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Preface. 
 
 This essay is a work of historical fiction – the “What if Eleanor Roosevelt could 
fly?” kind1.  The Borel conjecture is a central problem in topology: it asserts the 
topological rigidity of aspherical manifolds (definitions below!).  Borel made his 
conjecture in a letter to Serre some 65 years ago2, after learning of some work of Mostow 
on the rigidity of solvmanifolds.   
 
 We shall re-imagine Borel’s conjecture as being made after Mostow had proved 
the more famous rigidity theorem that bears his name – the rigidity of hyperbolic 
manifolds of dimension at least three – as the geometric rigidity of hyperbolic manifolds 
is stronger than what is true of solvmanifolds, and the geometric picture is clearer.   
 
 I will consider various related problems in a completely ahistorical order.  My 
motive in all this is to highlight and explain various ideas, especially recurring ideas, that 
illuminate our (or at least my own) current understanding of this area. 
 
 Based on the analogy between geometry and topology imagined by Borel, one can 
make many other conjectures: variations on Borel’s theme.  Many, but perhaps not all, of 
these variants are false and one cannot blame them on Borel.  (On several occasions he 
described feeling lucky that he ducked the bullet and had not conjectured smooth rigidity 
– a phenomenon indistinguishable to the mathematics of the time from the statement that 
he did conjecture.)   
 
 However, even the false variants are false for good reasons and studying these can 
quite fun (and edifying); all of the problems we consider enrich our understanding of the 
geometric and analytic properties of manifolds.  Verum ex erroris. 
 
 The tale I shall tell moves between topology and geometry, Lie groups, 
arithmetic, and operator theory, algebraic K-theory and topics in Banach space geometry 
that are also of interest in theoretical computer science.  The goal is to develop an 
appreciation for this landscape – not to explain the most recent or important results on the 
conjecture itself3.  
 

The extent of the canvas that forms the natural backdrop to this problem is both a 
joy and a challenge.  I cannot explain all the detail or even sketch all action going on 
about this canvas, but I will try to tell some good stories4 -- simplifying enough to explain 
the key ideas, and providing references as best as I can to papers that have the missing 
parts, trying to do a bit more than that when the results have not appeared elsewhere, but 
hopefully not overdoing it5 and making anything unnecessarily complicated.  The goal is 

                                                
1 See Saturday Night live, season 4 episode 4. 
2 May 2, 1953 
3 although the book would feel incomplete without some discussion of this. 
4 more O’Henry than Homer. 
5 I told myself that I didn’t want this to be more than 250 pages long. 
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to give a feeling for what we understand rather than to give the most precise or complete 
statements – a moving target that even if hit at the moment of writing, quickly turns into a 
miss. 

 
While there is some overlap between this book and various other surveys, almost 

always their treatments are superior. In particular, I recommend the varied surveys 
[Farrell, Farrell-Jones, Ferry-Ranicki-Rosenberg, Gromov, Guentner-Higson, Kreck-
Lueck, Lueck, Roe, Valette].  My hope is that the current treatment will be at the very 
least useful to my own students as a response to their FAQs and that the brevity of the 
discussion will be stimulating to some. 

 
The astute reader should be able to figure out what’s in this book from its table of 

contents, and the knowledgeable reader will be able to figure out what’s missing. 
 
 This book grew out of two lecture series given in 2013, the Frontiers of 
Mathematics lectures at Texas A&M and a mini-course two weeks later at 
Noncommutative Geometry and Operator Algebras XIII at Vanderbilt, followed by 
another lecture series in Bloomington in 2014.   It probably had its genesis in a lecture 
series I gave in memory of Borel at E.T.H. in 2005, although much of the material 
presented here reflects developments that occurred since then.  I reworked the exposition 
some in the succeeding years, and finally gave up at the point when I felt that my edits 
were ruining whatever sense of freshness and excitement that the original showed.  Given 
the choice between two evils, I chose the one that involved less work for me.  I would 
like to thank my audiences in all these venues for their suggestions, questions, and 
interest. 
 
 Even more, I am indebted to my collaborators Arthur Bartels, Jean Bellissard, 
Jonathan Block, Sylvain Cappell, Stanley Chang, Jim Davis, Mike Davis, Sasha 
Dranishnikov, Benson Farb, Michael Farber, Steve Ferry, Erik Guentner, Nigel Higson, 
Tadeusz Januszkiewicz, Alex Lubotzky, Wolfgang Lueck, Alex Nabutovsky, Semail 
Ulgen-Yildirim, John Roe, Jonathan Rosenberg, Julius Shaneson, Min Yan, and Guoliang 
Yu for teaching me so much and sharing in the joy of discovery of both theorems and 
counterexamples. In particular, in chapters 6 and 7, the discussion owes a lot to 
unpublished joint work with Cappell and Cappell-Yan and conversations with John 
Klein. I also owe a large debt to my colleagues at Chicago, (Danny Calegari, Frank 
Calegari, Kevin Corlette, Matt Emerton, Alex Eskin, Benson Farb, Bob Kottwitz, Andre 
Neves, Leonid Polterovich, Mel Rothenberg, Amie Wilkinson, David Witte-Morris, and 
Bob Zimmer) and at Hebrew University (especially Hillel Furstenberg, Gil Kalai, David 
Kazhdan, Nati Linial, Alex Lubotzky, Shachar Mozes, Ilya Rips, Zlil Sela and Benjy 
Weiss) who created such wonderful intellectual environments for discussing geometric 
problems, especially involving groups or graphs.  I believe that all of these people will be 
able to see reflections of our conversations below, as will many friends and coworkers 
whose names I have not mentioned.  Comments I received from Bena Tshishiku, David 
Tranah and from anonymous referees at Cambridge University Press were invaluable in 
the revision process. 
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 Finally and most importantly, I need to thank my family Devorah, Baruch and 
Esther for many things that are more important than their encouragement of my work and 
putting up with all that goes with the modern academic life.   
  



  8 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

To Devorah, Baruch and Esther with love. 
 
 
In memory of Hannah Weinberger, who I appreciate more with every 
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Chapter I.  Introduction. 
 

 
1.1 Introduction to geometric rigidity 
 

Our story begins with the Bieberbach theorems about the structure of compact flat 
manifolds (i.e. compact Riemannian manifolds whose sectional curvatures are 
everywhere 0, i.e. that are locally isometric to Rn).  The universal cover of such a 
manifold, M, is Euclidean space, and therefore its fundamental group π is a discrete 
subgroup of Iso(Rn).  There is a (split) exact sequence 

 
1 →Rn → Iso(Rn) → O(n) → 1 

 
so that π has a rotational part, and a translation subgroup.  (Iso(Rn) is thus a semidirect 
product of the linear = orthogonal group, and the group of translations, where the former 
acts on the latter in the obvious way.) 
 
 Bieberbach showed that the rotational part of π is always finite, so that π has a 
subgroup of finite index that is pure translation, and simple considerations then guarantee 
that this is rank n, i.e. that M is finitely covered by a torus, i.e. by Rn/Λ for some lattice 
Λ≅ Zn.  
 

We shall first assume that this is a 1-fold cover for simplicity6: the structure of the 
manifold M we started with is then understood as a structure on a torus, and by an 
analysis of its isometries.  

 
The space of tori, though, is very interesting and quite nontrivial already.  (Indeed the 

n=2 case gives rise to the beautiful theory of modular forms [Serre, Arithmetic]).  Let us 
normalize by demanding that vol(M) = 1, and furthermore let us pick the isomorphism Λ 
→ Zn (which is tantamount to giving a homotopy equivalence M → Tn).  There is a 
unique linear map in GLn(R) taking Λ → Zn.  Notice that the translation group is 
conjugate to the standard action (as a group action of Zn) iff this matrix is orthogonal.  
Thus, the space of “polarized flat tori of volume 1” is the same as SLn(R)/SO(n), a 
contractible manifold – e.g. by the Gram-Schmidt process7. 

 
 At this point, we can pick up the theory for general flat manifolds if we want: the 

finite holonomy group (the group of rotations we ignored before) acts on the space of flat 

                                                
6 Although this is but one of a superexponentially growing number of possibilities as n 
increases. 
7 In the spirit of later developments,  we should say that SLn(R)/SO(n) is a complete 
simply connected manifold of non-positive curvature – as is any semisimple Lie group 
modulo its maximal compact subgroup – and is thus, by Hadamard’s theorem, 
diffeomorphic to Euclidean space. 
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tori, and whose fixed point set is the space of flat structures on the given manifold (with 
volume 1/#holonomy).  The fixed set of a compact group acting on a complete simply 
connected non-positively curved manifold is another such space, by a theorem of 
Hadamard provided it is nonempty and connected.  It is nonempty (in general, this is 
Cartan’s fixed point theorem: a fixed point can be given as the unique “median” of any 
orbit - the point which makes the largest distance to any point of the orbit finite) in our 
case, because we assumed there was a flat manifold, and connected, because a geodesic 
connecting two fixed points to each other would be fixed and therefore lie in the fixed 
set.  Anyway, we then see that there is a unique such manifold as a smooth manifold, and 
that any two are conjugate in the affine group.   

 
Mostow showed in a celebrated 1968 paper that for constant negative curvature 

manifolds, the rigidity is much stronger.  Perhaps the first hint of this comes from the 
Gauss-Bonnet theorem:  In this case it says that: 

 
Proposition: If M is a closed manifold8 of constant curvature -1, i.e. if M is a closed 
hyperbolic manifold of even dimension, then  

χ(M2n) = 2(-1)nvol(M)/ω2n 
where ω2n is the volume of the sphere (of radius 1). 
 
 To foreshadow other developments, we note that if vol(M) < ∞, then M has finite 
topological type (i.e. is the interior of a compact manifold with boundary) so that both 
sides of the equation make sense, and in fact, the equation holds. 
 
 As a consequence of the Gauss-Bonnet theorem, we see that in the hyperbolic 
case unlike the flat case, the fundamental group determines the volume9.  Perhaps even 
more straightforwardly, flat manifolds have a non-rigidity because of homotheties, but 
hyperbolic manifolds have a scale because of their non-vanishing curvature.   
 

Mostow’s theorem then gives what seems like the ultimate strengthening of this 
line of thought.  The contractible manifold occurring in the flat case degenerates (if the 
dimension > 2) to a point! 

 
Theorem:  Suppose that M and M’ are closed hyperbolic manifolds of dimension d >2, 
then any isomorphism h: π1(M) → π1(M’) is induced by a unique isometry between M 
and M’. 

 
As a minor point, strictly speaking an induced map on fundamental groups 

requires the map to preserve base points, but the isometry will almost surely not (as it’s 
unique, it either does or does not).  Consequently, we should actually assume that one has 

                                                
8 Recall that a closed manifold is a compact manifold without boundary. 
9 At least in even dimensions.  Mostow rigidity implies that this is true in all dimensions; 
a cohomological explanation for this is provided by Gromov’s theory of bounded 
cohomology [Gromov, VBC].   
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a conjugacy class of homomorphisms of the fundamental group, or use groupoids, or 
some similar device. 

 
We note that this is not true in dimension 2; for a surface of genus g, the space of 

marked10 hyperbolic structures is called Teichmuller space, and is topologically R6g-6. 
 
Mostow’s theorem is a beautiful and perhaps initially surprising result.   However, 

it can feel a bit sterile if one doesn’t know examples of hyperbolic manifolds and indeed 
it is not so easy to construct hyperbolic manifolds in dimension >2 (in dimension 2 they 
can be built easily using tessellations of the hyperbolic plane).  Even after knowing some 
constructions, how are you going to find two not obviously isometric hyperbolic 
manifolds that have isomorphic fundamental groups? 
 
 However, the uniqueness statement in Mostow’s theorem gives us quite nontrivial 
information even when M = M’.  Any self-isomorphism of π must be realized by a self-
isometry, giving the following conclusion: 
 
Corollary:  If π is the fundamental group of a compact hyperbolic manifold M, then 
Iso(M) ≅ Out(π), where Iso(M) is the isometry group of M, and Out(π) is the group of 
outer automorphisms of π: it is the quotient of the automorphisms Aut(π) by Inn(π), the 
normal subgroup of inner automorphisms of π. 
 
 Out(π) is the set of components of the self homotopy equivalences of M to itself:  
it is not Aut(π) because we do not insist that maps and homotopies preserve base points. 
 
 The isometry group of a compact manifold is always a compact Lie group 
(Myers-Steenrod), so we learn that in the hyperbolic case, this group is always finite.  
Then we then deduce the purely algebraic fact that Out(π) must be finite – if the 
dimension of the hyperbolic manifold is > 2.    
 
 In dimension 2, the first conclusion holds (as we will discuss later), but the second 
does not.  Out(π) is the celebrated mapping class group, an object of fundamental 
importance in low dimensional topology and in algebraic geometry.  Elements of infinite 
order in Out(π) can never be realized by isometries of a compact Riemannian manifold. 
 
 The conclusions of Mostow’s theorem can be greatly generalized.  First of all, 
hyperbolic space can be generalized to be any locally symmetric manifold with no 
Euclidean factors and no hyperbolic plane factors: in other words, as Mostow showed in 
subsequent work, it applies to G/K, if G is a semisimple Lie group (i.e. a Lie group with 
no connected normal solvable subgroups) and K its maximal compact subgroup.  We will 
discuss these in much greater length in the next chapter. 
 

                                                
10 i.e. ones where we are given an identification of the fundamental group, or 
equivalently, a homotopy class of a map to a standard surface.  
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 In addition, according to Prasad, all of these rigidity theorems hold for 
noncompact finite volume hyperbolic manifolds (and locally symmetric manifolds).   
 
 Amazingly enough, there are many additional extensions of these theorems, not 
thought of as uniqueness theorems per se.  We will discuss some of the important work of 
Margulis on (the aptly called) superrigidity in the next chapter. 
 
 
1.2  The Borel Conjecture. 
 
 The striking results of the previous section show that for various “geometric 
structures” (let’s say that this means a given choice of a local model for germ 
neighborhoods of points) the space of given marked structured manifolds is either a point, 
or the algebraic topologist’s “point”: a contractible space11.   
 
 Although a contractible space isn’t as good as a point, for some purposes it’s quite 
good.  For example, that it is connected is already a type of uniqueness statement.  In the 
situation where one has a structure on this space with non-positive curvature, one can 
geometrically make conclusions that are stronger than follow from the algebraic topology 
alone.  For instance, the non-positive curvature on the space of flat tori enables one to 
prove Bieberbach’s theorem that any torsion free group that is virtually free abelian (of 
rank k) is the fundamental group of a compact aspherical manifold (of dimension k).  
(Exercise or see the footnotes.) 
 
 Borel suggested that the topological conclusion that the hyperbolic manifolds 
were homeomorphic12 could be traced to a purely topological hypothesis: 
 
Conjecture:  If h:M’ → M is a homotopy equivalence between closed aspherical 
manifolds, then h is homotopic to a homeomorphism. 
 

Recall that a space is aspherical if its universal cover is contractible. It is a K(π,1) 
in the language of the algebraic topologists, meaning its homotopy groups πi vanish for 
i>1.  This can be tested by checking whether the universal cover has vanishing reduced 
integral homology (by the Hurewicz isomorphism theorem).  A homotopy (class of) 
equivalence(s) between aspherical spaces is essentially the same thing as an (conjugacy 
class of) isomorphism between their fundamental groups. 

 
If M is non-positively curved or of the form K\G/Γ (where G is a real Lie group 

and K its maximal compact) then it satisfies the hypothesis of the Borel conjecture. In 
these cases, the conjecture is an astounding theorem of Farrell and Jones13.   

                                                
11 There should be a kind of mathematician for whom a point is a non-positively curved 
space -- someone informed by both algebraic and geometric intuitions. 
12 Borel actually made his conjecture on the basis of an earlier 1953 result of Mostow on 
solvmanifolds, where the conclusion was “isomorphic”, i.e. diffeomorphic.   Borel 
expressed relief that he hadn’t conjectured diffeomorphic in light of this result. 
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One can also try to reverse this mode of thought, and ask whether the moduli 

space of non-positively curved structures on a closed topological aspherical manifold is 
contractible (if it nonempty!).  Farrell and Jones have shown that the answer to this is 
negative as well: the space isn’t even connected.  But, I am running ahead of the story.   

 
Borel is suggesting here that aspherical is the topological analog of “locally 

symmetric of noncompact type” or of “non-positively curved”.  In the next chapter we 
will discuss various constructions of aspherical manifolds -- although in Borel’s time 
there were no examples that were very far away from the lattice setting.  

 
Of course, in the topological setting, one cannot expect the homeomorphism to be 

unique.  However, it might seem reasonable to believe that space of homeomorphisms is 
contractible, i.e. the analog of a point.  Unfortunately, this is not true and we will later 
discuss the reason for this; it is an indirect consequence of the conjecture that there is a 
type of uniqueness:  uniqueness up to pseudo-isotopy. 

 
Definition:  Two homeomorphisms f,g: M → N are pseudo-isotopic if there is a 
homeorphism M × [0,1] → N × [0,1] that restricts to f ∪g on the boundary M × {0, 1} → 
N × {0,1}. 
 
 For high dimensional closed manifolds, one knows due to the work of Cerf and 
Hatcher-Wagoner [Hatcher-Wagoner] that pseudo-isotopies between homeomorphisms 
are isotopic to isotopies iff the manifolds are simply connected.  This work shows that 
always there’s typically an infinite number of isotopy classes of homeomorphisms in the 
given homotopy class. 
 
 The reasonable optimist might therefore choose to append “unique up to pseudo-
isotopy” to the statement of the Borel conjecture.  As we will discuss in chapter 3, this 
both follows from the Borel conjecture in general, and is part of the “correct” natural 
extension to manifolds with boundary. 

 
Uniqueness up to pseudoisotopy is not as strong as uniqueness, and it will need 

some study.  If one had uniqueness in families, one could immediately learn things about 
bundles.  The weaker type of uniqueness has implication for “block bundles” 14 and has 

                                                                                                                                            
13 The important point being the M’ is not assumed to be a space of this sort (for then, the 
relevant result is part of differential geometric rigidity).  We will explain some of the 
ideas of this result in the final chapter. 
14 And even more to “approximate fibrations” which it would surely be taking us far 
afield to introduce at this point.  Let us leave it as saying that if one tried to extend the 
Borel philosophy to some singular settings, and took seriously the idea that one is looking 
for topologically invariant notions rather than modeling closely the topological analog of 
the smooth category, then one would be led to “pseudo”s. 
     It is worth noting that Mostow’s work on hyperbolic manifold is based on extending 
the map of universal covers to certain ideal ∂s.  These extensions, as is critical to 
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more relevance to the topological category than the bundle result would have (in other 
words, this is a feature, not a bug). 

 
As we noted in the geometric setting, uniqueness would also immediately have 

implications regarding the symmetries of aspherical manifolds.  Borel himself proved 
some of these, and we will discuss them in chapter 7.  For example, if M is an aspherical 
manifold whose fundamental group has trivial center, then the only connected compact 
Lie group that can act continuously on it is trivial15.   We saw that it implied that any 
finite subgroup of Out(π) was realized by a group action – at least when π is centerless16; 
this statement is called the Nielson realization problem17.   

 
It also would imply certain uniqueness statements about group actions – or if you 

like, it would imply “equivariant Borel conjectures”.  We will see in contrast (in Chapter 
6) that these conjectures are false – for several different reasons. 

 
Another variant of the Borel conjecture goes like this: Given a group π, the Borel 

conjecture asserts the uniqueness of the aspherical topological manifold whose 
fundamental group is π.  Shouldn’t there be an existence theorem to go with such a 
uniqueness one?  Wall has conjectured [Wall3] that the correct condition is that π should 
satisfy Poincare duality18.  We will discuss some of the evidence for Wall’s conjecture – 
most comes from the Borel conjecture – and we’ll also discuss variants of Wall’s 
conjecture where one weakens the type of Poincare duality the group satisfies. 

 
Yet another way of thinking about Borel’s philosophy is the following.  If 

knowing the group means knowing the manifold, then every topological property of 
manifolds has to be reflected in its fundamental group.  Thus one can conjecture that an 
aspherical manifold is a nontrivial product iff its fundamental group is19.   Similarly one 

                                                                                                                                            
Mostow’s work, are naturally continuous and not smooth.  These ideas of Mostow from 
the late 1960’s are fundamental to almost all of the work on the Borel conjecture since 
the early 1980’s. 
15 Equivalently, every continuous circle action on M is trivial. 
16 When π is not centerless, the isometries tend not to be unique, and the realization is 
false for certain nilmanifolds, an example of Raymond and Scott [Raymond-Scott]. 
17 The original Nielsen problem was for surfaces and was proven true, first by Kerckhoff 
[Kerckhoff] using geometrical properties of Teichmuller space.  By now, there are a 
number of proofs. 
18 For a group to satisfy Poincare duality it means that its K(π,1) satisfies Poincare 
duality.  In Wall’s conjecture, one means Poincare duality with arbitrary coefficient 
systems, to the same extent that one has such Poincare duality for manifolds.  This is 
equivalent to there being a chain homotopy equivalence (with the usual dimensional 
shift) between the Zπ-chain complexes of singular chains on the universal cover and its 
dual. 
19 This can be compared with a theorem of Lawson and Yau for non-positively curved 
manifolds [Lawson-Yau 2]. 
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can hope that a manifold “fibers” over another if there is a suitable exact sequence of 
groups. We will discuss these kinds of problems later. 
 

If one were a wild optimist20, one could easily go very far and conjecture that 
many properties of the model manifolds hold for all aspherical manifolds, such as that 
their universal covers are Euclidean space or that their fundamental groups have solvable 
word problems.  We will see in chapter 2 that these are false.   

 
It is not known whether their Euler characteristic has the same sign as the 

symmetric spaces of the same dimension have, i.e. whether (-1)nχ(M2n) ≥ 0, for closed 
aspherical manifolds.  (This is sometimes called the Hopf conjecture, although Hopf only 
asked it for negatively curved manifolds.)21 

 
Finally, the Borel conjecture begets many others in the following indirect way:  It 

implies that any method one would try to disprove it must fail.  Thus any invariant of 
manifolds, defined by any method at all no matter how clever or indirect, should be a 
homotopy invariant for aspherical manifolds.  This means that the fundamental group 
must somehow catch lots of subtle geometry.  Examples of this include the tangent 
bundle and various types of spectral invariants, but in principle, one can consider any 
topological invariant at all22. 

 
When studying this in detail, one is often led to problems that seemingly have 

nothing to do with aspherical manifolds.  In chapter 4 we will follow this road towards 
the Novikov conjecture, which in its analytic form has strong differential geometric 
implications -- well beyond aspherical manifolds.  In this form, the conjecture also 
develops analogues in quadratic form theory and in algebraic K-theory. 

 
1.3.  Notes. 
 
 A good grounding in differential geometry is very helpful.  For our purposes, 
[Cheeger-Ebin] is probably the best source.  Milnor’s rapid course in Riemannian 
geometry in [Milnor, Morse Theory] is adequate for most purposes in this book. 
 
 There are now a lot of approaches to Mostow rigidity and it has many extensions 
and generalizations.  The original sources are [Mostow 2 and 3].  I highly recommend the 
survey [Gromov-Pansu].  Probably the “easiest” proof (although one that is rather 
atypical) is Gromov’s based on the ideas of “bounded cohomology”.  An excellent 

                                                
20 Something that one would not ordinarily say of Borel. 
21 Recently, Avramidi gave some very striking evidence for the failure of this conjecture.  
[Avramidi 2] 
22 An example of this includes simplicial volume a la Gromov [Gromov VBC] which 
provides a homological explanation for the volume of certain locally symmetric 
manifolds.  I mention this here, because, unfortunately, it does not play a large role in the 
sequel. 
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exposition of this can be found in [Munkholm].  Zimmer’s book [Zimmer] gives a clear 
treatment of Margulis’s superrigidity theorem.   

 
 The discussion here of the Borel conjecture is not the most direct or efficient.  
However, the equivalent statement that “the structure set of an aspherical manifold 
vanishes” reduces all of one’s study to the proving that some group is 0. This seems (to 
me) rather depressing.  We prefer the point of view that the subject deals with actually 
examples and contain surprises.  It makes it feel like one is actually studying 
SOMETHING. 
 
 More seriously, the variants we consider shed light on some subtleties and 
possible approaches to the conjecture, and are, I think, natural questions that one would 
want to address for the same reason as one would want to know the truth of the Borel 
conjecture23. 
 
 And, finally, I hope that when the problem is ultimately solved, the spirit of the 
problem -- as expanded on here -- will continue to inspire future generations of 
mathematicians. 

 
 
 
 

                                                
23 So we prefer a Comedy of Errors to Much Ado About Nothing. 
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Chapter II. Examples of Aspherical Manifolds  

 
 

 This chapter discusses some of the basic examples of, mainly closed, aspherical 
manifolds that give content to our inquiry.  After all, what good would the Borel 
conjecture be if there were no aspherical manifolds?   
 
 We give some constructions, of ones which come from locally symmetric 
manifolds (i.e. Lie theory) including both arithmetic and nonarithmetic examples, and 
also ones that do not.   
 
 By contrast, the construction of noncompact aspherical manifolds is quite easy.  
There is an open aspherical manifold with fundamental group π if and only if π is 
countable has finite cohomological dimension, as one can see by thickening a finite 
dimensional K(π,1) complex (i.e. replacing all the cells in a  CW decomposition by 
handles).  Remarkably, aside from finiteness conditions, this characterizes the groups that 
are retracts of (fundamental groups of) aspherical manifolds. 
 
 
2.1 Low dimensional examples. 
 

In low dimensions, almost all connected manifolds (even noncompact) are 
aspherical.  The only connected non-aspherical surfaces are the sphere and the projective 
plane.   

 
In dimension three, among closed orientable 3-manifolds all are aspherical unless 

one of the following very good reasons holds: either  
 

1. the fundamental group is finite (in which case, the universal cover is S3 
and the deck group is a subgroup of SO(3)   

2.  the manifold is a nontrivial connected sum (and the separating 2-sphere is 
a nontrivial element of π2), or  

3. the manifold is S1 × S2.  All of this24 is a consequence of the sphere 
theorem of Papakyriokopoulos (see e.g. [Jaco, Hempel]). 

 
However, in understanding even closed three manifolds, it is essential that one 

consider manifolds with nonempty boundary as part of the story.  Given an arbitrary three 
manifold, one first has a decomposition into irreducible pieces, under connected sum.  
This is unique up to the order of the decomposition.  Then one breaks the manifold 
summands further into pieces, where the gluing is done along certain embedded 

                                                
24 at least for infinite fundamental group.  The description of what happens for finite 
fundamental group depends on Perelman’s solution of the geometricization conjecture. 
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incompressible25 tori.  This topological decomposition was discovered by Jaco-Shalen 
and Johannsen, and explained geometrically by Thurston and Perelman:  After breaking 
the 3-manifold along this decomposition along a set of canonical tori (its torus 
decomposition) one is left with pieces, all of which have geometric structure26 i.e. a 
manifold with a complete metric, which is locally homogeneous. 

 
Let’s be more concrete.  Suppose we start with a knot K in S3, i.e. a smooth 

submanifold diffeomorphic to S1. The complement is always aspherical (as before, by 
Papakyriakopoulos’s sphere theorem).  For the unknot, the complement is S1 × R2.   It is 
often convenient to remove tubular neighborhoods of submanifolds, to obtain the “closed 
complement”27; then we would obtain S1 × D2.   

 
For all knots, we obtain an aspherical manifold with boundary as its complement 

X, whose boundary is a torus.  The unknot is characterized by the property that π1(∂X) → 
π1(X) is not injective:  a nontrivial knot always has an incompressible torus embedded in 

its complement (i.e. an embedded T2 so that π1 injects). 
 
Sometimes there is another torus (i.e. not isotopic to the boundary) in the 

complement that is incompressible.  When this happens, essentially what that means is 
that this knot can be thought of as being wrapped around another knot, i.e. that it has a 
companion. 

 
 

                                                
25 Recall that a surface in a 3-manifold is incompressible if its normal bundle is trivial, 
and its fundamental group injects into the fundamental group of the manifold. 
26 This is the celebrated geometricization conjecture.  Actually, if an irreducible 
connected manifold contains any incompressible surfaces (and in particular, if it has a 
nontrivial torus decomposition) then the geometricization of all of the pieces in its 
decomposition is a theorem of Thurston.  For references, see the notes section. 
27 There are subtleties with doing this in the topological category.  It in the setting of 
locally flat manifolds, everything works the same: see [Kirby-Siebenmann].  When we 
discuss orbifolds, we will see that the analogous issue is not solvable in the topological 
setting, i.e. one cannot always find a “closed regular neighborhood” of the knot, and one 
needs a substitute for tubular neighborhood theory. 
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 The knot on the left is a companion of the thinner knot on the right28. 
 
The process of finding companions must end - although not obvious, there is a 

geometric complexity that increases under companionship.   
 
So, now consider one of the deepest pieces, i.e. a knot with no companions.  In 

that case there are two cases:  torus knots, i.e. knots that lie on the surface of a torus that 
surrounds the unknot.  These are parameterized by pairs of coprime integers (p,q) 
representing the homology class of the associated circles.  All of the remaining knots have 
hyperbolic complements, i.e. have complete metrics of constant negative curvature and 
finite volume.  (One can distinguish the 2 cases easily: the torus knots have fundamental 
group of their complement with nontrivial center – which precludes having a metric of 
negative curvature29.) 

 
In other words the fundamental group of the complement Γ is naturally a discrete 

subgroup of PSL(2, C).   
 
The same is true for the annular regions between the various embedded tori: they 

all have hyperbolic structures.  Thus, a typical knot complement (and according to 
geometricization, this is typical), is a union of hyperbolic (or perhaps one of several other 
geometries, see [Scott]) manifolds glued together along their cusps.  (See chapter 3 for 
more of a discussion of the geometry at ∞ of noncompact locally symmetric spaces). 

 

                                                
28 Taken from Thurston’s 1982 Bull AMS paper. 
29 This is Preissman’s theorem that can be found in most introductory differential 
geometry textbooks.  See [Bridson-Haefliger] for a proof not using differential geometry. 
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This union itself does not have a locally homogeneous structure.  Its fundamental 
group cannot be a lattice in any Lie group.   

 
This is because in any of the three dimensional geometries (see [Scott]) any Z2 is 

either peripheral, i.e. conjugate to the fundamental group of a boundary component30, or 
contains an element of the center of the fundamental group31.  The Z2 coming from the 
torus of “companionship” is neither, and therefore this manifold does not have a locally 
symmetric structure. 

 
The upshot is that it is very easy to obtain closed aspherical three manifolds 

whose fundamental groups are not lattices, e.g. the double of any knot complement other 
than torus knots.  But, they are obtained indirectly by gluing together lattices. 

 
It is hard to make this precise, but till the early 80’s there was a general feeling 

that perhaps somehow, lattices were the source of all closed aspherical manifolds.  We 
will see that this is not the case as we go along, but let us start with the lattices 
themselves.  Before we do, let us close this discussion by making one very useful 
observation about gluing aspherical objects:   

 
Proposition:  If A, X and Y are aspherical A = X∩Y, and suppose that π1(A) → π1(X) 
and π1(A) → π1(Y) are injective, then X∪Y is aspherical. 
 
 Without the injectivity, the 2-sphere is a counterexample: it is a union of two 
disks along a circle, all aspherical, but not π1 injective.   
 
 To see why the proposition is true, we shall construct the universal cover of X∪Y 
and observe that it is contractible.  We begin by taking the cover of X.  Over A, (by 
injectivity) we get many copies of the universal cover of A (according to the cosets of 
π1(A) → π1(X)).  Each of these is glued to a copy of the universal cover of Y (which also 
contains many copies of the universal cover of A).  We then proceed by gluing back 
copies of the universal cover of X and so on.  This is a union of contractible spaces glued 
together along (disjoint) contractible spaces, so this is contractible. 
 

Remark.  If one shrinks each copy of the universal cover of X to a point, and each 
copy of the universal cover of Y to a point while stretching and shrinking the copies of 
the universal cover of A to intervals, we get the Bass-Serre tree associated to this 
amalgamated free product description of π1(X∪Y). 

 

                                                
30 Quotients by lattices have a natural compactification (the Borel-Serre compactification) 
which makes them into the interiors of manifolds with boundary.  It is this virtual 
boundary that I am referring to when I describe a subgroup of the fundamental group as 
being peripheral. 
31 Like in the situation of a circle bundle over a surface. 
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This proposition is of critical importance.  It enables us to construct interesting 
examples by gluing.  We will either explicitly or tacitly apply it many times.  A 
consequence of this is that we can take geometric models for given groups (i.e. K(π,1)’s 
for groups) and glue them together to construct models for various amalgamated free 
products and HNN extensions: the quality of the union will depend on the quality of the 
complexes we begin with and of the inclusion of the subgroup.   But, for example, it 
shows that the category of finite K(π,1), i.e. π’s that are realized by finite aspherical 
complexes is closed under amalgamated free products and HNN extensions. 

 
This, in particular, allows the construction of finite aspherical complexes whose 

fundamental groups have unsolvable word problems, or other logical complications.  The 
Davis construction, discussed below, will incorporate these features into fundamental 
groups of aspherical manifolds. 
 
  
 
2.2  Constructions of lattices 
 
 Given a Lie group, even a quite explicit one like O(n,1) (the automorphisms of the 
quadratic form x12+ x22 …. + xn2  - xn+12  -- the isometry group of hyperbolic n-space) 
or SLn(R), it is not trivial to find uniform lattices, i.e. discrete subgroups of G such that 
G/ Γ is compact32.  Indeed, this is not always possible, e.g. for solvable Lie groups33. 
 
 However, if G is semi-simple, Borel gave a general construction of uniform 
lattices (and Raghanuthan gave nonuniform lattices34, see Raghunathan’s book 
[Raghunathan] for both).  For SLn(R) there is an obvious lattice, namely SLn(Z), but it is 
not uniform, i.e. cocompact.  If we think of SLn(Z)\SLn(R)/SO(n) as the space of flat tori 
(as in 1.1), then tori that are more and more eccentric (i.e. the result of identifying 
opposite sides in a rectangle with sides t and 1/t) leave any compact subset of this space 
(the shortest geodesic is approaching 0-length). 
 
 Let’s make this a bit more precise (or more general).  To talk about the “integer 
points” in a Lie group, we should define it over the field Q (there are many distinct ways 
of doing this).  Then, for simplicity, let’s assume that the group is linear – there will be a 
maximal subgroup isomorphic to Q*k in G(Q); here the diagonal matrices and k = n-1.  
If k > 0, then G/G(Z) is not compact and one can take powers of a matrix in this Q-split 
torus to leave any compact. 
 

                                                
32 Recall that Γ is a lattice in G if, giving G its natural (Haar) measure, the quotient G/Γ 
has finite volume. 
33 The 2-dimensional Lie group of affine isomorphisms of R → R (the “ax+b” group) 
contains no lattices. 
34 Note that Rn has uniform lattices, but no nonuniform lattices.  The same is true for all 
nilpotent real Lie groups. 
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The converse holds, i.e. the nonexistence of such a Q-split torus implies 
compactness (and this is a theorem of Borel and Harish-Chandra).  We defer further 
discussion of this to chapter 3, where the size of the torus will be seen to govern the 
“size” of G/Γ.   

 
Another way to tell if a lattice is nonuniform is to see if it contains any nontrivial 

unipotent elements.  (Consider the Lie group G as a matrix group, and then g is unipotent 
if its characteristic polynomial is (t-1)n for some n, i.e. if g differs from the identity by a 
nilpotent matrix.)  No uniform lattice contains unipotent elements: the length of a 
geodesic represented by g in Γ\G/K is proportional to the supremum of  |log(λ)| over 
eigenvalues of g representing the g.   The converse had been a conjecture of Selberg, 
proved by Kazhdan and Margulis (and we refer to [Margulis] for the proof), and this 
property is often easy to check. 

 
 Finding appropriate Q structures for the case of SLn is rather nontrivial and 
requires some development of theory of Division algebras.  We shall leave this to the 
references, but for those who know some algebra, the group of units in an order in a 
division algebra of dimension n2 does the trick.   
 
 Let us now return to the problem of constructing uniform lattices.  
 
 For O(n,1), looking at O(n,1)(Z) does not do the trick: one obtains a lattice, but 
not a uniform one35.  However if we replace the quadratic form x12+ x22 …. + xn2  - 
xn+12  by Q = x12+ x22 …. + xn2  - √p xn+12  then the real Lie group is the same: the 
quadratic forms are isomorphic over R.  However, O(Q)(Q[√p]) has 2 different 
embeddings into real orthogonal groups, associated to the two embeddings of Q[√p] into 
R, according to whether √p is positive or negative. 
 
 The (real) orthogonal group associated to making √p negative is the usual 
compact orthogonal group.  Note that the orthogonal group has no nontrivial unipotent 
elements.  This means that O(Q)(Z[√p]) is a uniform lattice in O(n,1) × O(n+1).  
However, we can safely project to the first factor, as the second factor is compact, with at 
most a finite subgroup as kernel.  In other words, the space O(Q)(Z[√p])\O(n,1)/O(n+1) 
is a compact hyperbolic orbifold.  Replacing O(Q)(Z[√p]) by a torsion free subgroup of 
finite index gives a compact hyperbolic manifold. 
 
 This method produces many lattices.  Lattices produced in this way are called 
arithmetic. Note that when written in coordinates, automorphisms defined using larger 
fields than Q give rise to Lie groups over Q – this is formally called “restriction of 

                                                
35 Considering the automorphisms of the slight variant a1x1

2+ ....anxn
2-an+1xn+1

2 one 
obtains a uniform lattice iff this indefinite quadratic form does not represent 0 (i.e. does 
not vanish on any integral vector).  However, the Hasse-Minkowski theorem says that 
this does not happen when n>4. 
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scalars”.  Using suitable quadratic forms over arbitrary totally real fields, we can get 
uniform lattices in any O(p,q).   
 
 The general case follows, as Borel says, from the statement that “any real 
semisimple Lie algebra has a form defined over a totally real field E ≠Q all of whose 
conjugates are compact.”  Borel proves this Lie theoretic statement via tricky (for me) 
Lie algebra calculations in his paper (and the book of Raghunathan explains how to 
guarantee Q forms that produce the non-uniform lattices, as well).   
 
 For simple Lie groups of rank ≥ 2 (or even irreducible36 lattices in semisimple 
groups) Margulis shows that these are all the examples, i.e. that all lattices are arithmetic. 
The reader should pause to reflect on how amazing this result is: one is given a structure 
with only local information defined over R, (say a group of real matrices, or a finite 
volume Riemannian manifold modeled on some K\G) and one needs to find an algebraic 
number field and a form of the Lie group from this and then an isomorphism of one’s 
given object with the arithmetic construction.  
 
 In the cases not excluded by Margulis (and the subsequent work of Corlette, 
Gromov and Schoen that prove arithmeticity in some rank 1 situations by more analytic 
methods, see [Gromov-Schoen]), it is an important question of whether there are non-
arithmetic lattices.  
 
 We mention here three such constructions, all of which are in O(n,1).  (Some 
examples are also known in U(n,1) for small values of n, see e.g. [Deligne-Mostow], but 
these are isolated.) 
 
Method One: Reflection groups 
 
 The first is classical, and is based on constructing polyhedra in hyperbolic space 
so that reflections across its walls generate a reflection group on hyperbolic space.  In the 
hyperbolic plane, the easiest example is a triangle with angles π/p, π/q, and π/r so that 1/p 
+ 1/q + 1/r < 1.  (Below is an example with p,q, r = 2,3,9.)  Even in dimension 2, 
Takeuchi37 showed only finitely many of these are arithmetic (and indeed gave a list of 
these).   
 
 It is known that such examples exist in small dimension, and do not exist in very 
high dimensions.  Nevertheless, they perhaps motivate the Davis construction to be 
discussed in 2.3 below. 
 

                                                
36 A lattice is reducible if, after passing to a subgroup of finite index, it is a product of 
two other lattices.  An irreducible lattice in a product of Real groups will project to a 
dense subgroup of each of the factors.  So, for example, among lattices acting on a 
product of two hyperbolic planes, reducible ones will have deformations, but irreducible 
ones will be arithmetic (and have no deformations). 
37 See [Takeuchi]. 
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Method Two:  Closing Cusps 
 

This method is due to Thurston, and is his famous Dehn surgery theorem.  (See 
[Thurston].)  Consider a hyperbolic manifold with cusps (e.g. a knot complement, or 
most38 link complements for “nonsplittable” links, i.e. links in which components cannot 
be isotoped to lie in disjoint balls).  Thurston shows that for all “sufficiently large” 
surgeries, one obtains a compact hyperbolic manifold.   

 
What does this mean? Given a manifold whose boundary is a torus, we can “close 

it up” by gluing in a solid torus S1 × D2.  Although there is an SL2(Z) = π0 Diff (T2) set 
of possible gluing diffeomorphisms, the diffeomorphism type of the manifold  is 
determined by the image of the circle ∂D2.  (One can imagine the gluing as being done in 
stages: first glue in a thickened D2 to get a boundary component that is an S2 and then 
glue in a final ball, which has no indeterminacy).  These are parameterized by the 
primitive (i.e. indivisible) elements of H1(T2) ≈ Z2. 
 

Thurston’s theorem now asserts that if one excludes finitely many possibilities at 
each cusp, then all the remaining possibilities of filling produces hyperbolic manifolds.  
Moreover, as the boundary curves get longer and longer, the hyperbolic manifold that is 
constructed gets closer and closer to the original cusped hyperbolic manifold in a verify 
reasonable geometric sense: The “surgery” can, up to very small perturbation, be 
imagined as taking place further and further from the “core” of the original manifold39.  
(We will discuss the shape of noncompact locally symmetric manifolds at infinity more 
in the next chapter.) 

 
As a result, these manifolds have different volumes that converge to the volume 

of the original cusped manifold.  This is a very crude reason for nonarithmeticity 
                                                
38 One needs to exclude phenomena analogous to companionship (which prevent any 
geometric structure) or torus knots (which correspond to structures that are not 
hyperbolic). 
39 These examples provide a good set of examples for thinking about thick-thin 
decompositions, and the Cheeger-(Fukaya)-Gromov collapse theory. 
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(although it does not do a single example!): for any G, the volumes of the arithmetic 
lattices K\G/Γ form a discrete subset of the positive reals40. 

 

 
 

It is very interesting to ponder this example from the representation-theoretic 
viewpoint.  One starts with a representation: 

 
ρ : Γ→ PSL2(C) 

 
that describes the original hyperbolic manifold with cusps.  The filling gives nearby 
representations ρn : Γ/<γn> →  PSL2(C) where <γn> is the subgroup normally generated 
by the n-th filling curves.  These provide a family of nearby but inequivalent 
representations to Γ. 

 
Of course, Mostow’s rigidity theorem asserts the uniqueness (up to conjugacy) of 

the discrete faithful representation.  These representations are perturbations that are not 
faithful but are discrete.  (For a closed manifold, all nearby representations to the discrete 
faithful one are in fact equivalent to it.) This phenomenon is highly special to this Lie 
group.  Superrigidity is a significant strengthening of the representation theoretic aspect 
of Mostow rigidity in high rank, and would preclude anything like this in higher rank41. 

 

                                                
40 In some cases, they are even quantized (i.e. multiples of a given smallest one) using the 
Gauss-Bonnet theorem.  I suspect that the converse holds, i.e. that only for G’s with 
χ(K\G/Γ) ≠ 0 (this can be re-expressed in various ways – but, in particular for the case of 
hyperbolic manifolds, this is exactly that the dimension be even), are the volumes of 
torsion free lattices quantized. 
41 Which is a good thing, because superrigidity gives rise to Margulis’s arithmeticity (and 
therefore to discreteness of the set of volumes). 
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This method also has had a number of applications to constructing aspherical 
manifolds (and groups) that are not lattices. We will mention some in the next section, 
and will recur when we discuss the groups of Gromov that disprove a version of the 
Baum-Connes conjecture42 in chapter 10. 

 
Method Three: Gromov-Piatetski-Shapiro (G-PS) Grafting43 
 
 This is the only method that is known to produce examples in all dimensions.  We 
describe the idea, but none of the technicalities, for which we refer to the original paper 
[Gromov-Piatetski-Shapiro]. 
 
 Suppose that you have two compact arithmetic manifolds, and that they have a 
common codimension one submanifold.  In other words we have M and M’ that are not 
(virtually) isometric, but both contain a separating totally geodesic submanifold V.  Then 
we can cut both M and M’ along V, and glue one side of M to the other side of M’.  This 
is clearly a hyperbolic manifold44.  
 
 This manifold cannot be arithmetic, essentially because it has a big enough piece 
of M that it would have to be M if it were, but it would similarly have to be M’ but it 
can’t be both! 
 
 How do we get such pairs?  
 
 We get uniform lattices from orthogonal groups, but it is possible for different 
quadratic forms to give the same lattice.  The condition is that the forms be similar. (i.e. 
equivalent to rescaled versions of one another).  Now it is pretty easy:  If one takes the 
orthogonal groups of the quadratic forms x12+ x22 …. + xn2  - √2 xn+12  and 3x12+ x22 
…. + xn2  - √2 xn+12  over Q[√2] one gets noncommensurable lattices for n even.  (The 
case of n odd is another trick away.)  Now these each have an involution associated to 
x1→ - x1 whose fixed set is a codimension one submanifold: essentially the orthogonal 

group of the lattice x22  +…. + xn2  - √2 xn+12. 
 
 We will have use for the natural topological variant of this method for constructing 
interesting examples (such as counterexamples to certain orbifold variants of the Borel 
conjecture) in chapter 7.  One tries to find interesting aspherical objects with boundary 
and then obtains monsters by grafting45 them together.  
 
2.3  Some more exotic Aspherical Manifolds. 
 
                                                
42 This is a C* algebra version of the Borel conjecture. 
43 They call it “interbreeding”. 
44 More precisely, it is clearly a compact manifold with constant curvature = -1, but such 
are of course hyperbolic. 
45 Or interbreeding them. 



  30 

Method One:  Davis’ Reflection group method. 
 
 This method was introduced in a paper [Davis 2], whose self-described aim was to 
describe aspherical manifolds whose universal cover is not Euclidean space.  There is a 
simple criterion (thanks to the Poincare conjecture) for determining whether a 
contractible manifold is Rn or not; it is whether the manifold is simply connected at 
infinity46.     
 
 Recall that a manifold (or even locally compact space) is connected at infinity, if 
the complement of any compact subset has exactly one “noncompact” component (more 
precisely, one component with noncompact closure).  Assume this is the case, then one 
can glob on all the compact components, to obtain a somewhat larger compact, whose 
complement has exactly one component.  
 
 Now let us consider a sequence of compact subsets that exhaust the space.  Ai  ⊂	
Ai+1 and M = ∪Ai.  M is simply connected at infinity if the inverse limit sequence  

π1(M – A1) ← π1(M – A2)←… ←π1(M - Ai ) ←….. 
is pro-equivalent to the trivial system, i.e. for each i, there is a j > i so that π1(M – Ai) ← 
π1(M – Aj) is trivial.   
 
 Note: this is not equivalent to there being “no loop that can be moved all the way 
to ∞” the system of Z ← Z ← …. where all arrows are multiplication by 2 has that 
property, but is not pro-trivial.  The inverse limit is indeed trivial, but the multiples of 2n  
come from n stages ahead -- and this image does not stabilize. 
 
 At least for high dimensional manifolds, this pro-triviality (i.e. simple connectivity 
at infinity) is equivalent to there being an exhaustion by compact sets, all of whose 
complements are simply connected.  In general, the inverse limit of this sequence is 
independent of the defining compact sets, but this “fundamental group at ∞” only 
sometimes47 plays the same role as the fundamental group for compact manifolds.  In any 
case, it is a good approximation to “π1(∂) if it only were the interior of a manifold with 
boundary ∂”. 
 
 A good example of a contractible manifold (of dimension > 2) which is not 
Euclidean space is the interior of a contractible manifold whose boundary is nonsimply 
connected.  The boundary of a compact contractible manifold is automatically a 
homology sphere (i.e. has the homology of a sphere) – which is a sphere (according to the 
Poincare conjecture) if and only if it is simply connected. 
 

                                                
46 This criterion, in dimension > 4 is due to [Stallings2] (and extended to dimension 4 by 
Freedman; in dimension three it follows from the Poincare conjecture). 
47 Essentially when the manifold is tame at ∞.   
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 However every homology sphere bounds a contractible topological manifold48.   
Some 3-dimensional examples of homology spheres can be obtained by gluing together 
two nontrivial knot complements along their boundaries interchanging longitudinal and 
meridional directions.  Higher dimensional examples can be obtained by spinning low 
dimensional ones: puncture a homology sphere and cross it with a disk, and then take the 
boundary of this manifold.  
 
 Without relying on any theory, a simple example of a contractible 4-manifold 
whose boundary is nonsimply connected is a Mazur manifold, constructed as follows: 
attach a D2×D2  to S1×D3  along a (neighborhood of a) nontrivial knot in ∂(S1×D3) =   
S1×S2 that represents a generator of π1 = Z.49  (Mazur observed, see the crystal clear 
exposition in [Zeeman], that the product of this manifold with the interval [0.1] is a ball.)   
 
 Davis’s idea was to generalize the obvious construction of R2 from a square by 
repeated reflection and gluing (producing the checkerboard with an action of the product 
of two infinite dihedral groups, D∞× D∞) to a construction of some contractible manifold 
by reflecting across the top simplices of a triangulation of the boundary of any 
contractible manifold with boundary, with an action of a Coxeter group (that is a group 
generated by reflections, whose only relations are commutation of the reflections along 
incident faces, see next page), whose quotient is precisely this “seed” contractible 
manifold. 
 
 Davis also calculates that if the seed has nonsimply connected boundary, then the 
manifold he constructs in this way is also nonsimply connected at ∞.  In particular, this 
happens if one starts with a Mazur manifold. 
 
 It is a general fact that Coxeter groups are linear, and therefore virtually torsion 
free, so a finite index subgroup acts on this contractible manifold freely, giving the 
relevant compact aspherical manifold with exotic universal cover. 
 
 Now for a few more details and a generalizations with some indication of 
applications.   
 

                                                
48 This is classical and due to Kervaire if the homology sphere is of dimension 4 and 
higher.  It is strictly speaking correct in the PL and Topological categories – in the 
smooth category it might be necessary to take the connected sum with an exotic sphere (a 
differentiable manifold homeomorphic to the sphere).  In dimension three is this true in 
the topological category by the work of Freedman, but it is not true in the PL and smooth 
categories by Rochlin’s theorem that the signature of a closed spin (smooth) 4-manifold 
is divisible by 16.  (The most straightforward proof of this important theorem is probably 
the one given in [Lawson-Michelson]). 
49 Of course, to get an example one should specify a knot and calculate that one gets a 
nontrivial homology sphere, but Gabai’s theorem on “Property R” guarantees this. 
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 A Right angled50 Coxeter group is given as a pair (Γ, V) where Γ is a group and V 
is a generating set, by elements of order 2.  All the relations of Γ are consequences of 
relations of the form (vw)2=1.  We shall take the barycentric subdivision of a 
triangulation of our seed X.  Define an abstract group Γ, generated by involutions v, one 
for each top simplex.  We impose the relation (vw)2=1 (and hence v and w commute) if 
the two simplices share a face.  Note that is a k-tuple of simplices have pairwise 
commuting associated generators, then the intersection of these simplices is nonempty 
(and conversely).  Consider Z = Γ×X /~ where we identify points (γ, x) = (γ’, x’) if and 
only if γ-1γ’ lies in the group generated by all of the generators of all the simplices that x 
lies in.  So, in the interior of the seed, there is no identification.  On the simplex 
corresponding to a generator v, v acts trivially.  Davis shows by an induction on the 
length of the words in Coxeter group, that one obtains in this way a contractible manifold 
by showing that it is an ascending union of contractible spaces glued along contractible 
subspaces51.   
 
 The Davis construction is most usefully put into the context of CAT(0) geometry52, 
both in its own right in understanding the geometry that such a group has, and also 
because of the role that negative and non-positively curved geometry plays throughout 
our story.  Neveertheless, we defer this discussion for now, and will say a bit more about 
it in describing the next construction. 
 
 Another variant that has extremely important applications is using strange seeds to 
construct aspherical manifolds with other strange properties.  Start with any aspherical 
seed that is a manifold with boundary.  Triangulating the boundary, and constructing the 
reflection group, one obtains here an aspherical manifold with a cocompact Coxeter 
action, and therefore, by passing to the universal cover, a contractible manifold with a 
cocompact group action, so on taking the quotient, a compact aspherical manifold which 
inherits properties from the seed.  For example, this is a good way to (following Davis 
and Hausmann) produce aspherical manifold with no smooth structure, or even no 
triangulation (using a seed that is a topological manifold that is nontriangulable, but 
whose boundary is triangulable, so that the construction can be done).   
 
 If K is any finite aspherical complex, one can take its regular neighborhood in 
Euclidean space53 to obtain a manifold with boundary to use as a seed.   This is a good 

                                                
50 We assume RA (right angles) for simplicity.  Otherwise the exponent in the power for 
the nontrivial relations would be different. 
51 Perhaps reminiscent slightly of the argument in 2.1. 
52 CAT(0) is a synthetic notion of non-positive curvature, named such by Gromov in 
honor of Cartan, Alexandrov and Toponogov, see [Gromov HG].  Wait a page!   
53 Any (finite) polyhedron can be simplicially embedded by general position in a much 
larger dimensional Euclidean space.  Subdividing, and taking the union of all of the 
simplices that touch this complex, one obtains a (compact) manifold with boundary that 
(simplicially collapses onto and therefore) deformation retracts to the polyhedron.  This is 
called a regular neighborhood. 
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way to produce aspherical manifolds whose fundamental groups are not residually finite 
or don’t have solvable word problem.   
 
Method Two: Branched covers (Gromov-Thurston examples): 
 
 Gromov and Thurston54 gave some very interesting examples of compact 
manifolds with pinched negative curvature, i.e. curvature between -1 and -1-ε by a 
variant of the philosophy of Dehn filling.  This elaboration of that philosophy paves the 
way to other interesting constructions of groups by “adding large relations”. 
 
 The basic idea is that negative curvature is a condition of large links.  After all, 
negative curvature means that geodesics spread faster than in Euclidean space.  So, if one 
takes a triangulated 2 dimensional polyhedron, and then metrize it so that every triangle 
is an equilateral triangle with side length 1, then assuming that each vertex is incident to 
at least 7 triangles should give a type of negative curvature.  (As an exercise with Euler 
characteristic, neither the 2-sphere nor the torus has such a triangulation.) 
 
 A suitable version of curvature is given by the notion of CAT(k) geometry.  A 
metric space X is called geodesic if its metric is generated by the length of paths 
connecting pairs of points.  Riemannian manifolds are a good example, but one can make 
examples, by using a metric and then taking lengths of paths.  Now, suppose that we have 
a triangle in X – then we can construct a triangle in one of the model geometries with 
curvature k (i.e. rescaled Hyperbolic space, Euclidean space, or a sphere).  We say X is 
CAT(k) if the triangles in X are thinner than the corresponding model triangle, meaning 
that each leg is closer to the union of the other two in X than they are in the model. 
 

 
 

This is equivalent to curvature < k for Riemannian manifolds and is a useful synthetic 
substitute for other metric spaces.  If X is locally CAT(0) then its universal cover is 
contractible.  (Points will be connected by unique geodesics, and the contraction will be 
radial.)  A great example is a tree. 
 
 Back to the case of triangulated surfaces:  6 incident triangles for each point 
implies CAT(0), 7 gives a negative55 CAT curvature.  
 

                                                
54 [Gromov-Thurston] 
55 Depending on the length of the triangles. 
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 In the Dehn surgery theorem, we have can think of the process of filling as gluing 
on (a family of) D2s along the translates of a geodesic on the boundary torus.  Thurston’s 
theorem tells us that we can have negative curvature (indeed he gives constant, but that’s 
too much in general) if the length of the geodesic is long enough. 
 
 Gromov and Thurston do something similar.  They consider a hyperbolic manifold 
M with a totally geodesic submanifold V of codimension two.  They show that k-fold 
branched covers56 (can be proved to exist, at least sometimes and then) can be given 
metrics with curvature between -1 and -1-c/log(k).  The volume in this construction 
grows linearly: the metric is constructed quite explicitly and deviates from the hyperbolic 
metric only in a small neighborhood of the submanifold (as the heuristic suggests).   
 
 Philosophically, when k gets large, the curvature should be getting more negative.  
They essentially have to stretch the neighborhood to make it more pinched (i.e. so that 
the divergence of the geodesics has more time to occur).  
 
 The reason that these manifolds can’t be made constant negative curvature is a nice 
application of Mostow rigidity.  They all have Z/k actions, which would be isometric if 
they were constant curvature.  Varying k, and modding out by the actions would produce 
infinitely many different hyperbolic orbifolds with bounded volume.   However, above 
dimension 3, there are only finitely many hyperbolic orbifolds with any given volume 
bound (Wang’s theorem, see [Wang]).  
 
 As the last technical point to mention, a codimension two submanifold can be 
branch covered along if and only if it is trivial in homology.  We can construct examples 
of this by the arithmetic construction we discussed earlier. If one uses the quadratic forms 
as arose in “grafting”, then there is a Z2 × Z2 action generated by 2 reflections.  The 
fixed set of the action of the whole group is nullhomologous in the fixed set of either of 
the involutions – which gives us the relevant M and V to start this construction. 
 
 In general this method is about adding long relations and keeping negative 
curvature.  This method is related to the ideas of small cancellation theory (as is CAT(-1) 
geometry in general) and in both its manifold and non-manifold versions has led to many 
very interesting groups, some of which we will discuss below. 
 
Method Three: Hyperbolization. 
 
 The basic idea of hyperbolization is very simple, and there are many 
hyperbolization methods, i.e. implementations of this idea – we will be brief and leave 

                                                
56 Recall that a branched cover of a manifold M along a codimension two submanifold V 
is a cyclic covering space of the complement M-V that restricts to the usual cyclic cover 
of the circle to itself in the direction normal to V.  This allows one to fill in V in the 
covering space, and obtain a manifold (with Zk action – whose fixed set is V, and whose 
quotient in M). 
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the reader to study the (rather beautiful) literature (see the notes).  On the other hand, it is 
impossible to resist mentioning at least a few of the surprising examples.  
  
 The Kan Thurston theorem asserts that any simplicial complex X has the 
homology type of a group π, i.e. there is a map Bπ → X which is an isomorphism (for all 
local coefficient systems on X).  Baumslag, Dyer, and Heller ([Baumslag-Dyer-Heller]) 
gave a very nice approach to this theorem that gives a finite complex Bπ if X is finite.   
 
 The idea is to find a “simplex of acyclic groups” and glue these together.  One 
simple version can be done as follows, using cubes instead of simplices.  This doesn’t 
make a difference since one can replace every simplicial complex by a “cubulated” 
complex. So we will instead look for cubes of acyclic groups. 
 
 Acyclic groups are easy to come by.  A simple example is any free product with 
amalgamation π = F*F’F where F and F’ are free groups of rank k and 2k respectively, 
and the first inclusion of F’ to F induces a split surjection on first homology Z2k→  Zk  
projecting onto the first k dimensions, and the second inclusion interchanging the first 
and second k basis elements.  In this case, gluing tells us that Bπ is the two complex 
obtained by taking the double mapping cylinder of a wedge of 2k circles mapping to 2 
wedges of k circles.  A straightforward Mayer-Vietoris calculation then gives that Bπ is 
acyclic. 
 
 An “interval of acyclic groups” is simply given by the diagram of groups π → π×π 
← π where the first (respectively second) inclusion is given by the inclusion of the first 
(second) factor.  From intervals of groups, we can obtain squares and the cubes of groups, 
by taking products. 
 
 Note that if we have a cubical complex, we can then (ordering the vertices!) glue 
together the associated cube of acyclic groups.  This will produce a complex (in this case, 
finite if X is, and of twice the dimension) which has all of the desired properties. 
 
 Notice that this construction is aspherical in the category of simplicial complexes 
(or cubical complexes) and simplicial inclusions.  
 
 Hyperbolizations do exactly the same thing, but using aspherical manifolds57 
instead of complexes.  In both of these constructions it is critically important that 
fundamental groups inject for gluing purposes.   
 
 It is not possible to arrange for the map to be a homology equivalence (for then the 
2-sphere would be homology equivalent to an aspherical surface – which we know by 

                                                
57 We give up on acyclicity however. 
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classification is not the case)58.  However, other geometric properties can be achieved by 
suitable constructions of simplices or cubes of aspherical manifolds. 
 
 The seed is often chosen to be non-positively curved (or negatively curved), 
orientable, or even with stably trivial59 tangent bundle.  Points are hyperbolized as points, 
and the geometry is rigid enough that the links of these points are the same in X and its 
hyperbolized version.  If X is a manifold, so will the hyperbolized space, and the map 
H(X) → X will be degree one and preserve characteristic classes.   This implies that H(X) 
is cobordant to X60, so, for example, every cobordism class contains an aspherical 
manifold. 
 
 If M is a manifold with boundary, Gromov suggested hyperbolizing M∪c∂M 
(where c∂M denotes the cone of the boundary of M).  This will produce an aspherical 
complex with a single singular point, whose link is ∂M.  One can show that if ∂M is 
aspherical, then one can remove this singular point to get a “relative hyperbolization” that 
∂M bounds (mapping to M).  Thus, not only is every manifold cobordant to an aspherical 
manifold, but also cobordant aspherical manifolds are cobordant through aspherical 
manifolds.   
 
 Among the applications of this technique (besides ones we will see later) are 
aspherical manifolds that cannot be triangulated or smooth manifolds (whose universal 
covers are topologically Rn) with CAT(0) metrics, but no Riemannian metric of non-
positive curvature.   
 
 For example a nontriangulable aspherical manifold comes from the following.  The 
Poincare homology 3-sphere61 Σ bounds a 4-manifold W whose intersection form is E8 
(the unique 8 dimensional positive definite unimodular quadratic form over Z with <x,x> 
≡ 0 mod 2 for all x)62  Hyperbolize W∪c∂.  Then remove the cone point, and glue on the 
contractible 4-manifold, constructed by Freedman, that Σ bounds.  This gives a 
topological manifold, X that being homotopy equivalent to the hyperbolization, is 
aspherical.  On the other hand, this manifold is “spin” in the sense that its first two 
Stiefel-Whitney classes must vanish (since they do for W, and hyperbolization is 
tangential) which then prevents smoothness – by the cobordism property X has signature 
8, but Rochlin’s theorem asserts that any smooth spin 4-manifold has signature a multiple 
of 16. 
 

                                                
58 In higher dimensions, I do not know how to eliminate any closed manifold from being 
homology equivalent to an aspherical manifold. However, the Hopf conjecture would 
clearly preclude this. 
59 i.e. trivial after adding on a trivial bundle. 
60 By the Thom’s classical work that shows that bordism is governed by tangential 
information [Thom].   
61 See Kirby and Scharleman’s article in the references for a beautiful description of this 
3-manifold and many descriptions and properties of it.   
62 See Serre’s Course in Arithmetic for more information. 
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 X cannot be triangulated as a simplicial complex, as can be seen either using the 
Casson invariant63 (or even easier now, the 3-dimensional Poincare conjecture). 
 
 Recently, [Ontaneda] has refined the construction of hyperbolization to produce 
arbitrarily well pinched negatively curved hyperbolizations, so one can, for instance, 
construct manifolds with curvature -1-ε < k < -1 in any cobordism class. 
 
  
 
2.4 Notes. 
 
 That surfaces tend to be aspherical is classical.  For 3-manifolds, there were some 
early results by combinatorial methods.  For example [Aumann]64 proves the result 
asserted in its title with its main topological tool being the gluing lemma.  That 3-
manifolds in general tend to be apsherical (and e.g. the complements of all knots, and all 
non-splittable links) is due to Papakyriakopoulos [Papa]. 
 
 The tools introduced in this paper (the Dehn lemma, loop and sphere theorems) 
were the core of 3-manifold topology (their power being most evident for the class of 
“Haken” 3-manifolds) until the Thurston revolution brought in a wealth of more 
(differential) geometric techniques.  This development can be found in any standard book 
on 3-manifolds.  (Good references for the torus decomposition and some of its pre-
Thurston understanding are the books [Hempel, Jaco]). 
 
 The geometricization conjecture of Thurston is a picture of all closed 3-manifolds 
in terms of locally symmetric ones.  The possible geometries are well described in the 
paper [Scott].  Very useful explanations of Thurston’s theorem proving this picture 
correct in the situation where there is an incompressible surface are [Morgan2] and 
[Kapovich] (from a different point point of view than Thurston’s original approach).  A 
detailed explanation of Perelman’s result can be found in [Morgan-Tian]. 
 
 The study of locally symmetric manifolds started in the 19th century.  These 
manifolds are now studied by mathematicians of many different stripes.  Besides being 
interesting examples to geometers, the geometry and topology of many of these 
manifolds are the essence of such classical results of algebraic number theory as the 
Dirichlet unit theorem (which calculates the group of units in the integers of an algebraic 
extension of Q, and which is the compactness of a certain torus) and the finiteness of the 
class number (which, for instance in the situation of a totally real field follows from the 
existence of a compactification for Hilbert Modular varieties -- the cusps corresponding 
to elements of the class group).  We will discuss arithmetic manifolds and hints of 
arithmeticity in the next chapter.  As mentioned in the text, Borel [Borel 1] gave the first 

                                                
63 Casson showed how to count the conjugacy classes of SU(2) representations of the 
fundamental group of homology 3-sphere, and that when done properly, these reduce 
mod 2 to 1/8 of the signature of any smooth cobounding spin 4-manifold. 
64 whose author later won a Nobel Prize (for work in game theory). 
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general construction of uniform lattices for all K\G.  It is much simpler to give non-
uniform lattices.  The book by Witte-Morris [Witte] is extremely useful. 
 
 Nonarithmetic lattices, as we have seen, are ubiquitous (if not so easy to construct) 
in low dimensions.  The question of exactly which semisimple Lie groups admit them is 
still open.  As we mentioned, for rank >1, Margulis’s arithmeticity theorem assures us 
that there are no (irreducible) examples. (See [Margulis 1] and [Zimmer].)   
 
 The only known construction that works in infinitely many dimensions is the 
Gromov-Piatetski-Shapiro grafting method we explained.  Mostow and Deligne gave 
some examples in U(n,1) for small n.  On the other hand, in Sp(n,1) and F4, Gromov and 
Schoen (following on earlier work of Corlette) showed that arithmeticity does hold using 
analytic methods related to harmonic maps [Gromov-Schoen].   
 
 The G-PS manifolds play a role in counting the number of hyperbolic manifolds 
with volume < V, in dimensions >3 (when it is finite) [Burger-Gelander-Lubotzky-
Mozes] and with diameter < D in all dimensions (including 3) [Young]65. 
 
 As emphasized in the text, the examples of nonarithmetic lattices are suggestive of 
tools for constructing interesting aspherical manifolds that have nothing to do with 
lattices.  Davis (as he explains in [Davis 1,2]) was motivated by Andreev’s theorem about 
reflection groups in hyperbolic space.   
 
 Closing cusps has been applied both to manifolds and to non-manifolds.  CAT(0) 
geometry was broadcast to the world by Gromov in his paper on hyperbolic groups 
[Gromov, Hyperbolic groups].  The main theme of that paper is developing a large scale 
(or coarse) notion of negative curvature for groups, as a property of their Cayley graphs, 
and showing how this notion deepens and generalizes our understanding of hyperbolic 
manifolds.  The most obvious examples of such groups are fundamental groups of 
negatively curved manifolds, and also free group.  But there are many more! 
 
 For instance, Gromov points out that one can cone very long words at will66 (as a 
generalization of the idea of Thurston’s Dehn surgery theorem) and maintain negative 
curvature, giving “easy” finitely generated torsion groups (just kill large powers of the 
elements of the group, one at a time)67.   

                                                
65 Note that when a hyperbolic Dehn surgery is done, the filling takes place further and 
further down the cusp, and the diameter of the manifold increases with the length of the 
curve filled. 
66 What I mean is that one can represent a long word in π1X by a long closed geodesic in 
X, and then we can attach a disk along this word, and maintain negative curvature.  If the 
geodesic is long, then the geometry is that of locally have an n-gon with n>6 at the new 
vertex. 
67 If one starts with a lattice in Sp(n,1) and does this, one gets an infinite torsion group 
with property (T).  This example also shows that while Property (T) implies finite 
generation, it does not imply finite presentation.  (See the next chapter for the basics of 
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 That paper also introduces hyperbolization (with some glitches regarding the 
procedure fixed in [Davis-Januszkiewicz, Charney-Davis, Davis-Januszkiewicz-
Weinberger]), which also give some new applications. The paper, all told, launched a 
major area of geometric group theory and numerous other investigations.  See e.g. [Ghys-
de la Harpe] for an exposition of much of the content of that paper.  [Bridson-Haefliger] 
is an excellent source on non-positively curved spaces that are not necessarily manifolds. 
 
 Regarding more basic facts about discrete groups that arose in the chapter, see 
[Miller] for constructions of groups with unsolvable word problem and related matters.  
[Baumslag-Dyer-Heller] is the paper that gives the finite form of the Kan-Thurston 
theorem along the lines described here.  It is subsequently applied in [Baumslag-Dyer-
Miller] to give remarkable information about the possible sequences of homology groups 
of a finitely presented group (it’s obviously not arbitrary: there are countably many 
finitely presented groups and uncountably many sequences of even finite abelian 
groups!)68.   
 
 Rochlin’s theorem, mentioned in explaining the construction of a nontriangulable 
4-dimensional aspherical manifold, asserts that the signature (see chapter 4) of a smooth 
spin 4-manifold is a multiple of 16.  This was immediately understood to be an anomaly, 
and led to various examples of phenomena where dimension 4 behaves differently from 
the smooth perspective than higher dimensions.  This turned out to be the tip of the 
iceberg with the advent of Donaldson’s thesis in 1982 (and the work that has followed it) 
that has yielded much more profound information about smooth 4-manifolds.   
  
 
 
 
  

                                                                                                                                            
Property (T).)  On the other hand, this method does not solve the Burnside problem of 
giving finitely generated exponent p groups.   However, even this can be achieved in the 
hyperbolic group setting as was shown by [Ivanov-Olshanski]. 
68 It also contains the construction of an acyclic universal group, i.e. an acyclic finitely 
presented group containing every finitely presented group as a subgroup.  (Note that 
there’s no finitely generated group containing all finitely generated groups.)  This group 
has been surprisingly helpful for various constructions.  As one example relevant to this 
chapter, it was applied in an early version of [Davis-Januszkiewicz-Weinberger] for the 
construction of relative hyperbolization – although this was not necessary in the final 
version, that followed Gromov’s original ideas more closely. 
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Chapter III.  First Contact – Nonuniform lattices 
 
 

 
 
3.1  Overview  
 
 Having given some idea of the kinds of manifolds that the Borel conjecture 
applies directly to in the last chapter, we consider in this chapter the effect of modifying 
Borel’s heuristic, and taking light of Prasad’s extension of Mostow rigidity to the case of 
nonuniform lattices.  We ask whether topological rigidity holds in this context? 
 
 It was already noticed in the early 1980’s that this is not the case.  Making use of 
Borel’s calculations of the stable cohomology of SLn(Z), Farrell and Hsiang observed 
that for n>200 and Γ a torsion free subgroup of finite index in SLn(Z), the quotient 
SOn\SLn(R)/SLn(Z) is a not “properly rigid”, i.e. there are infinitely many manifolds M 
not homeomorphic to SOn\SLn(R)/SLn(Z), but proper homotopy equivalent to it. 
 
 Actually this happens if and only if n≥ 4 (and, moreover, the same is true for any 
number rings in place of Z) as we will see in 3.769. 
 
 The goal of this chapter is to explain this in its natural setting, using this an 
excuse to explain some aspects70 of the structure of K\G/Γ 71, property (T) 72, L2 
cohomology73, and some surgery theory that we will need in later chapters.  Not as 
critical on utilitarian grounds, but nevertheless important, are discussions of the 
cohomology of arithmetic groups (ultimately these discussions go to the very meaning of 
the conjecture)74, and superrigidity. 
 
 The outline of the chapter is as follows – we will first explain the overall shape of 
K\G/Γ (which is a far-reaching generalization of the classical 19th century reduction 
theory of binary quadratic forms) and give some information about the Borel-Serre 

                                                
69 Actually, we will only explain the failure of proper rigidity if n>3; its affirmative 
solution depends on the “Borel conjecture with coefficients” and will have to wait till 
later. 
70 The next several footnotes are intended for the more expert reader. 
71 The discussion of which is also relevant to the proof of the Novikov conjecture for 
linear groups explained in chapter 8. 
72 That we will use, as is traditional, in the construction of expanders, which are relevant 
to the failure of forms of the Baum-Connes conjecture. 
73 Which is used in the proof of flexibility theorem later that affirms a consequence of the 
Farrell-Jones conjecture and of the Baum-Connes conjecture unconditionally. 
74 As the cohomology of groups gives rise to geometric consequences via the Novikov 
conjecture. 
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compactification of this manifold.  Then we will discuss some generalities about the 
cohomology of arithmetic groups and describe Borel’s results on these groups.   
 

Assembling all of this with some surgery theory, we will see a critical role played 
by the Q-rank.  The case of Q-rank = 0 corresponds to the compact manifolds, i.e. the 
Borel conjecture in its usual sense, and if Q-rank < 3, it turns out that these noncompact 
manifolds behave (for the purposes of topological rigidity) just like the compact case, and 
results explained later in the book will give their proper rigidity.  Nonrigidity will 
immediately follow from the combination of surgery theory with Borel’s calculations for 
very large n (n>176 as mentioned above).   

 
Both for the purpose of lowering n and for allowing a wider range of Lie groups 

(and for the purposes of later developments) we digress and explain several important 
properties of lattices in higher rank groups, and of certain linear groups. 

 
The first of these topics is strong approximation.  This property of linear groups 

will give us control on certain finite quotients of linear groups.  We will need this only in 
this chapter, so our discussion will be brief.   

 
We then turn to Kazhdan’s property (T).  Our focus will merely be on definitions, 

and we leave serious discussions of the scope of this property and its remarkable 
applications to other sources.  These ingredients are then assembled and combined with 
superrigidity75 to show that any lattice that has Q-rank ≥ 3 has a finite sheeted cover 
which is not properly rigid. 

 
This proper rigidity we thus obtain is somewhat weaker than one would hope: it 

asserts the existence of a proper homotopy equivalence f: M → K\G/Γ that is not properly 
homotopic to a homeomorphism.  We will need to work harder to ensure that M is not 
homeomorphic to K\G/Γ (by some other map), and that M is smoothable, and to get the 
set of such M’s to be infinite.  For these we will use a mix of tools from comparison to 
the Lie algebra mod p, to the Baily-Borel compactification in the Hermitian case, to the 
use of “generalized modular symbols” of Ash-Borel, to give a definitive solution for all 
SLn(O) (O a number ring) and for all Γ of Q-rank > 3.  (Alas, at the time of this writing, 
for example, the proper rigidity properties of certain lattices in E7 are still not well 
understood.) 
 
 We close the chapter by considering the morals of this story, a reexamination of 
the forest having focused on particular trees.  Despite the failure of proper rigidity, we 
consider noncompact variations of rigidity that actually are true for these locally 
symmetric spaces.  We also discover role for functoriality in this problem -- an aspect 
which could seem surprising given that the initial problem is purely about certain very 
specific and beautiful objects.   
 

                                                
75 The extension of linear representations from lattices to the semisimple Lie groups that 
contain them. 
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3.2  K\G/Γ and its large-scale geometry (in which we encounter the Tits building and 
the Borel-Serre compactification76.) 
 
 If G is a connected Lie group, then it has a maximal compact subgroup K, which 
is unique up to conjugacy.  Topologically, K\G is contractible.  Give G a right invariant 
and K bi-invariant metric. If G is semisimple (i.e. has no normal solvable subgroups), 
then K\G gets a complete metric of non-positive curvature. 
 
 As discussed in the last chapter, G often contains lattices.  We shall assume (for 
simplicity) that G is given the structure of linear algebraic group defined over Q.  The 
first lattices one thinks of are G(Z) and its congruence subgroups, i.e. matrices lying in 
G(Z) that are  ≡ I mod n.  (This is necessary to do if we want to restrict attention to 
torsion free lattices so that K\G/Γ is a manifold -- the quotient space is a manifold means 
that the action of Γ on K\G is free: the isotropy of the action of Γ on the right has to be a 
compact subgroup of the discrete group Γ, and hence finite, and will be trivial when Γ is 
torsion free.  Conversely, when Γ has torsion, each element of finite order has a fixed 
point in K\G, making the quotient an orbifold.)   
 

The possibility of other algebraic number fields is not essentially eliminated by 
this condition, because of the method of restriction of scalars: the group SLn(Z√2) is a 
lattice in SLn(R)× SLn(R).  For uniform lattices, as we saw in 2.2, there are other 
arithmetic lattices that come from G having compact forms that are Galois conjugate to 
the given form– because a lattice in G × G’ gives us one in G by projecting if G’ is 
compact (or alternatively, G and G×G’ are isomorphic after modding out by their 
maximal compact subgroups).  For the noncompact case, these more subtle lattices don’t 
play a role – since all the forms must be noncompact (because Γ contains unipotents and 
compact groups do not), so the definition of arithmeticity is somewhat less subtle in this 
case. 

 
While our focus in the last chapter was on the compact case, here we are 

interested in what occurs in the noncompact case.   An important theorem of Borel and 
Harish-Chandra77 “blames” noncompactness on a “Q-split torus” for G.   

 
Let us follow this subgroup around in the simplest situation SLn(Z).  We will see 

an even more precise picture than mere non-compactness. 
 
In SO(n)\SLn(R) we can consider the torus of diagonal matrices (such that the 

product of their entries is 1).  As a space of tori, these are the “rectangular” tori.  Taking 
the logs of these eigenvalues, we get a map to Rn-1 (the elements of Rn that have the 
sum of their components = 0).  Σn acts on this by permutation – without loss of 
generality, we can assume that the eigenvalues are listed in increasing order.  This gives 

                                                
76 With apologies to A.A. Milne. 
77 See Bull. AMS 67 (1961) 579-583. 
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us a polyhedral cone in Rn-1 and a subset of SO(n)\SLn(R)/SLn(Z).  This subset gives us 
a very good large-scale picture of this quotient manifold: for example, this embedding is 
essentially undistorted, and every point in the quotient space is of uniformly bounded 
distance to a point of this sector.  Moreover, this statement is true if Z is replaced by 
integers in a totally real field.  Although the real Lie group this embeds in a product of 
SLn(R)s, the action of SLn(O) cuts down to bounded size all the directions that do not 
come from the polyhedral cone that is the quotient of the maximal flat78. The proofs of 
these kinds of statements are the subject of “reduction theory”, developed by C.L.Siegel, 
A.Borel and their successors (see [Borel-Ji] for a modern account).   

 
For other lattices we will have to glue together copies of this sector according to 

some combinatorial description governed by the theory of Tits buildings – which records 
the combinatorics of the parabolic subgroups.  All of this is first most easily observed in 
yet another, even simpler example, the product of hyperbolic manifolds ΠMi .  After 
discussing this toy example, we will return to SO(n)\SLn(R)/SLn(Z) and the general 
case.   

 
Each noncompact hyperbolic manifold M has a core, with cusps coming off.  Pick 

a base point, and a sequence of points going towards infinity in each of the cusps.  The 
geodesics connecting this base point to those points converge to a finite union of geodesic 
rays, each of which is isometrically embedded in the manifold. 

 

                                                
78 This is very much like the phenomenon that occurs in the Dirichlet unit theorem, where 
all of the directions in logarithm space for the various embeddings of the units just curl it 
up into a torus. 
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(A picture from Thurston’s notes) 
 
 

There is a uniform bound on the distance of any point in M to this asterisk A.  (This is the 
direct analogue of the polyhedral cone from the SLn(Z) case.)   
 
One can imagine a map from M to A, roughly mapping each point to the point on the 
asterisk closest to it, (and then modifying it slightly on a compact set arrange it) so that 
the inverse image of the base point is the core of M, and the inverse image of any point in 
one of the rays is a “flat manifold horospherical section” of the cusp. 
  
 Let me elaborate on the terminology.  
  
 The isometry group of hyperbolic space Hn is O(n,1) – which we will imagine via 
the ball model.  The isometries form three classes, elliptic, hyperbolic and parabolic.  
Each elliptic element has fixed points in the interior, and lies in a maximal compact. (The 
action of the isometry group is transitive, so what fixes one point is conjugate to what 
fixes any other point: hence, the maximal compact subgroup is unique up to conjugacy.) 
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 Hyperbolic elements act via translation along a geodesic (with some rotation in 
the normal direction79).  A parabolic element has a unique fixed point on the boundary 
sphere at ∞. 
 
 Given such a fixed point, the horosphere going through that point can be defined 
as follows.  Choose a unit speed geodesic γ going from p to a specific point at ∞.  Now 
consider the sphere of radius R centered at γ(R).  The limit set of these spheres is an orbit 
O(n,1)p/O(n,1)∞ .  The isotropy group is a parabolic subgroup, which is isomorphic to 

the semidirect product O(n-1)	⧔	Rn-1		=	the	isometry	group	of	Rn-1.			
	 	
	 (In	general	parabolic	subgroups	are	those	subgroups	that	contain	a	Borel	
subgroup,	i.e.	a	maximal	connected	solvable	group.		They	are	the	isotropy	groups	of	
points	on	the	boundary	of	K\G.)	
	
	 Now	let	us	return	to	our	hyperbolic	manifold	with	a	number	of	cusps.		Lifting	
the	geodesics	associated	to	the	cusps	gives	a	finite	set	of	points	on	the	boundary,	
which	are	fixed	points	of	nontrivial	parabolics.		The	subgroup	of	Γ	fixing	a	(lifted)	
cusp	acts	as	a	lattice	on	the	horosphere.		The	quotient	is	a	flat	manifold	(which	is	a	
cross	section	of	the	cusp	–	choosing	another	point	p	on	γ would give a parallel cross 
section).			
	
	 The	product	of	a	number	of	hyperbolic	manifold	both	contains	and	maps	to	
the	corresponding	product	of	asterisks,	which	is	a	polyhedral	cone	whose	
dimension	in	the	Q-rank	of	this	product	lattice	80.			
	
	 Note	that	the	inverse	image	of	a	point	in	this	cone	depends	strongly	on	which	
face	that	point	lies	on.		It	will	be	a	product	of	some	number	of	cores	and	some	
number	of	flat	manifolds.		(Note	that	by	taking	finite	covers	of	this	product,	we	can	
mangle	the	product	structure,	but	will	still	get	a	similar	union	of	flat	pieces	
approximating	the	manifold.)	
	
	 For	SLn	the	picture	is	similar.		We’ve	seen	the	cone,	and	the	inverse	of	a	point	
in	the	interior	of	the	top	simplex	is	a	nilmanifold:		isomorphic	to	UT(n;	R)/UT(n,	Z),	
where	UT(n,	?)	denotes	the	group	of	upper	triangular	matrices	with	(1s	on	the	
diagonal	and)	entries	in	?.			
	

                                                
79 Following [Thurston], we do not distinguish between hyperbolic isometries and 
“loxodromic” ones. 
80 Here by Q-rank we merely mean the number of noncompact hyperbolic factors, 
whether or not they are arithmetic.  As a consequence of Margulis’s arithmeticity 
theorem, all, even non-arithmetic lattices, can be approximated by finite polyhedral 
cones, defining for us Q-rank even when there is no Q-structure!  The reason is that there 
is such a structure for negatively curved manifolds, and everything is virtually a product 
of negatively curved homogeneous spaces and arithmetic ones. 
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	 Recall	that	a	point	in	the	top	simplex	corresponds	to	a	diagonal	matrix,	
whose	eigenvalues	are	distinct.		This	unitary	group	is	the	unipotent	subgroup	of	the	
matrices	that	preserve	the	flag	given	by	these	subspaces.		A	point	in	a	different	
simplex	corresponds	to	some	coincidences	among	eigenvalues.			At	these	points,	one	
has	an	incomplete	flag	and	normal	to	it	one	has	a	“genuine”	lattice	part	
(corresponding	to	a	product	of	SL’s	associated	to	the	various	combined	eigenspaces)	
with	a	nilpotent	bundle	over	that	associated	to	the	unipotents	that	are	the	identity	
module	the	flag.	
	
	 As	one	moves	towards	infinity,	the	unipotent	pieces	have	volume	that	decays	
rapidly	to	0	81,	and	that	is	what	accounts	for	the	finiteness	of	the	volume	of	these	
nonuniform	lattices.		The	lattice	part	stays	bounded	in	size	(but	does	not	shrink82).	
	
	 Another	concrete	case	for	which	the	calculations	are	not	difficult	is	the	case	
of	Hilbert	Modular	groups83,	Γ	=	SL2(OF	)	where	F	is	a	totally	real	field	of	degree	d.		
In	that	case,	there	are	finitely	many	cusps	(=h(OF),	the	class	number	of	the	ring84).		
This	group	acts	on	a	product	of	d	hyperbolic	planes	(where	d	=	[F	;	Q])	The	cusps	are	
actually	solvable	manifolds85.		The	bounded	part	is	a	torus	corresponding	to	OF*.		
The	fiber	is	the	torus	Rd/OF			and	the	monodromy	of	this	bundle	is	the	action	of	OF*	
on	OF	.		The	base	torus	stays	of	bounded	size	as	one	goes	down	the	cusp	(it	takes	
some	distance	to	work	up	the	twist	corresponding	to	a	nontrivial	unit),	while	the	
fiber	torus	decays	exponentially	by	homothety	as	one	goes	down	the	cusp.	
	
	 Now	let	us	work	in	general,	guided	by	these	special	case.		If	G	is	a	linear	
algebraic	group	defined	over	Q,	we	shall	define	a	simplicial	complex,	the	Tits	
building	of	G	using	the	parabolic	subgroups	of	G.		The	minimal	parabolic	is	B,	by	
definition,	the	Borel	subgroup,	and	G	itself	is	the	maximal	parabolic.		
	

                                                
81 A nilmanifold is essentially “an iterated fiber bundle of torus on top of torus and so 
on”.  The layers shrink at different rates.  Gromov [Gromov AF] has shown that 
manifolds with metrics of bounded curvature but diameter going to 0 are finitely covered 
by nilmanifolds. 
82 This is also similar to what occurs in the case of a product of hyperbolic manifolds -- 
the inverse images of points that are not in a top simplex have bounded diameter, which 
does not go to 0 as the point moves to infinity.  Of course, the volumes of these point 
inverses go to 0 very rapidly, or the locally symmetric manifold could not be finite 
volume. 
83 See Freitag, Hilbert Modular Forms (Springer 1990) for a crystal clear explanation. 
84 For congruence subgroups, the number of cusps is the order of a ray class group. 
85 That non-nilmanifolds arise is because here G has rank > 1, and we are dealing with 
non-positive curvature rather than strict negative curvature. 
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	 To	a	parabolic	P	we	associate	a	simplex	σP	so	that	if	σP	⊂σQ		if	and	only	if	Q	
⊂	P.		The	group	G	corresponds	to	the	empty	simplex.		The	maximal	simplices	
correspond	to	(conjugates	of	a)	Borel86	subgroup.			
	
	 It	is	a	very	nice	theorem	of	Solomon	and	Tits	(proved	rather	geometrically,	
see	e.g.	[Abramenko-Brown])	that	this	complex	has	the	homotopy	type	of	a	wedge	of	
spheres	of	dimension	q-1	(where	q	=	Q-rank).			
	
	 The	Borel-Serre	compactification	of	K\G/Γ	is	a	compact	manifold87	with	
boundary	so	that	K\G/Γ	is	its	interior.			Actually,	it	has	a	more	refined	structure:	it	
has	the	structure	of	a	manifold	with	corners	–	and	this	structure	carries	a	great	deal	
of	geometry	in	it,	but	we	will	not	need	this.			
	
	 The	compactification	takes	place	on	K\G,	and	is	G(Q)	(but	not	G(R))	
equivariant.		Associated	to	P	we	have	a	Euclidean	space	eP	so	that	dim	eP	+	dim	σP	=	
q-1.	These	open	cells	are	disjoint,	but	eP	⊂	cl(eQ)	if and only if P ⊂ Q. 
 
 The corner structure comes like this.  The unipotent subgroup of P acts on K\G as 
a free (R+*)dim(σP)+1 proper action.  Include each orbit into the (R+*)dim(σP)+1 space 

([0, ∞))dim(σP)+1 One can thus compactify each orbit88. The relations among the 
parabolic subgroups enable one to glue these together to include K\G as the interior in a 
manifold with corners on which the G(Q) action extends.  Borel and Serre topologize this 
union as a manifold so that the the action of Γ on it is continuous and proper 
discontinuous.  In particular, they see that down in the quotient, they obtain a 
compactification. 
 
 They also observe that the boundary of K\G so obtained has the Tits complex as 
its nerve and therefore the Γ cover of the ∂ has the homotopy type of a wedge of spheres 
∨Sq-1.   
 
 In the case of a Q-rank 1 lattice, the picture is the one of isolated cusps, and the 
compactification glues onto the end a copy of the slice of the horosphere.  For a product 
of these manifolds, one obtains the product of these compactifications (and, of course, the 
corner structure is evident in this case).   
 Moreover, using the fact that the universal cover of these closures are 
contractible, it is quite easy to see that the boundaries look like joins of the boundaries of 

                                                
86 It is not instantly obvious that this is a simplicial complex.  A hint is that for simple 
algebraic groups, the conjugacy classes of parabolic subgroups are in a 1-1 
correspondence with subsets of the nodes of the Dynkin diagram. 
87 Actually, when Γ has torsion, it is an orbifold. 
88 Formally, one should take an associated bundle to viewing K\G as a (R+*)dim(σP)+1 

principal bundle using this action on the octant ([0, ∞))dim(σP)+1. 
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the universal covers of the original compactified factors – and hence an infinite wedge of 
spheres, ∨Sq-1 (where q = #factors). 
 
 Note then the underlying homotopy type:   
 If Q-rank = 0, then we must be compact (and the homotopy type’s that of ∅).			
	 If	Q-rank = 1, then the cover of the boundary is a union of copies of the universal 
cover of the boundary.  Thus the Borel-Serre boundary is a (union of) aspherical 
manifold(s) whose fundamental group is a subgroup of Γ (of course, it’s a lattice in the 
parabolic associated to that cusp).   
 If Q-rank = 2, then we get a pleasant surprise, the boundary is connected – which 
means that every compact subset of K\G/Γ has a unique component with compact closure 
(i.e. it has one end). 
 Moreover, the boundary is a closed aspherical manifold, since it has an aspherical 
cover, namely the regular cover associated to Γ, which is homotopy equivalent to a 
wedge of circles.89   
 
 This is actually a very interesting aspherical manifold that is not a lattice in any 
Lie group!  However it is not really a surprise to us – the Tits building in this situation is 
a graph, and we have lattices associate to the nodes, glued together according to 
“boundaries” along the edges90.  Like 3-manifolds, these boundaries have decompositions 
into geometric pieces, and it is not hard to generalize this construction to more 
complicated kinds of “graph manifolds”.   
 
 The connectedness of this cover means that the map from fundamental group at ∞ 
to Γ is surjective.  In other words, any loop in K\G/Γ can be pulled to ∞ (i.e. outside of 
any compact).  However, to do this, one typically must increase the diameter of loops91. 
 
 If Q-rank > 2, then we discover that the boundary is not aspherical (πr-1 is 
nonzero) – our first hint that all is not well with a proper Borel conjecture92.  As we will 
see in the coming sections, because of this when Q-rank > 2 proper rigidity typically 
fails.  At the end of the chapter we will try to learn some lessons from this failure.	

                                                
89 Note that aspherical is equivalent to	all	higher	homotopy	groups	vanish,	but	higher	
homotopy	groups	are	unchanged	in	covering	spaces.	
90 For example for SL3(Z) one gets 2 copies of  SL2(Z)⧔Z2	thought	of	as	block	3×3	
matrices	(with	a	2×2	block	either	on	the	top	left	or	bottom	right).		These	intersect	
along	the	Heisenberg	group	U(3,	Z)	in	SL3(Z).  The fundamental group of the boundary 
is this amalgamated free product.  The kernel of the map of this group to SL3(Z) is an 
infinite rank free group. 
91 This will be (part of) the reason why we will ultimately succeed in proving a 
“bounded” topological rigidity for higher rank locally symmetric manifolds – see the 
discussion in the morals section 3.8. 
92 Of course, the resolution could have been that there are some special non-aspherical 
manifolds that are rigid.  There are some, but Borel-Serre boundaries turn out not to be 
among these. 
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3.3  Surgery.  
 
 Surgery theory is a framework for studying the classification of high-dimensional 
manifolds.  In this section we will describe some of the features of surgery theory, and in 
particular, a situation where there are “no obstructions”.    In particular, we will explain 
the observation of Farrell and Hsiang [Farrell-Hsiang1] that for very large lattices the 
proper analogue of the Borel conjecture fails.  Later sections will show that failure is 
actually ubiquitous and more dramatic than these examples show93. 
 
 Our presentation in this section is quick and dirty.  Later on we will need and give 
more precise and more conceptual discussions: the need for better calculations requires 
alternative descriptions, from whose vantage point, the very nature of our central problem 
changes. 
 
 Atiyah [Atiyah 4] observed that: 
 
Theorem:  If one has a homotopy equivalence between closed manifolds h: M’ → M, 
then there is a kind of equivalence between their stabilized tangent bundles, namely 
stable isomorphism of spherical fibrations.  
 
 Let me explain.  Assume first that M and M’ are smooth so that they have tangent 
bundles in the usual sense.  An equivalence between tangent vector bundles in the usual 
sense would be a continuous family of linear isomorphisms (not necessary the differential 
of the map, Dh) TM’m’ → TMh(m).  A stable isomorphism of such vector bundles 

would be such a family TM’m’ × Rd → TMh(m) × Rd for some d.  A stable 
isomorphism of spherical fibrations is such a family of maps, not necessarily linear, but 
which is a degree one proper homotopy equivalence on each fiber.  (This means that the 
map induces a homotopy equivalence between the fiberwise 1-point compactifications, 
i.e. the stable spherical fibrations. Note that the one point compactification can be thought 
of as being the unit sphere of one stabilization further.) 
 
 This implies that some invariants of the tangent bundle are homotopy invariant, 
such as Stiefel Whitney classes94.  However, this equivalence relation on bundles is very 
weak:  Over a space X of finite type95, there are only finitely many such equivalence 
classes96.  However, characteristic classes, such as the Pontrjagin classes allow for an 
infinite number of conceivable tangent bundles for manifolds within that homotopy type. 
                                                
93 But as we said, there are also versions of rigidity that do apply to non-uniform lattices. 
94 This fact also follows from the Wu formula that gives a homotopy theoretic description 
of the Stiefel Whitney classes in terms of the action of the Steenrod operations on the 
cohomology of a manifold. 
95 i.e. with the homotopy type of a finite CW complex. 
96 This follows immediately from an obstruction theory – induction over the skeleta of a 
triangulation – making use of Serre’s result that the stable homotopy groups of spheres 
are finite. 
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 Just as (oriented) bundles can be thought of as maps into Grassmanians97, BSO, 
there is a classifying space for (oriented) spherical fibrations BSF, i.e. maps E → X 
whose homotopy fiber is a sphere are classified by maps X → BSF, so that we can 
interpret Atiyah’s theorem as saying that the composite map 
 

M → BSO → BSF 
 
is a homotopy invariant of compact manifolds M.  The proper analogue of Atiyah’s 
theorem holds as well. 
 
 So given h: M’ → M, taking into account the automatic equivalence of their 
stable tangent bundles in BSF, gives us a refined tangential data for a homotopy 
equivalence: 
 

ν(h) : M → F/O 
 

where F/O is the fiber of the map BSF → BSO.  This invariant of h is called the normal 
invariant of h (since it is a stable invariant, and the stable normal bundle is adequate for 
its definition, rather than the more subtle, unstable tangent bundle). 
 
 Another way to say this is that the two tangent bundles combine to give a map 
from M to the homotopy pullback of  
 
        BSO 
          ↓ 
     BSO → BSF 
 
which, of course, is homotopy equivalent to BSO × F/O, as we leave to the reader.     
 
 Now, I should say that there is a similar discussion possible in the category of 
nonsmooth, triangulable or even topological manifolds, which gives rise to classifying 
spaces – so in the topological case, we have ν(h) : M → F/Top.  A first view of surgery 
theory is that it is about the difficulty in realizing maps into F/O or F/Top from homotopy 
equivalences. 
 
 However, there is one situation where there is no obstruction at all: 
 
Theorem (π-π theorem).  Suppose that M is a connected manifold with nonempty 
connected boundary, dim M ≥ 6, and π1(∂M) → π1(M) is an isomorphism, then every 
homotopy class of maps M → F/Cat (For Cat = Diff, PL, Top) is realized by a homotopy 
equivalence of pairs (M’, ∂M’) → (M, ∂M).  
 

                                                
97 i.e. there is a universal bundle, and every bundle is the pullback of this bundle under a 
map that is well-defined up to homotopy. 
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 A relative version of this theorem actually implies a uniqueness result for the pair 
(M’, ∂M’) 98.  This theorem is immediately relevant to our situation, since the Borel-Serre 
compactification, when Q-rank(Γ)>2, satisfies the hypothesis of this theorem. 
 
 We shall now review some results about the nature of these classifying spaces. 
 
 First of all, the homotopy groups of BSF are finite, so the map G/O → BSO is a 
rational homotopy equivalence.   
 
 The reason for this is quite not difficult:  The homotopy groups of BSF 
corresponed to spherical fibrations over the sphere.  A spherical fibration over Sn can be 
thought of (just like a bundle) as the result of gluing together two trivial bundles over the 
two hemispheres Dn

±.  The gluing is a map Sn-1 → Self-homotopy equivalences of the 
fiber sphere Si, which is the iterated loop-space ΩiSi of a sphere.  A little thought then 
shows that the homotopy groups of BSF are therefore the same as the stable homotopy 
groups of spheres, and these are finite thanks to a theorem of Serre [Serre thesis]. 
 
 Characteristic class theory also tells us that Pontrjagin classes give us a rational 
homotopy equivalence BSO → ∏ K(Z, 4i).   
 
 The theorem of Kervaire and Milnor on the finiteness of the number of smooth 
structures on a sphere can be translated into the statement that the homotopy of Top/O is 
finite, or that F/O→F/Top is a rational equivalence99. Thus: 
 
Theorem: There is a rational homotopy equivalence F/Cat → ∏ K(Q, 4i). 

 
 Remarkably, Sullivan gave a complete and precise analysis of F/Top100 which we 
will explain in the next chapter.   
 
Theorem:  At the prime 2, there is an equivalence: 

                                                
98 It will be unique up to h-cobordism, or if we work with simple homotopy equivalences, 
then it will be unique up to Cat-isomorphism. 
99 This is an outright lie of the worst kind: it is a misleading truth.  To set up such an 
equivalence, one needs to be able to do enough topological topology (i.e. topology in the 
topological category) to be able to mimic many smooth constructions.  In particular one 
requires topological transversality – which is indeed a theorem of Kirby and Siebenmann 
[Kirby-Siebenmann].  With transversality however, it is a simple matter to prove that 
rational Pontrjagin classes are topological invariants (a transparent consequence of the 
statements thrown about in the main text) -- as we explain in 4.5.  That was a major result 
of Novikov, for which he earned a Fields medal.   
 In the next section we will return to this train of thought.  In any case, for now, 
please bear with the inaccuracies above. 
100 Actually, Sullivan did the PL case, but once the work of Kirby-Siebenmann 
mentioned in the previous footnote became available, the result for Top immediately 
follows. 
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   F/Top(2) → ∏ K(Z(2), 4i) × K(Z/2 , 4i-2). 
  
Away from 2, there is an equivalence: 
 
    F/Top[1/2] → BSO [1/2]. 

 
Remark:  In writing things this way, we are using localization theory for simply 
connected spaces (or of H-spaces) which enables one to assign to such a space X, the 
localization of X as a set P of primes.   X(P) is a space functorially associated to X, and its 
homotopy (and homology) groups are those of X, but tensored with Z[1/q], where q runs 
over the primes not in P.  So X(2) has homotopy groups those of X, tensored with the 
group of rational numbers with odd denominators.   
 Localizing at a set of primes has the effect of ignoring contributions of the other 
primes.  Part of the theory explains how to combine the information at the various primes 
with rational information to give information about ordinary homotopy classes of maps [  
; X].  We refer the reader to [Hilton-Mislin-Roitberg] for an exposition of this theory (and 
[Bousfield-Kan] for a more modern approach). 
  
Warning:  Sullivan’s map to BSO[1/2] is not transparently related to the tangent bundle 
of the underlying smooth manifolds (when one has a homotopy equivalence between 
closed manifolds) – and then forgetting their smooth structure – however, rationally it 
contains the same information as should be reasonable given our discussion above101.  
 
 Let us now combine our discussion into a 
 
Proposition:  If M = K\G/Γ is a locally symmetric manifold of dimension > 5 and Q-
rank(Γ) ≥ 3, then there are infinitely many smooth manifolds proper homotopy equivalent 
to M that are not homeomorphic to M (detected by their rational Pontrjagin classes) if for 
some i, H4i(M ; Q) ≠ 0. 
 
(The reader who is familiar with Siebenmann’s thesis can also reverse the argument we 
have given to prove the converse to this proposition.) 
 
 We can assume M is replaced by the Borel-Serre compactified version.  If the Q-
rank(Γ) ≥ 3, this is a π-π manifold, so Wall’s theorem reduces it to a classifying space 
question – and the cohomological condition is exactly equivalent to the set of homotopy 
classes of maps M → F/Top to be infinite (and infinitely many of these classes will 
automatically be smoothable). 
 

                                                
101 It turns out that BO → BTop is an isomorphism on homotopy groups rationally (the 
injectivity of this map being Novikov’s theorem on topological invariance of rational 
Pontrjagin classes, and the rational surjectivity following from the finiteness of the 
number of differential structures on the sphere). 
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 Following Farrell and Hsiang, we presently observe that for n > 176, Borel’s work 
gives on cohomology of arithmetic groups gives us this conclusion for 
SO(n)\SLn(R)/SLn(Z) (or more precisely a lattice in SLn(Z) that is of finite index and 
torsion free).  (We remark that for Z[i], Borel’s results would have allowed the choice of 
n>32.)   
 
 The proper setting for this work is the relation between cohomology of arithmetic 
groups and representation theory, but we will avoid a general discussion focusing on just 
the contribution of the trivial representation – which Borel shows is the whole story in a 
“stable range”102. 
 
 The result is that: 
 
Theorem:  For k < Q-rank(Γ)/4,  Hk(K\G/Γ ; R) is represented by differential forms on 
K\G that are right G invariant. 
 
 In particular, the lattice itself is irrelevant!  (We will see that however, above this 
value of k, the cohomology group can indeed change with the choice of lattice Γ.) 
 
 Here’s a way to think about this. Suppose L is a compact Lie group containing K, 
then by the Hodge theorem, we can compute H*(K\L) by means of harmonic forms, but 
by integrating with respect to L, and using the uniqueness of harmonic representatives, 
we can essentially identify the cohomology with the forms on K\L that are invariant 
under the action of L.   
 
 Now if G is a real semisimple group, with K its maximal compact, we denote by 
GC its complexification, and by G’ the maximal compact of GC.  The Cartan 
decomposition for G’ and GC only differ by a multiplication by i.  This implies that the G 
invariant forms on K\G are essentially the same as the G’ invariant forms on K\G’.  K\G’ 
is called the compact dual of K\G.   
 
 For a uniform lattice, this copy of the cohomology of K\G’ actually embeds in 
Hk(K\G/Γ; R).   
 
 For nonuniform lattices, this is not the case, and it is not easy to tell which of 
these cohomology are actually present in H*(K\G/Γ) (e.g. the top class never survives).  
However, here Borel’s theorem tells us that in the range mentioned above this is actually 
a complete description of the cohomology.                  
 
 For SLn(R), the complexification is SLn(C), whose maximal compact is SU(n).  
Thus the compact dual is SO(n)\SU(n).  Thus the cohomology is that of a product of 
spheres of dimensions 5,9,13,17….  The smallest dimension that is a sum of these and a 
multiple of 4 is 44.  Giving the result for n> 176.  

                                                
102 [Borel 3] 
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 For SLn(C) thought of as a real Lie group, the complexification is SLn(C) × 
SLn(C).  Thus, the compact dual of SU(n)\SLn(C) is SU(n) and therefore a product of 
spheres of dimension 3,5,7,9…The first relevant cohomology is in dimension 8, so for 
n>32  these produce examples.   
 
 This method shows failure of proper rigidity for SLn(OF) for n>32 if F has a 
complex embedding, and n>176 when F is totally real.   These counterexamples are 
“stable” in at least two senses:  (1) they do not go away if we stabilize the manifold by 
taking products with Euclideaan space, Rk and (2) they survive on passing to any further 
finite cover.   
 
 However, this method is insensitive to the lattice in SLn, and for example, this 
cannot lead to the idea that as the volume of the symmetric space goes up,  so does the 
size of this set of manifolds, which actually seems to be the typical behavior. 
 
 More precisely, we will soon see that there is a finitely generated abelian group 
structure on this set of topological manifolds, and that (via a nonlinear map related to the 
Pontrjagin classes but distinct from it) it is ≅	⊕H4i(Γ; Q) after ⊗Q.103  We shall see that 
frequently the rank of this abelian group (even rationalized) grows with Γ.  	
  
 However, the impatient reader who wants to move on to matters more directly 
concerned with the validity of rigidity can now skip to the end of this chapter or to the 
next (with occasional references to the skipped sections, especially about Property (T).).   
 
3.4  Strong approximation, etc. 
 

Our first order of business is to give a fairly straightforward argument that in the 
case of SLn(OF), n>4, there is always a finite sheeted cover with a substantial amount of 
cohomology.  In 3.7, we will use this to give an essentially elementary replacement for 
the work of Borel used in the previous section to disprove the proper Borel conjecture for 
n>4. (The argument for n=4 will not be quite as elementary and will require material 
from 3.6.)  We will write down the argument in the case of Z, but the arguments are 
completely general. Following this we will discuss strong approximation, which gives a 
good understanding of the quotients of quite general linear groups.  Ultimately, this will 
imply that all Q-rank > 2 lattices have finite covers that are not properly rigid104. 

 

                                                
103 The smooth version maps to the topological one so that the map is finite-to-one, and 
the image need not be a subgroup, but it contains a lattice in this cohomology group by an 
argument we will give in 3.7. 
104 But it will not imply stability in the second sense of last section.  Indeed we will see a 
rank 3 reducible lattice where every proper homotopy equivalence to any finite sheeted 
cover becomes properly homotopic to a homeomorphism in a further cover. 
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We begin by noting that SLn(Z) → SLn(Zp) is a surjection.  The kernel SLn(Z; 
p) consists of matrices of the form (I + pA) where A ∈ Mn(Z) is such that (I + pA) is 
invertible.  The key thing is that this congruence kernel has a homomorphism → Mn(Zp), 

assigning A to I+pA. Note that det((I + pA) = ±pnpA(-1/p) and hence we need that A 
have trace 0 mod p.  (Of course, this is the Lie algebra of G in general.) 

 
 Now we can write down explicitly a 3-cycle in the congruence subgroup that is p-
torsion and detected by projection to this abelian p-group.  It is a Z3 in SL5(Z). There is a 
Z2 which consists of matrices that are 1’s on the diagonal and the top row is (1 0 0 pa 
pb).  This commutes with the Heisenberg group (Heis) of upper diagonal matrices in 
SL3(Z) ⊂ SL3(Z)×SL2(Z) ⊂	SL5(Z).  We obtain a Z3 by taking the product of the Z2 
with the central pZ in the level-p congruence subgroup of the Heisenberg group. 
 
 This Z3 gives us a cycle in H3(SLn(Z; p); Z) which is nontrivial, because it is 
detected by mapping to Mn(Zp) (by the Kunneth formula), but is p-torsion, because the 
central Z is of order p in H1(Heis3(Z; p); Z) (i.e. the homology of the level p congruence 
subgroup of the Heisenberg group) since the 3×3 matrix 
 
      1 0 p2 
      0 1 0 
      0 0 1 
 
is a commutator in this group.  Consequently we have found an element of order p in 
H4(SLn(Z; p); Z) by the universal coefficient theorem. 
 
 We will see in 3.7 below that for p sufficiently large this element is the first 
Pontrjagin class of some manifold proper homotopy equivalent to SO(n)\SLn(R)/SLn(Z; 
p).  Actually, these elementary calculations with Lie algebras and playing with 
congruence subgroups suffice to show that for Q-rank >6 one can always find a 
congruence cover where there are arbitrarily large finite number of manifolds that can be 
distinguished by p1 – the first Pontrjagin class105.  
 
 Reduction modulo primes for linear groups over fields of characteristic 0 is a very 
powerful method and produces many useful homomorphisms.  This is, for instance, used 
to prove (see e.g. [Wehrfritz]) that such groups are residually finite (Malcev) and also 
virtually torsion free (Selberg). 
 

                                                
105 As explained in 3.7, Novikov’s theorem that rational Pontrjagin classes are topological 
invariants can be refined for p1 to the statement that in H4(BSTop; Z[1/2]) it is definable 
for oriented topological bundles. 
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 Let us describe some easy homomorphisms if Γ ⊂ GLn(F) is a finitely generated 
group over a field F of characteristic 0.  By considering the generators of Γ as lying in a 
finitely generated ring over Z.  Its field of fractions is a finite (algebraic) extension of a 
field of finite transcendence degree.  We can then “specialize” values for the 
transcendentals so that these matrices all lie in an algebraic extension (as the determinant 
will be a rational function that is not identically 0).  Then the matrix entries really are 
algebraic numbers with finitely many primes in their denominators, and we can therefore 
reduce modulo large primes.  However, for simplicity of exposition, we will imagine that 
our groups lie just over the integers, perhaps with finitely many denominators.   
 
 These congruence subgroups provide a natural sequence106 of subgroups that 
converge to the trivial group.  Amazingly, the image of a linear group under such 
reductions is, with finitely many exceptions, governed by the Zariski closure of the 
group. (This is the content of the strong approximation theorem.)  Thus, any Zariski 
dense finitely generated subgroup of SLn(Q) surjects onto PSLn(Zp) for all but finitely 
many primes.  Indeed, like in the Chinese remainder theorem, one can map onto almost 
any finite product × PSLn(Zpi). 

 
 Slightly more precisely, let S be a finite set of primes.  We consider Z[1/S] the 
ring of rational numbers whose denominators have  all prime factors in S.  Suppose that Γ 
⊂	GLn(Z[1/S]) with Zariski closure G.   Strong approximation asserts that the closure of 
Γ in ΠG(Zp) is of finite index.   Informally, strong approximation says that the closure of 
a linear group in the congruence topology is essentially determined by its closure in the 
Zariski topology. 
 
 A nice application of this is due to Lubotzky [Lubotzky1] .  Recall that the start of 
the Gromov-Piatetski-Shapiro examples was the construction of a separating 
hypersurface in a hyperbolic manifold.  Millson had noticed (see [Millson]) that on taking 
a finite cover, this hypersurface lifts to several components.  
 
 Actually this virtual disconnectedness be true in general, as the fundamental 
group of the hypersurface is not  Zariski dense in O(n,1) (it lies in a smaller O(n-1,1)) and 
therefore not congruence dense.  A suitable deep finite congruence cover will therefore 
have the hypersurface disconnected. 
 
 As each of the sides is Zariski dense in the group, these both have full image, 
which means that the complement of the union of the lifts of the hypersurface have two 
components.   
 

                                                
106 Which corresponds to a tower of covering spaces if one chooses a sequence of moduli 
that divide one another.  A different choice, which does not form a directed system, but 
rather is just a sequence of covers, is the congruence kernels as one varies over different 
primes.  Those still converge to the universal cover, for example, in the pointed Gromov-
Hausdorff sense. 
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 A corollary of Van Kampen’s theorem and these observations directly gives: 
 
Theorem: Every hyperbolic manifold with a separating hyperbolic hyper-surface has a 
finite index subgroup whose fundamental group surjects to a free group107.   
 
 This then implies that such a lattice has many subgroups of finite index – indeed 
super-exponentially in the index (since nonabelian free groups do). 
 
 Another nice application of strong approximation, also due to Lubotzky 
[Lubotzky4], is that: 
 
Theorem: Any finitely generated group linear group in a field of characteristic 0 always 
has subgroups of index divisible by d (for any given d).   
 
 We refer to the book [Lubotzky-Segal] for a more thorough discussion of strong 
approximation, its literature and applications. 

 
3.5 Property (T)   

  
 In this brief section we will discuss the notion of property (T), discovered by 
Kazhdan during the 1966 Moscow ICM (during a game of ping pong with Atiyah).  
While it seems at first like a technical property about unitary representations, it has had 
applications – surely not all foreseen at that point -- to many areas of mathematics, and 
(via the notion of expander graph) theoretical computer science.   
 
 We shall also discuss the opposite notion, amenability, originally introduced by 
von Neumann in his analysis of the Banach-Tarski paradox. These are both fascinating 
subjects deserving (and having received) book length treatments; here they are merely 
introduced in recognition of the role they will play several times below. 
 
 We will begin on the amenable side of the universe, since it is more familiar.  For 
finite groups G, averaging the values of a real valued function on G is a general and 
straightforward algebraic procedure that involves no limiting procedures.  If G is 
compact, then at least for continuous functions this can be done by integration with 
respect to Haar measure. 

 
 Remarkably, using weak-* limits it is possible to define averaging processes on 
some infinite groups.  Even for Z this is a remarkable statement.: We are asserting that 
there is a functional  
 

A: L∞(Z) → R 
                                                
107 Explicitly, let M be a manifold containing two hypersurfaces A,B whose union does 
not separate M and * be a base point off A∪	B, then making a curve transverse to A∪	B 
one can write a product aabba-1… ∈	F2 recording the order and directions of the 
intersections.  This gives a (surjective) homomorphism π1(M) → F2. 
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that assigns a number to any bounded sequence of real numbers, agrees with ordinary 
limit when it exists, and is positive, linear, and translation invariant.  Positivity means 
that A(f) ≥ 0 if  f≥0.  Linear is obvious and translation invariant means that A is invariant 
under the action of Z on L∞(Z)  by translation.  Positivity and linearity can be achieved 
by extending any f (since Z is discrete, any function is continuous) to βZ, the Stone-Cech 
compactification and evaluating this extension on any point in βZ - Z.    
 
 The invariance requires using a bit of the geometry of Z, but this is the key!  
Replace the sequence by its averages (i.e. like Cesaro means).  Let g(n) = 1/(2|n+1)| 
∑f(m)  (where the sum is over the interval In = [-|n|, |n|].   
 
Observation:  A, defined as the limit of the sequence g(n), is translation invariant 
because the number of elements in the symmetric difference In ∆ TIn is o(#In). 
 
Remark:  We made the construction using the Stone-Cech compactification. Sometimes 
(as hinted above) people construct A as a weak* limit of the averaging functionals that 
define the values of g; sometimes non-principal ultrafilters are used in making this 
construction.  These are just cosmetic differences – although they have somewhat 
different feels (point set topology versus functional analysis versus logic). 
 
 Note the averaging procedure (and the limiting procedure) is well defined when 
the sequence has a limit.  However, in general, it is very dependent on our choices.  For 
example, suppose we had replaced the intervals In = [-|n|, |n|] by intervals Jn = [n!-|n|, 
n!+|n|], we still would obtain an averaging function that satisfies all the above properties, 
yet would have a much less democratic108 feel than the In seem to have - the values of f at 
most integers (e.g. those outside of union of the Jns) will then be completely irrelevant. 
 
 Democracy put aside, the above consideration suggests defining a Folner109 
sequence to be a sequence of subsets An of Γ, so that for any γ, #(γAnΔAn)/#An → 0.  
(This need only be checked for generators.)  Under those conditions we can define a left 
invariant positive linear functional by the procedure above.  Folner proved the converse, 
that a group has a mean iff there is a sequence of such sets.  Groups that have such a 
mean, or equivalently, an exhaustion110 by subsets whose “boundaries” are 
asymptotically negligible, are called amenable. 
 
 (The boundary of a set in Γ is precisely the the union symmetric difference of the 
set with its translates under a generating set of Γ.  If we consider the volume of a set the 

                                                
108 And more fickle, in that Jn is disjoint from the later sets averaged over. 
109 These considerations do not explain why we would give this name to this class of 
subsets, only that we call attention to them.  The last sentence in the paragraph is 
necessary for that point. 
110 It is a very elementary fact that if a discrete metric space X has a Folner sequence of 
subset, then it has an exhaustion by Folner sets Bi i.e. Bi ⊂ Bi+1 and X = ∪Bi. 
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number of elements it contains, then the last sentence is just a restatement in words of the 
formula of the previous one.) 
 
 There is a close connection between amenability and unitary representation 
theory.  Consider the unitary action of Γ on L2Γ.  It has a nontrivial fixed vector if and 
only if Γ is finite.   
 
 However, vn = (1/√#An)∑γ where the sum is taken over An is a sequence of 
almost invariant vectors.  That is, ||vn|| = 1 but for every γ,  ||γvn - vn|| → 0.  One can 
describe this as saying that the trivial representation is weakly contained in the regular 
representation – another equivalent of amenability. 
 
 Yet another interpretation of amenability can be given in terms of the laplacian on 
functions Δ: L2Γ → L2Γ defined as follows.  We shall consider Γ as a graph, as usual, 
choosing a finite symmetric generating set S, and connecting two elements g and g’ if 
there is an s∈S so that g = sg’ (so that Γ acts on the right by isometries).  Define the 
Laplacian by Δf(x) = f(x) – 1/#S Σf(sx).  It compares f to its average.  Note that Δ is a 
(bounded) self adjoint and positive operator (by direct calculation of <Δf, f >).   
 
Theorem [Kesten]:  0 ∈	Spec(∆) if and only if Γ is amenable.  This is equivalent to each 
of the following two statements: 
 

[1] The symmetric random walk on Γ does not have exponentially decaying 
return probabilities: i.e. p2n(e,e) ≠ O(cn) for any c<1  

[2] The number of words (in the symmetric set of generators S) of length 2n 
representing the trivial element W(n) satisfies W(n)1/2n → #S. 

 
 Note that the statement 0 ∈	Spec(∆) does not mean that there are any eigenvectors 
with eigenvalue 0 (although that would be the simplest explanation) i.e. ker∆ need not be 
nontrivial, because of the possibility of nondiscrete spectrum.  Indeed, 0 is an 
eigenvalue111 if and only if Γ is finite.   
 
 However, the almost invariant vectors are test functions of norm 1 with | Δfn| ≤ 
Σ#(γAnΔAn)/#An (summed over the elements of S) showing that it is not true that  
<Δf,f > > c||f||2 for any c>0. 
 
 The connection between random walk, heat flow, and the laplacian is important.  
Note that Δ = I – M, where M is the Markov operator, defined by: 
  

Mf(x) = E(f(γx)) 

                                                
111 There is a natural generalization of Δ to differential forms, and then as we will discuss 
in 3.6, there is frequently kernel to Δ on forms. 
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where E means, as always, the expectation value of a random variable, and here it is f of 
a random neighbor of x (i.e. the translate by a random generator of Γ).  Note ||M|| ≤ 1, and 
equality holds if and only if Γ is amenable.  The probability of return is given by 
 

pn(e,e) =  < δe , Mn δe >. 
 

So if 0 ∉	Spec(∆), we get exponential decay of the return probabilities.  (The converse is 
tricky.)  The expression W(n)/#S2n is simply another calculation of p2n(e,e) and hence 
statement (2) is equivalent to (1). 
 
 Property (T) is opposite to amenability, (not its negation!) and it is quite nontrivial 
that there are any infinite groups at all that have this property. 
 
Definition:  A group Γ has property (T) if every unitary representation that has almost 
invariant vectors has a fixed vector.  (In other words, given a generating set S, there is a 
Kazhdan constant ε – that typically depends on S – such that for any nontrivial 
irreducible representation ρ (or - equivalently - any representation with no nontrivial 
fixed vectors ρ), the only v with ||ρ(s)v – v|| ≤ ε ||v|| is v = 0 112. 
 
 An amenable discrete group has property (T) if and only if it is finite -- one can 
construct almost invariant vectors by averaging over a sequence of Folner sets.   
 
 Margulis showed that higher rank lattices have only finite or finite index normal 
subgroups by the crazy strategy of showing that all quotients are amenable and have 
property (T).  Obviously arbitrary quotients of property (T) groups have property (T). 
 
 Kazhdan’s original paper observes [Kazhdan], via consideration of induced 
representations: 
 
Proposition:  A locally compact group G has property (T) if and only if any (and hence 
every113) lattice Γ ⊂G does. 
 
 It also shows. 
 
Proposition:  A discrete group with property (T) must be finitely generated. 
 
 For suppose that Γ = ∪Γn is an ascending union of proper subgroups.  Then 

⊕L2(Γ/Γn) is a unitary representation which has almost invariant vectors (each γ 
ultimately acts trivially, so vectors that are in late factors of the product for an almost 
invariant sequence), but it will have an invariant vector only if some Γj = Γ. 
 
                                                
112 The notation is supposed to indicate that the trivial representation T is separated from 
all the other irreducible representations (by the parentheses). 
113 Assuming there is at least one! 
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Theorem (Kazhdan)  Products of real simple Lie groups of rank > 1 have property (T). 
 
 He deduced that lattices in these groups were finitely generated.  
 
 We already know enough to see that O(n,1) does not have property (T), because 
we know lattices that have nontrivial Z quotients, and note that property (T) is 
(obviously!) inherited by quotients.  Less simple is that U(n,1) also does not have 
property (T).  This is shown in [Kostant] as is the following positive result: 
 
Theorem (Kostant) Sp(n,1) has property (T), as does the real rank one form F4(-20) of 
the exceptional complex Lie group of type F4.  
 
 This gives us now negatively curved examples of property (T) groups, we can add 
large powers of all the elements one at a time114, and maintain negative curvature, giving 
(uncountably many!115) Property (T) groups that are torsion.   
 
 The early history of property (T) only had examples that came out of 
representation theory.  Now there are completely different mechanisms for this of both 
algebraic and analytic geometric origin – so now there are many other property (T) 
groups known.  Before saying a little more about this, we digress to give another 
characterization of property (T) (see [Bekka, de la Harpe, and Valette, Shalom2]). 
 
Theorem (Delorme-Guichardet, Shalom):  A group has property (T) if and only if 
every action of Γ on a Hilbert space by affine isometries has a fixed point.  If the group 
does not have (T) then there is an action where not only is there no fixed point, but the 
displacement ∑ ||v-γ(v)||2 has a realized minimum on the unit sphere (where Σ is over the 
generating set). 
 
 All amenable groups have affine isometric actions that are metrically proper, i.e. 
actions for which the orbits of vectors → ∞ in norm (as γ→∞) as was shown by Bekka, 
Cherix and Valette – yet another way in which property (T) and amenable are at opposite 
poles. 
 
 A consequence of this theorem is that: 
 
Corollary: If a group Γ acts simplicially on a tree (without inversions) without fixing any 
vertex, then Γ cannot have property (T).   
 
 This excludes nontrivial amalgamated free products and HNN extensions, as well 
as giving another argument for the finite generation of Property (T) groups (see [Serre, 
Trees]).  We shall use the prove the corollary by noting that if Γ acts on a tree T, then it 
acts on L2(T). 
 
                                                
114 This is an application of the “Dehn filling” idea as in the previous chapter. 
115 And hence the fact that Property (T) does not force finite presentability. 
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Proposition (Cartan)  If Γ acts on a tree T and it has a bounded orbit, then it has a fixed 
point. 
 
 Cartan was actually working on other spaces of non-positive curvature116.  The 
proof goes like this.  Given a bounded set in a tree, it lies in a unique ball of smallest 
radius.  As this the bounded set is Γ invariant, so is that ball, and therefore its center is 
fixed. 
 
 If the action of Γ on T has no bounded orbit, then L2(T) has no fixed vectors, 
which is incompatible with property (T).    
 
Appendix:  Property (T) and Expanders. 
 
 Expander graphs are graphs that are hard to disconnect, i.e. require the removal of 
many edges to separate a large number of vertices from the rest.   It (now) seems obvious 
that such graphs should be valuable for the construction of things like communication 
networks.  But, in fact, they have legion applications in theoretical computer science 
[Hoory-Linial-Wigderson] and pure math [Lubotzky 2 ,3].    
 
 We consider finite d-regular graphs Γi (for simplicity --- a bound on valence is 
really all that’s necessary).  We consider the Cheeger constant of these graphs 
 

h(Γ) = inf  (#∂A/#A) 
 
where A is a subset of Γ with fewer than half of the vertices, and ∂A is the set of vertices 
of A that share an edge with Γ-A.  If we allowed big A’s then setting A = Γ we’d get 0 as 
our inf always.   
 
 This notion makes sense for infinite graphs, as well as finite ones, if we impose 
the condition that A is finite in the infinite case.  Note that Γ is amenable as a group if 
and only if h(Γ) = 0 viewing Γ as a (Cayley) graph – and that this condition is equivalent 
to 0∈Spec(∆).   
 
 However, for expansion, we are interested in finite graphs, and we want the 
reverse, i.e. that h(Γi) > ε > 0.  
 
 To summarize: 
 
Definition:  An expander sequence of d-regular graphs is a sequence Γi (of d regular 
graphs) such that h(Γi) > ε > 0. 

                                                
116 I believe that Cartan’s application was the uniqueness of the maximal compact in  a 
semisimple group by considering the action of such a group on G/K, a complete manifold 
of non-positive curvature.  Incidentally, the analogous fact in the case of Lie groups over 
local fields makes use of the curvature properties of Tits buildings. 
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 These were first introduced and studied explicitly by M. Pinsker (in a paper with 
L. Bassalygo) – and in a paper presented at 7th International Teletraffic Conference, he 
showed that they exist, by arguing that random graphs are expanders.  They have become 
an important tool in theoretical computer science ever since, and you can find much 
interesting material and history in {Hoory-Linial-Wigderson]. 
 
 More recently, it was pointed out in [Gromov-Guth] that he was preceded by a 
paper of Kolmogorov and Barzdin that studied expanders as models for the brain (nodes 
on the surface and axons going through the bulk, without disjoint axons getting too close 
to one another), but then, alas, having an upper bound on size117 to fit into our heads.  
Expanders were their examples of graphs that would be hard to fit in our head. 
 
 Why this genericity of expansion should be true is clear if one considers a toy 
variant: Consider the graph Γ with n vertices determined by 2 permutations, using each 
permutation to connect [i] to [πi].  ([i] is also connected to [π-1i]).  Given a subset A, the 
expected number of edges leaving A is #A(1 - #A/#Γ)4 suggesting a bound of at most 
1/16 independently of #Γ.  Of course, there are many choices of A, and we have to 
compute the expected extremal.  This means one should look at subsets A of size n/2 that 
contain significantly fewer edges leaving it, say n/20 and then estimating tail probabilities 
in a binomial distribution.  The details are left to the reader118. 
 
 If one is interested in using this for building a network (or an error correcting 
code or…), then random methods are not so useful – buildings surely must be built from 
blueprints119.  The applications in mathematics often require knowing that certain graphs 
form expander sequences120. 
 
 Now, for finite graphs, 0 is always in the spectrum of Δ.  Constant functions have 
Δf = 0.  0 has multiplicity > 1 if and only if Γ is disconnected (different constant 
functions on the different components).  Graphs that are connected but easily 

                                                
117 There is a bound to how much of an expander can be fit without distortion, even in 
Hilbert space.  This will be is of critical importance later for purposes of the Novikov 
conjecture.  For science fiction purposes, the cognitive capacities of aliens elsewhere in 
the multiverse can be expected to be greater than ours, in the Kolmogorov-Barzdin 
model, only if the number of spatial dimensions increases (or they have better 
programming of their neural nets). 
118 Actually, to the active reader.  An inactive reader can find them written down in many 
places. 
119 I expect this to be my bon mot quoted years after I have otherwise been forgotten, 
showing how shortsighted people were back at the beginning of the 3rd millennium.  
Indeed, I almost deleted this comment during revision. 
120 Many of these are closer to the Selberg example explained below than the Property 
(T) examples we begin with now.  This is a good moment to mention that there are now 
many constructive methods of getting expanders that do not come out of Property (T). 
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disconnected should therefore be characterized as having an eigenvalue near 0.  This is 
the content of the following basic theorem: 
 
Theorem:  A sequence of d-regular graphs is an expander sequence if and only if there is 
an ε > 0 so that the spectrum of Δ restricted to functions with ∫f = 0 (the orthogonal 
complement of the constants) is bounded > ε > 0. 
 
 We will denote L2(Γ)º this subspace of L2(Γ). 
  
 This theorem is inspired by Cheeger’s theorem in Riemannian geometry (see 
[Cheeger2]) that bounds the isoperimetric constant of a Riemannian manifold in terms of 
the spectrum of the Laplacian.  Note that for a subset A, the modified characteristic 
function, fA = 1A - #A/#Γ has ∫ = 0, and ∆ related to #∂A/#A.  The isoperimetric constant 
is approximately realized by a level set of an eigenfunction for a small eigenvalue.   
 
 A consequence of this theorem is that random walk on an expander sequence is 
rapidly mixing121.   
 
 The following important result of [Margulis 2] is now perhaps anticlimactic, 
given our discussion. 
 
Theorem: Suppose that Γ is a group with property (T), and Γ/Γi is a sequence of finite 
quotients of Γ (all viewed as graphs with a common generating set S of Γ) is an expander 
graph. 
 
 To see why the isoperimetric inequality is true, consider ⊕ L2(Γ/Γi)º (where the 
superscript º means that we are considering the orthogonal complement of the constant 
vectors) and, since there are no fixed vectors, there can be no almost invariant vectors, 
which means that  ΔfAi is large, which means that ∂Ai is also large.  

 
 Concretely we can set Γ = SLn(Z) for any n>2 (and use the elementary matrices 
as a generating set) and obtain the expander sequence SLn(Z/m) -- where m is varying.   
 
 Note, by the way, that the representations arising in this proof are all (sums of) 
finite dimensional representations of the group Γ, so we are nowhere near the full power 
of property (T).  Lubotzky and Zimmer have suggested the notion of property τ, which is 
property (T) for finite dimensional representations, or even restricting further to a class of 
finite quotients (say ones factoring through some finite quotient or some congruence 
quotient).   
 
 A good example of this is SLn(Z) for n =2.  We shall work with a congruence 
subgroup of this group, which is a free group.  Obviously it does not have property (T), as 

                                                
121 Which perhaps suggests its application to de-randomization. 
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it has a Z quotient, and just as obviously covers corresponding to the subgroups kZ for a 
surjection of this group to Z have isoperimetric constant → 0 (consider the inverse image 
of the interval [0, k/2] in the cycle) and just as obviously, the bottom of the spectrum of 
these quotients of SO(2)\SL2(R) → 0 (by considering functions that are 1 on [0, k/2] and 
-1 on [k/2, k-1]). 
 
 However, when we restrict our attention to the family of congruence quotients, 
then a theorem of Selberg asserts that for all of these manifolds SO(2)\SL2(R)/SL2(Z; k) 
has λ1 > 3/16.  One can translate between graphs and manifolds, and actually this is a 
family of expander graphs whose girth122 grows123 (logarithmically) with k. 
 
 Finally, we close our discussion by mentioning one of the more recent methods 
for proving property (T), because it turns our discussion on its head and uses expander 
properties as a way of obtaining property (T).   
 
Theorem: Let Γ be a group generated by a finite symmetric set S, with e ∉	S. Let L(S) be 
the graph with vertex set S and in which {s,s′} is an edge if and only if s−1 s′ ∈ S. 
Suppose that L(S) is connected and has spectral gap greater than 1/2. Then Γ has property 
(T). 
 
 As a nontrivial consequence of this, in some models of random groups, having 
property (T) is generically the case – a far cry from the essentially Lie theoretic origin of 
the first examples.  Moreover, this method produces groups with very strong fixed-point 
properties, often stronger than those true for lattices in high rank groups.  See the notes 
for some more discussion of this important direction. 
 	  
	  
3.6 Cohomology of Lattices. 
 

a. Property (T) and H1 

b. Matsushima formula  

c. Generalized modular symbols 

d. L2 cohomology  
 

                                                
122 The girth of a graph is the length of the shortest cycle in the graph; it is an analog of 
the length of the shortest geodesic (= twice the injectivity radius) of a compact manifold. 
123 Note that if we use the property (T) expanders, relations in the fundamental group give 
bounded cycles everywhere in the graph.  Random graphs will frequently have some 
short cycles, but relatively few of them.   
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 The cohomology of lattices is a topic of endless fascination that can be studied 
from many viewpoints, from the geometric124 (construction of explicit cycles) to the 
analytic (e.g. Hodge theory and L2 cohomology) to the number theoretic (such as 
Langands functoriality). In this section we will touch briefly on a few methods for 
producing cohomology classes motivated by purely utilitarian needs.  For simplicity we 
will divide our discussion into four parts: H1, the Matsushima formula and connection to 
representation theory, geometric cycles, and finally, L2 cohomology.   
 
a. H1and Property (T)   
 
 We have already tacitly discussed H1(Γ ;R) when discussing property (T).  Its 
vanishing is necessary if Γ satisfies (T), because otherwise Z is a quotient of Γ, and (T) is 
inherited by quotients.   
 
 Actually we had less obviously given a cohomological interpretation of property 
(T) in characterizing those groups by the fixed-point property: Any action of Γ on a 
Hilbert space H by affine isometries has a fixed point.   
 
 This statement can be expressed cohomologically.  Any affine action has a unitary 
part ρ:Γ → U(H).  (It can be obtained by letting ρ(γ)(v) = lim tγ(t-1v) as t → 0.)  Affine 
actions are associated to cocycles, and cohomologically trivial ones are the ones with 
fixed points (i.e. are actually unitary after conjugating by a suitable translation).   
 
 Thus, the  Delorme-Guichardet fixed point theorem can be viewed as the 
cohomological statement that: 
 
Theorem125:  Γ is a group with property (T) if and only if for any unitary representation ρ 
of Γ, H1(Γ ; ρ) = 0. 
 
 The reason is this.  The 1-cochains with values in the representation, C1(Γ ; ρ) is 
made of H-valued functions on Γ, and an element  α ∈ C1(Γ ; ρ)	lying in Ker d: C1(Γ ; ρ) 
→ C2(Γ ; ρ) means that α(γγ’) = ρ(γ)α(γ’) + α(γ).  Associated to a cocycle is the affine 
isometric action on H where γ acts by γv = ρ(γ)v + α(γ).  This cocycle is a coboundary of 

                                                
124 Not to mention the heroic geometric group theoretic work of Agol, Haglund-Wise and 
Kahn-Markovic that gives positive first Betti number (and even more; homomorphisms 
to Z with finitely generated kernels) for finite covers of lattices in O(3,1).  See the 
wonderful exposition by [Bestvina]. 
125 The Shalom improvement we had mentioned above replaces this cohomology by its 
reduced version, where one mods Ker ∂ by the closure of im ∂.  Often reduced and 
unreduced groups are different, and the reduced ones are easier to study, but it sometimes 
happens that they vanish simultaneously (at least in low dimensions) – see also [Block-
Weinberger] where a similar phenomenon occurs in a characterization of amenability. 
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a vector v ∈	H	=	C0(Γ ; ρ) if α(γ) = v - ρ(γ)v. Then γv = v for every γ and the action has a 
fixed point (and one can conjugate the action by a translation to a unitary action). 
 
 Part of the interest in such statements is because of their connection to 
deformations.   The infinitesimal version of rigidity asks about deformations of the 
defining representation ρ:Γ → G. Reasoning about deforming the defining 
representations and working modulo the deformations given by inner automorphisms 
leads one to want to prove vanishing of such cohomology groups.   
 
 Kazhdan’s approach to property (T) gives a representation theoretic method, but 
other cohomological vanishing theorems have been proved by Hodge theoretic methods 
or Bochner arguments.  These methods were employed by Calabi-Vensentini, Weil and 
Selberg (see [Selberg, Calabi-Vesentini, and Weil])  to prove early local rigidity 
theorems.  They still are useful --- as rigidity moves into new settings (such as for non-
lattices,  and fixed point properties for actions on spaces other than Hilbert spaces). 
 
 Another consequence of rigidity of representations is that defining the defining 
representations of such a group cannot have “essential” matrix coefficients that are 
transcendentals, because transcendentals can always be deformed (or specialized).  (By 
“essential” I am ignoring the possibility of conjugacy of an algebraic matrix by a 
transcendental one.)  To grossly simplify, this is why superrigidity (a vast generalization 
of Kazhdan’s Property(T) for Γ) leads to arithmeticity theorems126.   
 
 It is worth noting that an immediate consequence of the theorem as stated is that 
all finite dimensional irreducible representations are separated from unitary 
representations that don’t contain them.  In addition, although this is obvious in any case, 
as cohomology with coefficients in representations includes cohomology of covers, 
philosophically this study naturally leads us to consider the behavior in towers 
simultaneously with the cohomology of a given space, a theme we will return to in 
subsection d. 
 
b. Matsushima Formula.   
 
 The yoke binding representation theoretic theory and cohomology is tightened by 
the Matsushima formula that extends the earlier observations connecting the cohomology 
of the compact dual to that of all locally symmetric manifolds with a given universal 
cover.   
 
 Unlike those previous observations, it has the virtue of being sensitive to the 
lattice.  We will not directly make use of this material, but an awareness of it will make 
some discussions make more sense (or seem better motivated127). 
 

                                                
126 And, for example, property (T) itself implies that all finite dimensional unitary 
representations are equivalent to ones defined over an algebraic number fields. 
127 Or less unmotivated. 
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 The discussion is much simpler in the case of cocompact lattices, so we start by 
making this assumption. 
 
 The complex of differential forms on K\G/Γ can be identified with the cochain 
complex C*(G, K ; C∞(G/ Γ)), where G, K are the Lie algebras of G and K respectively, 
and we use the Chevalley-Eilenberg complex for relative lie algebra cohomology.  Thus 
H*(K\G/Γ) ≅ H*(G, K ; C∞(G/ Γ)).   
 
 It turns out (this is a kind of elliptic regularity result) that we can break C∞(G/ Γ) 
up into pieces according to the decomposition of L2(G/ Γ).  This is a sum of pieces that 
are G invariant irreducible representations, with finite multiplicity.  Ultimately one gets a 
formula of the form 
 

H*(K\G/Γ) ≅	⊕	m(∏,	Γ)H*c(G,	C∞∏)  
 
where the right hand side is a sum over irreducible representations of G, with 
multiplicities according to the number of times that they appear in L2(G/ Γ) and the 
cohomological term (which only involves G and its representations, and not the lattice) 
being continuous cohomology with coefficients in the smooth vectors in the given 
representation.  When G is simple, the cohomological term vanishes whenever * < 
rankR(G) and there are no terms other than the compact dual (which is the contribution 
of the trivial representation).  (In the semisimple case, this vanishing holds below the 
lowest R-rank of any of the factors.)  These facts are responsible for the independence of 
rational cohomology in the stable range of the lattice - at least in the uniform case.   
 
 The place where the lattice enters is in the nontrivial representations because of  
the multiplicities m(∏,	Γ).		These	will	frequently	grow	as	Γ shrinks (note that if Γ’ is a 
normal subgroup of Γ, the finite group Γ/ Γ’ acts on any of these ∏’s, and since these 
representations don’t have a trivial part, the multiplicities must be nontrivial).  A 
geometric approach to this is the following.  If Γ is arithmetic, then it has non-normal 
subgroups that have a large number of symmetries (i.e. that do not cover the original 
manifold)128.  One when pulls a harmonic form up to such a cover, it can well be  
noninvariant under this action – causing the amount of cohomology to grow.  If this 

                                                
128 This is related to the large commensurator of an arithmetic group. G(Q) acts on the 
disjoint union of the K\G/ Γ’ where Γ’ is commensurable with Γ, but each of these 
individual manifolds is only acted on by the normalizer of their own fundamental group 
in G(Q).  If Γ is arithmetic and Γ’ is a G(Q) conjugate of Γ (but not necessarily in the 
normalizer of  Γ) , we can take a subgroup Γ” of finite index in Γ∩ Γ’ that is normal in Γ’ 
but not in Γ.  The group Γ’/Γ” acts on the Γ” cover, which is a cover of K\G/ Γ, but the 
action does not cover the projection to K\G/ Γ.  These hidden symmetries are responsible 
for the algebra of Hecke operators that acts on cohomology groups of arithmetic 
manifolds. 



  69 

would never happen, this would mean that the pullback to the universal cover would be 
invariant under G(Q), which is exactly equivalent to it coming from the compact dual. 
 
 When Γ is nonuniform, then the above analysis of cohomology does not work 
directly, but Borel shows (see [Borel 3]) that nevertheless there is a range depending on 
the Q-rank where it does hold.  This is enough for the applications to SLn when we let n 
→∞, (which is important for K-theory) but this is not enough for our immediate needs.  
Some highly unstable classes in the non-uniform case that are always beyond the range of 
this isomorphism are the topic of the next subsection. 
  
 
 
c.  Generalized Modular symbols. 
 
 A different and transparent example of how cohomology grows in covers that is 
visible in hyperbolic geometry occurs for nonuniform lattices (in all dimensions).   
 
 If M is a noncompact finite volume hyperbolic n-manifold, then cd(π1M) = n-1 
(because M has the homotopy type of an n-1 dimensional complex, and it contains a Zn-1 
in the fundamental group of the cusp)129.  It can certainly happen though that Hn-1(M) = 
0 (e.g. this is true for all the hyperbolic knot complements in the 3-sphere).  However, the 
fundamental group of the cusp is a proper “small” subgroup of the fundamental group, 
i.e. it is not Zariski dense – it obviously lies in a proper parabolic, so by strong 
approximation, we can find finite congruence quotients of π1M onto which the cusp maps 
to a proper subgroup. 
 
 This means that these covers have multiple cusps (by covering space theory).  
Once you have more than one cusp then Hn-1(M) ≠ 0, because each cusp gives a cycle130, 
and the one relation among these is that the sum of all of these cycles vanish.  Associated 
to a pair of cusps there is a (number of) proper geodesic(s) lines going from one cusp to 
the other.  These will have intersection number 1 and -1 on these two cusps (depending 
on ordering, and using a standard, say inward normal, convention for orientation of 
boundaries) and 0 with the other cusps.  Each such proper geodesic give a functional on 
homology which proves the non-vanishing of the individual cusps.  (In fact, picking one 
cusp as a base, the lines connecting that cusp to all the others give #cusps – 1 independent 
cycles).  As we go deeper in the group (or up a tower) the # cusps increases and hence the 
size of the homology.   
 
 Of course, when the Q-rank > 1, then this doesn’t make sense as stated: the Borel-
Serre boundary is connected in all covers, and π1∞→ π1 surjects.  However, when we 

                                                
129 Of course, this is, in the arithmetic case, a special case of the result of Borel and Serre 
that the cohomological dimension differs from dim(G/K) by the Q-rank. 
130 To get a well defined cycle, one should adopt an orientation convention, i.e. making 
use of the normal direction pointing towards ∞. 
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pay closer attention to the corners within the Borel-Serre boundary, which correspond to 
proper parabolic subgroups, none of these surjects, and the covers do indeed cause these 
corners to become multiple components, and then give rise to cycles. 
 
 Theorem (See [Ash-Borel, Schwermer])  Let G be an algebraic group defined 
over Q, and let P be a Q-parabolic subgroup of G.  If P(R) = M(R)A(R)N(R) is the 
Langlands decomposition of this parabolic131, then there are nontrivial cycles in K\G/ Γ 
of the form N(R)/ N(R)∩Γ in dimension dim(N(R)) if Γ is sufficiently deep.  Passing to a 
congruence subgroup Γ’ then there are at least #(Γ’\Γ/ (Γ’∩P)) (double cosets) linearly 
independent cycles obtained this way. 
 
 Using congruence subgroups we then get a large (i.e. growing like a positive 
power of the volume, but definitely sublinear in it) rank of Betti number. 
 
Remark in place of proof:  Generalized modular symbols are examples of geometric 
cycles.  Geometric cycles are associated to Lie subgroups of G, and give rise to some 
explicit cycles, when the lattice intersects them in a lattice.  To get an embedding one 
often has to pass to a finite cover, and then when one passes to deep enough covers, they 
will (by strong approximation) typically produce a number of disjoint cycles.   
 
 The standard way to check that these cycles are nontrivial is to find another 
geometric cycle of the dual dimension that intersects it with nonzero intersection number.  
In the above theorem, Levi subgroups are the source of duals.   
 
 As in the case of modular symbols, pulling these up covers can give growth to the 
Betti numbers.   
 
 We did this with H1 and the Millson example that uses codimension one 
geometric cycles in arithmetic hyperbolic manifolds associated to quadratic forms, and 
following Lubotzky, observed that this even gave maps onto free groups.  In this case this 
implies that there are then a further tower of covers (not converging to the trivial group) 
for which b1 grows linearly with the index132.    
 
d.  L2-cohomology.  
  
 None of the methods discussed till this point has the potential of giving Betti 
numbers that grow linearly with volume (or equivalently, with the index of the cover).  
However, Euler characteristic tells us that this must happen sometimes.  If χ(K\G/Γ) ≠ 0 

                                                
131 So that M is reductive, A is abelian and N is nilpotent. 
132 This family of covers shows very different geometry than that associated with 
congruence covers. 
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then, by multiplicativity of χ in finite covers, as one goes up any family of covers, some 
Betti number must increase linearly133.   
 
 In this section we will review the relevant facts about L2 cohomology and 
especially a remarkable theorem of Luck that explains exactly when this rare situation 
occurs in towers of regular covers134.   
 
 This story begins without any particular interest in finite sheeted covers, but 
rather with the consideration of arbitrary regular covers135.  For infinite complexes, there 
are alternatives to the usual simplicial chain complex: one can consider, for example 
locally finite chains, which gives rise to Borel-Moore homology. This gives a non-
homotopy invariant homology theory: it is invariant under proper homotopy 
equivalences. 
 
 A more subtle choice is to consider the complex of L2 simplicial chains136 (or 
cochains).  If the complex is locally finite (as it will be in all of our applications) then the 
∂ map is a bounded map.  Its homology is an invariant of X.  It is functorial with respect 
to maps that are Lipschitz and “uniformly proper”, i.e. if one has a bound on the size of 
the inverse image of simplices (or else the push forward of an L2 chain need not be L2).  
 
 It is perhaps worthwhile to consider the case of R.  The chain complex is then 
identified with 0 → L2(Z) → L2(Z) → 0, where the boundary map sends f→(t-1)f, t a 
generator of Z.  Obviously H1= 0, but H0 is a large infinite dimensional space (for 
example δ0 is not in the image) but it doesn’t seem to have much structure to say 
anything about. 
 
 There are two parts to the solution of this problem.  The first is basic. We 
considered L2 to enable the use of Hilbert space methods, in which case, we should insist 
that the constructed homology groups be Hilbert spaces.  The way to achieve this is to 
insist that we never quotient out by non-closed subspaces, i.e. to take the closure of the 
image of ∂ when forming the homology groups.  We will denote this version, i.e. where 
we take the quotient by closures by italics, H. 
 
 (An equivalent alternative to using closures is to form a Laplacian from the chain 
complex in the usual formal way following Hodge, and define homology to be the kernel 

                                                
133 Clearly no Betti number for covers of a finite complex can grow faster than linearly, 
since these are bounded by the number of cells, which grows exactly linearly in the 
number of sheets of the cover. 
134 It actually also applies to sequences of regular covers that Gromov-Hausdorff 
converge to the universal cover.  (See the notes to Chapter 4 for a recollection of 
Gromov-Hausdorff space.) 
135 Indeed, it can be developed in terms of arbitrary group actions. 
136 We are tacitly weighting all simplices equally in our discussion. 
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of the Laplacian.  The “torsion” closure(im∂)/im∂ thrown away by this method 
corresponds to spectrum of ∆ near 0 that does not consist of harmonic forms.  
 
 The second part is to note that, following [Atiyah], when we are dealing with a 
universal cover,137 the action of Γ on these Hilbert spaces is appropriate for defining a 
normalized dimension (using the theory of von Neumann algebras) that can be (in 
principle) an arbitrary nonnegative real number138.  This will then define bi(2)(X) (we 
suppress the Γ from our notation, unless needed) – the L2 Betti numbers of X. 
 

bi(2)(X) = dimΓHi(2)(X) 
 
 We proceed informally.  The idea shall be that we want to see what fraction of the 
regular representation some other unitary Γ representation is.  We restrict attention to 
unitary representations that are closed subrepresentations of some multiple of the regular 
representation, as ours naturally are (viewing the quotient as the orthogonal complement 
to the image of the boundary). 
 
 We want dimΓ L2(Γ) = 1.  If P is a Γ equivariant projection of ⊕ L2(Γ) → V, 
then the dimension is a trace of P.  To figure out what the trace should be, consider, first, 
the case of Γ finite. In that case V is finite dimensional in the ordinary sense, and 
  

dimΓV = dim(V)/#Γ  
 

We can consider the matrix of the projection to have coefficients in C[Γ].  This 
dimension is then the sum of the coefficients of the identity (element of Γ) along the 
diagonal, i.e. the coefficient of the identity in the trace.  Note that when Γ’⊂Γ is a finite 
index subgroup, we then have:	
		

dimΓ’ V = [Γ: Γ’] dimΓ V	
(L2(Γ) is a sum of [Γ: Γ’] copies of L2(Γ’) when thought of as a Γ’ representation).  It 
turns out that the dimension of any nontrivial representation is positive in this sense. 
 
 This has the property that dimΓ V⊕W	=	dimΓ V + dimΓ W.  Very useful is the 
property (almost obvious from the above heuristic) 
 

                                                
137 or even a regular cover. 
138 In general the indices of L2(Z) modules can be any real number.  However, not all of 
these arise as dimensions of kernels and cokernels of elliptic operators.  In the special 
case of the de Rham operator on general finite complexes (or compact manifolds), this 
question is the very fruitful area of the Atiyah conjecture, which has deep positive and 
negative results.  For other operators, such as the signature operator on manifolds with 
boundary, it is very easy to obtain transcendental numbers as such dimensions, even if the 
fundamental group in Z. 
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dimΓ’V = dimΓ indΓ’ΓV. 
 

 The usual homological algebra shows that K = X/Γa finite complex, then one has 
 

χΓ(X) = χ(K) 
 

Atiyah went further and showed that if one takes any elliptic operator on a compact 
manifold then the Γ-dimension of the ker and cok on the universal cover make sense, and 
one has an equality of indices upstairs and down, but this is rather more delicate – it 
requires more geometry and analysis than the result on Euler characteristics, which is a 
result of pure algebra.  
 
  It is easy to see that for any infinite complex (and hence for any infinite group 
acting freely) H(2)0(X) = 0; a constant map is L2 if and only if it is 0.  Applying the 
Euler characteristic relation, we see from setting K = a finite graph, that dimF H1(2) 

(Regular Tree) = 1-#generators of the free group F acting freely and cocompactly on it. 
 
  On the other hand, if Γ is amenable, then Cheeger and Gromov [Cheeger-Gromov 
1] showed that for X = EΓ, then Hi(2)(X) = 0.  They deduced from that that the same is 
true for any Γ with an in infinite amenable normal subgroup.  And therefore χ(K) = 0 if K 
is an aspherical complex whose fundamental group has an infinite normal amenable 
subgroup. 
 
  All of this connects to finite covers for residually finite groups by a beautiful 
theorem of [Lueck1].   
 
Theorem (Lueck):  If K is a finite complex with residually finite fundamental group Γ 
and universal cover X, and let Γi be a descending chain of normal subgroups (with Ki the 
associated covers) then 

lim Hk(Ki)/[Γ: Γi] = bk(2)(X). 
 

 Thus for finite complexes one can tell linearity of the growth of Betti numbers in 
terms of bk(2)(X) in terms of the universal cover, i.e. are there any L2 harmonic k-forms.  
This is interestingly eqough a statement that does not depend on the uniform lattive that 
is acting, or the sequence of normal finite index subgroups used in defining the 
normalized Betti numbers.   
 
  It turns out that one can use harmonic analysis139 on Lie groups to obtain that the 
only cohomology H2k(K\G) that can be non-zero is when k = ½ dim(G/K).  (See 
[Ohlbrich]) In this dimension it will be nonzero if and only if the Euler characteristic χ  ≠ 
0 (which can also be determined from the χ(compact dual) and which is if and only if 
                                                
139 OK -- one can if one is Borel. 
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rankCG = rankCK.  So, for SLn(R) this only happens for n = 2, but for U(m, n) it’s 
always true (and for O(m, n) it depends on parity considerations of m and n.) 
 
  This theorem is adequate for the purposes of understanding uniform lattices, 
however for nonuniform lattices, while there is a finite complex for K(Γ, 1) -- thanks to 
the Borel-Serre theory -- it is not K\G/ Γ, which even has the wrong dimension.  Thus the 
universal cover is not K\G and we cannot directly use the above calculation to learn about 
the growth of Betti numbers in towers.  It is nevertheless true that the L2 Betti numbers 
for nonuniform lattices are proportional (with the ratio of volumes being the 
proportionality constant) to those of the uniform lattices!  
 
 The most conceptual proof I know is due to [Gaboriau] who introduced notions of 
L2 invariants for equivalence relations.  Using this he showed that Γ and Δ both act 
measure preservingly and commuting with each other on the same space X140 with 
finite covolume, then for every k,  
 

bk(2)(Γ)/vol(X/Γ) = bk(2)(Δ)/vol(X/Δ) 
   
  We note that as a consequence of the theorems in this section, if M = K\G/Γ, then 
(-1) ½dim(G/K) χ(M) ≥ 0.   
 
 The Hopf conjecture asserts that this is true for all closed aspherical manifolds.  It is 
not even known for (variable) negatively curved manifolds, although Gromov [Gromov 
KH] did use L2 ideas combined with Hodge theory to prove a Kaehler version of this 
conjecture141.   
 
  In the next chapter we will discuss some other uses of L2 to probe the Borel 
philosophy.   
 
3.7 Mixing the ingredients. 
 
 We now wrap up our discussion and show the ubiquity of the failure of the naïve 
proper analogue of the Borel conjecture.  (Before jumping to conclusions, however, 
please go to the next section on morals!)  All of the results and arguments in this section 
are joint work with Stanley Chang, and more details can be found in [Chang-Weinberger. 
2,3,4] 
 

                                                
140 In this situation X = G the ambient Lie group; the lattices can be viewed as acting in a 
commuting fashion by having one act on the left and the other on the right.  The invariant 
measure exists, because the Lie group G is unimodular (whenever it has a lattice).  This 
idea of Gromov is called measure equivalence. 
141 On the other hand, recent work of [Avramidi3] calls this conjecture into question in 
general. 
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 Our first result argument shows that we can use the completely elementary results 
about H4 of congruence subgroups of SLn(O) to show proper-nonrigidity for all n>4. 
 
Theorem:  For every n>4, for every lattice in SLn(O), the associated locally 
homogeneous manifold has a finite sheeted cover that is not properly rigid.  Moreover, 
we can arrange for this cover, there is a proper homotopy equivalent manifold that is 
smooth, and is distinguished (topologically) from the locally symmetric manifold by 
having a different p1. 
 
Proof:  We shall just use the groups SLn(O; p) studied above (every lattice contains these 
for large p, by the congruence subgroup theorem [Bass-Milnor-Serre]).  We turn to our 
classifying spaces armed with our knowledge about p-torsion in H4(SLn(O; p) ; Z). 
 
    F/O → BSO → ∏ K(Z, 4i) → K(Z, 4) 
      ↓    ↓    ↓ 
    F/Top→BSTop  →      K(Z[1/2],4) 
 
The leftmost square all consists of rational homotopy equivalences because BF has finite 
homotopy groups according to Serre’s theorem on finiteness of stable homotopy groups 
of spheres.  The map BSO → ∏ K(Z, 4i) is the total Pontrjagin class (interpreting 
cohomology classes as maps to Eilenberg-MacLane spaces).   
 
The homotopy of BSO is known, thanks to Bott periodicity, and we have Z’s in every 4th 
dimension.  We shall ignore the prime 2.  Bott periodicity, via its connection to the Chern 
character (see e.g. [Hatcher, VB]), implies that pk: π4kBSO ≅	Z → Z is multiplication by 
(2k-1)! 
 
 Note that a Pontrjagin class pk can be defined in a topologically invariant fashion 
in Z[1/N] if we invert all primes that arise in πi(Top/O) for i ≤ 4k+1.  π3(Top/O) ≅ Z/2 
and then the groups vanish till π7(Top/O) ≅ Z/28 and forever after, they are isomorphic 
to the group of differential structures on spheres studied by Kervaire and Milnor.  Thus, 
the question of which primes need to be inverted becomes related to Bernoulli numbers.  
However, we will just use p1 and be happy to invert the prime 2 to obtain topological 
invariance. 
 
Now, to lift a map K\G/Γ → K(Z, 4) to F/O note that in every dimension d there is an 
N(d) so that there is a map from the d-skeleton  K(Z, 4)[d]  → F/O (making use of the 
rational homotopy equivalence BSO → ∏ K(Z, 4i)) so that the composition K(Z, 4)[d]  
→ F/O → K(Z, 4) is multiplication by N(d).  Letting d ≥ dim(G/K), and multiplying by 
N(d), e.g. choosing p > N(d), we obtain a normal invariant that we can do smooth surgery 
to and obtain a smooth proper homotopy equivalence f: M → K\G/Γ distinguished by the 
fact that p1(M) – f*p1(K\G/Γ) is of order p.   
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Notice that f*p1(K\G/Γ) only depends on the map that f induces on π1, i.e. only on the 
homotopy class of the map not the proper homotopy class.  By Mostow rigidity, all 
automorphisms of Γ come from isometries of K\G/Γ to itself, and hence p1(K\G/Γ) ∈	
H4(K\G/Γ)Out(Γ).  Consequently, this manifold M cannot be homeomorphic to K\G/Γ – 
it is not merely a proper homotopy equivalence that is not properly homotopic to a 
homeomorphism. 
 
Note:  The above proof used the idea that smooth invariants are topological invariants if 
we ignore a few primes (whose number depends on dimension).  It is an important fact 
that F/Top has an H-space structure, and STop(M) has an abelian group structure (for all 
manifolds) so that the map Stop(M) → [M: F/Top] is a group homomorphism142.  For π-π 
manifolds (of dimension >5) this map is an isomorphism. The group structure on F/Top is 
exactly the one that makes the maps arising in Sullivan’s description of F/Top into H-
maps. 
 
Proposition:  For all d>4 there is an M(d) so that if M is a smooth manifold, the image of 
the map SDiff(M) → STop(M) contains a subgroup of index bounded by M(d)rankH*(M; 
Z). 
 
Proof:  This is a formal consequence of the statement that there is an M(d) so that the 
composition M(d):F/Top → F/Top → Top/O is nullhomotopic on the d-skeleton. The d-
skeleton of F/Top is a finite complex, and Top/O is a cohomology theory with finite 
homotopy groups.  It follows that [F/Top(0) : Top/O] = 0 and that therefore143, the 
inverse limit of N* (over the integers)144 on [F/Top: Top/O] is trivial.  Consequently, we 
can find the M(d) that induces 0, as is our goal. 
 
Remark:  It is a consequence of the work of Kervaire and Milnor on differentiable 
structures on the sphere and smoothing theory that the map SDiff(M) → STop(M) has 
finite kernel (whose order is also bounded by M(d)rankH*(M; Z)).  The above 
proposition shows that, although the image is not a subgroup, the cokernel has a similar 
bound.   
 
 As a result, we have that for π-π manifolds, SDiff(M) → ⊕H4i(M; Z) is finite to 
one and has image that contains a lattice in the target (with even some information on the 
torsion, if we are so inclined). 
                                                
142 Siebenmann proved this in the last essay of [Kirby-Siebenmann].  It is a consequence 
of a periodicity theorem that is a cousin of Bott periodicity for BO. For a geometric 
explanation, see [Cappell-Weinberger] and [Weinberger TSS]. 
143 As the homotopy groups are all finite, there is no issue of lim1; it is also true in our 
case for the reason that we can work with a fixed finite skeleton. 
144 Note that F/Top(0) can be thought of as an infinite mapping telescope of self maps 
F/Top → F/Top induced by multiplications by the integers (no matter what H-space 
structure is used). 
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 We now give a general converse to the rigidity that holds145 in Q-rank ≤ 2, but 
only for the topological category.  
 
Theorem.  If Q-rank(Γ) > 2, then there is a finite index subgroup Γ’ of  Γ for which  
Sp,Top(K\G/ Γ’) is nontrivial. 
 
Remark:  Indeed, we can make this an elementary abelian 2-group of arbitrarily large 
size by pushing strong approximation slightly harder than we do in the discussion below. 
 
Remark:  If Γ is arithmetic then the Q-rank(Γ) is defined as usual in terms of Q split tori.  
If it is reducible, then we add on to the arithmetic pieces the number of noncompact 
manifold factors it has.  These non-arithmetic factors are all negatively curved, and they 
have the same general shape as R-rank 1 noncompact symmetric spaces: they have cusps 
that can be compactified, and these boundaries are aspherical, with cusp subgroups that 
are of infinite index. 
 
Proof:  We shall use Sullivan’s decomposition of F/Top at the prime 2: F/Top has a 
K(Z/2,2) factor, so we need to produce Γ’ with large H2( ; Z/2).  Let us assume that we 
are in the arithmetic case, leaving the modifications for the reducible case to the reader. 
 
 Recall that according to Lubotzky’s theorem, Γ has a subgroup of even index – 
hence a normal subgroup of even index.  Hence there’s a finite group of even order H that 
is a quotient of Γ.  Let Γ’ be the inverse image of some involution in H. 
 
 If the Lie group G has no rank 1 factors, then it has property (T), and H1(Γ’) is 
necessarily finite.  If there are rank 1 factors, but Γ is irreducible, we can deduce the same 
thing from superrigidity.  In any case, we then see that H1(Γ’) has an even order cyclic 
summand.  Consequently, we have Ext(H1(Γ’), Z/2) ≠ 0; by the universal coefficient 

theorem, there is an injection 0 → Ext(H1(Γ’), Z/2) → H2(Γ’; Z/2), giving us a nontrivial 
element in the structure set as desired. 
 
 The first remark is proved by producing quotients making use of many primes, 
and then having a large elementary abelian subgroup to take the inverse image of. 
 
Problem:  The above line of thought shows that we can make rk H1(Γ’, Z/2) large by 
taking a deep lattice.  This rank is necessarily O(vol(K\B/ Γ’) and in the rank 1 case it can 
actually grow linearly (although this doesn’t produce any exotic structures).  However, if 
one takes a descending chain146 or assumes that we are irreducible in a semisimple group 
of rank ≥ 2, is it the case that this rank is o(vol(K\B/ Γ’)? 
 

                                                
145 We will explain this in a later chapter. 
146 And we are not in the case of a surface! 
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 As a converse to the low rank proper rigidity this theorem has a couple of 
weaknesses: these elements (at least in the irreducible case) die on passing to further 
covers.  Also, it would be nice to know that some particular structure sets (groups, in 
fact) are infinite – and we would be interested in knowing whether we can say anything 
about how these groups grow in size as we move up a tower.  We now address these 
questions. 
 
Remark:  Hi(X ;Q) → Hi(Y ;Q) is 1-1 for any finite cover Y of any space X.  So, if we 
detect a structure set using a rational Pontrjagin class, then these survive forever. 
 
 First of all, we note a case where we can prove that the proper structure set is 
infinite for a simple reason of this sort. 
 
Proposition:  If K\G/Γ is a Hermitian symmetric space with Q-rank(Γ) > 2, then 
Sp,Top(K\G/ Γ)⊗Q	≠ 0. 
 
Proof:  We argue as above, but we will need to see that H4(K\G/Γ; Q) ≠ 0; the 
proposition will be proved by p1.  The obvious cohomology class to use is the square of 
the Kaehler class.  However, one needs to check that this class is nontrivial. 
 
 Let’s now be a bit more explicit.  Given a projective embedding, one can pullback 
the generator of H2(CPN): this is the Kaehler class.  The way it evaluates on homology is 
by intersecting with any linear hyperplane CPN-1.  Using a projective embedding of the 
Baily-Borel compactification147 of K\G/ Γ, it would then suffice to find codimension 2 
linear subprojective space that does not intersect the singularity set of the Baily-Borel 
compactification, since its intersection with K\G/Γ will be a subsurface on which the 
square of the Kaehler class is nontrivial.   This merely requires that the codimension of 
the singularities of the BB to be larger than 2.  This can be seen by inspection, as noted in 
[Jost-Yau]. 
 
 At the cost of weakening the hypothesis on Q-rank to one that is not necessary for 
rigidity, one can prove a much stronger theorem. 
 
Theorem:  Suppose M = K\G/Γ is a locally symmetric manifold with Q-rank(Γ) > 3, 
then lim S

p,Top
(K\G/ Γ’)⊗Q is of infinite rank (where the limit is taken with respect to 

arbitrary finite covers K\G/Γ’ of K\G/Γ 148). 
 
 We shall denote the limit, lim S

p,Top
(K\G/ Γ’) by Svirt(K\G/ Γ). 

                                                
147 See [Baily-Borel] for the completion of Hermitian locally symmetric spaces as 
projective varieties. 
148 One can form this limit with respect to various families of covers, and the limits can 
change.  For example, one can show that if Q-rankΓ > 5, then if one takes the sequence of 
squarefree congruence covers, the limit has an infinitely generated torsion subgroup that 
frequently dies when included in the limit over all finite index subgroups.) 
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 We shall, for simplicity only deal with the case of Γ = SLn(OF) with n>3 (note 
that the Q-rank of such is n-1) – which includes a very interesting Q-rank = 3 example, 
and tells the complete story for this important class of lattices. 
 
 In light our previous remarks and the theory of generalized modular symbols, all 
that we need to do is find proper Q-parabolic subgroups for SLn(OF) whose unipotent 
radicals have dimension ≡ 0 mod 4.    
 
 Parabolics are associated to, perhaps incomplete, flags in Fn.  If we use the flag, 
Fk ⊂	Fn, then the dimension of the associated unipotent subgroup (of automorphism 
inducing the identity on the associated graded to this flag) is dk(n-k), where d = [F : 
Q].149   If n is even, we can use k=2, and if n = 1 mod 4, we can use k = 1.  If n =3, then 
the Q-rank is 2, so we can assume that n >4, so we can set k = 4.   
 
 The general case in the theorem is a similar case-by-case analysis150. 
 
 Finally, given the infinite rank of Svirt(K\G/Γ)⊗Q, it becomes reasonable to ask 
what is the growth rate of rank S

p,Top
(K\G/ Γ’) as one moves up a tower.  In general, it 

seems like the rank grows like some power of the volume [Γ : Γ’]α for some α≤1.   
 
 The question of (approximately linear) growth follows easily from Lueck’s 
theorem combined with the results of Cheeger-Gromov and Gaboriau explained in the 
previous section. 
 
Theorem:  Assuming that dim (G/K) > 4, and Q-rank(Γ) > 2, the ranks S

p,Top
(K\G/ Γ’) = 

o([Γ : Γ’]) if and only if rankC(G) > rankC(K) or dim(G/K) is not divisible by 8.   
 
 Indeed for G semisimple with no rank 1 factors, one can prove that rank 
Sp,Top(K\G/ Γ’)⊗Q = o(vol K\G/ Γ’) (i.e. we do not have to assume that they are part of 
a tower).  Presumably, this also holds in that case as well for irreducible lattices.  And it 
is interesting to speculate on the nature of the torsion for these lattices (both in a tower 
and those that are not). 
 
3.8 Morals.  
 
 What do we learn from this discussion?  Certainly that in large Q rank, the proper 
Borel conjecture fails.   
 

                                                
149 The presence of this factor d implies that if the lattice in the theorem were obtained by 
restriction of scalars from a number field of even degree, we would obtain the same 
growth of Svirt in the problematic Q-rank = 3 case not covered in the theorem. 
150 I am deeply appreciative of the help that Dave Witte Morris gave us with these 
calculations that we had done incorrectly at first. 
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 But that’s a summary, not a moral. 
 
 The reason that the proper Borel conjecture fails is interesting.  It turns out that 
only in Q-rank ≤ 2 are the symmetric spaces “aspherical” in the “relevant sense”, i.e. the 
sense relevant to proper rigidity.  We observed that these low Q-rank lattices are the only 
ones where the space at ∞, i.e. the Borel-Serre boundary, is aspherical. 
 
 What is a good way of thinking about “aspherical in the relevant sense”? We need 
to lose some geometry and move towards a categorical answer.   
 
 For proper maps, we are working in the proper category, and it makes sense to 
look for a properly aspherical space.   
 
 What should proper “aspherical” mean?  This space should be defined to be a 
terminal object in the category of spaces and maps that are “1-equivalences”151 i.e. where 
one can solve all 1 –dimensional lifting problems in a way that is unique up to homotopy 
(in the category).  If Q-rank ≥ 3 the terminal object should be “the core of K\G/Γ” × [0, 
∞) -- which is not K\G/Γ.  (There’s a pretty straightforward proper map from latter to the 
former, but no proper section to this map.) 
 
 If we give up on doing any new geometry at infinity, might we be able to survive 
this lack of proper asphericity, and get some rigidity theorem for all K\G/Γ? 
 
 One way we can do this by insisting that our maps are homeomorphisms outside 
some compact set (and that we allow homotopies to be relative to the complement of a 
somewhat larger compact set).  In this case, the symmetric space is a terminal object and 
we will see in the next chapter that the ordinary Borel conjecture for a closed aspherical 
manifold constructed by a Davis construction applied to the Borel-Serre compactification 
implies this “rel ∞“ rigidity, so it is a consequence of the Borel conjecture.   
 
 And, indeed this case is (essentially152) a theorem of Bartels-Lueck-Reich-
Ruping]. 
 

                                                
151 That this is the right thing to look at is suggested by the functoriality properties that 
we will see that S (i.e. surgery theory) is blessed with.  More primitively, the π-π theorem 
--that our discussion crucially depended on -- suggests the very special role that the 
fundamental group (which is equivalent to 1-equivalence classes of connected spaces) -- 
will play. 
     When we study groups with torsion, it will turn out that the terminal object is not 
rigid, and we will be led back to geometry and orbifolds, i.e. to enlarging the category. 
152 Their paper covers the case of arithmetic lattices.  Nonarithmetic lattices can be 
handled by the same idea of reduction to the arithmetic case used above in 3.2 when we 
defined the Q-rank for the nonarithmetic case. 
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 In any case, this discussion enables (and forces) us to expand our attention to all 
aspherical manifolds with boundary, with the boundary aspherical or not, provided we 
work relative to the boundary.  (Or rel ∞ in the noncompact case). 
 
 There’s another sense in which K\G/Γ is aspherical, if we make a category where 
maps are Lipschitz and not allowed to move any point too far.  In that case, the large 
scale geometry discussed in the first section comes to bear, and one can indeed prove that 
K\G/Γ’s are “boundedly rigid”153.  This bounded category (and other “controlled 
analogues”) will play a large role when we discuss the Novikov conjecture in the coming 
chapter.  
 
3.9 Notes.  
 
 This chapter covered a lot of ground, and all of the topics discussed need more 
systematic treatments.  Happily, many of these have them.  A very good general 
reference for arithmetic manifolds is [Witte-Morris]. 
 
 The subject of compactifications of K\G/Γ is an important one and two of these 
played a role in our discussions, the Borel-Serre and the Baily-Borel.  Both of these are 
extraordinarily important.  The Borel-Serre compactification gives finite generation of 
group homology, the calculation of their cohomological dimension, and that these groups 
are duality groups in the sense of Bieri and Eckmann154 (see [Bieri-Eckmann]).  The 
Baily-Borel compactification shows finite generation of the spaces of modular forms via 
projective embedding.  The literature on these and many others is surveyed and explained 
in [Borel-Ji]. 
  
 We shall sometimes have need for Tits building defined for Lie groups over other 
fields.  For example, if one wants to study SLn(Z[1/p]), it acts ergodically on SLn(R) and 
we need to supplement SLn(R) with SLn(Qp) to get discreteness.  Tits buildings give a 
structure that replaces the symmetric space K\G.  SLn(Z[1/p]) acts properly on the 
product of the real symmetric space and the building.  An immediate consequence of this 
theory is that the virtual cohomological dimension of such groups is finite.  There are 
many references for the theory of buildings, each with a different emphasis; for our 
purposes, [Tits] and [Abramenko-Brown] are especially recommended.  I also highly 
recommend the paper [Alperin-Shalen] that is a model of this type of application. 
 
 Atiyah’s theorem (about how much of the tangent bundle is homotopy invariant) 
is better phrased in terms of stable normal bundles (for an embedding in a very high 
dimensional Euclidean space), rather than tangent bundles.  In that case, the conceptual 
explanation, due to [Spivak], is that as a spherical fibration, this stable normal bundle is 
definable for any Poincare complex, that is, for any finite complex that satisfies Poincare 

                                                
153 See [Chang-Weinberger 3]. 
154 Actually they motivated the definition of Bieri-Eckmann duality by being a first 
nontrivial class of examples of this. 
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duality155.  The idea of this fibration is quite simple: Poincare complexes can be 
characterized as those X’s for which the inclusion of the boundary of a regular 
neighborhood of X polyhedrally embedded in Euclidean space into the regular 
neighborhood has homotopy fiber156 a homotopy sphere.  Spivak also gives a homotopy 
theoretic characterization of this fibration157. 
 
 The surgery classification of manifolds was begun by Kervaire and Milnor 
[Kervaire-Milnor] in the case of smooth manifolds homotopy equivalent (and therefore 
homeomorphic to) the sphere, and then extended to the simply connected case by 
Browder and Novikov and reformulated using classifying spaces by Sullivan.  
(References for surgery theory include [Browder, Wall1, Lueck 3, Ranicki 4, ALT, and 
Weinberger TSS].)  Although we have not yet dealt with the classification of closed 
manifolds (next chapter!) the simply connected case can be deduced from the discussion 
given here:  If h:M’ → M is a homotopy equivalence, one can always for it to be 
transverse to a point, p, and with h-1(p) a single point.  In that case, there is a 
neighborhood isomorphic to a ball, whose inverse image is a ball.  Deleting the interiors 
of these balls, we get a structure on the complement.  On the other hand, any structure on 
the complement restricts to a homotopy sphere on the boundary, and, thanks to the 
Poincare conjecture (in the PL and Topological categories) it can be completed to be a 
structure on the closed manifold. Thus Scat(M) ≅ Sp,cat(M-p) for M simply connected 
and Cat = Top or PL.      
 
 The classifying space F/Top is its own fourth loop space (more correctly, it is 
Z×F/Top that is its own loopspace158) as can be seen from the description given in the 
text and using Bott periodicity at the odd primes.  It turns out that this is the first step 
towards a functorial view of surgery theory, that cannot at all be explained in “without 
obstructions” terms, as our first pass went: the structure space159 S measures the 
difference between completely analogous local and global obstructions, i.e. Z×F/Top is a 
cohomology theory associated to a spectrum whose homotopy groups are surgery 
obstruction groups.	
 

                                                
155 See [Spivak, Wall] for what this notion means in detail: it generalizes the fact that the 
homology and cohomology groups must be isomorphic, but it also demands that it be 
implemented via a fundamental class, and also hold with arbitrary local coefficient 
systems – in particular any finite cover of a Poincare complex is a Poincare complex. 
156 Recall that any map can be replaced (at the cost of replacing the spaces involved by 
homotopy equivalent ones) by a fibrations, as observed by Serre in his thesis. 
157 It is the unique stable spherical fibration whose top homology class is spherical (i.e. 
lies in the image of the Hurewicz homomorphism). 
158 This extra Z has significant geometric implications, hinting to an amazing world of 
nonresolvable homology manifolds. 
159 Indeed, the structures that we considered are promoted to being homotopy groups of a 
space rather than merely a set.  This idea first arose in work of [Casson] and was 
developed and advocated by Quinn in his thesis. 
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 Surgery theory is nicest in the topological category.  The canonical reference for 
the foundational theorems in this setting is [Kirby-Siebenmann] - which is the original 
source for them.  Unlike the smooth category where the foundations are built on Sard’s 
theorem, Morse’s lemma, and the fundamental existence theorem for ordinary differential 
equations (with smooth coefficients), the topological category is distinctly more difficult 
to get off the ground.  The proofs of the basic theorems, essentially theorems about the 
topology of Rn, require deep global results in the smooth or PL categories either about 
nonsimply connected manifolds (a la Novikov and Kirby) or about manifolds “controlled 
over a metric space” (introduced by Quinn [Quinn1]) -- a major theme in the coming 
chapters. 
 
 However, the theory ends up having an even nicer formulation than the 
topological category when one includes homology manifolds, but here the local issues 
currently seem even more difficult and the global theory is in much better shape than the 
local.  I will discuss this a bit in the next chapter when discussing the functoriality of 
surgery and also in our discussion of the Wall conjecture (the “existence Borel 
conjecture”). 
  
 That there is a lot of homology in congruence subgroups is something that I learnt 
from Ruth Charney [Charney].  Torsion in homology of arithmetic groups is quite 
mysterious.  For SL(Z), in the limit, this is determined by the solution to Quillen-
Lichtenbaum conjecture by Rost and Voevodsky160 (by work of Dwyer and Friedlander 
[Dwyer-Friedlander]), but for congruence groups and other arithmetic groups the picture 
is still obscure161.  Bergeron and Venkatesh [Bergeron-Venkatesh]  and [Calegari-
Venkatesh] have suggested that the analogue of the L2 Betti story holds – something hard 
to tell in general because of issues involving regulators.  (Test question162:  In the stable 
range of Borel’s theorem, how do the images of the cohomology lattices corresponding to 
different lattices in the same group relate to one another?)  The stabilization by going up 
the congruence tower has recently been studied by F.Calegari and Emerton (see 
[Calegari-Emerton], introducing a notion of completed cohomology maiking a 
connection to p-adic Lie groups).  
 
 A problem whose solution would seem to be illuminating in this direction is the 
following: can one estimate the ratio of bi(X ; Z/p)/vol(X) (where vol(X) is some 
simplicial notion of volume, say the number of simplices) for a simplicial complex by 
random sampling.  That this is possible for rational Betti number is the idea of the Lueck 
approximation theorem, see also [Farber] (where this point is clearer – his condition for 
Lueck’s theorem to hold for non-normal covers is precisely that the relative volume of 
the set of points where the covers do not look “universal” goes to 0) and [Abert-
Bergeron-Biringer-Gelander-Nikolov-Rambault-Samet] and [Elek] where it is explicit163.  
                                                
160 See the survey [Weibel] 
161 But see [Calegari] 
162 It could be someone knows the answer to this and will email me? 
163 In this context, the paper of [Clair-Whyte] where Lueck’s theorem is made more 
quantitative expressly in terms of injectivity radius of the covers.   
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This would then suggest that in the situation where rankCG-rankCK = 1 there would be 
growing torsion in covers, but not because of large elementary abelian subgroups. 
 
 We refer to [Lubotzky-Segal] for a survey of the strong approximation theorem.  
We note that although the original proof (by [Weisfeiler] and Vasserstein) used the 
classification of finite simple groups, this is no longer necessary (as pointed out there) 
thanks to work of Nori, Larsen and Pink, and Hrushovski and Pillay (using algebraic 
geometric and/or model theoretic ideas).` 
 
  I remember learning about amenability from Bob Brooks.  When I was a student, 
he told me about Kesten’s work and explained that although there are no L2 harmonic 
functions on a universal cover, amenability controls whether 0 is in the spectrum.  This 
material appeared in [Brooks] and is a manifold version of the statement asserted for the 
discrete group. Other papers by Brooks, Sunada, and others, compared the spectral 
geometry of the manifolds to the spectral geometry of the associated finite graphs.  This 
can all be viewed part of the L2 cohomology story (including an appropriate de Rham 
theorem for comparison of smooth and simplicial models) when one jazzes up the story 
to include foliated spaces rather than just covers (see the paper of [Bergeron-Gaboriau]). 
There are a number of excellent sources on amenability, the Banach-Tarski paradox, and 
its connection to random walks and to operator algebras (see e.g. [Lubotzky 2, Wagon, 
Patterson]).   
 
 The geometric group theory of amenability and nonamenability has led to the 
consideration of some remarkable groups.  Nonamenable groups that don’t contain free 
groups (the von Neumann conjecture) were first constructed by Olshanskii [Olshanskii] – 
the torsion groups satisfying property (T) produced by the method of adding large 
relations are also examples.  On the other hand, Whyte’s thesis [Whyte] gives a “true” 
analogue of the von Neumann conjecture that can be used, for instance, to extrapolate 
between the characterization of nonamenability in terms of random walks (i.e. vanishing 
of 0-th L2 homology) and that in terms of the existence of “Ponzi schemes”164 ([Block-
Weinberger 1,2] vanishing of 0-th L∞ homology) to all other L

p homology p>1. 
 
 Grigorchuk’s group of intermediate growth (i.e. so that the number of group 
elements that can be expressed as product of n generators grows more than a polynomial, 
but less than exponentially) [Grigorchuk] was the first non-solvable amenable group.  
Bartholdi and Virag [Bartholdi-Virag] actually proved the amenability of some related 
groups by consideration of their random walk. Both of these are examples of automata 
groups – see the survey [Zuk 2].  Very recently, Jushenko and Monod have given 
(uncountably many) simple amenable groups [Jushenko-Monod]. 
 

                                                
164 The Cayley graph of a nonamenable group always supports a scheme wherein each 
vertex exchanges a uniformly bounded amount of money with its neighbors, so that each 
vertex ends up net positive.  This is impossible on Cayley graphs of amenable groups. 
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 Property (T) is the subject of a very useful book [Bekka-de la Harpe-Valette] and 
is at the center of numerous problems.   
 
 It is now liberated from its original representation theoretic roots by the method of 
Garland-Zuk-Ballman-Swiatkowski [Garland, Zuk1, Ballman and Swiatkowski] and also 
by Shalom’s work using bounded generation and algebraic methods (related to K-theory) 
to show that a number of interesting groups (like linear groups over Laurent series rings) 
have Property (T) (see his ICM talk [Shalom] for information).  The analytic method is 
useful in studying strengthenings of Property (T), e.g. to include group actions on other 
Banach spaces, or on other general spaces with curvature conditions.  Stronger forms of 
property (T) can be invaluable to extensions of the rigidity program in other directions, 
such as the Zimmer program, which broadly defined, tries to study nonlinear actions of 
large groups (e.g. lattices) on manifolds – perhaps, but not necessarily, preserving some 
geometric structure (such as a volume form)165.   
 
 I will leave the reader to [Kowalski] and [Lubotzky 3] for recent applications of 
expanders to discrete groups and to number theory, as well as to references on new proofs 
of Selberg’s 3/16 theorem (at least >0 theorem!) and the connections to additive 
combinatorics that enable all this.  There have also been other constructions of explicit 
families of expanders, such as the zig-zag product of Alon-Wigderson (explained very 
nicely in [Hoory-Linial-Wigderson]) and the new Ramanujan graphs166 constructed by 
[Markus-Spielman-Srinivastava]. 
 
 That both amenability and Property (T) have characterizations in terms of L2 
homology/cohomology should have made it possible to make a segue between this 
section and the one on L2 and growth of Betti numbers, but this seemed forced, so I 
chose not to push this.   
 
 Lueck’s book [Lueck 3] gives a good overview of how L2 interacts with groups 
and compact manifolds. Entirely missing (and not relevant to our concerns in this essay) 
are relations of L2 cohomology to intersection cohomology of compactifications and 
other stratified applications.  There has been much work since that book was written, both 
internal to the subject (such as interesting examples of transcendental L2-Betti numbers 
(see [Grabowski] and the literature cited there)167 and of connections to other parts of 
topology. 
 
                                                
165 In the notes to chapter 8, we will mention a bit more of this.  Here we content ourself 
with a citation of the Bourbaki talk [Cantat] on the theorem of Brown-Fisher-Hurtado 
showing that certain lattices don’t have any effective C2 actions on low dimensional 
manifolds.  SLn(Z) does not act effectively and C2 on any manifold of dimension < n-1. 
166 Ramanujan graphs are graphs that have optimal spectral gaps for their laplacians.  The 
first examples were contructed by [Lubotzky-Phillips-Sarnak], using Deligne’s solution 
of the Ramanujan conjecture -- the circumstance that led to their name. 
167 On the other hand, even now, there is no known example of a torsion free group where 
L2-Betti numbers are not integers.   
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 Atiyah [Atiyah] introduced L2 Betti numbers and that L2 indices to deal with the 
kernels of elliptic operators on universal covers and to get finite quantities measuring the 
sizes of these typically infinite dimensional spaces.  Connes later proved an index 
theorem for foliations – see [Moore-Schochet] for a version closely related to the version 
most relevant here – that gives something like an average version of the indices one sees 
over the leaves.  (See [Connes1].) If one views both theorems in the situation of limits of 
coverings (the Benjamini-Schramm limit of a sequence of finite covers being a 
transversely measured foliated space) then the cohomology related to Connes’s theorem 
is exactly the one occurring in the Bergeron-Gaboriau theorem mentioned above.   
 
 Another interesting convergence arises when one thinks about the information 
given in the L2 theory of symmetric spaces.  Results about the limits of normalized Betti 
numbers (via thinking about the Matsushima formula and multiplicities) were first 
derived by [de Georgi-Wallach] using the Selberg trace formula.   
 
 That symmetric spaces tend to be concentrated around the middle from the L2 
perspective has been well known for a while.  I cannot track it down: clearly Singer was 
aware of this when he conjectured [Singer] that the same might be true for the universal 
covers of arbitrary aspherical manifolds as an approach to the Hopf conjecture (discussed 
in the text).  A very useful exposition that does not make excessive demands on the 
reader’s knowledge for harmonic analysis and which goes further and explains what 
occurs for additional invariants related to the spectrum near 0 for forms as well as 
functions) is [Ohlbrich].  Atiyah and Schmid connect the use of the L2-index theorem to 
representation theory and use this connection to reprove some of the main results of 
Harish-Chandra. 
 
 Cheeger and Gromov were led to L2 methods for an opposite reason than they 
arose for us: they wanted a substitute tool to use when there are not enough finite covers 
(see e.g. [Cheeger-Gromov 3] _ – e.g. if one is studying the geometry of a manifold 
whose fundamental group is not residually finite.  However, in some sense these are two 
sides of the same coin: the individual manifold (or lattice) might be hard to understand, 
but this limiting object is more transparent and brings order to the finite world.  Their 
paper [Cheeger-Gromov 1] builds foundations for the theory and proves the 
generalization of Rosset’s theorem on vanishing of Euler characteristic.  Their paper 
[Cheeger-Gromov 2] gives a direct but very delicate proof that the proportionality of 
Betti number to volume from locally symmetric manifolds remains true when one moves 
from the uniform to the nonuniform case.  I personally prefer the method [Gaboriau] 
mentioned in the text. 
 
 The remarks about the rate of growth of Sp(K\G/Γ) is clearly essentially the same 
as questions about the rate of growth of Betti numbers.  Besides the linear case, more 
remains at the level of conjecture.  It seems reasonable to believe that the elements that 
don’t come from the compact dual grow at a rate that’s a power of volume, and that there 
is power upper bound, see [Xue, Sarnak-Xue, Abert-Bergeron-Biringer-Gelander-
Nikolov-Rambault-Samet] (and of course note that this is exactly the situation for the 
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generalized modular forms, or indeed, every use of geometric cycles I am aware of).  The 
torsion story is harder to be sure of.  In any case, if one climbs up the congruence tower 
of squarefree numbers, then the method based on comparison to the Lie algebra will give 
(at least if the Q-rank >5) an infinitely generated torsion group in the limit.  I suspect that 
quite generally Svirt(K\G/Γ) will have infinitely generated torsion and infinitely divisible 
elements, but I do not have anything to show in justification of this suspicion168. 
 
 Finally, regarding the morals of the story told in this chapter: most stories are not 
improved by having their morals stated explicitly, and further, most morals seem fairly 
obvious when just said outright169, and the tales told to illustrate them often seem more 
interesting than they are.  And, perhaps this is true in our special case as well.  In any 
case, as we proceed, we will now feel the need to be more and more functorial (and the 
geometric ideas that gave life to the problem, like good parents, will still be there, but in 
the background giving guidance and perhaps providing inspirations, but never 
overwhelming independent development). 
 
 And the bounded rigidity of K\G/Γ mentioned there is proved in [Chang-
Weinberger 3]. 

                                                
168 But I do hope to hear more about this in coming years. 
169 Yet, I note, that they are frequently deep truths in the sense of Fermi, truths whose 
negations are also true. 
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Chapter IV.  How can it be true?  
 

 
4.1  Introduction 
 
 After the previous chapter showed the ubiquity of the failure of proper rigidity for 
noncompact locally symmetric manifolds, in this chapter we begin taking seriously the 
problem for closed manifolds. Rather than seriously engaging the question of how to 
prove the Borel conjecture, we focus on how can it possibly be true?   
 
 After all, every method for distinguishing manifolds is a potential obstacle that 
needs to be overcome.  For example, in the last chapter we saw the import of 
characteristic classes, so a major focus of this chapter must be about why is it that (e.g. 
what are some mechanisms for) the characteristic classes of a manifold homotopy 
equivalent to K\G/Γ must be the same as those of K\G/Γ (if we are in the compact case).  
This is essentially the topic of the Novikov conjecture170 and it will be the main focus of 
this chapter and the next. 
 
 But there are invariants not at all related to the characteristic classes that can be 
used to distinguish manifolds171.  The classical example is the theory of lens spaces:  
Lens spaces are quotients of the sphere S2n-1/Zk where S2n-1 is thought of as the unit 
sphere of Cn and Zk acts via a unitary representation on Cn.  Each representation is a sum 
of irreducible one dimensional representations, and to obtain a quotient manifold we 
assume that each of the irreducible pieces has Zk acting freely, i.e. can be described as 
rotation by a primitive root of unity. These are called the rotation numbers in the 
definition of the Lens space.  A lens space might be denoted by Lk(a1,…..an) or some 
such similar notation where the a’s are integers prime to k, and denote the rotation 
numbers. 
 
 Changing the order of the a’s is costless.  Changing an a to –a, is an equivalence 
of the underlying real representation, but not the complex one, and changes the natural 
orientation on the manifold.  But, one can do this an even number of times and keep the 
orientation. 
 
 If we just care about the underlying manifold, we can change the group action by 
multiplying all of the rotation numbers by the same s prime to k.  Usually we will assume 
that we preserve an identification of the fundamental group with Zk, i.e. that we have a 

                                                
170 It is important to note that Novikov was not at all thinking about the Borel conjecture 
when formulating his problem.  It arose very naturally in the course of his work on the 
topological invariance of rational Pontrjagin classes as we will see in 4.5 below.  
171 Recall that in the situation of simply connected manifolds, the Browder-Novikov 
theorem (see the notes from chapter 3) tells us that beyond homotopy type, the G/Top 
characteristic class is a complete invariant (so that ordinary characteristic classes only 
lose a finite amount of information). 
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fixed homotopy class of maps to K(Zk, 1) that we are preserving, equivalently that we are 
interested in conjugacy of the group actions. 
 
 The number of π1and orientation preserving homotopy types among lens spaces 
in a fixed dimension is φ(k)  (the Euler φ function) – with the homotopy type being 
determined by the product of the rotation numbers172.  However diffeomorphism (= 
homeomorphism, in this case) is exactly equivalent to orientation preserving real linear 
equivalence, i.e. the changes we described above – according to a beautiful and deep 
theorem of De Rham (see [Cohen SHT]). 
 
 In dimension 3, all orientable manifolds have trivial tangent bundles, and there is 
no more tangential information to be had173.  (In higher dimensions, the Pontrjagin 
classes do distinguish some lens spaces from each other – they are essentially symmetric 
functions in the squares of the rotation numbers, but there aren’t enough of these to 
determine these numbers themselves. See [Milnor WT].) 
 
 There are two essentially different proofs of this theorem, that is proofs based on 
different principles, De Rham’s original argument that it is now natural to view from the 
point of view of algebraic K-theory and another argument, due to Atiyah-Bott-Milnor 
[Atiyah-Bott] that involves (equivalence classes of) quadratic forms associated to the lens 
spaces defined either in terms of spaces that they bound (cobordism theory) or via some 
measure of how lopsided (around 0) the spectrum of some self adjoint operators are 
(“spectral asymmetry”) [Atiyah-Patodi-Singer].   
 
 Both of these proofs pose challenges to the Borel conjecture; we will discuss the 
Atiyah-Bott-Milnor later in the chapter, and de Rham’s challenge in the next.  
 
 Let’s start with the Novikov conjecture, the response to the challenge of 
characteristic classes. 
 
4.2 The Hirzebruch Signature theorem.    
 
 Before discussing how the Borel conjecture can be true, it is worth asking, along 
the same lines, how the Poincare conjecture can be true?  After all, over S4k there are an 
infinite number of vector bundles – distinguished by the Pontrjagin class pk.  Why aren’t 
these the Pontrjagin classes of homotopy spheres? 
                                                
172 A pair of lens spaces can be compared by a map that preserves their fundamental 
groups.  Orienting them both, we can ask the degree of this map.  A form of the Borsuk-
Ulam theorem tells us that this degree is prime to k – the congruence class is independent 
of the map, and is the ratio of the product of the rotation numbers defining the two lens 
spaces. 
173 Actually, it is possible for the normal invariant of map between oriented 3-manifolds 
to be nontrivial, because of the extra information that goes beyond the tangent bundle 
itself – but this is information only at the prime 2, and it always vanishes for homotopy 
equivalences. 
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 The answer is given by the Hirzebruch signature theorem that gives a homotopy 
theoretic interpretation of a certain combination of characteristic classes. 
 
Definition:   If M4k is a closed oriented manifold, then the signature of M is defined as 
the signature of the quadratic (i.e. symmetric bilinear) form H2k(M ; Q) ⊗H2k(M ; Q) 
→ H4k(M ; Q) → Q, namely, it is the difference in dimensions between a maximal 
positive definite subspace of H2k(M ; Q) and a negative definite subspace. 
 
 Note that Poincare duality tells us that this quadratic form is nonsingular.  Such a 
form (over a field) can be diagonalized – and the signature is the number of positive 
eigenvalues – the number of negative ones. 
 
 By its definition it just depends on the oriented homotopy type of M. 
 
Theorem:  (Hirzebruch [Hirzebruch1])  There are homogeneous graded polynomials 
Lk(p1…..pk) in the Pontrjagin classes, so that  

Lk(p1…..pk) = 22k(22k -1) Bk/(2k)! pk + terms involving the lower classes, 
 
(where Bk is the kth Bernoulli number) so that L = 1 + L1 +…+ Lk … is multiplicative 
for sums of bundles, and  

Sign(M4k) = < Lk(p1…..pk), [M]>. 
where we have denoted by pi the Pontrjagin classes of the tangent bundle of M. 
 
 The last statement is what gives the theorem its name, the Hirzebruch signature 
theorem.  Hirzebruch actually gives a formula for the L’s from which the first statement 
follows.  
 
 Note that signature depends on orientation, exactly as the right hand side does.  
An immediate consequence of the formula is that a manifold that is stably parallelizable 
(i.e. with trivial normal bundle) has signature = 0.   
 
 Another significant consequence of the theorem is that if N → M is an r-sheeted 
cover (not necessarily connected or regular), then sign(N) = r sign(M), as the tangential 
information is the same for a manifold and its cover, just the fundamental classes are 
multiplied.   
 

The signature can be defined for spaces more general than topological 
manifolds174.  For example, for manifolds with boundary, the relevant quadratic form can 

                                                
174 Aside from dimension 4, topological manifolds with trivial tangent bundle can be 
smoothed.  And, signature is multiplicative in finite covers of closed topological 
manifolds, as the reader should be able to prove by the end of the chapter. 
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be defined, but it has a torsion subspace that should be removed.  In that case, for 
example, signature is not multiplicative in finite coverings. 
 
 Wherever one has Poincare duality, there are signatures.  And in all cases, one can 
ask the question about multiplicativity in finite covers. 
 
 For L2 cohomology, the * operator often gives rise to a form of Poincare duality.  
For instance, for infinite regular covers this gives rise to a generalization of 
multiplicativity: the L2 signature (which is a kind of normalized signature of covers175) = 
the signature of the base176.   On the other hand, there are other complete manifolds 
where L2 cohomology is self-dual not coming from covering spaces, and then one 
obtains invariants which and then multiplicativity can frequently fail. 
 

Intersection homology provides another example: for interesting classes of spaces 
such as compact complex algebraic varieties, it gives a form of Poincare duality177.   
 
 Finally, whenever one has a representation ρ: π1(X) → U(n), there is an 
associated flat bundle on X4k, and a Hermitian form H2k(X ; ρ) ⊗H2k(X ; ρ) → C, and 
hence a signature178 ∈ Z.  A rather surprising consequence of the Atiyah-Singer index 
theorem is that for X a manifold, signρ(X) = nsign(X).   
 
 We shall see later (as a consequence of controlled topological ideas) that this is 
indeed a consequence of the fact that the Poincare duality is a local statement179 and thus 
is true in the IH and topological manifold settings as well. 
 
Remark on the proofs.  There are essentially two different proofs of the signature 
theorem.  The original proof (Hirzebruch’s) deduces the theorem axiomatically from 3 
properties of signature: 
 
                                                
175 And in the residually finite case, is a limit of normalized signatures of finite covers, a 
la Lueck. 
176 This is due to Atiyah, and resembles the statement we discussed in the last chapter 
about Euler characteristic, but it is somewhat deeper than it.  The result about Euler 
characteristic is a statement about finite complexes, but this is one about manifolds. 
Atiyah’s proof was based on the ideas of the Atiyah-Singer index theorem. 
177 Which can sometimes, e.g. in the work of Cheeger on the Hodge theory of 
Riemannian pseudomanifolds and the work of many on the Zucker conjecture, be 
interpreted in L2 terms. 
178 In the Hermitian setting, there is not much of a difference between a Hermitian form 
and a skew-Hermitian form: you can go from one to the other by multiplying by i.  As a 
result one can get get signature type invariants in dimension 2 mod 4.  We will not see 
this playing a direct role for closed manifolds of dimension 4k+2 – but this does play a 
role in Atiyah-Bott-Milnor story for lens spaces of dimension 1 mod 4. 
179 And is thus true in the intersection homology setting for varieties (or Witt spaces). 
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1. signature is cobordism invariant, i.e. if M = ∂W (M and W compact), then 
sign(M) = 0. 

2. Multiplicativity sign(M×N) = sign(M)sign(N) 
3. Sign(CP2k) = 1.   

 
Then the result follows essentially from the work of Thom on cobordism theory.  (As 

Hirzebruch writes [Hirzebruch 2], “How to prove it?  After conjecturing it I went to the 
library of the Institute for Advanced Study (June 2, 1953).  Thom’s Comptes Rendus note 
had just arrived.  This completed the proof.”  This method180 remains important in purely 
topological settings.  Often it is important to make use of quantities over the form  
 

Ω*(?) ⊗Ω*(*)Z 

Where Ω*(?) is the homology theory whose chains are maps of oriented manifolds in ?, 
and which is viewed as a module over Ω*(*) by multiplication and Z is viewed as a 
module over Ω*(*) by means of the signature (or some other invariant of manifolds, on 
some occasions).  
  
 These considerations, systematically employed181 by Sullivan (and the key to his 
analysis of the structure of F/Top, for example) exist embryonically already in this work 
of Hirzebruch. 
 
 Moreover, the π-π theorem – at the core of the flexibility results in the last chapter 
– gives a starring role to cobordism and ? of the form K(π,1).  (Please pause and think 
this through.)  
 
 All that being said, this method is hard to apply to the result on flat bundle result 
mentioned above.  For example, naively, one runs into the fact that no multiple of S1 
with a nontrivial flat complex line bundle with non-root of unity monodromy bounds in a 
way that extends (flatly) over the surface: the bordism group of manifolds equipped with 
flat bundles is huge. 
 
 The other main method for proving the Hirzebruch signature theorem was 
motivated by it – it goes via the Atiyah-Singer index theorem.  Here sign(M) or a twisted 
cousins of it is viewed as the index of an elliptic operator on M, and such an index can be 
calculated cohomologically.   
 
 Originally, this wasn’t a completely disjoint proof in that the first proof of the 
index theorem went via cobordism theory (see [Palais]).  However, subsequently two 
different proofs of the signature have been found – one K-theoretic ([Atiyah-Singer]) and 
one via study of heat equation (see [Atiyah-Patodi-Singer, Gilkey]). The K-theoretic 
perspective shall play a large role starting in the next chapter and will be discussed 

                                                
180 of spending time (at IAS or) in libraries. 
181 Or exploited?   
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further there, but consequences of the index theorem shall already play an interesting role 
in this one and the heat equation approach is also relevant to our story (e.g. in section 9). 

 
 For now, so we can return to our story, let be content with observing that the 
Hirzebruch theorem answers the question with which we started this section.  If Σ is a 
homotopy sphere, then its signature is 0 (it has no middle cohomology at all), and so, 
since the coefficient of pk in Lk is nonzero, we conclude that pk must be 0 and none of 
those bundles we feared actually arise as tangent bundles of homotopy spheres. 
  
4.3  The Novikov conjecture.   
 
 In the late 1960’s, Novikov ([Novikov]) suggested a generalization of one of the 
key consequences of the Hirzebruch theorem. 
 
Novikov Conjecture (Most primitive form):  Suppose that α ∈ Hi(BΓ; Q) and let M be a 
closed oriented manifold of dimension 4k+i, f: M→K(Γ, 1) a map, then the quantity 
 

Signα(M, [M]) = <f*(α) ∪ Lk(M), [M]> ∈ Q 
 

is an oriented homotopy invariant. 
 

To see its implication for the Borel conjecture, suppose that M and M’ are closed 
aspherical manifolds with the same fundamental group Γ.  Then if h:M’ → M is a 
homotopy equivalence, and h*(pi(M)) ≠ pi(M’), then h*(Li(M)) ≠ Li(M’) and we can 
find a cohomology class in the cohomology of M’ = that of M = that of K(Γ, 1) that pairs 
nontrivially on this difference (using Poincare duality) and get a contradiction. 
 
 For many purposes the following equivalent dual formulation is useful: 
 
Novikov conjecture:  Suppose M is a closed oriented n-manifold, and a map f: M→K(Γ, 
1) is given, then f*(L(M) ∩ [M]) ∈ ⊕Hn-4i(BΓ; Q) is an oriented homotopy invariant 
(for manifolds with reference maps to BΓ). 
 
 Let’s be concrete and consider the case of Γ = Z (imagining that Γ is π1M).  In 
that case, there is a natural homotopy class of map f: M →K(Z, 1) = S1 to use.  The 
conjecture calls attention to the invariant of M4k+1 given by <f*([S1]) ∪ Lk(M), [M]>.  
Playing with this a little and using the Hirzebruch formula, we see that the higher 
signature is given by sign f-1(*) for any regular value *. 

 
 Orientations are easily obtained from orientations on M and the circle.  That this 
quantity is independent of the regular value is because of the cobordism invariance of the 
signature.  The puzzle Novikov places before us is why is this quantity a homotopy 
invariant?  After all, the property of being a homotopy equivalence is a global property, 
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and does not descend to submanifolds – a homotopy equivalence h: M’ → M does not 
need to induce a homotopy equivalence h|h-1f-1(*): h-1f-1(*)→f-1(*)? 
 
Remark:  This is a key difference with the problem of homeomorphisms, which are 
indeed hereditary homotopy equivalences:  if h: M’→ M is a homeomorphism, then 
restricted to any U⊂M, h|h-1(U): h-1(U)→ U is a proper homotopy equivalence.  For 
hereditary homotopy equivalences, Novikov’s theorem on topological invariance of 
rational Pontrjagin classes holds ([Siebenmann 1]). 
 
Remark:  This case of the Novikov conjecture does have a straightforward algebraic 
topological explanation (as was first observed182, I believe, by Rochlin).  The 
cohomology of the infinite cyclic cover of M has the structure of a module over Q[Z], a 
p.i.d.,  The linking pairing on the torsion submodule on H2k satisfies Poincare duality 
over Q, and its signature can be identified with the invariant under discussion.  However, 
in the next section, we will discuss other methods of much wider scope.  
 
4.4  First Positive Results. 
 
 We shall discuss two and a half methods that give some useful and interesting 
positive information about the problem.  The first is “codimension one splitting” and is a 
high dimensional variant of the powerful tools used in the pre-Thurston period of the 3-
dimensional topology.  It gives very good information about “Haken manifolds”, even in 
high dimensions.   
 

It starts by trying to answer the question we asked at the end of the last section, 
given that homotopy equivalence is not hereditary, why should the signature of certain 
submanifolds be unchanged?  Splitting theorems show that the homotopy equivalence 
can (often) be homotoped to one which is hereditary on codimension one submanifolds.  
This will also be a first occasion to consider algebraic K-theory that arises as an 
obstruction183.   

 
After this, we will turn to Lusztig’s thesis, which introduced a nice family of flat 

line bundles on manifolds with free abelian fundamental group, and brought the Atiyah-
Singer index theorem for families to bear on the problem.  Finally, we will give a variant 
of the last method that gives a proof for high genus surfaces, not based on their Haken 
nature, or any family of line bundles, but rather based on a beautiful surface fibration 
discovered by Atiyah and Kodaira (and also explain why we call it half a method). 
 
a. The splitting problem:  
 
 The splitting problem in its simplest form supposes we have h:M’ → M a 
homotopy equivalence and V a locally separating codimension one submanifold of M.  

                                                
182 These ideas about infinite cyclic covers are the bread and butter of knot theory. 
183 But we will discuss this more seriously in the next chapter. 
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The problem is to homotop h to a new map that restricts to the inverse image of V as a 
homotopy equivalence. 
 
 Unfortunately the answer to this is sometimes negative (in high dimensions), and 
we will build up to it by explaining first the problem where the main obstruction to this 
first arose, fibering184.  During our first run we will not be comprehensive, but will only 
introduce some of the dramatis personae. 
 
 It is reasonable to extend the range of the discussion of splitting to allow the 
target to be a non-manifold as follows:  Let Xn be a Poincare complex, that is a space that 
satisfies Poincare duality in a suitably strong form with respect to all local systems185.  
We suppose that Yn-1 is a locally two sided n-1 dimensional Poincare complex, Poincare 
embedded in X.  This means that there is a (perhaps disconnected) complex Z, such that 
Y∪Y is a boundary for Z, i.e. (Z, Y∪Y) is a Poincare pair, which simply means that Z 
with those two copies of Y satisfies the Poincare duality appropriate to manifolds with 
boundary.  We insist that X is the result of gluing together the two copies of Y. 
 
 The splitting problem can now be phrased as: given a homotopy equivalence h:M 
→ X and Y⊂X Poincare embedded, can we homotop h so that h is transverse to Y,186 and 
restricts to a homotopy equivalence between the inverse of Y and Y. 
  
 One example where this is relevant is the following fibering problem: 
 
Problem:  Suppose M is a manifold with a surjection π1M → Z (i.e. a map f: M → S1 
with connected homotopy fiber).  When is there a fibration of M over the circle → S1 
realizing this data (e.g. homotopic to this map)? 
 
 In case π1M → Z is an isomorphism a beautiful necessary and sufficient 
condition was given by Browder and Levine: fibering is possible if and only if the 
associated infinite cyclic cover has finitely generated homology. (After all, if the 
manifold fibers, the fiber would be homotopy equivalent to this cover.) 
 
 The first hypothesis for the general problem should be an analogue of this kind of 
finiteness.  It is convenient to ask that the infinite cyclic cover, denoted F, should have as 
cellular chain complex C*(F) ∼ C* a finitely generated projective complex187.  A space 

                                                
184 Very closely related to the invariants introduced by de Rham in his proof of the 
classification of lens spaces that we will discuss in the next chapter. 
185 Details can be found in Wall’s book [Wall1] chapter 2. 
186 Note that for transversality one does not need manifolds: a “normal structure” to the 
subobject that is a vector bundle (or perhaps somewhat weaker than that) is enough. 
187 This is reasonable given the special role that projective modules play in homological 
algebra: checking projectivity is often much simpler than freeness: cohomological 
vanishing suffices for the former, but not the latter. 
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with finitely presented fundamental group and with this property on its cellular chain 
complex is called finitely dominated188.  
 
 Under such conditions, we have the covering translate η: F → F, and a homotopy 
equivalence M → T(η) from M to the mapping torus.  T(η) is a Poincare complex (it is 
homotopy equivalent to M) and with some effort one can show that so is F (it it’s finitely 
dominated).  Splitting this map is part of homotoping the map to a fibration. 
 
Theorem (Farrell, Siebenmann).  If f: M → S1 is a map which is a surjection on 
fundamental groups, dim M > 5, then f is homotopic to a fibration if and only if  

(1) The associated infinite cyclic cover of M is finitely dominated. 
(2) An obstruction that lies in Wh(π) vanishes. 

 
If M has boundary and its boundary already fibers, the same result holds for the problem 
of extending the fibration to M. 
 

Wh(π) is a purely algebraically defined group.  Let Zπ be the integral group ring 
of the group π (it consists of finite formal sums of symbols of the form agg, where the ag’s 
are integers, and the g’s are elements of π -- made into a ring in the only sensible way 
imaginable).   

 
GLn(Zπ) is the group of invertible n×n matrices over this ring.  We can stabilize 

by adding an identity in the bottom right to an invertible matrix: 
 
GLn(Zπ) → GLn+1(Zπ) → … whose limit is GL(Zπ).   
 
The first algebraic K-group is defined by K1(Zπ) = GL(Zπ)/E(Zπ) where E(Zπ) 

is the group generated by elementary matrices.  A lemma of JHC Whitehead (that can be 
found in any introduction to K-theory) tells us that this quotient is abelian; indeed the 
product of matrices AB is equivalent in the K1 to A⊕B and E(Zπ) is the commutator 
subgroups of GL(Zπ). 

 
Finally set 
 

Wh(π) = K1(Zπ)/(±π), 
 

where we mod out by the obvious invertible 1×1 matrices (±g) where, again, g denotes a 
group element in π.   
	
 Note that if π is trivial, this group is trivial using row operations from linear 
algebra (and the Euclidean algorithm).  When π is finite cyclic, Wh(π) contains the 
obstruction that De Rham used to distinguish homotopy equivalent lens spaces (see 

                                                
188 This is equivalent to being a retract of a finite complex, just like a projective module is 
retract (i.e. factor) of a free module.   
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[Cohen SHT]). Wh(π) has an important part to play in the Borel story and it is therefore 
important not to discuss it too much too early, since it too provides a possible obstruction 
to homotoping maps to homeomorphism. We will rely on a theorem of Bass-Heller-Swan 
that tells us that that Wh(Zk) = 0.   

 
 The fibering theorem is an analogue of an earlier important theorem: 
 
Theorem (h-cobordism189) Let M be a compact manifold, dim > 4, then there is a one-to-
one correspondence: 
 
  τ: {W | ∂W = M∪? and W deform retracts to both M and ? }↔ Wh(π). 
 
 In particular, if Wh(π) = 0, then M and ? are (Cat) homeomorphic.  In general, τ is 
called the torsion of the homotopy equivalence M →W.  A homotopy equivalence with 0 
torsion is called simple (see 5.5.3 for more discussion). The h-cobordism theorem asserts 
that s-cobordisms, i.e. h-cobordisms where the inclusion of one side is simple, are 
products, so finding s-cobordisms between M and ? ends up being the same as finding 
(Cat) homeomorphisms between these manifolds.  
 
 Almost all homeomorphisms constructed in high dimensional topology make use 
of this theorem or ideas from its proof.  In particular the proof of the Borel conjecture for 
the torus Tk depends on the Bass-Heller-Swan calculation and the h-cobordism theorem 
in just this way. 
 
 The condition that W has its boundary components are deformation retracts is 
analogous to the finite domination of the infinite cyclic cover:  it asserts the homotopical 
possibility of the geometric structure (i.e. a product structure or a fibering) we are looking 
for.  In both cases, the obstruction lies in the same algebraic K-group, and they arise in 
both cases through “handlebody theory”, the manipulation of handles to mimic 
geometrically that homotopy theory (which is a manipulation of cells) – except that one 
has to occasionally replace algebraic isomorphisms by geometric moves that require 
(freeness in the place of projectivity or) elementary matrices and their products. 
 
 In the presence of the h-cobordism theorem, the fibering theorem is then directly 
visible as a combination of two obstructions: a splitting obstruction, which would give us 
a submanifold F’ in M, homotopy equivalent to F.  When we cut M open along F, we’d 
then get an h-cobordism from F to itself that also seems to involve a Wh obstruction to 
being a product.  If it is a product, then we have exhibited M as a fiber bundle over S1. 
 
 Actually, and this is an important point, the π-π theorem enables one to work in 
reverse and prove the splitting theorem from the fibering theorem -- the theorem of 
                                                
189 This is due to Smale in the simply connected case and is the backbone of his proof of 
the high dimensional Poincare conjecture.  In general, (for the PL and Smooth categories) 
it is due to Barden, Mazur, and Stallings.  See [Kervaire, Rourke-Sanderson].  The 
topological case is due to Kirby and Siebenmann. 
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Farrell. The advantage of this is that the splitting theorem is relevant to many more 
manifolds and submanifolds than the fibering theorem.   
 
 In general, there are splitting theorems unrelated to fibering problems.  For 
simplicity we shall just state a version adequate for our current purposes190 that 
incorporates the vanishing of Whitehead groups. 
 
Theorem:  Suppose M is a manifold with free abelian fundamental group Zk , and V ⊂ 
M is a codimension one submanifold with fundamental group Zk-1, then if dim M > 5, 
any homotopy equivalence f: M’ → M can be split along V. 
 
 We can now use this to prove the Novikov conjecture and try to prove the Borel 
conjecture. 
 
 If we are dealing with manifolds W with free abelian fundamental group Zk, then 
the Novikov conjecture is essentially the statement about the homotopy invariance of the 
signatures of the inverse images of subtori Ti⊂ Tk (for the classifying map h: M → Tk).   
The tori are inductively stacked Ti⊂ Ti+1⊂ Ti+2⊂ …⊂ Tk, so we only have to deal with 
the codimension one situation.  An important but not difficult lemma (that is essentially 
the same one that arises in the 3-dimensional topology of Haken manifolds) is that, we 
can homotop the map h: M → Tk to one where h-1(Tk-1) has fundamental group Zk-1.  
Then we can split the homotopy equivalence f: M’ → M along h-1(Tk-1) till we get all 
the way down to the inverse image of Ti. 
 
 So, by the homotopy invariance of signature, we have proven the Novikov 
conjecture.   
 
 Except for one little point:  There is a dimension condition in the theorem.  The 
fibering and splitting theorems do fail in low dimensions.  So we should get stuck when 
the codimension gets high enough. 
 
 However, for the purposes of the Novikov conjecture this is irrelevant, by the 
multiplicativity property of (higher) signatures.  We can cross our manifold by CP2 a 
number of times to increase dimension as much as we need, without changing any 
invariants (sign(CP2) = 1) and then apply this argument. 
 
 For the Borel conjecture, it would be nice to argue inductively and get a 
decomposition of a homotopy torus as resembling homotopically the product of n copies 
of (S1, *) and then invoke the Poincare conjecture (to handle these manifolds that 

                                                
190 Cappell gave an essentially complete theoretical analysis of this problem in 
[Cappell1,2].  In some cases, his analysis contains a non-K-theoretic obstruction that we 
will return to when we discuss group actions on aspherical manifolds and the Farrell-
Jones conjecture. 
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inductively have boundary a sphere and are contractible).  The dimension issue arises 
again but surgery theory gives a way to get around this. We will discuss the details of this 
later in this chapter.  In the end, though, hidden behind the surgery method is a 
periodicity, which is an indirect application of the idea of crossing with CP2 still lurking 
behind the scenes. 
 
b. Lusztig’s method.   
 
 Recall that we had mentioned before that for any ρ: π1(M4k) → U(n) we can 
define a signature signρ(M) using H2k(M ; ρ) thinking of ρ as defining a flat bundle.   
 
 Lusztig’s simple idea was to do this in a family [Lusztig].  Concretely, Lusztig 
considers n = 1, so let Λ = Hom[π1(M4k); U(1)]; Λ is a finite union of tori.  (It is an 
abelian group under pointwise product.) 
 
 The idea is that where before we thought of the signature as being an integer, one 
should reconsider it as a (virtual) vector space (and the integer as its dimension).  Then, 
varying the construction over points of Λ produces a vector bundle over Λ191 (associated 
to M).   So consider the bundle of H2k(M ; ρ)’s over Λ, and using an auxiliary Hermitian 
metric on this bundle, we can diagonalize the family of cup product pairings and obtain a 
virtual bundle: the difference between the positive and negative subbundles. 
 
 The Atiyah-Singer theorem for families gives a formula (for the Chern character 
of) signπ(M) ∈ K*(Λ).  Note, by the way that this invariant lies in a place that is 
covariant in π, as both Λ and K* are contravariantly functorial in π. 
 
 It turns out that signπ(M) detects exactly the higher signatures associated to 
products of 1 dimensional cohomology classes (or dually the image of the higher 
signature class from ⊕H(K(π,1); Q) in ⊕H(K(H1(π;Z)/torsion),1) Q)).  The numerology 
of K*(Λ) makes this at least believable.  For Zk Λ is a torus Tk, and K* has a Kunneth 
formula -- giving us copies the binomial coefficient Ck

i number of copies of K(*) which 
itself has a Z every fourth dimension (just the right size for a signature)192. 
 

                                                
191 There is an oversimplification here.  The family of H2k(M ; ρ) might not be a bundle, 
because of jumps in dimension.  The same issue arises in the Atiyah-Singer index 
theorem for families where for some values of the parameters the dimension of kernel 
and cokernel might jump. One has to introduce some perturbations to the family to obtain 
genuine ker and coker vector bundles.  See [Atiyah-Singer III]. 
192 Actually, there’s a Z every second dimension, but the ones that arise in 2 mod 4 don’t 
come up for these signature operators.  Had we worked in KO, they wouldn’t be 
observed. 
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 This method is very nice in that not only does it prove that the relevant higher 
signature is a homotopy invariant, it also gives a formula that tells us why it’s true.  That 
is also true of the next variant that we will describe. 
 
  
c. Using the Atiyah-Kodaira fiber bundle. 
 
 A rather different verification of the Novikov conjecture is possible for surfaces 
of high genus193 by making use of a different “representation”.  Atiyah and Kodaira have 
given a surface bundle over a surface with nonzero signature (see e.g. [Atiyah5]).   

 
The method is this:  one takes a product of surfaces, and inside of it a subsurface 

that intersects each fiber the same way (i.e. in a fibered way).   In this way the subsurface 
is a – perhaps disconnected - covering space of the base surface.  If the subsurface is 
trivial as a class in mod-2 homology, then one can take the branched Z/2 cover of the 
product along the surface.  If the surface has nontrivial Euler class (e.g. its self 
intersection is nontrivial integrally, or equivalently the cup square of its Poincare dual is 
nontrivial), then it turns out that the signature of the total space of the branched cover is 
nontrivial194. 

 
The details don’t matter. What matters is this bundle whose total space has 

nonzero signature although the base does not.  We denote the base of this bundle by Σ 
and the bundle itself by π. 

 
Suppose now that we have f: M4k+2 → Σ2 a manifold with a map to a surface, 

we that can define 
 

Sign(f) := Sign(f*π) 
 
Cobordism invariance of signature and its multiplicative properties, show that this 

invariant of f only depends on the class that (M,f) represents in  
Ω4*+2( Σ2) ⊗Ω*(*)Q 

which is f*(L(M)∩[M]) ∈ H2(Σ; Q).  In other words195 
Sign(f) = C<f*[Σ]∪L4k(M), [M]> 

 
(where C is determined by setting f = id.)   
 

                                                
193 Note that for any genus, we can deduce the Novikov conjecture to the special cases of 
Z and Z2 since all the cohomology of the surface is pulled back from one of these groups. 
194 These calculations can be done using the equivariant form of the signature theorem 
[Atiyah-Singer III]. 
195 Atiyah deduces this and a stronger formula from the index theorem for families, but 
our point here is to point out that this example is somewhat different from the Lusztig 
example although one can unify them. 
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A byproduct is that we now know the Novikov conjecture for high genus surfaces 
by a homotopy invariant formula  (just as we had achieved for case of Z in the previous 
section).   

 
4.5  Novikov’s theorem.  
 
 Gromov observed that the Atiyah-Kodaira example can be used to simplify196 the 
proof of Novikov’s theorem on topological invariance of rational Pontrjagin classes. 
 
Theorem:  If f:M’ → M is a homeomorphism between smooth manifolds, then f*(p(M)) 
= p(M’) ∈ ⊕H4i(M’; Q). 
 
 Of course, we will prove the equivalent that f*(L(M)) = L(M’).  We will first 
describe the argument if f is PL following Thom, Milnor, Rochlin and Schwartz.  
Without loss of generality we will assume that the dimension of M is odd, since we can 
cross M with an odd dimensional sphere, without loss of information. 
 
 We would like to give a PL invariant calculation of <L(M), c> for any homology 
class c.  Note that its Poincare dual is odd dimensional.  According to Serre’s thesis for 
every odd dimensional cohomology class PD(c), there is a nonzero multiple NPD(c) and 
a map f:M → S2r-1 multiple (which is unique up to homotopy after a further multiple) so 
that NPD(c) = f*([S]). 
 
 We define L(M) to be the unique cohomology class with 
 
  <L(M), c> = sign(f-1(*))/N 
 
where f is the map to the sphere defined above associated to the Poincare dual of c, and * 
is a regular value for f.  Using cobordism invariance this is well defined and linear, 
defining a unique rational cohomology class – that if M is smooth, the Hirzebruch 
formula identifies with the usual L-class. 
 
 Regular values exist by Sard’s theorem in the smooth category; in the PL 
category, they exist for a less deep reason.  Choosing triangulations so that f is locally 
affine, any point in the interior of a top simplex is a regular value.  If we knew 
transversality in the topological category (which is indeed true, thanks to Kirby-
Siebenmann) we could complete the argument in Top, as well, but that is a deeper result 
than Novikov’s theorem. 
 
 What we have to prove is this: 
 

                                                
196 Although it still does make use of a key trick of Novikov, the audacious introduction 
of fundamental group into a simply connected problem. 
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Lemma:  If h: U → M×Ri is a homeomorphism between smooth manifolds, then the 
sign(M) = <L(U), h*[M]>.  
 
 We shall actually make use of the fact that f is a hereditary homotopy 
equivalence: that f is a proper homotopy equivalence restricted to any open subset of the 
target. 

Without loss of generality we will assume i is even = 2l.  We note that there is a 
product of Atiyah-Kodaira bundles π×π….×π over Σ×Σ….×Σ the product of l surfaces.  
This bundle can be used for proving the Novikov conjecture for the fundamental class of 
a product of these surfaces. 

 
Note that the punctured manifold Σ×Σ….×Σ-p immerses197 in R2l. Then 

M×(Σ×Σ….×Σ-p) immerses in M×R2l.  We pullback the Atiyah-Kodaira bundle over this 
manifold and would like to take the signature of its total space (to recover sign(M)).   
This is slightly tricky, because we are in a non-compact situation, so we have to see that 
the signature is what we expect it to be (now defined using signature where we mod out 
by the torsion).  This is fairly easy because the bundle is trivialized at ∞ (= neighborhood 
of p) – so we know that the homotopy type at infinity is that of M × S2l-1× Fiber, and can 
calculate the effect198 of glueing or removing a plug of the form M × D2l× Fiber. 
 
 Now for U we can pullback using the homeomorphism h to obtain a 
homeomorphic smooth manifold, and associated bundles, etc.  Since everything is proper 
homotopy equivalent to the other side, we get the same total signature.  However, on 
computing the signature of this total manifold we get (a nonzero multiple of) <L(U), 
h*[M]>. 
 
 The executive summary is that we find a codimension 2l signature by computing 
the signature of an associated 2l dimensional bundle over the manifold!  This is the trick 
of the previous section for some cases of the Novikov conjecture, and it suffices for the 
current application to Novikov’s theorem. 
 
4.6  Curvature, Tangentiality and Controlled Topology    
 
 Out goal in this section is to introduce the idea of doing topology with control and 
explain the proof of the following theorem: 
 

                                                
197 This is not at all obvious, but it follows from immersion theory (often called Smale-
Hirsch theory):  Any parallelizable open manifold immerses in Euclidean space of the 
same dimension.  This can be found in almost any treatment of h-principles, since it’s the 
prototype of such a theorem. 
198 If one glues two manifolds with boundary together along their complete boundary, one 
obtains the sum of the signatures, and the signature of M × D2l × Fiber is zero.  This 
formula is called Novikov additivity. 
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Theorem (Ferry-Weinberger199[Ferry-Weinberger 1]):  Suppose W is a complete non-
positively curved manifold and f: W’ → W is a homotopy equivalence which is a 
homeomorphism outside of a compact set, then f is tangential, i.e. f pulls back tangent 
bundles (in a way compatible with the identification given by the homeomorphism 
outside of some larger compact set). 
 
 This implies200 that W’×R3 is homeomorphic to W×R3 so it’s definitely progress.  
In the next section, we will see this, as well as why this result implies the Novikov 
conjecture for π1W. 
 
 The use of the rel ∞ condition was discussed in the “morals” section of the last 
chapter.  Without it, the theorem would be highly false, as we’ve seen.   
 
 A key role in the proof is played by the following important theorem:   
 
Theorem (Ferry201)  Let Mn be a compact topological manifold, endowed with a metric.  
Then there is an ε>0 so that if f:M →N is a continuous map to a connected manifold of 
dimension ≤ n,  with diam(f-1(n)) < ε for all n∈N, then f is homotopic to a 
homeomorphism. 
 
 The ε is related to the size of the smallest handle in a handle decomposition of M, 
so if M is noncompact, we can sometimes guarantee that the theorem holds anyway.  
There are also ε-δ statements that describe how far, in some sense, f has to be moved to 
make it into a homeomorphism.  We’ll need both kinds of refinement below when we 
apply the theorem. 
 
 This statement is of the form “an almost homeomorphism” is “almost a 
homeomorphism”.  Statements of this general type are sometimes trivial, sometimes 
trivially false, and sometimes true, nontrivial, and useful.  This theorem is of the third 
sort.  To appreciate it, we shall give two examples: 
 
Example 1:  Ferry ⇒ Poincare. 

                                                
199 This was strongly inspired by earlier work of Kasparov proving the Novikov 
conjecture for π1W (see 8.5) by analytic methods. 
200 This is a little white lie:  the method of proof gives this improvement.  Tangentialy by 
itself would not control what dimensional Euclidean space we’d need to cross with to 
obtain isomorphism.  To get this dimension down to three, it’s important that the 
tangentiality be “compatible with an identification of Spivak fibrations” so that one 
obtains vanishing normal invariant -- not just the image of this under the map [W/∞ : 
G/Top] → [W/∞ : BTop], which is the assertion of the theorem.  Once one has this, the π-
π theorem quickly gives the homeomorphism. 
201 Actually, Ferry [Fe] originally proved it for n>4, but it’s been since shown to be 
unconditional through advances in low dimensional topology (the largest being the 
solutions of the 3 and 4 dimensional Poincare conjectures by Perelman and Freedman). 
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 Let Sn be the usual round n-sphere.  And let ε be the epsilon guaranteed by 
Ferry’s theorem.  Let Σ be any homotopy n-sphere.  I claim (assuming that Σ is a 
manifold!) that it is possible to build a map f: Sn → Σ where all point inverses have 
diameter <ε.   
 
 Pick a point p and a neighborhood homeomorphic to Rn.  We map the 
complement of the ε/2 north polar ice cap in Sn homeomorphically to a ball in this 
neighborhood.  The rest of Σ is contractible, so the map restricted to the ε/2 sphere around 
the north pole, extends inwards (as a homotopy equivalence, although this is irrelevant to 
the application of Ferry’s theorem) over the ice cap to Σ (lying entirely in the 
complement of the neighborhood of p).  

 
 

 Let’s examine the point inverses:  if q lies in the neighborhood of p, then its 
inverse image f-1(q) is a single point, and has diameter = 0.  If q lies outside the 
neighborhood, then its inverse image is constrained to lie in the ε/2 polar ice cap, and 
hence has diameter < ε.  Ferry’s theorem then asserts that f is homotopic to a 
homeomorphism. 
 
 This proof shows the remarkable versatility of Ferry’s theorem as a tool: the huge 
unexplored region in the range manifold is here shrunk to be in the ε/2 polar icecap, while 
the small coordinate chart around one point is expanded to be almost the whole sphere.  It 
feels like a talk by a weak student who spends almost his full hour explaining trivialities, 
leaving only a couple of minutes to the whole essence of the matter!  Nevertheless, in 
topology, Ferry’s theorem says that this works!  Of course, there’s a price -- the 
continuity of the map from the domain to the range.   
 
Example 2:  Ferry ⇒ A virtual Borel conjecture 
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 Let V be a homotopy Tn; then we shall see that every sufficiently large cover202 
of V, say with covering group (Z/k)n for k large, is homeomorphic to the torus Tn.   
 
 Let f: Tn → V be a homotopy equivalence.  Let’s consider the map it induces 
between universal covers.  Note that there is a universal bound C for all point inverses 
(for the map is automatically proper, and the bound for point inverses for one 
fundamental domain of the Zn action works for all points by equivariance).  Let ε be an ε 
appropriate to the torus T.  Suppose that k > 2C/ε, then we can identify the (Z/k)n cover 
of T with T, and we now have a map from T to a cover of V with point inverses of 
diameter < ε.  (The extra factor of 2 is to be in the range that the map from Rn → Tn is a 
local isometry.) 
 
Remark on circularity:  Of course, if the Poincare conjecture and a virtual Borel 
conjecture for the torus were used in the proof of Ferry’s theorem, this would be a 
circular argument.  (Even so, the above should convince that the theorem in not vacuous!)   
 
 There are probably three different arguments for this theorem.  They all go via the 
α-approximation theorem of Chapman and Ferry, that I will not describe – but its 
essential difference is that it measures sizes over the target, not the domain. 
 
 The original proof [Chapman-Ferry] is based on modifying the proof of a weaker 
version of the theorem, Siebenmann’s CE approximation theorem [Siebenmann1].  That 
theorem asserts: 
 
Theorem (CE approximation):  A map f: M → X between manifolds is a limit of 
homeomorphisms (in the compact open topology) if and only if it is CE, i.e. all f-1(x) are 
nullhomotopic in arbitrarily small neighborhoods i.e. if and only if f is a hereditary 
homotopy equivalence. 
 
 This in turn used Kirby’s torus trick, the basic tool in triangulation theory and 
requires a virtual Borel conjecture for tori.  This argument would be indeed circular. 
 
 There is another proof, due to Quinn [Quinn1] that is based on a controlled h-
cobordism argument.  This seems like it’s essentially a generalization of the way the 
Poincare conjecture was proved.  However, the analogue of the fact that Wh(e) = 0 is 
more difficult in the controlled situation and Quinn’s proof uses the torus trick. This can 
be avoided by more recent methods of calculating. 
 
 However, finally there is a third proof that is based on combining two approaches.  
The first is an engulfing argument (based loosely on Stallings’ proof of the Poincare 

                                                
202 i.e. associated with any subgroup that intersects a metric ball of sufficiently large 
radius (depending on the original homotopy equivalence) only in the identity. 
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conjecture, rather than Smale’s) due to Chapman [Chapman1] that reduces the α-
approximation theorem to the CE approximation theorem.   
 
 The CE approximation theorem itself has an amazing extension to the situation 
where X is not assumed to be a manifold (and hence very useful for proving that spaces 
are manifolds!) due to R.D.Edwards (it is the (achieved) goal of the book [Daverman]).  
In any case, Edwards’ proof is purely geometric and does not rely on any algebraic tools, 
neither torus trickery nor surgery.  So, finally -- using this combination -- this argument 
for the second application does not have to be viewed as circular.  
 
 Thus, the least generous view one could have is that Ferry’s theorem somehow is 
a form of the Poincare conjecture, but in liberating that problem from the sphere, we have 
obtained an extremely useful tool and perspective on the problem of homotoping maps to 
homeomorphisms.   And indeed, there certainly are many other arguments in the spirit of 
the ones above based on Ferry’s theorem that are far from circular; indeed, much of the 
work on the Borel conjecture since the 1980s has this flavor (but are much more 
involved, see chapter 8). 
 
 Now let us return to the proof of the main theorem of this section.  For simplicity, 
we will first sketch our argument for W compact, where the result is actually 
considerably simpler – although not much simpler from the point of view that we 
adopt203!  We first note that the salient feature of the tangent bundle to a manifold is that 
it is a bundle of Rns – given a section - over a manifold, so that around the 0 section, the 
fiber direction is the same as the base direction.  (In the smooth case, the exponential map 
sets up such an isomorphism). 
 
 As a result, for an aspherical manifold W = Ŵ/Γ, we can consider the following 
quotient as a model for the tangent bundle: 
 

TW ≈ (Ŵ × Ŵ)/Γ. 
 

While we are used to saying “the universal cover” of a space, this notion actually requires 
a choice of basepoint, and as we vary the base point, this can indeed be a nontrivial 
bundle. 

                                                
203 The compact case was earlier proved by Farrell and Hsiang [Farrell-Hsiang 3] and 
doesn’t need any version of Ferry’s theorem. 
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 In this model, the differential of the map f: W → W’ (at the point w) is the lift of f 
to the universal cover Ŵ’ → Ŵ (based at the points w and f(w) respectively).  Notice that 
this map has bounded size point inverses (as in the case of the torus above).  At this point 
let us use the Riemannian tangent bundle and the exponential map to map TWw → Ŵ.  
The fibers are now Euclidean spaces, and, using non-positive curvature, the point 
inverses are still of bounded size:  as geodesics spread apart in non-positive curvature, the 
inverse of the exponential map is Lipschitz. 
 
 Now we apply Ferry’s theorem to the family of maps TWw → Ŵ’ to get a family 
of homeomorphisms. 
 
 In the closed case, one can actually “go all the way to ∞” and get an isomorphism 
between the ideal sphere bundles204.  However, in the noncompact case we cannot do 
this, since we must interpolate between the “infinitesimal isomorphism” on tangent 
spaces coming from the homeomorphism outside of a compact, and the process we do in 
neighborhoods of points in Ŵ.  As a result, [Ferry-Weinberger 1] instead argue about 
isotoping the family of balls of radius R, B(R, w) in TWw to embeddings around f(w) in 
Ŵ’. 
 

                                                
204 This method is due to Farrell and Hsiang [Farrell-Hsiang 3] and is reminiscent of one 
of the key steps in [Mostow 2]’s proof of his rigidity theorem for closed hyperbolic 
manifolds. 
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 Finally, as explained in the last chapter (3.3), tangentiality is slightly less than we 
would want: we need the map to not change the identification of spherical fibrations 
guaranteed to us by Atiyah’s theorem.  This is essentially achieved by ensuring that the 
isotopies are covered by homotopies that do not distort the function at ∞.  
 
4.7  Surgery revisited 
 
 In the last chapter, we discussed surgery in the special case where there are no 
obstructions, the π-π situation.  In that case, the discussion ended up being essentially 
homotopy theoretic, and the main results were the structure of classifying spaces and 
therein lay the differences between the various categories. 
 
 We shall now discuss the case of closed manifolds and in a purely topological 
setting where the results seem to be in their most perfect form.  The reader should treat 
these results are truths coming from on high: we shall not explain why they are true or 
take the form they do. 
 
 On the other hand, since the moral of chapter 3 was that functoriality is critical to 
our program -- the reader should not object to a presentation of surgery theory in which 
functoriality plays a central role. 
 
 Let M be a compact manifold with ∂.  We define the structure set. 
 

S(M) = {(M’, ∂M’, f) | f: (M’, ∂M’) → (M, ∂M) a simple homotopy equivalence 
which restricts to a homeomorphism on the ∂}/s-cobordism. 

 
For manifolds, s-cobordism, thanks to the h-cobordism theorem (see 4.4), is the same 
thing as being a product.  However, to get the best properties of S(M) it is convenient to 
allow in some non-manifolds in the definition of S(M).  
 
Definition:  A homology manifold is a finite dimensional ANR205X so that for all x, 
Hi(X, X-x) ≅ Hi(Rn, Rn -0).   
 
 Such an X satisfies Poincare duality (in the noncompact sense), and therefore, so 
does every open subset.  A good example the suspension of a homology sphere206.  The 
cone points are the only non-manifold points, but they satisfy the hypothesis of the 
definition as their links are homology spheres.  
 

                                                
205 Absolute Neighborhood Retract; we are including this hypothesis in the definition of 
homology manifold, which is not a fully standard decision. 
206 A homology sphere here is a closed manifold with the Z homology of the sphere.  
Thanks to the Poincare conjecture, such a space is the sphere (if dim>1) iff it is simply 
connected. 
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Definition:  A space X has the DDP (disjoint disk property) if for any f,g:D2 → X and 
any ε>0, there are perturbations, f’ and g’, so that d(f,f’) < ε and d(g, g’) <ε and f’(D2) 
∩g’(D2) = ∅. 
 
 Note that manifolds of dimension 5 all satisfy DDP (as do many other spaces that 
are not homology manifolds). The DDP fails for the suspension example: any 2 D2s that 
go through a cone point, but whose boundaries map nontrivially in π1(link) cannot be 
moved disjoint from the cone-point.   
 Indeed DDP can fail quite dramatically:  Daverman and Walsh gave an example 
(a ghastly homology manifold) of a homology manifold and a nice curve, so that every 
singular 2-disk it bounds contains an open set. 
 
 Edwards’s theorem is a CE approximation theorem for DDP homology 
manifolds207: 
 
Theorem (See [Daverman]):  A map f: M → X from a manifold to a homology manifold 
with the DDP is a limit of homeomorphisms (in the compact open topology) if and only if 
it is CE, i.e. all f-1(x) are nullhomotopic in arbitrarily small neighborhoods i.e. if and 
only if f is a hereditary homotopy equivalence.   
 
 A homology manifold X for which a CE map f: M → X from some manifold 
exists is called resolvable.  Quinn [Quinn2] showed that if X is a connected homology 
manifold and it contains any resolvable open subset (e.g. it has a manifold point), then it 
is resolvable!  Quinn defined an invariant I(X) ∈ Z which is automatically 1 mod 8, 
which is locally defined, near any point, has the property that I(X) = 1 if and only if X is 
resolvable, and I(X ×Y)= I(X)I(Y). 
 
 It turns out that using DDP homology manifolds in the definition of S(M) above is 
the “right” thing to do.  First of all, if ∂M ≠∅, by Quinn’s theorem combined with 
Edwards’, we are not actually allowing any non-manifolds in.   
 
 Secondly, we will see that even allowing in homology manifolds does not affect 
the Borel conjecture: if it is true for manifolds, it is true for homology manifolds.   
 
 And finally, it is with this more elaborate definition, that S(M) achieves its 
strongest functorial properties.  We begin with the last point: 
 
Theorem:  S(M) ≅ S(M×D4). 
 
 This is an analogue of Bott periodicity.  Actually, there is a version of the Thom 
isomorphism theorem:  S(M) ≅ S(E) if E is an oriented  D4k bundle over M.  However, 
even the periodicity statement has important consequences.  Setting M = Sn we see the 
                                                
207 But, the version where both M and X are DDP homology manifolds would be much 
better! 
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right hand side = Z 208, so we “need” the sphere to have nontrivial structures -- seeming 
“counterexamples” to the Poincare conjecture.   
 
 This Z is given by (I(X)-1)/8.  There is a Zs worth of homotopy spheres that are 
really determined by their local structure.  Conjecturally, there is a unique homotopy 
sphere for each integer.  This would make a lot of sense:  the proof of the Poincare 
conjecture by Smale uses the h-cobordism theorem, and starts by picking a small 
neighborhood of a point in a coordinate chart to take a neighborhood of, and uses the 
manifold hypothesis to know that there’s a ball there.  For other local indices the very 
first trivial step seems to be the one that is obstructed. 
 
 In addition, note that on the right hand side of this equation there is an abelian 
group structure:  The structures we are using are homeomorphisms on the boundary.  
Thinking of D4 as a cube, we can glue along faces to “add” elements, and the usual proof 
that π2 is abelian shows that this is a commutative group structure.  (The elements of 
S(M) that correspond to manifolds are a subgroup.  The map (M’,f) → (I(M)-I(M’))/8 is a 
group homomorphism S(M) → Z.) 
 
 Using this, we can easily finish off the proof of the Borel conjecture for the torus 
we had sketched in 4.4: using periodicity there is no “low dimension” to push past.  Of 
course, in this view, the vanishing of S(*) should not be viewed as a triviality: it is – in 
light of periodicity – the Poincare conjecture209 in dimensions a multiple of 4.   
 
 A next formal point is that it then becomes reasonable to have additional groups, 
namely S(M×Di) for any i.  Doing this systematically leads to the following definition for 
arbitrary finite CW complexes X. 
 
Definition:  Let X be a finite complex.  We define Sn(X) as S(M) where M is any 
compact oriented n-manifold with boundary simple homotopy equivalent to X.  If there is 
none, define Sn(X) = Sn+4k(X) where 4k is large.  If X is infinite, take the limit over the 
finite subcomplexes of X. 
 
 Note that thanks to periodicity the groups Sn() are actually covariantly 
functorial210.  After a periodicity if necessary, given f:X→Y, we can embed the manifold 
for X into the manifold for Y, and get the “pushforward” of the structure to be obtained 
by gluing in the annular region.  Such an embedding, after further stabilization, is unique 
up to isotopy.  This turns the Sn() into homotopy functors. 

                                                
208 [Sn×D4/∂ : F/Top] has a Z from π4(F/Top). 
209 Here viewed as the vanishing of structures of the disk, which tacitly has the boundary 
condition -- and therefore the manifold hypothesis -- built in. 
210 This is completely analogous to the wrong way maps defined at the beginning of 
[Atiyah-Singer I] using Bott periodicity (interpreted as a Thom isomorphism kind of 
statement). 
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 Moreover, it does not take much to imagine the meaning of Sn(Y, X) for a pair.  
We have to consider manifolds with boundary whose interiors are homotopy equivalent 
to Y and whose boundaries contain a piece homotopy equivalent to X (and we work 
relative to the rest of the boundary). 
 
Theorem:  The Sn(?,?)  are a sequence of covariant homotopy functors.  They are 4-
periodic and fit into an exact sequence of abelian groups. 
 

…→Sn(X) → Sn(Y)→ Sn(Y,X)→ Sn-1(X) → Sn-1(X) →… 
 
If M is an oriented n-manifold, then Sn(M) ≅ S(M). 
 
 (There is no difficulty in setting up an analogous theory for nonorientable 
manifolds, and a proper theory for the noncompact situation.) 
 
 Note that from this perspective, the “cohomological term” that we had looked at 
in the π-π theorem actually is naturally a homology theory (the functoriality flipped!); the 
perspectives in these two approaches to the theory are Poincare dual:  [Mn : Z× F/Top] ≅ 
Hn(M, ∂M ; L(e)) where L(e) is the homology theory associated to Z× F/Top. 
 
Theorem:  If K(π,1) is a finite complex, then the statement that for all n, Sn(K(π,1)) = 0 
follows from the Borel conjecture211.  
 
(If it is a manifold, then the vanishing of all the Sn(K(π,1)) follows from the vanishing of 
all of the S(K(π,1)×Tk)-- note that S(K(π,1)×D4) is a summand of  S(K(π,1)×T4), so if 
there is an extra Z arising from a homology manifold, it arises for manifolds 4 
dimensions higher.)  
 
 The theorem follows immediately from functoriality together with the Davis 
construction212:  it produces from K(π,1) an aspherical manifold M (of any large enough 
dimension) that has K(π,1) as a retract, and therefore Sn(K(π,1)) is a summand of Sn(M) 

= S(M) (or if one is opposed to homology manifolds, a factor of Sn(K(π,1)×T4). 
 
 We can now think of the Borel conjecture as the statement for π torsion free, 
S(K(π,1)) = 0 (in all dimensions)213.   
 
                                                
211 The converse requires an additional statement about vanishing of Whitehead groups.  
We will discuss it in the next chapter.   
212 As noticed by Davis. 
213 We note that groups with torsion do not have finite dimensional K(π,1)’s.  Here we are 
taking a leap of faith that all torsion free groups behave the same way as those with a 
finiteness condition. 
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 We now note that if the Borel conjecture is true for π, and π1(Mn) → π is an 
isomorphism, then we get an exact sequence: 
 

… → Sn+1(K(π,1))→ Sn+1(K(π,1), M)→ Sn(M) → Sn-1(K(π,1)) →… 
 
which becomes a homological calculation of S(M): 
 

S(M) ≅ Sn(M) ≅ Sn+1(K(π,1), M)→ Hn+1(K((π,1), M; L(e)). 
 

(The last isomorphism comes from the π-π theorem.) 
 

This isomorphism means that (when we take ∂) the (relevant) data comparing M’ 
to M, namely the difference of the L-classes, if we were working rationally, vanishes by 
the time we push further to Hn(K((π,1); L(e)).  This is exactly (an integral form of) the 
Novikov conjecture. 
 
 Note then the philosophy that emerges from functoriality (conditionally on the 
Borel conjecture):  A manifold is exactly as rigid as it is homologically similar to K(π,1).  
 
 Note also that by a diagram chase, unconditionally, all homology in Hn(M; L(e)) 
that dies in Hn(K((π,1); L(e)) does contribute to S(M).  (The cokernel in degree n+1 only 
contributes conditionally on Novikov type statements.)   
 

Let us be a bit more explicit and go back to a more classical view of surgery. It is 
high time that we mention the surgery exact sequence214!  This is an exact sequence that 
looks like: 
  

…→Ln+1(π) →Sn(M) → Hn(M; L(e)) → Ln(π) → … 
 

These groups Ln(π) are called “L groups” or “Wall groups” and have a purely algebraic 
definition.  They are 4-periodic, and describe the “obstruction to doing surgery to convert 
a degree one normal map into a (simple) homotopy equivalence”215. 
 
 (This sequence is isomorphic to a sequence  
 
…→Sn+3(M×(D3,S2,p)) →Sn(M) → Sn+3(M×D3, M×S2) → Sn+2(M×(D3,S2,p)) → … 

 

                                                
214 ordinarily (and very properly) the centerpiece of presentations of surgery theory. 
215 There are different theories of surgery based on whether one wants to obtain 
homotopy equivalences, and then the equivalence relation is h-cobordism or whether one 
wants a simple homotopy equivalence and then s-cobordism is the equivalence relation.  
The L-groups differ by 2-torsion in a way described by the Rothenberg sequence, see 
[Shaneson]. 
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 Where we imagine p to be a point in the boundary S2 of a three disk.  The map 
Sn+3(M×D3, M×S2) is just obtained by crossing with a 3-disk.  We have not discussed 
such kinds of structures, and shall not.  However, they are very natural from the point of 
view of spacification we will describe later, and also are a very special case of stratified 
surgery.  It is quite remarkable that an object like Sn+3(M×(D3,S2,p)) only depends on 
the fundamental group of M216 and its dimension.) 
 
 Classically217 this all was described as an exact sequence, valid in all categories: 

…→Ln+1(π) →SCat(M) → [M: F/Cat]→ Ln(π). 
 

with the following understanding:  S(M) is just a set with a distinguished element (the 
identity).  [M: F/Cat] is just a set218.  Thus, exactness has to be interpreted appropriately, 
with “distinguished element” taking the place of 0.  The map Ln+1(π) →SCat(M) is then 
a group action.  Given M and an element α ∈ Ln+1(π) , there is a degree one normal map 
W → M×[0,1], so that on the bottom ∂ of W, one has a homeomorphism to M, and on the 
top one has a homotopy equivalence.  In that circumstance, there is a rel ∂ surgery 
obstruction of the map W → M×[0,1],  which is α.  The action then assigns to α the upper 
boundary homotopy equivalence219.  One can show that this is well defined. 
 
 The groups Ln(π) have purely algebraic definitions.  The classical definition is 

given by [Wall 1] which makes it clear that L2k(π) is associated to (-1)k symmetric 
quadratic (or, better, Hermitian) forms over Zπ and that L2k+1(π) are associated to their 
automorphisms.  On the other hand Ranicki [Ranicki1] gave a very nice definition220 in 
terms of chain complexes with duality, and their cobordism that makes the algebraic 
treatment “dimension independent” and that is quite useful, because many more things 
end up directly defining elements in L-groups, and also it is more flexible for making 
constructions.  Note that by the algebraic definition L-groups are 4-periodic.  Indeed, this 
is the source of the periodicity of the Sn functors. 
 
 In any case, I should describe at least what happens in the simply connected case: 
 
 For π = e, Ln(e) = 0 for n odd.  For 4|n, Ln(e) ≅ Z.  The invariant is this:  If M → 
X is a degree one normal map (ignoring the bundle data), then signM = signX is a 
                                                
216 And orientation character, as we frequently forget to explicitly point out. 
217 We refer to [Wall1. Lees, and Lueck3] for some expositions of the classical theory. 
218 although for Cat = PL or Top, Sullivan’s H-space structure turns this into an abelian 
group and the map [M: F/Cat]→ Ln(π) is a homomorphism. 
219 This is an action because for any homotopy equivalence M’ →M, we can build such a 
W associated to α, with the given homotopy equivalence being the bottom boundary. 
220 Strongly motivated by chapter 9 of [Wall1] that gives a cobordism treatment of 
relative L-groups that are complicated by the fact that manifolds with boundary are 
always both odd and even dimensional!  An algebraic cobordism approach to L-groups 
was given first by Mischenko, but it was somewhat buggy at the prime 2. 
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necessary condition to be able to normally cobord f to a homotopy equivalence, since 
signature is both cobordism invariant and homotopy invariant.  The isomorphism L0(e) ≅ 
Z is given by 1/8(signM - signX), the divisibility being a consequence of the bundle data 
that we suppressed: it ultimately forces the quadratic form on the Cok f* to have even 
numbers on the diagonal which makes divisibility by 8 automatic. 
 
 L2(e) ≅ Z/2 given by the “Arf invariant”.  Here the antisymmetric bilinear form 
over Z is standard, but the refinement that a quadratic form has for λ(x,x) = 2µ(x) gives 
rise to an invariant L2(e) ≅ L0,2(F2) (in the target, being characteristic 2, there is no 
difference between 0 and 2 mod 4). 
 
 The homotopy group isomorphisms πn(T/Top) ≅ Ln(e) is essentially a 
consequence of the Poincare conjecture (although one needs special low dimensional 
arguments for n<5), and perhaps makes calling the spectrum whose homology theory we 
said was dual to [?: Z×F/Top] by the name  L(e) seem less peculiar221. 
 
 The classical surgery exact sequence continues infinitely to the left, but not to the 
right (unless one restricts to the setting we described: Top and including homology 
manifolds). 
 
 Using the π-π theorem, we can describe what we have written as an analysis of the 
map obtained by crossing with D3 
 

Sn(M) → Sn(M×D3 , M×S2) ≅ Hn+3(M×D3 , M×S2 ;L(e)) ≅  Hn(M ;L(e)) 
 
(the last isomorphism is a suspension isomorphism in a generalized homology theory) 
and in these terms, Ln(π) occurs as measuring the obstruction to solving a splitting 
problem.  In any case, this perspective gives the normal invariants functoriality as well, 
and the whole surgery exact sequence becomes functorial.  We note the special case:  
 

…→Ln+1(π)   →   Sn(M) →    Hn(M; L(e))   →    Ln(π) → … 
   ↓=  ↓  ↓  ↓= 

…→Ln+1(π)  →Sn(K(π,1)) → Hn(K(π,1); L(e)) → Ln(π) → … 
 
This factors the surgery obstruction map through a universal functorial map between two 
group theoretic object Hn(K(π,1); L(e)) → Ln(π). 
 
 This map is called the assembly map.  It has several interpretations, one of which 
has to do with assembling things.  In the next section we will explain that it has another 
interpretation in terms of “forgetting control” in the sense of controlled topology.  There 

                                                
221 The truth lies somewhat deeper than this -- and arises either from blocked surgery or 
from controlled topology.  This might already be clearer in the coming section.  
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are similar maps in algebraic K-theory and operator K-theory, and they will occupy us in 
the next chapter. 
 
 Note that the Borel conjecture can be rephrased using the assembly map as 
follows: 
 
Conjecture:  If π is a torsion free group, then the assembly map is an isomorphism. 
 
 The Novikov conjecture then is the following: 
 
Conjecture:  If π is any group, then the assembly map is rationally an injection.   
 
 We leave the verification that this is equivalent to the version involving higher 
signatures as an exercise.  (Consider the map [X: F/Top] → Ω*(X) ⊗Ω*(*)Q given by 

[M→X] → f*(L(M)∩[M])-L(X)∩[X]222.) 
 
 
4.8  Controlled topology revisited   
 
 Having discussed briefly one result in controlled topology and then classical 
surgery theory, we would be remiss if we did not discuss their marriage.  In general, the 
theme of controlled topology is to re-do the problems solved in classical topology, but 
now with attention paid to the size of the constructions.   
 
 Size can be measured in various ways and this theme has many incarnations and 
variants:  indeed, we have tacitly already used two different kinds of controls.  When 
discussing the Novikov conjecture, we used the fact that we had a uniform bound on the 
sizes of things, but this size was not made available - we were obliged just not to leave 
the category of maps that maintain that same property of uniform boundedness: this is 
called bounded control.  Our discussion of Novikov’s theorem was based on epsilon 
control because we used the fact that all point inverses become contractible in a small 
neighborhood of themselves.223   
 
 For stratified spaces, it is useful to use continuously controlled at ∞ techniques, 
and in the last chapter we will discuss the beautiful idea of foliated control introduced by 
Farrell and Jones.  
                                                
222 We remark that the right hand side of the equation commutes with the Periodicity 
isomorphism. 
223 There is room for a distinction here:  one can also study approximate control where 
one tries to prove an ε-δ theorem, where one wants to move things by at most δ to a 
solution, willing to assume initial data which are “ε-controlled”.  Such results are called 
“squeezing theorems” and the prototype might be Chapman’s proof of the α-
approximation theorem:  A squeezing theorem reduces an approximate problem to an ε-
controlled one -- in our terminology.  (Quinn’s papers [Quinn1] deal with both issues, the 
squeezing and the ε-controlled, simultaneously.) 
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 In all settings, the basic idea is to (1) do what is classically done in topology: 
reduce the geometric problem to one of algebra -- so we have already seen Wh(π), L(π) 
etc. -- so there should be some such structure associated to the problem and it will now be 
algebra associated to the “control space” as well as the fundamental groups involved and 
then (2) actually do the algebra.  This point of view is mainly due to Quinn who 
developed many consequences of it; the first nontrivial cases of the theory were already 
in place in advance: notably the work of Chapman and Ferry [Chapman-Ferry] and 
Anderson and Hsiang [Anderson-Hsiang]. 
 
 A simple example is this.  The space of proper maps from Rn→  Rn is highly 
nontrivial -- for example it has Z components given by degree.  If we put on the condition 
that d(x, f(x)) < C (where C is allowed to vary), then the function space becomes 
contractible. 
 
 Another example is this (for the impatient, skip to the formal definition in a few 
paragraphs from here).  If we take a homotopy equivalence f: X → Y, X and Y 
polyhedral, and ask that after taking an open cone224, Cf is still a homotopy equivalence 
in the category of maps where no point is moved more than a bounded amount (e.g. 
measured in CY), then we can deduce that for every open set U in Y, f-1U→U is a proper 
homotopy equivalence.  If X and Y were manifolds of the same dimension, then f would 
be a uniform limit of homeomorphisms!   
 
 Of course, the benefits of having control are not always this dramatic.  Having 
various controlled categories provides us with language and tools to scaffold incremental 
progress towards building homeomorphisms (or other useful geometric maps).  
 
 To give the idea and stay close to our roots, we will focus on the bounded 
category. 
 
Definition:  Let X be a metric space.  We consider the category, Bdd(X) whose objects 
are spaces with maps, (Z, f: Z → X), and morphisms consisting of continuous maps g: Z 
→ Z’ so that d(gf’,f) < C for some C.  Note that (Z, f) and (Z, f’) are canonically 
equivalent in this category by the “identity map” if d(f,f’) < C via the identity, and that 
we do not insist that f be continuous. 
 
 Because of the last point, many metric spaces give rise to equivalent bounded 
categories. 
 
Definition:  If X and Y and are metric spaces, then a map φ: X→Y is a coarse quasi-
isometry if (1) there are constants so that  A-1d(x,x’) - B < d(φ(x),φ(x’) < Ad(x,x’) + B 
and (2) φ(X) is C-dense in Y, i.e. every point in Y is within C of some point of X. 
 

                                                
224 We metrize so that the cone on a simplex is a Euclidean octant. 
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 Coarse quasi-isometric metric spaces clearly have equivalent Bounded 
categories225.  As a trivial example, any bounded diameter metric space is equivalent (i.e. 
coarse quasi-isometric) to a point.   
 A very important example is that the universal cover, of a compact manifold is 
coarse quasi-isometric to its fundamental group (with the word metric).  The subject of 
geometric group theory is largely the study of this equivalence relation on finitely 
generated (or finitely presented) groups. 
 
 With the above terminology in place, we can ask questions like the h-cobordism 
problem or the surgery question in Bdd(X).  If X is a point, then this is just the old 
question and the obstructions involve Wh(π) and Ln(π) etc.  So we will need to take the 
fundamental groups of the objects into account, and actually it is important to take into 
account the system of fundamental groups of inverse images of large balls of X226.  But, 
for simplicity at this point, let’s stick to the simply connected case. 
 
 Given that there is freedom in choosing the X when considering the category 
Bdd(X) we can try to choose the best possible model for X.  For example Rn is in some 
ways a better model than Zn , because every object over the former can be replaced by 
one where the reference map f is continuous. We leave this an exercise, but observe that 
the key property that allows this (when the underlying space of the object is finite 
dimensional) is the following: 
 
Definition:  A metric space X is uniformly contractible, if there is a function u(R) from 
R+→  R+ so that any point x ∈ X, B(x, R) ⊂ B(x, u(R)) is nullhomotopic. 
  
 One example is the open cone of a compact ANR, as we leave to the reader. 
 
 Another very good (and important) example is the universal cover of a compact 
K(π,1).   
 
 Indeed, uniformly contractible metric spaces generally seem like good analogues 
of K(π,1)’s.  They are terminal objects in the bounded category of spaces over X that are 
coarse quasi-isometric to X.  (Just like K(π,1)’s are the terminal objects in the category of 
spaces that have the same 1-type as X).   
 
 Given the philosophy we have espoused in last chapter’s Morals section, we 
should conjecture some type of bounded rigidity for uniformly contractible manifolds. 
 

                                                
225 Actually there is a looser equivalence relation that also gives isomorphisms of 
bounded categories, wherein one replaces the linear upper and lower bounds by 
nondecreasing functions that go to ∞ (such as log and exponential).   
226 As a pro-system.  The fundamental groups themselves have no real meaning, but 
system as we allow larger and larger balls does make sense. 
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Bounded Borel Conjecture227.  If M is a uniformly contractible manifold, and f: M’ → 
M is a homotopy equivalence in the bounded category over M, then f is homotopic (in 
this category) to a homeomorphism. 
 
Remarks:  1.  With a bit of care, one can show that the CE approximation theorem is 
essentially a verification of a special case of this conjecture. 
 
2. Actually taking the fundamental group into account suggests a unification of these 
conjectures, the bounded rigidity of a uniformly aspherical manifold.  Good examples of 
these are K\G/Γ for lattices -- and they are indeed rigid (in high dimensions as observed 
in [Chang-Weinberger3]. 
  
 Let us consider what the surgery exact sequence should suggest for this problem: 
 
 … Sn+1(M↓M) (=0)→ Hn+1lf(M; L(e))→Ln+1(M ↓ M)  → Sn(M↓M) (=0)→ … 

 
 So the bounded Borel conjecture asserts that bounded L-groups are a homology 
theory of the control space in the uniformly contractible case.    
 
 And, indeed frequently this is the case.  For example, for the cone on finite 
polyhedron this can be verified in a couple of ways:  (1) One can deduce this from the α-
approximation theorem - rather like the way the L-groups of the trivial group are 
identified with the homotopy of F/Top via the Poincare conjecture228 [Ferry3] or (2) show 
that this is a homology theory in the space being coned -- with a codimension one 
splitting argument being used for the critical verification of the excision (or, equivalently, 
the Mayer-Vietoris) axiom [Carlsson-Pederson, Ferry-Pederson].   
 
 Versions of this principle are true all the types of control we had mentioned and 
such results are central to controlled topology’s many geometric consequences. 
 

                                                
227 Unlike the Borel conjecture itself, this conjecture is known to be false [DFW1].  The 
example is a rather pathological Riemannian manifold that is abstractly a Euclidean space.  
It is based on an amazing example of Dranishnikov of a space of finite cohomological 
dimension but infinite covering dimension, and requires a violation of “bounded 
geometry”.  For example, if M has a triangulation with all simplices of bounded size, and 
a uniform bound on the valence of any vertex (or even a lower bound on injectivity radius 
and bounds on curvature), such as the universal cover of a finite K(π,1) complex -- then 
the methods of that paper do not apply.   

This example could suggest that the Borel and allied conjectures are not as well 
founded for groups of infinite cohomological dimension. However, there are many cases 
where the conjectures do seem to be correct even in this setting and the question requires 
a lot more thought. 
228 with the opposite goal in mind.  When we made this identification before the goal was 
to learn about the homotopy type of F/Top, because the groups L(e) were under control.  
Here, the bounded L-groups are the objects we are interested in learning about. 
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 We will end this section with a few remarks:  
(1) what to do when we don’t have (or know) a uniformly contractible model 
(2) how to formulate a bounded Novikov conjecture and  
(3) then observe that Novikov’s theorem on topological invariance of rational 

Pontrjagin classes is a special case of the latter. 
 
(1) What can we do when we don’t have (or know) a uniformly contractible model?  
 
 This is completely analogous to the situation in ordinary surgery when we don’t 
have a finite complex K(Γ,1)229.  What we do there is choose a sequence of finite 
complexes that approximate it.  The limit is a space that we call K(Γ,1), but if our 
ideology had only allowed finite complexes we wouldn’t be able to call it a space.  The 
homology that we use is cognizant of this fact: we take the homology with finite chains, 
not the locally finite chains. 
 
 So if Z is a metric space, we can form a simplicial complex R1Z by having the 
points of X (or, for technical convenience, a discrete, 1/2-dense subset of Z) being 
vertices, and then putting in edges when both points have distance ≤ 1, 2-simplices when 
all three vertices have distance ≤1, and so on.  Then we can include this complex as a 
subcomplex of the same construction with 2 replacing 1, R2Z, and so on.  We take the 
direct limit of these complexes. We also take the limit of the locally finite homologies: 
 

HXi(Z; L(e)) = lim Hilf(RnZ; L(e)). 
 
The X in HX reminds us that we are working at a large scale: all finite scale phenomena 
have been wiped away (e.g. a cycle present at size t is killed in Rt+1Z). 
 
(2)  In these terms, which higher signatures should we expect to be homotopy invariant in 
Bdd(Z)?  Exactly the push forwards in ⊕HXn-4ilf(Z ;Q) of L(M)∩[M], of course.   
  
(Moreover, we can conjecture that there are integral versions in more refined theories, 
just like the Novikov conjecture has integral refinements for torsion free groups, as we 
will emphasize in the next chapter.  We will see that frequently, these conjectures are 
indeed correct.) 
 
(3)  As for Novikov’s theorem?  Note that the bounded Novikov conjecture for Rn 

implies Novikov’s theorem as we explained in 4.5.  The map U→ V × Rn considered 
there is surely a bounded homotopy equivalence over Rn (as it’s a homeomorphism).  
The Bounded Novikov conjecture deduces that the transverse inverse image of V has the 
same signature as V.   
 

                                                
229 Or indeed whenever a category doesn’t have a terminal object.  One takes a limit in a 
pro-category. 
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4.9  The principle of descent.  
 
 We can now reformulate the argument in 4.6 more abstractly.  It shares with the 
Lusztig argument the idea of taking a naïve homotopy invariant and then varying it in a 
family to get more information out of it. 
 
 For Zn there is an important map: 
 

Li(Zn) → Libdd (e; Zn). 
 

The left hand side is isomorphic to a sum of n!/j!(n-j)! copies of Li-j(Zn) (varying j).  
These are essentially the simply connected parts of the surgery obstructions you’d see 
along all of the codimension j tori.  The right hand side we discussed in the last section 
and is just the codimension n surgery obstruction, and we have seen that one way to 
obtain this is by Ferry’s theorem.  (It is HXi(Zn; L(e)).)   
 
 This map is a “transfer”230:  If we have a normal invariant over a space with 
fundamental group Zn, then when we take the universal cover it is a normal invariant of 
the cover, and we can try to surger it to make it into a bounded homotopy equivalence 
over Rn.  This obstruction is powerful: it gave us Novikov’s theorem in remark (3) 
above.   
 
 Using it and projection to all of the smaller tori gives us a proof of the Novikov 
conjecture for free abelian groups (although not essentially more elementary than the 
ones we’ve already discussed). 
 
 Now, if W is a complete simply connected manifold with nonnegative sectional 
curvature, the inverse of the exponential map gives a Lipschitz diffeomorphism: 
 

Log: W → Rn. 
 
And hence a map Lbdd(W) → Lbdd(Rn).  Direct application of this map is clearly strong 
enough to prove the Novikov conjecture for the fundamental class of W/Γ for any 
cocompact group of isometries of W. 
 
 What we did in 4.6, though, was much stronger in that we made use of the fact 
that there were “logarithm maps” at all points w of W, and made a family of bounded 
surgery obstructions.  These were strong enough to detect the whole Hw(W/Γ; L(e)). 
 

                                                
230 Transfer (for covariant functors) is generally a map that passes from an invariant of a 
quotient to one of the original space (or perhaps an intermediate quotient). 
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 Setting up the formalism of these families can be done in more than one way.  
Two of the most popular are (1) blocked surgery and (2) homotopy fixed point sets. Both 
of these depend on “spacification”, which means finding spaces whose homotopy groups 
are the L-groups, normal invariants, and structure sets, and so that the surgery exact 
sequence becomes the exact sequence of a fibration. This process is similar to viewing 
indices as vector spaces and then being able to associate bundles to families of operators. 
 
 There is an important difference between index theory and manifold theory in this 
“spacification”.  In index theory, one uses genuine families of operators.  In surgery we 
do not need to.  Genuinely parameterized surgery is a much more complicated subject 
than we need for these purposes. 
   
 Recall that when we discussed the Farrell fibering theorem, although we fibered a 
manifold over the circle, the actual process was different: we found a single fiber (via a 
splitting theorem, but never mind); in other words, we solved a problem over a vertex in a 
triangulation of S1.  (Solving it over other vertices is no additional problem.)  Then we 
cut open the circle and had to see that we were ok over the resulting interval. 
 
 In general, in spacification, we want the families to not involve more complicated 
objects than arise in the vertices231, if we can.  We are being conservative in the type of 
difficulties that ever need to be considered.  This can achieved because when we did 
surgery there was no difference in the theory of closed manifolds and manifold with 
boundary if we work relative to the boundary.   
 
 And a similar method can be done with manifolds with corners. 
 
 One is thus led to consider a simplicial complex, where the k-simplices are 
surgery problems that are “modeled” on Δk.  In this space Ln(π) , vertices are n-
dimensional surgery problems with fundamental group π, 1-simplices are cobordisms 
between such, i.e. they are  n+1 dimensional surgery problems with 2 boundary 
components (labeled by 0 and 1) , everything with fundamental group π, and the 
boundary of the problem determines the boundary of the 1-simplex. And so on for 
defining the higher simplices.  Doing this gives a space, and  
πi(Ln(π)) = Li+n(π).  Moreover there are homotopy equivalences Ω4(Ln(π))) ≅ 
Ln+4(π) that are an analogue of the 4-fold periodicity of L-groups.  
 
 It is worth saying a word about this equivalence, since it is the prototype of the 
notion of an assembly map, and it explains the use of the word “assembly”, which often 
mystifies people who see other maps that are also called assembly maps because they 
somehow resemble this one.  An element of Ω4(Ln(π))) (or a vertex in a simplicial 

model of it) is a map from S4 into Ln(π).  So, we can think of S4 as being triangulated, 

                                                
231 Except combinatorially. An object over a simplex will need the combinatorial 
complexity of a simplex (at least).    
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and each simplex in that triangulation being assigned one of the defining simplices in the 
space Ln(π) .  We can “assemble” all of these together to define a vertex in the space 
Ln+4(π) .   
 
 Of course, if one is fibered over a base, one has this situation, but this “blocked” 
theory is much simpler: it satisfies our desideratum that no object is more complicated 
than what occurs already over a vertex232.  So above, we exactly have this from a surgery 
problem: 
 

N’ →N → W/Γ 
 

We can take universal covers and lift 
 

Ñ’→Ñ→W 
 
Giving the family (Ñ’→Ñ)×ΓW, which fibers over W/Γ.  Over each Δ in W/Γ one has the 
product (Ñ’→Ñ)×Δ (although identifications change as one moves around).  Which is a 
simplex is a space of surgery problems of the form Lbdd(W).  If one thinks through all 
the identifications made, then one realizes that one has detected Hi(W/Γ ; L(e)) in Li(Γ) 
via the following composite. 
 

Li(Γ) → H0(W/Γ ; Lbdd(W)) → H0(W/Γ ; Lbdd(TwW)) ≅ Hi(W/Γ ; L(e)), 
 

(where H0(W/Γ ; Lbdd(W)) denotes twisted cohomology of the spectrum Lbdd(W) over 
W/Γ and TW denotes the tangent bundle of W), called the family bounded transfer233. 
 
 A very nice alternative description of this method is to recall the notion of 
homotopy fixed set.  If G is a group acting on a space X, then XG the fixed point set of 
the action can be thought of as the equivariant mapping space MapG[pt : X].  There is a 
map of this space into a more homotopical object 
 

XhG  =  MapG[EG : X]. 
 
 Unlike fixed points that are quite sensitive to a space being acted upon, if f: X → 
Y is an equivariant map that is a homotopy equivalence, then f induces a homotopy 
equivalence XhG → YhG .   
 
 Moreover, there is clearly a map XG → XhG.   

                                                
232 i.e. that surgery on manifolds with boundary relative to a solution on the boundary has 
exactly the same type of obstruction that already arises on closed manifolds. 
233 This discussion ignores the aspect where we put support conditions on the homotopy 
equivalence and changed the cohomological term to one with compact supports.   
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 If one unravels the notation in the family bounded transfer, one sees that one has 
the map  

Li(Γ) → Libdd(Γ)hΓ 

 
and thus one can interpret our proof in the non-positively curved situation as using a 
homotopy fixed set for the purpose of splitting an assembly map. 
 
 In any case, these ideas lead to a method of descent, wherein a suitable Borel type 
conjecture (or maybe a little less) for Γ as a metric space gives rise to the Novikov 
conjecture for Γ itself as a group -- again, these are little different than what we did by 
hand in 4.6, but this interpretation, for example, makes sense for many other functors 
other than L, and also is now suitable for situations where we get our bounded 
information from any source, not only from the Ferry ε-map theorem.    

 
  
4.10 Secondary invariants (and a little more surgery).   
 
 It is time to return to Lens spaces, those remarkable explicit manifolds which 
while homotopy equivalent, can frequently not be distinguished by their tangential 
information (say in dimension 3). Recall De Rham’s theorem that Lens spaces are only 
diffeomorphic234 when they are linearly so - it is time to understand why this is. 
 
 This discussion contains embryonically one of the main keys to understanding 
closed manifolds whose fundamental groups have torsion.  If we think functorially, the 
key question is: 
 
Problem:  What does S(K(π,1)) look like when π has torsion? 
 
 (Indeed, when the Novikov conjecture is true235, we always have, rationally, a 
decomposition of  
 
 Sn(M)⊗Q  ≅ Sn(K(π,1))⊗Q × Sn+1(K(π,1), M)⊗Q  
       ≅ Sn(K(π,1))⊗Q × Hn+1(K(π,1), M; L(e))⊗Q  
      ≅	Sn(K(π,1)⊗Q × ⊕Hn±4i+1(K(π,1), M; Q).) 
 
 We shall see236 that S3(K(π,1)) ⊗ Q is never 0 for groups with torsion237 (and that 
furthermore, S3(M) ⊗ Q is nonzero for any closed orientable manifold whose 

                                                
234 Indeed, homeomorphic, although De Rham could not have known that! 
235 This is a diagram chase, when one takes into account that the assembly map, as a map 
of spectra, being rationally injective on homotopy groups, has a rational splitting as a 
map.  For integral analogs, see e.g. [Weinberger-Xie-Yu]. 
236 Following [Chang-Weinberger2]. 
237 But it can be 0 in the setting of groups with nontrivial orientation character. 
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fundamental group has torsion238).  For general groups, the Farrell-Jones conjecture (to be 
discussed in the last chapter) gives a conjectural answer239.   
 
 To begin answering this, we must first consider the important case of π finite. 
 
 For finite groups, the homology term is irrelevant (rationally) so we need to think 
about the L-groups.  Wall [Wall4] showed that for finite groups π, the Ln(π) are finitely 
generated abelian groups, with 2 primary torsion.  Moreover, the groups for n odd are 
finite, so we shall concentrate on n even.  Indeed, for future reference, let me go so far as 
to actually define these groups240: 
 
Definition:  Let π be a group, w: π → Z/2 a homomorphism (called the orientation 
character) then L2k(π, w) is the group generated by 3 tuples (M, λ, µ) where M is a free 
finitely generated Zπ module,  λ: M × M → Zπ is bilinear and nonsingular241 over Zπ, λ 
is (-1)k Hermitian (the conjugacy on Zπ generated by sending g to w(g)g-1 ) and µ: 
M→Zπ/(u - (-1)kū) is a quadratic refinement of λ so that µ(x+y)-µ(x)-µ(y) = λ(x,y) and 
µ(ux) = ūµ(x)u for u a multiple of a group element.   
 An element is trivial if M contains a subspace K, so that λ and µ restrict trivially 
to K, and λ:K → M/K is an isomorphism.    
 
 One can define variants using projective modules rather than free, or free based 
modules, and then impose condition on det(λ).  All of these just affect L at the prime 2, so 
we will not worry about them here.   
 
 Ranicki [Ranicki2] showed that the map Ln(Zπ) → Ln(Qπ) is an isomorphism 
away from 2 for any group π.  Moreover, with 2 inverted in the coefficient ring the µ is 
irrelevant (i.e. determined by the λ). 
 
 So we now have a stripped down picture of the kind of invariant we are looking 
for:  A Witt class of a quadratic form over Qπ.   
 

                                                
238 This is not a formal consequence of the previous remark, as it was conditional  
239 When we discuss the equivariant version of the Borel conjecture, we will be led to a 
more straightforward geometric conjecture for S(K(π,1))⊗Z[1/2].  However, the “correct 
formula” for S(M) will then be a purely homological variation of the first summand in the 
decomposition above. 
240 I have always been amazed at how much is possible to do in surgery theory without a 
definition of the obstruction groups, and only a modicum of their properties.  However, 
for almost anything involving groups with torsion, the definitions are necessary and 
hands made dirty by calculation cannot be avoided.   
241 i.e. λ defines an isomorphism M → M* (where M* = Hom(M : Zπ). 
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 That is a straightforward invariant to try to get:  Whenever the finite group π acts 
on an oriented space242 X2k satisfying Poincare duality (with orientation properties given 
by w), we get such a structure on Hk(X ; Q): Let <x,y> = ∑<(x∪g*y),[X]>g ∈ Qπ. We 
shall call this invariant π-sign(X) ∈ L2k(Qπ)⊗Q. 
 
 For π trivial, this invariant is trivial for k odd (every skew symmetric form over Q 
is determined by its dimension as a vector space: it is a symplectic vector space, and 
every Lagrangian in it defines an equivalence to the trivial element).  For k even, L2k(Q) 
≅ Z⊕T, where T is an infinite sum of Z/2’s and Z/4’s.  The Z is just the signature of the 
quadratic form.   
 
 In general, we can analyze L2k(Qπ) in a few equivalent ways.  The invariants we 
will be discussing are representations, and therefore can be thought about as characters -- 
which means that we only need pay attention to cyclic groups243.   For k = 0, we can 
diagonalize the quadratic form, and then consider the difference of positive and negative 
definite parts [H+] - [H-] in RO(π) as an invariant. When k is odd, and π is cyclic, we can 
take a complex representation and (after multiplying by i) get a Hermitian inner product.  
It has a signature. 
 
Proposition:  If π is a finite group acts freely on M4k then π-sign(M) is a multiple of the 
regular representation (i.e. its character is trivial for all g≠e).  For π acts freely on M4k+2 
then π-sign(M) vanishes. 
 
 This can be proved in several ways.  First of all, it is a consequence of the Atiyah-
Singer G-signature theorem [Atiyah-Singer III].  It can also be easily proved by 
cobordism considerations: bordism of free π-actions is equivalent to Ω(K(π,1)), but after 
⊗Q this is the image of Ω(*), i.e. every bordism class is induced from a trivial action, 
immediately giving the result. 
 
 Note that this proposition includes our earlier observation that signature is 
multiplicative for finite covers of closed manifolds. 
 
 Now we can define a basic invariant of an odd dimensional manifold with finite 
order fundamental group.   
 
Definition:  Suppose M2k-1 is a closed manifold with finite fundamental group π, then 
we define ρ(M) ∈ L2k(Qπ)/L2k(Q) ⊗Q as follows:  Some multiple kM of M bounds 
with fundamental group π.  kM = ∂W.  
                                                
242 We are reserving the right to allow X not to be a manifold, and the action not to be 
free -- since these affect nothing.  Moreover, by allowing the modules to be projective in 
the definition of the L-group, we really have a very transparent invariant. 
243 Of course, the L-groups themselves are more complicated than this.  The reader might 
with to think about the cases of Q8 and the symmetric groups to see various phenomena. 
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ρ(M) = 1/k π-sign (W) ∈ L2k(Qπ)/L2k(Q) ⊗Q. 

 
Remark:  We have been quite cavalier in ignoring integrality and torsion issues.  With 
more care244, one need not be. 
 
 For lens spaces we can make this completely explicit.   
 
 Start with the following Z/n action of a surface: take the branched cover of S2 
branched at n points so that one gets a surface with a semifree Z/n action, so that all n 
fixed points have the same tangential representation - assay t = rotation by 2π/n.  
Changing the generator gives an analogous Z/n equivariant surface but with any rotation 
number one wishes.  A product of k such surfaces will give manifold of dimension 2k 
with a semifree Z/n action, with nk isolated fixed points, all with the same given normal 
representation.  If we removed a deleted neighborhood of the fixed point set, and take 
quotients, we obtain nk Lens spaces all with our chosen set of rotation numbers.  
Moreover, the ρ invariant can be computed from the calculation for the original branched 
cover using Galois invariance and multiplicativity of signatures.  In any case, the 
calculation is done (by another method) in [Atiyah-Bott II] and furthermore they explain 
the quite nontrivial and interesting proof that this invariant is strong enough to distinguish 
the lens spaces from one another245.   
 
 In any case, this invariant ρ now presents a challenge to the Borel conjecture.  
Using our surgical description of ρ, however,  
 
Conjecture:  If Γ is torsion free and π is finite, then L(Γ) → L(π)/L(e) has finite image246. 
 
(Theorem:  The Borel conjecture247 implies the above conjecture.) 
 
 The theory of ρ-invariants is susceptible to a nice generalization by Atiyah-
Patodi-Singer [Atiyah-Patodi-Singer] where one assigns an invariant for every finite 
dimensional unitary representation of Γ (whether finite, torsion free or anything at all!).    
                                                
244 using the technology of assembly maps (and using calculations of equivariant Witt 
groups). 
245 It is interesting that both this proof and De Rham’s original proof both rely on the 
same number theoretic fact: the Franz independence lemma (see [Cohen SHT, Milnor3, 
Atiyah-Bott II]). 
 
246 Actually, most of the 2-torsion should also not be hit, as one can see using more 
detailed information about the assembly map for finite groups, i.e. the problem of which 
surgery obstructions arise from problems involving closed manifolds. (This is called the 
“oozing problem” for historical reasons, with important contributions being [Wall5, 
Cappell-Shaneson4, Morgan-Pardon (unpublished), and Hambleton-Milgram-Taylor-
Williams].) 
247 as well as the Baum-Connes conjecture. 
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 This analytic method does not have, as far as I know, a purely topological 
approach.  It is a descendent of the fact that we mentioned that for closed manifolds (but 
not for manifolds with boundary), the signature with coefficients in any flat unitary 
bundle is the same as the ordinary signature (times the dimension of the representation). 
 
Definition:  Let D be a self adjoint elliptic operator on an odd dimensional manifold.  
Associated to D we form the series  

η(s) = ∑ |signλ|λ-s 
(summed over the nonzero eigenvalues λ of D) and via analytic continuation, form the 
real number η(0). 
 
 The η-invariant enters as a correction term from the boundary in an Atiyah-Singer 
theorem for manifolds with boundary.  Therefore, as we are in a situation where 
relationships that hold for closed manifolds do not apply to manifolds with boundary the 
η invariant  arises -- without a choice of cobounding manifold -- to given an invariant of 
M itself. 
 
 For M2k-1 there is a “signature operator” on forms of even degrees (2p) given by: 
 

Bϕ = ik(-1)p+1(*d-d*)ϕ 
 

If α: π1M → U(n) is a unitary representation, then we can also consider B with 
coefficients in the flat bundle determined by α. 
 
Definition/Theorem [Atiyah-Patodi-Singer II]: ρα(M) is defined as the difference of 
the η-invariants for the signature operator with coefficients in the trivial bundle and that 
with coefficients in α. 

ρα(M) = nηB(0) - ηBα(0). 
 

This invariant is independent of the Riemannian metric on M.  If M = ∂W so that the flat 
bundle extends, then  

ρα(M) = nsign(W) - signα(W). 
 
  
 So, of course, all the flat bundles and APS invariants give potential obstructions 
to the Borel conjecture.  We can turn this around and prove a theorem: 
 
Theorem:  If the Borel conjecture is true for (the torsion free group) Γ, then for all α, ρα 
is a homotopy invariant.   
 
Remarks: 1. While the numbers ρα(M) can be arbitrary real numbers if we make no 
assumption about the unitary representation α (even for the circle, this is a nonconstant 
continuous function of the representation), the non-homotopy invariance ρα(M’) - ρα(M), 
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for homotopy equivalent manifolds, is always an element of Q. Note that for cobordant 
manifolds for which the flat bundle extends, this difference in an integer.  It stands to 
reason then, that the cobordism information implicit in the Novikov conjecture could lead 
to this rationality at the level of conjecture.  That it is true unconditionally is based on 
ideas developed through work on the Novikov conjecture. 
 
     2. It is not hard to see that if Γ is residually finite and has torsion, then there is 
an α which detects the infinitude of S3(K(Γ,1))248.  This method actually gives more 
information, because ρα  is an invariant of manifolds, so it can be used to implies that the 
manifolds are different from each other, not only that some given homotopy equivalence 
is not homotopic to a homeomorphism. 
 
 This theorem is related to, but not quite equivalent to the following obstacle to the 
surjectivity of the assembly map. 
 
 If α:Γ→U(n) is a unitary representation, then it induces a homorphism 
RΓ→GLn(C), compatible with conjugation, and thus, a map (by Morita invariance -- i.e. 
viewing a matrix of matrices as larger matrix with ordinary entries) signα:L2k(Γ) → 
L2k(C) = Z.  By the index theorem, if the assembly map is surjective (so that every 
element of  L2k(Γ) comes from a closed manifold), we must have signα ≡ nsign on 
L2k(Γ).  Note that if this weren’t true, then we could use such an element and the Wall 
realization theorem to give a counterexample to the Borel conjecture. 
 
 The proof of the theorem also used the Novikov (i.e. injectivity) half of the Borel 
conjecture. 
 
 In the notes we describe a less classical invariant based on these considerations. 
 
4.11 Notes 
 
4.1    The proof of de Rham’s theorem was based on calculations of Reidemeister 
torsions of the Lens spaces. The Reidemeister torsion can be defined for any space that 
has an acyclic flat bundle on it.  Torsions are definable more generally when one has a 
situation where a finitely generated free chain complex is acyclic (and, crucially, the 
chain groups have given bases): such as a homotopy equivalence between finite 
complexes (where the chain complex of the mapping cylinder has this nature).  
 
 The torsion measures the determinant of the underlying geometric chain 
complexes.  For a finite Q-acyclic complex, the torsion is essentially the alternating 
product of the orders of the integral homology groups.  Importantly and in contrast, in 
non-simply connected situations, the torsion is not a homotopy invariant.  Of course, the 
non-homotopy invariance is often an obstacle to calculation. 
                                                
248 This infinitude is true even if Γ is not residually finite, as can be seen [Chang-
Weinberger] using an L2 variant of the η-invariant introduced by [Cheeger-Gromov]. 
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 The torsion also occurs in the h-cobordism theorem (see section 4.4) as the 
obstruction of an h-cobordism being a product.  An h-cobordism is a manifold which 
deform retracts to its boundary components. The basic obstruction to being ∂×[0,1] is that 
the torsion of the inclusion of (either) one of the ∂ components is trivial and the h-
cobordism theorem asserts that (in dimension >5) this is the only obstruction.   
 
 See 5.3.3. for more discussion. 
  
 
4.2  As mentioned in the body of the chapter, the Hirzebruch signature theorem has two 
rather different proofs.  There is the cobordism theoretic proof and the index theoretic 
proof.  Both of these are subject to extensive and important generalization. 
 
 The cobordism theoretic proof can be modified to allow cobordism of more 
algebraic or singular objects than merely manifolds.  Doing so, the Hirzebruch theorem 
then becomes a calculation of where smooth manifolds fit into those cobordism theories.  
One such version is to consider the bordism of “controlled algebraic Poincare complexes” 
[Yamasaki] - where control here is as in controlled topology introduced in 4.6 and 4.8.  
This turns out to be the H*(X ; L(R)), where X is the control space, and R is the ring (and 
L is the spectrum discussed in 4.9).  Doing this gives a most satisfying proof of 
Novikov’s theorem - the L-classes have been topologically defined as “the controlled 
symmetric chain complex of M over M”.   
 
 The work has been hidden.  As we discussed in 4.8, proving that a controlled 
algebraic functor is a homology theory boils down to a statement like the α-
approximation theorem and such a result of the right level of depth for this type of 
applications we’ve already seen, . 
 
 The Atiyah-Singer index theorem has had many extensions and variants.  Many of 
these are subsumed by very some general theorems (and even more, by philosophies) in 
the setting of non-commutative geometry and C*-algebras.  A reference to Connes’ book 
[Connes1] is surely necessary, but not sufficient. An excellent introduction is [Higson-
Roe3]  
 
 Broadening one’s viewpoint in this way, besides enabling the proofs of the most 
advanced known results on the Novikov conjecture, also significantly expands its scope 
of application -- as I hope will become clearer as we continue.  
 
4.4  This section explains two of the early approaches to the Novikov conjecture.   
 
 Probably the most misleading aspect of my treatment is viewing the vanishing of 
the Whitehead group of free abelian groups as an exogenous fact, that we just exploit 
rather than an integral part of the “Borel package” of conjectures.  Indeed for the Borel 
conjecture to be true, one must have such vanishing, and one should view the vanishing 
of the Whitehead groups of torsion free groups as being completely analogous to the 
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conjectured isomorphism statement for L-groups that we take as the algebraic version of 
the conjecture in 4.7.  We will rectify this failure in the next chapter. 
 
 Besides the h-cobordism theorem that involved K1(Zπ), one had Wall’s paper 
[Wall 2] that showed how K0(Zπ) regulates whether a finitely dominated complex is 
homotopy equivalent to a finite complex. Siebenmann’s thesis [Siebenmann3] showed 
the bearing of Wall’s work to the question of when noncompact manifolds are the 
interiors of manifolds with boundary (i.e. the compactification problem).  The first 
approach to the fibering problem by Farrell [Farrell 1] had multiple obstructions 
involving various K-groups and a Nil type group249.  Siebenmann [Siebenmann3] gave 
another approach to the problem where all the obstructions were unified into one -- the 
connections between the pieces in Farrell’s approach being given by a nonabelian 
generalization of the Bass-Heller-Swan theorem [Farrell-Hsiang 2].  Farrell [Farrell 2] 
give another very elegant approach to fibering in his ICM talk.  
 
 More general splitting was developed by Cappell and applied to the Novikov 
conjecture by him [Cappell1,2].  It turns out that it has aspects that are not attributable to 
algebraic K-groups.  A consequence of Cappell’s theorem is that problem of being a 
connected sum is homotopy invariant (in dimension ≠4) if the fundamental group has no 
2-torsion (but not in general).   
 
 Developing the relevant algebraic K-theory for amalgamated free products by 
Waldhausen (motivated by the work he did on 3manifolds, as one of the authors of 
“Haken-Waldhausen theory”) [Waldhausen3] was an important step in the development 
of higher algebraic K-theory.  In any case, this work led to consideration of the “Cappell-
Waldhausen class” of groups, which are accessible from the trivial group by 
amalgamated free products and HNN extensions any number (including transfinite) of 
times.  For these, the assembly map is an isomorphism after ⊗Z[1/2].  In low dimensions, 
this includes many of the fundamental groups that seem important, but, in light of 
property (T) no high rank lattices in simple groups lie in this class. 
 
 On the other hand, after introducing the ideas of bounded and controlled topology, 
the splitting methods return, as we split the control spaces (spaces can be broken up into 
pieces much more easily than groups can) and thus this method is implicit in many of the 
subsequent topological (and many of the analytic) approaches. 
 
 An exception is Lusztig’s method.  Extension of this to non-positively curved 
situations (and beyond) was taken up fairly soon after by Mischenko and Kasparov.  
Mischenko, besides using infinite dimensional bundles, also introduced the formalism of 
algebraic Poincare complexes and their cobordism to get invariants of manifolds 
(essentially elements of L(Qπ).)  A useful exposition of Mischenko’s work can be found 
in [Hsiang-Rees].  

                                                
249 Nil groups are Grothendieck groups of nilpotent matrices.  The connection to the K-
theory of Laurent series is straightforward: if N is nilpotent over R, then I + t±1N are 
invertible over R[t,t-1].   
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 Kasparov [Kasparov] developed an extensive new technology, KK-theory, for the 
problem, which he applied to give the first proof of the Novikov conjecture for 
fundamental groups of complete non-positively curved manifolds (we gave a geometric 
approach in 4.6).  It is fundamental for most of the subsequent analytic results.  A useful 
book reference for Kasparov theory is [Blackadar].   
 
 (From a non-commutative geometry perspective, Lusztig’s method uses a family 
of operators parameterized by a commutative space, and one can look for families 
parameterized by a non-commutative space.) 
 
4.5  The survey paper [Ferry-Ranicki-Rosenberg] translates one of Novikov’s papers 
and helps track his train of thought.  Novikov’s master stroke of using nonsimply 
connected manifolds to get information about the topology of Rn was commented on, for 
example, in Atiyah’s citation of Novikov for his Fields medal.  The approach I took is 
based on the idea of Kirby’s torus trick (a somewhat different trick that has the same 
crude description) and is a variation of one of [Gromov AI]. 
 
 In the original version of torus trick, the matter of filling in the “hole” was 
accomplished using Siebenmann’s completion (or end, or boundary) theorem (his thesis 
[Siebenmann 3]).  A nice aspect of using the signature of fiber bundle approach is that 
this is unnecessary.   
  
 The torus trick, or alternatively, controlled topology is used in proving the 
annulus conjecture and the other foundational theorems for the topological category.  See 
[Kirby, Kirby-Siebenmann, Quinn3]. 
 
 It is important to realize that in the equivariant setting all of the basic tools of the 
topological category that the above work fashions, dramatically fail.  Handlebody 
structures neither exist nor are unique, equivariant Whitehead torsion is not topologically 
invariant, and transversality fails.  Nevertheless, the equivariant signature operator is a 
topological invariant.  We will discuss these matters in chapter 6. 
 
4.6  The Novikov conjecture for closed non-positively curved manifolds was first proved 
by Mischenko.  Farrell and Hsiang gave a direct geometrical proof (that includes the 
stable homeomorphism statement) [Farrell-Hsiang 3].  Their method uses the 
compactification of the fibers and Alexander tricks rather than the use of the α-
approximation theorem that we do.  The result of this section is the main result of [Ferry-
Weinberger1] and is a slight improvement - from the topological perspective - of 
Kasparov’s result. 
 
 Kasparov’s theorem was important for the philosophical reason that it did not 
seem to require a hypothesis on the quasi-isometry type of the group, while in the closed 
case one immediately sees the “sphere at ∞” implicated in the solution: an idea already 
present explicitly in Mostow’s work.  When one has infinite volume, there was a strong 



  132 

psychological presentiment that “almost anything is possible”.  Indeed, we will take up 
this theme in the last chapter.   
 
 Ferry’s theorem was the solution to a problem of Siebenmann from his CE 
approximation paper.  I consider it one of the high points of 20th century topology.  It is 
based on his joint result with Chapman on the α-approximation theorem, which says, in 
modern terminology that a homotopy equivalence M’ → M that is controlled over M is 
controlled homotopic to a homeomorphism250.   
 
 Quinn’s papers [Quinn1] essentially liberated the place where the control was 
being measured from the space where the problem was solved.  This simple idea has 
proved to be enormously important, as the many applications in that series already 
showed.  And there have been very many more; we use this type of reformulation in 4.8-9. 
 
 A homology manifold can be thought of as a space that is a controlled Poincare 
duality space, controlled over itself.  This was a critical insight that led to Quinn’s 
obstruction to resolution [Quinn2], and the construction of nonresolvable homology 
manifolds and their classification [Bryant-Ferry-Mio-Weinberger].  
  
 
4.7.  The topological form of surgery is decided less elementary than the smooth theory, 
but it has the much better features described in this section. 
 
 The use of periodicity is an elaboration of the idea, that occurred first in 
[Shaneson] of using the periodicity of L-groups to do an end run around the problem that 
low dimensional problems cause for studying high dimensional problems.  (He showed 
that there is a smooth manifold homotopy equivalent to T2×S3 that looks like a product 
of  T2 with a counterexample to the Poincare conjecture despite the fact that one can’t 
really unwrap those circles via Farrell’s theorem.)  In [Hsiang-Shaneson, Wall1] this idea 
is used to prove the Borel conjecture for the torus.   
 
 Nowadays, the inclusion of periodicity into the functoriality means that we do not 
have to consciously think about these issues.  On the other hand, having included 
homology manifolds into our structure sets, the objects we study are even less elementary 
than topological manifolds.  In the paper [Bryant-Ferry-Mio-Weinberger] that 
constructed them, they are also classified up to s-cobordism.  
 
 Homology manifolds were initially studied as places where sheaf theory behaved 
similarly to the theory of manifolds, and then later, in the Bing school as cousins to 
manifolds with interesting topological properties in their own right (e.g. being manifold 
factors or fixed sets of group actions).  Edwards’ theorem (and the earlier work of 

                                                
250 And, here, we can have ε-δ control in this theorem.  In fact, the name α-approximation 
means that one can use any cover α for an open manifold, and then refine it to a β, so that 
β-homotopy equivalences are α-homotopic to homeomorphisms.  So, oddly enough, the α 
is just the name chosen for a variable. 
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Cannon and Edwards on the double suspension problem251), and Sullivan’s observation 
that Novikov’s theorem applies to CE maps, made their study central to geometric 
topology and Freedman’s proof of the 4-dimensional Poincare conjecture was  perhaps 
their crowning triumph  --- showing that even those tame souls just interested in 
manifolds could not ignore these spaces as pathological.   
 
 While the resolution conjecture, asserting that high dimensional homology 
manifolds are all resolvable is false (and therefore the characterization of manifolds 
cannot be expressed just in terms of DDP), it is conceivable that DDP homology 
manifolds are in all regards just as beautiful as manifolds.  However, the most basic 
properties of these spaces, e.g. whether they are topologically homogenous, whether the 
h-cobordism theorem is true for them, etc. remain open (see e.g. [Weinberger5].)  
  
 An ideal situation would be the true extension of the CE approximation theorem 
to the setting of DDP homology manifolds:  Any CE map between ANR homology 
manifolds with the DDP should be a uniform limit of homeomorphisms -- this would lead 
to homogeneity and the s-cobordism theorem, but can it really be that Edwards’s theorem 
is around the same depth as homogeneity?  (Surely for manifolds this isn’t the case.) 
 
 
4.8  This section had as its goal to explain in more detail how controlled topology works, 
more formally and systematically than by example.  I had tried once before in 
[Weinberger TSS].  Other (more) useful references are [Ferry-Pederson, Quinn4, 
Anderson-Connolly-Ferry-Pedersen, Chapman1,2].  It is possibly fair to say that the pre-
history of controlled topology began with the work of Kirby and Siebenmann on 
topological manifolds, and Chapman and Ferry on the α-approximation theorem and 
metric criteria for simplicity of a homotopy equivalence, but was consciously and 
effectively developed by Quinn [Quinn1] and turned into a systematic tool (wherein the 
control space gained its independence from the formulation of the problem).  
 
 The bounded Borel conjecture was, I think, in the air with controlled topology and 
this whole circle of problems.  Its formulation using the Rips complex (i.e. the direct limit 
of the nerve of coverings by bigger and bigger balls) was natural given that uniformly 
contractible models do not always seem to exist.  See [Roe2, Block-Weinberger1,2, 
Gersten] for early uses of the Rips construction and its homology.   
 
 That this substitute should work out better than a uniformly contractible model 
was a great surprise to me, and this was the source of the example in [Dranishnikov-
Ferry-Weinberger2].  (Although, I guess the moral is that functorial constructions that 
work in great generality, substituting for objects that don’t necessarily exist, will 
occasionally beat those objects, even when they do exist.) The phenomenon itself was 
derivative of Dranishnikov’s discovery [Dranishnikov] that if X → Y is a CE map, then 
while it induces an isomorphism on ordinary homology, it does not necessarily induce 

                                                
251 Is the suspension of the suspension of a homology sphere a manifold (and therefore 
the sphere)?  Yes. 
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one on non-connective (and, in particular, periodic) homology theories, when Y has 
infinite covering dimension. 
 
 In the C* algebra setting, Yu [Yu] gave other more dramatic failures of even the 
Coarse Novikov conjecture (discussed in the next chapter in the setting of positive scalar 
curvature).  And, even in the presence of bounded geometry, expander graphs give rise to 
other examples in this setting, as we will discuss in chapter 9. 
  
 
4.9. The principle of descent seems to have been developed and rediscovered multiple 
times.  Its job is to explain the miracle (not present in our treatment of the torus) of how 
understanding, say, hyperbolic space extremely well is enough for the understanding of 
how every cohomology class of every hyperbolic manifold (and we do not really 
understand very well this cohomology!) enters as a potential obstruction to homotopy 
equivalence. 
 
 Besides the work of Kasparov in the Novikov conjecture mentioned above, 
Gromov and Lawson used a variant in their beautiful paper [Gromov-Lawson2] on 
positive scalar curvature (see section 13).  Our treatment here is based on [Ferry-
Weinberger2]’s reformulation of [Ferry-Weinberger1]; Carlsson developed it in the guise 
of homotopy fixed sets [Carlsson] (and extended its reach in papers with Pedersen, such 
as [Carlsson-Pederson]).  An excellent explanation of its C*-algebra version appears in 
[Roe2]. 
 
 The technique used here can be used to prove the Novikov conjecture for groups 
of finite asymptotic dimension.  This was first done by analytic methods by Yu [Yu2].  
But methods based on the squeezing properties of finite complex (i.e. α-approximation 
type results) together with descent have been successfully applied to give this result in 
[Bartels, Carlsson-Goldfarb, Chang-Ferry-Yu].  A completely different topological 
approach (based on the existence of appropriate acyclic completions of the EΓ) is given 
in [Dranishnikov-Ferry-Weinberger2]252. 
 
 Spacification was introduced by Casson [Casson] to get information about 
fibering a manifold over S2.  Quinn’s thesis [Quinn5] developed it systematically; see 
also [Nicas].  Other treatments can be found in [Burghelea-Lashof-Rothernberg, Cappell-
Weinberger3, Weinberger TSS].  
 
4.10 W.Neumann [Neumann] was the first to show that for the case of Zn, Atiyah-Patodi-
Singer invariants are homotopy invariants by means of an explicit homotopy invariant 
formula for them.  In [Weinberger3] I explained how the Borel conjecture implies that for 
torsion free groups these are homotopy invariant.  Keswani [Keswani] showed how a 

                                                
252 The Higson corona used in that paper is a variant of the Stone-Cech compactification.  
The utility of a generalization of the boundary of hyperbolic space for rigidity purposes is 
a central theme in Mostow, Tits, Gromov, and through the present.   
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version of the Baum-Connes conjecture implies this as well, and therefore for torsion free 
amenable groups, work of Higson and Kasparov implies this conclusion. 
 
 The fact that APS invariants are homotopy invariant up to rational numbers was 
something I had worked on, on and off, for almost a decade.  My final proof 
[Weinberger4] used a deformation argument (whose key point was a calculation of 
Farber and Levine) to reduce to subgroups of GLn with algebraic entries.  This argument 
ended up being only a couple of pages long.  Recently Higson and Roe [Higson-Roe1,2] 
have given a more direct argument. 
 
 Mathai [Mathai] was the first to study the homotopy invariance properties of the 
Cheeger-Gromov reduced L2-η-invariant.  Keswani related this to a variant of the Baum-
Connes conjecture (one true for all amenable groups, but false for groups with Property 
(T).) Chang [Chang] showed that the Borel conjecture implies homotopy invariance in 
the torsion free case.  He and I [Chang-Weinberger2] showed the nonhomotopy 
invariance for all groups with torsion. 
 
 Given that any nontrivial torsion in π gives rise to the infinitude of S3(M), it 
seems reasonable to believe that the size of S3(M) (and of similar invariants) should 
larger when the fundamental group of M has more torsion.  This has not been shown 
unconditionally, but for very many fundamental groups, lower bounds in terms of the 
number of orders of torsion elements (or even on the number of conjugacy classes of 
torsion elements) have been given in [Weinberger-Yu].   
 
 There is a general philosophy of secondary invariants that comes out of the 
Novikov conjecture and complementary to these homotopy invariant secondary 
invariants.  These were explicitly introduced in [Weinberger8] and are “higher ρ 
invariants” (although they were implicitly used already in [Weinberger4]).  Like 
Reidemeister torsion, they require some amount of acyclicity253 to define (and examples 
show that this is actually necessary).  Typical places that they take values in is a quotient 
of S(K(Γ,1)) or of an L-group or a some kind of homological (or K-theory) invariant 
related to the fundamental group-- where the quotient is determined by the type of 
Novikov technology that we will discuss in chapter 6. I am being vague about this 
because there isn’t yet an overarching general theory that includes all others.  
[Weinberger 8], for example, does not deal at all with torsion issues (although some of 
the later literature [Higson-Roe2, Weinberger-Xie-Yu] do), and the context of their 
definition is “up for negotiation”, essentially in terms of what kind of acyclicity 
hypothesis is necessary, or what is its source. 
 

                                                
253 Actually the relevant acyclicity is only necessary around the middle dimension.  That 
manifolds with this property are special and can be more easily understood than general 
manifolds was first realized by Jean-Claude Hausmann, who studied (in unpublished 
work sometime in the 1970s) them under the slightly less general but more geometric 
condition of having no middle dimensional handles in a handle decomposition. 
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 This invariant is adequate for distinguishing Lens spaces after crossing with 
aspherical manifolds for which the Novikov conjecture is known.   
 
 The reason that they are somewhat subtle is that, unlike higher signatures that are 
signatures of appropriate submanifolds associated to cycles in K(Γ,1), ρ-invariants are 
very definitely not cobordism invariant, and therefore it is prima-facie unclear that any 
higher version of an such invariant should be definable.  Interestingly, acyclicity solves 
this and this makes some cycles more canonical than others, in a way that is not apparent 
to straightforward transversality. 
 
 The precise definition uses the fact that sufficiently acyclic manifolds are both 
algebraically (tautologously) and geometrically nullcobordant254, (using the Novikov 
conjecture) and that one gets an interesting invariant by comparing these two 
nullcobordisms. 
 
 These invariants have a number of interesting applications.  The first is that it 
gives a way of showing that manifolds are not homeomorphic, not only that a certain map 
is not homotopic to a homeomorphism.  Nabutovsky and I used this to show that even 
among homotopy equivalent manifolds the homeomorphism problem can be 
algorithmically undecidable [Nabutovsky-Weinberger1].   
 
 Another, more recent, application is to Gromov-Hausdorff space.  Recall [Gromov 
MS] that Gromov-Hausdorff space is a compact metric space of compact metric spaces, 
and that spaces are close if they can be approximately “aligned” like two fairly dense 
subsets of a third metric space.  GH-space and limits in it, have become an important tool 
in comparison differential geometry. 
 
 One can hope to find strong geometric restrictions on sets of manifolds in Gromov-
Hausdorff space that have a contractibility function255. It turns out, for example, that 
sufficiently close manifolds of this sort have the same simple homotopy type and rational 
Pontrjagin classes ([Ferry2]).  However, nevertheless, there are infinite families of 
manifolds Mi that are pairwise distinct, but which can all be made arbitrarily close to 
each other.  See [Dranishnikov-Ferry-Weinberger 3] for how this goes, and how higher ρ 
invariants are used.   
 
 In this example, it is important that the contractibility function (including the ε that 
describes a threshold at which balls are nullhomotopic) is allowed to vary with i. For a 
fixed contractibility function f, Ferry [Ferry2] proved a contrasting finiteness theorem: 

                                                
254 In some sense, for example, in the Witt cobordism sense. 
255 A contractibility function for X is a function f:[0, ε) → R so that f is continuous, f(t) ≥ 
t, f(0) = 0, so that for each point x in X, the ball around x of radius t in nullhomotopic in 
the ball of radius f(t).  It is a generalization of the notion of injectivity radius for a 
manifold, which corresponds to f(t) = t.  It is an easy exercise that given a local 
contractibility function f and a dimension n, there is a δ so that δ-close n-dimensional 
ANRs are homotopy equivalent. 
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the number of manifolds in a precompact part of Gromov-Hausdorff space with any 
specified contractibility function is finite. 
 
 The same technology that defines the higher ρ invariant is used in [Leichtenam-
Lott-Piazza] to define higher signatures for noncompact complete manifolds under the 
same type of middle-acyclicity condition at ∞.  (These higher signatures involve the 
cohomology of the fundamental group of the manifold, and nothing further about ∞.  
Assuming the Novikov conjecture, they are proper homotopy invariant.)  [Kreck-
Leichtenam-Lueck] uses a variant of this idea to study how higher signatures of closed 
manifolds change if one cuts them open along submanifolds and glues back differently. 
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Chapter V.  Playing the Novikov game.  
  
 
5.1  Overview 
 
 It turns out that the topological Novikov conjecture is only the first example of a 
more general phenomenon wherein the fundamental group of a manifold (or variety or 
…) plays an extremely large role on the geometry of the manifold -- often mediated 
through analysis.  And, as is clear from the last chapter, this theme also extends to 
noncompact manifolds where the role of the fundamental group is supplemented by the 
quasi-isometry type of the manifold. 
 
 This chapter is about the “Novikov game”: what it is, how to play, and what are 
the typical things that happen when you play.  
 
 One starts with a theorem about characteristic classes (or an index) true for all 
closed manifolds and interprets as being merely the simply connected version of a more 
general statement, hopefully true for all groups, where one augments the simply 
connected statement by the cohomology of the fundamental group. 
 
 As far as I can tell, the first player of this game was Reinhardt Schultz, in the mid 
1970’s.  One of the nice topological applications of the index theorem is: 
 
Theorem:  ([Atiyah-Hirzebruch]).  If M is a closed smooth spin manifold, and M admits 
a nontrivial smooth S1action, then  

<A(M), [M]> = 0. 
 

For the definition of the A-genus of a spin manifold, see [Borel-Hirzebruch]: it is an 
analogue of the L-genus that played such an important role in the last chapter.   
 
 Schultz asked whether this theorem is true for the “higher A-genus” for 
nonsimply connected manifolds that have smooth circle actions. 
 
 One has to be a little careful with this statement.  After all, the higher A-number 
associated to the fundamental class of any K(π,1) manifold is nonzero, but the torus, Tn 
has a circle action!  The way around this issue is to not consider all of π1(M), but rather 
the part that is “orthogonal to the circle”, i.e. 
 
Theorem ([Browder-Hsiang], Schultz’s conjecture):  If M is a smooth spin manifold 
admitting a smooth S1action, and f: M → K(π,1) is any map, then for any α  ∈ 
H*(K(π/orb,1); Q), the higher A-genus, 
 

<f*(α) ∪ A(M), [M]> = 0 
vanishes. 
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Here orb is the class in the fundamental group represented by any orbit.  (This 
class is clearly independent of the orbit.  It always lies in the center of the fundamental 
group so we can quotient by the subgroup it generates.)    

 
Similarly, another result for (smooth) S1actions, 
 

Theorem (Atiyah-Singer)  If S1acts on a compact manifold M, then sign(M) = sign(F), 
where F is the fixed set of the action (if F is suitably oriented)256. 
 
has the expected generalization to the nonsimply connected case. 
 
Theorem ([Weinberger1])  If S1acts on a compact manifold M, f: M → K(π,1) is any 
map, and F is the fixed set of the action (if F is suitably oriented), then 
 

<f*(α) ∪ L(M), [M]> = <f*(α) ∪ L(F), [F]>   
 

for all α  ∈ H*(K(π/orb,1); Q) (= H*(K(π,1); Q) if F≠∅). 
 
 However, when we begin examining the same story for Z/n actions, the situation 
is more complicated. 
 
Theorem:  (Consequence of the G-signature theorem):  Suppose that Z/n action acts 
homologically trivially on M, f: M → K(π,1) is any map, and that F is the fixed point set 
of the action, then there is a characteristic class c(ν)257 of the equivariant normal bundle 
to F, so that 
 

Sign(M) = <c(ν)∪L(F), [F]> 
 
(so that, if F = ∅, sign(M) = 0). 
 
Theorem ([Weinberger1])  Suppose that Z/n action acts homologically trivially on M258, 
f: M → K(π,1) is any map, and that F is the fixed point set of the action, then for the 
characteristic class c(ν) of the equivariant normal bundle to F mentioned above, the 
formula for the higher signature of M: 
 

Signα (M) = <f*(α)∪c(ν)∪L(F), [F]>. 
 

                                                
256 This formula makes sense and is true even for topological actions --at least if the fixed 
set is an ANR.  That it makes sense is due to the fact (see [Borel 2]) that the fixed set of 
circle action is automatically a rational homology manifold. 
257 c(ν) is the average over the generators of Z/n of the characteristic classes arising in 
the formula for trgG-signature in [Atiyah-Singer III]. 
258 This means that the Z/n action lifts to the universal cover, commutes with the action of 
the covering translates, and acts trivially on the rational homology there. 
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is true iff the Novikov conjecture is true for the group π. 
 
 We shall discuss more the interaction between the Novikov conjecture and group 
actions below in this and the succeeding chapters - because, it turns out to be actually a 
somewhat different problem, and it takes some work259 to find an equivariant version that 
is provably exactly equivalent to the original problem! (The first things one thinks of 
seem to be of the same depth as the Novikov conjecture -- i.e. proofs of the Novikov 
conjecture usually affirm these as well -- but not quite provably equivalent to it.)   
 

Let me mention one last example of an equivariant problem that we will see 
works out rather differently: 

 
Definition/Theorem:  An action of G on X pseudotrivial, if (X × EG)/G ≅ X × BG. If G 
= S1 or Z/pZ acts pseudotrivially on a (noncompact) manifold (or manifold with 
boundary) homotopy equivalent to a closed manifold M, then, if the fixed set XG is a 
compact manifold, then 
 

Sign(M) = Sign(XG). 
 
 The proof of this follows from Smith theory260.  The map XG → M can be seen to 
be a rational homology equivalence, and a fortiori preserves signatures.  Later, we will 
discuss what happens in the non-simply connected case is a provocative problem. 
 

As we move from topology to differential geometry and beyond, the problems we 
study do not seem to have direct implications for the original Novikov conjecture.  They 
are in the spirit of the problem; they are analogues and can be studied simultaneously and 
profitably. 

 
The most prominent example is the question of “which manifolds have metrics of 

positive scalar curvature?” Recall that if M is a Riemannian manifold, then the scalar 
curvature is a function on M that measures infinitesimally the extent to which the 
Riemannian volumes of balls of radius (r) deviate from the Euclidean volumes of balls of 
the same radius: 

 

                                                
259 This is all meant philosophically.  Conceivably all the currently unknown versions of 
the Novikov conjecture are true, and then they will be equivalent to each other...  
However, we will see that working on the equivariant version very quickly leads one to 
introducing coefficients and other refinements and extensions of the original problem. 
260 One can improve this to where G is a p-group or an extension of a torus by a p-group.  
But for non p-groups or Lie groups with nonabelian identity components, the relationship 
between M and MG is much more tenuous, even for pseudotrivial actions.  Indeed, in the 
noncompact case, one can always arrange for MG to be empty (as the reader should be 
able to prove after reading section 7.1.)  In the compact case, achieving this also requires 
a condition on χ(M). 
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Vol(B(r)) = ωnrn - [K(p)/6(n+1)] rn+2 + O(rn+3) 
 

so positive scalar curvature means that balls are infinitesimally smaller than they “should 
be”.  The Gauss-Bonnet theorem implies that the only connected oriented surface with 
positive scalar curvature is the sphere. 
 
 Using the index theorem for the Dirac operator and a Bochner type formula 
discovered by Lichnerowicz, Atiyah, Lichnerowicz, and Singer gave the first obstructions 
to any manifold of dimension > 2 having positive scalar curvature in the following 
theorem: 
 
Theorem ([Atiyah-Singer III]) If M is a compact spin manifold with a Riemannian 
metric of positive scalar curvature, then <A(M), [M]> = 0. 
 
 This suggests, according to the same pattern: 
 
Conjecture (Gromov-Lawson-Rosenberg, see [Gromov-Lawson1]):  If M is a compact 
spin manifold261 with positive scalar curvature, and f: M → K(π,1) is any map, then 
 

<f*(α) ∪ A(M), [M]> = 0   
 

for all α  ∈ H*(K(π,1); Q). 
 
  In particular, no closed (spin) K(π,1) manifold should admit a metric of positive 
scalar curvature.  The special case of tori of dimension ≤ 7 was established by Schoen 
and Yau [Schoen-Yau1].  In [Gromov-Lawson1] Gromov and Lawson observed that for 
all dimensions, the torus cannot have a positive scalar curvature metric by combining the 
Atiyah-Lichnerowicz-Singer argument with the argument of Lusztig’s thesis.  Further, 
they proved the nonexistence for closed non-positively curved manifolds with residually 
finite fundamental group, and in [Gromov-Lawson2] they removed, by developing 
enough index theory on the universal cover, the residual finiteness262.   
 
 Rosenberg [Rosenberg 1] directly connected this problem to the work of 
Kasparov (and Mischenko-Fomenko) on the Novikov conjecture, greatly clarifying the 
situation and showing that more than analogies were involved here -- this chapter owes a 
great debt to him.  
                 _ 
 The third important operator studied by Atiyah and Singer is the ∂-operator on a 
complex manifold, whose study leads to the Hirzebruch-Riemann-Roch theorem.  It, too, 
gives rise to a characteristic class statement in the simply connected case that one can try 
to generalize.  
 

                                                
261 It turns out to be reasonable to only ask for a spin structure on the universal cover of 
M. 
262 Surely this resonates with earlier discussions. 
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 If M is a complex manifold and E↓M is a holomorphic vector bundle, then the 
Hirzebruch-Riemann-Roch theorem calculates  
 

∑(-1)idim Hi(M; E) = <ch(E) ∪Td(M), [M]> 
 

(Here ch(E) is the Chern character of E, and Td(M) is a graded characteristic classes in 
the Chern classes of M.) The arithmetic genus, is the alternating sum of the dimensions of 
the space of holomorphic k-forms. 
 
Theorem (Corollary to Hirzebruch-Riemann-Roch).  If M and M’ are birational smooth 
algebraic varieties, then  
 

<Td(M), [M]> = <Td(M’), [M’]>. 
 

 A birational equivalence, is an almost everywhere defined isomorphism that is 
locally a quotient of polynomials.  In fact, it is automatically defined in the complement 
of a complex codimension two subvariety263 (of domain and range); this implies, in light 
of Hartog’s theorem, that holomorphic functions on the complement extend over the 
subvariety - and that even the individual (holomorphic) cohomology groups are 
isomorphic. 
 
 A consequence of the fact that the singularities of a birational map being 
complex codimension two is that if M and M’ are smooth birational varieties, then they 
have the same fundamental groups.  This led Rosenberg to conjecture [Rosenberg 3] the 
following theorem: 
 
Theorem: ([Block-Weinberger3, Borisov-Libgober, Brasselet-Schuermann-Yokura])  If 
M and M’ are birational smooth varieties and f:M → K(π,1) is continuous, then for any α 
∈ H*(K(π,1); Q), we have 
 

<f(α)∪Td(M), [M]> = <f(α)∪Td(M’), [M’]>. 
 
 
 The goal of this chapter is to explain more about how to play the Novikov game, 
and to give some feeling for when the result of playing the game is a conjecture that tends 
to be a theorem (as in the examples of the Schultz conjecture, the signature localization 
theorem for S1 actions and the Rosenberg conjecture) and when the conjecture seems to 
be deeper than this -- e.g. implying the Novikov conjecture, or at least only being 
currently provable for some class of fundamental groups.  And then there are sometimes 
when you play and you lose: the new “Novikov conjecture” is just plain false.  
 
 In doing this, we will need to broaden our perspective from topology to index 
theory (as must surely be obvious) and develop the analogy between these fields.  In 

                                                
263 In the smooth case.   
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doing this, it becomes possible to improve the various rational statements that we have 
been focusing on to more precise integral ones.   
 
5.2 Anteing up; Introduction to Index theory.  

 
 As might have been obvious in the examples of the previous section, almost all of 
the examples (except perhaps the one about pseudotrivial actions) involve the Atiyah-
Singer index theorem in some fashion.  (That one involved Smith theory, although an 
index theorem would be involved to translate the posited equality to be one of 
characteristic numbers.)   
 
 The characteristic class (while perhaps rational) represents the index of an 
operator and our goal is to somehow boost the power of this result in the presence of a 
fundamental group.   
 
 Here we’ll give a brief indication; more references can be found in the notes at the 
end of the chapter. 
 
 Suppose that D is an elliptic complex on a manifold; that is suppose that we have 
a sequence of vector bundles, Ei↓M, and Di: C∞(Ei) → C∞( Ei+1) are linear operators 
acting on the smooth sections of the Ei, given as differential operators (in local 
coordinates), so that DiDi-1 = 0.  Ellipticity is the condition that the Fourier transforms 
are exact away from the 0-section. 
 
 Concretely, let’s consider the case of a single operator (i.e. a complex with just 2 
bundles) on functions on the circle S1.  The operator d/dθ (acting on sections of the trivial 
line bundle) is elliptic; its Fourier transform is everywhere ×ξ which is invertible (and 
hence gives an acyclic complex) when ξ≠0.  Similarly the Laplacian on functions on the 
flat 2-torus T2 given by ∂2/∂x2 + ∂2/∂y2 is elliptic, but the wave operator on functions 
given by ∂2/∂x2 - ∂2/∂y2 is not.  (Its Fourier transform vanishes on the lines ξx=± ξy.) 
 
 By the “elliptic package” i.e. Sobolev space theory together with the theory of the 
Fredholm index, for any elliptic complex on a compact manifold, the cohomology 
groups: 
 

Hi(D) ≅ Ker Di/Im Di-1. 
 
are all finite dimensional.  The individual groups can be quite subtle and depend on more 
information than just the symbol of the operators.    
 
 For example, the Laplacian ∆ on C∞(S1) has Ker ≅ C, the constants, but the 
perturbation by a small 0-th order term f → ∆f + λf has no kernel unless λ is in the 
spectrum of Δ (which then depends on the length of the circle!)  
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 A similar but more topological example is the de Rham complex on a compact 
manifold M, but instead of considering real valued forms, consider instead ξ-valued 
forms, for a flat bundle ξ.  The symbol will only see dim(ξ), but, say dim H0(M, ξ) is 
exactly the dimension of the part of ξ which has trivial monodromy. 
 
 The index theorem gives a topological calculation though of ind(D) which is, by 
definition, ∑ (-1)idim Hi(D).  By taking an Euler characteristic the subtleties of the 
individual cohomology groups are largely erased.  The reader might enjoy seeing how 
this happens in these two examples.  In the first case one should use some Fourier series 
to see what’s happening on both the kernels and cokernels, and in the second the hint 
might be to consider why Euler characteristic is independent of the field used to define it 
(while the cohomology vector spaces have dimensions dependent on the characteristic  of 
the field). 
 

That the index is independent of “lower order perturbations” is exactly the key 
property of the Fredholm index in functional analysis -- invariance under compact 
perturbations. 
 
 The topological formula for the index involves the construction of a “symbol 
complex” (the analogue of the Fourier transform) over T*M.  It defines an element of 
K0(T*M) 264.  Noting that T*M is an almost complex manifold, and that the Bott-Thom 
isomorphism theorem (i.e. Bott periodicity for complex bundles, the form explained in 
the first chapter of [Atiyah-Singer]) then says almost complex manifolds are oriented for 
K-theory, so that K0(T*M) ≅  K2m(T*M) ≅ K2m(M) where we are now dealing with the 
dual homology theory to K-theory 265.  The index is then given by pushing forward the 
symbol homology class under the map M → *. 

K2m(M) → K2m(*) ≅ Z. 
[D] → ind (D). 

 
 

 The equivariant index theorem holds for G a compact Lie group acting on the 
complex and is essentially exactly the same result!  In that case the cohomology vector 
spaces are G-representations, and the relevant K theory is equivariant K-theory KG(M). 
The pushforward to a point is now the equivariant index, which is a (virtual) G-
representation (G acts on both the kernel and cokernel).    

                                                
264 We follow the standard convention that K-groups of noncompact spaces are assumed 
to be with compact supports.  (Despite this, we do not have a standard convention for 
ordinary homology or cohomology.) 
265 We have shifted point of view away from the original [Atiyah-Singer].  They pushed 
forward a cohomology class to a point using a “wrong way map” that was induced by 
Bott periodicity.  Atiyah later [Atiyah 2] gave a K-homology class associated to an 
elliptic complex.  Brown-Douglas-Fillmore and Kasparov later still gave a development 
of K-homology where elliptic operators on manifolds form its cycles.  See [Higson-Roe 
3] (and the references there) for a very lucid account. 
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 A similar situation arises when the (manifolds and the) elliptic complex is part of 
a family (Mp) Dp p∈ P a parameter space.  In that case the cohomology groups Hi(Dp) 
form a bundle over “most of” P.  Atiyah and Singer show that it is possible to add a small 
perturbation d to the family so one has D+d, to repair this.  In that case, the cohomology 
vector spaces all become vector bundles Hi(Dp+d) over P, and the index is an element of 
K0(P).  [Atiyah-Singer IV] explains how to compute this (and its Chern character). 
 
 These examples will interest us considerably in the sequel (both have already 
been applied in earlier discussion -- Lusztig266 making use of the families index theorem 
to prove the Novikov conjecture for Zn, and the equivariant index theorem is relevant to 
the Atiyah-Hirzebruch and signature localization theorems mentioned in 5.1.)  However 
for now we would like to focus on a formal algebraic aspect of all these theorems. 
 
 Notice the groups that the indices in these theorems take values in:  for the index 
theorem it’s in Z, in the G-index theorem it is an element of R(G), and in the families 
index theorem it is K0(P).    
 
 Indeed, even the Z in the index theorem is just K0(C), the Grothendieck group of 
finitely generated projective C-modules (i.e. finite dimensional vector spaces).  R(G) is 
the same thing as projective modules over CG, if G is finite, and over C*G (the C* 
completion -- to be discussed below) if G is compact.  K0(P) can be thought of, thanks to 
a classical theorem of Swan, as the (Grothendieck group of finitely generated) projective 
modules over C(P), the ring of continuous functions on P.   
 
 Thus we are led to thinking of the ordinary index theorem as a theorem about C 
valued elliptic operators, and the other index theorems as being about elliptic operators 
over other C* algebras, depending on the situation.    
 

Commutative  C* algebras correspond to functions on a space (by the Gelfand-
Naimark theorem) -- and one can267 think of the general noncommutative case as some 
kind of index theorem for families “parameterized by a non-commutative space” -- 
including situations where there is a group action as a very special case -- and what then 
follows as a chapter in “Noncommutative geometry” [Connes].   

 
Instead let’s recall that for elliptic operators P, there are parametrices, or 

“pseudoinverses”, Q, so that PQ = I + Compact, and similarly for QP.  So, for operators 
over any algebra, we should think that we have a ring R of operators, and J an ideal, and 
Fredholm (aka elliptic) operators are those that are invertible modulo compacts, i.e. 
modulo J.  In algebraic K-theory, there is an exact sequence (see [Milnor2] pp. 33-34): 

                                                
266 The need for perturbations for families of operators was already implicit in our 
discussion of Lusztig’s method: even the cohomology of S1 with coefficients in a flat 
bundle is not constant even for the the Lusztig family of line bundles. 
267 If one chooses to. 
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K1(R) → K1(R/J) → K0(J) → K0(R). 

 
The boundary is essentially the index map - one has ∂[P] = Ker(P)-cok(P).   
 
 In the operator theoretic setting of “A-algebras”, the same is true, except that one 
has to add on a suitable “A-compact operator” to the elliptic operator to make the kernel 
and cokernel projective A-modules (e.g. vector bundles without singularities).   
 
 Critically important for our story is the following basic C* algebra associated to a 
representation.  Suppose π is a group, and π → U(H) is a representation.  We can 
therefore think of Cπ as an algebra of operators on H.  We then obtain a C*-algebra by 
completing with respect to the operator norm. 
 
 There are two extreme cases of this construction that are of fundamental 
importance, when H = L2π, and then the completion is called Cr*π, the reduced 
C*algebra of π, the other is H = the sum of all irreducible unitary representations of π, 
and this yields C*maxπ, the maximal C* algebra of π.  
 
 The latter choice has better functorial properties: any group homomorphism gives 
a map between the associated algebras, but property (T) shows that C*maxπ can have 
rather large K-theory K0(C*maxSL3Z) is an infinitely generated group with an infinitely 
generated subgroup generated by irreducible representations that factor through finite 
groups SL3(Z/N). 
 
 Basically, if our interest is in the Novikov game, i.e. injectivity type statements268, 
this is not a problem and we can live cheerfully with C*maxπ, but when we begin playing 
the Borel game (which in this setting is called the Baum-Connes conjecture) and look for 
isomorphism theorems, Cr*π despite its functorial defects, will play the starring role.  We 
will often be cavalier and just use C*π as notation when these details aren’t important (or 
the completion is obvious to the author). 

 
 With the above preliminaries we have enough of a buy-in269 to begin playing the 

Novikov game.  
   
 We do not look at every possible characteristic class formula, but rather ones 

associated to an elliptic operator.   
 
Coupling this operator to an infinite dimensional flat bundle ×πC*π, we try to get 

information from K(C*π) to improve the formula to one involving the fundamental 
group.  Analogous to the assembly map in surgery 

 

                                                
268 See 4.7. 
269 e.g. we have enough resources to be able to get a seat at the table. 
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H*(K(π,1); L(e)) → L*(Zπ). 
 

there is a map (also called the assembly map, but mainly by reason of analogy270 --  it 
would be better called the index map271): 
 

K*(K(π,1)) → K*(C*π) 
 

 Both of these maps “tend to be injective” at least rationally- as we have discussed 
in the case of L-theory and shall yet discuss more.  These are Novikov type statements 
and can be sometimes proved by expanding our point of view to consider L-groups of 
categories associated to and K-groups of algebras of operators associated to metric spaces 
(and other controlled settings). 

 
 Indeed, the usual Novikov conjecture can be studied from the operator theoretic 

point of view by restricting  attention to the signature operator.  Thus, the operator 
theoretic setting thus is a large extension of perspective.   

 
 Note that we will can now try to extract some integral information, like the 

precise tangential information present in the Borel conjecture, and not just the rational 
that we have focused on in our discussion of Novikov.  Note that the conclusion of the 
form of the Novikov conjecture that we have just proposed (and had proposed in chapter 
4 via surgery) contains some integral information.  It asserts the vanishing of the 
pushforward of some operator under the natural map 

 
K*(M)→ K*(K(π,1)) 

 
e.g. it will include the statement that if we push forward the signature operator272 (viewed 
as an element of K*(M) as above) into the K-homology of the fundamental group we get 
an oriented homotopy invariant.   
 

Even if we are interested in just the rational problem, working integrally is a good 
way to probe approaches, but for some applications, this information is absolutely 
necessary.  The map L → K (for a point, for example) is split injective away from the 
prime 2, so away from 2 it is possible to deduce a topological injectivity from the analytic 

                                                
270 In a recent paper [Weinberger-Xie-Yu] the analytic map is defined in a way that really 
looks like assembly. 
271 or the higher index map, if one wants to emphasized how the higher cohomology of 
the group is implicated in this story. 
272 Here we are taking for granted the quite nontrivial point that the symbol class of the 
signature operator can be defined for topological manifolds.  It can be (see [Rosenberg-
Weinberger] for a discussion of this issue; in [Weinberger-Xie-Yu] a functorial map is 
built using just smooth manifolds, and a more substantial contribution from controlled 
topology).  In any case, this class can be defined in another way that we will explain in 
the next section. 



  148 

results.  However, at 2, one cannot obtain strong L-theoretic results analytically (at least 
not in any too direct a fashion).  

 
Appendix:  A glimpse through the looking class (at a parallel universe whose arrows 
are reversed)273.   
 
 While we have focused on manifolds (and orbifolds), and in this setting there are 
very nice analogies between surgery theory and index theory, both subjects naturally 
encompass more territory where the analogies are not as evident (and one might imagine 
pessimistically that they don’t extend or, if they do, they don’t help274).   
 
 This mini-section is a brief about the non-commutative geometric perspective. 
 
 In L-theory, the L-theory of a pair (i.e. the relative L-groups) is not the L-theory 
of a specific algebra.  Many different kinds of things have L-theory:  Rings with 
(anti)involution275, additive categories, stratified spaces, etc.  Each of these opens up new 
ranges of application. 
 
 On the index theory side, the object one takes the K-theory of is always a C* 
algebra.  Rather than generalize the setting of K-theory which was the surgical route, one 
instead creates innovative constructions of these algebras in various geometric situations, 
as is explained lovingly and inspiringly in [Connes, Connes-Marcolli].   
 
 More generally, in non-commutative geometry276 one tries to take seriously non-
commutative algebras as analogues of spaces, and then mimics important geometric 
constructions in this setting. 
 
 The basic example that all generalizes from is that of X, a locally compact 
Hausdorff space, to which one associates C*(X) the ring of continuous C valued 
functions on X, with respect to complex conjugation and the uniform norm as the 
norm277.  This is a contravariant functor that defines an equivalence of categories.  K-

                                                
273 That humans are remarkably symmetric makes it the case that what we see through the 
looking glass is the same kind of object as we are.  Of course, the looking glass of C* 
algebras assigns an infinite dimensional algebra to a beautiful finite dimensional space.  It 
might be fun to create a mixture of a mirror with night goggles, so that one gets a similar 
feeling of strangeness on looking through the mirror. 
274 Even for positive dimensional group actions on manifolds, the two theories have very 
different flavors.  I am not a pessimist, however. 
275 I’m old fashioned: I stick in the “anti” but many writers don’t bother and use the word 
involution for the same concept. 
276 We ignore the algebraic geometric side of this philosophy, just as in the commutative 
world we went continuous from diff, not analytic. 
277 This itself is in analogy to the very beginnings of algebraic geometry (initially, at 
least, over an algebraically closed field) where one associates to each affine variety the 
coordinate ring of polynomial functions on the variety. 
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theory enters by Swan’s theorem that projective modules over C*(X) are the same thing 
as vector bundles over X.  K-homology is associated to extensions 278 (by the algebra of 
compact operators on a separable Hilbert space) and (therefore) to generalized elliptic 
operators over X.   
 
 Having K-theory, one wants to then generalize the Chern character K(X) 
→⊕H2i(X; Q) to get (computable) invariants of elements279of these groups.   
 
 Cyclic homology was introduced by Connes [Connes 2] to be the target of such a 
generalized Chern character from K-theory to something more immediately computable 
and definable algebraically without the commutativity: it is closely related to De Rham 
cohomology in the commutative case. (See [Loday] for an excellent treatment; needless 
to say, having computable invariants for K-theory is important in many situations where 
the ring280 whose K-theory is taken is not a C* algebra.) It is thus an excellent example of 
the non-commutative philosophy: “commutative” invariants (i.e. geometric invariants of 
spaces) that can be interpreted non-commutatively are much more powerful and natural 
281.   
 
 In this very short appendix, I will describe just a few of the noncommutative 
algebras that arise in geometric situations. 
 
Example 1:  A=B. 
 
 Suppose we start with two points, A and B.  We form X = {A,B} and C*(X) = C2 
where addition and  multiplication is coordinatewise.  A function on X requires two 
values, one for each of A and B, and there is no communication between these. 
 
 Suppose we now set A = B, then the functions need to assign the same values to 
A and B and we obtain the algebra C. 
 
 But, suppose we just had an equivalence relation A ~ B.  A communicates with B 
and vice versa.  It would not be crazy to consider associated to this system M2(C) the 2 x 
2 matrices that have off-diagonal entries that reflect the communication between A and 
B.     
 

                                                
278 See [Higson-Roe] for an excellent exposition of the Brown-Douglas theory and the 
beginnings of Kasparov’s KK-theory. 
279 This is very relevant to the Novikov conjecture, which is, after all, a lower bound on 
K-theory -- so a suitable Chern character, rich enough to detect the image of the assembly 
map would be a dream come true. 
280 Randy McCarthy’s thesis [McCarthy] generalized the definition of cyclic homology 
and the trace map to the setting of exact categories. 
281 This is also true of working with stratified spaces.  Frequently arguments that must 
work in full generality are constrained, and therefore easier to find, than ones that just 
apply to very particular classes. 
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 We can consider this as being governed by the groupoid282 associated to the 
equivalence relation.  Then we get C(A ∪ B) acted on by the bounded operators, one for 
each arrow in this category.  (Assuming boundedness283 will make the convolution 
product of the operators defined in this way to be defined.) 
 
 Interestingly C and M2(C) are closely related algebras: they are Morita equivalent 
-- they have equivalent categories of projective modules.  So in this case A ~ B and A = 
B have very similar effects, but for more complicated equivalence relations it is indeed 
important to remember that equivalent does not mean equal, and that the noncommutative 
perspective includes the price of seeing that points are equivalent in a quotient space and 
keep track of these “transaction costs” when one does further analysis.284   
 
 The Morita equivalence of various ways of producing quotient objects (and in 
particular, when there’s a reasonable commutative choice) is common in tame situations. 
 
Example 2:  Group actions.   
 
 If G is a finite group acting nicely on a space, X, one can form X/G.  The 
continuous functions on this are C(X)G.   But the G-space X has much more information 
than X/G. 
 
 Even from the theory of vector bundles, one knows that it’s much more exciting 
to consider equivariant bundles on X as opposed to bundles over X/G.  So, what kind of 
space is this? 
 
 So for X = point, we want a vector space with a self identification associated to 
each self identification of X given by g∈G.  This means that we need modules over C[G] 
= the representations of G.  In general, we should have modules over the semidirect 
product C(X) ⋊ G.  For G compact Lie group, one needs more general convolution 
algebra. 
 

                                                
282 Recall that a groupoid is a category in which every arrow is invertible. 
283 The boundedness is automatic in this setting, but it seemed like a good idea to say it 
explicitly anyway. 
 
284 Mathematicians are trained from early years to take equivalence classes, and form 
quotient objects.  Try explaining this to a non-mathematician!  It is not at all easy to do.  
(Maybe you remember wondering whether real numbers were really equivalence classes 
of sequences of rational numbers or whether they were “really” numbers.) 
     Logicians know well the importance if distinguishing between = and ~, and in model 
theory have special rules for the interpretation of =.  Because (as Bill Clinton famously 
explained) it is not always clear what is is.   
     Respecting that one should have to pay for every use of an equivalence relation is a 
good idea (and is behind things like Dehn functions in geometric group theory).  The C* 
algebta approach to quotients does this naturally. 
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 Of course, the K-theory of this convolution algebra is exactly the Grothendieck 
group of equivariant vector bundles over X.   A similar construction can also be made for 
locally compact groups acting properly on X. 
 
 When the action on X is not proper then things become less clear geometrically.  
However, one can still form convolution algebras and study their properties.  This could 
well lead you to the Baum-Connes conjecture (with coefficients) if you were bold 
enough. 
 
Example 3285: Tilings, bounded geometry, etc. 
 
 Suppose that every day were exactly like the previous and the next.  9:00 am 
today would be like 9:00 am any other day.  Then my experience of time would be 
indistinguishable from a circle.  It would be a matter of debate for the metaphysicians 
(who would come to either no conclusion or the very same conclusion every day) 
whether time was “really” a line -- with certain regularities holding -- or whether is was a 
circle. 
 
 I think it could be an amusing project to write a (series of) novel(s) that would 
have such a periodic structure.  But it would be a contrived project in that even if the last 
page of the last volume were identical to the first page of the first, in the absence of 
determinism one would not expect “the continuation” to be the same as the first time 
around286.   Very interesting are the random samples from a periodic distribution. 
 
 Returning to the real world, we can consider the experience of a creature with 
bounded memory and resources on a various spaces.   Suppose that there were one glitch 
in the periodic “time-line” universe.  Then for all of early eternity till that glitch time 
would be a circle, but from the glitch on, depending on how good the creature’s memory 
was, it would seem like there was nonperiodicity, after all there was some time from “the 
beginning” or “the change” but that it would asymptote also to a circle.  (The figure 
below describes this -- assuming the stable states at ±∞ are the time reversed for 
entertainment.  Without the identification, there would be a similar picture taking place 
on a subset of the cylinder.) 
 

                                                
285 This example is the result of many conversations with Jean Bellissard and Semail 
Ulgen-Yildirim and inspired by the work of [Bellissard] and [Abert et al] among others. 
286 It might be more interesting to double the number of volumes and have a second series 
not identical to the first.  I’m not sure what I want the last page of the last volume of the 
second series to be like. 
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 This topological space is the space where experience takes place.  Geometric 
processes that weight local geometry and involve large scales in increasingly damped 
fashions should extend to this space that compactifies the time line. 
 
 Now let’s think about still a time bound creature, but time while a line, is tiled by 
tiles A and B, with some rules about how the A and B are put down.   If all A’s in 
positive time and all B’s in negative, then one gets the two circle space mentioned above.  
But we can put our tiles down instead in a random fashion.  In that case time will 
formally be R: there is no periodicity, but if our memories get weak, each time will have 
been anticipated infinitely often, and indeed history will yet repeat itself infinitely often.  
We can embed this R in (R ⨉	∏ {A,B})/Z where the product is bi-infinite.  A real 
number is mapped to (r, label of the tile it’s part of) with boundary points resulting in the 
identification on the right.  The space most appropriate for modeling the experience of 
our creature will be the same as this limit space, i.e. the closure of the R orbit in this 
space.  If the placement of tiles were truly random the closure would be the whole space.  
(Almost all R orbits in this space are dense.) 
 
 I like this example a lot.  It is easy to build into topology a theory that takes into 
account only balls of some, perhaps unspecified, size.  However, allowing far away 
points to have influence that is decaying seems much better suited to analysis. 
 
 This is an example of a foliated space, which is a slight generalization of the 
notion of a foliation.  And, there is a C*-algebra associated to such spaces which, in the 
case of a fiber bundle, foliated by fibers, would be Morita equivalent to the continuous 
functions on the quotient.  
 
 This can be done for tilings of Rn rather than just on R1.   
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 A lot of the information of a tiling on Rn can be described by giving the centers of 
gravity of the tiles287.  (In higher dimensions, we can get interesting examples without the 
expedient of labeling as we did in dimension 1).  We are interested in tilings where these 
point sets are (1) C-dense for some C (every point is within C of some center) (2) sparse, 
e.g. no two points are within δ of each other and (3) repetitive: the pattern of every ball of 
radius R repeats in a C(R) dense way everywhere.  From conditions (1) and (2), one can 
see that the set of patterns has an embedding in a nice locally compact space.  This space 
of tilings has an Rn action on it (actually the whole Euclidean group acts on it, and when 
we take that into account with condition (3) one gets a broader notion).  Condtion (3) is 
of a different nature, and guarantees that the set of patterns arising forms a minimal 
dynamical system with respect to this action. 
 
 

 
The Penrose tiling and a Pinwheel tiling 

 
 
 The closure of this orbit is called the hull of the tiling.  It consists of the pointed 
Gromov-Hausdorff limits of centered balls in the tiling288.   It consists of the tilings that 
cannot be locally distinguished from the tilings that occur within the original one, but is 
usually much larger.  If the tiling is aperiodic, then it has countably many “subtilings” 
(just re-centerings, essentially) but there are always uncountably many possible limits.   
 

                                                
287 If one is just interested in convex tiles, then one can use a slightly different point set S:  
a set of points, so that the tile containing p is defined as the set of points closer to p than 
to any of the other points of S. 
288 Following an unpublished note with Bellissard and Ulgen-Yildirim, it can be defined 
as the closure of the natural map of the manifold into the inverse limit of the pointed 
Gromov Hausdorff space of centered Riemannian balls of various radii (under the natural 
map that sends a centered ball of radius R to one radius r if R >r).  Each point in M is 
mapped to the consistent set of balls in M centered at that point.  Generically this map is 
an embedding, and the closure is a foliated space, but for special manifolds that have a lot 
of symmetry, this mapping can have some strange properties. 
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 For aperiodic tilings the hull usually has the local structure of the product of a 
manifold with a Cantor set, but if one relaxes (3) then very different kinds of structures 
can occur.  (The reader might enjoy considering the hulls of graphite versus diamond).   
 
 This can also be done with respect to any manifold with bounded geometry289.  
These limits can be thought of as doppelgangers, whose properties restrict the original 
manifolds.  They are like the way a novelist can use pieces of our personalities to create 
characters that resemble us yet are more extreme than we -- in order to shed light on what 
we are like.   More subtle than just the individual limit points within this construction are 
the properties that describe the size of the hull.   
 
 Periodicity, like regular covers, give rise to compact hulls with the manifold not 
embedded in the hull.  The difference between crystals and quasicrystals and glass is 
apparent in the structure of the hull.  One is led very naturally to fascinating problems 
like when such constructions have transverse measures (e.g. when one has a reasonable 
notion of “typical behavior” on a manifold), etc. 
 
Example 4.  Connes introduced C* algebras associated to foliations (as in the previous 
examples); these are variations on the ones associated to groupoids -- and they are all 
essentially convolution algebras acting on functions (or half densities290) on the total 
space.  If the foliation were a fibration, this algebra is Morita equivalent to the continuous 
functions on the quotient, but frequently interesting foliated spaces can have all leaves 
dense (like the foliation of a torus by irrational lines or planes, and the example of 
aperiodic tilings above).   
 There are many more examples that come up from physics (e.g. the standard 
model) or number theory (e.g. spaces of Q-lattices, etc.)  I won’t discuss these, but see 
[Connes-Marcolli] and the references there. 
 
 When one has a C* algebra/non-commutative space, one begins using it to do 
mathematics.  At first, there are questions about which algebraic properties of the algebra 
hold, or how are they reflected in the geometry of the situation.  For example, a trace on 
the C* algebra of a foliation corresponds to a transverse measure.   
 
 After such a dictionary is established, it becomes possible to implicate various 
functors such K-homology and K-theory and develop and apply appropriate index 
theorems in this setting.  Foliations (say, of compact manifolds) always have an implicit 
dynamics as noncompact leaves recur, and such results can have profound implications. 

                                                
289 Following an unpublished note with Bellissard and Ulgen-Yildirim, it can be defined 
as the closure of the natural map of the manifold into the inverse limit of the pointed 
Gromov Hausdorff space of centered Riemannian balls of various radii (under the natural 
map that sends a centered ball of radius R to one radius r if R >r).  Each point in M is 
mapped to the consistent set of balls in M centered at that point.  Generically this map is 
an embedding, and the closure is a foliated space, but for special manifolds that have a lot 
of symmetry, this mapping can have some strange properties. 
290 Half densities are useful for creating appropriate L2 spaces. 
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 Cyclic homology was invented to be a noncommutative analogue of De Rham 
cohomology.  It’s close, but doesn’t quite agree with this.  Nevertheless, it provides an 
important invariant of algebras and a place to map K-theory to. 
 
 In dimension zero, it captures the idea of a trace, and these are associated to the 
simplest index theorems.  Higher homology reflect higher index theorems  (with the 
important, seemingly technical, issue that one frequently has to go to dense 
subalgebras291 to get nontrivial higher homology). 

 
 Let’s color in the outlines of the picture we tried to draw. Here’s how the dream 
would go in the special case of R = Cπ, a group ring: We are interested in invariants on 
projective modules over R (i.e. K0(R)) generalizing the notion of dimension.  Consider 
the formula 

dim P = rank P. 
 

which almost looks too tautologous for words!  This formula exploits our habit of writing 
the same letter P for a projective module and a projection P2=P whose image is that 
module. For projections we have  

rank P = trace P. 
 

 The key defining property of a trace is that for all matrices trace(AB) = trace (BA) 
(from which follows the key property that it is an invariant of an automorphism, not 
merely of a matrix).  This suggests considering  
 

R/[R:R] = R/{ab-ba} 
 
as the best target for a trace that we could possibly hope for (and why hope for any less?).  
 
 Here we are considering a quotient abelian group in this formula.  (The set of 
elements ab-ba is not closed under addition, and we consider the subgroup generated by 
such commutators.)   In the case of a group ring, the right hand side breaks up into pieces:  
⊕C(g) where (g) is the equivalence class of g under conjugation.  A little thought shows 
that taking the “ordinary” trace of matrix and collecting all the coefficients of elements 
within a conjugacy class actually is a well-defined operation.   
 
 This quotient is exactly HC0(Cπ), and this algebraic trace is called the Hattori-
Stallings trace.  The trace map from K0 is quite nontrivial, as the case of π finite readily 
indicates.  Indeed, it shows that for any non torsion free group, the modules induced from 
finite subgroups can be nonfree projective modules for the group.  (The converse, of 
course, is part of the Borel package to which we have alluded several times.) 
 

                                                
291 Such algebras describe types of smoothness -- and,once one says this, theidea of 
passing to such algebras is not at all shocking if we are to use these for doing analysis. 
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 It also clearly has connections to Nielsen fixed point theory (where we generalize 
the Lefshetz number just by changing the meaning of the word trace). 
 
 In the K0 setting it is an interesting and natural question whether the coefficient of 
a conjugacy class of infinite order can ever be nonzero.  (That this is impossible is 
sometimes called the Bass conjecture [Bass2].)  This is known in many cases -- and it 
seems worth noting here that the theory of cyclic homology and the higher trace maps has 
been effectively deployed in this direction.  (See [Eckmann]) 
 
 In passing to the completion there is very serious (analytic) trouble.  If an element 
g has infinitely many conjugates, perhaps an element in C*π might want to give that trace 
an infinite value292.  That there are homomorphisms from K(C*π) to C corresponding to 
conjugacy classes of finite order does not seem any less deep than the Novikov 
conjecture293.  
 
 Cyclic homology actually closely resembles the homology of ES1

⨉S1ΛX where Λ 
denotes the free loopspace, and S1 acts on this space by rotation of loops. (See e.g. 
[Burghelea, Goodwillie]) The case relevant to us is Bπ.  ΛBπ has components 
corresponding to the conjugacy classes of elements of π -- the HC0 that we have seen. 
The component of loops freely homotopic to a given g is itself aspherical, and is a 
K(Z(g),1), where Z(g) is the centralizer of g.   
 
 When we take the Borel construction on the action of S1 by loop rotation, we get 
different behavior when g is finite order and when it’s infinite.  In the finite case we get a 
K(Z(g),1) ⨉	CP∞, but in the infinite case, it is K(Z(g)/<g>,1).  Rationally, the Baum-
Connes conjecture asserts that K(C*π) is isomorphic to ⊕ K(C(g)) where the sum is 
taken over g with finite order294.   
 
 The general theory provides for maps HCn → HCn-2 dual to Bott periodicity, 
which here is dual to the cup product with the Euler class of the circle bundle, and the 
trace with target HCn-2k factors through this.  This is used in Eckmann’s work on the Bass 
conjecture, and is also completely reasonable in the C* setting where K-theory has a Bott 
periodicity isomorphism.  Of course, the K(Z(g),1) ⨉	CP∞ results in certain homology 
groups being counted many times, but inverting the periodicity, they each are rationally 
counted once. 
 
  

                                                
292 On the other hand, if g has only finitely many conjugates, then there is no trouble 
defining a trace associated to (g) and this can be exploited for geometric gain.  This, for 
example, arises for groups with a finite normal subgroup whose quotient is torsion free. 
293 More precisely, it actually does seem less deep, but I have never found an apriori 
argument that doesn’t involve Novikov technology.  [Weinberger-Yu] is a failed struggle 
with this problem.  
294 This is compatible with what one would expect from the topological conjectures if one 
replaced Qπ or Rπ with Cπ (with the involution being complex conjugation on C). 
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5.3  Playing the game. What happens in the particular cases?   
 

The previous section explained that the formal framework of index theory is 
rather similar to that of surgery theory295, and as a result, the Novikov phenomenon 
applies more broadly to other operators.   

 
 This point of view is fine as a starting point, but it is way to formal to be a 
stopping point -- it oversimplifies, missing the exquisite texture of the subject and the 
true benefit of unification. 
 
 Some methods develop naturally within the context of one problem, and the 
existence of the informal parallels between subjects then made the search for parallel 
results for the other problem - ultimately leading to multiple analogous theorems.  In 
some sense, every time we play the Novikov game, we get a new test, a new area that is 
suggestive of techniques internal to it - that afterwards we can hope will shed light on the 
original problem, or if not to it, perhaps to some other analogues, and it also leaves us 
with the puzzle of understanding why we didn’t succeed in this export. 
 
 Surely the richest two cases were the original Novikov problem, that we have 
already discussed, and shall have to review in light of the index theoretic perspective, 
followed by the problem of positive scalar curvature296.  We shall first discuss this latter 
problem before returning to the first and then to the general discussion.  

 
The first results on the positive scalar curvature problem, after the Atiyah-

Lichnerowicz-Singer vanishing result was the proof by Schoen and Yau [Schoen-Yau1] 
of the nonexistence of positive scalar curvature (p.s.c.) metrics on the torus and related 
manifolds (e.g. those that resemble Haken manifolds or have maps of nonzero degree to 
them) and have dimension ≤7297.   This method has the feel of the original methods on the 
Novikov conjecture using codimension one splitting, and it has consequences that we do 
not yet know how to approach by Dirac operator techniques (coupled to the fundamental 

                                                
295 Indeed the signature operator gives rise to a functorial mapping of surgery theory into 
operator K-theory, as mentioned above.  See [Higson-Roe 2].  It is important, though, to 
note that the infinite loop space structures on the two theories are different at the prime 2 
(see [Rosenberg-Weinberger 3]) because of the nature of the boundary map in the exact 
sequences of pairs. 
296 Needless to say, for many people the positive scalar curvature problem is the more 
interesting one, because, e.g. it has important connections to general relativity (the 
positive mass conjecture). 
297 See also [Lohkamp] for an announcement of a method for getting around the fact that 
minimal surfaces can develop singularities in dimension >7 and a very recent paper of 
Schoen and Yau [Schoen-Yau3] that gives a different approach. 
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group)298.  The geometric nature of this method makes it possible to describe it before 
any discussion of applications of the index theorem. 

 
The very elegant idea in [Schoen-Yau1], in its embryonic form, is this:  Let M be 

a manifold with positive scalar curvature and a nonzero degree map to Tn, then one finds 
in M an area minimizing minimal hypersurface dual to any class in H1.  This 
hypersurface is smooth if M has dimension ≤7 (and this is where the dimension 
hypothesis enters) and has a map of  nonzero degree to Tn-1.   

 
A calculation then shows that the induced metric on a minimal hypersurface in a 

positive scalar curvature manifold is naturally conformally equivalent to a positive scalar 
curvature metric.  (The conformal factor is a power of the eigenfunction associated to the 
first eigenvalue (necessarily positive) of Δ-(n-3)k/4(n-2) -- where k is scalar curvature on 
the hypersurface). 

 
One repeats this argument till one gets down to dimension 2, and the result 

follows from the Gauss-Bonnet theorem.  
 
Let us now turn to the Dirac operator method. We shall not review the definition 

of the Dirac operator, leaving the reader to standard references for it and its theory.  (e.g. 
[Atiyah-Bott-Shapiro], [Atiyah-Singer], [Lawson-Michelson], [Berline-Getzler-Vergne] 
and [Roe1]).   

 
Lichnerowicz showed the following “Bochner type” formula relating the Dirac 

operator on a manifold and the Laplacian on forms:  D*D = Δ*Δ+k/4 (see e.g. [Atiyah-
Singer III, Roe1]).  This implies, assuming that the scalar curvature is everywhere 
positive299, that D and D* can have no kernel (as the Laplacian is semidefinite).  In other 
words “M can have no harmonic spinors”, and in particular, ind(D) = 0.  The index 
theorem then gives (see e.g. [Atiyah-Singer III] for the calculations of the symbol of the 
Dirac operator, and how the index theorem works out in this case) that  

 
<A(M), [M]> =  ind(D) = 0. 

 
In every dimension that is a multiple of 4, there is a spin manifold whose A-genus 

is nonzero, and these give examples of simply connected manifolds with no positive 
scalar curvature metrics.  
                                                
298 Results using the Dirac operator require some spin structure.  Indeed, for non-spin 
simply connected manifold of dimension >4, [Gromov-Lawson] have shown that positive 
scalar curvature metrics always exist!  On the other hand, the Schoen-Yau result shows 
that if V is any manifold of dim <8, then V#T (a torus) never has positive scalar 
curvature.  This manifold’s universal cover is, of course, not spin.   
299 Kazdan and Warner [Kazdan-Warner] showed that if M has a metric that is 
nonnegative everywhere, and positive somewhere, then any smooth function on M is the 
scalar curvature function of some metric.  Therefore, we can weaken the curvature 
conditions in this argument. 
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Actually one can do somewhat better than this (without using the fundamental 

group at all).  The Dirac operator naturally has a real structure, allowing more subtle real 
index theorems to be applied.  The index then takes values in KOi(*) = Z/2, Z/2, 0, Z, 0, 
0, 0, Z (depending on i mod 8)-- thus providing a refinement at the prime 2.  Hitchin 
[Hitchin] showed that, under the assumptions of spin and positive scalar curvature, for an 
i-manifold 

 
ind(D) = 0 ∈ KOi(*) 

 
Thus spin manifolds of dimension 1, 2 mod 8 there is an extra mod 2 obstruction 

to having positive scalar curvature.  There are even examples of manifolds 
homeomorphic to the sphere that do not have positive scalar curvature metrics.   

 
Remarkably, for spin manifolds of dimension >4 300, Stoltz [Stoltz] has shown 

that every simply connected manifold with vanishing ind(D) (in KOi(*)) actually has a 
positive scalar curvature metric301.  

 
Lusztig’s proof of the Novikov conjecture (section 4.4) applies: When we couple 

the Dirac operator to a bundle ξ, the formula D*D = Δ*Δ+k/4 gets another term coming 
from the curvature of the bundle, but if the bundle is flat, then the same argument gives 
the vanishing of ind(Dξ).  As we vary ξ over a parameter space, especially over the dual 

torus T = (Hom(π1(M): S1) we get a 0 dimensional trivial bundle as the index ∈K0(T). 
 
This then gives the result that if M is a spin manifold with positive scalar 

curvature then for any f: M → T, and α ∈ H*(T), 
 

<f*(α) ∪A(M), [M]> = 0.    
 
 Gromov and Lawson [Gromov-Lawson 1] suggested a beautiful alternative to 
using families.   
 
 If we use only a single (finite dimensional) flat bundle, then we gain nothing from 
the index theorem - still ind(Dξ) = ind(D) = 0, but the index theorem just has on the 
topological side  

 
<ch(Dξ) ∪A(M), [M]> 

 
                                                
300 In dimension 4, the Seiberg-Witten invariants give additional obstructions to the 
existence of positive scalar curvature metrics, see e.g. [Morgan] 
301 Gromov and Lawson had earlier used cobordism methods to show that every simply 
connected non-spin close n-manifold (n>4) has a positive scalar curvature metric, and 
Stoltz extended their cobordism arguments using very clever algebraic topological 
arguments. 
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but ch(Dξ) = dimξ has no positive dimensional component302.  However, if we allow ξ to 
be a bundle with very small curvature (in comparison to inf k/4 that we assume is >ε>0), 
then conceivably ch(Dξ) - dimξ ≠ 0, but the new curvature term in the Lichnerowicz-
Bochner formula is still positive enough to give the vanishing of the index. 
 
 So, how do we get bundles with arbitrarily small curvature and nontrivial Chern 
class cn so we can implement this idea?   
 

This is impossible on a single compact manifold (because the cohomology classes 
represented by Chern classes are integral, so if they are sufficiently small303, they will 
integrate to 0 on all cycles).  However, we can find (sometimes) a sequence of bundles ξi 
on covers Mi of M with nontrivial cn, and whose curvatures → 0. 

 
For example, suppose M = K\G/Γ where Γ is a uniform lattice, and suppose 

(without loss of generality for our current purposes) that dim(G/K) is even =2n.  Then, by 
the residual finiteness of Γ we can find finite normal covers K\G/Γi whose injectivity 
radii Ri are arbitrarily large.  We can use the logarithm map, i.e. the inverse of the 
exponential map followed by the pinch map that wraps the Euclidean ball of radius R < 
Ri (for i large) onto the standard round sphere S2n of curvature = +1.  Let Li : K\G/Γi→ 
S2n be this logarithm map, associated to some base point where there in an embedded 
geodesic R-ball.  As i → ∞, the Lipschitz constant of L → 0 (because of the rescaling by 
R; the logarithm map itself is 1-Lipschitz for non-positively curved manifolds). 

 
Note that by Bott periodicity there is a bundle ξ over S2n with cn(ξ) ≠0.  (Indeed, 

the “Bott element” has cn = (n-1)!) Let ξi↓ K\G/Γi be Li*(ξ).  It is an almost flat family, 

yet cn(ξi) = < cn(ξ), [S2n] >[K\G/Γi], a nontrivial multiple of the fundamental class.  
Given a manifold M with fundamental group Γ we can use a map inducing the 
isomorphism of fundamental groups M →K\G/Γ to pull back the almost flat bundle and 
see that at least the higher A-genus associated to the fundamental class of Γ obstructs 
positive scalar curvature. 

 
If you are unhappy with the ξi being over different manifolds (although this 

completely irrelevant to the application of the argument!), we can push them forward 
with respect to the covering map K\G/Γi → K\G/Γ.  These pushforward bundles will still 
be almost flat -- in the sense of having decreasing curvature approaching 0 -- have 
nontrivial Chern class, but increasing dimension.  

 

                                                
302 Chern classes are integral, so sufficiently small curvature implies that they vanish 
rationally.  (Note that it’s only the real Chern classes that have a description in terms of 
curvature, so even 0 curvature is compatible with a torsion Chern class.) 
303 And of a fixed dimension. 
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In [Gromov-Lawson 2], the linearity condition on the fundamental group of the 
non-positive curvature manifold were removed.  Above, we used this condition to 
produce the sequence of finite covers with arbitrarily large injectivity radius --- 
unfortunately, as far as we know there might be a non-positively curved manifold whose 
fundamental group is simple!304  

 
However, there’s always the universal cover, which has infinite injectivity radius 

--or alternatively R2n has a bundle with compact support, which has connections on it 
which are trivial outside a ball, and have arbitrarily small curvature (simply rescaling of 
the Bott element on Cn) -- that can be used if only you are bold enough to give up on 
compactness in index theory305.  Gromov and Lawson develop the relevant index theory 
and using this one almost flat bundle with compact support, proved the result without any 
residual finiteness hypothesis. 

 
These almost flat ideas were later turned around and applied to define the notion 

of signature of a manifold with coefficients in an almost flat bundle (or family) [Connes-
Gromov-Moscovicci].  Then the relevant index theorem applies to give the Novikov 
conjecture in the nicest possible way: it gives a simple to understand homotopy invariant 
that expresses the reason that the higher signature characteristic classes are homotopy 
invariant.  

 
The reader must have noticed that the discussion above sufficed to explain the 

higher A-genus (and signature) associated to the fundamental class -- but not the other 
cohomology classes.  In [Gromov-Lawson 2] and [Connes-Gromov-Moscovicci] various 
approaches to the other cohomology classes are given, via families (very similar to the 
“descent argument” given in section 4.9). 
 

And Rosenberg’s [Rosenberg1] modification this argument by using infinite 
dimensional flat bundles in place of finite dimensional almost flat bundles -- this is 
essentially the work described in the previous section.  (He also explained in section 2 of 
[Rosenberg 2] the relevant aspects of the real C* theory and its K-theory, to get the 
correct obstructions for the prime 2 to include the Hitchin obstructions.) 

 
In the infinite dimensional setting there is relatively little difference between a 

single operator or a family.  Asserting that one can fill K(K(Γ,1)) by Chern classes of flat 
C*Γ bundles is essentially a form of the Novikov conjecture.   

 
The next step in continuing our development of the parallelism between surgery 

and operator theory is to develop analogues of the topological theories of noncompact 
manifolds, and perhaps most importantly, the analog of bounded control.  We will see 
that the replacement for Lbdd(Γ) is the K-theory of a C*-algebra (the “Roe algebra” of 
                                                
304 No such Riemannian example is known, but Burger and Mozes have given simple 
finitely presented groups that act properly discontinuously on a product of trees. 
305 This is a different type of noncompact index theory than the L2 index theorem of 
Atiyah for infinite regular covers that we had discussed in chapter 3. 
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the discrete metric space Γ, often denoted by |Γ|).  I refer the reader to [Roe2,3, Higson-
Roe] for detailed discussions. 

 
This Roe algebra is the algebra of “bounded propagation speed operators” on |Γ|.  

The idea is this (and is entirely analogous to the algebraic description of Lbdd(Γ) that we 
did not give!):  Imagine that at each point of Γ we attach a Hilbert space, and we only 
allow operators that map that only is allowed to map the Hilbert space at p to (the sum of) 
ones that are at some distance away (where this bound is independent of p).   

 
Except that in order to make a C*-algebra it is necessary to take the closure of 

such operators, and this allows some amount of infinite speed, but “very little that is 
going very fast”. An example is the Heat flow e-tΔ where Δ is the Laplacian, for t>0. 
which is bounded propagation speed in the most naïve sense: the combinatorial model of 
Δ propagates at a scale on 1 unit, and when we truncate the exponential after finitely 
many terms we get a norm converging sequence of bounded propagation speed operators, 
but whose speed keeps growing.   

 
The algebra is denoted by C*|Γ| or for general metric spaces306 by C*(X).  
 
If X is a complete manifold, then the “geometric operators” on X have bounded 

propagation speed (see [Cheeger-Gromov-Taylor]).  Elliptic operators give rise to 
elements of Kxlf(X) and there is an “index map” (that is a cousin of the “assembly map” 
in bounded surgery theory) that assigns an index to each elliptic operator over X an 
element of the group K(C*(X)). 

 
Kxlf(X) → Kx(C*(X)). 

 
This index contains, for example, for spin manifolds, an obstruction to the 

existence of a positive scalar curvature metric on X so that the map (X,g) → X is 
Lipschitz (in the large) (so the propagation speed still is finite from the |X| point of view). 

 
Note that if X is uniformly contractible, then one can conjecture that the index 

map is an isomorphism, and that even without this  
 

KXxlf(X) → Kx(C*(X)). 
 

is.  (The manifold in [Dranishnikov-Ferry-Weinberger1] gives a counterexample to the 
first statement, but it makes use of the map from KXxlf(X) and remarkably, even though 
X is uniformly contractible, the left hand sides of these seemingly identical constructions 
do not coincide.)  Guoliang Yu [Yu] gave a very elegant example showing that this latter 
map is not even injective.  Let X be the disjoint union of rescaled copies of the sphere: 

                                                
306 This only depends on the coarse quasi-isometry type of X, or even just of the bounded 
category of X (in the sense of 4.8). 
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X = ∪√nS2n 

 
This is a spin manifold with positive scalar curvature bounded away from 0.  The 
rescalings mean that at any scale, only finitely many of the spheres can be ignored. We 
have an isomorphism 
 

KXxlf(X) ≈ ∏Z /⊕Z 
 
with the Dirac operator representing the element (1,1,1,….) which is nontrivial, and 
hence an element of the kernel of the assembly map.   
 
 This is a very striking example307 but (like the [Dranishnikov-Ferry-Weinberger] 
example) it involves unbounded geometry.  I’be curious to know what K(C*(X)) is in this 
example.  
 
 Despite these counterexamples, the reverse is true: there are many situations (such 
as complete non-positively curved manifolds) where one can show that the coarse index 
map is an isomorphism, and then the method of descent applies to give the Novikov 
conjecture for the group Γ (from the metric space |Γ|). See the notes for more details and 
further extensions that take into account the fundamental group of the non-compact 
manifold. 
 
 Now let us turn to the problems of group actions, where there are different 
phenomena in the case of the circle and the case of finite groups and then to the birational 
invariance of higher Todd genus, where the result is actually true unconditionally (and 
integrally!).  In all of these cases308it is not too hard to promote the simply connected 
argument to a proof that’s conditional on the injectivity of the index homomorphism 
K(BΓ)→ K(C*Γ) (aka the strong Novikov conjecture309).  However, what we would like 
to understand is “why” these are now known to be true unconditionally.  The mechanism 
is actually different in the two cases, but the “reason” seems to be the same. 
 
 Let us start with the results about S1 actions, and for simplicity, let’s assume that 
the action is “semifree”, namely that every orbit is either trivial (corresponding to fixed 

                                                
307 And it would be very interesting to know if it gives an example for non-injectivity of 
the coarse assembly map in bounded L-theory.   
308 except for the case of invariance of higher signatures for fixed sets of pseudotrivial 
actions. 
309 So called, because it implies the homotopy invariance of higher signatures - i.e. the 
original Novikov conjecture.  It also implies, away from 2, integral refinements that we 
will discuss in the next section. 
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points) or free310, leaving the reader to refer to the original papers for the general case 
(which is philosophically the same, but does show some different aspects in detail). 
 
 Let’s start with the case of the higher A-genus: 
 
Proposition:  Suppose  S1 acts on M semifreely with nonempty fixed point set F, then the 
map M → M/S1 is split injective on fundamental group. 
 
 We suppose that codimension F is at least 4: this can be achieved by × C2 giving 
the latter the obvious circle action thinking of S1 as unit complex numbers.  In that case, 
the map is actually an isomorphism on fundamental group by a simple application of Van 
Kampen’s theorem (and general position: in that removing F will not change the 
fundamental group). 
 
 Now, recall from 4.5 that to prove the vanishing of the image of A(M)∩[M] in 
⊕Hm-4i(K(π,1); Q) it just suffices to show that for all “subcycles” X of K(π,1) that have 
a trivial normal bundle neighborhood, the transverse inverse image f-1(X) has vanishing 
A-genus.  But this is true, since by first taking the transverse inverse image of X in M/ 
S1and then taking its inverse image in M, we obtain an inverse image for X that is still 
spin (it has a trivial normal bundle in a spin manifold) and has a nontrivial S1 action.  
Thus, the ordinary Atiyah-Hirzebruch theorem gives the conclusion. 
 
 The result about higher signature localization for S1 actions follows from similar 
reasoning.  There is a cobordism (see below) from M to a union of CPc/2-1 bundles over 
the components of F, where c is the codimension of the component.  We need the 
following lemma that tells us about the L-classes of this total space in terms of the L-
class of F: 
 
Lemma:  If π:E → B is a (block) bundle with (homotopy) fiber (a homotopy) CPk, whose 
monodromy is trivial on H2(CPk), then π*(L((L(L(E)∩[E]) = sign(CPk)L(M)∩[M]. 
 
 This boils down (by the same reasoning as before) to the fact that for all such 
bundles sign(E) = sign(CPk)sign(M).  This is a theorem of Chern-Hirzebruch-Serre 
[Chern-Hirzebruch-Serre]311.   

                                                
310 Actually, the free case is even easier:  M bounds a D2 bundle over M/S1 and then we 
can use cobordism invariance of characteristic classes to see that for any α ∈ H*(M/S1), 
the higher signature of M and the higher A-genus of M vanish.  (Alternatively, dually, 
and somewhat more precisely, the pushforward of [Sign] and [D] in Km(M/S1) vanish.  

(They are the boundary of the natural classes in Km+1lf (E), where E is the total space of 
the vector bundle whose unit sphere bundle is the circle bundle defined by M → M/S1.)) 
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 The cobordism is explicit:  It is M×[0,1]/~ where we identify points on M×1 that 
are on the same orbit if that orbit does not touch a tubular neighborhood of F.  The 
structure comes from the equivariant tubular neighborhood theorem (in the smooth case, 
and the proof of the existence of block bundles in the PL case312).  Explicitly, this proves: 
 
Theorem:  If S1 acts on a manifold M with nonempty fixed set, F, then the higher 
signatures of M are those of F, i.e. for all α∈H*(Bπ),  

<f*(α)∪L(M), [M]> = <f*i*(α)∪L(F), [F]>. 
 
 For Zp actions, the cobordism argument fails (the inverse image has a Zp action, 
but its homological properties are not restricted).  We will give one argument now about 
the connection to the Novikov conjecture -- another one can be made based on the ideas 
from the next chapter when we study the Equivariant Novikov (and Borel) conjectures 
more systematically.  The current argument is based on preliminary remarks about 
rational homology manifolds. 
 
 The reasoning given in 4.5 for the definability of L-classes for PL manifolds 
actually produces homology L-classes for oriented rational homology manifolds313 (that 
agrees with the Poincare dual of the L-cohomology class):  all that one needs to produce 
L-classes is a cobordism invariant definition of signature -- and one has this using 
rational cohomology. 
 
 Moreover, this characteristic class can be pushed into group homology to give a 
“higher signature”.  It turns out (see immediately below) that if the Novikov conjecture is 
true for manifolds, then it is true for rational homology manifolds in the sense that the 
higher signature in the homology of K(π,1) will be preserved by maps f: X → Y that are 
orientation preserving and induce Q-homology isomorphisms on the regular covers 
induced from the map Y → K(π,1). 
 
 The most straightforward argument for this uses Ranicki’s algebraic theory of 
surgery [Ranicki1] (mentioned earlier in 4.7) or its predecessor [Mischenko].  Ranicki 
views the L-groups of surgery as cobordism groups of certain chain complexes with 
                                                                                                                                            
311 Their theorem assumes the monodromy of the bundle is trivial - for the CPk case one 
could have monodromy of order 2 (i.e. inducing complex conjugation on the fiber).  
However, in that case, the two-fold cover of this fibration has trivial monodromy, and 
signature is multiplicative for all finite sheeted covers (as a consequence of the 
Hirzebruch signature theorem) and the result follows again. 
312 The topological case requires some form of Smith theory to make these arguments 
(that are essentially locally homological and sheaf theoretic, rather than completely 
geometric). 
313 In the PL case; for the topological situation, this can be done using controlled 
topology (see [Cappell-Shaneson-Weinberger]) - as a topological definition of L 
homology classes that works for manifolds implies Novikov’s theorem on Pontrjagin 
classes, such a definition cannot be too trivial. 
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duality over Zπ.  Inverting 2314, we can view X∪X → X as a surgery problem over the 
ring Qπ (since we are only assuming Q homology manifold) and thus gives an element 
σ*(Xn) ∈ Ln(Qπ).  This element is homotopy invariant since it is defined using chain 
complexes (the chain complex of a homotopy equivalence gives a cobordism in the 
appropriate sense.) Under the assembly map, 
 

Hn(K(π,1) ; L(Q)) → Ln(Qπ) 
 
the homology L-class gets mapped to σ*(Xn) 315.  It is a general and remarkable algebraic 
result of Ranicki [Ranicki2] that for any π, the map L(Zπ) → L(Qπ) is an isomorphism 
away from the prime 2 -- indeed has kernel and cokernel are annihilated by multiplication 
by 8, so the injectivity of this assembly map - away from 2 - is equivalent to the 
injectivity of the usual one and thus the Novikov conjecture in this setting follows from 
(is equivalent to) the usual one316.    
 
 Now, if G ×M → M is an orientation preserving action of a finite group, then 
M/G is a Q-homology manifold, and sign(M/G) is just the signature of the G-invariant 
part of the cohomology of M.  In terms of the G-signature of M, which is a 
representation, we are looking at the multiplicity of its trivial component -- which can be 
computed using character theory as: 
 

Sign(M/G) = 1/|G|∑χg(G-signature). 
 
and the right hand side can be computed by characteristic classes of the fixed sets Mg and 
their equivariant tubular neighborhoods.  If G = Zp the formula is  
 

Sign(M/Zp) = sign(M)/p + 1/p <(p-1)/p ν(ξ)∪L(F), [F]> 
 

                                                
314 In the coefficient ring, since this is a degree 2 map, so we need to multiply the 
Poincare duality isomorphism by 2 in the range - which is OK if 2 is inverted in the 
coefficient ring.  Ranicki, actually does something different and better.  He defines a 
slightly different cobordism group of chain complexes with self duality for rings with 
anti-involution, and then observes that the chain complex of X is naturally an element of 
this different group.  Wall’s L-groups, the surgery L-groups are denoted using subscripts, 
and Ranicki denotes these modified groups with a superscript Ln(Zπ), for instance, 
(despite their remaining covariantly functorial) and christens them symmetric L-groups 
(and refers to Wall’s as quadratic L-groups).  In any case these only differ at the prime 2.  
Not merely an academic issue though: alive versus dead, yes versus no, being and 
nothingness, are all mod 2 issues. 
315 This, while useful, is just unraveling all the definitions of the objects and morphisms 
involved.  Of course, deducing the Hirzebruch formula from this approach then involves 
identifying two different homology L-classes!  
316 Of course, this leaves some room for differences in the integral theory. 
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where ν(ξ) is p/(p-1) times317 the sum of the local contributions in the G-signature 
formula from all of the generators of  Zp of the characteristic class of equivariant normal 
bundle to F from [Atiyah-Singer III].  If the action is homologically trivial, then 
sign(M/Zp) = sign(M), so we get 
 

sign(M) =  <ν(ξ)∪L(F), [F]>. 
 

 If one combines the various formulae, one obtains318 that, after applying the 
assembly map, 
 

σ*(M) = σ*(M/Zp) = A*f*(ν(ξ)∪L(F)∩[F]) ∈ ⊕H*-4i(K(π,1); Q). 
so that assuming the Novikov conjecture, one gets the localization formula.  Conversely, 
if M is a manifold with χ(M) = 0319, so that f*(L(M)∩[M]) lies in the kernel of the 
assembly map320, then the surgery problem M → M×K(Zp, 1) in Lm(Q[π×Zp]) will have 
vanishing obstruction321 (after ⊗Q).  The result of the surgery will be a manifold with 
free homologically trivial Zp -action cobordant to a multiple of M, and hence with 
nontrivial higher signature.  It will be a counterexample to the localization principle.  To 
summarize, we have explained: 
 
Theorem:  If Zp acts on a manifold, trivially on π1 and on twisted homology, then one 
gets a localization formula f*(L(M)∩[M]) = f*(ν(ξ)∪L(F)∩[F]) ∈ ⊕H*-4i(K(π,1); Q) iff 
the Novikov conjecture is true for the group π. 
 
 Why is there no localization principle for (untwisted) higher signatures for 
pseudotrivial actions? We note that the whole problem is anomalous from the point of 
view of the game: although there is an index equality in the simply connected case, it 
isn’t based (solely) on index theory -- but rather Smith theory, a homological result, 
played a key role.   
                                                
317 We put this factor in to make later formulae more pleasant. 
318 Somewhat profligately, since it is possible to only invert 2 and p in thisformula. 
319 If the Euler characteristic is nonzero, then it is impossible to have a finite complex 
with a free homologically trivial action, by the Lefshetz fixed point theorem.  It occurs 
formally in our setting, in ensuring that the infinite complex M×K(Zp, 1) has rational 
chain complex chain equivalent to a finite complex.  (The element of K0(Q[π×Zp]) 
represented by the complex C*(M×K(Zp, 1)) is χ(M)[Qπ] where Qπ is clearly a 
nontrivial projective module over Q[π×Zp]. 
320 Note that the map from bordism to group homology with coefficients in the 
(symmetric) L-spectrum, given by [?] →f*(L(?)∩[?]) is onto; this is certainly elementary, 
and all we need, if one tensors	with	Q.	
321 Surgery with coefficients in a subring of Q measures the obstruction of a degree one 
normal map being cobordant to one which is a local homology equivalence (in the 
universal cover).  See e.g. [Taylor-Williams1]. 
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 That doesn’t mean that one can’t play the game -- only that we don’t see how to 
win.  The actual failure is based on two principles.  
 

The first is that Smith theory, i.e. the homologically trivial theory of group actions 
essentially gives p-adic information for p-groups, rational information for tori, but almost 
nothing at all for non-p-groups or nonabelian compact Lie groups.   

 
In any case, for p-groups, the only information one can hope for is Fp[π] 

information, and with some effort, for any manifold M’ Fp[π1(M)]-homology equivalent 
to M, one can construct a quasi-trivial Zp action on M × a disk with M’ being the fixed 
point set322.  

 
The second is the very general323 homological surgery theory of [Cappell-

Shaneson].  They define obstruction groups to performing surgery in this setting, and the 
relevant group is Γm(Zπ→ Fp[π]).  The even dimensional groups are quite hard to get 
one’s hands on, and there are interesting phenomena to be unraveled, but the odd 
dimensional groups are typically very small:  There is a natural map 

 
Γm(Zπ→ Fp[π]) → Lm(Fp[π]) 

 
that is automatically 1-1 for m odd.  Since Lm(Fp[π]) is a module (by ⊗) over the Witt 
group of nonsingular quadratic forms W(Fp), and W(Fp) is always of exponent at most 4 
([Milnor-Husemoller]) these Γ groups are exponent 4.  Consequently, we can easily 

                                                
322 We have ignored some algebraic K-theory problems that actually arise even if π = Z 
(as we will show in forthcoming work with Cappell and Yan).  As usual, such can be 
gotten rid of by the violent act of crossing with a circle. 
 In the smooth category, there are additional bundle theoretic considerations even 
to obtaining actions in a neighborhood of M’, since a real vector bundle can only admit a 
Zp action if it has a complex structure.  For the PL and Topological situations, there are 
results that put a Zp action on many neighborhoods (see [Cappell-Weinberger 1]) and 
this is being tacitly invoked here.  Extending the action outside a neighborhood in the 
semifree case (even in low codimension) assuming suitable K-theory conditions is the 
main result of [Assadi-Vogel] 
323 Although, over the past decade there have been a number of occasions when I had 
wished for a yet more general theory:  the Cappell-Shaneson theory is very well adapted 
to the problems for which it was invented, codimension two embedding theory, aka knot 
and link theory, but it does not describe the obstructions to surgering so that the map is a 
homology equivalence with coefficients in rather general bundles, or to handle general 
Serre classes that are not associated to localizations.   

Even Z → R is not “officially” part of their theory, although of course a map of Z 
chain complexes is an R isomorphism iff it is a Q isomorphism, so one can apply their 
theory by replacing R by Q. 
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produce manifolds in odd dimensions Fp[π] homotopy equivalent to M whose higher 
signatures deviate almost at will from those of M.324 
 
 Then it is necessary to produce group actions with these manifolds as fixed sets, 
and for this there is well-developed machinery [Jones, Assadi-Browder, Assadi-Vogel, 
Weinberger 2,3, Cappell-Weinberger1] 
 
 We close this section with a very brief discussion of the argument given in 
[Block-Weinberger 3] for Rosenberg’s algebraic geometric Novikov conjecture on 
birational invariance of higher Todd genera.  It follows the pattern we saw above for the 
S1 localization formula (or vanishing of higher A genus). 
 
 If V and V’ are birational smooth varieties, then according to [Abramovich-Karu-
Matsuki-Wlordczyk]325 one can move from V to V’ by a sequence of blowings up and 
down.  Thus one needs only to check that if  
 

π: V’ → V 
 is a blow up, then π*(OV’) = OV , and then rely on the topological Riemann Roch 
theorem of [Baum-Fulton-MacPherson] to map further (and give commutativity of the 
diagram) K(V) → K(K(π,1)).  This is a local result (and is essentially the Hartog’s 
argument given for the birational invariance of the Todd class).   
 
  
5.4  The Moral  
 
 What have we learned from playing several rounds of “The Novikov Game”? 
 
 I think there are two lessons: 
 
 There really is a gap in level of depth between the problems that seem to be 
conjectural and the ones that we know how to prove.  The latter tend to be essentially 
local statements, and the difficulty (nowadays) is to prove theorems from essentially 
global hypotheses. 
 
 Novikov’s theorem is (as we have seen) the statement that L-classes can are 
preserved by hereditary homotopy equivalences (i.e. CE maps).  The whole problem 
with the Novikov conjecture is determining for which cycles homotopy equivalences 
“descend” or can be “inherited” and after how much work.  Also, the birational 

                                                
324 In even dimensions some higher signatures survive the map Lm(Zπ)→ Γm(Zπ→ 
Fp[π]) while many don’t.  For instance, for free abelian groups, only the ordinary 
signature survives, but for surface groups of genus > 2, the higher signature associated to 
the fundamental class also survives (as a consequence of the Atiyah-Kodaira fibre 
bundle). 
325 This result is a kind of Hironaka theorem for maps. 
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invariance is of the same sort: the key to the proof is that a map that is birational is 
birational on all of its Zariski open subsets326. 
 
 The group actions overwhelmingly ratify this perspective.  Being a circle action is 
something that descends, by definition, to invariant submanifolds.  However, being a 
homologically trivial group action is a local condition. 
 
 The results about positive scalar curvature are apparently exceptional in this 
regard, but actually, the point is that it is impossible to ever get a connection between the 
Dirac operator and its kernel from positive scalar curvature locally: this is a global 
phenomenon that requires completeness (and thus does not descend to open subsets).  
Indeed, on a manifold with “big” A-genus, nothing about the homological structure of 
this class is reflected in the structure of the negative scalar curvature set.  The remarkable 
results of Kazdan and Warner imply that any closed manifold of dimension ≥ 3 has a 
metric whose scalar curvature is strictly positive outside of a ball - irrespective of 
fundamental group: the obstruction to positive scalar curvature doesn’t “carry” negative 
scalar curvature327. 
 
 On the other hand, the results about the Novikov conjecture all have global 
hypotheses.  In order to play the game we need an operator, and a hypothesis that 
combines well with flat bundles of arbitrary dimension (and that’s what fails for the 
pseudotrivial group action situation:  in passing to covers, we do not get any information 
that hold in characteristic 0 generally). 
 
 In light of this analysis, we can now formulate some additional theorems of 
Novikov type.  That is we need situations where our global conclusion is local from the 
point of view of some alternative space.  For example: 
 
Proposition:  If f: M → N is a Riemannian fiber bundle with spin structure so that the 
fibers f-1(n) have positive scalar curvature, then f*([DM]) = 0 ∈ KO*(N). 
 
 Note that M does not immediately have positive scalar curvature in this situation: 
however, by rescaling the fibers to make them tiny we can arrange for the vertical 
directions in this bundle to overwhelm the others and make the scalar curvature positive.  

                                                
326 It is possible to write down modern proofs of these two theorems so that the diagrams 
look exactly the same, as can be specialized from the argument to soon follow.  For the 
Novikov theorem, one thinks of the “canonical class” (that contains the signature 
operator, and the Poincare dual of the L-class) as a self-dual sheaf, that is preserved under 
hereditary homotopy equivalences.  For the birational theorem, the canonical sheaf is a 
coherent algebraic sheaf that is preserved by birational equivalences.  
327 However, in some noncompact situations, something like this is true: see [Roe6] for a 
situation where a nonvanishing index on a noncompact manifold guarantees that the 
negative scalar curvature set is noncompact.  This is also true for the results in [Gromov-
Lawson2] for the manifolds with bad ends.  See also [Chang-Weinberger5]. 
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Doing this indicates that the reason for the p.s.c. is local from the N point of view, so the 
vanishing is to be expected, and it is not hard to prove. 
 
 Similarly we can generalize Novikov’s theorem as follows: 
 
Proposition:  If f: M’ → M → N is a homotopy equivalence over N,  i.e. for all open 
subsets U of N, f: f-1π-1U → π-1U is a proper homotopy equivalence, i.e. the maps of 
pushforward sheaves Rπ*Rf*(Q) → Rπ*(Q) is a quasi-isomorphism of sheaves over N, 
then  

π*[f*([signM’]) = π*([signM]) ∈ K*(N). 
 
 Note that Novikov’s theorem is the special case of π = identity M =N.328 
 
` Moreover, both of the statements above can be coupled to Novikov conjecture 
statements if the fibers are nonsimply connected, we know the Novikov conjecture for 
them, and we inflate the K-theory of N to include this additional information.   
 
 For example: 
 
Proposition:  If f: M’ → M → N×K(π,1) is a map that is a homotopy equivalence 
(locally) over N (but not necessarily over K(π,1)), then one has, assuming the Novikov 
conjecture for π, the equality: 
 

π*[f*([signM’]) = π*([signM]) ∈ K*(N×K(π,1))⊗Q 
 

(One could work integrally if by the Novikov conjecture for π one means an 
integral statement.)  For N = point, this is the Novikov conjecture for π, for π = e, this is 
the generalized Novikov theorem. 
 
 These results can easily be understood from the point of view of controlled 
topology (see 4.8).  We will explain this at the beginning of next section. 
 
 Another beautiful theorem that fits well into this philosophy is the following 
result of Borsiov and Libgober [Borisov-Libgober] that asserts that higher elliptic genera 
are invariants of K-equivalence. Recall that V and V’ are K-equivalent if there is a (Z, ψ, 
ψ’) with V ← Z → V’ so that ψ*KV = ψ’*KV’ (where K? is the canonical divisor of ?).  
(A motivating case is the Calabi Yau case, where canonical divisors, by definition, 
vanish, so that one is asserting here the birational invariance of invariants of Calabi-Yau 
manifolds.) 

                                                
328 Strictly speaking, Novikov’s theorem is the rationalization of this statement.  This 
integral statement about the signature operators is the main result of [Pederson-Roe-
Weinberger].  And the above refinement is neither simpler nor more difficult than this 
result (just as the rational version of this statement follows mutatis mutandae from 
Novikov’s argument -- or the one we gave in 4.5.) 
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Theorem [Borisov-Libgober].  For any fundamental group, all of the rational higher 
elliptic genera agree for any K-equivalent smooth varieties. 
 
 The second answer is perhaps more pragmatic.  Although the original Novikov 
conjecture was phrased in terms of rational invariants, we have already seen that for 
torsion free groups, one can conjecture an integral injectivity result -- and this implies 
that many of the characteristic class formulae or restrictions that we have developed have, 
for torsion free groups, integral refinements (with more refined definitions of the 
characteristic classes necessary: e.g. using K-theory and the cycle associated to the 
defining elliptic operator329). 
 
 We will discuss in the next chapter what to do for groups with torsion, but for 
now, let us note that it is necessary to do something.   
 
 This is readily apparent in the case of cyclic groups Zp.  If we do not invert p, 
then simple examples involving homotopy equivalent linear lens spaces (of high 
dimension330) show that higher signatures are not always invariant, i.e. the pushforward 
of the signature class in the K-homology of K(Zp,1)  Similarly, for the positive scalar 
curvature problem this is even more obvious:  Lens spaces also have nontrivial Dirac 
classes, yet they all have positive sectional curvature. 
 
 Moreover, in these two problems at least, things seem to be rather deeper.  We 
know as a consequence of functoriality, that any homology class in M that dies K(π,1) 
comes from a homotopy equivalent manifold.  One can show (using the Gromov-Lawson 
surgery theorem (see the notes)) that there is a similar statement possible for positive 
scalar curvature manifolds -- there are no Dirac obstructions except for those detected in 
K(π,1)’s.  However, in the local cases one can often refine the equalities to lie in more 
refined places than the group (K or L or Ell) homology.  For example, note the refined 
Novikov and p.s.c. theorems discussed in this section that assert results in K*(N) for 
general (i.e. for not necessarily aspherical) N.  (The result on Rosenberg’s algebraic 
geometry Novikov conjecture is also true integrally as follows from the argument of the 
previous section, showing how it fits into the realm of Novikov theorems rather than 
conjectures.) 
 

                                                
329 Or in topology using things related to the Sullivan orientation inverting 2 [Sullivan], 
and the Morgan-Sullivan class at 2 [Morgan-Sullivan].  These are subsumed in the 
controlled symmetric signature, i.e. the symmetric signature in the sense of [Ranicki1] 
(discussed earlier in the context of Q-homology manifolds in this chapter) of M, thought 
of as Poincare complex controlled over itself (see e.g. [Cappell-Shaneson-Weinberger]). 
330 3 dimensional lens spaces are all parallelizable.  However, the K-homology of 
K(Zp,1) fills up using the differences of the signature operators of higher and higher 
dimensional linear lens spaces. 
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 Needless to say, until the Novikov conjecture is disproved, we do not know that 
there is a real difference between these classes of statements -- and, moreover, the 
connection between statements about assembly maps and the geometric consequences are 
only tight in the topological case -- conceivably the positive scalar curvature problem can 
work out differently than the higher signature problem331 . 
 
5.5 Playing the Borel game.  

 
It is time to take some stock again of where our journey has taken us so far.  
 
Starting from the original Borel conjecture, we have seen how the geometry of 

lattices and ideas geometric rigidity theory can lead to a great deal of information about 
the topological structure of these (and other much larger classes of aspherical) manifolds, 
if not their topological rigidity.  We were inevitably led to consider the implications of 
functoriality (forced upon us by the π-π theorem of surgery). 

 
In studying how the Borel conjecture restricts the variation of characteristic 

classes (and spectral geometry) we were led to the Novikov conjecture.  This is a very 
broad phenomenon wherein the fundamental group of a manifold has strong implications 
for its global analysis, some of whose implications we studied in this chapter.  The key to 
the breadth of what we’ve seen to this point always has involved elliptic operators and 
their properties -- and was often the consequence of the general injectivity of (related) 
assembly maps in K-theory or a Hermitian cousin, L-theory. 

 
But, it is natural to play the Borel game, as well, not just the Novikov.  What can 

we say about the isomorphism statement regarding the assembly map, say, for torsion 
free groups?  Does this problem have relatives with a substantial family resemblance -- 
that might themselves have beautiful implications? 

 
It is also time to expand our perspective to situations that are not mediated by 

elliptic operators, topological K-theory, but exist within algebraic K-theory332, clearly an 

                                                
331 It is even conceivable that the Gromov-Lawson conjecture is true, but the strong 
Novikov conjecture (i.e. the C* algebra version) fails and another mechanism is behind 
this truth.  Nevertheless, the ordinary Novikov conjecture, not involving completions, has 
a definite chance of being true even if the strong Novikov conjecture is correct. 
     The main reason that one can imagine the first statement is that the work of Schoen-
Yau-Lohkamp give methods completely unrelated to Dirac operators for the 
nonexistence of p.s.c. metrics on certain manifolds.  The second statement can be 
suggested (to the authors of science fiction monographs) by some deviations between the 
topological analytic conjectures that will be discussed, for example, in chapter 8. 
332 Actually an analog of the Novikov conjecture is known for the very large class of 
groups whose homology is finitely generated in every degree - according to a remarkable 
theorem of [Bokstedt-Hsiang-Madsen].   (See also [Dundas-Goodwillie-McCarthy] for a 
broader explanation of these ideas within the realm of algebraic K-theory.)  It is 
conceivable that the right hermitian analog of their technique could prove the Novikov 
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analogue (if only because of its name), but also directly connected to the difference 
between homotopy and homeomorphism.   So, it could, in principle also obstruct the 
Borel conjecture. 

 
This section is just a first pass at this project.  We will return to it again in the next 

chapter when we deal more seriously with groups with torsion (after all, in this chapter 
we have only dealt so far with products of torsion free groups with finite ones).  

 
5.5.1 Fibering and controlled surgery.  
 
 Let us recall, temporarily ignoring the Whitehead group (see section 4.1), the 
Farrell fibering theorem333.  It describes the obstruction of fibering a manifold over a 
circle; given f: M → S1 one first considers whether the associated infinite cyclic cover is 
a finite complex up to homotopy type (or even finitely dominated).  If so, then the 
mapping torus of the covering translate T(τ) is a finite complex, homotopy equivalent to 
M. 
 
 Indeed T(τ) → S1 describes a controlled Poincare complex over the circle.  It is a 
Poincare complex, and this is true for the inverse image of every open subset of the 
circle334.  The homotopy equivalence M→ T(τ) is among other things a normal invariant 
for this Poincare complex. 
 
 We can think of this situation in two different ways (that up to algebraic K-
theoretic obstructions are equivalent).  First of all we have a Poincare complex blocked 
over the circle S1.  That is, we have a Poincare complex for each vertex (in a 
triangulation) and a Poincare cobordism between these over each edge.  And associated 
to this we have a blocked surgery obstruction, which will be a map  [S1: Lm-1(π)] (where 
π is the fundamental group of the fiber). 
 

Alternatively, we can try to do controlled surgery, which is to build a map M → 
T(τ) → S1, so that over each open subset of S1 the map restricts to a proper homotopy 
equivalence. 

                                                                                                                                            
conjecture for a similarly broad class of groups - although, it is unlikely that the C* 
algebra version could ever succumb to such an approach. 
333 Taking the Whitehead group into account is more subtle than one might think.  One 
quickly comes to the conclusion that Nil groups should be the source of non-approximate 
fiberring, but the paper [Farrell-Lueck-Steimle] shows that in the presence of Klein 
Bottles in the fundamental group of the base, there are a number of Nil type obstructions 
that all have to vanish. 
334 To be more precise, the inverse image of each open set is a proper Poincare complex, 
satisfying the kind of Poincare duality open manifolds do interchanging cohomology with 
support having compact projection to the circle with ordinary homology.  One could also 
define an approximate Poincare complex, in an ε-δ fashion where deviations of duality at 
one scale are trivial in a somewhat larger one  
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 Both alternatives are a little weaker than fibering: the s-cobordism theorem (or 
alternatively, obstructions that naturally give an element in H1(S1; Wh(π)) is used to 
straighten the h-cobordisms in the first theorem to be a fibration.  For the second, there 
are issues related to K0(Zπ) as well -- there is no guaranteed way to find the fiber over a 
point from the fiber over open intervals. 

[S1: Lm-1(π)] ≅ Lm(Γ) 
where Γ = π1(M) (and the bold L’s are spaces encapsulating obstructions to blocked 
surgery).  Needless to say, the π on the left hand side really means π1(Fθ) the 
fundamental group of the fiber over a point θ in the circle.  That means, the left hand side 
should be thought of as sections of a fibration rather than as a function space in general.  
(The monodromy of the bundle over the circle with fiber Lm-1(π) is induced by the 
covering translate on the infinite cyclic cover.) 
 
 In the controlled situation, cohomology is the wrong variance: (block bundles, 
and their obstructions, pull back): we push forward a controlled surgery problem to 
obtain a problem with somewhat looser control.  This leads to the conclusion, and it one 
that we had earlier seen in some situations using the α-approximation theorem of 
Chapman and Ferry, that controlled surgery theory should be a homology theory (again 
twisted if Γ ≠ Z×π) 
 

Lcontrolled(T(τ) → S1) ≅  H1(S1: Lm-1(π)) ≅ Lm(Γ) 
 

where the first statement is a “general” calculation (and would be correct were S1 
replaced by some other space X) and the second statement a consequence of the fibration 
theorem. 
 
 Note that in the Borel conjecture we had the assembly map 
 Hm(Mm: L(e)) → Lm(Γ) 
 
being an isomorphism when M is a K(Γ,1) manifold335.  But surely it is now irresistible to 
suggest that Hm(Mm: L(π)) → Lm(π1(E))  is an isomorphism where E → M is a 
fibration, where π is the fundamental group of the fiber (and thus, the left hand side, 
should be interpreted in a (co)sheaf theoretic way). 
 
 These statements are conjecturally the case, and are included in what I call the 
Borel package, a collection of statements yet more general. They have an interpretation 
in terms of some kind of fibering of manifolds over aspherical ones.   
 

                                                
335 This statement does not require M to be closed if we use compact supports, as 
suggested at the end of chapter 3 and section 4.7. 
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 Note, of course, that the Borel conjecture itself is the statement that if M is 
aspherical and M’ is homotopy equivalent to it, we can homotop the map M’→M to one 
which is a fibration over every open subset (=controlled homotopy equivalence = CE 
map = uniform limit of homeomorphisms by the theorem of Siebenmann or Edwards).  
 
 Needless to say, also, that this is compatible with the Borel conjecture if the group 
π satisfies the Borel conjecture.  One nice feature of this viewpoint is that it tautologously 
builds in a closure of the Borel under short exact sequences: 1 → π → Γ→ π’ → 1 (i.e. 
the result for Γ follows from that for π and π’.) 
 
 The Borel package itself needs at least two further amplifications:  the first is a 
modification or expansion to include algebraic K-theory; we give the modification 
immediately and the expansion later in this section -- Whitehead groups are not always 
trivial; the product of h-cobordant manifolds with the circle are Cat-isomorphic336, so 
there can never be a uniqueness of fibering without taking algebraic K-theory into 
account.  Moreover, there is also an algebraic K0 condition to being able to compactify 
the infinite cyclic cover, which would surely be possible if the manifold fibered over the 
circle. However, if the statements we had written were correct “on the nose” then e.g. 
blocked surgery theory would indeed give existence and uniqueness of fibering. 
 
 However, it is pretty close.  It turns out that all algebraic K-theoretical 
obstructions die after crossing with a torus, and that by using tori, one can make the 
solutions essentially unique.  (The uniqueness is typically another algebraic K-theory 
obstruction).  As a result, one way to get around the algebraic K-theory issue is to 
“stabilize”.  We can just cross all the groups involved with Z∞ and then the arguments 
would work as described above.  This is a little awkward, and it is best to replace Lk(π) 

by lim Lk+dbdd (π×Rd ↓ Rd) where we map Lk+dbdd (π×Rd ↓ Rd) → Lk+d+1bdd 
(π×Rd+1 ↓ Rd+1) by crossing with R. 
 
 This limit is referred to as Lk-∞(π).  The map Lk(π) → Lk-∞(π) is an 
isomorphism away from the prime 2.  (I don’t know any example where the kernel and 
cokernel don’t have reasonably small exponent337, but I can’t imagine a proof of such a 
statement either given our current state of knowledge.) 
 
 The second comment and amplification is that L-groups have a completely 
algebraic definition, and all of the constructions, while we have made or explained them 
geometrically, can also be algebraicized.  Note that Z[A×B] ≅ Z[A][B], (and similarly 
with a twisted group ring for semidirect products, and a more complicated but obvious 
enough expression for the situation where one has an extension that is not split).  It 

                                                
336 Recall that the obstruction to an h-cobordism being a product is the Whitehead 
torsion; torsions are multiplied by Euler characteristic in products (see e.g. [Milnor3] or 
[Cohen SHT]). 
337 It’s not hard, though, to give examples where these are infinitely generated. 
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suggests therefore that even for a nontrivial family of rings R over K(Γ, 1) there should 
be an isomorphism 
 

Hm(K(Γ, 1), L-∞ (R)) → L-∞ (“RΓ”)) 
 
Where “RΓ” is the perhaps twisted group ring.  Frequently geometric techniques for the 
Borel conjecture will initially apply directly to the assembly map where R = Z, and then 
have an extension to fibered situations, allowing R to be a group ring -- but with some 
algebraic variation of the method, one can get this whole package338.  
 
 The above statement is equivalent to the statement that the forget control map 
from “Controlled L-theory (in the -∞ sense) with coefficients in R” to L-∞ (“RΓ”) is an 
isomorphism. 
 
 This package can have useful applications geometrically that go beyond the Borel 
and Novikov conjectures themselves.    We mention three examples that have bearing on 
issues that we’ve already discussed.   
 
 The first is the proof of the combined Novikov conjecture/Novikov theorem made 
in the previous section.  If we have a controlled homotopy equivalence as in the 
hypothesis of that proposition, then we would get equivalence of the signature classes in  
 

Hm(N, L-∞ (Qπ)) 
 
However, if we know that the map H*(K(π, 1), L(Q)) → L-∞ (Qπ)) is (rationally) split 
injective, then generalities about homology theories gives injectivity of composition: 
 

H*(N × K(π, 1), L(Q)) → Hm(N, L-∞ (Qπ)), 
 
And, therefore, controlled homotopy invariance in the domain of this map (rationally, if 
that’s our assumption on π)339.      
 

As a second application, we observe that the proper Borel conjecture for the Q-
rank 2 case follows from the Borel package of the underlying lattice.  In this case the 
Borel-Serre boundary is aspherical, as we have already noticed, and proper rigidity of the 
original manifold follows from the rigidity of the compactified manifold340.  This in turn, 

                                                
338 See [Bartels-Reich, Weinberger1]. 
339 This argument is only being asserted for untwisted fundamental group situations.  
Frequently proofs of the Novikov conjecture are natural enough to accommodate 
twistings, but this is a stronger hypeothesis. 
340 Module issues about vanishing of Whitehead groups, that follow by the K-analog of 
the L-argument we are now giving (and appropriate work on the K-theoretic Borel 
package for the lattice). 
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but the exact sequence of a pair in surgery and group homology, reduces it to the 
isomorphism statement for the lattice and the boundary separately.   The first is the 
ordinary Borel conjecture, but the second is the twisted one in a situation where the we 
have a (non-split) group extension (associated to the Borel-Serre boundary), and the 
relevant ring is the group ring Z[F∞] which is not associated to a finitely presented group 
(and so would require more effort to deal with geometrically, since the relevant fiber 
could not be a compact manifold). 
 
 Finally, in our discussion of the higher signature localization formula for 
homologically trivial group actions on nonsimply connected manifolds, we gave a 
particularly symmetric expression of the formula that ended up being equivalent to the 
Novikov conjecture.  The characteristic class on the right hand side of the formula was 
the average of classes introduced by Atiyah-Singer, as one goes over the generators of the 
cyclic group.  However, the reasoning suggesting the formula suggests that one can use 
any generator to get a characteristic class formula: and all generators should give the 
same result -- i.e. included in such a formula would also be a vanishing theorem for 
certain higher characteristic classes. 
 
 This is indeed feasible, except that the argument that one would naturally give 
would be phrased in the ring L(Q[ξ][Γ]) where ξ is a primitive root of unity341.  I do not 
see any way to deduce from a statement about the Q[Γ] the full necessary statement about 
Q[ξ][Γ]342.  However, the “Novikov package”, which is also available in as wide a 
generality as the Novikov conjecture (at this point in time) would give this. 
 
5.5.2  The C*-algebra setting.  (The Baum-Connes conjecture, first meeting) 
 
 In the C* algebra setting we also have an assembly map (interpreted as an index 
map) 
 

K(K(Γ,1)) → K(C*Γ) 
 
with the Novikov conjecture being a statement about (rational) injectivity.  The Baum-
Connes conjecture is the isomorphism statement that goes along with this injectivity 
statement.  Thus, the BC conjecture would assert (in its strong package form) that an 
assembly map involving Γ-C* algebras going to a cross product algebra should always be 
an isomorphism for Γ torsion free (again leaving the discussion of groups with torsion to 
the next chapter). 
 

Recall that C*Γ is a completion of the group ring CΓ which we think of as an 
algebra of operators either on L2Γ, in which case we get C*redΓ (the reduced C* algebra) 
or acting on arbitrary unitary representations, which then produced C*maxΓ.  To have a 
mathematical statement, surely it is necessary to specify which completion should be 
                                                
341 Q[ξ] arises naturally as a piece of Q[Zn]. 
342 This would not be an issue in the C* algebra framework -- the abstract algebra C*(Zn 
×Γ) is obviously a finite product of m copies of C*(Γ). 
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used.  (Note that there is a map C*maxΓ → C*redΓ so injectivity for the reduced assembly 
map implies injectivity for the max.) 

 
The problem is this:  Given a homomorphism of groups Γ→Δ, there is a map 

between their Eilenberg-MacLane spaces, so there is functoriality of the left hand side, 
but there is no induced map C*redΓ → C*redΔ (except for the situation where the kernel 
of the map is amenable).   

 
Using C*maxΓ , there is an induced map, so both parts of the picture do have the 

same functoriality.  However, there is no chance that this map can be an isomorphism in 
general:  If Γ has property (T), then the trivial representation is a projective module over 
C*maxΓ, and it lies in the cokernel of the assembly map.   (In fact, for a group like 
SL3(Z) -- or a torsion free congruence subgroup thereof -- there are infinitely many Z 
summands in K0(C*maxΓ) coming from the infinitely many irreducible representations 
coming from finite quotients that are all isolated in the Fell topology.  The domain of the 
assembly map is a finitely generated abelian group.) 
 
 So we have a dilemma for those who would make conjectures:  to be true, one 
must work with C*redΓ, else Property (T) immediately explodes the conjecture, yet 
doing so posits a highly nonobvious functoriality for the K-groups that does not appear to 
make any sense at the level of the algebras themselves.   
 
 The latter is what Baum and Connes boldly did in an influential paper [Baum-
Connes] (that appeared many years after its initial circulation)343! It was a major 
advance344 when V. Lafforgue [Lafforgue1] gave an example of a group that has property 
(T) and satisfies the conjecture.  Subsequently, building on these techniques, the Baum-
Connes conjecture was verified for all hyperbolic groups by Lafforgue and [Mineyev-Yu] 
(with Lafforgue subsequently giving a proof in this situation with coefficients, as well, 
see [Puschnigg]).     
 
 However, we now know that the Baum-Connes conjecture with coefficients is 
false in general (we will discuss this further in chapter 8).  It remains an extremely 
important insight, -- injectivity is known for a very large class of groups, as we shall see -
- and understanding the extent of its full validity is a major problem, e.g. for lattices or 
linear groups.    
 
5.5.3  Algebraic K-theory 
 
 So finally, let’s turn to the long overdue issue of algebraic K-theory and how it 
connects to this story.  This subject fills bookshelves in a library: we shall devote only a 
few pages to this. 

                                                
343 I have to admit to having been offended by this reckless behavior --- as a penance for 
my timid skepticism. 
344 thereby causing me to doubt my skepticism. 
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 Classical algebraic K-theory centered around 2 functors of rings (that were 
linked) K0(R) and K1(R).  These have important applications in topology and are 
analogues of (say complex) vector bundles over X and ΣX if R is the continuous 
functions on a compact Hausdorff space X (a C*-algebra).  (A bundle over ΣX can be 
viewed as two trivial bundles over each of the two cones, that are “clutched” or identified 
over X: this is a family of changes of bases - i.e. a map X → GLk(C), i.e. an element of 
GLk(C(X)).)  
 
 Even earlier, these functors, in the case of number rings had important arithmetic 
interpretations, and consequently served as a bridge between topology and arithmetic. 
 

Subsequently, the functors and their range of topological applications grew to 
include Ki(R) for i both negative, and >1 and also deep connections to algebraic geometry 
and arithmetic developed.  The negative groups having direct meaning using controlled 
(or bounded) algebra, and the positive groups being related to the homeomorphism and 
diffeomorphism groups of manifolds. 
 
 K0(R) is the Grothendieck group of finitely generated projective R-modules.  It is 
thus the universal possible dimension of a projective module.   
 
 It arises frequently in geometric topology as the Euler characteristic of a Chain 
complex that has finiteness properties.  Note that a chain summand of a chain complex of 
finitely generated free modules is such a chain complex; homological vanishing theorems 
can often detect that a chain complex is chain equivalent to one of this form. 
 
 Thus K0(Zπ)/K0(Z) contains an obstruction to a finitely dominated cell complex 
(e.g. a cell complex that’s a retract of a finite complex) to being homotopy equivalent to a 
finite complex, and indeed this is the whole obstruction according to Wall’s finiteness 
theory [Wall 2].  It also measures (according to Siebenmann’s thesis [Siebenmann 3]) the 
obstruction to putting a boundary on a noncompact manifold that is “tame at ∞”.   
 

Perhaps even simpler, consider this: If X is a finite complex with a PL G-action 
(G finite), then the cellular chain complex is projective over QG.  (All finitely generated 
modules over QG are projective.)  As Euler characteristic is the same on the chain and 
homology level (when the latter is projective), we can identify this invariant on 
homology, and then via characters, with the invariant at the chain level.  In other words, 
we see that 

 
Trg χ(G,X) = χ(X

g
) 

 
and the Lefshetz fixed point theorem is thus encoded in this functor (i.e. the equivariant χ 
is a multiple of the regular representation - the image K0(Q), which is equivalent to the 
vanishing of the character of the representation on all nontrivial elements).  
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K1(Zπ) actually was defined earlier, by Whitehead.  We can think of it as the 
Grothendieck group of automorphisms of finitely generated projective modules.  By 
adding on a complementary projective module with the identity automorphism (a 
complement to P is a finitely generated module Q so that P⊕Q is free), one can think of 
this as made from automorphisms of free modules, i.e. elements of GLn(R) which are 
allowed to be stabilized. 

 
This is the same as the Grothendieck group of finitely generated free based345 

acyclic chain complexes. 
 
We can think of K1 as the universal target for determinants of invertible matrices 

(over the ring).   
 
Thus for any finite dimensional orthogonal representation of π, there is a Norm 

map that assigns to an invertible matrix over Zπ the determinant of the associated matrix 
with real entries.  Thus for π = Zp, p an odd prime, the trivial representation gives 
nothing, but the remaining (p-1)/2 representations all give interesting invariants: 
however, the products of all of these determinants must be ±1 (because it is the norm of a 
unit of an algebraic integer).  That this is the complete dependency is the content of the 
Dirichlet unit theorem. 
 
 Just as K0(Zπ) measures existence of finite complexes within a homotopy type, 
K1(Zπ) measures the uniqueness of the finite complex.  Given two finite homotopy 
equivalent complexes, the mapping cone of the homotopy equivalence is almost a based 
acyclic Zπ complex - the chain complex under discussion uses cells of the universal 
cover, but each cell has two orientations, and there is no canonical lift of a cell to the 
universal cover, so we also have an indeterminacy by multiplying by elements of π.  So 
we get in this situation a “torsion” which is an element of  
 

Wh(π) ≡ K1(Zπ)/(±π). 
 

The equivalence relation this puts on finite complexes is called simple homotopy 
equivalence: it is the equivalence relation generated by viewing any finite L as equivalent 
to L∪e, where e is a cell and the attachment is along a face in its boundary (i.e. 
elementary expansion)  

 

                                                
345 A based chain complex is a chain complex where each chain module is given a 
specified basis. 
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(Taken from M.Cohen’s [Cohen SHT]) 

 
The s-cobordism theorem connects this to manifold theory.  A manifold with 

boundary that deform retracts to each of its two boundary components is an h-cobordism.  
It is a product - if the dimension is at least 6 - iff one of the (and therefore both346of) 
boundary inclusion(s) is (are) a simple homotopy equivalence. 

 
If W is an h-cobordism, then W-∂-W ≅ ∂+W × [0,1), so Wh(π) can be thought of 

as measuring the uniqueness of the solution to the problem of putting a boundary on an 
open manifold. 
 
 There is an important relationship [Bass-Heller-Swan] between K1 and K0 called 
the fundamental theorem of K-theory.  It asserts that 
 

K1(R[t,t-1]) ≅ K1(R) ⊕ K0(R) ⊕ Nil(R)⊕ Nil(R) 
 

Here Nil(R) is the Grothendieck group of nilpotent automorphisms of free modules.  It 
frequently vanishes (e.g. when R is a regular ring) but is nontrivial, and indeed infinitely 
generated, when R = Z[Zp× Zp].   
 
 The way to get a map from the right hand side to the left is like this.  On K1 it’s 
obvious.  From K0 consider assigning to P, a finitely generated projective module with a 
complement Q, the isomorphism P⊕Q to itself, sending (p,q) to (tp, q), and to a 
Nilpotent automorphism A of Rk, I+tA or I+t-1A (hence two copies of Nil). 
 
 Since algebraic K-theory forms a spectrum, we can write this isomorphism as: 
 

K1(R[Z]) ≅ H1(S1; K(R)) ⊕ Nil(R) ⊕ Nil(R) 
 

Loday [Loday] defined an assembly map in algebraic K-theory, and thus, the 
fundamental theorem of algebraic K-theory347 can then be interpreted as the statement 
                                                
346 In general there is a formula, called the Milnor duality formula relating τ(W, ∂+W) 
to τ(W, ∂-W).  (See [Milnor3]) It depends on the dimension, the orientation character, and 
the involution on Wh(π) induced by g → g-1. 
347 Farrell and Hsiang gave the generalization to twisted polynomial extensions in 
[Farrell-Hsiang2]. 
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that for π = Z, the assembly map is always split injective (a Novikov conjecture) and is 
an isomorphism if R is a regular ring.   
 
 There are transfer maps associated to the self covers S1 → S1.  On the K1(R) 
summand, this map is multiplication by the index of the cover.  On the K0(R) factor this 
map is the identity (i.e. K0(R) is the transfer invariant part of K1(R[Z])) and on the Nils, 
the transfer is nilpotent, i.e. each element dies on passing to sufficiently high covers348). 
 
 Considering K0(R[Z]) and insisting that the fundamental theorem holds gives rise 
to a definition of K-i(R)349.  We can go further, with Z replaced by Zd to get negative K-
groups. These have interpretations in terms of controlled topology.  The controlled 
Whitehead group of Zπ over Rd is K1-d(Zπ) -- and it obstructs controlled h-cobordisms 
from being products (or controlled simple homotopy equivalent complexes from having 
controlled homeomorphic thickenings). 
 
 Higher algebraic K-groups, when introduced by Quillen, were also discovered to 
satisfy a fundamental theorem.  Thus we can hope for a statement like: 
 
Conjecture:  The assembly map 
 

H(K(π,1); K(R)) → K(R[π]) 
 

is always split injective for π torsion free (we assume that the nonconnective spectrum K 
is used; the extension to the general case will be given next chapter) and is an 
isomorphism if, in addition, R is regular. 
 
 Of which the case of π = Zd would be the Bass-Heller-Swan theorem. 
 
 By the way, actually when we apply K-theory to topology as in the examples 
above, we use reduced class group, i.e. we mod out by the image of H0(K(π,1); K(Z)), 
and the Whitehead group where we mod out by H1(K(π,1); K(Z)) which is H1(π) × {±1}.  
As a result, we are often interested in the cofiber of the assembly map - Whitehead theory 
more than the K-groups. 
 
 Further, note that the Borel conjecture actually implies (exercise, using the h-
cobordism theorem) the vanishing of Wh(π) at least when K(π,1) is a finite complex, 
which is the above conjecture for R = Z and for homotopy groups in dimension ≤1.  In 
particular, the above conjecture would imply that Wh(π) = 0 for π torsion free, and that 

                                                
348 However, there are always elements that live arbitrarily long.   
349 [Ferry4] gives a very nice geometric approach to the Wall finiteness theory via the 
Whitehead simple homotopy theory and this perspective on K0. 
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when this holds, the Borel conjecture for π really boils down to the isomorphism of the L-
theory assembly map350. 
 

Needless to say, it is important to understand what happens when R is not regular.  
In that case, let me mention a beautiful special case that shows what one can hope for. 

 
Theorem ([Farrell-Jones, Bartels-Lueck-Reich]):  If π is a torsion free hyperbolic group, 
then the above conjecture is true.  Moreover, in general there is an isomorphism 
 

Hi(K(π,1); K(R)) ⊕ ⊕Nili(R) → Ki(R[π]) 
Where the sum is over conjugacy classes of nontrivial elements of π that are not proper 
powers. 
 
 The split injectivity result is not that difficult: it follows from the principle of 
descent, just like other Novikov conjecture results that we’ve discussed (see [Carlsson-
Pedersen, Ferry-Weinberger]), together with a trick (transferring to the infinite cover 
corresponding to the various Z’s in π and thinking of this in a suitably controlled at ∞ 
way) for detecting the Nils.  
 
 The surjectivity statement is much deeper, and we have yet not seen any 
mechanism (other than codimension one splitting methods351) that can yield it. 
 
 In the last chapter, I will explain where these summands come from at least in the 
original situation of closed hyperbolic manifolds, where Farrell and Jones proved this 
using dynamical properties of geodesic flow.  The Farrell-Jones conjectures describe both 
in K-theory and L-theory a more comprehensive picture of what happens that goes 
beyond the cases predicted by the Borel conjecture.  
 
 The higher K-groups have a close topological cousin invented by Waldhausen, 
called A-theory.  Waldhausen’s A(K(π,1)) is a kind of group completion of 
BGL(Ω∞Σ∞K(π,1)+) (which surely looks close to BGL(Zπ) ), and the assembly map for 
them enters into an understanding of the higher homotopy of diffeomorphism and 
homeomorphism groups.  We cannot do justice to this here, but instead refer the reader to 
[Waldhausen, CohenR, Weiss-Williams, Rognes-Waldhausen] and just discuss a little 
piece of the story that directly bears on the Borel philosophy.   
 
 We discussed in 1.2 the notion of pseudo-isotopy, and observed that part of the 
Borel conjecture should be the statement that homotopic homeomorphisms are 
pseudoisotopic.   
 

                                                
350 One can think of Wh(π) as being an analog in K-theory of S(Bπ) in surgery.  (Early on 
historically, because the difference between K1 and Wh is so small, this point was 
obscured, and people would think of Wh(π) and L(π) as being analogs.) 
351 Waldhausen [Wald] developed such methods and, for example, proved that Whitehead 
groups vanish for fundamental groups of Haken manifolds. 
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 A pseudoisotopy is essentially a homeomorphism of M × [0,1] and we can ask 
whether it is isotopic to an isotopy, i.e. a level preserving homeomorphism of M × [0,1]? 
 
 This is kind of like uniqueness of the product structure in the s-cobordism 
theorem, and so should involve K2.  This is the case.  It is a beautiful theorem of Cerf that 
for simply connected manifolds pseuodisotopies are always isotopic to isotopies (in high 
enough dimensions), but Hatcher showed for it is never true in the nonsimply connected 
case.  This starts already on S1×Dn (rel ∂) and gives rise to homeomorphisms pseudo-
isotopic to the identity but not isotopic on all aspherical manifolds.  A(S1) is a quite 
complicated space, and the fundamental theorem is already not unobstructed in this case: 
The cofiber of the assembly map is an analogue of Nil; Ω∞S∞ is not a regular ring. 
 

In light of all this, we cannot expect there to be a contractible space of choices of 
homeomorphisms in the situation of the Borel conjecture, even for M = Tn, n large 
enough. However, and this is far outside of our current knowledge, I know of no example 
where, as far as we know, there is not a Q-contractible space of choices352. 

 
 

5.6 Notes.   
 
The notes in this chapter really divide up by problem more than by section.   
 
 Regarding the index theorem and K-theory, which plays a critical role in this 
chapter, good references, from various points of view, are the original papers of [Atiyah-
Singer], and the more recent [Berline-Getzler-Vergne, Lawson-Michelson, Roe, Higson-
Roe 1 Booss-Bleecker]. The basic relevant functional analysis and understanding of 
elliptic operators can be found in many more places such as [Zimmer, Evans, Taylor]. 
 
 Topological K-theory, and the K-theory of C*-algebras cannot be separated from 
index theory.  For example, for compact Lie groups, equivariant Bott periodicity still only 
has the analytic proof given by Atiyah [Atiyah1], as far as I know.  For the thrilling initial 
chapters of this story, nothing beats Atiyah’s collected works.   
 
 Good sources for K-theory of C* algebras are [Higson-Roe3][Blackadar][Wegge-
Olsen].  At some point, you will surely want to look at Connes’ masterpiece [Connes] for 
a view of the world, indeed of the universe, centered at this mathematics. I hope my brief 
appendix is not useless in stimulating an interest in doing this sooner rather than later. 

 
 We started the chapter by mentioning the celebrated theorem of Atiyah and 
Hirzebruch on circle actions on spin manifolds.  This has had a celebrated extension, 
conjectured by Witten by arguing heuristically about the equivariant Dirac operator on 
ΛM (the free loop space, thought of as an S1-space by rotating loops) and proved by Bott 

                                                
352 I suspect this space is not rationally contractible, because of homotopy beyond the 
“concordance stable range”. 
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and Taubes [Bott-Taubes], with another proof by Liu [Liu 1,2] that gives a K-theoretic 
refinement.   
 
 Stoltz has observed that Witten’s heuristic can be developed to give a vanishing 
theorem for the so called Witten genus, for manifolds of positive Ricci curvature that 
have w1=w2= 0 and p1/2 = 0 (“string manifolds”).  Unfortunately, this has never been 
proved. 
 

It is not hard to see that all of this work has the expected non-simply connected 
generalization, by the method of Browder and Hsiang. 

 
The twisted higher signature localization theorem for Zn actions discussed is 

equivalent to the Novikov conjecture for any fixed n.  However, for other choices of 
characteristic class c(ν) this seems to be related to the Novikov conjecture with 
coefficients in a ring other than Z or Q.  It is for this reason that I was lead to introduce 
this problem in [Weinberger 4].  The “simplest” formula is the Galois invariant one (i.e. 
invariant under change of generator of Zn).   

 
[Weinberger 4] also gives other formulations of the Borel conjecture with suitable 

coefficients in terms of being able to solve transversality problems in the setting of 
“homologically trivial group actions”. Thus, if one has a free homologically trivial Zp 
action on manifold with fundamental group π satisfying the Borel conjecture, then with a 
suitable dimension restriction, one can arrange for an equivariant map from M → K(π,1) 
to have the transverse inverse image of any cycle (with manifold normal bundle) to have 
inverse image homologically trivial. 

 
For smooth SU(2) actions (or in general any smooth nonabelian connected group 

actions) there is a connection between the equivariant index theory and the positive scalar 
curvature problem:  Lawson and Yau [Lawson-Yau] showed that any manifold with 
effective SU(2) action has an invariant metric of positive scalar curvature.  As a 
consequence we get a vanishing result of the (equivariant) Dirac operator for such 
manifolds.  When combined with Hitchin’s theorem, we discover that certain exotic 
spheres, for example, of dimension 1,2 mod 8 do not have any (positive dimensional) 
nonabelian group actions.  For SU(2) actions on nonsimply connected manifold, we then 
get a vanishing result in KO(K(π,1)) for all fundamental groups353.  (Note that this 
integral statement is true even for groups with torsion!) 

 
It is interesting to note that some of these exotic spheres do possess S1 actions (by 

work of Schultz).  Thus the Atiyah-Hirzebruch vanishing phenomenon is indeed quite 

                                                
353 Note that since SU(2) is simply connected, the SU(2) action lifts to an action on the 
universal cover of M.  The group of all lifts of this action is then π×SU(2) (since all 
automorphisms of SU(2) are inner).  Thus, we can build an equivariant map M → K(π,1) 
where we give the latter the trivial action.  This implies the vanishing of the Dirac class. 
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subtle -- the vanishing is not due to the vanishing of the KO-theoretic index of the Dirac 
operator.354. 

 
Understanding positive scalar curvature metrics has many parallels to surgery 

theory, but also some essential differences.  As mentioned in the text, the most striking 
difference is the mysterious role of the spin condition: For simply connected manifolds of 
dimension >4, every non-spin manifold has positive scalar curvature [Gromov-Lawson], 
but in the spin case, according to [Stoltz] the necessary and sufficient condition is the 
triviality of the index of the Dirac operator in KOn(*) (i.e. the Atiyah-Lichnerowicz-
Singer and Hitchin conditions). 

 
Besides the appearance of indices of Dirac operators that are analogues of the 

indices of signature operators (or symmetric signatures of Poincare complexes), a key 
role is played by the surgery theorem of [Gromov-Lawson] (see also [Gajer, Rosenberg-
Stoltz]) -- it gives rise to the analogue in the positive scalar curvature problem of the π-π 
theorem (that has suitable relative versions, as well): A spin manifold with boundary (M, 
∂M) of dimensions ≥ 6, that satisfies the π-π condition (π1∂M →π1M is an isomorphism) 
always has a positive scalar curvature metric that is a product in a neighborhood of ∂M.  
Having a positive scalar curvature metric is thus a spin cobordism invariant (w.r.t. the 
fundamental group of the relevant manifold).  This is often referred to as the “surgery 
theorem” since it is proved by showing that it is possible to do surgery on spheres of 
codimension ≥3 and maintain positive scalar curvature355.    

 
In this analogy, the concordance classes of p.s.c. metrics is closer to the surgery 

group than to the structure set.  Thus, in the π-π setting, there is a unique concordance 
class of metrics.  It is an important open problem whether there is a unique isotopy class. 

 
The analogue of the “main result” of chapter 3 - the problem of existence and 

non-existence of complete p.s.c. metrics on arithmetic manifolds in the noncompact case 
was settled much earlier in [Block-Weinberger].  The low Q-rank case (rank ≤2), where 
one is looking for obstructions, is settled using Novikov conjecture technology (not Borel 
conjecture technology, as is necessary for the rigidity statement, see 5.5.1).  We made use 
of a souped up version of an index theorem of Roe [Roe4]; this index theorem is a special 
case of the index theorem for bounded propagation speed operators on a metric space, 

                                                
354 In this way, playing the Novikov game for the Atiyah-Hirzebruch theorem is a more 
bold departure than playing it for the positive scalar curvature problem (or for birational 
invariance). 
355 This theorem is behind the positive results of Gromov-Lawson and Stolz mentioned 
above.  In the non-spin case, Gromov and Lawson use surgery to reduce to special 
generators of oriented bordism.  Stoltz uses spin cobordism, which is not fully analyzed, 
but shows that there are enough classes that are total spaces of HP2 bundles (with its 
usual isometry group as structure group) to produce, by scaling the fibers to be very 
small, positive scalar curvature metrics on the kernel of ind D: ΩSpin→KO(*). 

In the missing case of dimension 4, where surgery methods fail, positive scalar 
curvature has additional obstructioons that come from Seiberg-Witten theory. 
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adapted to the situation where the “corona” (=space at ∞) is disconnected.  The higher 
rank case follows from the surgery theorem.   

 
For more on this theme as it refers to closed manifolds, I highly recommend 

[Stoltz2, Rosenberg-Stoltz].   
 
The situation for noncompact manifolds is much stickier.  As indicated 

throughout our text, the parallels continue into the noncompact setting.  One key 
difference is caused by the problem that C*r is not functorial, so we are forced to make 
use of C*max -- where one is surely dealing with an algebra that is “further away” from 
geometry than feels reasonable.  “Surely” the extra elements of K(Cmax*π) coming from, 
say, property (T), should not arise, e.g. from relative indices associated to a pair of 
positive scalar curvature metrics on M with fundamental group π?  In any case, for 
noncompact manifolds that are tame at ∞, one defines an index that lies in a relative 
group, K(C*maxπ, C*maxπ’).  The assembly map: 

KO(K(π,1), K(π’,1))→ K(C*maxπ, C*maxπ’) 
seems to have a tendency to be injective (rationally, or for torsion free groups), although 
there is no legitimate 5-lemma reason to believe that this should be true. 
 
 Even in the absence of tameness, one can define an algebra that gives a prima 
facie place for index theoretic obstructions [Chang-Weinberger-Yu].  This includes, lim1 
type obstructions to the existence of p.s.c. metrics, and other “phantom” phenomena in 
the theory.  
 
 Another problem in global analysis that has been connected to the Novikov 
conjecture is the “zero in the spectrum” problem. 
 
Conjecture (Gromov)  If M is a compact aspherical manifold, then the ∆ on forms on the 
universal cover of M always has 0 in its spectrum.  Indeed, it should be nonzero in the 
“middle dimension”. 
 
 Middle dimension means dimension k if dim M = 2k+1.   At the moment the only 
evidence for this is of the following form: 
 
(1) It is observed to be true for K\G, so it is true for the classical aspherical manifolds. 
 
(2) It follows from the Novikov conjecture, for otherwise the index of the signature 

operator in K(C*π) would vanish, but the “1” in dimension 0 of the L-class should 
give rise to a nonzero image in K(C*π)⊗Q if the Novikov conjecture were true. 

 
(3) The chain complex of M (thought of as Rπ modules) is not chain equivalent to one 

with a 0 morphism in the middle (this would contradict the cohomological dimension 
of π1M > k).  We are alright, therefore, for arbitrary group rings.  The issue is entirely 
one caused by completion. 
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It is also likely true for all uniformly contractible Riemannian manifolds (with bounded 
geometry356).  In any case, neither of these problems is known to imply anything about 
the original Novikov conjecture, but both of them can be studied jointly with the Novikov 
conjecture.   
 
 As mentioned in the text, the analytic version of the Novikov conjecture can be 
proved, just like we did in the last chapter in L-theory, by a principle of descent.  The 
analogue of the bounded category is the Roe algebra.  
 
 Other related ideas are the Dirac-Dual-Dirac argument (see [Kasparov] for the 
exemplar of this), and the use of almost flat bundles (as in the text) which are not 
completely unrelated.  There are three ways of getting around the basic fact that the 
(rational) Chern classes of a finite dimensional bundle on a compact polyhedron are 
trivial.  The first is the use of families, as in the Lusztig method.  The second is to use 
families of almost flat bundles with increasing dimensional fiber, following [Gromov-
Lawson1, Connes-Gromov-Moscovicci] as we explained in the text.  This naturally could 
lead one towards using infinite dimensional fibers -- which is essentially the problem of 
understanding K(C*π)!   
 
 The third method for producing almost flat bundles on finite dimensional spaces, 
which allows one to keep the same ground manifold and not increase fiber dimension is 
to use compact support.  (This is like the use of the Bott element on Rn with compact 
support in [Gromov-Lawson 2]).   
 
 This is quite similar in spirit, if not completely in detail to the use of the K-theory 
of Higson corona to obtain useful indices in [Roe 2].  The Higson compactification of a 
locally compact metric space is an analogue of the Stone-Cech compactification, but one 
does not require that all bounded continuous functions extend -- rather only those whose 
variation decays at infinity (diam f(B(R, p)) → 0 as p → ∞ for any fixed radius R).   
 
 Any reasonable compactification, i.e. one where restrictions to the interior have 
decaying variation (such as the ideal boundary of G/K or the Gromov-Tits 
compactification of a word hyperbolic group), admits a map from the Higson 
compactification, so objects on any of these can effectively be pulled back to the Higson 
compactification.  In any case, bundles on the Higson corona (i.e. the ideal points of the 
Higson compactification) can be paired with bounded propagation speed operators to 
give useful obstruction indices.  It is as if, there were a Lipschitz map to the cone on the 
Higson corona, and a rescaling construction would produce tiny curvature (although this 
is not literally the case). 
 

                                                
356 A good test of the depth of this question is whether one can construct a complete 
uniformly contractible manifold with 0 ∉ spec(Δ) even with bounded geometry.  
Currently one doesn’t know any example, even, of a complete contractible manifold 
without 0 in its spectrum -- or of such a manifold that is homotopy equivalent to a finite 
complex (although surely these must exist!). 



  190 

 Needless to say, all of these techniques can be viewed as the simply connected 
versions of a more general phenomenon.  Thus, one can study on a nonsimply connected 
manifold, the bounded propagation speed operators taking values in C*π and get more 
subtle and useful information.   Just as we can do in the situation of bounded L-theory.  
The small scale version of this is precisely what we discussed in controlled K- and L-
theories in giving, e.g. a Novikov theorem for situations where we have controlled 
homotopy equivalences. 
 
 We used this added flexibility in proving that there are no complete positive 
scalar curvature metrics on Q-rank 2 lattices.  Stanley Chang [Chang] proved by this 
method (e.g. marrying the Roe algebra to a fundamental group) that for no K\G/Γ is there 
a course quasi-isometric metric of positive scalar curvature and thus the metrics of Block-
Weinberger when Q-rank>2 must be quite distorted. 
 
5.3  The method of Thom-Milnor-Rochlin-Schwartz gives rational Pontrjagin classes for 
PL homology manifolds.  Sullivan [Sullivan] gave a refinement which (anachronistically 
describes) gives a class 
 

σ*(X) ∈ Hx(X ; L*(Q)). 
 
(Note that since 2 is inverted in the coefficient ring Q, we have no issues regarding the 
difference between quadratic and symmetric L-theory).  This class, when we invert 2, 
then lies in KOx(X) ⊗Z[1/2] (see [Taylor-Williams 2] for an explanation of the work of 
Sullivan on the relation between L-spectra and K-theory away from 2, and the structure 
of L-spectra at 2 to see what we’re throwing away by making this discussion somewhat 
crude).  This is essentially the class of the signature operator on X357. 
 
 This class assembles to σ*(X) ∈ L*(Qπ) just like in the case of manifolds.  This 
can be viewed as forgetting control, or can be viewed along assembly lines (for the PL 
case, see e.g. [Siegel, Weinberger1 II] for how such arguments go).  It is important to 
note that there is an issue for the Q situation that we don’t have for Z -- namely that 
homotopy equivalences can have degrees other than ±1.  Thus, the assembled 
characteristic class cannot be expected to be an oriented homotopy invariant in this 
setting -- integrally.  However, since the quadratic form (d) ⊕(-1) is torsion (of exponent 
as worst 4) in L0(Q) (=Witt(Q)) this only affects the prime 2 -- so, assuming that the 
assembly map with coefficients is injective, we get Q-homotopy equivalence of higher 
signatures, with respect to orientation preserving maps of arbitrary (positive) degree -- if 
the usual assembly map is an injection (away form the prime 2).  Note, we are making 
use of Ranicki’s localization result [Ranicki 2] that tells us that the integral and Q 
assembly issues are equivalent (for all π) away from the prime 2. 

                                                
357 This is literally the case for X smooth; for X a PL or Lipschitz manifold, this makes 
sense by the work of Teleman.  Recently Albin, Leichtenam, Mazzeo, and Piazza have 
taken off on the seminal work of Cheeger on the L2 cohomology of stratified spaces and 
the duality induced by * (a variant of intersection homology) and have used microlocal 
analysis to give a suitable signature class on Witt- and “Cheeger-spaces”. 
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 The integral statement, taking 2 into account, must take into account the degree of 
the map.  Also, as far as I can tell, the L*(Q) injectivity statement is not equivalent to the 
L*(Z) -- although both are part of the “Novikov package”. 
 
 If one moves from the PL setting, then assuming that X is an ANR, controlled 
methods (e.g. following [Yamasaki, Cappell-Shaneson-Weinberger]) allow same 
statements to be made for topological Q-homology manifolds. 

 
5.5  First of all, let me call attention to the book of Rosenberg [Rosenberg] that is a very 
useful introduction to many of the ideas of K-theory of all flavors, with many hands-on 
examples.   
 
 There are still a few things that need to be discussed in view of our (belated) 
discussion of torsions and algebraic K-theory: 
 
 The first is that we have ignored all along “decorations” in surgery theory, and we 
now have the ingredients to set this straight.  If X is a finite complex which satisfies 
Poincare duality, then there are two natural questions to ask:  (1) Is X homotopy 
equivalent to a closed manifold? and (2) Is X simple homotopy equivalent to a  closed 
manifold?  The 2nd takes advantage of the finite complex structure that X has -- and is not 
a homotopy invariant question. 
 
 However, (2) is not a reasonable question without some additional condition.  If 
M is a manifold, then the Poincare duality isomorphism C*(M) → Cn-* is actually a 
simple chain equivalence.  If we change basis on C*(X) via A and dually to Cn-*(X), then 
the torsion of the equivalence is change by [A] + (-1)n[A*]; here * is induced by g → 
w(g)g-1 (where w is, as usual, the orientation character).  Note by the way, the self duality 
of the cap product tells us that the isomorphism C*(M) → Cn-* is “self dual”. 
 
 Thus, there is a “simplicity obstruction” lying in {τ ∈Wh(π) | τ = (-1)nτ*}/{σ+(-
1)nσ*}; this is the Tate cohomology of the involution * on Wh(π), i.e. Hn(Z2; Wh(π)) .   
 
 This is the obstruction in the category of finite complexes; that is can we take a 
given X with a chain level Poincare duality map that is not a simple equivalence 
homotopy equivalent to one where the duality map is simple  isomorphism.  If this 
obstruction is nonzero, then one has no chance of being homotopy equivalent to a 
manifold! 
 
 In the relative situation this is very simple to appreciate:  For the mapping 
cylinder of a homotopy equivalence between closed manifolds, the τ of the duality map 
for the relative Poincare chain complex is essentially the torsion of the homotopy 
equivalence. 
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 However, more fundamentally, this discussion suggests that for question (2) 
above, we only ask it for X a simple Poincare complex, i.e. one for which the duality map 
is a simple equivalence. 
 
 Surgery theory, as we discussed it, makes sense in both settings and give slightly 
different obstruction groups.   If X is a Poincare complex, or (Y,X) is a Poincare pair, we 
can ask if X or (Y,X) is homotopy equivalent to a manifold (pair) -- and the obstruction is 
finding a degree one normal map with vanishing surgery obstruction that lies in 
Ln

h(π1(X)) or Ln
h(π1(Y), π1(X)).   

 
 If X is a simple Poincare complex, or (Y,X) is a simple Poincare pair (which 
implies that X is a simple Poincare complex), then we can ask if X is simple homotopy 
equivalent to a manifold or (Y,X) to a manifold pair (M, ∂M) -- and the obstruction lies 
in Ln

s(π1(X)) or Ln
s(π1(Y), π1(X)).  

 
 These groups have a π-π theorem, and fit into the obvious exact sequences, and 
further satisfy a Rothenberg sequence [Shaneson]: 
 
 …→ Hn+1(Z2; Wh(π1(X))) → Ln

s(π1(X)) → Ln
h(π1(X)) → Hn(Z2; Wh(π1(X))) →... 

 
Thus the L-groups only differ at the prime 2, and only if the Whitehead group is 
nontrivial.  Thus, conjecturally for torsion free groups, for example, these groups are 
isomorphic.  However, in general they are different -- even for cyclic groups. 
 
 Even for manifolds, the choice of decoration makes important sense:  Sh(M) 
measures how unique the manifold homotopy equivalent to M is in the “h-sense”, i.e. up 
to h-cobordism.  The version Ss(M) measures the manifolds simple homotopy equivalent 
to M up to s-cobordism, i.e. up to homeomorphism. 
 
 Note that as a formal consequence of the Rothenberg sequence and a diagram 
chase, we get an exact sequence  
 

…→ Hn+1(Z2; Wh(π1(M))) → Ss(M) → Sh(M) → Hn(Z2; Wh(π1(M)) →... 
 
however, it is not so hard to understand it directly.  The map Sh(M) → Hn(Z2; Wh(π1(M)) 
measures whether a homotopy equivalence can be h-coborded to a simple homotopy 
equivalence.  The map Hn+1(Z2; Wh(π1(M))) → Ss(M) also comes out of the s-cobordism 
theorem.  If I take an h-cobordism from M, then the torsion of the homotopy equivalence 
M’ → M is σ - (-1)nσ*.  If this vanishes, then I get a new simple homotopy equivalence. 
 

If I take an h-cobordism from M to M’ and “turn it upside down” to get one from 
M’ to M, the torsion is changed by τ→(-1)n+1τ*.  I can glue these together to get a 
nontrivial s-cobordism for M to itself.  These torsions -- the obviously self-dual ones -- 
never change the structure! 
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Finally, with these concepts, we can properly describe what happens for the 
product formula: 

 
Ln

s(π×Z) ≅  Ln
s(π) × Ln-1

h(π) 
 
For Ln

h(π×Z) we would need to introduce a new group Ln-1
p(π) to obtain a formula: the p 

indicating the use of projective modules in the definitions rather than free modules in the 
quadratic forms used to define the L-groups.  And so on.  We will be forced to descend 
into negative K-theory to give a comprehensive approach. 
 
 For, e.g. fibrations over the circle with nontrivial monodromy α we would be led 
to “intermediate L-groups” between Ls and Lh.  Instead of allowing arbitrary torsions of 
homotopy equivalences in Lh we should use the theory associated to allowing torsions 
that are elements of ker (1-α*) ⊂ Wh(π). 
 
 We have simplified, and will continue to simplify our discussion by working with 
the L-∞ theory -- which has the interpretation as having to do with being able to obtain a 
homotopy equivalence after crossing with some (unspecified dimensional) torus.  This 
will, by a sequence of Rothenberg sequences, only affect the prime 2. 
 
(5.5 continued) Our discussion of Waldhausen’s work was highly inadequate: and 
we will leave further discussion to the references.  That theory gives a very good picture, 
when combined with an understanding of the involution on K-theory (which arises as 
above for the Whitehead group - we ask whether a pseudoisotopy is isotopic to an 
isotopy, just as we had asked if an h-cobordism is h-cobordant to a product -- which leads 
to consideration of an involution on pseudo-isotopy theory), of the homotopy types of the 
groups Homeo(M) and Diff(M) in a stable range that grows linearly in dim(M).  
(Unstably, we know very little about these groups: one could hope -- although I believe 
that this is dubious -- that the components of Homeo(M) are Q-acyclic for closed 
aspherical manifolds with centerless fundamental group358) 
 
 More importantly, but this is a direction that has not yet been well integrated into 
the Novikov/Borel philosophy, A(X) is a deformation or extension of K(R) and allows 
the modification of problems involving Z to ones involving Ω∞S∞ which has a lot of 
internal structure.  In this analogy, one obtains that the analogue of the result mentioned 
about K(Rπ) for π the fundamental group of a hyperbolic manifold is that (Wh = the 
cofiber of the A-theory assembly map) for such a manifold: 
 

Wh(M) ≅ × Wh(S1) 
 

Where the product is taken over primitive closed geodesics. 
 
 Similarly, the basic trace: 
                                                
358 And, if there’s center, rationally equivalent to a torus.  Later we will see that there is 
not, in general, a homomorphism T → Homeo(M) inducing such a putative Q-h.e. 
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K0(R) → R/[R, R] 

 
That assigns to a projection the trace (i.e. the sum of its diagonal elements thought of as 
lying in R - as an additive group, modulo the additive subgroup generated by elements of 
the form [r,s] ={rs-sr}) - of any matrix representing it -- has a two stage generalization.  
The first is Connes’s trace map359 
 

Kn(R) → HCn(R) 
 

from K-theory to cyclic homology.  The second leaves the world of rings, and moves into 
stable homotopy theory (i.e. of spectra) and is an analogue of this, called the cyclotomic 
trace, developed by Bokstedt and Madsen, and used in [Bokstedt-Hsiang-Madsen] to 
detect K(Z) rationally360 and therefore a proof for all π with finitely generated homology 
of the algebraic K-theory Novikov conjecture for the ring Z.  Bokstedt and Madsen 
[Bokstedt-Madsen] have applied this to give a great deal of information on the algebraic 
K-theory of e.g. the ring of integers in a local number field.  
 
 Alas these methods do not prove an integral version, and are highly sensitive to 
the ring Z - it is not at all routine to replace Z by another ring of integers.  Currently such 
a modification would require deep number theoretic conjectures361 so that e.g. certain p-
adic L-functions would be guaranteed to have non-vanishing properties.   
 
 We refer the reader to the recent book [Dundas-Goodwillie-McCarthy] that 
explains trace technology, and the Goodwillie calculus that shows that the trace is not just 
accidentally successful in these problems: the trace gives a calculation of relative K-
theory K(R,S) if the map R → S is “1-connected”, so the trace is an effective 
linearization of K-theory. 
 
 I believe that the ideas of Waldhausen K-theory, concordance theory, and traces 
are related to the embedding theory calculations in the next chapter that give rise to a 
class of counterexamples to the equivariant Borel conjecture, and that there should be 
some unification of all these -- but, at the moment, this is too vague. 
 
 

                                                
359 Connes’s interest in the trace was to deal with K-theory of C* algebras and then prove 
the operator theoretic Novikov conjecture.  Needless to say, executing this involves 
analytic difficulties in addition to the algebraic ones -- however, in several important 
examples, this has been achieved -- and the issues involved are in any case central for 
proving isomorphism conjectures.  (See chapter 8.) 
360 Recall that this space was rationally analyzed by Borel by relating the cohomology of 
lattices to the Lie algebra cohomology of the Lie group containing them. 
361 See [Lueck-Reich-Rognes-Varisco]’s paper on this.  We will discuss this paper 
somewhat in the next chapter -- To avoid misconception, I note that some of its 
implications are indeed unconditional. 
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Chapter VI.  Equivariant Borel Conjecture   
 

 
 
6.1  Motivation. 
 
 Remember our founding myth, whereby we pretended that Borel obtained his 
topological rigidity conjecture starting from Mostow rigidity: 
 
Theorem:  Suppose that M and M’ are closed irreducible Riemannian manifolds covered 
by G/K for some semisimple Lie group G that is not PSL2(R).  Then, any isomorphism:  
φ: π1M →π1M’ is induced by a unique isometry ϕ: M→M’. 
 
 We have concentrated so far on the existence of this isometry and its topological 
analogues, but now let’s consider the implications of uniqueness. 
 
 It is worth noting that the uniqueness is not replaced by “a contractible space of 
choices” even in the case that M is a locally symmetric but not semisimple.  For instance, 
When M ≅ M’ are isometric flat tori, ϕ is an arbitrary translational isometry. Thus the 
space of equivalences is a torus.  This actually is more reasonable, because as Borel had 
noted: 
 
Proposition:  If M is an aspherical complex, then the identity component of Aut(M) (the 
space of self homotopy equivalences of M) is aspherical with abelian fundamental group 
≅ Z(π) (the center of the fundamental group). 
 
 This has two consequences: (1) rigidity will be somewhat stronger in situations 
that avoid center (or even normal abelian subgroups) and (2) one should not, in any case, 
want more topological rigidity than occurs homotopy theoretically. 
 

Alas, we have seen that the most obvious topological variant, the contractibility of 
the space of homeomorphisms, say, if the fundamental group is centerless, is 
unfortunately rarely true in high dimensions.  On the other hand, we have also seen that 
the “cubist variant” of contractibility - namely uniqueness up to pseudoisotopy, (and 
higher “block” analogues of this statement) are well-founded conjectures (e.g. are 
consequences of the Borel conjecture itself, albeit for other groups). 
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(Regular neighborhood of a PL manifold with boundary is an example of a block 
bundle -- note the absence of fibers over many points of the submanifold. Taken 
from Rourke and Sanderson’s, Introduction to Piecewise Linear Topology) 

 

 
 

Picasso’s Girl with a Mandolin 
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Thus, we concentrate on problems and statements that are visible at the level of 
individual manifolds, rather than families -- the essential difference between the block 
and fibered worlds.   

 
This is critical. I can’t overemphasize this difference between the smooth category 

and the PL and Topological categories. 
 
In the smooth category, understanding objects more complicated than manifolds 

requires some understanding of families.  For example, submanifolds have tubular 
neighborhoods that are unstable vector bundles.  Maps are often thought of as “singular 
fibrations” like Lefshetz pencils, and one considers “Whitney stratified spaces” and so 
on.   

 
In the PL situation, it is more natural to break things up over simplices in the base 

(i.e. not over individual points).  Over vertices, one has a fiber F and over edges, one has 
something isomorphic to F×I, but not with any particular projection map to I, and more 
generally over a simplex ∆ one has a space isomorphic to ∆×F (compatibly with the face 
relations of the simplex, but not with respect to anything going on over points!).  It results 
in a “cubist” decomposition of the space.  Analyzing such an object is never more 
complex than analyzing a manifold with boundary -- since those are all that occur 
inductively.  Spaces of such block bundles are effectively understood using blocked 
surgery. 

 
We will be most interested in the topological category, where there are 

obstructions in algebraic K-theory to this structure.  What exists is an even more smeared 
out structure, where no point or edge (or lower dimensional sub-object) is given a 
particular pre-image.  This is the content of the “teardrop neighborhood theorem” 
[Hughes-Taylor-Weinberger-Williams] and we will discuss it chapter 7.  As in chapter 5, 
we will start by ignoring the constraints of K-theory to form intuitions, and then 
following it up by discussing the inevitable changes that K-theory necessitates. 

 
To return to our story, one discovers, as a consequence of Mostow rigidity that: 
 

Corollary:  If M = K\G/Γ with G semisimple, M irreducible and not a hyperbolic surface, 
then Out(Γ) is finite and isomorphic to the isometry group of M.  Furthermore, the action 
is unique up to conjugacy by isometry. 
 
 In the excluded case of surfaces, one does not have the finiteness, but one still has 
the theorem (“the Nielson realization conjecture”) of Kerkhoff, and proved several times 
since362, that finite subgroups of Out(Γ) act on M.  A consequence of the proof, by 
hyperbolic geometry, is that the action is unique up to topological conjugacy - from the 
moduli space point of view, these actions are the fixed set of an action on Teichmuller 
space, and this fixed point set is contractible. 
 

                                                
362 See the notes at the end of the chapter. 
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 Thus, our interest in this and the next chapters are called to: 
 
Problem 1:  (The Nielsen Realization Problem.)  If M is an aspherical manifold with 
centerless fundamental group, can one realize finite subgroups of Out(π1M) by group 
actions? 
 
Problem 2:  If G acts on M and M’ is a compact group action on an aspherical manifold, 
and f: M’→M is an equivariant homotopy equivalence, then is f equivariantly homotopic 
to an equivariant homeomorphism? 
 
 We will see that the answer to both problems is negative, but shall see that there 
are many interesting problems raised by their study.  We shall study problem 2 first and 
then return to problem 1 in the next chapter363.   
 
 Remarkably enough, the Novikov version of this conjecture does not yet have any 
known counterexamples despite the counterexamples to the rigidity statements.  
(Moreover, these Novikov statements have additional interesting applications to closed 
manifolds, even without group actions.) 
 
6.2  Trifles 
 
 This section is devoted to several examples of group actions that show different 
kinds of phenomena that are present for different kinds of actions; we will ultimately 
focus on the topological category, and, for the sake of rigidity carefully confine our 
attention to the type of group actions we allow: by the end of this section we will see that 
if we are not somewhat picky, many lattices have infinitely many (or even uncountably 
many) cocompact properly discontinuous (C0) actions on Euclidean space. 
 
 The picture of a smooth (compact) group action is kind of simple:  the manifold 
decomposes according to orbit types.  Each orbit type defines a stratum.  They are 
essentially principal bundles over their quotient spaces, which are manifolds.  These 
strata have neighborhoods that are equivariant vector bundles.  They are put together in a 
reasonably comprehensible way. 
 
 This is proved using the elementary Riemannian geometry of any invariant metric 
(and such a metric can be obtained by averaging any particular metric over the group) 
and playing around with the exponential map (see [Bredon]).  It has many straightforward 
consequences: e.g. the quotient of the set of free points for a group action on a compact 
manifold is a (noncompact, if the action is not free) manifold that has a canonical 
compactification as a manifold with boundary.  The ∂ is essentially the set of points of 
distance ε from the singular points for some ε smaller than the normal injectivity radius 
of the fixed set. 

                                                
363 Actually, these two questions aren’t the usual two sides of a coin that we usually look 
for in existence and uniqueness: the actions demanded in Nielsen would not -- in a 
relative version -- be enough to give us an “equivariant h-cobordism”.   
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 Equivariant vector bundles are studied via detailed understanding of the topology 
of various Lie groups.  Unfortunately, this does not reduce to K-theory because the 
bundles involved will be unstable, even if the codimension(s) of the fixed set (and other 
strata) is very high.  For example, if F is the fixed set, the equivariant normal bundle 
decomposes canonically into bundles associated to the irreducible representations of G.  
Obviously, the sub-bundle corresponding to the trivial representation is trivial, but some 
other representation might occur with a very low multiplicity, forcing an unstable bundle 
as part of the data.  
 
 This picture is essentially correct in the PL situation, except that the fixed set need 
not be a manifold: if we insist that it is, by fiat, then the rest follows, except that instead 
of vector bundles, there are block bundles.  The proof of this is even simpler: one writes 
down formulae for the neighborhoods, just like in ordinary regular neighborhood theory 
(see [Rourke-Sanderson]).  As we mentioned in the previous section, the liberation of the 
“structure group” from a compact Lie group to the complicated space of “Block 
Automorphisms of the Fiber” is actually a blessing when it comes to rigidity, as will 
become clearer as we proceed. 
 
 In any case, it still is the case that the quotient of the set of free points for a group 
action on a compact manifold is a (noncompact, if the action is not free) manifold that 
has a canonical compactification as a manifold with boundary.   
 
 In the topological case, this is not true.   
 
 Our first task is give a bunch of examples of what group actions on some simple 
manifolds look like and how the different categories compare to each other.  For instance, 
although there are only finitely many smooth structures on a compact topological 
manifold (except in dimension 4), this is not at all the case equivariantly.  We will see 
very crude and also some subtle differences between these categories.   
 
 In the beginning there were linear actions.  The orthogonal group acts on 
Euclidean space, preserving unit spheres.  Every subgroup therefore acts linearly on the 
sphere, and the most obvious thing to do is try to compare arbitrary actions to linear ones. 
 
 And indeed, this works quite well364 (smoothly and PL) in dimension ≤3.   
 
 Let us consider, as a starting place, Zk actions and S1actions on the disk that are 
semifree and equivariantly contractible.  Semifree means that there are only two possible 
isotropy groups -- the whole group and the trivial group.  Equivariantly contractible is 
equivalent to asserting that the map to a point is an equivariant homotopy equivalence, 
which is equivalent to asserting that restricted to all fixed sets (including of the trivial and 
whole group) the map is a homotopy equivalence, which, in our situation just means that 
we are assuming a priori that the fixed set, henceforth denoted F, is contractible. 

                                                
364 See the notes. 
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 This is a nontrivial restriction.  Smith theory would tell us that F is Z/p acyclic (or 
Z acyclic for the case of S1 actions).  In a moment we will see that any Z acyclic 
manifold Vn is the fixed set of a smooth S1 action on a disk Dn+2 unless n=3. 
 
 But let’s start with the slightly simpler case where we start with a manifold V (of 
dimension at least 5) that is contractible (so the action will be of the desired sort).  In that 
case, V × [0,1] is homeomorphic to the disk.  (This is a straightforward application of the 
h-cobordism theorem365).  A fortiori V × Di is a disk, possessing an action of O(i) on it 
with fixed set V.  Restricting to a semifree action on Di gives us an appropriate semifree 
action on Dn+I with fixed set V. 
 
 (Note that if we restrict this action to the boundary, we get action on Sn+i-1 with 
fixed set ∂V; by a theorem of Kervaire [Kervaire], the boundaries of contractible 
manifolds in dimension ≥4 are exactly the integral homology spheres in the PL and 
topological categories -- in the smooth category, there is a unique differential structure on 
the sphere that one must connect sum with to get it to be a boundary.  In short, every 
homology sphere of dimension d >3 is the fixed set of a semifree S1 action on the sphere 
Sd+2. 
 

The question of which integral homology sphere - or mod p homology spheres - are 
fixed sets of smooth semifree S1 - or Zp - actions is more subtle and studied by Schultz in 
a remarkable series of papers366(see e.g. [Schultz1,3]). 
 
Example 1.  (A PL action whose fixed set is not a manifold.)  Take a homology sphere 
that bounds a contractible manifold.  If we consider the action on the sphere with that as 
fixed set, then we can cone (suspend) the action.  It gives a PL action on the disk (sphere) 
whose fixed set is a polyhedron with a(two) singular point(s, but one can shrink an arc 
connecting them to a point, to get a new action on the sphere with one singular point).  
This action on the disk is equivariantly contractible. 
 
Remark: Some information is given by Smith theory: in this semifree case, one knows 
that the fixed set is a homology manifold (with coefficients in Z for the circle, and Z/|G| 
for a finite group F).  In the case of S1 actions, the converse holds and any acyclic PL 
homology manifold is the fixed set of a semifree PL action367.   The proof of this is an 
induction in the spirit of [Cohen-Sullivan]. 
 
 Now let us address the uniqueness question.  How many actions are there with a 
given fixed set?  The following is a slight variant of an old theorem of Rothenberg and 
Sondow [Rothenberg-Sondow]: 

                                                
365 It’s a contractible manifold with simply connected boundary, which must be a disk. 
366 As well as what happens for dimension 3. 
367 However, not necessarily in all even codimensions because of the contribution of 
Rochlin’s theorem (as in [Schultz3]), but in codimensions that are a multiple of 4, this is 
ok.   
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Theorem:  If the codimension of F > dim(G) +2, then the smooth semifree G actions on a 
disk with the contractible fixed set F and given local representation (which we assume is 
a free representation of dimension = codimension (F)) are an a 1-1 correspondence with 
Wh(π0(G)).   
 
 (The normal representation is determined by differentiating the action of G at a 
fixed point.)  Near the fixed set, bundle theory and the tubular neighborhood tell us that 
the action is a product action.  Then the rest of the proof is an application of the h-
cobordism theorem.   
 
Remark:  The condition on codimension is important, so that we can use homological 
methods to control the homotopy theory -- in other words, we want to be able to conclude 
that complements are simply connected.   
 

It is not very hard to construct “exotic” actions, even smoothly, with codimension 
two fixed point sets, on the sphere or the disk once dim > 3.  These are called 
“counterexamples to the Smith conjecture”, see [Giffen].  Here’s a sketch of a 
construction in dimension 5 and higher based on the Poincare conjecture368, and making 
use of a nontrivial knot K, so that π1 of the knot complement is Z. 

 
Consider a free action of Zp on the sphere with an invariant codimension 2 

subsphere S (which might even assumed unknotted for simplicity).  It is easy enough to 
see that S # K # K # K  …K (p copies) is invariant under the action as well.  Now do 
“surgery on this action”, i.e. remove this invariant knot, and glue in S × D2 with the 
action that is trivial on the S direction and semifree on the D2 direction.  (The reader can 
check that this is possible).  This gives a Zp action on the sphere (here we use the 
Poincare conjecture) whose fixed set is connected of p copies of K, and thus is an 
example369. ) 

 
 In the PL category, we don’t necessarily have a bundle structure.   Nevertheless, 
for locally linear actions, the theorem is correct -- because local linearity implies enough 
homogeneity to give (“simple”) block structures, which are determined by maps into 
classifying spaces. 
 
 At this point there is a subtlety related to torsions (the “simple” in the previous 
paragraph) and therefore ultimately to decorations in L-theory (see 5.5) as we now 
explain: 
 

                                                
368 Giffen worked in the smooth category, gave some examples in dimension 4 because 
he was also able to avoid use of the Poincare conjecture in that elegant paper. 
369 It is a theorem of Levine [Levine] that a knot in a high dimensional sphere is trivial iff 
its complement has the homotopy type of a circle; as a consequence, one can’t unknot a 
knot by taking its connected sum with another knot. 
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Example 2:  (PL neighborhoods).  A basic fact about the smooth category is that the 
neighborhood theory near the fixed points are bundle theory, and therefore homotopical 
in nature:  The germ neighborhoods of F× [0,1] are just those of F (×[0,1]). 
 
 However, suppose F is a point, and we start with a semifree linear action of Zp on 
a disk Dn with 0 as the isolated fixed point.  The quotient of the boundary of an invariant 
neighborhood of 0 is a lens space.  Now suppose that p≥5, so Wh(Zp) is nontrivial.  Erect 
an h-cobordism on this lens space.  We can take universal covers, and cone the two 
boundaries separately to obtain a nonlinear action on Sn that has fixed set S0 = 0 ∪ ∞ 
(with obvious conventions).  Near 0 the action is linear, but near ∞ the action is not: the 
Whitehead torsion of the homotopy equivalence from this quotient to the linear Lens 
space is nontrivial. (Exercise, but see 5.5.3 if you need a hint.) 
 
 Now consider the cone on this action. 
 
 We obtain a PL Zp action, whose fixed set is an interval I.  However, the germ 
neighborhood is not trivial.   For then the “normal representations” at the two fixed points 
would have to be the same. 
 
 Moral:  In the PL category one has to do one of two things: either assume a local 
model.  This is perhaps not so unreasonable if one recalls that assuming the fixed set is a 
manifold is an assumption - not guaranteed, as Example 1 shows.   
 
 Or, alternatively, one can work up to concordance:  View two neighborhoods of F 
as equivalent if there is a neighborhood of F×[0,1] which restricts to each on the 
boundaries.  (Better, we should allow F to change, and allow h-cobordisms into the 
equivalence relation on the blocks over F.  A neighborhood of F will be equivalent to a 
neighborhood of F’ if they are h-cobordant, and there is a neighborhood of the h-
cobordism that restricts to each.)  Both of these theories give rise to block bundle theories 
and have classifying spaces.  The relation between these theories is established in 
[Cappell-Weinberger1] and is determined by “Rothenberg classes” that lie in the 
cohomology of F. 
 

In any case, the smooth (Rothenberg-Sondow) examples we discussed do not 
become PL equivalent. 
 
Example 3:  The neighborhoods of 0 and ∞ in the previous example are topologically 
equivalent370.  Thus, in the topological category there cannot be uniqueness of “closed 
regular neighborhoods of fixed points” as there is in the PL category. 
 
 This is a simple consequence of the h-cobordism theorem.  As L and L’ are h-
cobordant, they are diffeomorphic after crossing with S1 (as torsions multiply by χ(S1) = 
0.)  Passing to infinite cyclic covers, gives a diffeomorphism L ×(-∞,∞) → L’×(-∞,∞).  

                                                
370 This example is a variation on the trick used by Milnor in his disproof of the general 
hauptvermutung. 
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Taking covers and extending to a point at -∞ gives an equivariant homeomorphism 
between the two open neighborhoods. 
 
Example 4:  With a little more care one can see that all the smooth actions with fixed set 
F and given normal representation are topologically equivalent.  This is surely plausible 
as we’ve seen that torsion does not obstruct, and the torsion is all there is in the smooth 
category. 
 
 The result actually  follows from the following beautiful fact, due to Stallings, 
whose proof goes back to Euler and Eilenberg, and then to Mazur and Stallings 
[Stallings3]371 (and oft exploited since). 
 
Proposition (Stallings):  If (W, ∂+, ∂-) is an h-cobordism (of dimension >4), then W-∂- ≅ 
∂+ × [0,∞).  
 
 Let V be the h-cobordism with τ(V,∂-) = -τ(W,∂+).  W ∪ V ≅ ∂+× [0,1], by the h-
cobordism theorem, and similarly, V ∪ W ≅ ∂-× [0,1].  Then 
 
  ∂+× [0,∞)  ≅ (W∪ V) ∪ (W ∪ V) ∪ ….  

≅ W∪ (V ∪ W) ∪ (V ∪W) ∪ ….   
≅ W∪∂-× [0,1]  
≅ W-∂-. 
 

 
Thus, we’ve now seen infinitely many PL inequivalent topologically equivalent smooth 
actions for reasons that can be attributed to K-theory.   
 
 Topological actions that cannot be triangulated exist for many reasons, of various 
degrees of subtlety.  
 
Example 5:  We can take an infinite connect sum of S1 actions on Sn with fixed set Σ (a 
nonsimply connected homology sphere).  This will given an action on Sn with fixed set 
the one point compactification of the infinite connected sum Σ#Σ#Σ#...  This fixed set is 
not even an ANR -- its fundamental group is uncountable! 
 
Example 6.  Bing [Bing] gave an example of a nonmanifold X whose product with R is 
R4, and so that X+×R ≅ S3×R. Now we know that such examples abound (e.g. that there 
are uncountably many different such spaces in every dimension372).  In any case, X+×S1 is 
a manifold whose quotient under a circle action is a nonmanifold.  

                                                
371 Our scholarship is inadequate to the task of justifying this folklore description of the 
history of the series 1-1+1-1+-.... 
372 These can be obtained by shrinking quite general decompositions to a point, and 
ultimately using Edwards’s theorem.  We refer the reader to [Da] for a discussion of this 
beautiful area of topology 
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 He also gave uncountably many Zk actions on R3 whose fixed sets are different 
nonlocally flat R’s. 
 
 In this chapter we will often assume that the fixed sets (and quotient spaces of the 
free parts) of our topological actions are ANR’s or even compact topological manifolds. 
 
Example 7:  For this example, we will make use of Siebenmann’s proper h-cobordism 
theorem [Siebenmann 4].  For W a paracompact manifold, Siebenmann defined Whp(W) 
which classifies proper h-cobordisms with one boundary component W.  This group can 
frequently be computed, if W is “not too wild”.  For our purposes, we just note for L a 
compact manifold 

Whp(L× R) ≅ K0(π1(L)). 
 

If one takes a prime with nontrivial class group, we can start with a linear action, and 
erect an h-cobordism with given element of K0 as its torsion, and with a 1-point 
compactification, obtain an action with fixed set an interval, but that does not have any 
invariant closed tubular neighborhoods.   
 

(The reader with some number theory experience can use the analogue of the 
Milnor duality theorem in this setting to give examples with fixed set a circle by 
arranging for “other end” to be trivial and then gluing the ends together.) 

 
These kinds of examples occur very naturally when one studies possible fixed sets 

of group actions.  Certain lens spaces (with odd order fundamental groups) occur as fixed 
sets of e.g. Q8 actions only if one allows actions where there are no invariant closed 
tubular neighborhoods373. 

 
 

                                                
373 A three dimensional lens space with odd order fundamental group Zn is a PL fixed set 
iff n is ±1	mod 8.  This is due to the Swan homomorphism that associates to n the 
projective module given by the kernel of the reduction of the augmentation map ZQ8 → 
Z→ Zn (-the one dimensional free module ZQ8).  (For any G, this defines -- nontrivially -- 
a homomorphism Z/|G|* → K0(ZG).)  See example 9 below and example 3 in 6.6. 
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The actions are created on an ascending union 
of mod 2 homology balls on which PL actions 
can be constructed; the mod 2 homology being 
present to get around a finiteness obstruction.  
The action on the sphere is the one point 
compactification of the union. 

 
 
 It is a remarkable fact, discovered by Quinn [Quinn1,2] that actions which have 
locally flat fixed point sets (and manifold quotients of pure strata374) -- actions that have 
come to be called “tame” -- have some topological homogeneity:  If one has an arc 
entirely within a pure stratum of this action (i.e. where the isotropy group does not 
change along the curve) then there is an equivariant isotopy covering this.  This means 
that if an action is locally linear at one point, it will be locally linear over the whole 
stratum.  As a result, the seeming singularities that arise at one point compactifications 
and related constructions often are not there at all topologically. 
 
 In some sense the differences between Top and PL (when one has local 
triangulability of fixed sets and quotients) can be attributed to K-theory (and the Kirby-
Seibenmann obstruction).  Of course, the non-ANR situation is a serious problem in 
general for the topological category.  The smooth category differs from these categories 
for other local reasons as well. 
 
Example 8:  Let’s think about Zp actions.  In the smooth case, the fixed set F will be 
smooth and the neighborhood of F has the structure of an RZp module (with no trivial 
piece).  So, for p = 2, the neighborhood is essentially an arbitrary vector bundle. 
 

                                                
374 we obviously only need to add this as a hypothesis when a positive dimensional group 
acts (and then we do because of Bing-type examples as above). 
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In the PL (and Top is essentially equivalent in this case) case, we can analyze the 
situation using “blocked surgery”.   For the orientation reversing situation; BPL2k-1(Z2) ≅ 
BAut(RP2k-1)⊗Z[1/2] (as the L-spaces L2k(Z2,-) are 2-torsion).  Thus, the map BO(2k-1) 
→ BPL2k(Z2) loses most of the rational Pontrjagin classes that are present in the smooth 
case! 
 

On the other hand, for even codimensions, when the action is orientation 
preserving, the PL space is much richer because L2k(Z2, +) is rationally a product of 
BO×BO or its second loop space (depending on k).   

 
On the other hand, the reader should not jump to any conclusions.  The 

stabilization map BPL2k(Z2) → BPL2k+2(Z2) (and these are approximately both 
isomorphic to BO⊗Q aside from a few homotopy groups coming from the BAut) factors 
through BPL2k+1(Z2) which is essentially trivial. 
 

Consequently, although the maps BO(n) → BO(n+1) becomes highly connected 
with n, the equivariant PL versions never stabilize (even rationally)375.   
 

This is closely related to the failure of equivariant transversality in the PL and 
Topological categories (see [Madsen-Rothenberg]). 
 

For p odd, there is another interesting difference between the categories.  For the 
smooth category, one gets a decomposition of the vector bundle according to irreducible 
representations of Zp.  In PL (and Top) there is no analogue of this. 
 

In the smooth category, the structure of the neighborhoods is thus very dependent 
on what the local representation is:  if e.g. the normal representation is a sum of n distinct 
irreps, then the bundle is equivalent to a sum of n-complex line bundles, while if it is 
unitypical, the bundle is a U(n) bundle.  In the PL (and topological situations) the 
classifying spaces for the neighborhoods is pretty insensitive to the type of the local 
representation (e.g. to whether it is unitypical or not).  

 
Example 9: Converses to Smith theory.  The possible fixed set of a group action are not 
arbitrary.  Smith theory, and its generalizations, give connections between the group 
action, the homotopy type of the space acted upon, and the fixed set.  In the extreme of a 
contractible space, the phenomena are rather stark and were pioneered by Lowell Jones 
[Jones] and Oliver [Oliver] respectively. 
 
 For G a p-group, the fixed set must be mod-p acyclic.  This condition is 
essentially necessary and sufficient (although for complicated G, in the PL case, there is a 
K0(ZG) obstruction - see [Assadi]).  To be really concrete, if p is prime, then a manifold 
M is the fixed set of a semifree PL locally linear Z/pn action on a high enough 

                                                
375 Nor do the topological versions of these spaces for the very same reason (although the 
details necessary to rigorously verify this regards on Quinn’s theory of controlled ends -- 
or something equivalent). 
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dimensional sphere iff M is a mod-p homology sphere of the same parity of dimension as 
that of the sphere.376  In view of this, if the fixed set is not unique in its homotopy type, 
we can easily get equivariantly homotopy equivalent actions on the sphere by realizing 
these different manifolds as fixed sets. 
  
 For G a non-p-group, the homotopy types of possible fixed sets are determined by 
a number nG called the Oliver number.  F is a fixed set on a finite contractible complex 
(and hence homotopy equivalent to the fixed set of some action on a disk) iff χ(F) ≡ 1 
mod (nG).  When nG =1 then every finite complex F is actually the fixed set of a G 
action on some disk (such that F is embedded in the interior of the disk!). 
 
Final example:  Putting together these methods of construction with a few variations and 
the results we will explain later in this chapter, one obtains the following: 
 
Trichotomy theorem ([Cappell-Lubotzky-Weinberger]).  Let G be a real Lie group, and 
suppose that the dimension d of G/K is at least 5 377 and suppose Γ is a uniform lattice in 
G.  Then the number of properly discontinuous actions of Γ on Rd is either 1, 0א, or c (the 
continuum).  In the last case, there are (a continuum of) examples that are not locally 
rigid (e.g. arbitrarily C0 close to the left action of Γ on G/K, indeed that are degenerations 
of this action).   
 
This trichotomy is determined by the nature of the singular set378 of the isometric action 
of Γ on G/K.  One has rigidity if the action is free (i.e. if Γ is torsion free) and sometimes 
if the singular set is 0-dimensional379, but if the singular set is positive dimensional then 
the number of actions is always c (and it’s never uncountable unless the singular set is 
positive dimensional).  

 
Moral:  For the equivariant version of the Borel conjecture, we shall assume that our 
actions are “tame”: that the fixed sets are nice submanifolds and we shall also not allow 
codimension 1 and 2 situations380.   
 
 In addition, we should assume that the G action on M makes it into an 
“Equivariant Eilenberg-MacLane space”.  This should have been obvious for reasons of 
functoriality (this is like the assumption of low Q-rank in the proper Borel conjecture - 

                                                
376 Indeed, if M embeds in the sphere and we are even codimension other than 2, it is the 
fixed set of PL locally linear action.  (See [Cappell-Weinberger], [Weinberger1]).   
377 The paper gives information in low dimensions as well. 
378 This is the set of points whose isotropy is nontrivial. 
 non-rigidity holds iff (the action has discrete singular set and) d is 2 mod 4 (and 0א 379
greater than 2, and) Γ contains an element of order 2.  (As a comment whose significance 
will only become clear in the next section, Γ then automatically has at least two 
conjugacy classes of involutions, and, indeed, Γ contains an infinite dihedral group.) 
380 It is not impossible to incorporate codimension one and two phenomena in an 
“isovariant Borel conjecture” -- see chapter 13 of [Weinberger2].  However, although the 
isovariant conjecture is “more true”, the equivariant one is “more interesting”. 
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we should not have made that mistake twice!).  In any case, isometric actions on locally 
symmetric manifolds are Eilenberg-MacLane in the appropriate sense (as will be clear in 
a moment).  This eliminates the converses to Smith theory examples (example 9). 
 
 To make this condition clearer, recall that a K(π,1) is the terminal object in a 
category that includes some connected space, and only 1-equivalences (i.e. maps for 
which one can uniquely lift all maps of 1 complexes into the target).  This same notion 
makes sense equivariantly.  It boils down to (see [Lueck, May, tom Dieck]) all 
components of all fixed sets of all subgroups being aspherical.381 
 

The smooth category, even more transparently than for the original Borel 
category, is not suitable for the equivariant version.  The PL category also has no chance-
- there are too many K-theoretic obstructions.  The K-theory that enables topological 
actions to exist that don’t have closed equivariant neighborhoods, haven’t yet been 
implicated as an obstacle -- but we shall have to study this more carefully.  Depending on 
formulation, Nil is a problem or it is not.  It will cause a perturbation in our 
understanding. 

 
The Topological category will be a reasonable one for studying the problem.  

Without assuming tameness, examples such as Example 1 and 5 are unavoidable, and one 
cannot hope for equivariant homeomorphisms.    

 
The need to avoid the low codimension situation is because of the failures of the 

Smith conjecture.  With codimension two, one loses too much information on moving to 
closed strata from pure ones.   

 
 

6.3  h-cobordisms   
 
 In the case of closed manifolds, the Borel conjecture boils down to two 
statements: one about the vanishing of Whitehead groups, i.e. that h-cobordisms are 
products, and the second a statement about L-groups, that a certain assembly map is an 
isomorphism382 - which surgery then translates into the statement that homotopy 
equivalent manifolds are h-cobordant, and therefore homeomorphic. 
 
 In the smooth and PL locally homogeneous categories, the h-cobordism theorem 
is quite straightforward383.   

                                                
381 However, we will see that even this assumption does not save the day even for 
“equivariant novikov conjectures” in the appendix to section 7.  Nevertheless, till then we 
will use the current guess as our guide till we are forced to abandon this as too naïve. 
382 As noted at the end of the last chapter, the statement about Whitehead groups can also 
be viewed as the bottom part of an isomorphism of assembly maps in algebraic K-theory. 
383 We do not allow any low dimensional strata, or assume that the h-cobordism is 
assumed to be a product on those.  Needless to say, when we work with h-cobordisms 
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WhG(M) ≅ ⊕ Wh(π1(MH/(NH/H))) 

 
The sum is over conjugacy classes of subgroups; we use the convention that π1 of a 
disconnected set is the sum of the π1’s of the components.  Thus, on the right hand side, 
we have a sum of the fundamental groups of all components of all strata.  (Note that the 
group that acts on the stratum fixed by H is NH/H - the normalizer of H divided by H.). 
 
 The proof is a straightforward induction on the strata.  Once one has a product 
structure on a stratum, the structure of neighborhoods (e.g. the tubular neighborhood 
theorem) extends it to a neighborhood, and then, one uses the torsion on the complement 
and a relative form of the h-cobordism theorem to extend it to the outside. 
 
 Although the Whitehead group has a straightforward decomposition, the 
involution does not preserve the terms of the decomposition.  It does at the level of an 
associated graded of a filtration, but not on the nose.  To give an example, suppose that G 
= Z2 acts on a closed manifold W with codimension one fixed set.  Then W/G is a 
manifold with boundary F. 
 

WhG(W) ≅ Wh(π1(W/G)) ⊕ Wh(π1(F)) 
 

The involution, thought of as a matrix has one non-diagonal term corresponding 
to ± (depending on conventions) the inclusion map π1(F) → π1(W/G).  So if π1(F) → 
π1(W) is an isomorphism, the Tate cohomology H*(Z2; WhG(M)) = 0 - which would not 
be the case if the involution had actually preserved the pieces. 

 
Note, that these Whitehead groups can be quite large.  If we consider a disk D (of 

dimension > 2) with a linear G action (with no low codimension situations), then384  
 

WhG(D) ≅ ⊕Wh(NH/H)  
 

Where the sum is over conjugacy classes of isotropy subgroups (G always occurs as the 
isotropy of 0).  This can be quite a large finitely generated group. (One can compute its 
rank using representation theory - it is the number of real irreducible representations that 
are not rational.) 
 
Exercise:  Use the PL-Whitehead group to give equivariantly homotopy equivalent G-
actions on an aspherical manifold that are not equivariantly PL-homeomorphic.    
 
 Now, for a more typical situation, let’s consider WhG(S1 × D) where G acts 
trivially on the circle. In that case, we get the analogous decomposition: 
 

                                                                                                                                            
that are trivialized on a union of strata, we get the same answer, except that those strata 
do not come up in the right hand side. 
384 Recall our convention that if we do not include the ∂ in the notation, then we are 
working relative to the boundary.  If we were not working rel∂ , then we would include 
the boundary into our notation WhG(D,∂D).  
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WhG(S1 × D) ≅ ⊕Wh(Z × NH/H) 
≅ ⊕Wh(NH/H) ⊕ K0(NH/H) ⊕ Nil±(NH/H) 

 
by the Bass-Heller-Swan formula.  For higher tori, we can iterate this formula.  The Nils, 
when nonzero, give us infinitely generated torsion terms385. 
 

However, as we saw in the previous section, in the topological case this formula is 
not quite right.  It is not so hard to see that  

 
WhG,top(D) ≅ 0 

 
as a consequence of Siebenmann’s thesis (which, while giving a condition for a manifold 
to be the interior of a manifold with boundary gives, inter alia, a condition for a manifold 
V to be ∂V × [0,∞) (rather analogous to the h-cobordism theorem -- except that there is 
no K-theory obstruction386). 
 
 The situation is rather different for WhG,top(S1 × D). The ⊕Wh(NH/H) terms go 
away for the same reason as before.  The ⊕ K0(NH/H) also go away.  We can explain this 
as follows. 
 
 The  K0(NH/H) term corresponds to h-cobordisms that are isomorphic to their 
own 2-fold covers.  So when doing a 1 - 1 + 1 - 1 …trick, one can have each term 
represent - the 2 fold cover of its predecessor.  When one does this, the homeomorphism 
produced in the limit will actually be convergent along the circle. 
 
 This leaves only the Nil terms.  That is the correct answer: 
 

WhG,top(S1 × D) ≅ ⊕ Nil±(NH/H). 
 

Nil, which obstructs the fundamental theorem of algebraic K-theory holding for non-
regular rings also prevents too naïve a form of the equivariant Borel conjecture from 
holding. 
 
 Needless to say, we haven’t proved any of this.  The proof (see [Quinn, 
Steinberger]) uses the controlled h-cobordism.  What occurs on a pure stratum is not 
merely a proper h-cobordism - that can be analyzed via Siebenmann.  It has control with 
respect to the lower stratum as one goes to ∞.  As controlled K-theory is a homology 
theory, the ⊕Wh(NH/H)⊕ K0(NH/H) ⊕ Nil±(NH/H) that one sees in the interior is 
modified by H*(S1; ⊕Wh(NH/H)) ≅ ⊕Wh(NH/H)⊕ K0(NH/H) leaving the Nil’s 
leftover. 
 
                                                
385 Recall that if A is a nilpotent matrix, then I+tA is a typical element in the Nil term; 
I+tiA contains an infinite number of linearly independent elements (distinguished by 
which covers they transfer nontrivially to). 
386 Compare to Stallings’ proposition in the previous section. 
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Exercise:  Give an example of a closed aspherical manifold where there are equivariant 
homotopy equivalences not equivariantly homotopic to homeomorphisms because of Nil. 
 
 For small groups like Zp this doesn’t make a difference, but even for Zn or Zp 
×Zp, Whtop can be large (because of K-1 bubbling up from a fixed set of dimension 2 or 
because of Nil).  In any case, these issues can be handled by assuming it away in the 
equivariant Borel conjecture: 
 
Modified Equivariant Borel Conjecture:  Suppose G × M → M is a tame action, and 
that it is an equivariantly aspherical manifold, then if f: M’ → M is an equivariant 
topologically simple homotopy equivalence, then f is equivariantly homotopic to a 
homomorphism. 
 
 A negative aspect of this modification is that it loses the vanishing of Whitehead 
groups that is part and parcel of the usual Borel conjecture.   
 
 On the other hand, it is a possibly true (prima facie) rigidity statement.387 
 
 The better resolution of this difficulty is the Farrell-Jones conjecture, that makes a 
prediction of the structure of WhG,top(M) in terms of the space of equivariant G-
submanifolds of M of dimension 1.  For example, if the action is semifree, and suppose 
the fixed set contains no higher rank abelian subgroups, the relevant Whitehead group 
should just depend on the Nil(G)s, parameterized by the conjugacy classes of maximal 
cyclic subgroups of π1(F)388.  
 

We shall return to this later. 
 

6.4  UNil 
 
 We are not out of the woods yet in understanding the equivariant Borel conjecture 
because of a remarkable phenomenon discovered by Cappell [Cappell 3,4,5].  
 

This is a beautiful story worth telling in its own right, not just as an adjunct to the 
Borel story -- so we shall delay the application to the equivariant Borel conjecture for a 
couple of sections and discuss a part of Cappell’s work in its original context.   

 
We are now back in the world of manifolds, with no group actions.  For simplicity 

we will assume that all manifolds here are orientable and will only deal with one special 
splitting problem: Cappell’s work is much more general. 
 
 We begin with a theorem of Browder (and its easy generalization by Wall) 
[Wall1].    

                                                
387 Since we will see that it is indeed false, perhaps it would be better to say, frequently 
true. 
388 This description tacitly assumes no infinitely divisible elements. 
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Theorem:  Suppose M is a closed manifold (of dimension >5) and V is a codimension 
one submanifold, dividing M into two parts, M± so that π1(V) →π1(M+) is an 
isomorphism.  Then any homotopy equivalence f:M’ → M can be homotoped to one 
where f is transverse to V, and f|f -1(V) is a homotopy equivalence. 
 
Corollary:  In the PL and Top categories, the question of whether a manifold is a 
connected sum only depends on the homotopy type of the manifold, if it’s simply 
connected (or one of the summands is). 
 
 Let V be the separating subsphere in the connect sum decomposition, and make 
use of the Poincare conjecture to assert that f -1(V) is also a sphere.   
 
 An analogue of this corollary (ignoring the possibility of taking a summand that is 
a counterexample to the Poincare conjecture) without the simple connectivity was first 
proved in dimension 3.  Stallings showed that a 3-manifold is a connected sum of 
nonsimply connected pieces iff its fundamental group is a nontrivial free product (see e.g. 
[Hempel]). 
 
 In dimension 4 this corollary is now known not to be true in PL (because of 
Donaldson’s work), and in dimension 5, it is possible to fix the argument and establish 
the result.  In general, we have the following theorem of Cappell [Cappell1,4]: 
 
Theorem.  For manifolds whose fundamental groups have no 2-torsion, being a 
connected sum is homotopy invariant.   
 However, there are infinitely many manifolds homotopy equivalent to RP4k+1# 
RP4k+1 that are not connected sums. 
 
 It is the second part of this theorem that will imply, for example, that the 
equivariant Borel conjecture still fails for certain involutions on the torus. 
 
 We now know, thanks to unpublished work of Connolly and Davis, that 
connected sum is homotopy invariant for all orientable manifolds of dimension 0 and 3 
mod 4389.  It turns out that this positive result is a consequence of results proved about the 
equivariant Borel conjecture (or perhaps better, the Farrell-Jones conjecture). 
 
 But let’s do things in order. 
 
 The Browder-Wall splitting theorem is a consequence of the π-π theorem.  
Consider M’ × [0,1] and glue on to M’ ×1 a normal Z, ∂Z cobordism of f -1(M-, V) to a 

                                                
389 Their work, as well as work of Banagl and Ranicki, show that there are nonconnected 
sums homotopy equivalent to RP4k-1×S3 # RP4k-1×S3 as well - so the phenomenon does 
arise is both of these sets of dimensions. The case of 3 mod 4 was proved by Cappell in 
his original paper. 
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homotopy equivalence.  This normal cobordism exists by the π-π theorem.  We now have 
another surgery problem 
 

M’× [0,1] ∪f-1(M,V) (Z, ∂Z) → M × [0,1] ∪M×1 M-×[1,2] ≅ M × [0,2] 
 

Relative to M- × 2 ∪ M × 0.  We can view this as a π-π problem, because by Van 
Kampen’s theorem, the map π1M+ → π1M is an isomorphism.  When we solve it, we 
obtain an h-cobordism to the solution of the splitting problem.  If we glue on an h-
cobordism on the part mapping to M+×2 with negative the torsion, we turn it into an s-
cobordism -- i.e. we have produced the desired s-cobordism. 
 
 To study the connected sum problem, it is easy enough to see that we can 
normally cobord the homotopy equivalence to a split one390.  The real problem is to 
somehow understand elements in the cokernel of L(G)×L(H) → L(G*H) which will 
measure the difficulty in taking a normal cobordism to a connected sum, and modify it 
(via a Wall realization) to one where the surgery obstruction vanishes, and can be turned 
into a homotopy. 
 
 Cappell shows, on the one hand, that one can give a complete analysis in terms of 
an analogue of Nil, based on the bimodule (Z; Z[G-e], Z[H-e]).  These are bimodules 
with involution as in the Milnor duality formula.  In this case, we essentially are dividing 
Z[G-e] (and Z[H-e] ) into  pieces that are Z’s or Z⊕Z’s that are preserved or 
interchanged by the involution.  When there is no 2-torsion, we are in the situation where 
everything is of the form (Z⊕Z,Z⊕Z) where there is nothing.  However, the (Z, Z) gives 
a very large group, which is the other hand. 
 
 On this other hand, Cappell writes down quite explicit elements in L2(Z[D∞]).   
D∞ is the infinite dihedral group.  He shows that these are non trivial by mapping to the 
finite dihedral groups D2n (n odd).  More precisely he considers the Arf invariant in L2(Z) 
= Z2 and by first going to an odd fold cover and then taking the Arf invariant (i.e. 
mapping to L2(Z)).  If splitting were possible, i.e. the L-group would be as small as 
predicted, these two elements would be the same.  More precisely, L2(Z) → L2(Z[D∞]) 
would be an isomorphism, in which case passing to a finite fold cover would just 
multiply the element by the index of the cover.  Since the Arf element is of order 2, we 
would expect equality under odd fold covers.   But we do not obtain this by explicit 
calculation. 
 
 Some more details:  Recall that L2k(π) is built our of (-1)k-symmetric quadratic 
forms over Zπ.  Let π = Z2*Z2, generated by involutions g and h.  gh = t is the translation 
in the usual view of D∞ as the affine isomorphisms of Z (g is then x →-x and h is x →1-x.)   
 

                                                
390 Here we only need to use functoriality to build a map L(G*H) → L(G)×L(H) that is 
almost a retraction of the maps induced by inclusion L(G)×L(H) → L(G*H).  (Why is not 
a retraction?  How far off is it?) Y 
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Cappell’s elements γk are defined on a 2-dimensional quadratic form - generated 
by (e,f), with λ(e,e)=λ(f,f)=0 and λ(e,f) = 1 (i.e. looking hyperbolic, i.e. trivial, from the λ 
point of view) and with µ(e) = g and µ(f) = tkgt-k. Note that γk is essentially γ1 pushed 
forward from a subgroup of index k.   It is obvious that the augmentation, sending g and h 
to the trivial element, takes γk to the standard Arf invariant 1 element of L2(Z).  On 
passing to a large cover, one checks that the Arf invariant becomes trivial and we have a 
non-split example. 

 
One can check that for different k’s one gets different elements by examining the 

various transfers and augmentations and thus obtains Cappell’s result that L2(Z[D∞]) 
contains and infinite ⊕Z2. 

 
Now we know the full structure of this L-group391 (and explicitly, not just as an 

abstract statement), namely:    
 
L0(Z[D∞]) = Z3 

L1(Z[D∞]) = 0 
L2(Z[D∞]) = ⊕Z2 
L3(Z[D∞]) = ⊕Z2⊕Z4 
 
All unlabeled sums are infinite.  They show that L-groups of nice small lattices 

can be infinitely generated.  It is not shocking that that they give rise to an infinitely 
generated group of counterexamples to the equivariant Borel conjecture - as we shall see 
in the next section.    

 
The results about homotopy invariance of connected sums for oriented manifolds 

of dimension 0 and 3 mod 4 for general fundamental groups is a consequence of (1) the 
work of Cappell on the algebraic nature of the obstruction mentioned above and (2) some 
specific calculations that Connolly and Davis did - using the methods of Farrell and 
Jones392 -- so that the calculations done for the dihedral group end up sufficing for all 
groups.  The first point is that the Z-bimodule with involution basically only sees the 
number of elements of order 2 and the remaining number of elements.  Unlike L(Zπ) that 
depends on the ring structure of π (and the involution) - UNil really looks at much less.  It 
turns out that with cleverness one can reduce to the cases of Z2*Z2 and, say Z2*Z3.  The 
second case is algebra ically tough393 - however the Farrell-Jones conjecture will reduce 

                                                
391 Thanks to work of Banagl and Ranicki, and Connolly and Davis. 
392 The recent paper of [Bartels-Lueck] (which also is a further development of the 
Farrell-Jones ideas) includes enough examples to suffice for this purpose.  It has the 
advantage of being published, while Connolly and Davis have the advantage of only 
requiring ideas of negative curvature. 
393 The fundamental group contains a nonabelian free group of rank 2.  However, the only 
virtually cyclic subgroups inside of it are dihedral- which, as we will later see, gives 
vanishing in the relevant dimensions. 
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it to the former case394, and this group is a retract of the fundamental group of a 2-
dimensional hyperbolic orbifold, so it’s a case that can be handled by the ideas of Farrell 
and Jones [Farrell-Jones 5], [Bartels-Farrell-Lueck], [Bartels-Lueck-Reich-Ruping].   

 
6.5  The simplest nontrivial395 examples.   
 
 Let us consider the simplest special case of the Equivariant Borel Conjecture, 
when M is a G-manifold with singular set of dimension 0 396.  In that case, the quotient is 
a nonmanifold with just isolated singularities (corresponding to the nontrivial isotropy).  
This case doesn’t require any controlled (or stratified) topology to analyze.  As in section 
2, the key issues are all susceptible to analysis by means of proper topology and then one 
point compactifying.  We shall see that the Whtop theory is apt to have an especially 
simple form, because of the discreteness of the singular set), but that despite this there 
can be failures on very concrete manifolds, because of the nonvanishing of UNil. 
 

Let W be the nonsingular part of M/G.  We should then consider the proper 
topology of W.  Its fundamental group Γ fits into an exact sequence 

 
1 → π → Γ → G → 1 

where π = π1M.   
 

The singular points correspond to subgroups of finite order in Γ.  The isotropy 
group acts on the normal sphere to the fixed point, and then embed a “space form” (i.e. 
manifold397 quotient of the sphere) near an end of W corresponding to the deleted 
neighborhood of this point in M/G.   

 
Indeed a little reflection398 shows that Γ acts on the universal cover of M, and that 

its singular set is discrete - all isotropy finite, injecting into G, and that by taking Γ orbits, 
the singular points are in a 1-1 correspondence with conjugacy classes of maximal finite 
subgroups of Γ.  The key nontrivial observation here is that Smith theory (see e.g. 
[Bredon]) guarantees that the fixed set of each element of prime (power) order (acting on 
the universal cover) is a single point, by our discreteness condition.   

 

                                                
394 The basic example of this is the reduction of Z*Z2 to Z2*Z2.  There are two conjugacy 
classes of maximal infinite dihedral groups each of which contribute its UNils to 
L(Z*Z2). 
395 By which we mean non-free -- so that new complications arise that are not part of the 
ordinary Borel conjecture. 
396 This case is considered in detail in a paper of [Connolly, Davis and Khan2] that gives 
full justification of the somewhat heuristic descriptions given here.  Recall that the 
singular set is the set of points where the isotropy group is nontrivial. 
397 because we are assuming the discreteness of the singular set. 
398 Using discreteness of singular sets! 
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Moreover, these maximal finite subgroups are disjoint (except for the identity 
element), and (since M is compact) there can only be finitely many (conjugacy classes) of 
them.  We shall call them G1, G2, …. Gk (or maybe use some other indexing set). 

 
The Whitehead theory, according to Siebenmann [Siebenmann4], then fits into an 

exact sequence: 
 

⊕Wh(Gi) → Wh(Γ) → Whp(W) → ⊕K0(Gi) → K0(Γ) 
 
(which is suggestive - and one can correctly do so - extend the sequence both to the left 
and right and make Whp into a relative group.)   Indeed, for this special class of groups, 
i.e. where all elements of finite order lie in a unique conjugacy class of subgroup of finite 
order the Farrell-Jones K-theory conjecture boils down to the statement399 that 
 
(*) For such groups ⊕Wh(Gi) → Wh(Γ) and ⊕K0(Gi) → K0(Γ) are isomorphisms. 
 
 The reader might suspect (correctly) that the injectivity of these maps is (part of) a 
Novikov conjecture statement.  In any case, conjecturally, these proper Whitehead groups 
vanish. 
 
 Needless to say, we don’t expect 
   

 ⊕L(Gi) → L(Γ) 
 

to be an isomorphism; after all that is not what happens in the torsion free setting when 
there are no Gi! 
 

To simplify400 the discussion401, let’s ignore the issues of algebraic K-theory (i.e. 
how to decorate the L-groups), and should use the -∞ decoration here.   
 

⊕Ln
-∞(Gi) → Ln

-∞(Γ) → Ln
-∞(W) → ⊕Ln-1

-∞(Gi) → Ln-1
-∞(Γ) 

 

                                                
399 As was observed by Connolly, Davis and Khan. 
400 It is a little tricky trying to relate proper L-groups to more ordinary ones of groups (or 
rings).  For a noncompact manifold with a simply connected end, the proper (h-) theory 
will be the reduced Lh group of the interior.  If W were N×R, then it would be Lp(N) 
(with a shift, and here “p” means the algebra is based on projective modules, rather than 
on free modules).  A key important case is the π-π case, there the proper L-group 
vanishes. 
401 Actually, the ideas of tangentiality that we discussed in 4.6 could allow us to put a 
boundary on, and work with ordinary surgery of manifolds with boundary (recognizing 
the nonuniqueness of the boundary that we have put on).  But we will not burden our 
discussion with this. 
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 After all, this is the sequence one would get for manifolds with boundary, and 
after crossing with a circle, we can put a boundary on these manifolds, and further it will 
be essentially unique (surely after crossing with another one!).  
  
 Henceforth we will just write L for this decorated version, which means that final 
results will have to take the change of decoration into account. 
 
 Let us now combine this with the surgery exact sequence: 
 

→Sp(W) → Hn
lf(W; L(e)) → Ln

p(W) → 
 
 Conjecturing that Sp(W) vanishes (or, better is contractible, if we spacify) would 
boil down to the statement that Hn

lf(W; L(e)) → Ln
p(W) is an isomorphism.   

 
However, we would like to improve this since W is not an invariant of Γ, although 

its proper L-group is the cofiber of ⊕Ln-1(Gi) → Ln-1(Γ), which patently is.  The idea is402 
to recognize that M with its G-action is the equivariantly canonical object that naturally 
arises, and on it there is a natural cosheaf of spectra which is L(Gm) - the L-group of the 
isotropy group at that point.   

 
An analogous point is this - suppose we are interested in Sp(M-A) where M is a 

compact manifold and A is a subspace403, then the normal invariants would seem to be 
the invariants of the hard to understand object Hn

lf(M-A; L(e)).  However, thanks to 
excision this group is isomorphic to the relative group Hn(M,A; L(e)).  This latter group 
has much better functoriality.  If the codimension of A is at least 3, then (modulo K-
theoretic issues) Ln

p(M-A) ≅ Ln(π1M, π1A), also a group with much better functoriality. 
 
As a consequence, although the space M-A (importantly its homotopy type) 

depends on the exact embedding of A in M, Sp(M-A) actually only depends404 on the 
homotopy class of the inclusion map A → M.   

 
Back to our situation, the homology group can be written as Hn(M/G ; L(Gm)).  

By doing this, rather than having a point with L(e) as the relevant coefficient at the 
singularity, we put an L(Gm) there, which replaces the L(Gm) modification to L(Γ) that 
takes place in the proper L-group.  In short, the sequence becomes405: 

 

                                                
402 This idea seems to have first been enunciated in algebraic K-theory by Quinn in 
thinking about the K-groups of crystallographic groups ([Quinn 9]).  I was lead to it by 
thinking about what an equivariant Novikov conjecture should say, and being inexorably 
lead to the equivariant K-theory as the home of the equivariant signature operator - which 
also is essentially the same modification.   
403 Note, one does not need a submanifold. 
404 This is indeed true, although, obviously the above heuristic does not give a proof of 
this. 
405 We ignore here the tacit use of the fact that S(*) is trivial. 
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 → Ln+1(Γ) → SG(M) → Hn(M/G; L(Gm)) → Ln(Γ). 
 

There are a number of ways of making this precise.  At the face of it, the middle 
term doesn’t quite make sense - Gm is actually a conjugacy class of subgroups, rather 
than a subgroup.  From a stratified point of view, it should be viewed as the local 
fundamental group of the pure stratum near the point; in [Davis-Lueck] a general theory 
is developed perfectly adapted to group action purposes, and essentially one uses the 
einsatz: 

L(Gm) = LG(G/Gm). 
 

Note G/Gm is a sensible thing to look at: it is the orbit corresponding to the given 
point in the orbit space.   

 
The good news is that with these modifications, one actually has a valid 

calculation (with the -∞ decoration) for G-actions on M, aspherical actions such that there 
are no codimension ≤ 2 situations: 

 
→ Ln+1(Γ) → SG(M, rel singularities406) → Hn(M/G; L(Gm)) → Ln(Γ). 

And 
 

Hn(M/G; L(Gm)) ≅ Hn 
Γ(EΓ; L(?)) 

 
Here EΓ denotes the universal space for proper Γ actions.   More precisely, EΓ is 

a space that has a proper action of Γ and furthermore, given any X with proper Γ action, 
there is an equivariant map X → EΓ, moreover, this map is unique up to homotopy.  
(Note the similarity to EΓ which has a similar characterization, except that only free Γ 
spaces are used.)  EΓ can be characterized as a proper Γ space so that for all finite 
subgroups G of Γ the fixed set EΓG is contractible. 

 
Once we reach this point, the formula for Whtop in the general case has an entirely 

similar description. There is a very interesting point here -- not visible when M is 
equivariantly aspherical, but of great use in trying to apply the equivariant h-cobordism 
theorem to more general G-manifolds.   

 
The first point is that Whtop (even rel singularities) depends on more than the 

fundamental group of the top stratum.  This is pretty clear: for a G action on M × X for a 
free simply connected G-manifold X, the top stratum has the same fundamental group as 
that for M - indeed, it is all top stratum, since M×X has a free action, so its Whitehead 
group is Wh(Γ).  However, this point can be absorbed in the statement that this 
Whitehead group depends on the “equivariant fundamental group” which will then 
include the fact that for all nontrivial subgroups of G, the fixed set is nonempty. 

 

                                                
406 The singular set is the set of all points whose isotropy group is nontrivial. 
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The second point is that it does not depend on more than this (i.e. the equivariant 
fundamental groupoid).  This is truly remarkable and is a consequence of a theorem of 
Carter (and one of Hopf):   

 
Let’s think about an example - say M a manifold with a semifree G action with 

fixed set F.  We have the sequence 
 

 H0(F; Wh(G)) → Wh(Γ) → Whtop,G(M rel F) → H0(F; K0(G)) → K0(Γ). 
 
This is because the h-cobordism that we are considering on the top pure stratum is 

controlled over F×[0,1] and controlled K-groups form a homology theory (see 4.8 and 
5.5.1)407.  To unpack this a little bit, the term H0(F; Wh(G)) can be computed using an 
Atiyah-Hirzebruch spectral sequence whose E2 term involves things like H0(F; Wh(G)), 
H1(F; K0(G)), H2(F; K-1(G)) and so on.   

 
The statement we made about the Whitehead group only depending on the 

equivariant “fundamental group” is therefore surprising because H2 and higher all depend 
on F, not just its fundamental group.  The reason that this statement is true is because of 
two facts: 

 
(1) K-i(ZG) = 0 for i>1 (Carter’s vanishing theorem [Carter]) 
(2) H2(X) →H2(π1(X)) is surjective for all X (Hopf). 

 
Naturality tells us that the part of Wh(Γ) coming from H2(F; K-1(ZG)) factors through 
H2(π1(X); ; K-1(ZG)), but Hopf tells us that it actually always hits all of it. 
 
 Carter’s theorem is the result of computation - there is no known purely 
conceptual explanation for this vanishing.  Indeed, given current knowledge one could 
conjecture408 that that its statement is true for all groups, not just finite ones. 
 
 Hopf’s theorem is quite simple:  The Eilenberg-MacLane space K(π1(X), 1) can 
be obtained by attaching 3-cells and higher to X.  (This argument was not actually 
available to Hopf, and, indeed, he needed to give a definition of H2(π1(X)) without having 
the concept of an Eilenberg-MacLane space!) 

 
Now, let us turn to the construction of some counterexamples to the equivariant 

Borel conjecture as we have rephrased it: some equivariant simple homotopy 
equivalences to G acting on M which are not equivariantly homotopic to a 
homeomorphism.  Indeed, the original examples of Cappell can be turned into such 
examples, albeit with nondiscrete singular set.  Using the calculations of [Connolly-

                                                
407 The infinite processes we can use to kill elements of the Whitehead group need to be 
controlled over F -- which puts a condition on them (i.e. they are not arbitrary elements of 
π1(F)×G -- as we discussed in seeing that Nils enter). 
408 And this is a part of the Farrell-Jones conjecture that we will discuss later. 
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Davis], we can get similar examples with discrete singular set, but for non-orientation 
preserving actions. 

 
Consider an affine involution on a torus with fixed points: such is necessarily of 

the form T1× T2× T3 where the first torus has a trivial action, the second is a product of 
the “complex conjugation action” (thinking of the circle as unit complex numbers) some 
number of times, and the final torus is the interchange of pairs of factors. We just use this 
to set notation. 

 
Let Γ denote the group π1⋊Z2.  This is the group that acts on the universal cover 

Rd.  Note that Γ always contains a subgroup isomorphic to Z2*Z2.  (Frequently it contains 
a subgroup like this that splits off, in which case more transparently, L(Z2*Z2) is a split 
summand of L(Γ)).  This will be the source of nonrigidity. 

 
Suppose that we are in the situation of an action of type T2, i.e. with isolated fixed 

points.  In that case, indeed Z2*Z2 is a split summand of Γ.  (Here the Z2’s must be given 
the orientation character of the action of the involution on M.) 

 
We can act on the proper structures Sp((Md -F/Z2)) by any element of Ld+1(Γ).  We 

shall use the nontrivial elements of Ld+1(Z2*Z2) coming from UNil.  Cappell’s elements 
live in L2(Z2*Z2) with an orientation preserving action, so it would be necessary to cross 
with a circle to act by these, but the elements constructed in [Connolly-Davis] can be 
used even in the isolated fixed point situation. 

 
We claim that the result of such a action produces a new proper structure, and 

indeed a new equivariantly homotopy equivalent action.  The proof of this is a 
straightforward application of functoriality409: the point being that these elements of 
Ld+1(Z2*Z2) survive the map Ld+1(Z2*Z2)→ Ld+1(Z2*Z2 , Z2 ∐ Z2). 
 

Actually, we can produce similar actions on hyperbolic manifolds.  In order to do 
so, we note a key trick for showing that UNil’s split off the L-groups that is similar to 
other transfer devices used in Chapter 4.  Suppose, for concreteness, we have an 
involution on a hyperbolic manifold M.  Suppose that γ is an invariant geodesic for the 
involution.  Then there is a cover of M associated to this subgroup of the fundamental 
group, and the involution lifts to that cover. 

 
Note that there is a normal exponential isomorphism Exp:Nγ → H/Z, where H is 

the hyperbolic space, and Z is the group acting by translation associated to the geodesic 
γ.  The normal bundle Nγ can be split as a product of trivial Euclidean bundles according 
to the eignespace decomposition of the involution.  The inverse of this map is Lipschitz 
(because of non-positive curvature) and produces a map SG, bdd(H/Z) → SG, bdd(Rd/Z).  

                                                
409 The original proof of this was by a counting argument, and just showed that this 
proper structure set was an infinitely generated group, but did not control individual 
elements. 
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We can split off the trivial summand, and then get a map → SG, bdd(Rk/Z).  where the 
action on the Rk direction is antipodal.  This last structure set can easily be computed: at 
the infinity from the Rk direction, we have arbitrary control (by rescaling, since we are 
now in Euclidean space), and the action is free. The two fixed points can be deleted, at 
the cost of allowing proper control in those directions, but that mods out by Ld+1(Z2 ∐ 
Z2).  In any case, the UNil elements do survive. 

 
The methods of constructing hyperbolic manifolds using quadratic forms 

explained in chapter 2 give an ample supply of involutions to which to apply this 
construction.   

 
With more effort, we are even led to speculate (and this is a theorem modulo the 

Farrell-Jones conjecture that we will get to later) that in this case, the equivariant 
structure set is a sum of contributions associated to invariant unions of closed geodesics.  
(Free unions, though, contribute nothing, as indeed do ones where only odd order 
isotropy arises.  Indeed, a bit of thought reduces to geodesics that are invariant under 
some nontrivial involution.) 

 
6.6  Generalities about stratified spaces.  
  
 In the last section we dealt mainly with the situation of isolated singular set, so 
that the quotient spaces of these group actions could be thought of as non-compact 
manifolds with some ends compactified by gluing in points.  What happens when the 
singular set is higher dimensional?  One approach is via considering the quotients as 
stratified spaces. 
 
 For the purposes of the rest of this chapter, we will see that there is a reasonable 
classification theory for stratified spaces, with respect to stratified homeomorphism, i.e. 
within a (simple) stratified homotopy type.  Unfortunately, this rarely410 will coincide 
with what one is interested in in the situation of equivariant homotopy types.  
Consequently, our later sections will deal with the implications of the tension between 
“stratified” and “equivariant”. 
 
 A stratified space X is a space with a filtration X = Xn ⊇ Xn-1 … ⊇X0 by closed 
subsets (called strata, stratum in the singular).  We shall always assume that for each i, 
the pure stratum Xi = Xi - Xi-1 is an i-dimension (ANR homology-) manifold.  Beyond 
this, there are various theories about how the strata are demanded to fit together.  We 
shall use the notion of homotopically stratified spaces, introduced by Quinn [Quinn6] 
(see also [Hughes]).  The precise general definition need not bother us here -- instead, we 
shall give some examples that are and some that are not. 
 
Example 1:  The one point compactification of a noncompact manifold M, M+ is 
sometimes a stratified space for us, and sometimes not.  The obvious stratification 

                                                
410 Or, fortunately, this occasionally will coincide with what we are interested in. 
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consists of a bottom 0-dimensional stratum consisting of the added point, and the 
remaining points form the top pure stratum. 
 
 The usual strong stratifications (such as Whitney stratifications) would require the 
existence of a compactification of M to a manifold with boundary:  M+ could then be 
viewed as the result of shrinking this boundary to a point, or gluing on the cone of the 
boundary to this compactification. 
 
 Unfortunately, this manifold with boundary is not a topological invariant of this 
situation (even when it exists).  There is an indeterminacy associated to Wh(π1∂). 
 
 Our assumption is that M is a tame in the sense of Siebenmann [Siebenmann 3].  
This is equivalent to the condition that M ⨉ S1 has a compactification as a manifold with 
boundary.  Essentially this condition means that complements of sufficiently large 
compact sets can be “pulled” closer from infinity.  We refer to Siebenmann, and the 
predecessor work of [Browder-Livesay] for more information, and, in particular, how to 
recognize this. 
 
 However, many noncompact manifolds are not allowed (to be the nonsingular part 
of a compact stratified space), such as a typical infinite cover of a compact manifold 
(such as infinite abelian covers of a surface of genus >1) or any manifold with infinitely 
generated fundamental group or homology.   
 
 Example 2:  A manifold with a nice submanifold (W,M) can be viewed as a two 
stratum space, with bottom stratum M, and the ambient manifold being the top stratum.  
The condition of tameness follows from the condition that M is locally flat in W, i.e. that 
each point in M has a neighborhood in W which isomorphic to (Rw, Rm).  (This does not 
guarantee that M has a topological bundle neighborhood.)   
 
 There are some other submanifolds that are not locally flat, but still give us 
homotopically stratified spaces -- they all have a nice homogeneity property.  The basic 
source is the Cannon-Edwards theorem that the second suspension of any homology 
sphere Σ is a topological sphere411 (see [Daverman]).  As a result, if W = M ⨉ cΣ, (or 
more generally, the mapping cylinder of any Σ (block) bundle over M) one obtains a 
topological manifold in which M is embedded in a quite nontrivial, yet homogeneous, 
way.  This is a rather exotic embedding from the conventional point of view, yet it gives 
a reasonable homotopically stratified space. 
 
 Example 3:  If G is a finite group acting on M, a sufficient condition for M/G 
(stratified by orbit types) to be homotopically stratified is that for H ⊂ K, the embedding 
of MK ⊂MH should be a locally flat embedding of manifolds.  For this situation, the 
homogeneity property is quite remarkable: it includes some of the one point 
compactification examples mentioned above!  As in example 1, there does not have to be 

                                                
411 The deep part is that it’s a manifold at all.  Identifying the manifold with a sphere then 
follows from the Poincare conjecture. 
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a closed invariant “regular neighborhood” of the fixed set.  The following result gives an 
example of how such actions occur naturally in converses to Smith theory. 
 
Theorem (see [Weinberger 3])  A submanifold Σ of the sphere is the fixed set of a 
(locally linear412) Q8 action iff  Σ has codimension a multiple of 4 and is a Z2-homology 
sphere.  The top stratum of the quotient can be compactified as a manifold with boundary 
iff  
 

Π#tor(Hi(Σ; Z)) ≡ ±1 mod 8.   
 

In this case, there is always a PL locally linear action. 
 
 The group Q8 can be replaced by any other group that can act freely on the sphere, 
but then the conclusions have to be modified.  (The simplest modification is that for 
cosmetic reason we wrote down a product of numbers that really should be an alternating 
product.)  This is the simplest case where there is a nontrivial restriction on the homology 
of the fixed set that follows from algebraic K-theory.  The actions can always be made 
PL locally linear in the complement of a point -- indeed that is a natural feature of their 
construction -- the numerical obstruction is a Wall finiteness obstruction that doesn’t 
arise in the noncompact setting.  The local linearity at ∞ is a remarkable consequence of 
general features of homotopically stratified spaces - see [Quinn 5]. 
 
 Example 4:  Supernormal spaces.  These are spaces modeled by a strengthening of 
the condition of normality that occurs in algebraic geometry.  We mention them because 
their theory is more elementary than the general situation, but is quite beautiful and is a 
good place to start.  
 
 A stratified space X is supernormal if each pure stratum is dense in the 
corresponding closed stratum413, and near each point x of Xk and any ε >0, there is a δ>0, 
so that any 1-manifold414 in Xr for r>k, within δ of x is nullhomotopic within a ball of 
radius ε.   
 
 Note that any manifold with boundary can be thought of as a supernormal 
stratified space with two strata. 
 
 For an embedding of closed manifolds (W,M) supernormality is (by a nontrivial 
theorem, see [Daverman-Venema]) exactly the condition that one is in codimension > 2 
and the submanifold is locally flat.  If M is a subpolyhedron supernormality (from the 
point of view of the top stratum) would follow if the Hausdorff codimension is >2. 

                                                
412 If you wish. 
413 This is just a convenience to ensure that our picture of the singularity set to correspond 
to the largest proper closed stratum. 
414 We cannot just use loops because we want to require normality in this definition.  
Normality is essentially the same condition with S0s replacing the 1-manifolds in this 
definition. 
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 The Whitehead group for supernormal spaces415 is just ⊕Wh(π1(Xi) (i.e. just like 
the PL situation). 
 
 The surgery theory describes the structure sets (which are actually groups) S(X) 
={(X’, f): f:X’ → X is a stratified homotopy equivalence}/stratified s-cobordism416.  If Y 
is a union of strata of X, then we can also form S(X rel Y) which is defined in the same 
way, but we insist that f|Y’ is already a homeomorphism. 
 
 A stratified map f: X’ → X is a map that preserves pure strata, i.e. so that f(X’r) 
⊂ Xr. A stratified homotopy equivalence is a stratified map f: X’ → X for which there 
is a stratified “inverse” g: X → X’ so that the composites fg and gf are both stratified 
homotopic to the identity. 
 
Theorem ([Cappell-Weinberger 2]).  If X is supernormal of dimension n>4, with Σ its 
singularity set (i.e. the complement of the top pure stratum), then S(X rel Σ) ≅ Salg(X) 
where Salg(X) denotes the fiber of the assembly map -- i.e. what surgery would predict 
had X been a closed manifold. 
 

→ Ln+1(π1X) → Salg(X) → Hn(X; L) → Ln(X). 
 

 So the formal structure set of algebraic surgery theory has an interpretation even 
for (certain) non-manifolds (without using the artifice of thickening the space to be a 
manifold).  In particular the Borel conjecture for π1(X) then implies (and clearly is 
implied by!) 
 
Conjecture:  If X is an aspherical supernormal space, then any stratified space stratified 
homotopy equivalent to X rel Σ is homeomorphic to it.   
 
 This is equivalent (as surely one would guess) to the statement that, assuming 
asphericality, S(X) → S(Σ) is an isomorphism.  In this view, aspherical manifolds are 
topologically rigid because they have no singularities! 
 
Remark:  For the conclusions about the rel Σ theory, we only need the simple 
connectivity condition occuring in the definition for the parts of the top pure stratum Xn 
near x (i.e. not on the intermediate strata).  This follows from «continuously controlled at 
infinity surgery [Pederson]»417. 
 

                                                
415 Ignoring low dimensional difficulties. 
416 The equivalence relation can be taken to be homeomorphism if we only allow 
manifolds as strata.  However, for our calculation to be correct as stated, it is necessary to 
allow ANR Z-homology manifolds as strata, and then an s-cobordism theorem is not 
available.  This is related to the discussion of functoriality in 4.7. 
417 this is not very hard, and the reader might want to try her hand at verifying this. 
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 The absolute theory is necessarily more complicated:  For example, if M is a 
manifold with boundary ∂M, we can view it as a 2 stratum supernormal stratified space 
X.  S(X) in the above notation, then corresponds to the group S(M, ∂M) (while S(X rel Σ) 
is S(M)).  The strata interact418. 
 

In example 2, there is a ‘forgetful’ map S(W,M) → S(W).  This is far from trivial.  
(On the other hand, the forgetful - or better, restriction - map S(W,M) → S(M) is 
tautologous.)  The reason for this that the closed stratum of a manifold homotopically 
stratified space stratified homotopy equivalent to (W,M) is actually a manifold, as we 
now explain. 
 

It is quite easy is that W’ is an ANR homology manifold and that it has DDP (see 
4.7 for this and the rest of this paragraph)419.  That it is a manifold if the top pure stratum 
is a manifold requires the theorem of Quinn that gives it a resolution, and then Edwards’ 
theorem that DDP is then sufficient for manifoldness.   
 

Now we have can combine the maps S(W,M) → S(W)×S(M) and the theorem 
above directly implies that this is an isomorphism if the codimension of M in W is at 
least 3.   

 
Wonderful.  We’ve calculated something but what does it mean? 

 
It certainly includes the statement that if M ⊂ W, is a locally flat submanifold of 

codimension at least 3, then any manifold M’ homotopy equivalent to M embeds in any 
manifold W’ homotopy equivalent to W 420.  Moreover, this embedding “has the same 
homotopy theory” as that of M ⊂ W.  For example, M’ ⊂ W’ is homotopy equivalent to 
M ⊂ W, as a pair, and W’-M’ is homotopy equivalent to W-M.   
 

The first observation is a completely natural (but perhaps surprising) statement to 
someone studying embedding theory, but the second one, while strengthening our 
conclusion (the embedding we produce of M ⊂ W has even more properties than we 
might have asked for), is not particularly a natural one to someone who studies 
embeddings for a living.     

 

                                                
418 unlike the situation in K-theory, where the stratified object decomposed into pieces. 
That L-theory works differently could have been predicted by the fact that the involution 
given by turning h-cobordisms  upside down does not preserve this decomposition.  But, 
this is obvious, anyway, as above. 
419 So, if the reader had been content to accept that we could define S(W) using 
homology manifolds, and that this only differs by some Zs from the one defined using 
topological manifolds, then the forgetful map was easy to define! 
420 Actually, we should use simple homotopy equivalence.  However, there are 
straightforward arguments that allow us to deduce the homotopy equivalence result from 
the above. 
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For example, consider the two (homotopic) embeddings of Sk-1 ∪ Sk-1 in S2k-1, 
according to whether the Sk-1s are linked as in the Hopf link, or just embedded in two 
disjoint disks -- the first has complement homotopy equivalent to Sk × Sk and the other Sk 
⋁ Sk ⋁ S2k -- completely different.421 
 

We also note that there is also a third condition that comes out of isovariant 
homotopy equivalence regarding the normal bundles422 of the submanifolds.  More 
precisely, associated to a codimension c locally flat423 embedding there is a spherical 
fibration Sc-1 → E → M.  These spherical fibrations must match for M and M’.  The 
proof of this goes by comparing the neighborhood systems near M and M’ that are 
mapped to each other by f and g. 
 

These 3 conditions serve to define the notion of a Poincare embedding.  A 
Poincare embedding of M in W consists of a triple ((X, E), π, f), where (X, E) is a pair, π: 
E → M is a spherical fibration with fiber Sc-1 and (denoting the mapping cylinder of a 
map by Cyl), f: X∪Cyl(π) → W is a homotopy equivalence.  The stratified map (W,M) 
→ (W’,M’) gives us an isomorphism of the underlying Poincare embeddings, and the 
theorem that S(W,M) → S(W) × S(M) is an isomorphism, says that there is a unique 
isotopy class of embedding of M in W associated to any Poincare embedding.   

 
In general we have to be careful in thinking through what we get out of a 

calculation of S(X) --- it gives some useful information, but frequently not all the 
information we want: for instance, it won’t classify for us the embeddings in a given 
homotopy class. 

 
 A full discussion of how to calculate S(X) for a stratified X is outside the scope of 
our current exposition, but ignoring algebraic K-theory issues, we can give a quick 
summary. 
 

(1) There are spectra L(X) associated to a stratified space X.  πiL(X) = L(X × Di rel 
∂).  If Y is a union of closed strata of X, there is a restriction map L(X) → L(Y), 
whose fiber is L(X rel Y).  If X ⊂Z is an open inclusion then there is a induced 
map of L(X rel ∞) → L(Z). 

                                                
421 The complements do have the same stable homotopy types, but this does not suffice 
for the application of (stratified) surgery.  
422 We are abusing terminology here, since locally flat submanifolds don’t necessarily 
have bundle neighborhoods. 
423 With a little effort, this spherical fibration can be associated to non-locally flat 
embeddings.  Combining this observation with the result about the stratified structure set 
quickly gives a proof (in codimension > 2) that topological embeddings can always be 
approximated by locally flat ones (see [Davermann-Venema] for a thorough discussion of 
such results).  (In codimension two, this is not true according to examples of Matumoto; 
the codimension 1 result is true, but would involve a little more work to deduce from 
these methods, since the embedding problem does not reduce to homotopy theory.) 
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(2) L(Xn rel Xn-1) ≅ Ln(π1(Xn)) 
(3) There is an exact sequence 

 
 ...→ S(X rel Y)→ H(X ; L(loc(X rel Y))) → L(X rel Y), 
 
where H is spectral cosheaf homology of the cosheaf that associates to a small open set U 
in X, the L-space of (U, U∩Y rel ∞). 
 
 (1) and (2) together say that L(X rel Y) is built up out the L-spectra of the 
fundamental groups of the pure strata of X that are not in Y.  They do not say exactly 
how they fit together -- this is the issue of interaction mentioned above - and I will ignore 
it here, although for our situation of discrete group actions424, it turns out that there is no 
interaction after inverting 2 (see [Weinberger TSS chapter 13]).  
 
 Note the special case where (X, Y) is a supernormal pair, with Y the singularity 
set of X.  In that case, all of the L( loc’s) are just L(Rx rel ∞) (induced locally by the 
inclusion of a neighborhood of any manifold point in the neighborhood).  In that case, the 
co-sheaf homology is essentially the ordinary425 Hx(X ; L) that arises in surgery theory.  
The global L-term L(X rel Y) is just L of the top pure stratum, which has fundamental 
group π1(X) by Van Kampen’s theorem.  This explains (aside from K-theory 426) example 
4. 
 
 If X is a manifold with boundary, then the homology term has the usual L at the 
interior points, but is contractible (by the π-π theorem for the trivial group π) at the 
boundary points.  If we work rel ∂, then the L-term with be L(Rx) everywhere, and the 
global term will be ordinary relative L-group.  Both of these calculations are completely 
in accord with the classical calculations. 
 
 Finally, let us consider example 1.  We suppose that X = M+.  As we are ignoring 
algebraic K-theory, we can safely view M = int(W, ∂W).  In that case, S(X) ≅ S(W, 
∂W).  As the structures of a point are contractible (i.e. is trivial), for ease of exposition, 
we will compute S(X rel *) where * is the compactification point.  In that case the global 
L-term is L(π1M) (rather than L(π1M, π1∂W).  However, the homology term is different - 
noting that at the cone point the cosheaf is L(π1∂W), it fits into the exact sequence 
 

Hx(X, L(loc (X rel *)) → Hx(X-*, L(loc (X rel *)) ≅ Hx(W, ∂W, L(e)) → Lx-1(π1∂W) 
 

                                                
424 acting preserving orientations. 
425 There is a twist in this group when the top pure stratum of X is non-orientable.  The 
reason that these cosheaf homology groups become more conventional (generalized) 
homology groups is because of the great rigidity that L-cosheaves have referred to as 
“flattening” in [Weinberger TSS]. 
426 In this case Whtop(X rel Σ) = Wh(π1X), so the K-theory agrees exactly with the 
manifold situation. 
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So the homology term absorbs the difference between the absolute and relative global L-
groups.  In a stratified space, there is little difference between local and global problems, 
what is local from the point of view of a k-stratum space is global from the point of view 
of k-1 strata spaces. 
 
 The reader can gain some insight into this surgery sequence by thinking about the 
PL situation where the strata have regular neighborhoods, and the boundaries block fiber 
over the previous strata, and then use the theory of blocked surgery to give directly a 
proof of the “Verdier dual” exact sequence. 
 
 Let us now return to the situation of Γ acting properly discontinuously on X a 
contractible manifold, with all fixed sets contractible locally flat submanifolds, of 
codimension >2.  In that case, 
 

1. Whtop(X/Γ, rel sing)  is the fiber of the assembly map H(X/Γ; K(Γx)) → K(Γ). 
 
This group is thus related to Nils and can well not vanish.  This would give one set of 
obstructions to the equivariant Borel conjecture, had we not already made the assumption 
that our maps are equivariantly simple homotopy equivalences.   
 Realizing elements of this group, one obtains counterexamples if the boundaries 
of the appropriate h-cobordism not homeomorphic; if they are, then one can glue them 
together and get a counterexample for the group Z×Γ (i.e. for S1×X/Γ.)427   
 
 Now, assume that this vanishes428. 
 

2. S(X/Γ rel sing) is isomorphic to the fiber of the asembly map H(X/Γ; L(Γx)) → 
L(Γ). 

 
 We have seen that this can be nontrivial because of UNil.  On the other hand, if 
we deal with rings, R, in which 2 is inverted instead of Z, there are no known 
counterexamples to an isomorphism statement429 -- this is not so useful directly for 
classification problems, but it is useful for understanding invariants of manifolds (and 
group actions). 
 

                                                
427 One can actually see that for Z/p2 acting on S1×Tp(p-1) (here the action is the one 
associated to the action of Z/p2 on the torus associated to the ring of integers in the 
cyclotopic field of p2 roots of unity) there are a number of Nil terms in the topological 
Whitehead group, and that when one realizes an h-cobordism with suitable torsion, the 
“other end” is not topologically simple homotopy equivalent to the original manifold.  
This actually gives an infinite number of examples (for each p). 
428 Note that in the usual Borel conjecture we assume homotopy equivalence, not simple, 
and we deduce a vanishing of the Whiteheasd group from the conjecture. 
429 And, indeed the Farrell-Jones conjecture implies that it is an isomorphism, with L-∞ as 
the version of L-theory used. 
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Notation.  We will usually denote the singularity set of a stratified space by Σ, unless 
otherwise stated. 
 
 In the next section we will discuss a form of equivariant Novikov conjecture and 
some evidence for it.  This conjecture does not take into account the Nil and UNil 
phenomena that get in the way of rigidity as we have seen.  It is interesting that these 
always seem to split off structure sets. 
 
 We will follow this with a discussion of the Farrell-Jones conjecture, which gives 
a specific statement about how all of the Nil and Unil contributions to Whtop and S can be 
explicitly computed in terms of the virtually cyclic subgroups of Γ.  This will suffice to 
give an understanding (at least in theory) of what isovariant structures should look like 
(since vanishing is not always true).  Finally, we will return to the equivariant Borel 
conjecture, and discuss the relation between the difference between equivariance and 
isovariance and embedding theory. 
 
6.7 The equivariant Novikov conjecture.  
 
 The Novikov conjecture describes the restrictions on the characteristic classes of 
the tangent bundles of homotopy equivalent manifolds.  While it can be phrased as the 
injectivity of an assembly map, it has other interpretations and implications and 
analogues, as we saw in the last chapter.   Already in that chapter we discussed some 
equivariant aspects of the Novikov philosophy, e.g. vanishing of higher A-genera for 
smooth actions of S1 on the one hand and the higher signatures local formulae for 
homologically trivial actions on the other. 

 In this section, we will take seriously the issue of how to properly generalize the 
Novikov conjecture equivariantly.  There are several possibilities that interact with each 
other: wisely did the authors430 of “An equivariant Novikov conjecture” title their paper.   

 As in the unequivariant case, we should be concerned with the issue of 
tangentiality of (equivariant) homotopy equivalences, and also with the restrictions that 
can be made on characteristic classes of tangent “bundles” of G-manifolds, as well as 
assembly maps in L-theory and C*-algebra theory.  

 Rather similarly to the classical case, in the situation of equivariant homotopy 
equivalent compact G-manifolds, the equivariant Novikov conjectures give very similar 
information away from the prime 2. 

 We start by noting some of the obstacles to proceeding as we had before: 
 

1. We needed to put scare quotes around the word “bundles” as we laid out our path 
two paragraphs ago: in section 2 we had seen that in the topological setting the 
tangent theory is not so naturally bundle theoretic. 

                                                
430 [Rosenberg-Weinberger]; correspondingly the title of this section has an unwarranted 
definite article. 
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2. Indeed, the fact that the basic local structure of a manifold, the dimension = the 

local structure near a point, should be generalized, one thinks, to some 
generalization of a representation.  However, we have to confront the 
phenomenon discovered by Cappell and Shaneson [Cappell-Shaneson 1] that for 
many groups there are (linearly) different representations V and W that are 
equivariantly homeomorphic.  So we don’t have the analogue of dimension even 
if we had bundle theory! 

 
3. We also have to worry about what characteristic classes we can hope to use: in the 

topological case, Novikov’s theorem on topological invariance of rational 
Pontrjagin classes led us to use the L-class.  What shall we use here? 

 
4. As a final point to put us in the mood: last section when we were thinking about 

the equivariant Borel conjecture, in order to use ordinary manifold surgery 
techniques, we were led to consider the problem inductively, i.e. assuming that we 
already had a homeomorphism on the singular set (e.g. on fixed sets of all proper 
subgroups; abbreviated rel Σ).  This led to an assembly map formulation 
involving: 

 
Hn(EΓ /Γ; L(Γx)) → Ln(Γ). 

 
5. However, we should be interested in formulations that are not rel Σ and in 

restrictions on characteristic classes, etc. that are a priori, i.e. do not require 
precise analysis of what is occuring on fixed point sets, as the many examples 
we’ve already seen show that such information is frequently difficult to get. 

 
 In achieving all of the above, we will also understand things like the higher 
signature localization formula of the previous chapter as part of this picture.  Applications 
to closed (homology) manifolds will be given in the next chapter.  
 
 Deviating from the way of the wise431, we will begin by dealing with the last 
question first, starting with the simplest situation, the simply connected case.  After all, 
the key class that is relelvant for the ordinary Novikov is the L-class432 of the manifold M 
that lies in homology (or Hm(M; L*(Z)) which itself is a variation of the ordinary 
signature of the manifold -- i.e. it’s an encoding of all the signatures of all of the 
submanifolds of the manifold (taking into account their normal bundles)433.   
 

                                                
431 See [Avot 5:9] regarding the wise approach to answering a series of questions. 
432 Or, better, the L*(Z)-orientation of a manifold.  This is an intrinsic class in Hm(M; 
L*(Z)) that defines the Poincare duality between Hm(M; L*(Z)) and [M: ZxG/Top] and 
refines the L-class.  Sullivan emphasized that PL block bundle away from 2 is a KO[1/2]-
oriented spherical fibration, which, away from 2, is this class. 
433 or all the definable signature type invariants of all the open subsets of M, in the case 
of the controlled symmetric signature of M over M. 
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 The equivariant version is, of course, the G-signature that we first met in section 
4.10 and again in the last chapter when we studied homologically trivial actions.  We 
review some basic aspects of this invariant now434 as a step towards considering the 
topological characteristic class theory. 
 
 If G acts orientation preservingly on X2k, an even dimensional oriented Poincare 
complex435, the middle cohomology Hk(X ; Q) admits a G-invariant (-)k-symmmetric 
inner product pairing.436  Let’s go even further, and consider the situation after extending 
scalars to R. As such it has some signature type invariants that occur in the representation 
theory of G.   If k is even, then one chooses a G-invariant positive definite inner product 
on Hk and diagonalizes the cup product pairing in terms of this auxiliary pairing.  The G 
action preserves both, and therefore preserves the positive and negative definitive parts, 
giving an invariant in RO(G).  If k is odd, then one does the same, except that the 
operator A describing cup product in terms of the auxiliary product is now skew adjoint.  
A positive square root of AA* gives a canonical complex structure and a representation ρ 
of G.  The G-signature in this case is ρ-ρ*. 
 
 One can view this more illuminatingly perhaps by taking the Wedderburn 
decomposition of RG and considering the effect of the anti-involution g ➝ g-1.  Up to 
Morita equivalence one has pieces corresponding to R, C, H.  C contributes for both k 
odd and even, R arises only for k even (every symptectic real vector space, the k odd 
situation, has a self-annihilating subspace of half the dimension) and the H case arises 
only for k odd (for similar reasons). 
 
 It is a nice fact that the maps L(ZG) ➝L(QG)➝ L(RG) 437 are also isomorphisms 
away from the prime 2 (see e.g. [Wall1]) and computed via these combinations of integer 
valued invariants.  This means that for finite groups, away from 2, surgery obstructions 
can be computed as the difference of very simple minded intrinsic invariants of domain 
and range (i.e. their G-signatures).  
 
 The fact that G-signatures are computed from the action of G on cohomology 
implies the following strong homotopy invariance property: 
 
Proposition.  If f: M ➝ N is an equivariant map that is a homotopy equivalence, then G-
sign(M) = G-sign(N). 
 

                                                
434 See [Atiyah-Singer] and [Wall1] for early references, from different points of view. 
435 Perhaps with boundary; in that case the relevant quadratic form will be singular, and 
one must mod out by the null vectors, ker H* ➝(H*)*, before following the prescription 
above. 
436 We use Q coefficients, which greatly simplifies our remarks throughout the section, 
losing information, thanks to Ranicki’s localization theory [Ranikci 2] only at the prime 
2.  However, the theory at the prime 2 is indeed much deeper, and much more mysterious 
as we shall occasionally indicate. 
437 We can go further and add one more isomorphism to the real K-theory of CR*G. 
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 A map as in the proposition is called (following [Petrie]) a pseudoequivalence.  It 
is equivalent to asserting that f × id: M ×EG ➝ N × EG is an equivariant homotopy 
equivalence.  It obviously makes more sense to use the equivalence relation generated by 
this notion.  But in that case, it is exactly equivalent to the homotopy equivalences in the 
following pseudo-category.438 
 
Motivation:  Let G = Z2.  A map between G-spaces f: X ➝Y might fail to be equivariant, 
i.e. f(ix) ≉ f(x).  If these two maps are not homotopic, then we have no chance of getting 
(say, up to homotopy) an equivariant map, but if they are homotopic, we are still not 
done.  For example, let F be homotopy between f and f(i).  Then F◦i is also such a 
homotopy, and we need F to be homotopic (rel X × {0,1}) to F◦i.  And then that 
homotopy G must be homotopic to G◦i, and so on.  All of this still won’t make you 
succeed, and you’ve traded a simple condition of equivariance for an infinite number of 
homotopies and higher homotopies, and the down to earth reader will surely want some 
justification of this....hopefully the pages that follow will provide some.  In any case, this 
data is just an equivariant map from S∞×X ➝Y.  The point being that blowing X up in this 
way makes it slightly easier to build maps (at least in theory). 
 
Definition:  The pseudo-category of G, consists of G-spaces as objects (just like the usual 
equivariant category) but it has more morphisms.  A morphism from X to Y consists of a 
G-equivariant map EG×X ➝Y.  (This can be thought of as an EG parametrised family of 
maps from X to Y that satisfy certain intertwining conditions with respect to the G-action 
and the parameter.) 
 
 A morphism in this category is thus an element of the homotopy fixed set Map[X : 
Y]hG (for the reader who remembers this notion from 4.9); this should be compared to the 
usual equivariant category where morphisms are elements of the usual fixed set Map[X: 
Y]G. 
 
 One reason that this category is important is because pseudoequivalences arise 
frequently.  For example any G-action on a contractible space is pseudoequivalent to the 
action of G on a point (clearly!), but the fixed sets of such G-actions can be quite 
different for nontrivial subgroups of G, and thus these actions would not be equivariantly 
homotopy equivalent.   
 
  If G acts on a space X then there is an equivariant fundamental group associated 
to the action:   
 
Definition/Proposition:  If G acts on a space X then the equivariant fundamental group 
associated to the action is given by the group of all lifts of the elements of G to the 
universal cover of X.  This group Π fits into an exact sequence: 
                                                
438 The pseudo-category is a category: we use the perjorative “pseudo” to describe the 
morphisms that are prima facie odd.  (Of course, mathematics often progresses through 
non-naïve definitions and problems.  As Gromov once said, “Naïve problems are usually 
stupid.”) 



  234 

 
1 → π1X →Π➝ G →1. 

 
It is an invariant of the pseudoequivalence class of the group action on X (if G is discrete, 
it is the fundamental group of the Borel construction X×GEG = (X×EG)/G).   
 
Proposition:  If G is a finite group and acts on a M manifold, then we can define an 
invariant σ*G(M)∈L*(QΠ).  It is a pseudo-equivalence invariant. 
 
 Indeed, the Borel construction  M×GEG  is a QΠ Poincare complex439.440 
 
Now, the ideas of controlled topology that we have discussed earliear assert that this 
invariant disassembles over M/G. 
 
Proposition:  There is an assembly map 
 

Hm(M/G; L(QGx)) → Lm(QΠ) 
 

and σ*G(M) canonically lifts to the domain of this assembly map.  We call this lift Δ(M). 
 
 This is completely analogous to the unequivariant situation (aside from the 
coefficients being Q in place of Z).  To continue the analogy to the unequivariant case, 
we should study the functorialities of this map and factor it through 
 

Hm(M/G; L(QGx)) → Hm(EΠ /Π; L(QΠx)) → Lm(QΠ) 
 
 This is indeed possible and is part and parcel of the interpretation of the left hand 
side as controlled algebraic Poincare complexes and the arrows as change of control 
spaces (or the forgetful map)441. 

                                                
439 First, note a piece of good news.  Since ½ ∊	Q, there is no difference between 
symmetric and quadratic L-theories. I should point out, though, a slight subtlety.  The 
finiteness condition on this chain complex is homological, so one only gets a projective 
chain complex.  (If there is a G invariant triangulation, this is direct, because all orbits are 
permutations, and permutation complexes are projective over QG.  This suggests the true 
statement that for free actions the chain complex is defined in Lh and that one doesn’t 
ever need all projective modules.)   
440 Probably one should point out that one need only invert in the coefficients the orders 
of the nontrivial isotropy groups.  One might also point out that using interstection 
homology sheaves, one can define these invariants e.g. for complex varieties with action. 
441 Thus the rel Σ isovariant structure sets have an equivariant functoriality (for finite 
groups acting orientation preservingly) like manifold structure sets.  The theory of 
functoriality for the isovariant structures themselves is much more complicated --- 
Cappell, Yan and I have been thinking about this from a number of points of view for 
years, with only fragmentary results. 
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 Now we have a wonderful coincidence.  The domain and range of this assembly 
map is (away from 2) the same as the assembly map that arises in the calculation of 
S(M/G rel Σ) considered in the previous section. 
 
Corollary:  Away from 2, Δ(M) is a pseudoequivalence invariant iff it is an isovariant 
homotopy invariant (for maps that are homeomorphisms on the singular set!).   
 
 This is highly significant, because, unfortunately, we do not have a well-
understood theory of pseudoequivalence (especially in the topological category).  In 
addition, this corollary reduces a pseudohomotopy invariance statement to a tangentiality 
type result in the equivariant Borel conjecture (see [Ferry-Rosenberg-Weinberger]). 
 
 Another important point is almost implicit within the corollary is that S(X, rel Σ) 
is a summand of S(X) (away from 2) for finite group actions.  We record a somewhat 
more general statement that is proven by induction.   
 
Theorem:  If G is a finite group tamely and acting orientation preservingly442 on a 
manifold M, then, inverting 2, the isovariant structure groups decompose: 
 

S(M/G) ⊗Z[1/2] ≅ ⊕S(MH/(NH/H), rel Σ)⊗Z[1/2] 
 
 This decomposition is frequently true integrally, especially for odd order groups, 
but it is not true in general.  The right hand sum is over components of strata of the 
quotient -- so we would not count twice a component fixed by a subgroup that is also 
fixed by a larger subgroup. 
 
 The question of integral versions of this splitting is an important one.  The 
difference between yes and no is often an element of Z2!  
 
 When one has an integral splitting, one knows that a “replacement theorem” 
holds: any manifold homotopy equivalent to the fixed set is the fixed set of some action 
on an equivariant homotopy equivalent manifold (and similarly for other strata).  
Sometimes it is even possible to arrange that the new action is on the same manifold, 
although there are situations (e.g. for some orientation preserving involutions) for which 
replacement is hold, but this strong form fails.   
 
 In any case, the results we have seen in chapter 5 about higher signature formulae 
for S1 actions show that in codimension 2 mod 4 replacement does not hold for rational 
reasons, and that strong replacement doesn’t hold if the fixed set has codimension 0 mod 
4.  So, our discussion has really required the finiteness of G. 
 
 The analysis of the group structure on these structure sets (for the finite case) is 
also facilitated by the:  

                                                
442 This includes the hypothesis that the fixed sets of all subgroups are orientable. 
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Observation:  S(M/G rel Σ) is a (graded) module over L*(QG). 
 
 In particular we can view it as a module over RO(G) -- and therefore apply the 
ideas of the localization theorem in equivariant K-theory ( [Atiyah-Segal]443).  For 
example: 
 
Corollary444:  If the action of G on M is free and pseudotrivial, then, assuming the 
Novikov conjecture, the higher signature of M vanishes. 
 
 Very similar reasoning would give the localization of higher signatures to twisted 
higher signatures of fixed sets (where we twist the L-class of the fixed set by an 
appropriate characteristic class of the equivariant normal bundle.  However, one would 
not obtain immediately the relevant converse statements from last chapter.)   
 
 The reader should be able to deduce some non-pseudotrivial results from the 
equivariant conjecture.   
 
 There are many directions in which we can go next, and we will go in many of 
them!   
 
 We should discuss the prime 2 and also generalize the Novikov conjecture from 
groups to metric spaces -- after all, that was the route we had taken to Novikov’s theorem 
on topological invariance of rational Pontrjagin classes, and we shall see that here it 
rewards us similarly -- and we should discuss the index theoretic version of these 
(knowing that the prime 2 will be a place of divergence as always), anticipating, at least, 
applications to other operators. 
 
 The characteristic class that we have introduced here, the equivariant controlled 
symmetric signature in L*(QΠ) is certainly not the right thing to do.  In the 
nonequivariant setting we would surely have wanted a Z.  However, I do not know any 
one method for defining the most refined “intrinsic” characteristic classes for group 
actions, e.g. without taking their fixed sets, isotropy structure, and so on into account.  
This feels somewhat related to the realization problem:  for manifolds all of L*(Z) arises 
as a signature, but none of the torsion elements of L*(Q).  However, not every 
representation of G occurs as the G-signature of a G-manifold.  Depending on the 
category or setting (e.g. smooth, PL locally linear, PL, topological) one gets different 
subtle phenomena on the interaction between G-signatures of the manifold and the fixed 
(or, better, the singular) sets; if the singular set is empty then the G-signature is a multiple 
of the regular representation, but even if it’s not, there are sometimes residual 
information available at the prime 2 connecting to the G-signature to the fixed set -- not 
the germ neighborhood of the fixed set.  It is this information that is implicit in the 

                                                
443 Compare our discussion of ρ-invariants in 4.10. 
444 Indeed, if there is some element whose fixed point set is empty, one gets the same 
conclusion (at least after inverting several primes). 
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surgery theoretic formulation of the Novikov conjecture - since the singular sets for 
equivariant homotopy equivalences are stratified homotopy equivalent, this information 
must be encoded -- rather like the equality mod 8 of signatures of manifolds when there is 
a degree one normal map (and concomitant implications for characteristic class theory, 
such as equalities of Stiefel-Whitney classes).  However, the intrinsic characteristic class 
theory has no room for this refinement and it seems that there are different options, and 
there is no a priori reason to imagine that they will capture the essence of Novikov 
phenomena at 2. 
 
 In particular I see no reason to expect there to be a theory of intrinsic 
characteristic classes at 2, for which the pseudoequivalence invariance is equivalent to 
the equivariant homotopy invariance.  But, mathematics is more beautiful than she needs 
to be and maybe this is one of those opportunities? 
 
 Let us now continue our explorations by analogy to the non-equivariant case.  The 
setting, as we described it, already has controlled aspects.  It is completely 
straightforward to formulate bounded equivariant homotopy equivalence conjectures over 
metric spaces with proper group actions.  By considering M×[0,∞) as boundedly 
controlled over the cone cM the equivariant Novikov conjecture (which is a theorem of 
cones of G-ANRs, by the unequivariant proof) then gives: 
 
Theorem:  Δ(M) is a topological invariant of the G-manifold M. 
 
 This is extremely strong.  We shall soon see that Δ(M) is essentially a topological 
version of the equivariant signature operator.  This theorem therefore can be applied to 
the situation of M being a representation and it implies a celebrated result: 
 
Theorem (based on [Hsiang-Pardon, Madsen-Rothenberg, and Cappell-Shaneson 2]):  
For G of odd order, linear representations of G are conjugate as topological group actions 
iff they are conjugate as representations.  For all G, the Grothendieck group of 
representations under topological equivalence has the following partial calculation:  

 
RTop(G)⊗Z[1/2] ≅ RK(G)⊗Z[1/2], 

 
where K is the real subfield of the cyclotomic field of  all odd roots of unity.    
 
 (To see why this fact about the equivariant signature operator is enough, one can 
read the introductions of the papers of Madsen-Rothenberg and of Cappell-Shaneson.) 
 
 For G with elements of order 2, one finds that the symbol of the equivariant 
signature operator is not a unit in the representation ring R(G).  This indirectly is related 
to the existence of nonlinear similarities445.  It is also responsible for the different 
behavior that we have seen regarding the stabilization map 
 

                                                
445 Although nonlinear similarities only exist when G has elements of order 4. 
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  BPL2k(Zp) →BPL2k+2(Zp)  
 
(mentioned as example 8 in §2 among the other trivialities) which is highly connected for 
p odd (and k sufficiently large) but never a rational equivalence on π2 (even for k large) 
when p=2.  
 
 The beautiful description of the topological representation group446 given above 
should not mislead you into thinking that the size of the bundle theory relevant to the 
topological category is smaller (regulated by RK).  Not at all.  It is the size of KOG, but 
the image of (usual real) representation theory into this description is not the most naively 
expected one -- and happily the kernel of this map is succinctly describable.  It is a nice 
problem to analyze equivariant topological equivalence of bundles (sort of like the 
Adams conjecture does for fiber homotopy equivalence) -- even stably. 
 
 The class Δ(M) is essentially a topological analogue of the equivariant signature 
operator -- except that the latter is only defined when one has a Lipschitz invariant 
metric447. We shall ignore the details, since the equivariant homotopy equivalence (or 
pseudoequivalence) of the higher equivariant symbol class is of interest even in the 
smooth case.   
 
Theorem [Rosenberg-Weinberger1]:  Let ∏ be the fundamental group of a G-action on a 
manifold with fundamental group π. The injectivity of the assembly map KO∏(E∏) ➝ 
K(C*R∏) implies the pseudoequivalence invariance of G equivariant higher signature in 
KO∏(E∏).  It also implies the vanishing of higher indices of equivariant Dirac operators 
on manifolds admitting equivariant positive scalar curvature metrics on spin manifolds 
with isometric G action. 
 
 The left hand side (here using real C*-algebras for some slight refinement, as 
emphasized in early papers of Rosenberg [Rosenberg2]) is the domain for the Baum-
Connes assembly map, and the injectivity part has all of the implications we would like.  
I will not bother repeating the details of this type of argument here, but rather will point 
out two nice advantages of the analytic version over the topological one: 
 

• In the analytic situation, there is no trouble dealing directly with G compact, since 
the Baum-Connes conjecture is a statement about locally compact groups.  For the 
situation where E∏  is finite, one can deduce the relevant injectivity statement in 
the topological case by using the result of McClure [McClure] that for finite 
complexes X that KOG(X) ➝ ∏KOH(X) is injective as H runs over the finite 
subgroups of G.  It is clearly necessary to develop a theory of Δ(M) for G 
compact, rather than just finite.  However, there are considerable technical 

                                                
446 Yes, it’s not a ring.  Topological equivalence does not play nicely with tensor 
products.  And, the group does indeed contain 2-torsion and Cappell and Shaneson 
showed. 
447 I do not know an example of a C0 group action that does not preserve a Lipschitz 
Riemannian metric, but I doubt that they always exist. 
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difficulties to doing this related to the fact that the orbit G-spaces are 
homogeneous spaces and have interesting topology. 

 
 Indeed this interesting topology also leads to the important point that the 
equivariant Novikov conjecture does not yield the information one is interested in about 
the variation of characteristic classes within an equivariant homotopy type for G-
manifolds when G is positive dimensional.  For instance, we have noted that there are 
interactions between higher signatures of manifolds and fixed sets that automatically hold 
and (are accounted for in L-theory but) not accounted for in equivariant K-theory. 
 

• For G nonabelian (and connected!) there is a remarkable topological consequence 
of the above result.  Lawson and Yau [Lawson-Yau] have shown that any smooth 
G-manifold has a G-invariant positive scalar curvature metric448.  Consequently 
the manifold M has vanishing higher Dirac class in KO(C*Rπ) and assuming the 
Novikov conjecture in KOπ(Eπ)449. 

 
This is nontrivial even in the situation of exotic spheres, because they are known to have 
a variety of different symmetry properties (as investigated in papers of Reinhardt 
Schultz). 
 
 We close with section noting that the proof methods discussed so far apply to the 
situation where EΠ  is a non-positively curved locally symmetric manifold.  In the 
analytic case, this is automatic: the machinery handles equivariance with almost no 
pain450.  In the topological case, one needs for example the equivariant analogue of 
Ferry’s theorem: 
 
Theorem ([Steinberger-West]451)  If G×M➝M is a homotopy locally linear action of a 
compact group on a compact G-manifold452 then there is an ε>0, so that if f: M➝N is a G-
map to a connected homotopy locally linear G-manifold of no larger dimension,  f is 
equivariantly homotopic to a G-homeomorphism. 
 
(This theorem cannot be yet phrased in the full tame category including homology 
manifolds, because we do not know enough about homology manifolds to homotop CE 
maps to homeomorphisms when they should be!) 
 
 

                                                
448 Actually they did this for G = SU(2); I have not checked that their argument works for 
all G, but presumably it does. 
449 Assuming the stated generalized Lawson-Yau theorem, one would get the stronger 
vanishing of the equivariant class in KOΠ(EΠ). 
450 Provided one sets up K-theory to be equivariant to begin with, and establishes the 
relevant forms of Bott periodicity and so on, making use of an equivariant Bott element. 
451 In high dimensions, but subsequent developments allow its restatement in the form 
given. 
452 And one can allow relax suitably this condition, as we have in Ferry’s theorem in 4.6. 
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Appendix: A note on the formulation of the Equivariant Novikov and Borel conjectures. 
 
 I’ve been blithely arguing by certain analogies with the unequivariant case.  Here 
I would like to point out some dangers with doing this.   
 
 One moral is that the Novikov and Borel conjectures are considerably less well 
founded in the presence of infinite dimensionality (although they are frequently true even 
in this setting) and that infinite dimensionality is sometimes hidden in group action 
problems.  
 
 Another point that emerges is that, given the pseudoinvariance properties of our 
signatures, it perhaps should be led to dispense with the notion of the equivariant K(π,1). 
Better would be to consider the analogous objects in the pseudo-category:  these are 
actually the EΠ’s that we had been using453 above without comment. 
 
  A K(π,1) is the terminal object in the homotopy category of spaces with maps 
that are 1-equivalences: i.e. for maps f: X ➞Y with the property that given any g: K2 ➞Y 
there is a map g’: K2 ➞X with fg’ homotopic to g on the 1-skeleton K’.  (Actually, the 
terminal objects are disjoint unions of K(π,1)’s but this hardly effects any of our 
conceptual thinking about the topology -- everything happens on the components 
independently).  
 
 In the equivariant case, we should actually deal with the equivariant analogue of 
this notion.  This is a G-space (G compact -- but we can easily change our mind and work 
with locally compact groups by defining an analogous notion in the universal cover) with 
the same universal property with respect to equivariant 1-equivalences, defined with 
respect to equivariant 2-complexes454.  This boils down to the condition that for all H⊂G, 
the fixed set is an equivariant NH/H aspherical complex.  Or, putting it all together, one 
wants the fixed set of any subgroup to be a disjoint union of aspherical complexes. 
 
 We have seen that the integral Novikov conjecture fails for groups with torsion -- 
so it becomes reasonable to assume finite dimensionality.  This would boil down to the 
equivariant Novikov conjecture failing for G = Zp with the equivariant aspherical 
complex chosen to be S∞.  With finite dimensionality, we are led to consider the complex 
to be a point.  (Which is EZp.) 
 
 When G = S1 and one uses the S∞model, even rationally equivariant homotopy 
equivalence fails.  (Unlike the usual Novikov conjecture which is not known to have any 

                                                
453 Following Kasparov and Baum-Connes whose immediate goal had been to give 
models for K(C*Π) and thus could not have been misled by the possibilities suggested by 
equivariant algebraic topology and surgery. 
454 Note that the dimension of a G-cell is not the same as its unequivariant dimension 
when G is positive dimensional. 



  241 

rational counterexamples using Eπ in place of Eπ; indeed the rational injectivity 
statements are equivalent.) 
 
 Note that in our formulation of the equivariant Novikov conjecture in this section, 
we used EΠ when we had a G-action on a space M with fundamental group with 
fundamental group π.  However, that space need not be the equivariant aspherical space 
associated to M.  It accepts a G-map from M, but it might collapse different components, 
lose some fundamental group information, etc.  In some sense EΠ is the smallest model, 
and the one most likely to be finite dimensional, and therefore the one most likely to have 
“correct” ENC and EBC.   
  
 For simplicity let’s consider what we can do when G=Zp acts on a simply 
connected manifold.  The only finite dimensional equivariant aspherical spaces can be 
determined using Smith theory: they are X’s that are contractible, have a Zp action, with 
fixed set F that is aspherical and mod-p acyclic.  The rel ∑assembly map is typically not 
an isomorphism even in this case, if F has torsion in its homology away from p -- 
although it will be rationally455.  The infinite dimensionality forced, for example, by 
requiring the modeling of a disconnected fixed set causes even a rational failure of the 
injectivity of this assembly map.  This means that some fundamental groupoid456 
situations give rise to wider variation of equivariant characteristic classes than one 
would have naively expected from the usual analogies between equivariant and ordinary 
surgery. 
 
 
 
6.8  The Farrell-Jones conjecture. 
 

1  In section 6, we were led to consider assembly maps  
  
  H(X/Γ; K(ZΓx)) → K(ZΓ).     (1) 
  H(X/Γ; L(ZΓx)) → L(ZΓ).     (2) 
 
for X e.g. a locally symmetric space on which Γ acts properly discontinuously. 
 

                                                
455 Using a Davis construction, this can be promoted to an equivariantly aspherical 
manifold where there is a failure of the tangentiality part of the equivariant Borel 
conjecture.  Moreover, this cannot be attributed to equivariance versus isovariance, like 
our examples in 6.10, or Nil/UNil problems like our previous ones in section 6.5.   
     This example though, has no bearing on the form discussed in this section, or on the 
stratified Borel conjecture, discussed in Chapter 13 of [Weinberger TCSS]; because a key 
incompressibity (i.e. π1-injectivity) condition is violated. 
456 This captures both π0 and π1 issues. 
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 In the previous section, we have seen that these maps are frequently injective by 
considerations of the rel Σ tangentiality part of the equivariant Borel conjecture.457  If we 
replace the ring Z by Q in the coefficients, then none of the Nil and UNil phenomena we 
discussed provide a problem, and one can458 reasonably conjecture isomorphism. 
 
 Is there a moral to this?   
 
 Let’s review our situation.  We started by considering the less refined assembly 
map 
 
  H(BΓ; K(Q)) → K(QΓ)     (3) 
  H(BΓ; L(Q)) → L(QΓ)     (4) 
 
However for a finite group one observes that the right hand side behaves (completely) 
differently from the left hand side; it has a much more number theoretic nature.   
 
 There is a map, though, BΓ → X/Γ where the inverse image of a point [x] in X/ Γ 
is BΓx.  We have essentially in the target, «gathered up» the H(BΓx; L(Q)) parts of 
H(BΓ; L(Q)) and replaced them by L(QΓx). 
 
 In other words, we can think formally along the following lines:  the original 
Borel conjecture was that K and L theory are the simplest possible things (for group rings 
RΓ) consistent with K(R[e]) and L(R[e]).  But, when we realized that this was wrong for 
finite groups, we just punted and said, ok the correct conjecture should be the one that is 
correct of R[G] for G finite -- i.e. replace any part of the assembly map that maps through 
a finite group by one where the finite group acts trivially, at the cost of creating a cosheaf 
whose costalk at such point reflects the correct answer. 
 
 Given that we got so much mileage out of doing this for finite groups, it’s now 
clear what to do459 now that we have examples coming out of Nil and UNil.  We know 
about countexamples to the assembly maps (1) and (2) being isomorphism among the 
class of groups that are virtually cyclic (i.e. have a cyclic subgroup of finite index).  So 
we should «collect» all of these parts of the left hand side together and make no 
predictions about their K and L theories -- just simply predict the simplest possible 

                                                
457 Make no mistake: this is an integral result, despite the fact that the version of the 
pseudoequivalence version was only sufficiently precise away from the prime 2.   
458 We will not back out of this conjecture, as we have for some others in this book. 
459 Except that I was shocked when Farrell and Jones took this step.  I was certain that 
this could not be right because of what it implied for free abelian groups.  And, indeed 
they waited until they had proved the conjecture that they asserted for many lattices that 
contain high rank abelian groups before publicly making this conjecture.  The class of 
virtually cyclic groups arises very naturally in the dynamical method that they had 
introduced into topological rigidity theory.  In short, the genesis of this conjecture was a 
much less blithe process than I am pretending it to be.  Nevertheless, if hindsight cannot 
be 20/20, what can be? 
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answer consistent with assembly maps and calculations (left as a problem for the 
algebraically minded460) for these special groups. 
 
 The formal way to do this is to introduce a new classifying space EvcΓ for 
simplicial actions of Γ whose isotropy is virtually cyclic.  There are equivariant maps of 
classifying spaces 
 

EΓ ➝ EΓ ➝ EvcΓ 
 
 Davis and Lueck have given a nice formulation of the whole theory461 by adding a 
last map to this  
 

EΓ ➝ EΓ ➝ EvcΓ ➝ EgroupsΓ = point 
 

where the last space is the classifying space of actions where any isotropy is allowed - it 
is a point, since Γ acting on a point is this classifying space.  (After all, that space is now 
allowed, and surely everything has a unique map to it.) 
 
 However, the domain of the assembly map for any «family» F   is H(EF /Γ; 
K(RΓx)) and H(EF /Γ; L(RΓx)) for K and L theory respectively. 
 
 Thus the map induced by the last forgetful map (it is forgetful because when we 
go from a small family to a larger one, we are forgetting the special property that isotropy 
lies in the smaller family) is  
 
  H(EvcΓ/Γ; K(RΓx)) → K(RΓ).     (5) 
  H(EvcΓ/Γ; L(RΓx)) → L(RΓ)     (6). 
 
These isomorphisms comprise the Farrell-Jones isomorphism conjecture462. 
 
 As they point out, when their conjecture is disproved by some group (or class of 
groups) they will be able to immediately generalize their conjecture by including the 
counterexample into a new one that has a larger family.  Of course, it could be that the 
«final» conjecture would be the one where F  ends up being the family of groups -- but 
such a pessimistic conclusion is surely premature463. 
 

                                                
460 This feels reasonable (but difficult) because the rings involved are (not necessarily 
commutative) finite degree extensions of Z[Z].  It’s the dimension 1 analog of the 
dimension 0 issues considered as a major enterprise of the last century: computing K(ZG) 
and L(ZG) for G finite. 
461 Although I am not using their notation. 
462 Where the L is decorated with -∞. 
463 And, in this case, I would prefer the false conjecture that has been so fruitful over the 
previous decades to the one that is true yet meaningless. 
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 An amusing situation arises if one applied this philosophy to the operator algebra 
context for understanding K(C*maxΓ).  We know that for Γ an infinite Property (T) group 
K(C*maxΓ) is larger than the domain of the BC assembly map (the trivial module C is 
projective in this setting; indeed all finite dimensional representations are isolated and 
give a very large cokernel to the assembly map).  We are thus led to study the map: 
 

H(ETΓ/Γ; K(C*maxΓx)) → K(C*maxΓ) 
 
The subscript T should be interpreted as the family of subgroups of Γ that are subgroups 
of a property (T) subgroup of Γ.  Whether this leads to any insights regarding the right 
hand side, I do not know.  It gives many new elements of that group.   
 
 Let us unravel what the FJ conjecture means in some cases. We have to 
understand what EF Γ/Γ looks like as a stratfied space.  First of all, there are nontrivial 
strata for subgroups π in F.   The fixed set of such a group is contractible, and the group 
Nπ/π acts on this.  At such a stratum we have K(Rπ) or L(Rπ).  Strata corresponding to π 
and π’ can intersect only if the group generated by π and π’ lie in the family F.   
 
 We have already discussed the situation for torsion free word hyperbolic groups 
in 5.5.3. The interesting situation there is K-theory and how the closed geodesics, which 
are the maximal elements of the family vc, contribute Nils (i.e. the fiber of the assembly 
map H*(BZ, K(R)) ➝ K(R[Z])).  In L-theory, it’s the usual assembly map (as it is for all 
torsion free groups. 
 
 If there is torsion then the L-theory situation becomes interesting.  For 
definiteness assume that Γ comes from a Z2 action on a closed negatively curved 
manifold.  Then the fiber of the vc-assembly map comes specifically from closed 
geodesics that are invariant under Z2, but if the action is free the it will not contribute 
either.  However each geodesic which is invariant under the involution will go through 
two fixed points, and give a UNil contribution in via the inclusion of L(Z2*Z2) in L(Γ).   
 
 For Zn the trivial and finite families both give us Rn with free Zn action.  
However, when we use go to the vc family, the maximal subgroups correspond to 
primitive lattice points (up to sign) in Zn.  However, there is a Tn-1 family of geodesics in 
each of these free homotopy classes = the corresponding stratum in EvcZn/Zn.  Each of 
these families produces a H*(T

n-1; Nil(R)) contribution. 
 
 By the way, note that this description includes an analysis of Nil(R[Z]) in terms 
of Nil(R), but that it is not simply the assertion that Nil(R[Z]) is computed from Nil(R) 
via the assembly map isomorphism.  The description given by the FJ conjecture is strong 
enough to enable an analysis of the action of SLn(Z) on the K-groups. 
 
 The story for e.g. Zn⋊Z2 where the involution acts as mutiplication by -1 is 
similar.  In that case there are 2n fixed points (on the torus), and many such closed 
geodesics and these tell the whole story (see [Connolly-Davis-Khan].  If the involution 
had a positive eigenspace, then there would be tori of these interesting geodesics.  They 
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would then contribute the homology of these tori with coefficients in the Nil’s 
corresponding to the geodesics. 
 
 Finally, we note that the Farrell-Jone conjecture gives us a description of the 
isovariant structure set rel Σ:  It is the relative homology group describing the difference 
between EΓ and EvcΓ. 
 
 
6.9  Connection to embedding theory   
 
 We now return to the equivariant Borel conjecture (or, more generally, to the 
problem of equivariant surgery classification.)  Our approach is via a profound 
connection between group actions and embedding theory that was already hinted at in 
section 5. 
 
 Surgery theory does quite a good job (with the Farrell-Jones conjecture picking up 
much of the slack) of analysis of structures within an isovariant homotopy type, but does 
not do a very good job of classification within an equivariant homotopy type.  The latter 
is what the Equivariant Borel Conjecture (or, surely we should say, Question) asks about.   
 
 However, analogously, surgery shows that there is a unique isotopy class of 
embedding realizing a given Poincare embedding, but it does not directly help with the 
problem of analyzing the embeddings in a given homotopy class. 

 
Embedding theory has developed a set of geometric tools that enable good 

classification results in specific settings.  We do not know of any way to mimic these 
geometric tools (such as general position, multiple disjunction, and so on) directly.   

 
However, after the fact, we can make use of the theoretical reduction of both 

embedding theory and isovariant classification within an equivariant homotopy type to 
homotopy theory to relate these problems to one another and get concrete and theoretical 
results. This section is devoted to developing the connections between the subjects, and 
the next will use this to give some specific analyses. The explicit results which we give 
there for some crystallographic manifolds were heretofore unpublished joint work with 
Sylvain Cappell. I also wish to acknowledge useful conversations with John Klein about 
the use of categorical techniques and explanations of the Calculus of Embeddings due to 
Goodwillie, Weiss and him.    

 
Recall the definition of a Poincare embedding (see [Wall1]).  A Poincare 

embedding of M in W consists of a triple ((X, E), π, f), where (X, E) is a Poincare pair, π: 
E → M is a spherical fibration with fiber Sc-1 and f: X∪Cyl(π) → W.  In the PL and 
Topological(ly locally flat) category, every Poincare embedding can be realized by an 
embedding (that is unique up to concordance -- by the relative version of this realization 
statement). 

 
By analogy we can define a similar notion of an isovariant Poincare complex.  For 

notational simplicity we shall only discuss the semifree case.   
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Definition:  An isovariant G Poincare complex consists of a triple ((X, E), π) with π: E 
→ F an equivariant spherical fibration with fiber Sc-1 having a free G action, (X,E) with 
free G-action (i.e. covering a Poincare pair) so that Y= X∪Cyl(π) is a Poincare complex.   

 
We are interested in the possible isovariant Poincare complexes (up to isovariant 

homotopy equivalence) within a given equivariant homotopy type.  In other words, 
 

Definition: If G×M→M is a group action, then Iso(M) is the set of isovariant Poincare 
complexes with an equivariant homotopy equivalence to M (up to isovariant homotopy 
type).  This can be made into a Δ-set in the usual way, and we shall denote this by the 
same symbol.  (The set of isovariant homotopy Poincare complexes within the given 
equivariant homotopy type can be thought of as π0 of the space Iso(M).) 
 
 Similarly we will denote the Poincare embeddings of F in M which are homotopy 
equivalent as a pair to a given embedding as PE(M,F).  Note that there is a map Iso(M) ➝ 
PE(M,F) when F is the fixed set of the G action on M.  Note that G acts on PE(M,F) by 
composing the map f with elements of G.  Our main results concern the relation of 
Iso(M) to Sequi(M) and the relation of Iso(M) to PE(M,F)hG. 
 
Decomposition Theorem:  For G = Zp p odd acting tamely and supposed that the fixed 
set is of codimension > 2, there is an isomorphism  
 

Sequi(M) ≅ Siso(M)× Iso(M) 
 
For applications to disproving the equivariant Borel conjecture, the above theorem 

is not even necessary.  The point is that there is a total surgery obstruction to realizing 
elements of Iso(M) (or even Iso(M rel Σ)) that lies in a group464 that is (assuming Farrell-
Jones) trivial).  As a result, even in the absence of the above theorem, Iso(M) would 
provide counterexamples to the equivariant Borel conjecture465.   

 
 It is necessary, though, for  understanding the set of all counterexamples, when 

the dimension of the fixed set is relatively high compared to dim M. 
 
The proof of the theorem is not purely stratified in nature, but relies on connections 

between the isovariant and equivariant categories that were pioneered by Browder (and 
continued to be studied by [Dovermann-Schultz,Yan] and others).   

 
This decomposition theorem is surely true in much greater generality (at least I 

think so).  I hope to return to this in a later paper; below we will give a small extension of 
it. 

 

                                                
464 The delooping of the isovariant structure space. 
465 Ironically, we would be using the isovariant Borel conjecture to disprove the 
equivariant Borel conjecture in following such a route!   
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We will not discuss the algebraic K-theoretic aspect of the decomposition theorem: 
Essentially this is handled by the way isovariant finiteness (when all strata are 
codimension 3 in one another) is equivariant in nature.  We focus on the algebraic 
topology and the surgery.  

 
The first interesting ingredient is a variant of the Whitney embedding theorem, due 

to Browder, that asserts (in the semi-free case): 
 

Theorem:  In the semifree case, if dim M > 2dimF + 1, then every equivariant homotopy 
equivalence is equivariantly homotopic to an isovariant homotopy equivalence. 
 
 In addition, we need a method for getting into the stable range that doesn’t lose 
surgery obstructions.  Again following Browder, we cross with the G-manifold (CP2)G 
where the superscript G denotes the product of #G copies of the projective plane, with the 
G action given by permutation.  Browder observed that: 
 
Theorem: If G is odd order, then if taking the product ×(CP2)G does not change the 
number of strata in /G, it induces an isomorphism on L-groups,  
 

Lstrat(M/G) ➝ Lstrat((M×(CP2)G)/G).   
 
As a consequence of this and stratified surgery ×(CP2)G induces an injection of 

structure sets.  Since existence of a structure underlying a given isovariant Poincare 
structure is a surgery problem (i.e. lies in the delooping of the structure space) if the 
realization exists after crossing ×(CP2)G it will exist before crossing.  However, by 
Browder’s first theorem above, if the structure exists equivariantly, it exists isovariantly 
after ×(CP2)G explaining the above theorem. 

 
Remark: The decomposition theorem holds at least in the greater generality of G odd 
order and acts semifreely, working relative to the fixed point.  (This suffices for our 
applications below.)  Of course, the problem is that ×(CP2)G has more strata.  However 
working rel F gives us will enable us to get around this as follows: 
 
 Note that the product map sends S(M/G, rel F)466 is to S(M×(CP2)G/G, rel 
singularities) and we can study the existence problem rel the singular set.  The rel sing 
structure set can be thought of as the fiber of a conventional assembly map467 -- 
interpreted as forgetting control -- from the controlled free equivariant Poincare 

                                                
466 It is actually true that S(M/G) can be decomposed as S(F) × S(M/G, rel F) because the 
symmetric signature of the space form normal to F vanishes.  (This is enough because of 
the way the symmetric signature of the link enters in the definition of LBQ, the key object 
in stratified surgery.  This vanishing can be deduced from the fact that the symmetric 
signature can be lifted under an assembly map to an odd torsion group, but the L-group 
has only 2-torsion.)  For some detail, see [Cappell-Weinberger 3] 
467 With nonconstant coefficient, when interpreted in the quotient. 
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complexes over the space mapping to the uncontrolled Poincare complexes (which end 
up in L(the orbifold fundamental group).   
 
 With this interpretation, there is a projection map S(M×(CP2)G/G, rel 
singularities) ➝ S(M/G, rel F) whose precomposition with the product map S(M/G, rel F) 
➝ S(M×(CP2)G/G, rel singularities) is an isomorphism -- this map is a transfer associated 
to a fiber bundle with fiber (CP2)G and that it induces an isomorphism on L-groups is part 
of the proof of Browder’s theorem (see [Yan]).   

 
 Now we turn to the map  Iso(M) ➝ PE(M,F)hG alluded to above. The map is 
obtained by sending a typical vertex (((X, E), π) , Φ), where Φ: X∪Cyl(π) ➝ M is an 
equivariant homotopy equivalence to the vertex of the homotopy fixed set 
(X∪Cyl(π) ➝ (M×GEG  ↓ BG in the homotopy fixed set of G acting on PE(M,F).  Higher 
simplices are mapped similarly.   
 
Theorem:  If M has boundary and each component of fixed set touches the boundary, 
then: 
 

Iso(M, rel ∂) ➝ PE(M,F, rel ∂)hG 
 
is a homotopy equivalence. 
 
 Without the boundary condition, this theorem is hopelessly false: on π0 one can 
get uncountably components on the right hand side, while the left is clearly always 
countable.  The problem is that one produces in the homotopy fixed set group actions on  
infinite dimensional spaces that don’t have a reasonable geometric interpretation. 
 
 On the other hand, the condition is not an unreasonable one, since it can be 
arranged through strategic puncturing of M at various fixed points.  
 
 The reader can wonder whether this theorem is ever of use, in that homotopy 
fixed sets involve maps of infinite dimensional spaces into other objects.  We close the 
section with some examples of how one can use this machinery, even in the absence of 
concrete information about the classification of embeddings.  In the next section we will 
give some additional illustrations that have some more computational input that I hope 
are convincing that this approach is not completely worthless.  
  
 The proof of the theorem is quite simple and quite analogous to the old result of 
George Cooke about realizing homotopy actions by actions:  A homotopy action in a map 
of groups G ➝ π0Aut(X), and the question is which of these are realized by group 
actions? 
 
Theorem (Cooke [Cooke]):  A homotopy action is realized by an action iff the induced 
map on classifying spaces has a lift: 
 
      BAut(X) 
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           ↓ 
     BG ➝ π0Aut(X) 
 

Proof:  If there is an action, there’s a lift.  If one has a lift, then the associated X fibration 
over BG has as induced G-cover a space homotopy equivalent to X on which the G action 
by covering translates is the desired realization. 
 
 A warning though, is that the space on which G acts could well be infinite and 
even infinite dimensional when cd(G) = ∞. 
 
 Similar is the following: 
 
Proposition:  If X and Y are free G spaces, then the map of mapping spaces  

[X, Y]G ➝  [X, Y]hG 

is a homotopy equivalence. 
 
 This is a triviality from covering space theory and the homotopy equivalences 
between X/G, and Y/G and their respective Borel constructions. 
 
 If we stare at what the right hand side PE(M,F)hG means, one sees an F×BG with a 
spherical fibration over it, together with some pair that is also given as a fibration over 
BG.  The spherical fibration over F×BG can be thought of as a family of “spherical 
fibrations over BG” parameterized by F.  A spherical fibration over BG is like the output 
of Cooke’s theorem, it corresponds to a free action of G on a space of the homotopy type 
of Sc-1 but its not necessarily finite, i.e. corresponding to a homotopy lens space ( or space 
form).  This is a question that needs answering over each component of F once -- which 
is why we need the boundary conditions.   
 
 But, if it is finite, the we have obtained the relevant equivariant spherical fibration 
over F.  The total space of this is now included into a complement, which, if it were 
finite, it would be exactly what we need for an isovariant Poincare complex.  The 
finiteness follows from: (1) cod>2, (2) the already established finiteness of the boundary 
of the regular neighborhood, (3) the comparison of the relative chain complexes for (X, 
∂Nbd(F)) and (M,F) (this is a chain equivalence by excision), and (4) the fact that 
isovariant finiteness obstructions are equivalent to equivariant finiteness obstructions.  
This statement is pretty obvious in the PL case (because the relevant K-groups are sums 
of the K-groups of various strata) and468 it  is a consequence of Carter’s vanishing 
theorem for negative K-groups, and the calculations of both of these obstruction groups 
for the topological case. 
 
 Some consequences of the above theorems are worth pointing out immediately -- 
although they involve some massaging to get them for general finite groups (since the 
decomposition theorem wasn’t proved in appropriate generality).  
  

                                                
468 As we have already remarked in section 5. 
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 I conjecture that for semifree actions, the Decomposition theorem holds for all G.  
Indeed, I suspect that the phenomenon is extremely broad (and perhaps only requires a 
very small gap hypothesis). 
 

(1) The pseudotrivial orientation preserving469 G action situation produces pairs (M, 
F) where the inclusion is a homology isomorphism at #G.  As a result the hG 
analysis is straightforward, and one obtains that Sequi(M) ≅ Siso(M rel F) × S(F) 
×Emb(F⊂M) and a complete reduction of equivariant classification problem to 
embedding theory! 

 
(2) For orientation reversing involutions on the sphere, Chase showed in unpublished 

work that a mod 2 homology subsphere Σ of the sphere is the fixed set of an 
orientation reversing involution of codimension > 1 iff  Σ is isotopic to its mirror 
image -- exactly the π0 part of the hG condition.  That the remaining part follows 
automatically follows from ideas of [Dwyer]. 

 
(3) If M is a G-manifold, then Sequi(M × Di rel ∂) is an abelian group for i>1.  The 

embeddings (F× Di ⊂ M× Di rel ∂) also form a group for i=1 and is abelian for 
i>1.  These are the πi of the spaces Sequi(M) and PI(M,F).  Sometimes I like to 
refer to the embeddings (F× Di ⊂ M× Di rel ∂) = Ci(F,M) as the i-th concordance 
embedding group of F in M. One obtains470 an isomorphism 

 
Sequi(M × Di rel ∂) ⊗ Z[1/#G] ≅ Siso(M rel F)⊗Z[1/#G]× Ci(F,M)⊗Z[1/#G]. 

 
6.10 Embedding theory. 
 

We begin by ignoring all the stuff about Poincare embeddings and their connection 
to group actions discussed in the previous section.   

 
It requires herculean effort to deduce from surgery even the most basic embedding 

theorem, the Whitney embedding theorem: 
 

Theorem:  If f: Mm → Ww is a continuous map, and w>2m, then f can be approximated 
by an embedding. 
 
 To do this, we would need to construct a spherical fibration (which can be done 
by the methods of [Spivak]), and a homotopy complement (which is very difficult, but 
clearly related to Spanier-Whitehead duality, see e.g. [Spanier]).  All in all, a lot of work. 
 

                                                
469 Note that G = Z2 one can be pseudotrivial and orientation reversing.  In that case, the 
restriction to the boundary is not pseudotrivial, which interferes with inductive 
arguments.   
470 Here, since we are inverting 2, one can rehabilitate the argument for odd order groups 
to apply in general.   
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 But embedding theory goes much further than this.  Whitney proved a much 
deeper embedding theorem for when dim W = 2dim M using the famous “Whitney trick” 
that underlies the h-cobordism theorem and the process of surgery, and therefore 
underpins almost all that we know about high dimensional topology.  However, that 
embedding theorem is more subtle; the above is sharp as the “8 curve” in the plane 
cannot be approximated by an embedding. 
 
 The embedding of two kissing circles in the plane, then thought of as lying in R3 
can be approximated by infinitely many non-isotopic embedded S1∪S1s distinguished by 
their linking number.  So there is not a uniqueness theorem that goes with the above 
existence result (unless the dimension of the ambient space is even larger than what is 
demanded above). 
 

Recall the linking number of two disjoint oriented (compact) cycles Xx and Yy in 
Rn (or Sn) with n = x+y+1 lk(X,Y) ∈ Z can be defined as the intersection number int(Z, 
Y) where Z is any chain bounded by X.  This definition is not quite symmetric; viewing 
X and Z as cycles on the boundary of Bn+1 we can define the linking number more 
symmetrically as int(Z, Z’) where Z bounds X and Z’ bounds Y.  This then shows that 

 
lk(X,Y) = (-1)(x+1)(y+1)lk(Y,X) 

 
Linking invariants and their generalization are fundamental to the theory of 

embeddings.  
 
We will need variants for nonsimply connected situations, and for more general 

targets.  Note that the current definition only really involves knowing the vanishing of 
certain homology classes and certain (other) homology groups.  If the cycles involved are 
simply connected such a theory already arises in the proof of the h-cobordism theorem 
and in surgery theory - intersection (and self intersection) numbers take values in (a 
quotient of) Zπ - and one can occasionally define an associated linking theory.   

If the cycles are nonsimply-connected there is more indeterminacy in their 
definition and we have to mod out by the influences of the fundamental groups of X and 
Y. 

 
Theorem:  Suppose M is a connected oriented submanifold in W and that w = 2m+1, 
then the embeddings of M homotopic to the given one are in a 1-1 correspondence with  

Z[π1M\π1W/π1M]/{g≉1, g - (-)mg-1} 
 

Addendum: If M consists of several components, then there are additional invariants that 
live in Z[π1Mi\π1W/π1Mj]  These have appropriate symmetry associated to interchanging 
i and j. 

  
We shall only prove the theorem for the topological locally flat case (or PL case) 

and shall avoid thereby some arguments necessary for the smooth case (that are given in 
Whitney’s well known paper).  We shall use the following basic theorem (concordance 
implies isotopy) that is an elementary consequence of the h-cobordism theorem: 
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Theorem:  If i: V ⊂W is an embedding with codimension >2, then any proper embedding 
of V×[0,1] in W×[0,1] which restricts to i on V ×{0} is equivalent to i × [0,1]. 

 
This is completely false in codimension 2, and in codimension 1, it is true for 

“incompressible” (i.e. π1 injective locally two sided) embeddings.   
 
By the way, note that this theorem implies the Zeeman unknotting theorem:  Any 

locally flat embedding of a sphere in another with codimension > 2 is equivalent to the 
inclusion of an equator. (In other words, there’s only one embedding.)  

 
Suppose now we take two homotopic embeddings of M into W. We can homotop 

the map of M×[0,1] into an immersion by Whitney’s theorem.  We are interested in the 
self intersection of this immersion and will try to use the Whitney trick to remove them -- 
completely analogously to what occurs in [Wall1] in the description of the even 
dimensional surgery groups -- just taking into account the fact that M is not simply 
connected. 

The self-intersection points (for a generic immersion) are all labeled by ±1’s 
according to orientation conventions.  Moreover, choosing a basepoint and a path to each 
sheet of the intersection we can get an element of the fundamental group by going along 
one sheet to the intersection and back to the other sheet.  Note that there is an 
indeterminacy of which is the first or second sheet, and also of the paths from the 
basepoint - this gives only a well defined double coset.  Now, as usual, when two 
intersection points have the same group element and opposite signs they can be cancelled. 

The coefficient of the identity can be modified by changing the immersion near a 
point, or by dealing with embeddings of punctured versions of M and using the 
uniqueness of the embedding of Sm-1 in S2m to complete the discussion. 

 
 These kinds of invariants are relevant exactly at the “edge of the gap hypothesis”.  

To go further, all of these linking invariants need to take values in homotopy groups of 
spheres, rather than Z (=π0

s).  This will suffice for the getting through the metastable 
range.  That this should be the case is pretty clear:  if one considers embeddings of  

 
Sn ∪ Sn  ⊂	S2n+1-k 

 
for n large, there is a natural invariant in πk

s that turns out to determine the embedding.  
Using Zeeman unknotting the complement of the first sphere is homotopy equivalent to 
Sn-k (the simpler observation that the linking Sn-k included in the complement is a 
homotopy equivalence, by the Whitehead theorem and Alexander duality -- or even a 
Mayer-Vietoris argument, suffices for this purpose), and therefore the second sphere 
defines an element of πn(Sn-k) ≅	πks.		The relevant symmetry property can be proved 
similarly to the symmetry of the linking numbers in the stable range471.   
 
                                                
471 This uses the Pontrjagin interpretation of stable homotopy groups of spheres are 
framed cobordism. 
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 In a less stable range of embeddings, e.g. for S3 ∪ S3  ⊂	S6 so that the 
corresponding invariant would take values in π3(S2) ≅ Z via the Hopf invariant -- and the 
two definable “Hopf linking numbers” can be different472 (although they must agree mod 
2 by the stable result). 
 
 Moreover, for embeddings of Sn in e.g. T2n+1-k one would get an invariant in the 
“group473” πks[Z2n+1-k] with the coefficient of 0 being 0, and there being a symmetry 
condition connecting the coefficients of g and -g.    

  
To illustrate the key ideas, let’s work out some especially nice cases; for 

convenience, I will concentrate on crystallographic groups with holonomy Zp an odd 
prime, acting with connected fixed set.  We assume that p is odd so as to not get caught 
up in the surgery difficulties, no problems of Nil or UNil - all of the isovariant structure 
sets vanish in this case, and this helps both for the existence of actions as well for their 
classification.  It also helps with actually doing the homotopy theory.  As mentioned 
above, the Z gets replaced by πi

s as we move forward, and for p=2 we are not given much 
slack as π1

s = Z2. 
 

Theorem (Cappell-Weinberger, unpublished)  If p is an odd prime then (assuming k >1 if 
p=3) 

Sequi((Tp)k×T(p-2)k-1) ≅ Z[Z(p-1)k+(p-2)k-1 - {0}]Z2p 

Here Zp acts on Tp by permutation, and otherwise trivially.  The extra Z2 action reflects 
the symmetry that linking numbers satisfy, so it gives a +/- factor depending on some 
parities relating the coefficients of g and g-1. 
 
 If one increases the size of the T(p-2)k-1 factor, then one moves deeper into the 
metastable range, and the one gets additional factors.  One extra circle then gives another 
factor of Z[Z2

(p-1)k+(p-2)k-1 - {0}]Z2p where this corresponds to the π1
s linking.  Etc.  

Throughout the meta stable range we have that Sequi ≅ Emb(F⊂T)Zp.  The original method 
will be explained in the notes, but morally it follows from the fact that the Tate 
cohomology of Zp acting on the embeddings is trivial474.  Alas this vanishing of Tate is 
computational in nature. 
 
Remark:  I believe that there is an example where the equivariant Borel conjecture fails 
for an isovariant Poincare complex reason when the Tate cohomology is nontrivial.  

                                                
472 As John Klein pointed out to me. 
473 It’s not a group ring.   
474 There are convergence issues in the “obvious” spectral sequence argument that would 
lead to this conclusion.  Note however, there is a similar issue that arises in trying to 
compare the equivariant maps from X to Y to [X, Y]G (the homotopy classes of maps that 
are homotopic to themselves after composing with elements of G).  If the action of G on 
X is free, then the spectral sequence has better convergence properties, because X/G is 
finite dimensional, and one does not really have to go to infinite dimensions, despite the 
implicit infinite dimensionality of BG that arises in the definition of homotopy fixed sets. 
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Indeed I would not be much surprised if the analogous crystallographic actions for Z2 
already include such examples, but I did not succeed at doing these calculations. 

 
To go beyond the metastable range475, first of all, the homotopy theory becomes 

unstable (it should go without saying).  
One also needs versions that are “multiple linking invariants” that arise from triple 

points and higher.  This is because of the phenomenon of the Borromean rings:  one can 
have three linked spheres that are pairwise unlinked in this range. 

 

 
 

and as one goes further into deeper ranges, there are higher and higher order Borromean 
phenomena.  
 

Examples of this are the µ-invariants of Milnor (related to Massey products in the 
way that intersection numbers are related to cup products, see [Milnor6]).   

 
Let me explain this in the simplest case, in a somewhat nonclassical way relevant 

embeddings of aspherical manifolds in one another (and therefore to the equivariant 
Borel conjecture).   

 
For simplicity let’s think about the classification of k-component linked spheres 

∪kSn ⊂Sn+c in the sphere in codimension c>2.  This classification (even when the spheres 
have different dimensions) was established by Haefliger [Haefliger1].  Now let’s consider 
this from the Poincare embedding point of view. 

 
Firstly it is easiest to replace the given problem by the embeddings of ∪kDn ⊂Dn+c 

rel ∂ (so called “disk links”).  Note that this is πnPE(Dc,k) = Cn(k ⊂Dc), where k denotes 
any k-point subspace of the disk. 
                                                
 
475 Embedding theory is essentially the homotopy theory of the map when w>>2m, the 
“stable range”, because of the Whitney embedding theorem; the metastable range is when 
w >>3m/2.  The next range is when w>>4m/3 etc.  Each successive range requires yet 
higher order information.  The “calculus of embeddings” described below is one version 
of how to do this. 
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Incidentally, it is interesting here to note here that how different the (Δ-) space of 

embeddings of points in the disk that we are led to from the more naïve “genuine 
embeddings”.  That space is a configuration space, and very well studied.  In particular it 
is a finite dimensional space in this case -- but PE is actually a function space. 

 
The reason is because of concordance implies isotopy.  All of the embeddings 

classified in Cn(F⊂M) (n≥1) are, abstractly, i.e. not rel ∂, just product embeddings476 
F×Dn⊂M×Dn.  What makes the element nontrivial is that on the top face F×Dn-1⊂M×Dn-1 

we have a nontrivial automorphism (rel ∂). 
 
Thus, we are interested in the automorphisms of Dc that are the identity on the 

boundary and send k points to themselves, and the spheres Sc-1 normal to these points to 
themselves, and finally map the complement to the complement.  Let us call this space 
Iso(Dc, k).   

Cn(k⊂Dc) ≅ πn-1Iso(Dc, k). 
 
Note that there is a restriction map Iso(Dc, k) ➝∏Homotopy equivalences(Sc-1: Sc-

1). This map is nullhomotopic because of the condition that the automorphisms restrict to 
the identity on the outer boundary.  (We can study any factor on its own by filling in the 
other k-1 holes, and the geometry then gives an explicit nullhomotopy.) 

 
The homotopy fiber of this restriction is easily studied by obstruction theory.  The 

complement we are discussing has the homotopy type of the wedge ⋁kSc-1and we have 
restricted these maps on a disjoint union of k+1 Sc-1’s in this complement.  The 
associated477 spectral sequence for this situation has E2

p,q = Hp(Sc, k+1 ; πq(⋁kSc-1)).  (It 
abuts to πq-p(Iso rel the neighborhoods); one has to remove the Ω∏Homotopy 
equivalences(Sc-1: Sc-1) that comes from the injection of the Ωbase in the fibration.) 

 
There are just two lines in this sequence: p=1 and p=c.  In particular, there is just 

one nontrivial differential.  The homotopy groups that occur as coefficients are of ⋁kSc-1.  
These are given by the Hilton-Milnor theorem (see [Hilton]).  They are homotopy groups 
of Sr(c-2)+1 where there is one sphere for each generator on the Free Lie algebra in degree r 
on the generators of a vector space of dimension k.   The Lie algebra operation is 
Whitehead product, and the nontrivial differential can easily be written down using 
Whitehead products (using the obstruction theory interpretation).  For example, if c is 
even working rationally the rank of this group is: kLr-Lr+1 where Lr = 1/rΣµ(d)kr/d (the 
sum over divisors of r) is the number of generators of the free Lie algebra of degree r on a 
vector space of dimension k. 

 

                                                
476 By the h-cobordism theorem. 
477 Federer (see [Federer]) 
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 The above reworking of Haefliger’s classical work can be modified for the Borel 
conjecture setting478, and remarkably enough, many of the same features hold. For 
example, for Cn(k⊂Bπ) the spectral sequence still has two lines, and one is taking 
cohomology of π with coefficients in various free Lie algebras on e.g. (Qπ)k.   This can 
be interpreted as multivariable “polynomial” invariants of the embeddings, which 
(together with symmetry properties) will rationally calculate Sequi (even outside the 
metastable range). 

 
The whole story is very complicated, and while the ingredients now seem clear, it 

currently looks computationally like a mess, and surely key aspects of structure elude us.  
More precisely, there is a calculus of embeddings due to Goodwillie, Klein and Weiss 
that puts these types of ingredients together, but it is via a sequence of complicated 
diagrams, and the analysis of the terms and how they are assembled has only been done 
in a few cases479.   

 
Their theory is a descendant of the work of Whitney and Haefliger, and deals with 

genuine embeddings480, but can be adapted to deal with PE. The approach goes like this: 
 
One’s first approximation to Emb(F⊂M) might be the result of “gluing” together 

the spaces Emb(Rf⊂M) over all the submanifolds of M isomorphic to Rf.  (Note that 
when one such submanifold is included in another, the restriction map is a homotopy 
equivalence.) More explicitly, consider the category F of open subsets of F 
diffeomorphic to balls, and all smaller in diameter than some ε, say the injectivity radius 
of F, with morphisms being inclusions.  One then can take the limit over F of Emb(Rf 

⊂M) as a guess for Emb(F⊂M) 
 
This doesn’t quite work:  What that actually gives, after doing the bookkeeping, is 

essentially the Smale-Hirsch description of Immersion theory [Hirsch-Smale].   
 
Of course, this means that there is a global effect that immersion theory doesn’t 

solve: the maps are only locally 1-1, not globally 1-1. 
 
This might suggest taking a limit over the category of submanifolds of F 

isomorphic to 2 (in addition to the 1) copies of Rf to prevent pairwise intersections. In 
this category there are morphisms where the two components “collide” i.e. are included 
in a single component of a larger set.)  

                                                
478 as Cappell and I did in our original approach to these calculations. 
479 Although it has excellent theoretical implications, e.g. the theorem of Goodwillie and 
Weiss that many spaces of embeddings have finitely generated homotopy groups, or the 
calculations of spaces embeddings of knotted strings in high dimensional spheres by 
Volic. 
480 In other words, for points, it is configuration spaces that arise, rather than the 
concordance embeddings that arose in our analysis. 
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If we work modulo immersions (i.e. in the fiber of Emb ➝Imm) then we can elide 
differences between unions of 2 points versus unions of 2 submanifolds each isomorphic 
to Rf and get some sort of description involving the configuration of pairs of points in F 
mapping into M.   This is essentially the Haefliger theory in the metastable range 
[Haefliger2]. 

 
But, we know that at the end of the metastable range the Borromean phenomenon 

begins!  There are triple linkings not detected by pairs, so we need to go to the category 
of triples and further.  This is the theory described beautifully in [Weiss] and developed 
in the papers surveyed in [Goodwillie-Klein-Weiss].  The upshot is that we know that the 
k-tuple theory is not determined by the (k-1)-tuple theory beyond a range, which requires 
serial elements of the categories we use for formulating “the simplest possible answer” to 
the problem of calculating embeddings.  The main theoretical result of the calculus of 
embeddings is that in codimension >2, this guess is correct. 

 
However, the reduction of (π0 of) embedding theory to Poincare embeddings, i.e. 

the fact that isotopy classes of embeddings up M in W (in codimension 3) are equivalent 
to those of M’ in W’ when M’ is homotopy equivalent to M and W’ to seems a mystery 
to these embedding theoretical methods481.  As we saw, it is the Poincare embedding 
approach that links nicely with the categorical idea of homotopy fixed points. I am 
optimistic that the coming years will see progress on a useful synthesis of these points of 
view and their combination with the Farrell-Jones conjecture. 
 
 
6.11 Notes:    
 
6.1-6.3 The nonuniqueness of the isometry in a homotopy class is always a torus.  This 
follows from the theorems of Borel explained in 7.1.  The fact that the space of 
homeomorphisms homotopic to the identity is not even connected in high dimensions 
(except for the case of contractible manifolds rel ∂) is due to Hatcher, see [Hatcher]. 
 
 Although we make the choice here of “going cubist” i.e. dealing with blocked, 
rather than parameterized structures, one need not do so.  The way to go would then be 
obstructed by two issues.  The most serious is that we do not understand Homeo(M) the 
space of homeomorphisms of a compact manifold in high dimensions except in a stable 
range that is linear in the dimension of the manifold.  This story is largely the story of 
pseudoisotopy theory and Waldhausen’s “Algebraic K-theory of Spaces”.  We refer the 
reader to [Weiss-Williams] and [Rognes-Waldhausen].  The second obstacle is that the 
even in the stable range we do not get contractibility because of nontrivial pseudoisotopy 

                                                
481 Indeed, these methods work more or less the same way in all categories: the essential 
difference in their “base case” which is immersion theory, a subject governed by an h-
principle, but with different homotopy theory in the different categories.  However, the 
reduction of embeddings to homotopy is only true in PL and Top, not Diff.  Presumably, 
one has to add the immersion of M to the embedding of M’ to relate the two.  In nay case, 
I do not know how to do this. 
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spaces482.  However, this is considerably illuminated by the Farrell-Jones conjecture that 
“blames” the whole difference on the (stable) pseudoisotopy space of the circle. 
  
 The equivariant problems studied in this chapter have a long history -- indeed 
predating Borel.  Originally, the philosophy of group actions was to relate all actions to 
“linear ones”.  For example, Smith showed that (in the terminology of this chapter) a 
pseudoequivalence induces an isomorphism on the Fp homology of the fixed sets of all p-
subgroups.  (Borel introduced the Borel construction in his famous seminar on 
transformation groups [Borel] to give a more conceptual proof of Smith’s theorems and 
extend their scope.)  The theme then became to try to compare group actions on 
“standard” spaces like the disk, sphere, Euclidean space, projective space, etc. to their 
“linear models” if there were any.  See e.g. [Bredon].  In low dimensions, there was the 
goal of geometricization (achieved through the work of Thurston [Boilleau-Leeb-Porti] 
and [Perelman]).  In higher dimensions, more and more of the early conjectures of this 
sort were disproved -- first via isolated examples and subsequently systematically. 
 
 Among the early results in this “contrary” direction were Zn actions on Euclidean 
space with no fixed points for all n that are not prime powers by Conner and Floyd, an 
example of Floyd and Richardson of a group action on the disk with empty fixed set 
(subsequently developed into the theory of Oliver numbers), and the theory of L.Jones of 
converses to Smith theory.  Also of great importance was the spherical spaceform 
problem of determining which finite groups act freely (and to a lesser extent, the 
classification of these actions) on spheres (that was settled by [Madsen-Thomas-Wall]: 
all subgroups of order p2 and 2p must be cyclic - the first a Smith theory fact, and the 
second a geometric result of Milnor [Milnor5]) -- which is different than the situation for 
free linear actions (where all subgroups of order pq must be cyclic: no metacyclic groups 
can act linearly). 
 
 We were left with a theory of enormous complexity, where all conjectures were 
false; the positive principles were the conclusions of Smith theory for p-groups, and 
converses to the combination of Smith theory (due to Jones [Jones]) with the Lefshetz 
fixed point theorem for non p-groups (and Oliver [Oliver]), and a few standout 
classification results.  The differences between the differentiable, PL and Topological 
categories became abundantly clear from the late 70’s through the 80’s (some of which 
are explained in the section on trivialities, and some of which depend on the isovariant 
surgery and equivariant Novikov conjecture results that come later). 
 
 While there are still a number of standout problems from the early days [My 
favorites:  (Petrie’s conjecture) if a homotopy CPn has a smooth circle action, must it 
have the same Pontrjagin classes as CPn?, Does every finite group act freely on a product 
of spheres? (or more ambitiously, which groups act on which products?) and what are the 
possible fixed sets of PL Zn actions on disks?]  

                                                
482 Pseudoisotopy spaces are precisely the difference between blocked and parametrised 
structures. 
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 I think that the place for new progress in the theory is the world of aspherical 
manifolds, where rigidity suggests interesting problems.  This chapter and the next gives 
some initial results on the equivariant Borel conjecture, on the Nielsen realization 
problem and so on.  Another problem of the same sort is483: 
 
Conjecture: If M is an aspherical manifold whose fundamental group has no center, then 
only finitely many groups can act effectively on it.  If it has center of rank k, then it has a 
product of at most k-cyclic groups as a subgroup of bounded index. 
 
 Turning now to more specific things mentioned in the body.  The construction of 
counterexamples to the Smith conjecture given here is surely folklore.  In dimension 4, 
the PL Poincare conjecture is not known, and in any case, the method we used here 
requires knots whose complement has fundamental group Z.  In dimension 4, thanks to 
the work of Freedman, any such knot is topologically trivial.  However, Giffen’s 
construction is very explicit, and is based on “twist-spinning” so one has no need for the 
Poincare conjecture. 
 
 The theory of Cohen and Sullivan was the PL predecessor to the theory of 
resolution of homology manifolds. It also foreshadowed the work of [Galewski and 
Stern] and [Matumoto] on non-PL triangulations of topological manifolds, leading to the 
final result of [Manolescu] that there are topological manifolds of arbitrarily high 
dimensions that are not homeomorphic to polyhedra484.  
 
 Cappell and my theory of Rothenberg classes [Cappell-Weinberger1] measure the 
lack of homogeneity that might be present in a semifree PL action whose fixed set is a 
manifold.  It was established in the context of trying to understand the possible 
neighborhoods of fixed sets of semifree group actions.  It is very similar in spirit to the 
characteristic class theory BSRN2 of abstract regular neighborhoods in codimension 2 
invented by Cappell and Shaneson [Cappell-Shaneson 3], [Cappell-Shaneson 5]. 
 
 Examples 3 and 4 are inspired by Milnor’s [Milnor4] counterexamples to the 
hauptvermutung for polyhedra:  there are homeomorphic non PL-homeomorphic 
polyhedra.  Milnor relied instead on the “stable classification theory” of manifolds by 
Mazur. This example has a beautiful irony: whitehead torsion is trivial for 
homeomorphisms (a theorem of Chapman that follows easily from controlled topology, 
and also from the work of Kirby and Siebenmann [Kirby-Siebenmann] showing that 
topological manifolds have handlebody structures). 
 
 Rothenberg [Rothenberg] developed the PL analogue of torsion for the 
equivariant setting.  The torsions lie in a (group isomorphic to the) sum of Whitehead 

                                                
483 As far as I know, this is a conjecture of my own.  I don’t know whether I really 
believe it. 
484 For example, the topological manifold which is S1×E8 where E8 is the unique simply 
connected closed 4-manifold with quadratic form E8 can be easily shon to be 
homeomorphic to a polyhedron, but not to a PL-manifold. 
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groups of the equivariant fundamental groups of the various strata (see 6.7).  The upshot 
of this example 4 and example 7 is that the equivariant torsion is not a topological 
invariant, and that locally linear G-manifolds are not equivariantly finite (and equivariant 
handlebody structures do not exist). 
 
 The result about fixed sets of Q8 actions alluded to (and elaborated on as example 
9) is the following:  A submanifold of Sn is the fixed set of a PL locally linear Q8 action 
iff  it is a mod 2 homology sphere of codimension a multiple of 4 and the product of the 
order of its integral homology groups is ±1 mod 8.  It is the fixed set of a topological 
locally linear action irrespective of the orders of these groups.  The necessity of this 
condition is due to Assadi [Assadi] who gave a thorough development of finiteness 
theory for fixed sets and the connections to numerical invariants and how restrictions on 
isotropy subgroups influence this problem.  His work simultaneously extends aspects of 
the work of Jones and Oliver mentioned above. 
 
 The remaining result is due to [Weinberger9] based on earlier joint work with 
Cappell [Cappell-Weinberger 1] in order to even build actions on neighborhoods.  (The 
extension of the action from the neighborhood to the whole sphere uses “extension across 
homology collars” a result of [Weinberger3] and [Assadi-Browder].) The actual theory is 
more general -- e.g. one can easily replace Q8 by other groups, but the specific criteria 
will be different.  I picked an example that was easy to state.   
 
 The paper [Quinn6] by Quinn is a landmark in the application of controlled 
methods to stratified spaces.  The paper is foundational: besides excellent results on 
concrete problems (e.g. to orbifolds) it puts everything in the right general context.  In 
particular it contains two very important results: the homogeneity of strata in a 
homotopically stratified space (which then implies many local linearity results for various 
constructions of group actions, which typically look locally linear aside from some limit 
set and can then be deduced to be locally linear everywhere485) and the topologically 
invariant h-cobordism theorem.  (In the case of orbifolds, Steinberger [Steinberger] 
proved essentially the same h-cobordism theorem, expressed very differently, based 
substantially on extending the earlier ideas of Chapman from the unequivariant case.)  
This theory justifies the comments in 6.3.   
 
 A precise version of the statement about the difference between Top and PL being 
algebraic K-theory can be found in [Anderson-Hsiang 1,2], which preceded the theory of 
[Quinn 1].  This theory can also be used for the purposes of the footnote in Example 8. 
 
 The problem of the stability of equivariant classifying spaces for neighborhoods is 
essentially equivalent to the issue of equivariant transversality in the topological setting.  
This is the point of view of [Madsen-Rothenberg], and the work that they did on 
nonlinear similarity was part of a deep analysis of the category of locally linear G-actions 
when G is odd order.  Their approach to geometric topology required transversality and 

                                                
485 It also is among the motivations for the conjecture in [Bryant-Ferry-Mio-Weinberger] 
about the homogeneity of DDP ANR homology manifolds. 
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only worked for odd G -- because of example 8!  The stratified surgery approach works 
more generally, but it lacks some of the depth of the Madsen-Rothenberg approach.  In 
the next chapter we will see some phenomena where equivariant K(π,1) manifolds are 
really different for Z2 than for odd order groups, essentially for reasons that boil down to 
this transversality issue (although perhaps translated significantly into other more 
algebraic language)486. 
 
 The fact that groups of Oliver number nG=1, every finite polyhedron487 occurs as 
the fixed set of a PL G-action is a modification of a trick of Assadi.  It is a completely 
geometric argument, and I will give it here.   
 
Proposition:  If G acts PL on a disk with empty fixed set, then for any finite complex F, G 
acts on some disk with fixed set F. 
 
Proof:  Let D be the G-disk with empty fixed set.  Consider (F∪x)*D, where x is a 
disjoint base point and *D denotes taking the join with D.  This has a G-action with fixed 
set F∪x.  Unfortunately, this join is a not a PL disk -- it is contractible.  One can 
therefore take an equivariant thickening of this G-space (one essentially replaces each 
simplex with an equivariant handle.  See e.g. [Assadi1].)  This produces a G-disk, 
denoted Δ, whose fixed set is an abstract regular neighborhood (e.g. a thickening) of F∪
x.  Let’s denote this by Nb(F)∪Nb(x).  Now take another join Δ *D.  This produces 
another G-disk, whose fixed set is again Nb(F)∪Nb(x) with a key difference: the fixed 
set is now entirely located on the boundary sphere. 
 
 Restrict the action to ∂(Δ *D) and remove an equivariant regular neighborhood of 
Nb(x).  This gives an action on a disk with fixed set Nb(F) entirely included in the 
interior of this disk!  Now recall that regular neighborhoods are mapping cylinders -- so 
collapse the mapping cylinder lines down to F.  This is still a disk!  (since these cylinder 
lines are all interior to the disk)  The G-action has fixed set F. 
 
6.4  The UNil theory of Cappell applies to all amalgamated free products of groups A*BC 
where B injects into A and C.  It is equivalent to an appropriate codimension 1 splitting 
theorem.  See [Cappell1,2]. 
 
 Cappell showed that his UNil groups are 2-primary in 3 senses:  First of all, UNil 
has exponent a power of 2.  (It follows from Ranicki’s localization theorem [Ranicki2] 
and the vanishing theorem we will soon assert that it has exponent 8, but Farrell showed 
that it’s actually of exponent 4 in general488.)  Secondly, if one studies L(Rπ), and ½ �R, 

                                                
 
487 And any finite dimensional compact ANR occurs for “tame topological actions”.  For 
instance, the end point compactification of any locally finite tree (which will frequently 
have a Cantor set at infinity) is a fixed set. 
488 And for the infinite dihedral group there are elements of order 4 as [Banagl-Ranicki, 
Conolly-Davis] show. 
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UNil vanishes.  It is for this reason that when we discuss the L-theory of groups with 
torsion, we can reasonably conjecture that  
 

H*(EΓ/Γ ; L(RΓx) ➝ L(RΓ) 
 

is an isomorphism for all Γ, if ½ �R, while for R = Z, we need to replace EΓ by EvcΓ in 
the Farrell-Jones conjecture. 
 
 The final vanishing theorem of Cappell is that if B is square root closed in both A 
and C, Unil vanishes.  This condition means that if e.g. a2 = b∈B, then a∈B.  So, for the 
case of connected sums, the square root closed condition applies iff the fundamental 
group has no 2-torsion.   
 
 UNil, as mentioned in the text, depends relatively little on the groups A and C, but 
rather significantly on the group B.  The work of Connolly-Davis referred to in the text 
gives complete information for B trivial.  It is clear that the case of B finite should be 
studied next, especially in light of the Farrell-Jones conjecture. 
 
 As we turn more seriously towards the equivariant Borel conjecture, it is 
important to refer to the early work of Connolly and Kosniewski [Connolly-Kosniewski 
1,2] on this problem.  Their work (based on the ideas of Farrell and Hsiang that will be 
explained in chapter 8) gave a number of cases of odd order group actions on tori where 
the equivariant Borel conjecture is true and some counterexamples based on Nil (if one 
did not assume topological simplicity).  They raised the issue of whether the gap 
hypothesis489 could be another source counterexample.  I had pointed out to them in a 
letter that UNil was another source of counterexample.  Thanks to the important work of 
[Conolly-Davis][Banagl-Ranicki] and [Conolly-Davis-Khan], involutions satisfying the 
gap hypothesis can have their equivariant structure sets analyzed (at least when the fixed 
set is discrete490).  A subsequent paper of Connolly, Davis, and Khan deals with the 
analysis of equivariant structure sets when the singular set is discrete, assuming the 
Farrell-Jones conjecture holds.  This covers many cases in light of the verification of that 
conjecture by [Bartels-Lueck] for all CAT(0) situations. 
 
 That there are failures of the equivariant Borel conjecture because of the gap 
hypothesis as well was first shown in [Weinberger2].  That a tighter connection to 
embedding theory should exist was explained in [Weinberger4].  That paper defined 
concordance embedding groups, proved some of the theorems in §§9,10, and suggested 
that there might be a “Sullivan conjecture for equivariant structure sets”.  Shirokova’s 
unpublished University of Chicago thesis showed that the counterexamples given for 
actions on the torus could be generalized to all finite group actions where the singular set 

                                                
489 i.e. when the fixed set of some subgroup was more than around half the dimension of 
the manifold (or some other stratum it is included in). 
490 the case they deal with explicitly.  However, most of their paper directly generalizes to 
the case asserted. 
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was of the right dimension.  In particular, she realized the role of double cosets in the 
relevant linking theory.   
 
 The first precise classification results (where the result was not just that the 
structure set vanishes) were the results of joint work with Cappell in the situation of Zp 
odd acting affinely on the torus.  The method used an equivariant analogue of Farrell’s 
fibering theorem (see the next chapter) to reduce it to understanding monodromies, and 
then calculating with the Federer spectral sequence (and an isovariant analogue).  After 
the fact, it seemed that the results could be explained very well by the fact that the Tate 
cohomology of Zp acting on the embeddings vanished.  The realization that this would 
follow from the “Sullivan conjecture” mentioned above and some conversations with 
John Klein led to the treatment given here. 
 
 The conjecture that assembly maps: 
 

H*(EΓ/Γ ; K(RΓx)) ➝ K(RΓ) 
H*(EΓ/Γ ; L(RΓx))➝ L(RΓ) 

 
could be isomorphisms was made by Quinn [Quinn9] (see [Quinn4]), recognizing that 
they were false because of Nils and UNils.  The h-cobordism theorem in [Quinn5] and 
the stratified surgery theorem in [Weinberger2] relate these to rigidity as Quinn points 
out (at least regarding to K-theory).  Of course, the issues regarding Nil and UNil were 
only confronted by the Farrell-Jones conjecture. 
 
6.5-6.6 Besides equivariant rigidity, other motivations for stratified surgery were the 
nonlinear similarity problem and the development of intersection homology.   
 
 The main positive results about nonlinear similarity were the case of odd p-
groups, proved by Schultz [Schultz2] and Sullivan (unpublished) and then the general 
odd order case by Hsiang and Pardon [Hsiang-Pardon] and Madsen and Rothenberg 
[Madsen-Rothenberg].  The [Hsiang-Pardon] approach can be compared to a daring 
commando raid, while the [Madsen-Rothenberg] approach was like a major strategic 
effort aimed at much broader objectives.  Meanwhile for even order groups, Cappell and 
Shaneson showed that nonlinear similarities exist (and gave a type of stable 
classification, as we had mentioned).  [Hambleton-Pederson] gives a solution of the 
problem for all cyclic groups. 
 
 Intersection homology ([Goresky-MacPherson I, and II] and [Cheeger]) gave a 
perspective from which many stratified spaces (e.g. complex varieties) could be viewed 
as being like manifolds (e.g. satisfy Poincare duality).  It became natural from that point 
of view to wonder whether surgery theory could be extended to that setting.  In a piece of 
work that briefly preceded stratified surgery, Cappell and I showed how to extend surgery 
to the “supernormal even codimensional stratified spaces” [Cappell-Weinberger2].  In 
that setting all the usual theorems about manifolds naturally extend (such as the Novikov 
conjecture for stratified homotopy equivalences). 
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6.7 and 6.9  The equivariant Novikov conjecture was first studied in [Rosenberg-
Weinberger].  We realized how closely it fit into the framework used by Kasparov -- at 
least in many cases.  Our interest was both for its topological and differential geometric 
implications. Papers by [Gong] and [Hanke] amplify each of these directions 
respectively. One point that we did not appreciate at the time is the one made in the 
appendix -- i.e. that the equivariant Novikov conjecture has systematic failure when one 
does not have the relevant injectivity of fundamental groupoids of fixed sets.   
 
 The connection between the Equivariant Novikov conjecture and equivariant 
surgery was a fortuitous conclusion.  That the L-groups break up (for finite group 
actions) away from 2 is a general phenomenon [Lueck-Madsen][Cappell-Shaneson-
Weinberger].  At 2, [Lueck-Madsen] gives a general result for locally linear G-manifolds.  
[Cappell-Weinberger-Yan] describes some integral splitting results of a “replacement 
theorem” sort.   The rel Σ theory has good equivariant functoriality, which leads to a good 
formulation of such isovariant surgery in terms of assembly maps.  The not rel Σ theory 
has some functoriality as well -- hopefully Cappell and Yan and I will write a paper about 
this in due course -- but currently it is a difficult and complicated set of examples. 
 
 This work on functoriality is based, as is the functoriality relevant to the Atiyah-
Singer theorem [Atiyah-Singer], on periodicity theorems.  The first periodicity theorem 
for isovariant structure sets was due to Yan [Y] for odd order groups, and was based on 
the method of Browder explained for the decomposition theorem in §9.  [Weinberger-
Yan] proved a similar theorem for general compact groups.  Unlike the Browder method, 
this requires stratified spaces rather than G-manifolds.  We therefore have not yet been 
able to prove a decomposition theorem in general. 
 
 The pseudo-category is introduced here to foreshadow other uses of homotopy 
fixed sets in sections 9 and 10.  On the other hand, the pseudocategory is very powerful 
in the theory of group action.  The celebrated Sullivan conjecture (theorem of Miller, see 
[MillerH]) says that the space of pseudomaps from a point to X is p-adically equivalent to 
fixed set of Zp acting on X.  (See also [Dwyer-Wilkerson].) 
 
6.8-6.10 The approach we have chosen to give for the Farrell-Jones conjecture is the one 
they gave “after the fact”.  As I emphasized in the footnote, Farrell and Jones were 
motivated by the role that geodesics played in their proofs of Borel conjecture statements.  
It was only when they analyzed pseudoisotopy spaces for non-positively curved closed 
manifolds (or at least some locally symmetric spaces of that sort) that they were willing 
to make this bold conjecture. 
 
 One point that I think is significant is that the Goodwillie-Klein-Weiss Calculus 
of Embedding idea that occurs in 6.10 can be described similarly.  Recognizing that an h-
principle fails for 2 points, (or larger finite sets) one again finds the simplest functorial 
expression compatible with true calculations and discovers (following [Weiss]) -- in their 
case -- a theorem.   
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 Thus, the Farrell-Jones conjecture, the GKW calculus of embeddings, the Sullivan 
conjecture and its variant for structure sets are all of one spirit.  Given the ubiquity of h-
principles (see [Gromov PDR]) this somewhat more sophisticated variant might be of 
help in other circumstances where h-principles fail. 
 
 The explicit calculations are influenced by ideas of Kearton, Hacon, Mio, al 
Rubaee, and Habeggar.  I refer to [Goodwillie-Klein-Weiss] for a survey. 
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Chapter VII.  Existential problems  
 

 
7.1  Some questions. 
 
 The topics of this chapter can be motivated from several points of view.  The first 
one is straightforward enough: what kind of existence theorems can be counterparts of 
the uniqueness statement that is the Borel conjecture?   
 
 Another point of view is that, given the Borel conjecture says that the 
fundamental group of an aspherical manifold determines it, it should follow that all 
properties of aspherical manifolds should be properties of their fundamental groups 
alone, and it is interesting to then inquire to what extent we can create such a dictionary. 
 
 A third point of view, like the last chapter, is to take the geometrical reasoning of 
the Borel conjecture seriously, and try to elaborate on the connection between the 
Riemannian geometry and topology. 
 
 Let me now be more specific, starting as we often do, with some theorems of 
Borel (see [Borel4]) regarding compact group actions on compact aspherical manifolds.  
First, he provides a lot of information about the identity component in the following 
theorem. 
 
Theorem:  If M is a closed aspherical manifold, and G is a connected Lie group acting 
effectively on M, then π1(G) ➝ π1(M) induced by the inclusion of an orbit, is injective, 
with image lying in the center of π1(M). 
 
Corollary: (Under the above conditions) G is a torus, and if, in addition, π1M is 
centerless, it must be trivial. 
 
 For in a noncommutative compact Lie group the maximal torus does not inject on 
fundamental group.  And, the centrality of the image of the orbit is because there is a 
continuous map G × M ➝ M.  
 
 This theorem concentrates one’s attention on finite groups. 
 
Theorem:  If π1M is centerless, then for any G action on M the map G ➝ Out(π1(M)) is 
injective. 
 
 Note that this also includes the previous corollary (since Out(π1(M)) is discrete).  
Note that Mostow rigidity implies that for M = K\G/Γ; Isom(M) = Out(π1(M). So the 
isometry group in this case is as large as can be.  Of course, since this is a finite group, 
there are many other metrics whose isometry groups are as large as this one. 
 
 Among questions that we will focus on in this chapter are the following: 
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1. If the fundamental group of an aspherical manifold M has center, does the 
manifold admit a circle action?  (Conner-Raymond conjecture) 

2. If G is a finite subgroup of Out(π1(M) for an aspherical manifold whose 
fundamental group is centerless, is G realized by a group of homeomorphisms of 
M? (Nielsen realization problem). 

3. In what senses is the symmetric metric on K\G/Γ the most symmetric one?   
 
 The discussion can start on general spaces.   The first important negative 
examples are due to Raymond and Scott [Raymond-Scott]; they show that for certain 3-
dimensional nilmanifolds, there are finite subgroups of Out(π1(M) that are not realized by 
any group actions at all on any space with the given fundamental group!     
 
 These are based on an algebraic obstruction:  They show that (in their situation( 
there is no group extension 
 

1 ➝ Γ ➝ π ➝ G ➝ 1 
 

(where G has the given action on Γ) because of an obstruction that lies in H3(G ; Z(Γ)).  
This prevents the group action from being realized on any space with fundamental group 
Γ and has nothing to do with asphericity!   
 
 If the center of Γ is trivial, then an extension always exists, and the phenomenon 
lies deeper.  For example, there is always then a G action on some space homotopy 
equivalent to the K(π,1) on which G acts in the desitred way.  (i.e. the regular G-fold 
cover of K(π,1).)  However, this will typically be an infinite dimensional space -- e.g. if π 
has elements of finite order.  
 
 This is the result of building the group action as a free one rather than allowing 
fixed points.  (If π has torsion, this will be infinite dimensional, although by taking a 
skeleton, we can always avoid that.) 
 
 When there is a global fixed point to the action, then the map G ➝Out(π1(M) lifts 
to Aut(π1(M)).  For actions that are “as aspherical as possible” (i.e. associated to the 
action of G on Eπ/Γ, i.e. so that on the universal cover all finite subgroups have 
contractible fixed sets) the converse holds491.  
 
 The opposite extreme is where no nontrivial element of G lifts to Aut(Γ).  In that 
case the group π 492 automatically satisfies Poincare duality.  The Nielsen conjecture 
being true would then boild down to the following statement. 

                                                
491 One can construct actions on finite aspherical complexes where there is a map G ➝ 
Aut(π1(M)), but there are no fixed points for the action.  This requires G not to be a p-
group.  The manifold case is more difficult. In recent work with Cappell and Yan, we 
show that indeed, for each non-p-group one can find actions without fixed points that lift 
to Aut(Γ). 
492 i.e. K(π,1) does. 



  268 

 
Conjecture:  An aspherical Poincare complex is homotopy equivalent to a manifold if it 
has a finite sheeted cover that is.   
 
 (We have tacitly used the fact that a finite complex satisfies Poincare duality iff a 
finite sheeted cover does.) 
 
 This is a special case of a conjecture of Wall493: 
 
Conjecture:  If π is a group satisfying Poincare duality, then there is a closed aspherical 
manifold with fundamental group π. 
 
 This is very natural from the point of view that every uniqueness statement, like 
the Borel conjecture, should have an existence statement that goes along with it.  Thus, 
one should ask whether every K(π,1) which could conceivably be a manifold is one494 495.    
 
 A similar question would be: 
 
Conjecture:  An aspherical manifold is a product of two manifolds iff its fundamental 
group is a nontrivial product.   
 
 This is a consequence of the Wall conjecture, as we leave as an exercise.  
 One might be so bold as to make similar conjectures about fiber bundles and so 
on.  The stage is set for the problems we plan to address in this chapter.  Our next section 
begins with the Wall conjecture. 
 
 7.2  The ‘Wall Conjecture’ and variants  
 
 As Poincare duality would follow from the existence of an aspherical homology 
manifold, it is much more reasonable496 to conjecture that that is what exists in the 
presence of Poincare duality. 
  
 Expanding the Borel conjecture in this way, i.e. in the uniqueness statement, is 
actually equivalent to the version if one allows ANR DDP homology manifolds in the 
class of objects among which the manifold is unique.  (If there were a nonresovable 
homology manifold homotopy equivalent to M, a K(π,1) manifold, then there would be a 

                                                
493 Wall did not conjecture this: he asked it as a question [Wall3].  We are here 
commiting a standard historical crime of attributing the positive answer to a question as a 
conjecture of the proponent if it last more than a few minutes.  This is especially venal in 
my case, since I do not believe this conjecture. 
494 I had originally planned on using Wall’s conjecture as the first existential problem, but 
I decided instead to follow Borel’s trail. 
495 Exercise:  Show that the question of whether the universal cover of an aspherical 
manifold is Rn only depends on the fundamental group. 
496 at least in my view 
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manifold homotopy equivalent to M×T4 with different p1.) And, if one works in this 
setting, one at least would get the uniqueness of the homology manifold up to s-
cobordism497.   
 
 However, the Nielson part would be expected, because the DDP homology 
manifold would  have a cover that is (s-cobordant to) a manifold, and that would make it 
a manifold.  The following seems reasonable to me498: 
 
Conjecture:  The question of whether a torsion free group is the fundamental group of a 
closed aspherical manifold only depends on the coarse quasi-isometry type of the group. 
 
 This seems to me quite believable, at least modulo the Borel conjecture.  I will 
explain some of the evidence below and give some heuristic.  In particular, we will see 
(following [Bartels-Lueck-Weinberger]) that it’s true for hyperbolic groups. 
 
 For hyperbolic groups, something slightly stronger is suspected (the following is 
an analogue of the «Cannon conjecture», which we will soon get to).   
 
Conjecture:  The question of whether a torsion free hyperbolic group is the fundamental 
group of a closed aspherical manifold only depends on the boundary of the group. 
 
 Let me remind the reader a little about the theory of hyperbolic groups499 
[Gromov HG]. The property of a group being hyperbolic is a property of its Cayley 
graph.  Perhaps the simplest description would be that all closed curves in the Cayley 
graph bound «disks» of area that grows linearly in the length of the curve500.   
 
 However, the more traditional, and probably more intuitive definition is in terms 
of «thin triangles».  Every triangle in the graph (i.e. a union of three geodesics) is 
uniformly thin: there is a constant δ so that each side is within δ of the union of the other 
two sides. 
 
 This condition is typical of trees and (the universal cover) of negatively curved 
Riemannian manifolds.  Euclidean spaces of dimension >1 are not hyperbolic, and e.g. 
hyperbolic groups never contain a Z2.  Part of their joy is that they exist in great 
profusion.  One can add large random relations to nonelementary (i.e. not virtually Z) 
hyperbolic groups to get new ones; there are glueing or combination theorems for certain 

                                                
497 Note that we do not yet know an s-cobordism theorem in the setting of homology 
manifolds. 
498 At least in dimensions other than 4, where I have no feeling for what is reasonable. 
499 We already had a brief orientation on this in 2.4.   
500 Or equivalently, for any Riemannian metric on any compact manifold with that 
fundamental group, any nullhomotopic curve bounds a disk with area linearly bounded 
by the length of the curve. 
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amalgamated free products; And from some point of view, almost all groups are 
hyperbolic501.   
 
 The boundary of a hyperbolic group consists of equivalence classes of geodesic 
rays.  An important property of hyperbolic metric spaces is that any «quasigeodesic», that 
is a path that is uniformly embedded in the space, is a finite distance from a geodesic.  As 
a result, this notion of boundary is a coarse quasi-isometry invariant.  For trees, this is 
just the end point compactification (and usually consists of a Cantor set).  For the usual 
examples of cocompact lattices, the boundary is a topological sphere. 
 
 For torsion free word hyperbolic groups, the boundary is one dimension smaller 
than the group.  Its homology is usually, like in the case of the free group, infinitely 
generated in at least one dimension.  If it is not, then one can show that the group is 
actually Z in one dimension, k, and the hyperbolic group is then a Poincare duality group 
of dimension k+1. 
 
 In dimension two the above conjecture is known to be true.  According to 
[Eckman], all 2-dimensional Poincare duality groups are fundamental groups of surfaces. 
In dimension 3, in light of the Geometricization theorem, this problem is closely related 
to Cannon’s conjecture that torsion free hyperbolic groups whose boundaries are S2 are 
fundamental groups of closed hyperbolic 3-manifolds.  Once one gets the 3-manifold in 
the above statement, the hyperbolic structure will be automatic502.   
 
 Dimension four is out of reach, but in higher dimensions, this last conjecture is 
true: 
 
Theorem ([Bartels-Lueck-Weinberger]) Two torsion free hyperbolic groups with the 
same boundary of dimension >5 are simultaneously fundamental groups of closed 
aspherical manifolds or not503. 
 
Corollary:  So, if the boundary is a sphere, the hyperbolic group is the fundamental group 
of a closed aspherical manifold. 
   
  As the conjecture by Wall.  (Consider the other group to the the fundamental 
group of a closed hyperbolic manifold.)   
 

                                                
501 This last makes one extremely pleased with the result that the Baum-Connes 
conjecture is true for hyperbolic groups [Lafforgue 1, Minayev-Yu], even with 
coefficients [Lafforgue2] and so is the Borel conjecture (and indeed the whole package) 
[Bartels-Lueck]. 
502 One cannot hope in dimension 4 to hyperbolize aspherical manifolds with boundary 
an S3 because of complex hyperbolic manifolds and the Gromov-Thurston examples 
(discussed in 2.3). 
503 Recent work of [Ferry-Lueck-Weinberger] give information in low dimensions: in 
particular, it also handles the case of S4 as boundary. 
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  To see this, cross with a circle, and then use the Borel conejcture to guarantee that 
there exists a homology manifold realizing these Poincare complexes.  (This uses the 
total surgery obstruction, and the result of [Bryant-Ferry-Mio-Weinberger] that whenever 
the total surgery obstruction vanishes, there is a homology manifold realizing the object if 
one is in dimension >5).  One can then take the cover corresponding to the group Z (as 
subgroup) and compactify by glueing to each of these homology manifolds the common 
boundary.  It is not hard to prove that there is stratified homotopy equivalence between 
these homology manfiold stratified spaces and thus an element of the rel sing Structures.  
That group vanishes, (consider Sstrat(Sn+2 rel Sn) as a typical example) so these covers are 
h-cobordant, and thus have the same local index504.  
 
  Is there any good reason to believe Wall’s conjecture regarding its aspect that 
goes beyond the Borel conjecture? 
 
  One can try to guess the analogue of pseudoequivalence (see 6.7) and then 
consider the Borel and Wall conjectures in this setting.  The following seems like a 
reasonable choice (to me). 
 
Definition:  X is haspherical if the map X ➝ Bπ1(X) is a Z-homology isomorphism. 
 
  Note that the Borel conjecture implies that if X is haspherical and π is torsion free 
then X is rigid i.e. has vanishing structure set if it’s a manifold (with ∂ rel ∂).   
 
  So, we now can ask the Wall question:  If X is a Poincare complex and 
haspherical is X homotopy equivalent to a manifold? 
 
Proposition:  Assuming the Borel conjecture for π, then X, as above, is homotopy 
equivalent to an ANR homology manifold, but not necessarily a manifold.   
 
  It is an interesting question to inquire which π have haspherical X’s that are not a 
manifold.  For π a product of fundamental groups of surfaces of high genus, the answer is 
no (using the Atiyah-Kodaira fibration and their application to the Novikov conjecture, 
just as we did in 5.3).  However, we will presently see that it’s doable with π1X free 
abelian, so that the space X is an integral homology torus. 
 
  That X is homotopy equivalent to a homology manifold follows from the 
argument above.  Now, for the counterexample, we start with a torus Tk.  We take a 
regular neighborhood of the 2 skeleton and do a Wall realization of applied to an element 
of the form x⊗ Tk for a nontrivial element x of L0(e) on the boundary ∂ of this regular 
neighborhood.  (This produces a normal cobordism V of ∂ to ∂’ whose surgery 
obstruction -- as a map to ∂×[0,1] -- is x⊗ Tk in Lk(Zk).)  Split the torus along ∂ and glue 

                                                
504 The original proof, which loses a dimension is to consider the universal cover of the 
homology manifolds, compactify these and glue them together to obtain a connected 
homology manifold with each of these universal covers being open subsets.  [Ferry-
Lueck-Weinberger] uses a different variant on the crossing with S1. 
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in a copy of V, by a homeomorphism to the boundary of the regular neighborhood, and 
by a homotopy equivalence to the complement. 
 
This is almost X.  The trouble is that we have not controlled its integral homology.  If we 
could arrange for our normal cobordism V to be a Z-homology equivalence we would be 
done.  But that is exactly what the Cappell-Shaneson [Cappell-Shaneson 6]  homology 
surgery theory is for.  We exactly need to know for this that our element vanishes in 
Γk(Z[Zk] ➝ Z)  For k odd, this is trivial, because that group is trivial for general reasons 
about odd Γ groups (they inject in the L-group of their target, which is here Lodd(e) = 0).  
After arranging for the normal cobordism to be an integral homology h-cobordism, we 
obtain the desired haspherical Poincare complex.  It obviously has a vanishing total 
surgery obstruction, and is homotopy equivalent to a homology manifold, but it is not 
resolvable. 
 
Once we have examples for odd dimensional tori, we can cross with a circle and get 
examples in even dimensions as well. 
 
Remark:  One could have asked a different question that might seem more natural - if a 
group π satisfies Poincare duality over Z is it the fundamental group of a haspherical 
(homology) manifold?   
 
  The answer to this is no. Apply the [Baumslag-Dyer-Heller] construction to a 
finite simply connected Poincare complex that does not have any normal invariants (i.e. 
whose Spivak fibration does not have a lifting (see 3.8)). This will be an aspherical Z 
Poincare complex, which cannot be a homology manifold, because, if it were, you can 
see that the Spivak fibration would have to be reducible.   
  
 Another analogue of the Wall conjecture was suggested by Mike Davis.  
Accepting the idea that one should only ask for Z-homology manifolds from Z-Poincare 
duality, the question becomes505:  If π is a group (with suitable finiteness properties) that 
satisfies Rπ Poincare duality, for a ring R that is a subring of Q, then is there an R-
homology manifold with fundamental group π whose universal cover is R-acyclic? 
 
 This conjecture has at least one thing to recommend it over Wall’s:  Wall’s 
conjecture is so hard506 partly because it is currently very hard to come up with new Z-
Poincare duality groups that are not manifolds by their very construction.  For Q there is 
a very natural source - namely any uniform lattice that has torsion.  (The action of π on 
G/K has finite isotropy, but inverting the orders of these groups restores the Poincare 
duality that one would have had in the free situation.) 
 
 The bad news is that this conjecture is very badly false. 
 

                                                
505 Davis actually asked a slightly different question, and only for torsion free groups, that 
J.Fowler disproved in [Fowler1]. 
506 If it’s false, that is! 
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Theorem (Fowler [Fowler2])  If π is a non-torsion-free uniform lattice, and π contains an 
element of odd order (≉1), then there is no ANR Q-homology manifold with fundamental 
group π and Q-acyclic universal cover. 
 
 It is an open problem whether the same holds in the presence of only 2-torsion.  
(You will soon see the issue when we sketch the argument in the next paragraph).  
However, lest one conjecture that Davis’s conjecture is missing a torsion free hypothesis, 
Fowler has given examples where the Q-homology manifold exists despite the existence 
of torsion.  Interestingly enough, his construction is a Davis construction. (See 2.3.) 
 
 Here’s a sketch of why Fowler’s theorem is true.  Suppose Xn is a Q-Poincare 
complex.  Then it has a symmmetric signature507 in Ln(Qπ).  This is a rational homotopy 
invariant508.  If X were a Q-homology manifold, then one can lift the symmetric signature 
back to Hn(Bπ; L*(Q)) under the assembly map. 
 

Hn(Bπ; L*(Q)) ➝ Ln(Qπ).   
 

The point is this.  When π is torsion free this map should be an isomorphism509 (as part of 
the Borel package), but when π is not, the right hand side has additional elements coming 
from: 
 
     Hn(Eπ/π; L*(Qπx)) 
 
 The question then is where does σ*(X) lie with respect to these extra pieces?  
Actually it’s pretty clear what element it is:  We have the equivariant symmetric signature 
of G/K that lies in the same group and is clearly equal to a lift of σ*(X).  At that point, we 
can use localization theorem technology borrowed from [Atiyah-Singer II] or (what 
Fowler does) use a proof of the equivariant Novikov conjecture in this case by going to a 
g-equivariant symmetric signature of the universal cover G/K in its “bounded L-theory”.  
One gets an obstruction in this way from the ρ invariant (see 4.10) of the lens space that 
is normal to a generic point in a stratum of π\G/K.  It is here that one needs a condition.  
For the free involution on a sphere the ρ invariant happens to vanish and the proof breaks 
down, but for odd primes, the formula in [Atiyah-Bott] shows that ρ invariant is never 0 
and the proof is complete. 

                                                
507 The reader might wish to review some of the discussion in section 6.7 at this point. 
508 Actually, there is a slight technical issue.  In the Z case, the symmetric signature is 
defined up to sign unless one chooses an orientation.  We have let this go without saying.  
In the case of Q the fundamental class can be sent to any nonzero multiple under a 
rational homotopy equivalence.  This can change, e.g. the 1 × 1 quadratic form (1) to (k), 
for some positive integer k.  This can change the symmetric signature in L*(Q) by an 
element of order 2 or 4.  One can live with this issue (say by ignoring the prime 2) or 
avoid it by keeping track of fundamental classes (like careful people keep track of 
orientations). 
509 And this is a case that is actually known, again by the remarkable paper [Bartels-
Lueck]. 
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Remark:  In many cases where there is 2-primary torsion, the above argument can be 
applied as well.  (In many cases, a more elementary argument using algebraic K-theory 
suffices [Fowler1] - a necessary condition is that all the singular strata corresponding to 
cyclic subgroups have Euler characteristic = 0.) 
 
 Even the torsion free case of the Davis question strikes me as unlikely, despite the 
failure of the ideas above to disprove it510.  My main reason for hesitation is that we do 
not have a good theory for surgery on R-homology manifolds for R≠Z.  The assembly 
map being an isomorphism does not imply that there is a unique homology h-cobordism 
class of homology manifolds with the given R-homotopy type (as far as I know).  Even 
for manifolds, local surgery theory has a more complicated normal invariant set than 
ordinary surgery theory (see [Taylor-Williams 1]).   
 
 Despite the falsity of these many variations on the Wall conjecture511, we will 
continue to exploit and expand these ideas in the following section. 
 
7.3  The Nielsen Problem and the Conner-Raymond Conjecture  
 
 The best evidence for the free Nielsen problem comes from Borel conjecture via 
the Wall conjecture.  When there are fixed points the situation is much more 
complicated512. 
 
 We will, following [Block-Weinberger4, Cappell-Weinberger-Yan] concentrate 
on G = Z2.  In this case, Smith theory determines the 2-adic equivariant homotopy type of 
the action.  Indeed, any action will be pseudoequivalent to the action of Z2 on Eπ/Γ (in 
the notation of section 1). 
 
 (This observation explains why whenever G is a p-group a lifting to Aut(Γ) 
guarantees a global fixed point, because the lift to Eπ has a fixed point by Smith’s 
theorem.  However, for Zn n composite, there are fixed point free actions on Euclidean 
space, see [Bredon1] and this argument fails513.) 

                                                
510 Obviously, when the Borel backage is in place, the method above gives no restriction. 
511 By the way, there is a form that is as well founded as the Borel conjecture: Suppose X 
is a Poincare space whose nonempty boundary is a manifold M (i.e. (X,M) is a Poincare 
pair).  Then if X is (h)aspherical, it is homotopy equivalent rel boundary to a (unique) 
manifold, rel M.   
512 See [Farrell-Lafont] for examples of fixed sets of automorphisms of aspherical 
manifolds that don’t have integral Poincare duality, so the extension does not correspond 
to an aspherical orbifold.   
513 Thus, for X a finite dimensional aspherical complex, the lifting condition suffices for 
prime powers.  And, indeed, for Zpq  p and q distinct primes, in a future paper with 
Cappell and Yan, we construct an aspherical manifold with Zpq in Aut(π), but which has a 
fixed point free action by combining the argument in [Bredon2] with a Davis 
construction. 
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 In [Block-Weinberger4] it is observed that for very low dimensional fixed point 
sets, the fact that the fixed set is an F2 homology manifold implies that it’s a manifold 
(see [Bredon2]) and that the map is an equivariant homotopy equivalence.  [Cappell-
Weinberger-Yan] deals more directly with the fact that it’s a pseudoequivalence.  By 
being more careful, we can achieve:   
 
Theorem:  There are closed manifolds W with word hyperbolic group fundamental group 
Γ so that Z2 ⊂ Aut(Γ) but for which there is no involution realizing this homtopy 
involution.  Indeed this involution is not realized on any closed ANR homology manifold 
homotopy equivalent to W. 
 
 We take our inspiration from the Gromov-Piatetski-Shapiro method514 (see 2.2 
method 3).  In other words, we will build two involutions on aspherical manifolds with 
(incompressible515 aspherical) boundary W1 and W2 so that we have an equivariant 
homotopy equivalence 
 

h: ∂W1 →  ∂W2 
 

We will arrange that h is homotopic to a homeomorphism h’ (this would be automatic if 
the Borel conjecture were true ), so we can form the manifold   
 

W = W1∪h’W2 
It is homotopy equivalent to the result of gluing using h -- but that will only give a 
Poincare complex with an involution, not a manifold.  Since h is not equivariantly 
homotopic to a homeomorphism, there isn’t an obvious reason why W should have an 
involution in this pseudoequivalence class (i.e. realizing the same automorphism of π1) 
and it will be our problem to eliminate this unlikely possibility.   
 
 The involutions and equivariant homotopy equivalence h: ∂W1 →  ∂W2 will be 
the UNil counterexamples to the Borel conjecture discussed in the previous chapter (see 
6.5).   Then the Wi will be built using cobordism theory and relative hyperbolization (see 
2.3, 2.4).  
 
 The UNil obstruction to the Borel uniqueness for ∂W1 gives rise to a UNil 
obstruction to the existence of an involution for W.  By choosing the initial ∂W1 to be 
hyperbolic the remaining parts of the construction can be done carefully enough to give 
word hyperbolicity of W.   

                                                
514  We could have been inspired by the way we produced haspherical homology 
manifolds not homotopy equivalent to manifolds by realizing a surgery obstruction by 
gluing, or the construction of nonresolvable homology manifolds [Bryant-Ferry-Mio-
Weinberger].  These, in turn, were inspired by the work of Lowell Jones [Jones] on Patch 
space decompositions for Poincare spaces.  Of course, we have to recognize a common 
thread in all these examples. 
515 i.e. π1-injective 



  276 

 
Remark:  We can use pseudo-equivalences on the boundary to similar effect in making 
this construction.  We have so far only examined carefully examples that come out of 
equivariant homotopy equivalences and using UNil.  Presumably there are also examples 
that come from Nil (i.e. the simple homotopy condition) or via embedding theory.  
Possibly pseudoequivalence allows for phenomena where one would get actions on CW 
complexes that cannot be realized on manifolds because there is no Fp homology 
manifold Fp[π] homology equivalent to the fixed set.  Among other advantages, these 
should give rise to examples for e.g. p odd. 
 
 Now for a few more details. 
 
 To obtain an aspherical manifold, one can start with an affine involution on the 
torus516.  Such a manifold always bounds equivariantly.  We can even make it bound 
explicitly an equivariant aspherical manifold, so that it is incompressible.  This is W1. We 
then do the equivariant Wall realization to the free part (as in 6.5).  This will produce a 
smooth involution on the torus with an equivariant nullcobordism (gluing on the 
nullcobordism of the affine torus).  This can be rel ∂ hyperbolized ([Davis-
Januszkiewicz-Weinberger]) to produce the the nulcobordism with involution W2.   
 
 It is a diagram chase involving the equivariant total surgery obstruction (and 
Cappell’s splitting theorem) to see that this equivariant homotopy cannot be realized by 
an involution on an ANR homology manifold.  See [Block-Weinberger4].  If the fixed set 
this of dimension ≦ 2 this suffices517.   
 
 However, one can get around this by considering the algebraic mapping cone of 
the pseudoequivalence M → W.  It gives an element in Salg(W ×Z2 EZ2).  (One should be 
careful -- this mapping cylinder often is not chain equivalent to a finitely generated free 
chain complex.  But, using Wall’s homological criteria for finiteness [Wall2] it is 
projective.)  The existence analogue will be in the delooped version of this -- which 
naturally has a map to Sw-1(Bπ) which has a map to the UNil, as before.  (See [Cappell-
Weinberger-Yan] for some more discussion.) 
 
 To achieve word hyerbolicity, one starts with an involution on a hyperbolic 
manifold M inducing the correct orientation character and with fixed set of codimension 
> 2.  This can be done as in 2.2 (together with the observations in 6.7 about the splitting 
off of UNil factors in this situation).  (See especially the subsection on grafting, where 
involutions with codimension one fixed sets are constructed; it is easy to modify this to 
increase the codimension.) 
 

                                                
516 Note that this always obstructs the word hyperbolicity of π1W.   
517 Strictly speaking one should using the equivariant analog of taming theory (see [AC, 
Fe] to replace the action by one where the fixed set is embedded locally flatly.  Then the 
action would be necessarily equivariant homotopy equivalent to the action the Poincare 
complex W. 
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 Then we consider W1 = M×[0,1] hyerbolized, to achieve acylidricalness.  W2 is 
then built as before (see [Belegradek] for why this is incompressible and relatively 
hyperbolic, with the boundary as the maximal «parabolic»).  Then (as in [Belegradek]), 
the gluing theorem of [Dahamani] (or even the more basic one of [Bestvina-Feighn]) 
shows that W has word hyperbolic fundamental group.   
 
Problem:  Does there exist a counterexample to Nielsen when W is genuinely negatively 
curved?  Even non-positively curved is not obvious to me. 
 
 Now let us turn to the Conner-Raymond conjecture.  Recall that this is the 
question of whether every closed aspherical manifold X, with nontrivial center, Z(π1X) ≉ 
0, has a topological circle action. 
 
 The X is quite simple: Note that W as constructed above has a homeomorphism H 
inducing the relevant involution on π.  X is the mapping torus of H. 
 

π1(X) ≅ π1(W) ⋊ Z 
 
where the automorphism of π1(W) is H*.  Let t be the generator of Z. 
 
Proposition: The center, Z(π1X) ≅ Z generated by t2. 
 
 As a result, because of the work of Borel (explained in the introduction) any circle 
action on X must have orbits in the homology class of some nontrivial even power of t.  
In particular, they must represent nontrivial 1-dimensional rational homology classes. 
 
 We claim that in fact, X has no circle actions.  Our proof will be based on a lovely 
theorem of Conner and Raymond518.  
 
Theorem ([Conner-Raymond]):  If X is a connected space519 with a circle action so that 
the orbits are nontrivial in H1(X ; Q), then there is a space Y with a Zn action so that X 
can be identified with  

(Y×R)/nZ 
where Z acts diagonally on Y×R factoring through the Zn

 action on Y and by translation 
on R.  The action of the circle on X is via the left action of R/nZ. 
                                                
518 Frequently the proofs and disproofs of conjectures are based on the work of the ones 
who formulate the problem.  This might engender a feeling of irony in those of a 
competitive spirit, yet for those of us who think of Mathematics as a magnificent 
cooperative endeavor, nothing is more natural.  Surely, the milestones that are marked by 
being able to confirm or disconfirm the beliefs of those who have thought profoundly 
about a subject should be the result of walking further down the road that their insights 
paved. In this case, Cappell, Yan and I were surely walking in the footsteps of Conner 
and Raymond. 
519 We will suppress the point set topological hypotheses in this theorem; suffice it to say, 
that the theorem holds in great generality. 
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 The n is related to how divisible the orbits are as elements of H1(X; Z).  Note that 
one should be a bit careful: the orbits do not all represent the same element H1(X; Z) 
unless one views them as immersed circles (i.e. as being given via the orbit map S1→X) 
rather than just as subsets.  
 
 To get a feeling for the theorem, let’s just consider the case of free actions.  (The 
orbit condition implies that all isotropy is finite, so this is not far off.)  In that case X can 
be described as a principal S1 bundle over X/S1.  However, these bundles frequently have 
the homologically trivial fibers.  The condition for which this is not the case is that the 
Euler class in H2(X/S1;Z) must be of finite order (i.e. vanish rationally).    This leads to a 
finite cyclic cover of X/S1 on which the bundle is trivial.  That finite cover is Y, and X/S1 

is Y/Zn. 
  
 We note that this theorem is extremely general, and does not apply e.g. to the 
setting of manifolds.  After all, X/S1 can well be a non-manifold (recall the examples of 
Bing mentioned in 6.1), so we will be forced to allow Y to be an ANR hmology 
manifold.  (Note Y×R is a cover of X, so we do obtain that Y is an ANR homology 
manifold from the hypothesis that X is a(n ANR homology) manifold. 
  
 That is why we modified the Nielsen problem in our treatment above to exclude 
the action of Z2 on any ANR homology manifold in the homotopy type.  The proof of the 
theorem comes about by eliminating any other possibilities of what the Zn action in the 
Conner-Raymond theorem can look like for the manifold X.  These details are not 
particularly hard. 
 
 We note that the manifold X has the following interesting property: 
 
Remark:  X as constructed has Riemannian metrics gn so that the indices [Isom(X~, gn

~), 
π1(X)] → ∞ but no metric for which this index is infinite.   
 
 This is simply because X has arbitrarily large self covers (in the topological 
category; i.e. not Riemannianly «self» covers) associated to odd order cyclic quotients of 
the HNN map π1(X) → Z (because odd powers of H are pseudoisotopic to H). 
  
 We will later see that this is indeed unusual: for M homeomorphic to a compact 
locally symmetric manifold (of non-positive curvature) there is a C(M) 520 so that any 
Riemannian metric g on M with [Isom(M~, g~), π1(M)] > C(M) is actually isometric to a 
locally symmetric metric (and therefore has G as its isometry group, so the index is 
uncountable).  Farb and I had conjectured521 that for quite general aspherical manifolds 
there is a «magic number theorem» (see section 7 below), but this remark puts an upper 
bound on the extend to which one can reasonably conjecture that phenomenon (e.g. it 
might be good to assume that π1(M) is centerless). 

                                                
520 Which only depends on the volume of M in its standard locally symmetric metric.   
521 [Farb-Weinberger 2] 
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Question:  If a closed aspherical manifold X has fundamental group with nontrivial 
center, does it have a sequence of (Lipschitz) Riemannian metrics gn [Isom(X~, gn

~), 
π1(X)] )] → ∞? 
  
 In section 5 we will continue this discussion.   
 
 One can also ask whether the Conner-Raymond conjecture is virtually true?  The 
examples that are constructed using failures of Nielsen realization and the Conner-
Raymond theorem are virtually products with circles, so for them, this is trivially true. 
  
 Is there any form of the Conner-Raymond conjecture that is closer to the Borel 
conjecture?  Here is one that I know. 
 
Conjecture:  An aspherical manifold M has nontrivial center in its fundamental group iff 
there is a connected topological group G that acts on M so that the orbits are not 
nullhomotopic  (i.e. the map G  → M is not nullhomotopic). 
  
 That the center is nontrivial if there is such an action is obvious. 
 
 Regarding the converse, there is a universal case of this conjecture, namely that G 
= Homeo0(M) (where the subsript 0 indicates the identity component).  By the Borel 
conjecture, the blocked version of this space would be homotopy equivalent to the space 
of selfhomotopy equivalences of M, whose identity component is a K(Z(π1M),1) 
(presumably a homotopy torus522).   
 
 So the question is whether Homeo(M) → Homeo(M)~ comparing essentially fiber 
bundles and block bundles is, e.g. a Q homotopy equivalence, or at least as far as π1.  The 
paper [Farrell-Hsiang 4] explains why this should be true523 (at least in a stable range, 
using work of Waldhausen) if one knows that assembly maps in algberaic K-theory are 
isomorphisms. 
 
 Although the above heuristic does not make sense in low dimensions, e.g. <7 or 8, 
nevertheless, I have no reason to doubt (and no good reason to believe) the conclusion.  
 
7.4  Products: On the difference that a group action makes.   
 
 

                                                
522 I do not know whether the center can be a group like, e.g. Q. 
523 See the discussion referred to in 5.5.3 (and the notes to chapter 6).  Roughly the 
reasoning goes like this: the A-theory assembly map governs topological concordance 
space theory (which form the obstructions on a simplex by simplex basis to turning a 
block bundle into a fiber bundle).  Rationally that assembly map is equivalent to the 
algebraic K-theory assembly map, which is an isomorphism assuming the Borel 
conjecture in K-theory.  
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 Once one gets used to the Borel conjecture for manifolds, and the even larger 
Borel package extending its reach in various algebraic and geometric directions, one gets 
used to things like the following: 
 
 Two simply connected manifolds are homeomorphic iff the results of crossing 
them with any compact aspherical manifold are. 
 
 And that the simple connectivity we assumed is just to avoid algebraic K-theory 
difficulties (such as Whitehead torsion issues).  
 
 We shall see that frequently such statements are indeed consequences of the Borel 
conjecture, but that it is not quite true for all aspherical “objects”.  In particular we will 
see that this is not true for aspherical homology manifolds that are not resolvable, if there 
are any.  (Or, to vary the point somewhat: it is true for haspherical manifolds but not 
haspherical homology manifolds.  We can cross with the “fake homology tori” 
constructed in 7.2 and create some interesting homeomorphisms.) 
 
 And, the point then becomes even more evident and significant in the equivariant 
setting.  Odd order locally linear group actions behave like manifolds, but beyond the 
locally linear setting, or when there’s 2-torsion, in some ways these orbifolds act like 
non-resolvable homology manifolds (or even more extremely). 
 
 Let’s put a little flesh on this skeleton. 
 
 Shaneson’s thesis, from the modern perspective524, a restatement of Farrell’s: 
 

Ss(M×S1) ≅ Ss(M×[0,1] )×Sh(M) 
Ln+1

s(M×S1) ≅ Ln+1
s (M)× Ln

h(M) 
 

Where the last statement, modulo decorations is the isomorphism  
 

Hn(S1; L(π1M)) ≅ Ln(Z×π1M). 
 

which looks just the Borel conjecture for Z (with coefficients in the group ring Z[π1M]).  
The composition 
 

Sh(M) → Ss(M×S1) → Sh(M) 
 
(the left arrow is ×S1, and the right is applying Farrell’s fibering theorem) is the identity, 
which establishes the injectivity (aside from K-theory) of ×S1.  We can apply this n-times 
to get an injectivity statement for ×Tn.    

                                                
524 What a wonderful example of terrible history!  Shaneson’s thesis essentially helped 
create the modern perspective wherein statements about structure sets and L-groups are 
viewed as essentially equivalent.  Perhaps the best thinking covers itself up (in this way) 
and (is so successful it) becomes invisible. 
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 These results are steps in (and analogues of) the relations525 of Sbdd(M×Rn ↓ Rn) to 
one another via ×R.  Essentially all that is affected is the decoration.  Aside from the K-
theory issues (that effect only the prime 2) these maps are all isomorphisms526. 
 
Corollary:  If Z is a non-positively curved manifold527 then ×Z is injective on structure 
sets (aside from change of decoration528) 
 
 We use the diagram: 
 
   S(M) → S(M × Z) 
              ↓ 
           Sbdd (M × Z ↓ Z)  → Sbdd (M × Rn ↓ Rn)   
 
where the bottom left arrow uses the inverse of the exponential map to see that the top 
arrow is an injection (modulo decoration).   
 
 The attentive reader might have notices that this “logarithm” was the key to the 
proof of the Novikov conjecture for such Z, and therefore come to the conclusion that this 
injectivity is part and parcel of this package.   
 
 And, indeed for manifolds, it is. 
  
 Let’s think about the bottom line in the diagram where Z is now just the universal 
cover of an aspherical homology manifold.  One might not be able to find the relevant 
kind of logarithm map, but it still is reasonable to believe that Sbdd (M × Z ↓ Z) ≅ Hz

lf(Z ; 
S(M)) ≅ S(M) (with a shift of decoration). 
 
 However, what is unreasonable is to expect that this isomorphism is implemented 
by × Z.  In the manifold case we saw this by unpeeling one R at a time. 
 
 In the homology manifold this can’t go on all the way down to a point!, for then it 
would be a manifold.  And, indeed what happens is this: 
 

                                                
525 Chapman proved that a bounded structure over Rn can always be “wrapped over a 
torus” and then is transfer invariant; i.e. isomorphic to any of its finite covers. 
526 Note also that bounded structures and the same as controlled structures, and then by 
the yoga of controlled topology one should get H*

lf(Rn ; S(M)) -- except that this only 
works with -∞ decoration.   
527 The proof uses non-positive curvature very weakly:  It just requires a Lipschitz 
homeomorphism h of the universal cover with Rn that has the property that d(x,y) can be 
bounded in terms of ||h(x)-h(y)|| (i.e. h must be “effectively proper” or equivalently a 
“uniform embedding”) 
528 And for Z an n-manifold, one loses no more than one does for the n-torus. 
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 The effect of crossing with a (homology) manifold X in surgery is governed by 
the symmetric signature σ*(X).  It is the image under assembly of a controlled symmetric 
signature that lives in a group isomorphic to Hz

lf(X ; L*(Z)).     
 
 The usual way to see that multiplying with something is injective is to show that 
that thing is a unit, or maps to a unit under some map.  For a manifold, at least, the image 
of controlled symmetric signature in Hz

lf(X, X-x ; L*(e)) ≅ L0(Z) ≅Z is 1, and therefore if 
the map from controlled to uncontrolled has good enough properties, i.e. assuming the 
Novikov conjecture, one can expecting this product phenomenon. 
 
 However, when X is a homology manifold, then this image of the controlled 
symmetric signature is some number that is 1 mod 8, and it determines whether or not X 
is resolvable.  So, if X has local index = 9, crossing with X can kill 3-torsion in a 
structure set.  And, if the local index is 17, then 17 torsion can die, but the 3-torsion is 
safe, and so on. 
 
 In the setting of Z-homology manifolds then, crossing with something aspherical 
doesn’t have to be integrally injective (modulo decorations), but it does have to be 
(assuming the Novikov conjecture529) rationally. 
 
 It’s interesting to ponder a Poincare complex P whose total surgery obstruction is 
of order 17 amd that we cross with an aspherical homology manifold X with local index 
17 whose canonical Ferry-Pederson reduction is a stably trivial bundle.  Then PxX will 
exist, and, if one believes the Borel package, it will approximately fiber over X; however, 
the local structure will not be a product.  (The same thing, of course, happens in the 
manifold setting when one has nonsimply connected Poincare complex, which is only 
finitely dominated, and its total surgery obstruction vanishes in BS-∞ and crosses with a 
high dimensional torus.)   
 
 Now, let’s turn to the equivariant situation.  We have so far seen that this venue is 
richer in phenomena because of Nil and UNil, and if we choose to be equivariant rather 
than isovariant, also because of embedding theory.  But now we will see that the situation 
is richer for yet another reason:  The local structures that are present are richer (and more 
geometrically apprehensible) than what occurs in (homology) manifold theory and we 
can lose the rational injectivity of crossing530. 
 

                                                
529 Suspect the sanity of someone who wants to start by considering Z2 as the first 
nontrivial example in studying group actions: it is frequently much more difficult than 
any odd order group, as we had noted in Fowler’s theorem (7.2), for example, or the 
nonlinear similarity problem (6.7).  And, indeed, the issue here is quite similar!  Needless 
to say, I can imagine some situations where Z2 is “the first case” (because one wants only 
one singular stratum, and vanishing K-groups, etc. or among people for whom nontrivial 
means “the first case not yet handled through the efforts of all mathematicians over the 
course of the previous millennia”). 
530 Despite expecting rational injectivity of appropriate assembly maps! 
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 So, let’s think about the smallest group, Z2, and the smallest nontrivial aspherical 
universal cover R with the involution x → -x.  We will denote this by R,- .What happens 
here? 
 
 The issue occurs almost immediately.   
 
 Let’s consider Sn with a free involution.  Then × R,- can be thought of (at least it 
seems closely related to) as the “suspension map” 
 

SZ2(Sn) → SZ2(Sn ×R,-) ≅ Sbdd(RPn+1 - point) 
 ↓ ↓ 

S(RPn)                 →               S(RPn+1) 
 
 The boundedness in the top line is over R and [0, ∞).  Boundedness over these 
turns out to be equivalent to propriety.  The vertical lines are isomorphisms (any proper 
homotopy RPn+1 - point can be compactified, and the boundary is necessarily a homotopy 
sphere, and therefore a sphere). 
 
 This “suspension map” was analyzed directly by Browder and Livesay [Browder-
Livesay] in the early days of surgery.  They were interested in the kernel and cokernel in 
the bottom line to get an approach to the structures of RPn.  In any case we know that 
S(RPn) is finite531 iff n ≢ 3 mod 4, is Z⊕finite for n = 3 mod 4.  In any case, it surely is 
not rationally injective. 
 
 Bolstered by this we can decide to directly compute SZ2(Sn) → SZ2(Sn ×S1,-).  
Note that SZ2(Sn ×S1,-) ≅ S(RPn+1#RPn+1), so there is a very significant lack of surjectivity 
because of UNil, but also the Z coming from L0(Z2) for n =3 mod 4 also dies532.  
 
 This “anomalous” product is the key to at least two interesting geometric 
phenomena.   
 
 The first is nonlinear similarity [Cappell-Shaneson1], discussed earlier in this 
book - the fact that for some even order groups, like Z4k, k>1, there are distinct linear 
representations that are conjugate via homeomorphisms.  They begin with 
representations that are not conjugate because of ρ invariants, and then after crossing with 
R- they become conjugate.   
 
 The second is a very nice result of Hambleton and Pederson [Hambleton-
Pederson] related to the classical spherical space form problem: namely which groups act 
freely on some sphere.  The answer, due to [Madsen-Thomas-Wall] is that a finite group 

                                                
531 For simplicity and connections to the classical literature in this paragraph and next S 
denotes topological manifold structure, rather than homology manifold structures.  (Thus 
S(Sn) is  
532 Taking the cover associated to Z2 ⊂  Z2* Z2, gives a computational proof of the 
bounded vanishing mentioned in the previous paragraph  
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so acts iff all subgroups of order p2 and 2p are cyclic.  The first condition is homotopy 
theoretic, and follows from Poincare duality of the putative quotient, but the second 
condition, due to Milnor is essentially surgery theoretic533.   
 
 The question then arises for groups that act freely, properly discontinuously, and 
cocompactly on Rn×Sk, must every finite subgroup satisfy the 2p condition?  (The p2 
condition is indeed automatic since it comes out of cohomological considerations, see 
[Cartan-Eilenberg]).  Here the answer is affirmative, and basically the reason also 
involves crossing with R,- a few times.   
 
 Formally, the point for group actions is this.  When one does a similar analysis for 
a controlled symmetric signature, now what arises is a more complicated local group 
rather than L*(Z); the isotropy enters, and one has -- at least! -- things like ρ-invariants 
entering.  Away from 2 the information is essentially the same as the equivariant 
signature operator, and that has the property that for odd order groups (acting smoothly -- 
so we are dealing with a representation theory problem!) one obtains a unit, but for even 
order groups, it frequently is a 0-divisor, with the kinds of implications just mentioned. 
 
 In summary:  usually homology manifolds and manifolds behave very similarly, 
but they don’t with respect to transversality problems.  Bundle structures are much rarer.   
 
 Similar issues arise in the orbifold setting.  For odd order groups the equivariant 
signature (for locally linear actions) is locally a unit, i.e. is an orientation - but for even 
order groups it’s frequently a 0-divisor.  For ANR homology manifolds that are not 
resolvable, the symmetric signature is neither a unit nor a 0-divisor, so one tends to see 
phenomena that are intermediate between the differences between odd order and even 
order group actions. 
 
7.5  Fibering534   
 
 We recall a theorem of Browder and Levine that was the predecessor of Farrell’s 
thesis: 
 
Theorem:  A closed manifold M with π1(M) = Z is a fiber bundle over S1 iff its universal 
cover has finitely generated homology535. 
 
 Farrell’s theorem gives one generalization of this - what happens for fibration 
over S1 if π1 is not Z.   
 

                                                
533 in its modern formulation.  See [Davis J] 
534 See also our discussion above in 5.5.1. 
535 They proved this theorem in the smooth and PL categories in dimension >5, but it is 
now known to be true in the topological category in all dimensions (for the “usual 
reasons”). 
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 But, an alternative generalization asks what we can say more generally about the 
structure of manifolds whose universal covers have finitely generated homology? 
 
 Note that for many fundamental groups there are no such manifolds536.   
 
Example:  If M is a closed manifold and π1Mn has infinitely many ends (e.g. is a 
nontrivial free product other than Z2*Z2), then Hn-1 of the universal cover of M is 
infinitely generated. 
 
 Indeed the universal cover has infinitely many compact separating codimension 
one submanifolds that are not homologous. 
 
 

 
Part of the universal cover of a  manifold with free 

fundamental group; a set of separating hypersurfaces 
as in the picture are linearly independent whenever 

no subset bounds a compact region 
 
 

 More generally, the following is a consequence of [Quinn1] (1.6, see [Block-
Weinberger 1])537 
 

                                                
536 For some groups there are no such finite complexes or even having finitely generated 
homology through some fixed dimension.  This is a variation of the usual FPk heierarchy 
(see e.g. [Brown]) for groups, which seems worth further study.  
537 The argument is basically this:  A finite complex X is a Poincare complex iff the map 
from the boundary of the regular neighborhood of X in a high dimensional Euclidean 
space is a homotopy sphere.  This implies that for a fibration of finite complexes, F → E 
→ B, as these fibers for E is the join of the fibers for E and B, E is Poincare iff both F 
and B both are.  In our situation, E = M, and the fibration is associated to the classifying 
map of the fundamental group, and we have assumed that all three are finite complexes.  
Thus, all three must be Poincare complexes.  Since M is a manifold, its universal cover 
automatically has a normal invariant, and consequently, the fiber is homotopy equivalent 
to a topological manifold (in all dimensions). 
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Proposition:  If Bπ is a finitely dominated complex and M is any closed manifold with 
fundamental group π with universal cover with finitely generated homology, then 
(i) Bπ is a Poincare complex and (ii) the universal cover of M is a Poincare complex.  
 
 It is obviously not necessary for Bπ to be finitely dominated for such an M to 
exist.  Any finite group is a counterexample!  Nevertheless, let us make provisionally this 
assumption. 
 
Conjecture:  If M is a closed manifold with π1M of finite type and whose universal cover 
has finitely generated homology, then there is an aspherical ANR homology manifold X 
and a UV1 approximate fibration M → X. 
 
 Let’s review some of the definitions and motivate the conjecture.  We shall see 
that it is a natural analogue and consequence of the Borel conjecture.  (Indeed it also 
implies the Borel conjecture, so I guess that means it’s equivalent to it.) 
 
 The first statement that there should be an aspherical ANR homology manifold 
with the same fundamental group as M follows from the existence version of the Borel 
conjecture (with Wall conjecturing that this should even be homotopy equivalent to a 
manifold).  The manifold is then homotopy equivalent to a fibration over X with a 
Poincare space as fiber. 
 
 If X is not resolvable, then obviously M cannot fiber over it.  (The local index of 
M would have to be divisible by the local index of X.)   
 
 However, approximate fibration is somewhat less.  A map is an approximate 
fibration if the usual condition for a fibration, namely that for any square 
 

•    A   →  M 
    ∩        ↓ 
    A×[0,1] → X   
 
there is a diagonal lift,  A×[0,1] → M, but now only demanding that the diagram 
commute up to ε.  (In other words, for each ε we want a lift.)  This condition is quite 
close, when X is a manifold, to being a block bundle (see [Quinn 2])  
 
 Let E(M~↓ X) be the total space of the universal cover fibration over X, i.e. the 
product (M~×X~ )/π which has a natural fibration structure over X. 
 
 The obstruction to homotoping the map M → E(M~↓ X) to a controlled homotopy 
equivalence over X (is equivalent to homotoping it to an approximate fibration) is exactly 
an element in a (looping538 of the) structure set of X (as the homotopy fiber is simply 
connected) by [Bryant-Ferry-Mio-Weinberger].  (See 4.9 for a blocked discussion and 

                                                
538 By dim M-dim X. 
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also 5.5.1.)  Consequently, by the Borel conjecture again, we get the conclusion of the 
conjecture. 
 
 Conversely, if for example X is an aspherical manifold for which the Borel 
conjecture fails, then gluing together a counterexample in S(X×D4) to X×D4 builds a 
manifold that is homotopy equivalent to X×S4 and therefore has finitely generated 
homology in its universal cover. However, the obstruction to making it approximately 
fiber over X is exactly the nontrivial element in S(X×D4) that starts the construction, 
completing the proof. (This requires some thought, perhaps, but it follows from the proof 
of Siebenmann periodicity given in [Cappell-Weinberger4].) 
 
Question:  Is there any natural construction of manifolds whose universal covers have 
finite type that might be a useful source of groups that satisfy Poincare duality that are 
not immediately forced to be fundamental groups of manifolds?  Note that any Poincare 
BΓ is the fundamental group of such a manifold -- but this doesn’t count, since we don’t 
have a construction of these, as I’ve already lamented -- the boundary of a regular 
neighborhood of BΓ embedded in any Euclidean space would be such a manifold. 
 
 One source might be even a construction of manifolds M where Out(π1M) might 
or might not be trivial, and where there is a finite subgroup G for which no element of 
order p lifts to Aut(π1M).  In that case the nontrivial extension 1→ π1M →Γ→ G → 1 
produces a Poincare duality group which is not obviously a manifold.  On the other hand, 
if we knew the Novikov conjecture for π (even rationally)this would not be a candidate 
for a counterexample to the Wall conjecture based on the local index.  And, in any case, I 
don’t know any interesting examples of this sort.  
 
Remarks:   (1) Note that by striving for a general discussion, we were inexorably led to 
approximate fibrations.  However, when X is a manifold, nothing we have said precludes 
M from actually fibering over X.  Nevertheless, since there are sphere block bundles that 
do not correspond to sphere bundles, the total space of one of these over a closed 
aspherical manifold would provide such an example. 
 
  (2)  There is a slightly different line of reasoning that could lead to the above 
conjecture (and naturally leads to a version for arbitrary regular covers in place of the 
universal cover: but this version is obstructed by (a sequence of) Nil groups in general; 
what follows is a somewhat different recombination of the ingredients in 5.1.1). 
 
 Let us consider what a stratified version of the Borel conjecture could be -- in the 
first interesting case, where our space has two strata. The question is which of these can 
be rigid? 
 
 This is actually kind of complicated.  Here is an example that has nothing to do 
with the Borel conjecture: 
 
Example:  Suppose that f:M → N is an approximate fibration whose homotopy fiber is 
CP2k, then (Cyl(f), rel ∂) is a rigid stratified space. 
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 Interestingly Cappell, Yan and I observed that this is not true in the slightly more 
general situation where the homotopy fiber is a general simply connected manifold F 
with signature = 1!  There is an interesting contribution of the monodromy map π1N → 
Aut(F). 
 
 So let’s consider just the rel singularity situation539.  (See 6.5-6.) There is a 
fibration: 
 

S(X rel Σ) → S(X - Σ) →Fiber (H(Σ; L(local holink)) → L(global holink)). 
 

(The loop of this fibration is Fiber (H+1(Σ; L(local holink)) → L(global holink)) → S(X 
rel Σ) → S(X - Σ), which just means that the extensions of a structure of X - Σ over Σ 
corresponds to the ways of making the end of X - Σ into an approximate fibration over Σ.) 
 
 S(X - Σ) is easy enough to compute: It is essentially a manifold with boundary not 
rel ∂.  In the mapping cylinder case, it vanishes.  (It boils down to S(M ×[0,1) rel M×{0}) 
= 0.)  This calls attention to the issue of whether: 
 

H(Σ; L(local holink)) → L(global holink) 
 

is an isomorphism.  If π2Σ=0, then the L-sheaf is “flat” i.e. is a formal consequence of the 
short exact sequence540 
 

1   →   π1(local holink)   → π1(global holink))) → π1(Σ)  → 1 
 
and then we would expect this fiber to be trivial at least when Σ is haspherical (by 
comparison to the aspherical case -- as there is a map to the corresponding twisted 
assembly map over Bπ1(Σ)).  
 
 All of this suggests that for Cyl(f) if the map is an approximate fibration541, and 
the base is aspherical, one might conjecture rigidity.  A little thought shows that the 
reasoning discussed in chapter 4 would prove the split injectivity.  Which makes the 
conjecture of rigidity (despite its clear falsity due to Nil and UNil issues!) plausible.  This 
is a special case of the twisted Borel conjecture in 5.5.1. 
 
 The connection between the neighborhoods and approximate fibrations is very 
close in the topological category.  As we discussed earlier, there is no direct regular 
neighborhood theory.  What there is the “teardrop neighborhood theorem” of [Hughes-

                                                
539 Actually, there is a stabilization necessary here when the holink is not simply 
connected, because of decoration issues.  We shall ignore this. 
540 (see [Weinberger TSS Chapter 13]) 
541 Actually, all one needs is that all “fibers” have the same π1 (i.e. an approximate 
fibration with respect to 2-complexes).  In that case, stratified surgery does not directly 
apply, but nevertheless controlled surgery would still give a suitable rigidity. 
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Taylor-Weinberger-Williams].  It says that there is a deleted neighborhood of X- Σ  that 
has a canonical approximate fibration structure over Σ × (0,1).  (Then Σ is glued in in the 
obvious way, and when drawn appropriately, the open sets in the relevant topology, look 
like teardrops.) 
 
 The × (0,1) has the effect of being a looping, and one is thus led geometrically to 
the conjecture of existance and uniqueness of approximate fibration structures when the 
target is aspherical. 
 
 (2.5) Note that once we have then decided that Σ is aspherical, then the Borel 
conjecture would give its rigidity, so S(X rel Σ) → S(X) would be an isomorphism.  
Thus, we have two circumstances in the previous remark where we have vanishing of 
S(Cyl(f), rel ∂) -- namely when the fiber is CP2k or when the base is aspherical. When the 
fiber is CP2k then any manifold M’ homotopy equivalent to M gives rise to a structure N’ 
on N, so that M’ approximately fibers over N’.  In the situation of aspherical base, the 
base is itself rigid, so the result is that M’ fibers over N itself. 
  
 (3) Approximate fibrations arose naturally as we considered rigidity in the 
topological category.  As we have emphasized many times in these notes, the topological 
setting is the natural one for rigidity. 
 
 Had one worked PL, one would have been led to consider block bundles instead.  
In that case, we would have trouble with decorations, which also reflects the way there 
are K-theory obstructions in Farrell’s theorem542.  While the whole Whitehead group 
enters in Farrell’s theorem, in the problem of approximate fibering over the circle (and 
this is part of the Borel package) it is only the Nil part:  Writing, in the product situation, 
Wh(Z ×π) = Wh(π) × K0(π) × Nil±(π).  The K0(π) part arises from trying to put a 
boundary on the infinite cyclic cover.  However, any such cover, with boundary or not, is 
the infinite cyclic cover of an approximate fibration over the circle (see [Hughes-Ranicki] 
for a discussion of wrapping).  The Whitehead part is entirely irrelevant to the problem.  
The h-cobordisms between different “almost fibers” can all be mapped to points in an 
approximate fibration. 
 
 Now let us turn to the possible structure of manifolds whose universal covers 
have finitely generated homology but have torsion in their fundamental group. 
 
Conjecture:  For such a manifold to exist it is necessary and sufficient that HRi (π) is 0 for 
all but one dimension, and in that dimension it is isomorphic to Z. 
 
 Here HR is the “Rips homology” of the discrete metric space π (made into a 
metric using the word metric).  It is defined as the limit of the locally finite homology of 
the nerve of the covering of π by balls of radius k, as k →∞.  (See section 4.8 or [Block-

                                                
542 That the version of Farrell’s theorem for approximate fibrations only involves Nil was 
observed by Ferry in the late 1970s. 
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Weinberger1] or [Roe5])  For groups of finite type, this is equivalent to Poincare duality. 
(see e.g. [Brown]) 
  
 The work we’ve already done on the Nielsen theorem indicates that there are 
groups satisfying the conditions of the conjecture where there is no Eπ manifold.  If one 
takes the counterexample to Nielsen and cross it with S3, one easily obtains a manifold 
whose universal cover is homotopy equivalent to the sphere but we cannot attribute this 
to e.g. an approximate fibering, as (we try to) in the finite type situation. 
 
 Of course, there are situations where Eπ geometrically exists. For example, this is 
the case when π is uniform lattice in a connected Lie group G.  In that case, the Borel 
package gives one a nice characterization: 
 
Theorem:  If M is a manifold whose fundamental group is that of a uniform lattice in G 
and whose universal cover has finitely generated homology, then there is a π-equivariant 
UV1 approximate fibration M~→ G/K iff appropriate Nil and UNil obstructions vanish. 
 
 The need to handle such obstructions is easy to see.  Suppose we take one of 
Cappell’s fake M = RP4k+1# RP4k+1s that is not a connected sum.  Suppose that there 
were a D∞ equivariant approximate fibration f of the universal cover to R (with the usual 
action where one involution is x → -x and he other is x→1-x).  f-1(1/3,2/3) would 
descend into M, and would be a copy of S4k×(0,1) (as there is a unique manifold element 
in Sp (S4k×(0,1)).  Taking a slice, M is thus decomposed into a connected sum.  Similarly, 
it is not hard to realize Nil obstructions on some manifolds with fundamental group Z×F, 
where F is a finite group, and then there would be no Z×F equivariant map of the 
universal cover to R (with trivial F action, Z acting by translation). 
 
 The proof of the above theorem is now identical to the discussion of the torsion 
free case above. 
  
7.6  Manifolds with Excessive Symmetry543. 
 
 In this section we will describe some theorems in Riemannian geometry that have 
a philosophical relation to the topological issues explored in the previous few chapters.  
We will not do more than give the slightest hints of the arguments. 
 
 Recall again Borel’s theorem: 
 
Theorem:  If M is aspherical and π1M is centerless then any group G that acts on M 
injects into Out(π1M). 
 
 If M is compact locally symmetric (with no virtual hyperbolic surface factors) 
then Mostow Rigidity implies that Isom(M) = Out(π1M).  Then we can assert that for 

                                                
543 Benson Farb has criticized the title of this section and suggested “Manifolds that only 
have the slightest bit more symmetry than they need to have” as an alternative. 
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action on M, there is a semiconjugacy (=equivariant map that’s not necessarily a 
homeomorphism) homotopic to the identity 
 

H: M → M 
 
to an action by isometries. In this sense, the locally symmetric metric is maximally 
symmetric among all metrics.   
 
 Of course there are other metrics that are equally symmetric.  Isom(M) is a finite 
group and any metric equivariant with respect to this group has the same symmetry.  Is 
there any way we can be more demanding and perhaps to characterize the locally 
symmetric metric?   
 
 Another point to notice is this.  Instead of just considering metrics on M, we can 
also consider manifolds N with π1N ≅ π1M.  If the G action on N is trivial in Out(π), then 
one can factor the natural map N → M through N/G544.  In particular if the homology 
class of N is nontrivial in Hn(Bπ = M; Q), i.e. if N is essential, then G is finite545.  If the 
map were degree one we would have Borel’s injectivity for this larger class of manifolds. 
 
 This connects to our higher signature localization discussion, since the fixed sets 
would have no choice but to be lower dimension for a nontrivial action, but such 
wouldn’t be able to have this relevant higher signature.  It’s not shabby getting this far 
just from homology considerations without using any high technology.   
 
 In short, we see that there is a rather larger class of manifolds for which Isom(M) 
provides a bound on their symmetry. 
 
 We will warm up with the following result: 
 
Theorem ([Farb-Weinberger1]):  If N → M is a map of nonzero degree, M an irreducible 
locally symmetric manifold and Iso(N’) ≅ Iso(M’) for every finite sheeted cover, then  

(i) If M is arithmetic, then N is isometric to M546 
(ii) If M is not arithmetic, then there are such N not homotopy equivalent to M 

(above dimension three, for trivial reasons) and there are N diffeomorphic 
to M that are not locally symmetric. 

 
 The key to the theorem comes from the existence and uniqueness theorems for 
harmonic maps in a given homotopy class when the target is compact and non-positively 
curved.  The difference between the arithmetic and nonarithmetic cases is because of a 
theorem of Margulis:  Every nonarithmetic lattice is included in a maximal lattice that 

                                                
544 This uses the finiteness of Out(π), the existence of a lattice Γ in G such that π ⪦ Γ → 
Out(π), all of which follows from Mostow rigidity, and the fact that G/K is an EΓ. 
545 And, we can be more quantitative:  depending on how divisible [N] is in Hn(Bπ) we 
can bound #G. 
546 Actually homothetic to M; one can rescale the metric! 
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includes all of the lattices that are commensurable to it.  This makes (ii) very simple.  N 
can be taken to be M#several(S2×Sn-2).   
 
 For the arithmetic case, one makes use of many conjugates of π in the group G(Q) 
which produce many extra isometries that finite covers have.  Ultimately this transfers the 
whole action of G from the universal cover of M to that of N (by taking limits). 
 
 Indeed a little work makes the same conclusion follow from the hypothesis that M 
and N have the same dimension and fundamental group.  The map of universal covers is 
smooth, and given the action of G, every point of M is a regular value, so the map is 
finite sheeted cover, and the conclusion then follows. 
 
 One can push these ideas further in a number of ways:   

(i) One doesn’t need that all of the isometries of all of the finite covers 
extend.   One just needs that there are many that do. 

(ii) One can, in the spirit of the previous paragraph, remove essentiality types 
of conditions (like asphericity) and end up with statements about fibering, 
i.e. that the harmonic map that one produces has no singularities, and that 
the domain manifold Riemannianly fibers over the target. 

 
 It turns out that the correct setting for these results is the following (that follows 
from the same ingredients together with some Lie theory): 
 
Theorem [Farb-Weinberger 2]:  Suppose M is a compact aspherical Riemannian manifold 
whose fundamental group has no normal abelian subgroup and is not virtually a product 
of manifolds.  Then if [Isom(M~):π] is infinite, then π is a uniform lattice in a semisimple 
group G, and M is isometric to K\G/π. 
 If M is not assumed aspherical, then one must assume that Isom(M~) is not a 
compact extension of π, and one obtains that a finite cover of M is a Riemannian fiber 
bundle over K\G/π. 
 
 The condition about compact extension is to avoid situations like the following.  
Suppose π has e.g. a dense representation in a compact group  H, then the quotient 
manifold under the diagonal action (K\G × H) has a large isometry group for its universal 
cover (i.e. containing π with infinite index), even if one gives K\G a highly nonsymmetric 
metric, that is merely π invariant. 
 
 Normal abelian subgroups truly are the enemy.  A 3-dimensional Sol manifold, is 
abstractly a torus bundle over a circle.  One can consider families of flat structures on the 
torus, parameterized over the circle, with a small compatibility condition (and don’t even 
all have the same volume) and obtain metrics that have excessive symmetry and do not 
come from locally symmetric metrics or fiber over anything. 
 
 It seems very reasonable to try to improve the condition “[Isom(M~):π] is infinite” 
to something more quantitative.  This is most salient in the “no normal abelian subgroup” 
situation.  The example on the Conner-Raymond conjecture gives an example of an 
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obstacle involved in removing this condition and replacing the condition in the 
conclusion by something that takes the abelian subgroup explicitly into account. 
 
(“Magic Number”) Conjecture.  For each group π that has no normal abelian subgroups, 
there is a number C(π) so that any Riemannian aspherical manifold with fundamental 
group π so that [Isom(M~): π] > C(π) is isometric to locally symmetric Riemannian 
manifold. 
 
 This conjecture is true when π is lattice, or a word hyperbolic group.  It seems that 
a counterexample would have to be rather exotic.   
 
 Our discussion also makes the following also seems possible (although I confess 
unlikely547) 
 
Conjecture:  An aspherical manifold M has Lipschitz Riemannian metrics for which 
[Isom(M~):π1M] is arbitrary large iff π1M has a normal abelian subgroup. 
 
7.8 Notes.  
 
7.1  Borel’s paper was unpublished for many years, but appeared in his collected works.  
The theorem itself was published by Conner and Raymond much earlier.  I recommend 
the book [Lee-Raymond] for many results about Lie group actions on aspherical 
manifolds, which builds on and reviews the excellent work of Conner and Raymond. 
 
 The Nielsen problem can be viewed a variant of the Borel conjecture:  If one 
believes that a homotopy equivalence gives rise to a canonical homeomorphism in the 
homotopy class, then one would have been led to the Nielsen problem.  In the classical 
setting of surfaces, Nielsen proved it for cyclic groups.  As mentioned in the text, the 
general case was first proved by Kerkhoff [Kerkhoff].   
 
 Borel’s theorem, of course, only applies to closed aspherical manifolds:  After all, 
there are many finite group actions on Euclidean space and Out(π) = e!  However, it is 
natural to ask about locally symmetric manifolds of finite volume, i.e. quotients by 
nonuniform lattices.  I had been interested in this question for many years, and the result 
that Borel’s theorem holds for these was proved by G.Avramidi [Avramidi 1].  However, 
as he points out, the proof leaves open many questions:  For example given an arbitrary 
action of a finite group A on K\G/Γ, is the dimension of the fixed set the same as in the 
classical action?  Even for A a p-group this is open. 
 
 The results of Borel underscore a problem for understanding G-manifolds.  For 
ordinary closed manifolds, we make a lot of use by the comparison of M to Bπ1(M) (at 
least in the torsion free case and to related things when π has torsion).  The fact that for 
nonabelian compact Lie groups, and more generally, there is no very nice model for 
K(π1

G(M),1) where π1
G(M) is the map from the orbit category of G, Orb(G)→ Gpd, the 

                                                
547 And therefore this problem’s demise will be measure of how much we have to learn. 
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category of groupoids (since fixed sets can be disconnected or empty) makes it much 
harder to understand equivariant structure sets even when we have a theoretical analysis 
via a surgery sequence. 
 
7.2  The connection of the Wall conjecture to the Borel conjecture requires Ranicki’s 
total surgery obstruction [Ranicki 3].  This in turn is related to the idea that ‘coherent 
Poincare transversality’ gives a reduction of the Spivak fibration [Levitt-Ranicki].  
Actually, the (integral form of the) Novikov conjecture therefore gives the reduction of 
the Spivak fibration, but there is a surgery obstruction in principle - but surjectivity of the 
assembly map would give this, which is clearly part of the Borel conjecture.  When 
[Bryant-Ferry-Mio-Weinberger] came out, it became clear (it seems to me) that it was 
more reasonable to ask for homology manifolds inxtead of manifolds.  Davis [Davis1] 
suggested that one ask the question about aspherical R-homology manifolds.  
 
 This was disproved by Fowler in his thesis [Fowler2], which we have followed in 
spirit in the text. 
 
 Thanks to intersection homology there are other settings where one can ask for 
Poincare duality.  It would be interesting to find groups that naturally act on IH-acyclic 
‘Witt spaces’ or something similar.  Then the Wall conjecture would somehow resolve 
the space (although perhaps in a non-local way). 
 
7.3 Hyperbolic groups were first studied by I.Rips, who showed that they act properly 
discontinuously and cocompactly on a finite dimensional contractible complex (the Rips 
construction).  This result was published and then much elaborated by Gromov [Gromov 
HG] who explained their stability properties, their boundaries, isomperimetric 
inequalities, rationality of their word zeta functions etc. They have become a much 
studied class of groups and are central to geometric group theory.  I recommend 
[ABCFLMSS, Coornaert-Delzant-Papadopoulos,Ghys-de la Harpe] as good references 
(although there are a  number of others). 
 
 As hyperbolic groups are generalizations of the idea of the findamental group of a 
closed hyperbolic (or negatively curved) manifold, relatively hyperbolic groups are a 
generalization of hyperbolic manifolds with cusps.  (These are never hyperbolic in 
dimension > 2, because they contain nontrivial abelian subgroups.)  The basic paper is 
[Farb] that establishes many of their properties.  We use the fact that relative 
hyperbolization (see [Davis-Januszkiewicz-Weinberger]) can be made hyperbolic relative 
to the boundary [Belegradek1].  That the pieces glue together to form a hyperbolic group 
is based on ‘combination theorems’.  The original combination theorem was Thurston’s 
uniformization of Haken 3-manifolds.  For hyperbolic and relatively hyperbolic groups, 
[Bestvina-Feighn] and [Dahamani] provide analogues.  ([Drutu-Sapir] provide the 
quasiconvexity necessary for applying these theorems.) 
 
 The Conner-Raymond conjecture grew out of their work on injective torus actions 
(all actions on aspherical manifolds are injective).  Their understanding of group actions 
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on aspherical manifolds led to many many examples including, for example, the first 
examples of closed manifolds that have no symmetry [Conner-Raymond-Weinberger].   
 
 As discussed earlier, pseudoisotopy theory is a deep subject connecting higher 
algberaic K-theory to groups of homeomorphisms and diffeomorphisms of manifolds.  
Besides the paper [Farrell-Hsiang 4] already referred to in the text, I recommend 
[CohenR, Weiss-Williams] as useful surveys (although [CohenR]’s description of then 
‘recent’ results was a bit optimistic). 
 
7.4 Products  This material should be well known, but doesn’t seem to be.  That products 
are likely not isomorphisms when the controlled symmetric signature is not a unit (in a 
relevant) ring is obvious in retrospect and also gives rise to failure of equivariant 
transversality -- as discussed in the beginning of chapter 6, first appearing in the form of 
lack of stability of equivariant classifying spaces -- and some forms of transversality for 
homology manifolds (if one asks for bundle neighborhoods).  
 
 That bounded over R boils down to the proper theory is because tame ends of 
manifolds can be “wrapped up” and have an automatic periodicity.  The relevant 
geometry is part of [Siebenmann 2] that gave an alternative approach to Farrell’s thesis 
for the problem of fibering over the circle548. 
 
 The Browder-Livesay theory is an elegant one wherein this particular non-simply 
connected problem is boiled down to a simply connected problem.  The quadratic form 
<u, Tv> where < , > denotes cup product and T denotes the involution on the 2-fold cover 
plays a major role.  The orientation reversing nature of T interchanges the usual 
±symmetry.  In more modern L-theory this is called a change of ‘antistructure’ and there 
is now a much more general theory of Browder-Livesay groups, associated to quadratic 
extensions of rings.  Given our discussion, it should not surprise the reader that Cappell 
and Shaneson relied on such a Browder-Livesay theory in their calculations leading to the 
existence of non-linear similarity. 
 
7.5 Fibering  The discussion in this section is surely folklore and I am not sure who 
noticed what when.  Ferry had told me decades ago that approximately fibering over the 
circle is much less obstructed than fibering, i.e. that it’s controlled by the Nil part of the 
fibering obstruction, and that the homotopy fiber does not need to be a finite complex.  
When considering the twisted analogue of the Borel conjecture, one quickly realizes its 
connection to block bundles, except that it doesn’t get the decorations right.  So, for “K-
flat” groups, one gets general block fibering theorems (like those relevant to our question 
about spaces with finitely generated homology in their universal covers).  Farrell and 
Jones point this out in their paper [Farrell-Jones 3], and I had pointed out such things 
based on thinking about approximately fibered neighborhoods and possible stratified 

                                                
548 Farrell’s original approach did not place the algebraic obstructtion all at once in Wh: it 
lived in several pieces.  The connection between the two approaches is given by the 
formula for the Whitehead group of a twisted extension Z[π⋊Z]. 
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rigidity in [Weinberger TSS].  See [Farrell-Lueck-Steimle] for recent results about 
approximately fibering compact manifolds over aspherical ones. 
 
 That one can prove results about approximate fibrations over ANR homology 
manifolds was the struggle in [Bryant-Ferry-Mio-Weinberger2].  
 
 The teardrop neighborhood theorem of [Hughes-Taylor-Weinberger-Williams] is 
a variation on the periodic structure that can be given to a tame end, referred to in the 
notes to the previous section. 
  
7.6 Excessive symmetry.  The proof of the main theorem characterizing Riemannian 
manifolds with excessive symmetry is a combination of the Myers-Steenrod theorem that 
tells us that the isometry group of any Reimannian manifold is naturally a Lie group. The 
theory of Harmonic maps (in order to build canonical maps to model spaces), and the 
Conner conjecture (a theorem of Oliver [Oliver1]) that asserts that the quotient of a finite 
dimensional contractible space under a compact group action is contractible.  This 
enables one to get information about isotropy groups and use homological algebra. 
 
      The use of harmonic maps to rigidify homotopy theory and make maps 
automatically equivariant arose earlier in work of Schoen and Yau [Schoen-Yau2].  They 
also play a role in Frankel’s proof of a conjecture of Kazhdan, which [Farb-Weinberger2] 
gives an alternate proof of. 
 
      These techniques are somewhat extended to noncompact manifolds in [Farb-
Weinberger3], except that the issues in general are much more complicated.  As a result, 
attention is concentrated on Moduli space (of curves).  We give a new proof of some 
theorems of Ahlfors by showing that no complete Finsler metric on moduli space with 
finite covolume has even a single point in its universal cover at which it is symmetric, i.e. 
possesses an involution with an isolated fixed point.  We also obtained that for any such 
metric, the symmetry of moduli space is never excessive.  Avramidi [Avramidi 2] 
strongly improved on this by showing that there are no unexpected isometries at all in 
any finite volume metric on any finite cover of moduli space. 
 
      On the other hand, he also gave a very simple construction of complete 
infinite volume metrics on moduli space (and non-uniform locally symmetric spaces) that 
do have excessive symmetry, so the finite covolume conditions in [Farb-Weinberger3] 
were necessary. 
 
      The fibration in the non-aspherical situation was significantly extended by Van 
Limbeek [van Limbeek].  Melnick [Melnick] has extended some of these results to 
Lorentzian manifolds.    
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Chapter VIII.  Epilogue: A survey of some techniques  
 

 This last chapter is a short epilogue to our ruminations. Having discussed many 
variations on the Borel conjecture and hopefully gained some appreciation for the 
problem, we now briefly discuss some of the very significant attempts that have been 
made to prove both it and its noncommutative geometric cousin, the Baum-Connes 
conjecture. To do an adequate job would take two or three more volumes of the length of 
this one549 and clearly (indeed tautologously) that cannot be done here. Instead, we will 
give a breezy overview of some milestones, giving detail precisely for the parts that are 
easiest or that connect directly to earlier discussions. 
 
 The first four sections of the chapter will be devoted to the Borel and Farrell- 
Jones conjectures and we will then turn to the Baum-Connes conjecture. 
 
 
8.1 Codimension one methods 
 
 The first results on the Borel conjecture grew out of the study of codimension one 
submanifolds of homotopy equivalent manifolds. We first discussed this idea in the 
setting of the Novikov conjecture in 4.4 (splitting theorems). 
 
 Geometrically, these ideas arose first for three-manifolds in the classical theory of 
Haken manifolds, i.e. of irreducible 3-manifolds that contain an incompressible surface. 
A major result of that theory is that a connected irreducible550

 3-manifold has a hierarchy 
iff it has an incompressible surface.  
 
 An incompressible surface is a 2-sided codimension one submanifold that is 1-1 
on π1. A hierarchy is an inductive structure so that you start with an incompressible 
surface, cut open your manifold along it, and then find a new surface there, and keep on 
going. The key point, though, is that the process terminates, and you end up with a ball.  
You then thunk of the 3-manifold as obtained by the reverse process of constantly 
glueing 3-manifolds to themselves along pieces of their boundary. 
 
 This sequence of incompressible surfaces enables inductive proofs. Thus, 
Waldhausen [Waldhausen 1] showed that for such 3-manifolds, the universal cover (of 
their interior) is R3

 and any homotopy equivalence rel ∂ is homotopic rel ∂ to a 

homeomorphism.   
 
 The proof of the splitting theorem in dimension three is a consequence of the 
basic theorems of Papakyriakopoulos, namely the Dehn lemma, loop theorem and sphere 
theorem. The Dehn-lemma-loop-theorem combination tell us that if the fundamental 
group of the boundary of a 3-manifold M does not inject, then it is for the obvious reason 
that there is an embedded D2 in M that intersects the boundary in an essential curve.  The 

                                                
549 May they soon be written. 
550 i.e. one in which each embedded S2 bounds a ball. 
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sphere theorem asserts that π2(M) is nontrivial (for an oriented 3-manifold) iff there is an 
essentially embedded S2.  This last gives a quick proof of the basic result (that so 
influenced  our discussion in 6.4) that for closed 3-manifolds, one is a nontrivial 
connected sum551 iff  the fundamental group is a nontrivial free product.   
 
 These can be found in any book on 3-manifolds, in particular, [Hempel, Jaco]. 
 
 In higher dimensions, the Farrell fibering theorem gives an approach to the Borel 
conjecture for tori. Without using periodicity of structure sets, one has to argue indirectly 
and use periodicity of L-groups and G/Top and calculate. This was done via 
[Farrell1,2]552

 [Shaneson][Hsiang-Shaneson] and [Wall 1]. More generally, the splitting 
theorem of [Cappell1] can be thought of as a Mayer-Vietoris sequence for L-theory of 
amalgamated free products and HNN extensions (see [Cappell2]), except that in the non-
square root closed situation one can run into UNil obstructions, or phrased differently, 
there’s an extra summand in one of the terms of the Mayer-Vietoris sequence. 
 
 The analogous situation in K-theory was perhaps not as immediately apparent to 
someone working on concrete questions, since frequently K0 and Whitehead groups 
vanish.  
 
 Stallings had shown early [Stallings] that Wh(G*H) = Wh(G)⊕Wh(H). For 
polynomial extensions [Bass-Heller-Swan] gave the formula is the Z case of the K-theory 
Borel with coefficients. (This paper, strictly speaking, required coefficients to be a 
regular ring, which avoids Nil terms.  However, Bass’s book [Bass] has a more complete 
discussion.)  This formula led to Bass’s definition of the negative K groups and the desire 
for higher algebraic K-theory.  
 
 The twisted version of this formula was discovered by Farrell and Hsiang [Farrell-
Hisang 2]and was part and parcel of understanding the problem of fibering over the circle 
(monodromy requires allowing for twists -- the problem always involves, as we’ve 
discussed the Whitehead group). Waldhausen [Waldhausen 2] made a major advance 
when he proved the analogous statement for K-theory of amalgamated free products, 
using a new Nil functor to measure the lack of excision. His motivation was to 
understand why the homotopy equivalences between 3-manifolds discussed above were 
all simple! His answer was that the same structure that enables one to deform homotopy 
equivalences to homeomorphisms enables one to prove that the relevant Whitehead 
groups are trivial. 
 
 The story in algebraic K-theory is recapitulated in operator theory. The analogue 
of the [Farrell-Hsiang2] formula is the Pimsner-Voiculescu sequence [Pimsner-

                                                
551 Nontrivial excludes connected sum with homotopy spheres, but now that the Poincare 
conjecture is a theorem, this does not need to be made explicit. 
552 [Farrell 2] explains the close connection between fibering over a circle and the 
problem of putting a boundary on an open manifold, i.e. the problem studied in 
[Siebenmann]. 
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Voiculescu] and the analogue of Cappell’s theorem is Pimsner’s theory of K-theory for 
“groups that act on trees” [Pimsner]. (Interestingly, for the special problem of positive 
scalar curvature (see chapter 5), the analogue of the key boundary map in the exact 
sequence, that is above produced via codimension one splitting, was constructed -- at 
least in low dimensions -- by Schoen and Yau [Schoen-Yau], who showed how to use 
stable minimal hypersurfaces to use hierarchies to obstruct positive scalar curvature553.) 
 
 It is surely worth observing that among the most developed methods for 
constructing strange groups is via amalgamated free products and HNN extensions (see 
e.g. [Baumslag-Dyer-Miller]). As a result, the Mayer-Vietoris sequences in K- and L-
theory remain valuable for constructing examples. 
 
 Codimension one methods also are critical to the proofs that go through the 
controlled world. The basic results about controlled topology over finite dimensional 
ANRs or bounded control over cones of polyhedral, etc. are all proved via appropriate 
codimension one splitting theorems (since after all, the hard part in proving that 
something is a homology theory is almost always checking excision a.k.a. Mayer-
Vietoris). See e.g. [Quinn 1, Pederson-Weibel, Ferry-Pederson]. 
 
8.2 Induction and control 
 
 Our next goal is to explain the ideas of [Farrell-Hsiang2] that e.g. proves the 
Borel conjecture for flat manifolds. These are “merely” finite torsion free extensions of 
free abelian groups, yet they are hard to understand directly. The arguments are a 
beautiful mix of algebra (induction theory) and controlled methods (one of the first 
applications of these to computing something) and have been very influential. 
 
 Actually the result of [Farrell-Hsiang 2] is more general: it gives a topological 
characterization of almost flat manifolds in the sense of Gromov. M is almost flat if it 
has a sequence of Riemannian metrics with |K| <1 and diam(M) → 0 (or equivalently 
with bounded diameter and K → 0). Such manifolds are exactly (see [Buser-Karcher]) 
infranilmanifolds. 
 
Theorem: A closed topological manifold has an almost flat structure iff it is aspherical 
and its  fundamental group is virtually nilpotent. 
 
Sketch. The result boils down to showing that there is a unique aspherical manifold with 
the given fundamental group. We will ignore the low dimensional cases, because they 
hold for the usual reasons: Perelman (geometricization) does dimension three, and 
Freedman’s work applies in dimension four, because the relevant fundamental groups are 
all “small”. (See [Freedman-Quinn].) 
 
 The nilpotent case is easy; nilpotent groups are poly-Z: there is a natural 

                                                
553 In a recent preprint (arXiv:1704.05490), they remove the low-dimensional 
condition. 
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induction on the cohomological dimension, such a group Γ always surjects to Z with a 
smaller such group as its kernel. Ultimately, one deduces the result from many 
applications of Farrell fibering and the [Farrell-Hsiang 2] variant of the Bass-Heller-
Swan formula. 
 
 The remaining part of this argument is inspired by representation theory (see 
[Serre, Reps] for everything we say) . For finite groups representations are determined by 
their characters, i.e. their restrictions to cyclic subgroups. However, not every 
representation is a sum of representations induced from their cyclic subgroups. (It is, if 
one allows rational coefficients, according to Artin’s theorem.) To get these, one needs a 
larger class of groups (this is the content of Brauer induction).  
 
 These are proved by making use of R(H) for all H in G. There are operations ind: 
R(H) ➝ R(G) and res: R(G) ➝ R(H) (and, of course G can be replaced by any subgroup of 
G that contains H). It suffices to prove a formula in the algebra of operations of the 
form 1 = Σ aHindH

G(resH), where the a’s are some coefficients.  
 
 Suitable reciprocity would also give that for any module over this algebra (i.e. 
suitable functors of groups that have appropriate behavior with respect to induction and 
restriction) that restrictions to the family H will detect elements. 
 
 To make a long story short, the work of Dress on equivariant Witt rings [Dress] 
can be used in a similar way to prove induction theorems for structure sets of manifolds, 
whenever one has a map π1M ➝ G for a finite group G. [Farrell-Hsiang5] uses this for L-
groups;  [Nicas] gives a version for structure groups that is a bit more natural for our 
purposes554.  
 

S(M) ➝ ⊕S(MH) 
 
is injective localized at a prime p, if H ranges over the p-hyperelementary subgroups (i.e. 
the groups containing normal cyclic subgroups with index a power of p), where is the 
cover of M corresponding to the subgroup H (and the map is “transfer” to this cover). 
Rationally, it is injective when H ranges over the cyclic subgroups (just like in character 
theory!). 
 
 We now can sketch some of the ideas that go into the proof of the Farrell-Hsiang 
rigidity theorem. The actual proof for the general case involves more complex fibering 
rather than just over the circle (but from the previous chapter, this causes us no fear!). In 
the flat case where the holonomy is odd order, the proof is much simpler [Farrell-Hsiang 
6]. In that case, they show that the following algebraic fact holds: 
 

                                                
554 Of course, the upshot of modern surgery is that structure sets are essentially L-groups 
of a suitable object.  As a result, precisely the same structure that gives induction for L-
groups of groups gives it for structures.  Induction arguments in smooth surgery are 
sometimes possible (see e.g. [Madsen-Thomas-Wall]) 
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Proposition. If Γ is the fundamental group of a flat manifold with holonomy G of odd 
order, so that there is an exact sequence 

1 ➝ A ➝ Γ ➝ G ➝ 1 
where A is (free) abelian. Then either there is a surjection Γ ➝ Z, or for infinitely many 
s = 1mod #(G), one has Γ/sA having the property that any hyperelementary subgroup that 
maps onto G, maps isomorphically onto G. 
 
 The conclusion of the proposition enables an induction on the cohomological 
dimension combined with the holonomy, except for the awkward case where one has an 
element that is transferred to the cover corresponding to a hyperelementary subgroup 
which is isomorphic to the manifold itself. Naively it looks like we’re stuck with an 
impossible circular argument. 
 
 But we are not all : the method of 4.6 example 2 now kicks in. When we identify 
the cover with the original M, one has used an expanding map, so the point inverses are 
smaller. Ultimately, we are in the circumstances of Ferry’s theorem and one gets that all 
the transfers are 0. 
 
 Consequently,  by Dress induction, every element of the structure set vanishes555,  
and therefore the structure set does (and the assembly map is an isomorphism).  
 
 In the next section, I will explain another example where transfers actually suffice 
for proving vanishing of structure sets. (Actually, I will focus on the easier case of 
Whitehead groups, for a reason that will be clearer in the following section.) 
 
Remark: Although the control ideas in the above proof are the most important piece for 
the Borel and Farrell-Jones conjectures556, the use of induction in L-theory and structure 
sets is fundamental throughout equivariant topology. 
 
8.3 Dynamics and Foliated control   
 
 To say that the subject was revolutionized by the work of Farrell and Jones 
through their long series of brilliant557 and beautiful papers [Farrell-Jones 1-9]558

 is an 
understatement559.  
 
 Here I will explain just one of the ideas, as an introduction to this body of work. 
Among their achievements, they proved the Borel conjecture for closed non-positively 

                                                
555 Please see the cartoon at the end of chapter I. 
556 However, see [Bartels-Lueck 2] for a recent use of their general inductive scheme. 
557 difficult, 
558 It is also worth mentioning that there was follow up work by Farrell and Jones and 
Ontaneda that develops methods for proving results about negatively curved manifolds 
and spaces of negatively curved metrics building on these topological rigidity ideas. 
559 To say that this is an understatement is an understatement.  And so on, for another few 
iterations. 
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curved manifolds and for many manifolds with infinite volume, again under a curvature 
condition. But, also, they formulated (and proved many cases of) the “Farrell-Jones 
Isomorphism conjecture” as a natural byproduct of what the method leads to. This 
conjecture is proved for lattices in Lie groups in [Farrell-Jones5] for K-theory and 
[Bartels-Farrell-Luck, Bartels-Lueck-Reich-Ruping] for L-theory. We can see this 
already in their earliest result in this series, 
 
Theorem [Farrell-Jones 1]. If Γ is the fundamental group of a closed negatively curved 
manifold, then Wh(Γ) = 0. 
 
 To get a feeling for this achievement, realize that until this point all previous 
groups which were understood had a clear algebraic nature, a place from which to grab an 
inductive hold. Here we are impelled to use geometry, which seemed almost unheard of 
in high dimensions560.   
 
 Here’s the general idea. One starts with M the closed hyperbolic manifold with 
fundamental group Γ, which we assume is of dimension >4. An element of the Whitehead 
group Wh(Γ) is represented by an h-cobordism W, with ∂W = M ∪M’. The idea is to 
find a bundle X over W, so that this bundle has enough geometry that one can 
geometrically “flow” this new h-cobordism to “control it”. Controlled h-cobordisms will 
be products, and if there is no information lost in the transfer map Wh(M) → Wh(X) , 
then one will have proved that the original h-cobordism is trivial, and thus the theorem. 
 
 Of course, at the level of algebra there is a map Wh(X) → Wh(M), and the 
composite is just multiplying by χ(F), the Euler characteristic of the fiber. (In L-theory, 
the monodromy plays a larger role, but it usually is multiplying by sign(F). This fairly 
straightforward topological step is a major obstacle in the Baum-Connes conjecture561.) 
 
 None of these steps are straightforward. 
 
 For simplicity we will work on M rather than W. This means that we should 
work in a setting of geometric modules. Wh(M) is made out of free ZΓ modules with 
automorphisms (or acyclic chain complexes of free based modules). Now imagine that 
each basis element is given a location on M, and that morphisms include paths that link 
                                                
560 Of course, for most of a decade, Thurston had already been preaching the importance 
of geometry for low dimensional topology.  In the work of Thurston, the geometry is 
there because the manifold ends up being geometrizable.  In the work of Farrell and Jones, 
it’s because we can transport our problems to live over a geometric object, and study 
them there. 
561 Usually the signature of a fiber bundle is the product of the signature of base and fiber 
-- at least if the monodromy is simple enough -- but for other operators this is rarely the 
case. Part of the fascination with the elliptic genus is based on the magic that there are 
operators for which this is true for connected compact structural groups (see e.g. [Bott-
Taubes]) in smooth settings. 
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generator to generator. (See [Quinn 2].) This enables defining controlled Whitehead 
group elements, and the ‘fundamental theorem of controlled topology’ (e.g. the main 
theorem in [Quinn1]) asserts that controlled Whitehead groups are essentially the 
homology of the control space with coefficients in the Whitehead spectrum (so for Z, 
they vanish). We will transfer up our geometric uncontrolled chain complex from M to X 
and flow it there. Hopefully, the curves that arise in the module will become smaller, and 
thus become controlled, and trivialize562.   
 
 The first try for the bundle is the unit sphere bundle of M. This won’t have the 
right transfer properties, so it will ultimately be modified. (It would suffice for M odd 
dimensional to prove the vanishing of Wh(M)⊗ Z[1/2].)  
 
 The unit sphere bundle of a Riemannian manifold has a natural flow on it, the 
geodesic flow: A point is a pair consisting of (m, v), m a point of M and v a unit tangent 
vector at m. One then considers the geodesic going through m in the direction v for t 
seconds, (transporting v to the other end). 
 
 The geodesic flow on a negatively curved manifold is Anosov. What this means 
is this: The tangent space to X breaks up into three pieces Fs+Fu+R. In the Fs direction, 
the flow contracts (exponentially fast). In the Fu direction, the flow expands things (in 
negative time it contracts). The R is the direction of the geodesic, where the flow leaves 
things alone. 
 
 A key element, then, is the asymptotic transfer, which lifts curves on M to ones on 
X 563. It is like a connection, telling one to not just use the abstract bundle properties to 
lift homotopies, but how to use the geometry. The choice Farrell and Jones use is the 
“asymptotic transfer”, defined to make curves shrink with respect to the geodesic flow, to 
at least end up close to the R directions, i.e. have no Fu parts. 
 

                                                
562 This cannot actually happen - because of the Nil term in the Bass-Heller-Swan 
formula. Nothing in the geometry knows that the coefficients of the paths lie in Z, so we 
could do all this algebra with an arbitrary coefficient ring R; this proof, if it worked, 
would imply that Nil(R) = 0 for all R. However, as we will see, the kind of control that is 
gained is less than the control in Chapman-Ferry, or Quinn, and the Nil will naturally 
come up in the end. 
 
563  In transferring a torsion there is the base direction that we are in the midst of 
discussing in the body of the text, and also the fiber direction. The fiber direction, 
however, is the chain complex of the fiber, which is as controlled as one wishes (in this, 
and all the other known applications of this method), and we shall not discuss it. 
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A picture of the asymptotic transfer (From Farrell’s Trieste Notes) 
 

 The picture above (thanks to Farrell’s notes [Farrell3]) describes the construction 
very clearly. A point on the universal cover of M and a vector determines a well defined 
point at infinity. Then for any other point, there is a unique vector that points to that same 
point at infinity. Along a curve, one translates the vectors by this common asymptotic 
rule. (This rule is equivariant with respect to the action of the covering group, and is thus 
well defined on M as a way of transporting on curves.) 
 
 Note that if one transfers up a geodesic segment, it lifts to a geodesic segment 
(with its parallel translation of the initial vector) and nothing shrinks during the flow. But, 
at least nothing get larger, and all of the other directions are exponentially shrinking. So 
after a while one has an h-cobordism (or acyclic geometric chain complex) that is 
“foliated controlled over X”, i.e. sizes can be made arbitrarily small in directions 
orthogonal to the leaves of the foliation.  
 
 More precisely, X (the unit sphere bundle) is foliated by the orbits of geodesic 
flow (i.e. the geodesics on M with their unit tangent vectors), i.e. it has a 1-dimensional 
foliation. Most of the leaves are isomorphic to R, but there is a countable number of 
exceptions -- the closed geodesics564 of M.  After flowing, all the morphisms in the 
geometric module (i.e. the tracks of the homotopies in the h-cobordism565) end up lying 
as close as we want to leaves. 
 
                                                
564 Remember that M is assumed negatively curved. 
565 For any homotopy equivalence, one considers the homotopy H from fg to the identity, 
and for each point p one has the tracks H(t,p) for 0<t<1. 
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 Essentially what happens is this. The R leaves contribute nothing - the 
neighborhoods of these can be rescaled shrinking the R direction, to be fully controlled. 
However, the S1’s are more serious. They can’t be rescaled away, but they cause no 
trouble because Wh(Z) = 0. 
 
 It is here that if we used another ring, the Nils in the Bass-Heller-Swan formula 
would enter. We get one for each closed geodesic (as had been mentioned in 5.5). 
 
 Now we have to deal with the issue that the transfer to the unit sphere bundle is 
not injective. What Farrell and Jones do is associate to an n-dimensional negatively 
curved manifold M, a negatively curved metric on M×R, and on this manifold there is an 
invariant upper and lower hemispherical tangent bundle. These are disc bundles. One 
uses h-cobordisms with compact supports and flows on this space, following the above 
pattern.  Topologically, we know that nothing differs in the Whitehead theory of M from 
that of M×R with compact supports, but metrically we have replaced spheres by disks. 
 
 In [Bartels-Lueck-Reich] a Rips complex, with Minayev’s version of geodesic 
flow on a hyperbolic group [Minayev], replaces ordinary geodesic flow, and enables the 
proof of the Farrell-Jones conjecture in K-theory for hyperbolic groups. 
 
Remark: The foliated control theory is critical to the Farrell-Jones program (although it 
does not play as large an explicit role in some of the later work of Bartels, Lueck, Reich 
and others).  
 
 First of all, the fibered case of foliated control is essentially the same thing as 
controlling with respect to the quotient space. In many situations in foliated geometry, 
one wants to analyze algebraic topological invariants of the quotient space that does not 
exist in the conventional sense. See e.g. [Connes1,2] and our discussion in chapter 5.  In 
all cases, the basic idea is to deal with the Hausdorff object that exists and never really 
take the quotient. 
 
Digressive Remark:  Foliations also occur very naturally in the study of the asymptotics 
of topological phenomena, if there is a bound on the local geometry. One can, for 
example, think about the Borel conjecture as a statement about vanishing of certain 
“periodic structure sets” - by passing to the universal cover, and then begin inquiring 
about aperiodic analogues -- in ways that ape the theory of quasicrystals (see e.g. 
[Bellissard]). This would lead to a foliated Borel conjecture. Needless to say, Baum and 
Connes, in formulating their conjecture, also considered a foliated version. 
 
 Such foliations and their homology also naturally arise in Topological Data 
Analysis (see e.g. [Weinberger 11 ]) because of their connection to “testable properties” 
or statistically “sampleable” invariants of manifolds (see e.g. [Abert-Bergeron-Biringer-
Gelander-Nikolov-Rambault-Samet], [Bergeron-Gaboriau], [Elek]). Essentially one asks 
for invariants of manifolds that can be approximated by knowing the balls around a 
number of randomly chosen points. For this to be true, the invariant needs to be 
continuous in a suitable topology (a modification of the usual Gromov-Hausdorff metric 
that takes measure into account, see [Benjamini-Schramm] for the case of graphs - also 
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[Lovasz],  and [Gromov GB]). Limits of sequences of compact manifolds in this topology 
are actually foliated spaces (with a transverse measure) - where the leaves have the same 
dimension as the approximating manifold. 
 
8.4 Tensor square trick 
 
 The results on L-theory and for the Borel package require other transfers.  
 
 Crossing with a sphere (of dimension >1) is trivial in L-theory as is crossing with 
a disk, so it is necessary to find a new fibration (and transfer) X→M. In [Farrell-Jones 3] 
the fiber is a modification of F = Sm-1

 × Sm-1
 /Z2 the set of unordered pairs (s,s’) on the 

sphere at ∞. When s ≠s’ there is a unique geodesic in the universal cover asymptoting to 
that pair. When s = s’ there is a unique geodesic going through a given a given point in 
M~ at time 0 and asymptoting to (s,s). Thus, one considers the union of F with a Dm. 
 
 It turns out that this stratified space has the property that crossing a manifold 
surgery problem with it does not lose any surgery obstruction. A similar approach to 
Siebenmann periodicity S(M) ➝ S(M × D4) via an “exotic product” with CP2∪D3

 is given 
in [Weinberger-Yan 1]. 
 
 In both cases the key feature is that the “main part” of the space is a 
homology manifold and so has a signature and that signature is 1. (Indeed, the space of 
Farrell and Jones is modified to give rise to an equivariant version of Siebenmann 
periodicity in [Weinberger-Yan 2] for compact group actions566.) 
 
 As the program developed, more and more complicated transfers were 
constructed. A major problem for the situation of hyperbolic groups comes because 
their boundaries are almost always not even ANR’s let alone manifolds! 
 
 The solution to this was a breakthrough in [Bartels-Lueck] and relies on a tensor 
square trick. The first point is that there is no reason that one has to “cross with a space” 
(perhaps in a twisted way) to induce a transfer. One can cross with a symmetric Poincare 
complex, that should be geometric over a control space, -- so one can gain control to 
good effect -- but it need not be the controlled symmetric signature of the control space 
(or some fancy variant thereof). 
 
 This is akin to the use of elliptic operators to set up (equivariant) Thom 
isomorphism for complex bundles in [Atiyah]. One does not need to write down a bundle 
-- just a construction that leads to a suitable family of operators. If one thinks of K-theory 
as being related to e.g. normal invariants, then one sees an isomorphism that is associated 
to a nontopological construction on the fibers -- as the Dirac operator is not topological 
and the signature operator causes difficulties at the prime 2567. 
                                                
566 The earlier paper only succeeding in doing this for abelian groups. 
567  And this made the periodicity theorems of [Weinberger-Yan1] more difficult still. As 
we discussed in the previous chapter regarding equivariant products, the equivariant 
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 The basic point of the construction is that if P is a projective module, then P⊗P* 
naturally supports a symmetric bilinear form. More generally, if P is a chain complex, 
then P⊗P-* supports a symmetric Poincare structure, (P⊗P-*)* ≅(P-*⊗P)≅ P⊗P-* 
interchanging factors. If P has Euler characteristic 1 then this tensor square has signature 
1, and one has a formal process of turning the kind of transfer used in K-theory into one 
suitable for L-theory. This is a construction that is perfect well controlled (as verified in 
[Bartels-Lueck]) when one changes the control Z space of P to Z×Z/Z2 (this being 
necessary because of the interchange of factors in the above). 
 
Remark: [Bartels-Lueck] introduces another important technical innovation in that paper 
(necessary for their CAT(0) results) - namely the use of homotopy actions rather than 
actions. 
 
 This paper has ushered in a sequence of important new advances on this problem. 
(See e.g. [Bartels-Farrell-Lueck][Bartels-Lueck-Reich-Ruping][Ruping][Bartels][Bartels-
Bestvina]) It is too soon to be sure where the new “natural boundary” of current 
technique is. One can hope that all linear groups over some field, and groups with some 
“non-positive curvature” will ultimately follow to extensions of these methods.   
 
8.5 The Baum-Connes conjecture 
 
 The serious reader should turn to the excellent survey of [Guentner-Higson]568

 for 
a very useful and insightful treatment569. While there have been developments since that 
paper was written, notably Lafforgue’s work clarifying the obstacle of property (T)570, it 
remains, to my mind, the best single survey. 
 
 What follows is intended for the frivolous reader.  
 
 Remember playing the Novikov game (way back in Chapter 5)? The setting for 
the game involved improving the index of elliptic operators to lie in the K-theory of some 
appropriate C* algebra. We have focused on the analogy between the normal invariants 
of degree one normal maps, living in L(e)-homology theory of a group, and Ki(Bπ) and 
correspondingly between L(π) and K(C*π). 
 

                                                                                                                                            
signature operator for even order groups does not give an orientation even rationally, 
because the localized contribution near 0 is a 0 divisor in R(G). Thus one is forced to do 
non-topologically invariant constructions. 
568 This seems like a good place to express my deep gratitude to Erik for spending a 
couple of very intensive weeks at Jerusalem cafes explaining this all to me (including 
assigning and critiquing homework). And thanks to Nigel for sending Erik. 
569 Other recommended surveys are [Valette] [Gomez Aparicio-Julg-Valette] and, of 
course, Connes’ Noncommutative Geometry. 
570 The two Bourbaki expositions by Skandalis and Puschnigg on Lafforgue’s work are 
excellent next steps. 
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 More precisely, associated to a group π, there are C* algebras C*r π and C*maxπ 
that are completions of Cπ thought of as an algebra of unitary operators on appropriate 
Hilbert spaces.  C*maxπ is perhaps the more naïve choice -- it is the completion with 
respect to all unitary representations. It has the advantage of being a functorial 
construction on the category of groups. C*rπ is the completion with respect to the regular 
representation. It is not, in general, functorial, although it is functorial with respect to 
injections. We will soon return to the issue of functoriality. 
 
 What is important for us here is that associated to any elliptic operator D on Mn  
with fundamental group π, there is an index ind(D) ∈ Kn(C*π) for either of these 

algebras. The symbol of D lies in Kn(M) (as observed by Atiyah [Atiyah2], see also 
[Higson-Roe3]). 
 
There is a natural571

 group homomorphism: 
 

Kn(M)→ Kn(C*π) 
 

which takes an elliptic operator to its index. Indeed this factors through 
 

Kn(Bπ)→ Kn(C*π). 
 

And, ultimately (using proper equivariant elliptic operators) 
 

Kn
π

 (Eπ)→ Kn(C*π), 
 

analogous to our story about the (equivariant) controlled symmetric signature of 
manifolds, and their algebraic uncontrolled versions (or equivalently the surgery 
obstruction map in surgery).   
 
 Moreover, one can take “twisted coefficients”, as we had done in K- and L-theory 
to accommodate problems of (block or approximate) fibration (and stratified spaces572). 
This leads to the following statement: 
 

Ktop(G, D) → K(C*r(G, D)) 
 

When D is just C, G acting trivially, then the left hand side is the equivariant K 
homology group KG(EG), as above. 
 
 As mentioned in chapter 5, knowing the injectivity of such a map is an analytic 
variant of the Novikov conjecture (and it’s sometimes called the strong Novikov 

                                                
571 At least for maps that preserveith respect to the push forward of elliptic pseu the 
fundamental group, using the pushforward of pseudodifferential operators that is 
introduced for the K-theoretic proof of the index theorem in [Atiyah-Singer 1]. 
572 Although there is much mre that needs to be done to understand the natural elliptic 
operators on stratified spaces than arises for the signature operator (or in topology). 
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conjecture in the literature). It implies the usual Novikov conjecture when applied to the 
signature operator. When applied to an equivariant signature operator, it implies the 
pseudo-equivalence invariance statement discussed in chapter 7. (As hinted at in 
section 4.5, the topological invariance of the equivariant signature operator573

 can be 
proved -- along the lines of [Pederson-Roe-Weinberger] for the ordinary signature 
operator -- using a metric space version of this kind of statement, which is indeed true for 
cones of G-ANRs by e.g. the reasoning in [Roe].) 
 
 And applied to other operators it has further implications, e.g. for positive scalar 
curvature, and to higher Riemann-Roch kinds of theorems, etc. The first nontrivial case is 
when G = Z, when this conjecture is verified by the Pimsner-Voiculescu [Pimsner-
Voiculescu] exact sequence. It is the result of applying Mayer-Vietoris to computing the 
left hand side and combining it with the isomorphism above. It is the analogue of the 
Bass-Heller-Swan(-Farrell-Hsiang) theorem in algebraic K-theory. It is simpler in that 
there is no Nil. Indeed, there is no need for the Nil and UNil’s that arise in K and L-
theory Farrell-Jones conjectures. The analogue of the work of Waldhausen and Cappell 
described in the first section of this chapter is [Pimsner].  
 
 As in the previous paragraph, this implies all the cases of the Novikov conjecture 
discussed in section 1. 
 
 Much of the immediately subsequent development took somewhat parallel turns 
in topology and operator theory. It is important to mention the work of Kasparov on 
non-positively curved complete manifolds [Kasparov] as a highpoint (that inspired the 
work of [Ferry-Weinberger] that paralleled it, although looked quite different at the time 
because of difference of emphasis574). For this work, Kasparov developed KK-theory, a 
bivariant version of K theory that accepts a pair of C* algebras -- which, together with 
variants such as E-theory tend to be key technical tools in the area. The serious reader 
should study [Blackadar, Higson] to learn this tool. 
 
 One result on the operator algebra side that has no known analogue in topology is 
the theorem of Higson and Kasparov on the (idiosyncratically named575) a-T-menable 
groups. 
 
Theorem [Higson-Kasparov]: If G acts metrically properly and isometrically on a Hilbert 
space (i.e. is a-T-menable) then the Baum-Connes map (with coefficients) is an 
isomorphism (with either completion) 
 

KG(EG, D) → K(C*(G, D)). 

                                                
573 Which implies, e.g. that for odd order groups nonlinear conjugacy of linear 
representations only occurs for linearly equivariant representations, the theorem of 
Hsiang-Pardon and Madsen-Rothenberg discussed in chapter 6. 
574 It was only later that Higson, Roe and others elucidated the close parallels between 
these theories. 
575 By Gromov [Gromov AI]. 
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 A-T-menability is somehow an opposite of Property (T): Property (T) groups 
always have fixed points for continuous isometric actions on Hilbert space.  
 
 A couple of hundred pages ago, amenability was also described as an opposite to 
Property (T). Amenable groups are, indeed, examples of a-T-menable groups. 
 
 This is not at all obvious. (Indeed, Gromov had asked the question in 1993, 
expecting the positive solution). This was soon shown by Bekka, Cherix and Valette 
[Bekka-Cherix-Valette]. We will return to some of the relevant concepts in the next 
section.  
 
 SO(n,1) and SU(n,1) are also a-T-menable as had been showed by Vershik, 
Gelfand and Graev [Vershik-Gelfand-Graev] almost 40 years ago (see [Cherix et al]). 
 
 The Higson-Kasparov theorem has one aspect that cannot be improved upon - 
their ability to accommodate C*max. In the opposite extreme, Property (T) groups, every 
finite dimensional representation is isolated in the Fell topology576; these give rise to 
elements of infinite order in K0(C*maxπ).  
 
 For instance, if π is, say, a lattice in a higher rank Lie group or even Sp(n,1)577, it 
has many finite dimensional irreducible representations, so the right hand side 
K0(C*maxπ) is infinitely generated (while the domain of the assembly map is 
finitely generated, e.g. by Borel-Serre). 
 
 This is one of the difficulties with the conjecture. From its outset, one realized 
that because of the general functoriality of the domain one would want to use C*max, but 
that property (T) is an obstacle. In some sense the Higson-Kasparov theorem carves out 
the natural place to look where this difficulty will not arise. 
 
 We shall also see that that theorem has some extraordinary implications. 
 
 However, it underscores the extent to which Property (T) is an obstacle. It is thus 
very remarkable that Lafforgue [Lafforgue1] was able to overcome this obstacle in some 
cases including uniform lattices in SL3(R) and SL3(C), and hyperbolic groups397 (even 
with coefficients). These are based on making a variant of KK for Banach algebras, 
which allow more deformations of representations that allow one to “pass through” the 
gaps that prevent deformations in KK. However, [Lafforgue3] describes a strengthening 
of Property (T) that obstructs all known techniques, and shows that SL3(Qp) has this 

                                                
576 The reader might want to review some ideas from chapter 3 to unravel this discussion. 
 
577 Since Sp(n,1) is a rank one group, its lattices are fundamental groups of negatively 
curved manifolds. As a result, the Higson-Kasparov theorem does not even extend to the 
sitatuation of negative curvature. 
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property, so that it (and its lattices) definitely lie outside current technology. 
 
 In the next section we will discuss that for general discrete groups, the Baum- 
Connes conjecture with coefficients fails -- and the reason for this is because of 
expanders, a class of graphs that we have met in Chapter 3 as one of the first applications 
of Property (T). 
 
8.6  A-T-menability, uniform embeddability, and expanders 

 
 A-T-menability, the hypothesis of the Higson-Kasparov theorem, was first 
introduced by Haagerup in an equivalent form.  A useful source on a-T-menability is the 
book [Cherix-Cowling-Jollisant-Julg-Valette].  The equivalent forms of A-T-menability 
have parallels among equivalent definitions of Property (T).  These equivalences are 
generally useful for making constructions and in different applications. 

 
1. There is a proper function ψ:π → R+ which is conditionally negative 

definite (i.e. ψ(g) = ψ(g-1) and for any n-tuple of elements of π, the matrix 
ψ(gigj

-1) is conditionally negative definite, i.e. negative definite on tuples 
(a1....an) so that the sum of the a’s = 0.) 

 
2. There is a sequence φn of continuous positive definite functions on π with 
φn (1) =1 that vanish at infinity but converge to 1 uniformly to 1 on 
compact subsets of π. 

 
3. π acts isometrically and metrically properly on a Hilbert space. 

 
For Property (T) groups, every conditionally negative definite function is bounded (i.e. 
not proper if π is noncompact).  If a sequence of normalized positive definite functions 
converges to 1 uniformly on compact sets, then it converges to 1 uniformly, so they can’t 
vanish at infinity.  And finally, as noted before, every isometric action has a fixed point. 
 
 Many groups are a-T-menable (and, of course, many are not).  As we mentioned, 
SO(n,1) and SU(n,1) and products of such, and amenable groups are.  Also groups that 
act on CAT(0) cubical complexes or more generally “spaces with walls” are included in 
this class [Niblo-Reeves].  So is (as proved by Farley in his thesis [Farley]) the morally 
amenable (but not yet known to be (non)amenable) Thompson group satisfies the Baum-
Connes conjecture. 
 
 The Higson-Kasparov theorem is proved by an analogue of Atiyah’s proof of Bott 
periodicity [Atiyah1].   
 
 Rather than make any attempt at explaining the proof of the theorem, let’s instead 
(e.g. following the line of thought of 4.8-4.9) think about the metric space analogue of the 
theorem and then see what that buys us in terms of the Novikov conjecture.  Of course, 
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the metric space version is of interest in its own right: there are many more bounded 
geometry metric spaces578 than there are finitely generated groups! 
 
Theorem [Yu1][Skandalis-Tu-Yu]:  If Γ is a (discrete) metric space of bounded geometry 
which uniformly embeds in a Hilbert space, then the bounded Baum-Connes assembly 
map is an isomorphism. 
 

Kn
lf(|Γ|) = lim Kn

lf(Nk|Γ|)  ➝ Kn
lf(C*|Γ|) 

 
The left hand side is the limit of K-homology of the nerve of covers of Γ by k-balls, as 
k➝∞.  (The discreteness of Γ is a convenience to make this cover locally finite:  
otherwise, one can replace a metric space of bounded geometry by a coarsely dense 
discrete subset.)  The range is the K-theory of the Roe algebra: it is the closure of the 
bounded propagation speed operators on Γ.  If one thinks of operators are being described 
by kernels (like matrices in a geometric module) then one is taking the limit of the of 
operators where k(x,y) = 0 if d(x,y) > R as R➝∞.  So an operator in this algebra can be 
well approximated by operators with finite propagation speed.  We shall later see the 
implications of this approximation -- that have no analogue in the purely topological 
world. 
 
 Note that if Γ acts properly and isometrically on a Hilbert space, then it uniformly 
embeds -- indeed the map Γ ➝ H given by γ ➝ γ(h) for any fixed h is a uniform 
embedding.  Propriety means that one only finitely many times returns to any fixed 
neighborhood of h.  The isometry condition then translates this into a condition for any 
group element (uniformly), i.e. that there is a proper nonnegative increasing function f, so 
that 
 

|| γ(h) - γ’(h) || >  f(d(γ, γ’)). 
 
Moreover, the map is Lipschitz with Lipschitz constant sup || γ(h) -h || as γ runs over 
generators of Γ. 
 
 The arguments given in 4.9 (i.e. the principle of descent) now enable one to show 
that if in addition BΓ is a finite complex, then the analytic Novikov conjecture with 
coefficient is true, i.e. the Baum-Connes assembly map with coefficients is split injective.  
However, things are better yet.  Higson [Higson] has shown that one can dispense with 
this finiteness and still get the result. 

                                                
578 A metric space has bounded geometry if it is a path metric (i.e. distances are generated 
by a path geometry) and there are only “finitely many types” (or a compact space of 
types) of balls of a fixed radius.  So all Cayley graphs of finitely generated groups have 
bounded geometry.  As mentioned in 4.8 and explained in 5.3, without bounded geometry 
there are older counterexamples to the Bounded Borel and Baum-Connes conjectures 
based on different principles than the examples we are about to explain regarding the 
Baum-Connes conjecture.  I am not aware of any counterexamples to the bounded Borel 
conjecture. 
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Theorem [Skandalis-Tu-Yu] (The Novikov conjecture for groups that uniformly embed):  
If Γ is a countable group which uniformly embeds in Hilbert space579, then for all 
coefficients D,  

KΓ(EΓ, D) → K(C*(Γ, D)) 
is split injective. 
 
 Later work by Kasparov and Yu [Kasparov-Yu] has weakened the hypothesis on 
which Banach space, one needs to embed in for this result. 

 
 This theorem has the following corollary: 
 
Corollary [Guentner-Higson-Weinberger]  The Novikov conjecture folds for any 
countable Γ in GLn(F) for any field F. 
 
 Of course, this supplements the cases of non-positive curvature, amenable (a-T-
menable) groups, hyperbolic groups...that have been discussed before!  
 
 The proof uses a variant of condition (1) that describes a condition sufficient for 
uniformly embedding a discrete metric space into Hilbert space.  Instead of a function 
from Γ to R one uses a function Γ×Γ ➝ R which is a negative type kernel, defined exactly 
the same as in (1).  We now need the kernel to behave well with respect to the metric on 
Γ, i.e. that ψ(g,h) can be bounded above and below in terms of d(g,h).   
 
 If  Γ were discretely embedded in GLn(C) one could use explicitly the geometry 
of GLn(C)/U(n) to contruct the desired embedding in Hilbert space.  (GLn(C)/U(n) is 
isomorphic to the parabolic group of upper triangular matrices, which is amenable, 
indeed solvable.)  In general, the idea is to find enough valuations, so that Γ is discretely 
embedded in a product of GLn’s and that each of these is embedded in a way appropriate 
to the geometry of building for that valuation580.  Thus, the workhorse lemma is  
 
Lemma:  For any finitely generated field, there is a countable number of valuations di 
(both archimedian and discrete) such that for any finitely generated subring, so that for 
any positive numbers Ni  the{r ∈ R | di(r) < Ni } is finite. 
 
 For Q one uses the usual valuations.  The finitely generated subrings are of the 
form Z[1/N] for some N.  Then one only needs finitely many valuations, namely the 
archimedean one and the ones corresponding to primes in N.   
 
Remark:  There is now a rather different approach to this corollary that works in the 
topological setting, at least with the hypothesis of finiteness of BΓ.  This is due to 
                                                
579 Assume that all of its finitely generated subgroups do, in order to avoid any questions 
about metrics. 
580 Needless to say some care needs to be taken in combining a perhaps infinite number 
of embeddings to guarantee convergence and that one remains e.g. discrete. 
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[Guenter-Tesserra-Yu] and is based on clever limiting arguments and takes its start from 
the Novikov conjecture for groups of finite asymptotic dimension [Yu2, Bartels 2, 
Chang-Ferry-Yu, Carlsson-Goldfarb, Dranishnikov-Ferry-Weinberger2]. 
 
 We close with a brief discussion of failure.  First of all, not all discrete metric 
spaces of bounded geometry uniformly embed in Hilbert space.  Although not the first 
examples, an example can be built from expanders, as observed by Gromov. 
 
Proposition:  If Xi is a sequence of d-regular expander graphs, then their disjoint union 
cannot be uniformly embedded. 
 
 Without loss of generality we can assume that Xi is embedded via fi so that it’s 
mean value (in H) is trivial.  We will now use the Laplacian characterization of 
expansion.  Let’s assume that neighbors in Xi are moved a distance at most 1.  In that 
case |(Δfi, fi)| = 1/d(sum over neighbors (v,w), ||fi(v)-fi(w)||2) < ||Xi||.  But this gives an 
upper bound on || fi || by the expander property, which means that the average distance of 
fi from the origin is uniformly bounded (in terms of d and the expansion constant) 
contradicting uniformity of the embedding (i.e. that far vertices are mapped far apart). 
 
 In fact, consider e-tΔ.  It is a bounded propagation speed operator that converges to 
the projection to the locally constant functions on this disjoint union.  Thus that 
projection is in C*|X|.  This is a bounded propagation speed operator whose definition 
requires expansion: one might expect that it does not lie in the image of the coarse Baum-
Connes map.  This is true.  It is analogous to the fact that G-indices for free actions (i.e. 
ones that come from K(X/G)) are multiples of the regular representation. 
 
 Gromov then showed that an expander family of large girth expanders (e.g. the 
ones that come from the Selberg theorem, see the Appendix in Chapter 3) can be coarsely 
embedded in “random quotients” of hyperbolic groups [Gromov RW, Silberman]581, 
which therefore do not uniformly embed in Hilbert space.  Higson, Lafforgue and 
Skandalis, [Higson-Lafforgue-Skandalis] converted such groups into counterexamples to 
Baum-Connes with coefficients.   
 
 Of course, this raises a number of questions: do expanders obstruct the untwisted 
Baum-Connes conjecture? Can they be used to disprove the Novikov conjecture (in any 
form)? or the Borel conjecture?   
 
 However, now that we have seen that the original versions of these analytic 
analogues of the Borel conjecture fail, it seems, in the spirit of what we have argued 
throughout these notes, that understanding what is true remains an important problem.  
 
 For example - it seems to me that understanding bounded propagation speed 
algebras could be useful in scientific situations far removed from manifold theory, and 

                                                
581 See [Sapir] for a method of embedding these groups into geometrically finite groups, 
as the Gromov examples are only finitely generated. 
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the hypotheses that the underlying metric space -- network -- is uniformly embeddable 
seems shockingly naïve.  Indeed, besides the issues caused by expanders, one frequently 
would want to dispense even with bounded geometry, bringing on many new issues.  
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