Dimension is closely related to the n for which all Hk vanish for
k > n (or k ≥ n for proper subsets).

Gives information about the entropy of dynamical systems on such
a space.

Can be applied to the problem of coverage by a sensor network.

Determines the topological type for two dimensional surfaces.
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Justification for sampling

Theorem (Niyogi-Smale-W)

M ⊂ RN , compact, with condition number τ .

x̄ = {x1, . . . , xn} uniform measure on M.

ε small enough, n big enough,

U = the ε-neighborhood of x̄ ,

Then H?(U) = H?(M) with probability > 1− δ.
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Justification for sampling

Remark

Precise formulae connecting the dimension of the Euclidean space,
the diameter of M, τ , ε, and δ and an algorithm for computing
H∗(U) are all in the original paper

Niyogi, Smale, Weinberger, Finding the homology of
submanifolds with high confidence from random samples.
Discrete Comput. Geom. 39 (2008), no. 1–3, 419–441.

and need not bother us here.



Motivation Applications Theorems Noise

Recovering homotopy type of a manifold from samples

Definition (Condition number.)

If M is a smooth manifold in Euclidean space, then the condition
number 1/τ of M is given by

τ := sup{t : Normal exp. on the ε-normal disk bundle is 1–1}

This incorporates local curvature conditions (≈ largest principal
curvature) and global information about how close different
coordinate charts get.

versus
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Sampling

Sampling can get the homology correct, though the model is built
using high-dimensional simplices.
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Remarks

The Euclidean nature of the data set is sometimes artificial.
Some parts are simplified if one uses metrics intrinsic to the
underlying space—but other places we use Euclidean
geometry. The latter also begs the question of estimation of
intrinsic distances in terms of distances derived from the
samples.

This is a first stab. Later work has greatly relaxed the
hypothesis of smooth manifold to allow many stratified
spaces. See Cohen-Steiner, Edelsbruner and Harer and also
Chazal, Cohen-Steiner, and Lieutier for such developments.
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Remarks

In the case of hypersurfaces, this method gives a topological
picture of the submanifold, not just of its homotopy type.

In general such a theory was developed by Amenta in
3-dimensions, and Cheng-Dey-Ramos, and
Boissonat-Guibas-Oudot.
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Remarks

This algorithm require quadratic programming, and also a
hypothesis of the relevant scale.
Edelsbrunner-Letscher-Zomorodian have an alternative called
“persistent homology” that finesses this.

Using adaptive methods, it is possible to do a lot better in
practice. One should not sample uniformly—if possible one
should sample more sparsely areas that have less topology.
(This is implicit in “Amenta’s foot” on the previous slide.)

Adaptive methods have also been applied to homology of
nodal sets by Mischaikow and his collaborators.
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Remarks

Note that all estimates are in terms of the submanifold, none
in terms of the ambient Euclidean space (aside from a tacit
upper bound on dimension—which requires an additional
discussion—not today).

It is reasonable to use the objects defined here as proxies for
the homology and homotopy type of data sets even if they are
not derived from a manifold. Of course, what the meaning of
this homology is is then of some interest.

All of this is under the assumption that our data is noise-free.
We must now work to repair this. This also leads to a
weakening of the assumption that the points are chosen
uniformly from the submanifold.
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Implementations

1 PLEX available at Stanford
http://comptop.stanford.edu/programs/plex/
CHomP available at Rutgers
http://chomp.rutgers.edu/

2 What happens in practice?
Joint work with Y. Baryshnikov.

Three stages:

Dust very little information available

Percolation

Endgame Getting things “right”—marked by abrupt phase
transitions (following overshoot)

http://comptop.stanford.edu/programs/plex/
http://chomp.rutgers.edu/
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In practice. . .
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Noise
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Noise

Problems when there is too much noise.

Hot spots and oversampling.
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When there is too much noise. . .

Noise causes blurring when it is too large.

This raises the issue of scale.
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Noise and “hot spots”



Motivation Applications Theorems Noise

Example: Classical problem of overfitting
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You must clean the data.

Slogan

“A little noise always kills in
the long run.”

Remark

One must clean the data.
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Abstract theorem.

Theorem (Niyogi-Smale-W)

Let M be a manifold with a given τ .
Assume that for some ε < τ/2,
we have a measure µ satisfying:

α homogeneity: µ (Bε(p)) > α · µ (Bε(q)) for every p ∈ M
and all q.

β anti-homogeneity: µ (Bε(q)) < β · µ (Bε(p)) for every
p ∈ M and for q outside a 2ε-neighborhood of M.

Thus, it is possible to clean a large enough data set and to
compute the homology of M using a suitable nerve homology.
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Precise theorem in the presence of Gaussian noise.

Theorem

Md ⊂ RD . As long as the variance σ2 satisfies

σ
√

8(D − d) < c

√
9−
√

8

9
τ for any c < 1,

then H?(M) can be recovered from random samples.

Remark

If the codimension is high enough,

D − d > A

(
log

(
1

a

)
+ Kd log

(
1

τ

))
for constants A,K > 0, then the sample complexity is independent
of D.
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Review on noise.

α–β homogeneity ⇒ can clean the data

Gaussian noise ⇒ sample complexity does not grow with
ambient dimension
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Conclusions

If the data is not too noisy and you have enough of it, then it
is possible to infer the geometric structure, e.g. find clusters,
discover dimension, topological type and so on.

We can infer different parts of the geometry at different rates
in the noiseless case, and are working on techniques for
denoising these tools.

There is a complementary subject of finding lower bounds on
sample and computational complexity of these problems.
Indeed these problems grow badly with the dimension of the
underlying space.

The good news is that “low dimensional features” can still be
discovered relatively early. And more good news: The sample
complexity depends on the intrinsic dimension of the space,
not on the dimension of the space it is embedded in.
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