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Preface.

This essay is a work of historical fiction — the “What if Eleanor Roosevelt could
fly?” kind'. The Borel conjecture is a central problem in topology: it asserts the
topological rigidity of aspherical manifolds (definitions below!). Borel made his
conjecture in a letter to Serre some 65 years ago’, after learning of some work of Mostow
on the rigidity of solvmanifolds.

We shall re-imagine Borel’s conjecture as being made after Mostow had proved
the more famous rigidity theorem that bears his name — the rigidity of hyperbolic
manifolds of dimension at least three — as the geometric rigidity of hyperbolic manifolds
is stronger than what is true of solvmanifolds, and the geometric picture is clearer.

I will consider various related problems in a completely ahistorical order. My
motive in all this is to highlight and explain various ideas, especially recurring ideas, that
illuminate our (or at least my own) current understanding of this area.

Based on the analogy between geometry and topology imagined by Borel, one can
make many other conjectures: variations on Borel’s theme. Many, but perhaps not all, of
these variants are false and one cannot blame them on Borel. (On several occasions he
described feeling lucky that he ducked the bullet and had not conjectured smooth rigidity
— a phenomenon indistinguishable to the mathematics of the time from the statement that
he did conjecture.)

However, even the false variants are false for good reasons and studying these can
quite fun (and edifying); all of the problems we consider enrich our understanding of the
geometric and analytic properties of manifolds. Verum ex erroris.

The tale I shall tell moves between topology and geometry, Lie groups,
arithmetic, and operator theory, algebraic K-theory and topics in Banach space geometry
that are also of interest in theoretical computer science. The goal is to develop an
appreciation for this landscape — not to explain the most recent or important results on the
conjecture itself’.

The extent of the canvas that forms the natural backdrop to this problem is both a
joy and a challenge. I cannot explain all the detail or even sketch all action going on
about this canvas, but I will try to tell some good stories” -- simplifying enough to explain
the key ideas, and providing references as best as I can to papers that have the missing
parts, trying to do a bit more than that when the results have not appeared elsewhere, but
hopefully not overdoing it’ and making anything unnecessarily complicated. The goal is

! See Saturday Night live, season 4 episode 4.

> May 2, 1953

> although the book would feel incomplete without some discussion of this.
* more O’Henry than Homer.

> I told myself that I didn’t want this to be more than 250 pages long.



to give a feeling for what we understand rather than to give the most precise or complete
statements — a moving target that even if hit at the moment of writing, quickly turns into a
miss.

While there is some overlap between this book and various other surveys, almost
always their treatments are superior. In particular, I recommend the varied surveys
[Farrell, Farrell-Jones, Ferry-Ranicki-Rosenberg, Gromov, Guentner-Higson, Kreck-
Lueck, Lueck, Roe, Valette]. My hope is that the current treatment will be at the very
least useful to my own students as a response to their FAQs and that the brevity of the
discussion will be stimulating to some.

The astute reader should be able to figure out what’s in this book from its table of
contents, and the knowledgeable reader will be able to figure out what’s missing.

This book grew out of two lecture series given in 2013, the Frontiers of
Mathematics lectures at Texas A&M and a mini-course two weeks later at
Noncommutative Geometry and Operator Algebras XIII at Vanderbilt, followed by
another lecture series in Bloomington in 2014. It probably had its genesis in a lecture
series I gave in memory of Borel at E.T.H. in 2005, although much of the material
presented here reflects developments that occurred since then. I reworked the exposition
some in the succeeding years, and finally gave up at the point when I felt that my edits
were ruining whatever sense of freshness and excitement that the original showed. Given
the choice between two evils, I chose the one that involved less work for me. I would
like to thank my audiences in all these venues for their suggestions, questions, and
interest.

Even more, I am indebted to my collaborators Arthur Bartels, Jean Bellissard,
Jonathan Block, Sylvain Cappell, Stanley Chang, Jim Davis, Mike Davis, Sasha
Dranishnikov, Benson Farb, Michael Farber, Steve Ferry, Erik Guentner, Nigel Higson,
Tadeusz Januszkiewicz, Alex Lubotzky, Wolfgang Lueck, Alex Nabutovsky, Semail
Ulgen-Yildirim, John Roe, Jonathan Rosenberg, Julius Shaneson, Min Yan, and Guoliang
Yu for teaching me so much and sharing in the joy of discovery of both theorems and
counterexamples. In particular, in chapters 6 and 7, the discussion owes a lot to
unpublished joint work with Cappell and Cappell-Yan and conversations with John
Klein. I also owe a large debt to my colleagues at Chicago, (Danny Calegari, Frank
Calegari, Kevin Corlette, Matt Emerton, Alex Eskin, Benson Farb, Bob Kottwitz, Andre
Neves, Leonid Polterovich, Mel Rothenberg, Amie Wilkinson, David Witte-Morris, and
Bob Zimmer) and at Hebrew University (especially Hillel Furstenberg, Gil Kalai, David
Kazhdan, Nati Linial, Alex Lubotzky, Shachar Mozes, Ilya Rips, Zlil Sela and Benjy
Weiss) who created such wonderful intellectual environments for discussing geometric
problems, especially involving groups or graphs. I believe that all of these people will be
able to see reflections of our conversations below, as will many friends and coworkers
whose names I have not mentioned. Comments I received from Bena Tshishiku, David
Tranah and from anonymous referees at Cambridge University Press were invaluable in
the revision process.



Finally and most importantly, I need to thank my family Devorah, Baruch and
Esther for many things that are more important than their encouragement of my work and
putting up with all that goes with the modern academic life.



To Devorah, Baruch and Esther with love.

In memory of Hannah Weinberger, who I appreciate more with every
passing year.

and

In memory of Armand Borel and Bill Thurston, with awed

acknowledgement of the profound ways that their varied visions have
enriched our understanding of geometry and topology.
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Chapter I. Introduction.

1.1 Introduction to geometric rigidity

Our story begins with the Bieberbach theorems about the structure of compact flat
manifolds (i.e. compact Riemannian manifolds whose sectional curvatures are

everywhere 0, i.e. that are locally isometric to R'). The universal cover of such a
manifold, M, is Euclidean space, and therefore its fundamental group = is a discrete

subgroup of Iso(R1). There is a (split) exact sequence
1 »R1 — [so(R1) — O(n) — 1

so that 7 has a rotational part, and a translation subgroup. (Iso(R") is thus a semidirect
product of the linear = orthogonal group, and the group of translations, where the former
acts on the latter in the obvious way.)

Bieberbach showed that the rotational part of « is always finite, so that & has a
subgroup of finite index that is pure translation, and simple considerations then guarantee

that this is rank n, i.e. that M is finitely covered by a torus, i.e. by RI/A for some lattice
A=Z0

We shall first assume that this is a 1-fold cover for simplicity®: the structure of the
manifold M we started with is then understood as a structure on a torus, and by an
analysis of its isometries.

The space of tori, though, is very interesting and quite nontrivial already. (Indeed the
n=2 case gives rise to the beautiful theory of modular forms [Serre, Arithmetic]). Let us
normalize by demanding that vol(M) = 1, and furthermore let us pick the isomorphism A

— 71 (which is tantamount to giving a homotopy equivalence M — T1). There is a
unique linear map in GL,(R) taking A — Z1. Notice that the translation group is
conjugate to the standard action (as a group action of Z1) iff this matrix is orthogonal.
Thus, the space of “polarized flat tori of volume 1 is the same as SL,(R)/SO(n), a
contractible manifold — e.g. by the Gram-Schmidt process’.

At this point, we can pick up the theory for general flat manifolds if we want: the
finite holonomy group (the group of rotations we ignored before) acts on the space of flat

% Although this is but one of a superexponentially growing number of possibilities as n
increases.

7 In the spirit of later developments, we should say that SL,(R)/SO(n) is a complete
simply connected manifold of non-positive curvature — as is any semisimple Lie group

modulo its maximal compact subgroup — and is thus, by Hadamard’s theorem,
diffeomorphic to Euclidean space.



tori, and whose fixed point set is the space of flat structures on the given manifold (with
volume 1/#holonomy). The fixed set of a compact group acting on a complete simply
connected non-positively curved manifold is another such space, by a theorem of
Hadamard provided it is nonempty and connected. It is nonempty (in general, this is
Cartan’s fixed point theorem: a fixed point can be given as the unique “median” of any
orbit - the point which makes the largest distance to any point of the orbit finite) in our
case, because we assumed there was a flat manifold, and connected, because a geodesic
connecting two fixed points to each other would be fixed and therefore lie in the fixed
set. Anyway, we then see that there is a unique such manifold as a smooth manifold, and
that any two are conjugate in the affine group.

Mostow showed in a celebrated 1968 paper that for constant negative curvature
manifolds, the rigidity is much stronger. Perhaps the first hint of this comes from the
Gauss-Bonnet theorem: In this case it says that:

Proposition: If M is a closed manifold® of constant curvature -1, i.e. if M is a closed
hyperbolic manifold of even dimension, then

(MZ1) = 2(-1)Bvol(M)/wop
where wp, is the volume of the sphere (of radius 1).

To foreshadow other developments, we note that if vol(M) < oo, then M has finite
topological type (i.e. is the interior of a compact manifold with boundary) so that both
sides of the equation make sense, and in fact, the equation holds.

As a consequence of the Gauss-Bonnet theorem, we see that in the hyperbolic
case unlike the flat case, the fundamental group determines the volume’. Perhaps even
more straightforwardly, flat manifolds have a non-rigidity because of homotheties, but
hyperbolic manifolds have a scale because of their non-vanishing curvature.

Mostow’s theorem then gives what seems like the ultimate strengthening of this
line of thought. The contractible manifold occurring in the flat case degenerates (if the
dimension > 2) to a point!

Theorem: Suppose that M and M’ are closed hyperbolic manifolds of dimension d >2,
then any isomorphism h: n1(M) — w1 (M’) is induced by a unique isometry between M

and M’.

As a minor point, strictly speaking an induced map on fundamental groups
requires the map to preserve base points, but the isometry will almost surely not (as it’s
unique, it either does or does not). Consequently, we should actually assume that one has

¥ Recall that a closed manifold is a compact manifold without boundary.

? At least in even dimensions. Mostow rigidity implies that this is true in all dimensions;
a cohomological explanation for this is provided by Gromov’s theory of bounded
cohomology [Gromov, VBC].
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a conjugacy class of homomorphisms of the fundamental group, or use groupoids, or
some similar device.

We note that this is not true in dimension 2; for a surface of genus g, the space of
marked'® hyperbolic structures is called Teichmuller space, and is topologically ROZ-6.

Mostow’s theorem is a beautiful and perhaps initially surprising result. However,
it can feel a bit sterile if one doesn’t know examples of hyperbolic manifolds and indeed
it is not so easy to construct hyperbolic manifolds in dimension >2 (in dimension 2 they
can be built easily using tessellations of the hyperbolic plane). Even after knowing some
constructions, how are you going to find two not obviously isometric hyperbolic
manifolds that have isomorphic fundamental groups?

However, the uniqueness statement in Mostow’s theorem gives us quite nontrivial
information even when M = M’. Any self-isomorphism of m must be realized by a self-
isometry, giving the following conclusion:

Corollary: If «is the fundamental group of a compact hyperbolic manifold M, then
Iso(M) = Out(n), where Iso(M) is the isometry group of M, and Out(n) is the group of
outer automorphisms of 7t: it is the quotient of the automorphisms Aut(r) by Inn(m), the
normal subgroup of inner automorphisms of .

Out(m) is the set of components of the self homotopy equivalences of M to itself:
it is not Aut(m) because we do not insist that maps and homotopies preserve base points.

The isometry group of a compact manifold is always a compact Lie group
(Myers-Steenrod), so we learn that in the hyperbolic case, this group is always finite.
Then we then deduce the purely algebraic fact that Out() must be finite — if the
dimension of the hyperbolic manifold is > 2.

In dimension 2, the first conclusion holds (as we will discuss later), but the second
does not. Out() is the celebrated mapping class group, an object of fundamental
importance in low dimensional topology and in algebraic geometry. Elements of infinite
order in Out(r) can never be realized by isometries of a compact Riemannian manifold.

The conclusions of Mostow’s theorem can be greatly generalized. First of all,
hyperbolic space can be generalized to be any locally symmetric manifold with no
Euclidean factors and no hyperbolic plane factors: in other words, as Mostow showed in
subsequent work, it applies to G/K, if G is a semisimple Lie group (i.e. a Lie group with
no connected normal solvable subgroups) and K its maximal compact subgroup. We will
discuss these in much greater length in the next chapter.

19j.e. ones where we are given an identification of the fundamental group, or
equivalently, a homotopy class of a map to a standard surface.
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In addition, according to Prasad, all of these rigidity theorems hold for
noncompact finite volume hyperbolic manifolds (and locally symmetric manifolds).

Amazingly enough, there are many additional extensions of these theorems, not
thought of as uniqueness theorems per se. We will discuss some of the important work of
Margulis on (the aptly called) superrigidity in the next chapter.

1.2 The Borel Conjecture.

The striking results of the previous section show that for various “geometric
structures” (let’s say that this means a given choice of a local model for germ
neighborhoods of points) the space of given marked structured manifolds is either a point,

b 13

or the algebraic topologist’s “point™: a contractible space' .

Although a contractible space isn’t as good as a point, for some purposes it’s quite
good. For example, that it is connected is already a type of uniqueness statement. In the
situation where one has a structure on this space with non-positive curvature, one can
geometrically make conclusions that are stronger than follow from the algebraic topology
alone. For instance, the non-positive curvature on the space of flat tori enables one to
prove Bieberbach’s theorem that any torsion free group that is virtually free abelian (of
rank k) is the fundamental group of a compact aspherical manifold (of dimension k).
(Exercise or see the footnotes.)

Borel suggested that the topological conclusion that the hyperbolic manifolds
were homeomorphic'® could be traced to a purely topological hypothesis:

Conjecture: If h:M’” — M is a homotopy equivalence between closed aspherical
manifolds, then h is homotopic to a homeomorphism.

Recall that a space is aspherical if its universal cover is contractible. It is a K(m,1)
in the language of the algebraic topologists, meaning its homotopy groups =; vanish for

i>1. This can be tested by checking whether the universal cover has vanishing reduced
integral homology (by the Hurewicz isomorphism theorem). A homotopy (class of)
equivalence(s) between aspherical spaces is essentially the same thing as an (conjugacy
class of) isomorphism between their fundamental groups.

If M is non-positively curved or of the form K\G/I" (where G is a real Lie group
and K its maximal compact) then it satisfies the hypothesis of the Borel conjecture. In
these cases, the conjecture is an astounding theorem of Farrell and Jones'”.

! There should be a kind of mathematician for whom a point is a non-positively curved
space -- someone informed by both algebraic and geometric intuitions.

'2 Borel actually made his conjecture on the basis of an earlier 1953 result of Mostow on
solvmanifolds, where the conclusion was “isomorphic”, i.e. diffeomorphic. Borel
expressed relief that he hadn’t conjectured diffeomorphic in light of this result.
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One can also try to reverse this mode of thought, and ask whether the moduli
space of non-positively curved structures on a closed topological aspherical manifold is
contractible (if it nonempty!). Farrell and Jones have shown that the answer to this is
negative as well: the space isn’t even connected. But, I am running ahead of the story.

Borel is suggesting here that aspherical is the topological analog of “locally
symmetric of noncompact type” or of “non-positively curved”. In the next chapter we
will discuss various constructions of aspherical manifolds -- although in Borel’s time
there were no examples that were very far away from the lattice setting.

Of course, in the topological setting, one cannot expect the homeomorphism to be
unique. However, it might seem reasonable to believe that space of homeomorphisms is
contractible, i.e. the analog of a point. Unfortunately, this is not true and we will later
discuss the reason for this; it is an indirect consequence of the conjecture that there is a
type of uniqueness: uniqueness up to pseudo-isotopy.

Definition: Two homeomorphisms f,g: M — N are pseudo-isotopic if there is a
homeorphism M x [0,1] — N x [0,1] that restricts to f Ug on the boundary M x {0, 1} —
N x {0,1}.

For high dimensional closed manifolds, one knows due to the work of Cerf and
Hatcher-Wagoner [Hatcher-Wagoner] that pseudo-isotopies between homeomorphisms
are isotopic to isotopies iff the manifolds are simply connected. This work shows that
always there’s typically an infinite number of isotopy classes of homeomorphisms in the
given homotopy class.

The reasonable optimist might therefore choose to append “unique up to pseudo-
isotopy” to the statement of the Borel conjecture. As we will discuss in chapter 3, this
both follows from the Borel conjecture in general, and is part of the “correct” natural
extension to manifolds with boundary.

Uniqueness up to pseudoisotopy is not as strong as uniqueness, and it will need
some study. If one had uniqueness in families, one could immediately learn things about
bundles. The weaker type of uniqueness has implication for “block bundles” '* and has

"> The important point being the M” is not assumed to be a space of this sort (for then, the
relevant result is part of differential geometric rigidity). We will explain some of the
ideas of this result in the final chapter.
'* And even more to “approximate fibrations” which it would surely be taking us far
afield to introduce at this point. Let us leave it as saying that if one tried to extend the
Borel philosophy to some singular settings, and took seriously the idea that one is looking
for topologically invariant notions rather than modeling closely the topological analog of
the smooth category, then one would be led to “pseudo’s.

It is worth noting that Mostow’s work on hyperbolic manifold is based on extending
the map of universal covers to certain ideal ds. These extensions, as is critical to

15



more relevance to the topological category than the bundle result would have (in other
words, this is a feature, not a bug).

As we noted in the geometric setting, uniqueness would also immediately have
implications regarding the symmetries of aspherical manifolds. Borel himself proved
some of these, and we will discuss them in chapter 7. For example, if M is an aspherical
manifold whose fundamental group has trivial center, then the only connected compact
Lie group that can act continuously on it is trivial>. We saw that it implied that any
finite subgroup of Out(r) was realized by a group action — at least when 7 is centerless'®;
this statement is called the Nielson realization problem'’.

It also would imply certain uniqueness statements about group actions — or if you
like, it would imply “equivariant Borel conjectures”. We will see in contrast (in Chapter
6) that these conjectures are false — for several different reasons.

Another variant of the Borel conjecture goes like this: Given a group =, the Borel
conjecture asserts the uniqueness of the aspherical topological manifold whose
fundamental group is . Shouldn’t there be an existence theorem to go with such a
uniqueness one? Wall has conjectured [Wall3] that the correct condition is that &t should
satisfy Poincare duality'®. We will discuss some of the evidence for Wall’s conjecture —
most comes from the Borel conjecture — and we’ll also discuss variants of Wall’s
conjecture where one weakens the type of Poincare duality the group satisfies.

Yet another way of thinking about Borel’s philosophy is the following. If
knowing the group means knowing the manifold, then every topological property of
manifolds has to be reflected in its fundamental group. Thus one can conjecture that an
aspherical manifold is a nontrivial product iff its fundamental group is'’. Similarly one

Mostow’s work, are naturally continuous and not smooth. These ideas of Mostow from
the late 1960’s are fundamental to almost all of the work on the Borel conjecture since
the early 1980’s.

!> Equivalently, every continuous circle action on M is trivial.

' When 7 is not centerless, the isometries tend not to be unique, and the realization is
false for certain nilmanifolds, an example of Raymond and Scott [Raymond-Scott].

"7 The original Nielsen problem was for surfaces and was proven true, first by Kerckhoff
[Kerckhoff] using geometrical properties of Teichmuller space. By now, there are a
number of proofs.

'8 For a group to satisfy Poincare duality it means that its K(,1) satisfies Poincare
duality. In Wall’s conjecture, one means Poincare duality with arbitrary coefficient
systems, to the same extent that one has such Poincare duality for manifolds. This is
equivalent to there being a chain homotopy equivalence (with the usual dimensional
shift) between the Zn-chain complexes of singular chains on the universal cover and its
dual.

' This can be compared with a theorem of Lawson and Yau for non-positively curved
manifolds [Lawson-Yau 2].
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can hope that a manifold “fibers” over another if there is a suitable exact sequence of
groups. We will discuss these kinds of problems later.

If one were a wild optimist*’, one could easily go very far and conjecture that
many properties of the model manifolds hold for all aspherical manifolds, such as that
their universal covers are Euclidean space or that their fundamental groups have solvable
word problems. We will see in chapter 2 that these are false.

It is not known whether their Euler characteristic has the same sign as the

symmetric spaces of the same dimension have, i.e. whether (_1)nX(M2n) > (0, for closed
aspherical manifolds. (This is sometimes called the Hopf conjecture, although Hopf only
asked it for negatively curved manifolds.)*'

Finally, the Borel conjecture begets many others in the following indirect way: It
implies that any method one would try to disprove it must fail. Thus any invariant of
manifolds, defined by any method at all no matter how clever or indirect, should be a
homotopy invariant for aspherical manifolds. This means that the fundamental group
must somehow catch lots of subtle geometry. Examples of this include the tangent
bundle and various types of spectral invariants, but in principle, one can consider any
topological invariant at all**,

When studying this in detail, one is often led to problems that seemingly have
nothing to do with aspherical manifolds. In chapter 4 we will follow this road towards
the Novikov conjecture, which in its analytic form has strong differential geometric
implications -- well beyond aspherical manifolds. In this form, the conjecture also
develops analogues in quadratic form theory and in algebraic K-theory.

1.3. Notes.

A good grounding in differential geometry is very helpful. For our purposes,
[Cheeger-Ebin] is probably the best source. Milnor’s rapid course in Riemannian
geometry in [Milnor, Morse Theory] is adequate for most purposes in this book.

There are now a lot of approaches to Mostow rigidity and it has many extensions
and generalizations. The original sources are [Mostow 2 and 3]. I highly recommend the
survey [Gromov-Pansu]. Probably the “easiest” proof (although one that is rather
atypical) is Gromov’s based on the ideas of “bounded cohomology”. An excellent

% Something that one would not ordinarily say of Borel.

*I Recently, Avramidi gave some very striking evidence for the failure of this conjecture.
[Avramidi 2]

*> An example of this includes simplicial volume a la Gromov [Gromov VBC] which
provides a homological explanation for the volume of certain locally symmetric
manifolds. I mention this here, because, unfortunately, it does not play a large role in the
sequel.
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exposition of this can be found in [Munkholm]. Zimmer’s book [Zimmer] gives a clear
treatment of Margulis’s superrigidity theorem.

The discussion here of the Borel conjecture is not the most direct or efficient.
However, the equivalent statement that “the structure set of an aspherical manifold
vanishes” reduces all of one’s study to the proving that some group is 0. This seems (to
me) rather depressing. We prefer the point of view that the subject deals with actually
examples and contain surprises. It makes it feel like one is actually studying
SOMETHING.

More seriously, the variants we consider shed light on some subtleties and
possible approaches to the conjecture, and are, I think, natural questions that one would
want to address for the same reason as one would want to know the truth of the Borel
conjecture®.

And, finally, I hope that when the problem is ultimately solved, the spirit of the
problem -- as expanded on here -- will continue to inspire future generations of

mathematicians.
—— BlG
A TMM @
: - 4 4.3

-—

» So we prefer a Comedy of Errors to Much Ado About Nothing.
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Chapter I1. Examples of Aspherical Manifolds

This chapter discusses some of the basic examples of, mainly closed, aspherical
manifolds that give content to our inquiry. After all, what good would the Borel
conjecture be if there were no aspherical manifolds?

We give some constructions, of ones which come from locally symmetric
manifolds (i.e. Lie theory) including both arithmetic and nonarithmetic examples, and
also ones that do not.

By contrast, the construction of noncompact aspherical manifolds is quite easy.
There is an open aspherical manifold with fundamental group = if and only if & is
countable has finite cohomological dimension, as one can see by thickening a finite
dimensional K(mt,1) complex (i.e. replacing all the cells in a CW decomposition by
handles). Remarkably, aside from finiteness conditions, this characterizes the groups that
are retracts of (fundamental groups of) aspherical manifolds.

2.1 Low dimensional examples.

In low dimensions, almost all connected manifolds (even noncompact) are
aspherical. The only connected non-aspherical surfaces are the sphere and the projective
plane.

In dimension three, among closed orientable 3-manifolds all are aspherical unless
one of the following very good reasons holds: either

1. the fundamental group is finite (in which case, the universal cover is S3
and the deck group is a subgroup of SO(3)

2. the manifold is a nontrivial connected sum (and the separating 2-sphere is
a nontrivial element of my), or

3. the manifold is S! x S2. All of this** is a consequence of the sphere
theorem of Papakyriokopoulos (see e.g. [Jaco, Hempel]).

However, in understanding even closed three manifolds, it is essential that one
consider manifolds with nonempty boundary as part of the story. Given an arbitrary three
manifold, one first has a decomposition into irreducible pieces, under connected sum.
This is unique up to the order of the decomposition. Then one breaks the manifold
summands further into pieces, where the gluing is done along certain embedded

** at least for infinite fundamental group. The description of what happens for finite
fundamental group depends on Perelman’s solution of the geometricization conjecture.
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incompressible® tori. This topological decomposition was discovered by Jaco-Shalen
and Johannsen, and explained geometrically by Thurston and Perelman: After breaking
the 3-manifold along this decomposition along a set of canonical tori (its torus
decomposition) one is left with pieces, all of which have geometric structure™ i.e. a
manifold with a complete metric, which is locally homogeneous.

Let’s be more concrete. Suppose we start with a knot K in S3, i.e. a smooth
submanifold diffeomorphic to Sl. The complement is always aspherical (as before, by

Papakyriakopoulos’s sphere theorem). For the unknot, the complement is SIxR2. Itis

often convenient to remove tubular neighborhoods of submanifolds, to obtain the “closed

complement””’; then we would obtain Sl x D2,

For all knots, we obtain an aspherical manifold with boundary as its complement
X, whose boundary is a torus. The unknot is characterized by the property that m|(0X) —

n1(X) is not injective: a nontrivial knot always has an incompressible torus embedded in

its complement (i.e. an embedded T2 5o that 7] injects).

Sometimes there is another torus (i.e. not isotopic to the boundary) in the
complement that is incompressible. When this happens, essentially what that means is
that this knot can be thought of as being wrapped around another knot, i.e. that it has a
companion.

%> Recall that a surface in a 3-manifold is incompressible if its normal bundle is trivial,
and its fundamental group injects into the fundamental group of the manifold.

*® This is the celebrated geometricization conjecture. Actually, if an irreducible
connected manifold contains any incompressible surfaces (and in particular, if it has a
nontrivial torus decomposition) then the geometricization of all of the pieces in its
decomposition is a theorem of Thurston. For references, see the notes section.

*" There are subtleties with doing this in the topological category. It in the setting of
locally flat manifolds, everything works the same: see [Kirby-Siebenmann]. When we
discuss orbifolds, we will see that the analogous issue is not solvable in the topological
setting, i.e. one cannot always find a “closed regular neighborhood” of the knot, and one
needs a substitute for tubular neighborhood theory.
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The knot on the left is a companion of the thinner knot on the right™.

The process of finding companions must end - although not obvious, there is a
geometric complexity that increases under companionship.

So, now consider one of the deepest pieces, i.e. a knot with no companions. In
that case there are two cases: torus knots, i.e. knots that lie on the surface of a torus that
surrounds the unknot. These are parameterized by pairs of coprime integers (p,q)
representing the homology class of the associated circles. All of the remaining knots have
hyperbolic complements, i.e. have complete metrics of constant negative curvature and
finite volume. (One can distinguish the 2 cases easily: the torus knots have fundamental
group of their complement with nontrivial center — which precludes having a metric of
negative curvature™.)

In other words the fundamental group of the complement I" is naturally a discrete
subgroup of PSL(2, C).

The same is true for the annular regions between the various embedded tori: they
all have hyperbolic structures. Thus, a typical knot complement (and according to
geometricization, this is typical), is a union of hyperbolic (or perhaps one of several other
geometries, see [Scott]) manifolds glued together along their cusps. (See chapter 3 for
more of a discussion of the geometry at co of noncompact locally symmetric spaces).

*% Taken from Thurston’s 1982 Bull AMS paper.
%% This is Preissman’s theorem that can be found in most introductory differential
geometry textbooks. See [Bridson-Haefliger] for a proof not using differential geometry.
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This union itself does not have a locally homogeneous structure. Its fundamental
group cannot be a lattice in any Lie group.

This is because in any of the three dimensional geometries (see [Scott]) any 72 is
either peripheral, i.e. conjugate to the fundamental group of a boundary component™, or

contains an element of the center of the fundamental group®'. The 72 coming from the
torus of “companionship” is neither, and therefore this manifold does not have a locally
symmetric structure.

The upshot is that it is very easy to obtain closed aspherical three manifolds
whose fundamental groups are not lattices, e.g. the double of any knot complement other
than torus knots. But, they are obtained indirectly by gluing together lattices.

It is hard to make this precise, but till the early 80’s there was a general feeling
that perhaps somehow, lattices were the source of all closed aspherical manifolds. We
will see that this is not the case as we go along, but let us start with the lattices
themselves. Before we do, let us close this discussion by making one very useful
observation about gluing aspherical objects:

Proposition: If A, X and Y are aspherical A = XNY, and suppose that n](A) — n1(X)
and m1(A) — m1(Y) are injective, then XUY is aspherical.

Without the injectivity, the 2-sphere is a counterexample: it is a union of two
disks along a circle, all aspherical, but not 7; injective.

To see why the proposition is true, we shall construct the universal cover of XUY
and observe that it is contractible. We begin by taking the cover of X. Over A, (by
injectivity) we get many copies of the universal cover of A (according to the cosets of
n1(A) — m1(X)). Each of these is glued to a copy of the universal cover of Y (which also

contains many copies of the universal cover of A). We then proceed by gluing back
copies of the universal cover of X and so on. This is a union of contractible spaces glued
together along (disjoint) contractible spaces, so this is contractible.

Remark. If one shrinks each copy of the universal cover of X to a point, and each
copy of the universal cover of Y to a point while stretching and shrinking the copies of
the universal cover of A to intervals, we get the Bass-Serre tree associated to this
amalgamated free product description of ©1(XUY).

3% Quotients by lattices have a natural compactification (the Borel-Serre compactification)
which makes them into the interiors of manifolds with boundary. It is this virtual
boundary that I am referring to when I describe a subgroup of the fundamental group as
being peripheral.

*! Like in the situation of a circle bundle over a surface.
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This proposition is of critical importance. It enables us to construct interesting
examples by gluing. We will either explicitly or tacitly apply it many times. A
consequence of this is that we can take geometric models for given groups (i.e. K(m,1)’s
for groups) and glue them together to construct models for various amalgamated free
products and HNN extensions: the quality of the union will depend on the quality of the
complexes we begin with and of the inclusion of the subgroup. But, for example, it
shows that the category of finite K(=,1), i.e. n’s that are realized by finite aspherical
complexes is closed under amalgamated free products and HNN extensions.

This, in particular, allows the construction of finite aspherical complexes whose
fundamental groups have unsolvable word problems, or other logical complications. The
Davis construction, discussed below, will incorporate these features into fundamental
groups of aspherical manifolds.

2.2 Constructions of lattices

Given a Lie group, even a quite explicit one like O(n,1) (the automorphisms of the
quadratic form x12+ x22 vt an - Xn+12 -- the isometry group of hyperbolic n-space)
or SL,(R), it is not trivial to find uniform lattices, i.e. discrete subgroups of G such that
G/ T is compact™. Indeed, this is not always possible, e.g. for solvable Lie groups™.

However, if G is semi-simple, Borel gave a general construction of uniform
lattices (and Raghanuthan gave nonuniform lattices’*, see Raghunathan’s book
[Raghunathan] for both). For SL,(R) there is an obvious lattice, namely SL,,(Z), but it is

not uniform, i.e. cocompact. If we think of SL,(Z)\SL,(R)/SO(n) as the space of flat tori

(as in 1.1), then tori that are more and more eccentric (i.e. the result of identifying
opposite sides in a rectangle with sides t and 1/t) leave any compact subset of this space
(the shortest geodesic is approaching 0-length).

Let’s make this a bit more precise (or more general). To talk about the “integer
points” in a Lie group, we should define it over the field Q (there are many distinct ways
of doing this). Then, for simplicity, let’s assume that the group is linear — there will be a
maximal subgroup isomorphic to Q*Kin G(Q); here the diagonal matrices and k = n-1.
If k > 0, then G/G(Z) is not compact and one can take powers of a matrix in this Q-split
torus to leave any compact.

32 Recall that T is a lattice in G if, giving G its natural (Haar) measure, the quotient G/I’
has finite volume.

33 The 2-dimensional Lie group of affine isomorphisms of R — R (the “ax+b” group)
contains no lattices.

** Note that R™ has uniform lattices, but no nonuniform lattices. The same is true for all
nilpotent real Lie groups.
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The converse holds, i.e. the nonexistence of such a Q-split torus implies
compactness (and this is a theorem of Borel and Harish-Chandra). We defer further
discussion of this to chapter 3, where the size of the torus will be seen to govern the
“size” of G/T.

Another way to tell if a lattice is nonuniform is to see if it contains any nontrivial
unipotent elements. (Consider the Lie group G as a matrix group, and then g is unipotent
if its characteristic polynomial is (t-1)" for some n, i.e. if g differs from the identity by a
nilpotent matrix.) No uniform lattice contains unipotent elements: the length of a
geodesic represented by g in ['\G/K is proportional to the supremum of [log(A)| over
eigenvalues of g representing the g. The converse had been a conjecture of Selberg,
proved by Kazhdan and Margulis (and we refer to [Margulis] for the proof), and this
property is often easy to check.

Finding appropriate Q structures for the case of SL,, is rather nontrivial and
requires some development of theory of Division algebras. We shall leave this to the
references, but for those who know some algebra, the group of units in an order in a

division algebra of dimension n2 does the trick.
Let us now return to the problem of constructing uniform lattices.

For O(n,1), looking at O(n,1)(Z) does not do the trick: one obtains a lattice, but
not a uniform one®. However if we replace the quadratic form x12+ x52 ... + x42 -

Xp+12 by Q=x12+x92 ...+ xp2 - Vp Xp+12 then the real Lie group is the same: the

quadratic forms are isomorphic over R. However, O(Q)(Q[\/p]) has 2 different
embeddings into real orthogonal groups, associated to the two embeddings of Q[Vp] into
R, according to whether Vp is positive or negative.

The (real) orthogonal group associated to making \/p negative is the usual
compact orthogonal group. Note that the orthogonal group has no nontrivial unipotent
elements. This means that O(Q)(Z[\/p]) is a uniform lattice in O(n,1) x O(n+1).
However, we can safely project to the first factor, as the second factor is compact, with at
most a finite subgroup as kernel. In other words, the space O(Q)(Z[Vp])\O(n,1)/O(n+1)
is a compact hyperbolic orbifold. Replacing O(Q)(Z[Vp]) by a torsion free subgroup of
finite index gives a compact hyperbolic manifold.

This method produces many lattices. Lattices produced in this way are called
arithmetic. Note that when written in coordinates, automorphisms defined using larger
fields than Q give rise to Lie groups over Q — this is formally called “restriction of

35 Considering the automorphisms of the slight variant a1X12F ... 8nXn =g+ 1 X 1> ONE
obtains a uniform lattice iff this indefinite quadratic form does not represent 0 (i.e. does
not vanish on any integral vector). However, the Hasse-Minkowski theorem says that
this does not happen when n>4.
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scalars”. Using suitable quadratic forms over arbitrary totally real fields, we can get
uniform lattices in any O(p,q).

The general case follows, as Borel says, from the statement that “any real
semisimple Lie algebra has a form defined over a totally real field E # Q all of whose
conjugates are compact.” Borel proves this Lie theoretic statement via tricky (for me)
Lie algebra calculations in his paper (and the book of Raghunathan explains how to
guarantee Q forms that produce the non-uniform lattices, as well).

For simple Lie groups of rank > 2 (or even irreducible® lattices in semisimple
groups) Margulis shows that these are all the examples, i.e. that all lattices are arithmetic.
The reader should pause to reflect on how amazing this result is: one is given a structure
with only local information defined over R, (say a group of real matrices, or a finite
volume Riemannian manifold modeled on some K\G) and one needs to find an algebraic
number field and a form of the Lie group from this and then an isomorphism of one’s
given object with the arithmetic construction.

In the cases not excluded by Margulis (and the subsequent work of Corlette,
Gromov and Schoen that prove arithmeticity in some rank 1 situations by more analytic
methods, see [Gromov-Schoen)), it is an important question of whether there are non-
arithmetic lattices.

We mention here three such constructions, all of which are in O(n,1). (Some
examples are also known in U(n,1) for small values of n, see e.g. [Deligne-Mostow], but

these are isolated.)

Method One: Reflection groups

The first is classical, and is based on constructing polyhedra in hyperbolic space
so that reflections across its walls generate a reflection group on hyperbolic space. In the
hyperbolic plane, the easiest example is a triangle with angles n/p, n/q, and n/r so that 1/p
+ 1/q + 1/r <1. (Below is an example with p,q, r =2,3,9.) Even in dimension 2,
Takeuchi’’ showed only finitely many of these are arithmetic (and indeed gave a list of
these).

It is known that such examples exist in small dimension, and do not exist in very
high dimensions. Nevertheless, they perhaps motivate the Davis construction to be
discussed in 2.3 below.

%% A lattice is reducible if, after passing to a subgroup of finite index, it is a product of
two other lattices. An irreducible lattice in a product of Real groups will project to a
dense subgroup of each of the factors. So, for example, among lattices acting on a
product of two hyperbolic planes, reducible ones will have deformations, but irreducible
ones will be arithmetic (and have no deformations).

37 See [Takeuchi].
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Method Two: Closing Cusps

This method is due to Thurston, and is his famous Dehn surgery theorem. (See
[Thurston].) Consider a hyperbolic manifold with cusps (e.g. a knot complement, or
most>® link complements for “nonsplittable” links, i.e. links in which components cannot
be isotoped to lie in disjoint balls). Thurston shows that for all “sufficiently large”
surgeries, one obtains a compact hyperbolic manifold.

What does this mean? Given a manifold whose boundary is a torus, we can “close
it up” by gluing in a solid torus Sl x D2, Although there is an SLy(Z) = n Diff (T2) set
of possible gluing diffeomorphisms, the diffeomorphism type of the manifold is
determined by the image of the circle &D2. (One can imagine the gluing as being done in

stages: first glue in a thickened D2 to get a boundary component that is an S2 and then
glue in a final ball, which has no indeterminacy). These are parameterized by the

primitive (i.e. indivisible) elements of H1(T2) ~72.

Thurston’s theorem now asserts that if one excludes finitely many possibilities at
each cusp, then all the remaining possibilities of filling produces hyperbolic manifolds.
Moreover, as the boundary curves get longer and longer, the hyperbolic manifold that is
constructed gets closer and closer to the original cusped hyperbolic manifold in a verify
reasonable geometric sense: The “surgery” can, up to very small perturbation, be
imagined as taking place further and further from the “core” of the original manifold*.
(We will discuss the shape of noncompact locally symmetric manifolds at infinity more
in the next chapter.)

As a result, these manifolds have different volumes that converge to the volume
of the original cusped manifold. This is a very crude reason for nonarithmeticity

** One needs to exclude phenomena analogous to companionship (which prevent any
geometric structure) or torus knots (which correspond to structures that are not
hyperbolic).

** These examples provide a good set of examples for thinking about thick-thin
decompositions, and the Cheeger-(Fukaya)-Gromov collapse theory.
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(although it does not do a single example!): for any G, the volumes of the arithmetic
lattices K\G/T" form a discrete subset of the positive reals®.

It is very interesting to ponder this example from the representation-theoretic
viewpoint. One starts with a representation:

p : I'— PSLy(C)

that describes the original hyperbolic manifold with cusps. The filling gives nearby
representations py, : I'/<yp,> — PSLy(C) where <y,> is the subgroup normally generated

by the n-th filling curves. These provide a family of nearby but inequivalent
representations to I'.

Of course, Mostow’s rigidity theorem asserts the uniqueness (up to conjugacy) of
the discrete faithful representation. These representations are perturbations that are not
faithful but are discrete. (For a closed manifold, all nearby representations to the discrete
faithful one are in fact equivalent to it.) This phenomenon is highly special to this Lie
group. Superrigidity is a significant strengthening of the representation theoretic aspect
of Mostow rigidity in high rank, and would preclude anything like this in higher rank*'.

% In some cases, they are even quantized (i.e. multiples of a given smallest one) using the
Gauss-Bonnet theorem. I suspect that the converse holds, i.e. that only for G’s with
Y(K\G/T') # 0 (this can be re-expressed in various ways — but, in particular for the case of
hyperbolic manifolds, this is exactly that the dimension be even), are the volumes of
torsion free lattices quantized.

*! Which is a good thing, because superrigidity gives rise to Margulis’s arithmeticity (and
therefore to discreteness of the set of volumes).
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This method also has had a number of applications to constructing aspherical
manifolds (and groups) that are not lattices. We will mention some in the next section,
and will recur when we discuss the groups of Gromov that disprove a version of the
Baum-Connes conjecture* in chapter 10.

Method Three: Gromov-Piatetski-Shapiro (G-PS) Grafting®

This is the only method that is known to produce examples in all dimensions. We
describe the idea, but none of the technicalities, for which we refer to the original paper
[Gromov-Piatetski-Shapiro].

Suppose that you have two compact arithmetic manifolds, and that they have a
common codimension one submanifold. In other words we have M and M’ that are not
(virtually) isometric, but both contain a separating totally geodesic submanifold V. Then
we can cut both M and M’ along V, and glue one side of M to the other side of M’. This
is clearly a hyperbolic manifold**.

This manifold cannot be arithmetic, essentially because it has a big enough piece
of M that it would have to be M if it were, but it would similarly have to be M’ but it
can’t be both!

How do we get such pairs?

We get uniform lattices from orthogonal groups, but it is possible for different
quadratic forms to give the same lattice. The condition is that the forms be similar. (i.e.
equivalent to rescaled versions of one another). Now it is pretty easy: If one takes the

orthogonal groups of the quadratic forms x12+ x52 ... + X2 - V2 X412 and 3x12+ x52

vt xn2 -\2 xn+12 over Q[V2] one gets noncommensurable lattices for n even. (The

case of n odd is another trick away.) Now these each have an involution associated to
x]1— - x] whose fixed set is a codimension one submanifold: essentially the orthogonal

group of the lattice x22 +...+ an -\2 xn+12.

We will have use for the natural topological variant of this method for constructing
interesting examples (such as counterexamples to certain orbifold variants of the Borel
conjecture) in chapter 7. One tries to find interesting aspherical objects with boundary
and then obtains monsters by grafting® them together.

2.3 Some more exotic Aspherical Manifolds.

*2 This is a C* algebra version of the Borel conjecture.

* They call it “interbreeding”.

* More precisely, it is clearly a compact manifold with constant curvature = -1, but such
are of course hyperbolic.

* Or interbreeding them.
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Method One: Davis’ Reflection group method.

This method was introduced in a paper [Davis 2], whose self-described aim was to
describe aspherical manifolds whose universal cover is not Euclidean space. There is a
simple criterion (thanks to the Poincare conjecture) for determining whether a

contractible manifold is R or not; it is whether the manifold is simply connected at
. 46
infinity™.

Recall that a manifold (or even locally compact space) is connected at infinity, if
the complement of any compact subset has exactly one “noncompact” component (more
precisely, one component with noncompact closure). Assume this is the case, then one
can glob on all the compact components, to obtain a somewhat larger compact, whose
complement has exactly one component.

Now let us consider a sequence of compact subsets that exhaust the space. A; C
Aj;1 and M = UA;. M is simply connected at infinity if the inverse limit sequence
TIM—-Ap) —n(M-Ay)e—... —n|(M-Aj) «—.....
is pro-equivalent to the trivial system, i.e. for each i, there is a j > 1 so that tj(M — A;) <
T (M — Aj) is trivial.

Note: this is not equivalent to there being “no loop that can be moved all the way
to 00” the system of Z «— Z « .... where all arrows are multiplication by 2 has that
property, but is not pro-trivial. The inverse limit is indeed trivial, but the multiples of 2"
come from n stages ahead -- and this image does not stabilize.

At least for high dimensional manifolds, this pro-triviality (i.e. simple connectivity
at infinity) is equivalent to there being an exhaustion by compact sets, all of whose
complements are simply connected. In general, the inverse limit of this sequence is
independent of the defining compact sets, but this “fundamental group at «” only
sometimes*’ plays the same role as the fundamental group for compact manifolds. In any
case, it is a good approximation to “m}(0) if it only were the interior of a manifold with

boundary 0”.

A good example of a contractible manifold (of dimension > 2) which is not
Euclidean space is the interior of a contractible manifold whose boundary is nonsimply
connected. The boundary of a compact contractible manifold is automatically a
homology sphere (i.e. has the homology of a sphere) — which is a sphere (according to the
Poincare conjecture) if and only if it is simply connected.

% This criterion, in dimension > 4 is due to [Stallings2] (and extended to dimension 4 by
Freedman; in dimension three it follows from the Poincare conjecture).
* Essentially when the manifold is tame at oo.

30



However every homology sphere bounds a contractible topological manifold*®.
Some 3-dimensional examples of homology spheres can be obtained by gluing together
two nontrivial knot complements along their boundaries interchanging longitudinal and
meridional directions. Higher dimensional examples can be obtained by spinning low
dimensional ones: puncture a homology sphere and cross it with a disk, and then take the
boundary of this manifold.

Without relying on any theory, a simple example of a contractible 4-manifold
whose boundary is nonsimply connected is a Mazur manifold, constructed as follows:

attach a D2xD2 to S1xD3 along a (neighborhood of a) nontrivial knot in 6(Sl><D3) =
SIxS2 that represents a generator of m| = 7. (Mazur observed, see the crystal clear
exposition in [Zeeman], that the product of this manifold with the interval [0.1] is a ball.)

Davis’s idea was to generalize the obvious construction of R2 from a square by
repeated reflection and gluing (producing the checkerboard with an action of the product
of two infinite dihedral groups, Do,* D) to a construction of some contractible manifold

by reflecting across the top simplices of a triangulation of the boundary of any
contractible manifold with boundary, with an action of a Coxeter group (that is a group
generated by reflections, whose only relations are commutation of the reflections along
incident faces, see next page), whose quotient is precisely this “seed” contractible
manifold.

Davis also calculates that if the seed has nonsimply connected boundary, then the
manifold he constructs in this way is also nonsimply connected at co. In particular, this
happens if one starts with a Mazur manifold.

It is a general fact that Coxeter groups are linear, and therefore virtually torsion
free, so a finite index subgroup acts on this contractible manifold freely, giving the
relevant compact aspherical manifold with exotic universal cover.

Now for a few more details and a generalizations with some indication of
applications.

*® This is classical and due to Kervaire if the homology sphere is of dimension 4 and
higher. It is strictly speaking correct in the PL and Topological categories — in the
smooth category it might be necessary to take the connected sum with an exotic sphere (a
differentiable manifold homeomorphic to the sphere). In dimension three is this true in
the topological category by the work of Freedman, but it is not true in the PL and smooth
categories by Rochlin’s theorem that the signature of a closed spin (smooth) 4-manifold
is divisible by 16. (The most straightforward proof of this important theorem is probably
the one given in [Lawson-Michelson]).

* Of course, to get an example one should specify a knot and calculate that one gets a
nontrivial homology sphere, but Gabai’s theorem on “Property R” guarantees this.
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A Right angled” Coxeter group is given as a pair (I, V) where I is a group and V
is a generating set, by elements of order 2. All the relations of I' are consequences of

relations of the form (VW)2=1. We shall take the barycentric subdivision of a
triangulation of our seed X. Define an abstract group I', generated by involutions v, one

for each top simplex. We impose the relation (VW)2=1 (and hence v and w commute) if
the two simplices share a face. Note that is a k-tuple of simplices have pairwise
commuting associated generators, then the intersection of these simplices is nonempty
(and conversely). Consider Z = I'xX /~ where we identify points (y, x) = (y’, x") if and

only if y'ly’ lies in the group generated by all of the generators of all the simplices that x
lies in. So, in the interior of the seed, there is no identification. On the simplex
corresponding to a generator v, v acts trivially. Davis shows by an induction on the
length of the words in Coxeter group, that one obtains in this way a contractible manifold
by showing that it is an ascending union of contractible spaces glued along contractible
subspaces”".

The Davis construction is most usefully put into the context of CAT(0) geometry’>,
both in its own right in understanding the geometry that such a group has, and also
because of the role that negative and non-positively curved geometry plays throughout
our story. Neveertheless, we defer this discussion for now, and will say a bit more about
it in describing the next construction.

Another variant that has extremely important applications is using strange seeds to
construct aspherical manifolds with other strange properties. Start with any aspherical
seed that is a manifold with boundary. Triangulating the boundary, and constructing the
reflection group, one obtains here an aspherical manifold with a cocompact Coxeter
action, and therefore, by passing to the universal cover, a contractible manifold with a
cocompact group action, so on taking the quotient, a compact aspherical manifold which
inherits properties from the seed. For example, this is a good way to (following Davis
and Hausmann) produce aspherical manifold with no smooth structure, or even no
triangulation (using a seed that is a topological manifold that is nontriangulable, but
whose boundary is triangulable, so that the construction can be done).

If K is any finite aspherical complex, one can take its regular neighborhood in
Euclidean space™ to obtain a manifold with boundary to use as a seed. This is a good

* We assume RA (right angles) for simplicity. Otherwise the exponent in the power for
the nontrivial relations would be different.

>! Perhaps reminiscent slightly of the argument in 2.1.

>> CAT(0) is a synthetic notion of non-positive curvature, named such by Gromov in
honor of Cartan, Alexandrov and Toponogov, see [Gromov HG]. Wait a page!

>3 Any (finite) polyhedron can be simplicially embedded by general position in a much
larger dimensional Euclidean space. Subdividing, and taking the union of all of the
simplices that touch this complex, one obtains a (compact) manifold with boundary that
(simplicially collapses onto and therefore) deformation retracts to the polyhedron. This is
called a regular neighborhood.
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way to produce aspherical manifolds whose fundamental groups are not residually finite
or don’t have solvable word problem.

Method Two: Branched covers (Gromov-Thurston examples):

Gromov and Thurston>* gave some very interesting examples of compact
manifolds with pinched negative curvature, i.e. curvature between -1 and -1-¢ by a
variant of the philosophy of Dehn filling. This elaboration of that philosophy paves the
way to other interesting constructions of groups by “adding large relations”.

The basic idea is that negative curvature is a condition of large links. After all,
negative curvature means that geodesics spread faster than in Euclidean space. So, if one
takes a triangulated 2 dimensional polyhedron, and then metrize it so that every triangle
is an equilateral triangle with side length 1, then assuming that each vertex is incident to
at least 7 triangles should give a type of negative curvature. (As an exercise with Euler
characteristic, neither the 2-sphere nor the torus has such a triangulation.)

A suitable version of curvature is given by the notion of CAT(k) geometry. A
metric space X is called geodesic if its metric is generated by the length of paths
connecting pairs of points. Riemannian manifolds are a good example, but one can make
examples, by using a metric and then taking lengths of paths. Now, suppose that we have
a triangle in X — then we can construct a triangle in one of the model geometries with
curvature k (i.e. rescaled Hyperbolic space, Euclidean space, or a sphere). We say X is
CAT(k) if the triangles in X are thinner than the corresponding model triangle, meaning
that each leg is closer to the union of the other two in X than they are in the model.

This is equivalent to curvature < k for Riemannian manifolds and is a useful synthetic
substitute for other metric spaces. If X is locally CAT(0) then its universal cover is
contractible. (Points will be connected by unique geodesics, and the contraction will be
radial.) A great example is a tree.

Back to the case of triangulated surfaces: 6 incident triangles for each point
implies CAT(0), 7 gives a negative” CAT curvature.

>* [Gromov-Thurston]
>> Depending on the length of the triangles.
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In the Dehn surgery theorem, we have can think of the process of filling as gluing

on (a family of) D2s along the translates of a geodesic on the boundary torus. Thurston’s
theorem tells us that we can have negative curvature (indeed he gives constant, but that’s
too much in general) if the length of the geodesic is long enough.

Gromov and Thurston do something similar. They consider a hyperbolic manifold
M with a totally geodesic submanifold V of codimension two. They show that k-fold
branched covers™ (can be proved to exist, at least sometimes and then) can be given
metrics with curvature between -1 and -1-c/log(k). The volume in this construction
grows linearly: the metric is constructed quite explicitly and deviates from the hyperbolic
metric only in a small neighborhood of the submanifold (as the heuristic suggests).

Philosophically, when k gets large, the curvature should be getting more negative.
They essentially have to stretch the neighborhood to make it more pinched (i.e. so that
the divergence of the geodesics has more time to occur).

The reason that these manifolds can’t be made constant negative curvature is a nice
application of Mostow rigidity. They all have Z/k actions, which would be isometric if
they were constant curvature. Varying k, and modding out by the actions would produce
infinitely many different hyperbolic orbifolds with bounded volume. However, above
dimension 3, there are only finitely many hyperbolic orbifolds with any given volume
bound (Wang’s theorem, see [Wang]).

As the last technical point to mention, a codimension two submanifold can be
branch covered along if and only if it is trivial in homology. We can construct examples
of this by the arithmetic construction we discussed earlier. If one uses the quadratic forms
as arose in “grafting”, then there is a Zy % Z action generated by 2 reflections. The

fixed set of the action of the whole group is nullhomologous in the fixed set of either of
the involutions — which gives us the relevant M and V to start this construction.

In general this method is about adding long relations and keeping negative
curvature. This method is related to the ideas of small cancellation theory (as is CAT(-1)
geometry in general) and in both its manifold and non-manifold versions has led to many
very interesting groups, some of which we will discuss below.

Method Three: Hyperbolization.

The basic idea of hyperbolization is very simple, and there are many
hyperbolization methods, i.e. implementations of this idea — we will be brief and leave

%% Recall that a branched cover of a manifold M along a codimension two submanifold V
is a cyclic covering space of the complement M-V that restricts to the usual cyclic cover
of the circle to itself in the direction normal to V. This allows one to fill in V in the

covering space, and obtain a manifold (with Zj action — whose fixed set is V, and whose

quotient in M).
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the reader to study the (rather beautiful) literature (see the notes). On the other hand, it is
impossible to resist mentioning at least a few of the surprising examples.

The Kan Thurston theorem asserts that any simplicial complex X has the
homology type of a group =, i.e. there is a map Bn — X which is an isomorphism (for all
local coefficient systems on X). Baumslag, Dyer, and Heller ([Baumslag-Dyer-Heller])
gave a very nice approach to this theorem that gives a finite complex Bm if X is finite.

The idea is to find a “simplex of acyclic groups” and glue these together. One
simple version can be done as follows, using cubes instead of simplices. This doesn’t
make a difference since one can replace every simplicial complex by a “cubulated”
complex. So we will instead look for cubes of acyclic groups.

Acyclic groups are easy to come by. A simple example is any free product with
amalgamation n = Fxp°F where F and F’ are free groups of rank k and 2k respectively,

and the first inclusion of F’ to F induces a split surjection on first homology 72k, 7k
projecting onto the first k dimensions, and the second inclusion interchanging the first
and second k basis elements. In this case, gluing tells us that Bx is the two complex
obtained by taking the double mapping cylinder of a wedge of 2k circles mapping to 2
wedges of k circles. A straightforward Mayer-Vietoris calculation then gives that Bz is
acyclic.

An “interval of acyclic groups” is simply given by the diagram of groups m — wxn
« m where the first (respectively second) inclusion is given by the inclusion of the first
(second) factor. From intervals of groups, we can obtain squares and the cubes of groups,
by taking products.

Note that if we have a cubical complex, we can then (ordering the vertices!) glue
together the associated cube of acyclic groups. This will produce a complex (in this case,
finite if X is, and of twice the dimension) which has all of the desired properties.

Notice that this construction is aspherical in the category of simplicial complexes
(or cubical complexes) and simplicial inclusions.

Hyperbolizations do exactly the same thing, but using aspherical manifolds”’
instead of complexes. In both of these constructions it is critically important that
fundamental groups inject for gluing purposes.

It is not possible to arrange for the map to be a homology equivalence (for then the
2-sphere would be homology equivalent to an aspherical surface — which we know by

>7 We give up on acyclicity however.
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classification is not the case)’®. However, other geometric properties can be achieved by
suitable constructions of simplices or cubes of aspherical manifolds.

The seed is often chosen to be non-positively curved (or negatively curved),
orientable, or even with stably trivial® tangent bundle. Points are hyperbolized as points,
and the geometry is rigid enough that the links of these points are the same in X and its
hyperbolized version. If X is a manifold, so will the hyperbolized space, and the map
H(X) — X will be degree one and preserve characteristic classes. This implies that H(X)
is cobordant to X*, so, for example, every cobordism class contains an aspherical
manifold.

If M is a manifold with boundary, Gromov suggested hyperbolizing MUcoM
(where cOM denotes the cone of the boundary of M). This will produce an aspherical
complex with a single singular point, whose link is OM. One can show that if OM is
aspherical, then one can remove this singular point to get a “relative hyperbolization” that
OM bounds (mapping to M). Thus, not only is every manifold cobordant to an aspherical
manifold, but also cobordant aspherical manifolds are cobordant through aspherical
manifolds.

Among the applications of this technique (besides ones we will see later) are
aspherical manifolds that cannot be triangulated or smooth manifolds (whose universal

covers are topologically R1) with CAT(0) metrics, but no Riemannian metric of non-
positive curvature.

For example a nontriangulable aspherical manifold comes from the following. The
Poincare homology 3-sphere®' = bounds a 4-manifold W whose intersection form is Eg

(the unique 8 dimensional positive definite unimodular quadratic form over Z with <x,x>
=0 mod 2 for all x)** Hyperbolize WUcO. Then remove the cone point, and glue on the
contractible 4-manifold, constructed by Freedman, that £ bounds. This gives a
topological manifold, X that being homotopy equivalent to the hyperbolization, is
aspherical. On the other hand, this manifold is “spin” in the sense that its first two
Stiefel-Whitney classes must vanish (since they do for W, and hyperbolization is
tangential) which then prevents smoothness — by the cobordism property X has signature
8, but Rochlin’s theorem asserts that any smooth spin 4-manifold has signature a multiple
of 16.

>% In higher dimensions, I do not know how to eliminate any closed manifold from being
homology equivalent to an aspherical manifold. However, the Hopf conjecture would
clearly preclude this.

> i.e. trivial after adding on a trivial bundle.

% By the Thom’s classical work that shows that bordism is governed by tangential
information [Thom].

%! See Kirby and Scharleman’s article in the references for a beautiful description of this
3-manifold and many descriptions and properties of it.

%2 See Serre’s Course in Arithmetic for more information.

36



X cannot be triangulated as a simplicial complex, as can be seen either using the
Casson invariant® (or even easier now, the 3-dimensional Poincare conjecture).

Recently, [Ontaneda] has refined the construction of hyperbolization to produce
arbitrarily well pinched negatively curved hyperbolizations, so one can, for instance,
construct manifolds with curvature -1-¢ <k < -1 in any cobordism class.

2.4 Notes.

That surfaces tend to be aspherical is classical. For 3-manifolds, there were some
early results by combinatorial methods. For example [Aumann]®* proves the result
asserted in its title with its main topological tool being the gluing lemma. That 3-
manifolds in general tend to be apsherical (and e.g. the complements of all knots, and all
non-splittable links) is due to Papakyriakopoulos [Papa].

The tools introduced in this paper (the Dehn lemma, loop and sphere theorems)
were the core of 3-manifold topology (their power being most evident for the class of
“Haken” 3-manifolds) until the Thurston revolution brought in a wealth of more
(differential) geometric techniques. This development can be found in any standard book
on 3-manifolds. (Good references for the torus decomposition and some of its pre-
Thurston understanding are the books [Hempel, Jaco]).

The geometricization conjecture of Thurston is a picture of all closed 3-manifolds
in terms of locally symmetric ones. The possible geometries are well described in the
paper [Scott]. Very useful explanations of Thurston’s theorem proving this picture
correct in the situation where there is an incompressible surface are [Morgan2] and
[Kapovich] (from a different point point of view than Thurston’s original approach). A
detailed explanation of Perelman’s result can be found in [Morgan-Tian].

The study of locally symmetric manifolds started in the 19" century. These
manifolds are now studied by mathematicians of many different stripes. Besides being
interesting examples to geometers, the geometry and topology of many of these
manifolds are the essence of such classical results of algebraic number theory as the
Dirichlet unit theorem (which calculates the group of units in the integers of an algebraic
extension of Q, and which is the compactness of a certain torus) and the finiteness of the
class number (which, for instance in the situation of a totally real field follows from the
existence of a compactification for Hilbert Modular varieties -- the cusps corresponding
to elements of the class group). We will discuss arithmetic manifolds and hints of
arithmeticity in the next chapter. As mentioned in the text, Borel [Borel 1] gave the first

63 Casson showed how to count the conjugacy classes of SU(2) representations of the
fundamental group of homology 3-sphere, and that when done properly, these reduce
mod 2 to 1/8 of the signature of any smooth cobounding spin 4-manifold.

%% whose author later won a Nobel Prize (for work in game theory).
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general construction of uniform lattices for all K\G. It is much simpler to give non-
uniform lattices. The book by Witte-Morris [Witte] is extremely useful.

Nonarithmetic lattices, as we have seen, are ubiquitous (if not so easy to construct)
in low dimensions. The question of exactly which semisimple Lie groups admit them is
still open. As we mentioned, for rank >1, Margulis’s arithmeticity theorem assures us
that there are no (irreducible) examples. (See [Margulis 1] and [Zimmer].)

The only known construction that works in infinitely many dimensions is the
Gromov-Piatetski-Shapiro grafting method we explained. Mostow and Deligne gave
some examples in U(n,1) for small n. On the other hand, in Sp(n,1) and F4, Gromov and

Schoen (following on earlier work of Corlette) showed that arithmeticity does hold using
analytic methods related to harmonic maps [Gromov-Schoen].

The G-PS manifolds play a role in counting the number of hyperbolic manifolds
with volume <V, in dimensions >3 (when it is finite) [Burger-Gelander-Lubotzky-
Mozes] and with diameter < D in all dimensions (including 3) [Young]®.

As emphasized in the text, the examples of nonarithmetic lattices are suggestive of
tools for constructing interesting aspherical manifolds that have nothing to do with
lattices. Davis (as he explains in [Davis 1,2]) was motivated by Andreev’s theorem about
reflection groups in hyperbolic space.

Closing cusps has been applied both to manifolds and to non-manifolds. CAT(0)
geometry was broadcast to the world by Gromov in his paper on hyperbolic groups
[Gromov, Hyperbolic groups]. The main theme of that paper is developing a large scale
(or coarse) notion of negative curvature for groups, as a property of their Cayley graphs,
and showing how this notion deepens and generalizes our understanding of hyperbolic
manifolds. The most obvious examples of such groups are fundamental groups of
negatively curved manifolds, and also free group. But there are many more!

For instance, Gromov points out that one can cone very long words at will®® (as a
generalization of the idea of Thurston’s Dehn surgery theorem) and maintain negative
curvature, giving “easy” finitely generated torsion groups (just kill large powers of the
elements of the group, one at a time)®”.

% Note that when a hyperbolic Dehn surgery is done, the filling takes place further and
further down the cusp, and the diameter of the manifold increases with the length of the
curve filled.

% What I mean is that one can represent a long word in ;X by a long closed geodesic in
X, and then we can attach a disk along this word, and maintain negative curvature. If the
geodesic is long, then the geometry is that of locally have an n-gon with n>6 at the new
vertex.

57 1f one starts with a lattice in Sp(n,1) and does this, one gets an infinite torsion group
with property (T). This example also shows that while Property (T) implies finite
generation, it does not imply finite presentation. (See the next chapter for the basics of
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That paper also introduces hyperbolization (with some glitches regarding the
procedure fixed in [Davis-Januszkiewicz, Charney-Davis, Davis-Januszkiewicz-
Weinberger]), which also give some new applications. The paper, all told, launched a
major area of geometric group theory and numerous other investigations. See e.g. [Ghys-
de la Harpe] for an exposition of much of the content of that paper. [Bridson-Haefliger]
is an excellent source on non-positively curved spaces that are not necessarily manifolds.

Regarding more basic facts about discrete groups that arose in the chapter, see
[Miller] for constructions of groups with unsolvable word problem and related matters.
[Baumslag-Dyer-Heller] is the paper that gives the finite form of the Kan-Thurston
theorem along the lines described here. It is subsequently applied in [Baumslag-Dyer-
Miller] to give remarkable information about the possible sequences of homology groups
of a finitely presented group (it’s obviously not arbitrary: there are countably many
finitely %gesented groups and uncountably many sequences of even finite abelian
groups!)”".

Rochlin’s theorem, mentioned in explaining the construction of a nontriangulable
4-dimensional aspherical manifold, asserts that the signature (see chapter 4) of a smooth
spin 4-manifold is a multiple of 16. This was immediately understood to be an anomaly,
and led to various examples of phenomena where dimension 4 behaves differently from
the smooth perspective than higher dimensions. This turned out to be the tip of the
iceberg with the advent of Donaldson’s thesis in 1982 (and the work that has followed it)
that has yielded much more profound information about smooth 4-manifolds.

Property (T).) On the other hand, this method does not solve the Burnside problem of
giving finitely generated exponent p groups. However, even this can be achieved in the
hyperbolic group setting as was shown by [Ivanov-Olshanski].

% 1t also contains the construction of an acyclic universal group, i.e. an acyclic finitely
presented group containing every finitely presented group as a subgroup. (Note that
there’s no finitely generated group containing all finitely generated groups.) This group
has been surprisingly helpful for various constructions. As one example relevant to this
chapter, it was applied in an early version of [Davis-Januszkiewicz-Weinberger] for the
construction of relative hyperbolization — although this was not necessary in the final
version, that followed Gromov’s original ideas more closely.
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Chapter III. First Contact — Nonuniform lattices

3.1 Overview

Having given some idea of the kinds of manifolds that the Borel conjecture
applies directly to in the last chapter, we consider in this chapter the effect of modifying
Borel’s heuristic, and taking light of Prasad’s extension of Mostow rigidity to the case of
nonuniform lattices. We ask whether topological rigidity holds in this context?

It was already noticed in the early 1980’s that this is not the case. Making use of
Borel’s calculations of the stable cohomology of SL,(Z), Farrell and Hsiang observed

that for n>200 and I a torsion free subgroup of finite index in SL(Z), the quotient
SO, \SL,(R)/SLy(Z) is a not “properly rigid”, i.e. there are infinitely many manifolds M
not homeomorphic to SO,\SL,(R)/SL;,(Z), but proper homotopy equivalent to it.

Actually this happens if and only if n> 4 (and, moreover, the same is true for any
number rings in place of Z) as we will see in 3.7%.

The goal of this chapter is to explain this in its natural setting, using this an

excuse to explain some aspects’° of the structure of K\G/T' "', property (T) %, L2
cohomology”’, and some surgery theory that we will need in later chapters. Not as
critical on utilitarian grounds, but nevertheless important, are discussions of the
cohomology of arithmetic groups (ultimately these discussions go to the very meaning of
the conjecture)’®, and superrigidity.

The outline of the chapter is as follows — we will first explain the overall shape of
K\G/T" (which is a far-reaching generalization of the classical 19" century reduction
theory of binary quadratic forms) and give some information about the Borel-Serre

% Actually, we will only explain the failure of proper rigidity if n>3; its affirmative
solution depends on the “Borel conjecture with coefficients” and will have to wait till
later.

7% The next several footnotes are intended for the more expert reader.

! The discussion of which is also relevant to the proof of the Novikov conjecture for
linear groups explained in chapter 8.

72 That we will use, as is traditional, in the construction of expanders, which are relevant
to the failure of forms of the Baum-Connes conjecture.

> Which is used in the proof of flexibility theorem later that affirms a consequence of the
Farrell-Jones conjecture and of the Baum-Connes conjecture unconditionally.

7 As the cohomology of groups gives rise to geometric consequences via the Novikov
conjecture.
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compactification of this manifold. Then we will discuss some generalities about the
cohomology of arithmetic groups and describe Borel’s results on these groups.

Assembling all of this with some surgery theory, we will see a critical role played
by the Q-rank. The case of Q-rank = 0 corresponds to the compact manifolds, i.e. the
Borel conjecture in its usual sense, and if Q-rank < 3, it turns out that these noncompact
manifolds behave (for the purposes of topological rigidity) just like the compact case, and
results explained later in the book will give their proper rigidity. Nonrigidity will
immediately follow from the combination of surgery theory with Borel’s calculations for
very large n (n>176 as mentioned above).

Both for the purpose of lowering n and for allowing a wider range of Lie groups
(and for the purposes of later developments) we digress and explain several important
properties of lattices in higher rank groups, and of certain linear groups.

The first of these topics is strong approximation. This property of linear groups
will give us control on certain finite quotients of linear groups. We will need this only in
this chapter, so our discussion will be brief.

We then turn to Kazhdan’s property (T). Our focus will merely be on definitions,
and we leave serious discussions of the scope of this property and its remarkable
applications to other sources. These ingredients are then assembled and combined with
superrigidity” to show that any lattice that has Q-rank > 3 has a finite sheeted cover
which is not properly rigid.

This proper rigidity we thus obtain is somewhat weaker than one would hope: it
asserts the existence of a proper homotopy equivalence f: M — K\G/T" that is not properly
homotopic to a homeomorphism. We will need to work harder to ensure that M is not
homeomorphic to K\G/I" (by some other map), and that M is smoothable, and to get the
set of such M’s to be infinite. For these we will use a mix of tools from comparison to
the Lie algebra mod p, to the Baily-Borel compactification in the Hermitian case, to the
use of “generalized modular symbols” of Ash-Borel, to give a definitive solution for all
SL;(O) (O a number ring) and for all I of Q-rank > 3. (Alas, at the time of this writing,

for example, the proper rigidity properties of certain lattices in E~7 are still not well
understood.)

We close the chapter by considering the morals of this story, a reexamination of
the forest having focused on particular trees. Despite the failure of proper rigidity, we
consider noncompact variations of rigidity that actually are true for these locally
symmetric spaces. We also discover role for functoriality in this problem -- an aspect
which could seem surprising given that the initial problem is purely about certain very
specific and beautiful objects.

7 The extension of linear representations from lattices to the semisimple Lie groups that
contain them.
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3.2 K\G/T and its large-scale geometry (in which we encounter the Tits building and
the Borel-Serre compactification’®.)

If G is a connected Lie group, then it has a maximal compact subgroup K, which
is unique up to conjugacy. Topologically, K\G is contractible. Give G a right invariant
and K bi-invariant metric. If G is semisimple (i.e. has no normal solvable subgroups),
then K\G gets a complete metric of non-positive curvature.

As discussed in the last chapter, G often contains lattices. We shall assume (for
simplicity) that G is given the structure of linear algebraic group defined over Q. The
first lattices one thinks of are G(Z) and its congruence subgroups, i.e. matrices lying in
G(Z) that are =1 mod n. (This is necessary to do if we want to restrict attention to
torsion free lattices so that K\G/I" is a manifold -- the quotient space is a manifold means
that the action of I' on K\G is free: the isotropy of the action of I on the right has to be a
compact subgroup of the discrete group I', and hence finite, and will be trivial when I is
torsion free. Conversely, when I has torsion, each element of finite order has a fixed
point in K\G, making the quotient an orbifold.)

The possibility of other algebraic number fields is not essentially eliminated by
this condition, because of the method of restriction of scalars: the group SLn(Z\/Z) isa
lattice in SL;,(R)* SL,(R). For uniform lattices, as we saw in 2.2, there are other
arithmetic lattices that come from G having compact forms that are Galois conjugate to
the given form— because a lattice in G x G’ gives us one in G by projecting if G’ is
compact (or alternatively, G and GxG’ are isomorphic after modding out by their
maximal compact subgroups). For the noncompact case, these more subtle lattices don’t
play a role — since all the forms must be noncompact (because I" contains unipotents and
compact groups do not), so the definition of arithmeticity is somewhat less subtle in this
case.

While our focus in the last chapter was on the compact case, here we are
interested in what occurs in the noncompact case. An important theorem of Borel and
Harish-Chandra’’ “blames” noncompactness on a “Q-split torus” for G.

Let us follow this subgroup around in the simplest situation SL;,(Z). We will see
an even more precise picture than mere non-compactness.

In SO(n)\SL,(R) we can consider the torus of diagonal matrices (such that the
product of their entries is 1). As a space of tori, these are the “rectangular” tori. Taking

the logs of these eigenvalues, we get a map to RO-1 (the elements of R™ that have the
sum of their components = 0). X, acts on this by permutation — without loss of

generality, we can assume that the eigenvalues are listed in increasing order. This gives

76 With apologies to A.A. Milne.
" See Bull. AMS 67 (1961) 579-583.
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us a polyhedral cone in RD-1 and a subset of SOMm)\SL,,(R)/SL(Z). This subset gives us

a very good large-scale picture of this quotient manifold: for example, this embedding is
essentially undistorted, and every point in the quotient space is of uniformly bounded
distance to a point of this sector. Moreover, this statement is true if Z is replaced by
integers in a totally real field. Although the real Lie group this embeds in a product of
SL,(R)s, the action of SL,(0) cuts down to bounded size all the directions that do not

come from the polyhedral cone that is the quotient of the maximal flat’®. The proofs of
these kinds of statements are the subject of “reduction theory”, developed by C.L.Siegel,
A.Borel and their successors (see [Borel-Ji] for a modern account).

For other lattices we will have to glue together copies of this sector according to
some combinatorial description governed by the theory of Tits buildings — which records
the combinatorics of the parabolic subgroups. All of this is first most easily observed in
yet another, even simpler example, the product of hyperbolic manifolds ITM; . After

discussing this toy example, we will return to SO(n)\SL,(R)/SL(Z) and the general
case.

Each noncompact hyperbolic manifold M has a core, with cusps coming off. Pick
a base point, and a sequence of points going towards infinity in each of the cusps. The
geodesics connecting this base point to those points converge to a finite union of geodesic
rays, each of which is isometrically embedded in the manifold.

78 This is very much like the phenomenon that occurs in the Dirichlet unit theorem, where
all of the directions in logarithm space for the various embeddings of the units just curl it
up into a torus.
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(A picture from Thurston’s notes)

There is a uniform bound on the distance of any point in M to this asterisk A. (This is the
direct analogue of the polyhedral cone from the SL,(Z) case.)

One can imagine a map from M to A, roughly mapping each point to the point on the
asterisk closest to it, (and then modifying it slightly on a compact set arrange it) so that
the inverse image of the base point is the core of M, and the inverse image of any point in
one of the rays is a “flat manifold horospherical section” of the cusp.

Let me elaborate on the terminology.

The isometry group of hyperbolic space H is O(n,1) — which we will imagine via
the ball model. The isometries form three classes, elliptic, hyperbolic and parabolic.
Each elliptic element has fixed points in the interior, and lies in a maximal compact. (The
action of the isometry group is transitive, so what fixes one point is conjugate to what
fixes any other point: hence, the maximal compact subgroup is unique up to conjugacy.)
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Hyperbolic elements act via translation along a geodesic (with some rotation in
the normal direction’”). A parabolic element has a unique fixed point on the boundary
sphere at 0.

Given such a fixed point, the horosphere going through that point can be defined
as follows. Choose a unit speed geodesic y going from p to a specific point at co. Now
consider the sphere of radius R centered at y(R). The limit set of these spheres is an orbit
O(n,1),/O(n,1), . The isotropy group is a parabolic subgroup, which is isomorphic to

the semidirect product O(n-1) =< RD-1 = the isometry group of R0-1,

(In general parabolic subgroups are those subgroups that contain a Borel
subgroup, i.e. a maximal connected solvable group. They are the isotropy groups of
points on the boundary of K\G.)

Now let us return to our hyperbolic manifold with a number of cusps. Lifting
the geodesics associated to the cusps gives a finite set of points on the boundary,
which are fixed points of nontrivial parabolics. The subgroup of I fixing a (lifted)
cusp acts as a lattice on the horosphere. The quotient is a flat manifold (which is a
cross section of the cusp - choosing another point p on y would give a parallel cross
section).

The product of a number of hyperbolic manifold both contains and maps to
the corresponding product of asterisks, which is a polyhedral cone whose
dimension in the Q-rank of this product lattice 8°.

Note that the inverse image of a point in this cone depends strongly on which
face that point lies on. It will be a product of some number of cores and some
number of flat manifolds. (Note that by taking finite covers of this product, we can
mangle the product structure, but will still get a similar union of flat pieces
approximating the manifold.)

For SL;, the picture is similar. We’ve seen the cone, and the inverse of a point

in the interior of the top simplex is a nilmanifold: isomorphic to UT(n; R)/UT(n, Z),
where UT(n, ?) denotes the group of upper triangular matrices with (1s on the
diagonal and) entries in ?.

7 Following [Thurston], we do not distinguish between hyperbolic isometries and
“loxodromic” ones.

% Here by Q-rank we merely mean the number of noncompact hyperbolic factors,
whether or not they are arithmetic. As a consequence of Margulis’s arithmeticity
theorem, all, even non-arithmetic lattices, can be approximated by finite polyhedral
cones, defining for us Q-rank even when there is no Q-structure! The reason is that there
is such a structure for negatively curved manifolds, and everything is virtually a product
of negatively curved homogeneous spaces and arithmetic ones.
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Recall that a point in the top simplex corresponds to a diagonal matrix,
whose eigenvalues are distinct. This unitary group is the unipotent subgroup of the
matrices that preserve the flag given by these subspaces. A point in a different
simplex corresponds to some coincidences among eigenvalues. At these points, one
has an incomplete flag and normal to it one has a “genuine” lattice part
(corresponding to a product of SL’s associated to the various combined eigenspaces)
with a nilpotent bundle over that associated to the unipotents that are the identity
module the flag.

As one moves towards infinity, the unipotent pieces have volume that decays
rapidly to 0 81, and that is what accounts for the finiteness of the volume of these
nonuniform lattices. The lattice part stays bounded in size (but does not shrink?82).

Another concrete case for which the calculations are not difficult is the case
of Hilbert Modular groups®, I' = SL»(Of ) where F is a totally real field of degree d.

In that case, there are finitely many cusps (=h(Op), the class number of the ring84).
This group acts on a product of d hyperbolic planes (where d = [F ; Q]) The cusps are
actually solvable manifolds8>. The bounded part is a torus corresponding to OF*.

The fiber is the torus Rd/OF and the monodromy of this bundle is the action of OF*
on Of. The base torus stays of bounded size as one goes down the cusp (it takes

some distance to work up the twist corresponding to a nontrivial unit), while the
fiber torus decays exponentially by homothety as one goes down the cusp.

Now let us work in general, guided by these special case. If G is a linear
algebraic group defined over Q, we shall define a simplicial complex, the Tits
building of G using the parabolic subgroups of G. The minimal parabolic is B, by
definition, the Borel subgroup, and G itself is the maximal parabolic.

8! A nilmanifold is essentially “an iterated fiber bundle of torus on top of torus and so
on”. The layers shrink at different rates. Gromov [Gromov AF] has shown that
manifolds with metrics of bounded curvature but diameter going to 0 are finitely covered
by nilmanifolds.

52 This is also similar to what occurs in the case of a product of hyperbolic manifolds --
the inverse images of points that are not in a top simplex have bounded diameter, which
does not go to 0 as the point moves to infinity. Of course, the volumes of these point
inverses go to 0 very rapidly, or the locally symmetric manifold could not be finite
volume.

%3 See Freitag, Hilbert Modular Forms (Springer 1990) for a crystal clear explanation.

% For congruence subgroups, the number of cusps is the order of a ray class group.

% That non-nilmanifolds arise is because here G has rank > 1, and we are dealing with
non-positive curvature rather than strict negative curvature.
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To a parabolic P we associate a simplex op so thatif op co( if and only if Q

c P. The group G corresponds to the empty simplex. The maximal simplices
correspond to (conjugates of a) Borel®¢ subgroup.

It is a very nice theorem of Solomon and Tits (proved rather geometrically,
see e.g. [Abramenko-Brown]) that this complex has the homotopy type of a wedge of
spheres of dimension g-1 (where q = Q-rank).

The Borel-Serre compactification of K\G/T is a compact manifold®” with
boundary so that K\G/T is its interior. Actually, it has a more refined structure: it
has the structure of a manifold with corners - and this structure carries a great deal
of geometry in it, but we will not need this.

The compactification takes place on K\G, and is G(Q) (but not G(R))
equivariant. Associated to P we have a Euclidean space ep so that dim ep + dim op =

q-1. These open cells are disjoint, but ep < cl(eq) if and only if P < Q.

The corner structure comes like this. The unipotent subgroup of P acts on K\G as
a free (Ry*)dim(op)+1 proper action. Include each orbit into the (Ry*)dim(op)+1 space

(10, 00))dim(0P)+1 One can thus compactify each orbit®. The relations among the
parabolic subgroups enable one to glue these together to include K\G as the interior in a
manifold with corners on which the G(Q) action extends. Borel and Serre topologize this
union as a manifold so that the the action of " on it is continuous and proper
discontinuous. In particular, they see that down in the quotient, they obtain a
compactification.

They also observe that the boundary of K\G so obtained has the Tits complex as
its nerve and therefore the I' cover of the 0 has the homotopy type of a wedge of spheres

vSa-1,

In the case of a Q-rank 1 lattice, the picture is the one of isolated cusps, and the
compactification glues onto the end a copy of the slice of the horosphere. For a product
of these manifolds, one obtains the product of these compactifications (and, of course, the
corner structure is evident in this case).

Moreover, using the fact that the universal cover of these closures are
contractible, it is quite easy to see that the boundaries look like joins of the boundaries of

% It is not instantly obvious that this is a simplicial complex. A hint is that for simple
algebraic groups, the conjugacy classes of parabolic subgroups are in a 1-1
correspondence with subsets of the nodes of the Dynkin diagram.

87 Actually, when I has torsion, it is an orbifold.

% Formally, one should take an associated bundle to viewing K\G as a (R+*)dim(0p)+1

principal bundle using this action on the octant ([0, oo))dim(UP)+1.
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the universal covers of the original compactified factors — and hence an infinite wedge of
spheres, vSa-1 (where q = #factors).

Note then the underlying homotopy type:

If Q-rank = 0, then we must be compact (and the homotopy type’s that of @).

If Q-rank = 1, then the cover of the boundary is a union of copies of the universal
cover of the boundary. Thus the Borel-Serre boundary is a (union of) aspherical
manifold(s) whose fundamental group is a subgroup of I" (of course, it’s a lattice in the
parabolic associated to that cusp).

If Q-rank = 2, then we get a pleasant surprise, the boundary is connected — which
means that every compact subset of K\G/I" has a unique component with compact closure
(i.e. it has one end).

Moreover, the boundary is a closed aspherical manifold, since it has an aspherical
cover, namely the regular cover associated to I', which is homotopy equivalent to a
wedge of circles.*

This is actually a very interesting aspherical manifold that is not a lattice in any
Lie group! However it is not really a surprise to us — the Tits building in this situation is
a graph, and we have lattices associate to the nodes, glued together according to
“boundaries” along the edges™. Like 3-manifolds, these boundaries have decompositions
into geometric pieces, and it is not hard to generalize this construction to more
complicated kinds of “graph manifolds”.

The connectedness of this cover means that the map from fundamental group at co
to I is surjective. In other words, any loop in K\G/I" can be pulled to o (i.e. outside of
any compact). However, to do this, one typically must increase the diameter of loops”".

If Q-rank > 2, then we discover that the boundary is not aspherical (.. is
nonzero) — our first hint that all is not well with a proper Borel conjecture’. As we will
see in the coming sections, because of this when Q-rank > 2 proper rigidity typically
fails. At the end of the chapter we will try to learn some lessons from this failure.

% Note that aspherical is equivalent to all higher homotopy groups vanish, but higher
homotopy groups are unchanged in covering spaces.

% For example for SL3(Z) one gets 2 copies of SL2(Z)><Z2 thought of as block 3x3

matrices (with a 2x2 block either on the top left or bottom right). These intersect
along the Heisenberg group U(3, Z) in SL3(Z). The fundamental group of the boundary

is this amalgamated free product. The kernel of the map of this group to SL3(Z) is an

infinite rank free group.

° This will be (part of) the reason why we will ultimately succeed in proving a
“bounded” topological rigidity for higher rank locally symmetric manifolds — see the
discussion in the morals section 3.8.

%2 Of course, the resolution could have been that there are some special non-aspherical
manifolds that are rigid. There are some, but Borel-Serre boundaries turn out not to be
among these.
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3.3 Surgery.

Surgery theory is a framework for studying the classification of high-dimensional
manifolds. In this section we will describe some of the features of surgery theory, and in
particular, a situation where there are “no obstructions”. In particular, we will explain
the observation of Farrell and Hsiang [Farrell-Hsiang1] that for very large lattices the
proper analogue of the Borel conjecture fails. Later sections will show that failure is
actually ubiquitous and more dramatic than these examples show’>.

Our presentation in this section is quick and dirty. Later on we will need and give
more precise and more conceptual discussions: the need for better calculations requires
alternative descriptions, from whose vantage point, the very nature of our central problem
changes.

Atiyah [Atiyah 4] observed that:

Theorem: If one has a homotopy equivalence between closed manifolds h: M” — M,
then there is a kind of equivalence between their stabilized tangent bundles, namely
stable isomorphism of spherical fibrations.

Let me explain. Assume first that M and M’ are smooth so that they have tangent
bundles in the usual sense. An equivalence between tangent vector bundles in the usual
sense would be a continuous family of linear isomorphisms (not necessary the differential
of the map, Dh) TM’ ;> — TMp(1y). A stable isomorphism of such vector bundles

would be such a family TM’ ;> x R4 — TMh(m) * R4 for some d. A stable

isomorphism of spherical fibrations is such a family of maps, not necessarily linear, but
which is a degree one proper homotopy equivalence on each fiber. (This means that the
map induces a homotopy equivalence between the fiberwise 1-point compactifications,
i.e. the stable spherical fibrations. Note that the one point compactification can be thought
of as being the unit sphere of one stabilization further.)

This implies that some invariants of the tangent bundle are homotopy invariant,
such as Stiefel Whitney classes’. However, this equivalence relation on bundles is very
weak: Over a space X of finite type”, there are only finitely many such equivalence
classes’®. However, characteristic classes, such as the Pontrjagin classes allow for an
infinite number of conceivable tangent bundles for manifolds within that homotopy type.

% But as we said, there are also versions of rigidity that do apply to non-uniform lattices.
%% This fact also follows from the Wu formula that gives a homotopy theoretic description
of the Stiefel Whitney classes in terms of the action of the Steenrod operations on the
cohomology of a manifold.

% i.e. with the homotopy type of a finite CW complex.

%® This follows immediately from an obstruction theory — induction over the skeleta of a
triangulation — making use of Serre’s result that the stable homotopy groups of spheres
are finite.
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Just as (oriented) bundles can be thought of as maps into Grassmanians’’, BSO,
there is a classifying space for (oriented) spherical fibrations BSF, i.e. maps E — X
whose homotopy fiber is a sphere are classified by maps X — BSF, so that we can
interpret Atiyah’s theorem as saying that the composite map

M — BSO — BSF

is a homotopy invariant of compact manifolds M. The proper analogue of Atiyah’s
theorem holds as well.

So given h: M’ — M, taking into account the automatic equivalence of their
stable tangent bundles in BSF, gives us a refined tangential data for a homotopy
equivalence:

v(h) : M — F/O

where F/O is the fiber of the map BSF — BSO. This invariant of h is called the normal
invariant of h (since it is a stable invariant, and the stable normal bundle is adequate for
its definition, rather than the more subtle, unstable tangent bundle).

Another way to say this is that the two tangent bundles combine to give a map
from M to the homotopy pullback of

BSO

!
BSO — BSF

which, of course, is homotopy equivalent to BSO X F/O, as we leave to the reader.

Now, I should say that there is a similar discussion possible in the category of
nonsmooth, triangulable or even topological manifolds, which gives rise to classifying
spaces — so in the topological case, we have v(h) : M — F/Top. A4 first view of surgery
theory is that it is about the difficulty in realizing maps into F/O or F/Top from homotopy
equivalences.

However, there is one situation where there is no obstruction at all:

Theorem (n-r theorem). Suppose that M is a connected manifold with nonempty
connected boundary, dim M > 6, and 71 (0M) — m1(M) is an isomorphism, then every

homotopy class of maps M — F/Cat (For Cat = Diff, PL, Top) is realized by a homotopy
equivalence of pairs (M’, OM’) — (M, oM).

°7i.e. there is a universal bundle, and every bundle is the pullback of this bundle under a
map that is well-defined up to homotopy.
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A relative version of this theorem actually implies a uniqueness result for the pair
(M’, &M”) **. This theorem is immediately relevant to our situation, since the Borel-Serre
compactification, when Q-rank(I")>2, satisfies the hypothesis of this theorem.

We shall now review some results about the nature of these classifying spaces.

First of all, the homotopy groups of BSF are finite, so the map G/O — BSO is a
rational homotopy equivalence.

The reason for this is quite not difficult: The homotopy groups of BSF
corresponed to spherical fibrations over the sphere. A spherical fibration over S" can be
thought of (just like a bundle) as the result of gluing together two trivial bundles over the
two hemispheres D".. The gluing is a map s™! — Self-homotopy equivalences of the
fiber sphere S', which is the iterated loop-space Q'S' of a sphere. A little thought then
shows that the homotopy groups of BSF are therefore the same as the stable homotopy
groups of spheres, and these are finite thanks to a theorem of Serre [Serre thesis].

Characteristic class theory also tells us that Pontrjagin classes give us a rational
homotopy equivalence BSO — [] K(Z, 41).

The theorem of Kervaire and Milnor on the finiteness of the number of smooth
structures on a sphere can be translated into the statement that the homotopy of Top/O is
finite, or that F/O—F/Top is a rational equivalence’. Thus:

Theorem: There is a rational homotopy equivalence F/Cat — [] K(Q, 41).

Remarkably, Sullivan gave a complete and precise analysis of F/Top'* which we
will explain in the next chapter.

Theorem: At the prime 2, there is an equivalence:

%% 1t will be unique up to h-cobordism, or if we work with simple homotopy equivalences,
then it will be unique up to Cat-isomorphism.
% This is an outright lie of the worst kind: it is a misleading truth. To set up such an
equivalence, one needs to be able to do enough topological topology (i.e. topology in the
topological category) to be able to mimic many smooth constructions. In particular one
requires topological transversality — which is indeed a theorem of Kirby and Siebenmann
[Kirby-Siebenmann]. With transversality however, it is a simple matter to prove that
rational Pontrjagin classes are topological invariants (a transparent consequence of the
statements thrown about in the main text) -- as we explain in 4.5. That was a major result
of Novikov, for which he earned a Fields medal.

In the next section we will return to this train of thought. In any case, for now,
please bear with the inaccuracies above.
100 Actually, Sullivan did the PL case, but once the work of Kirby-Siebenmann
mentioned in the previous footnote became available, the result for Top immediately
follows.
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F/Topw) = [1K(Z(2), 41) x K(Z/2 , 4i-2).
Away from 2, there is an equivalence:

F/Top[1/2] — BSO [1/2].

Remark: In writing things this way, we are using localization theory for simply
connected spaces (or of H-spaces) which enables one to assign to such a space X, the
localization of X as a set P of primes. Xp)is a space functorially associated to X, and its
homotopy (and homology) groups are those of X, but tensored with Z[1/q], where q runs
over the primes not in P. So X(») has homotopy groups those of X, tensored with the
group of rational numbers with odd denominators.

Localizing at a set of primes has the effect of ignoring contributions of the other
primes. Part of the theory explains how to combine the information at the various primes
with rational information to give information about ordinary homotopy classes of maps [
; X]. We refer the reader to [Hilton-Mislin-Roitberg] for an exposition of this theory (and
[Bousfield-Kan] for a more modern approach).

Warning: Sullivan’s map to BSO[1/2] is not transparently related to the tangent bundle
of the underlying smooth manifolds (when one has a homotopy equivalence between
closed manifolds) — and then forgetting their smooth structure — however, rationally it

. . . . . . {01
contains the same information as should be reasonable given our discussion above = .

Let us now combine our discussion into a

Proposition: If M = K\G/T is a locally symmetric manifold of dimension > 5 and Q-
rank(I") > 3, then there are infinitely many smooth manifolds proper homotopy equivalent
to M that are not homeomorphic to M (detected by their rational Pontrjagin classes) if for

some i, HH(M ; Q) # 0.

(The reader who is familiar with Siebenmann’s thesis can also reverse the argument we
have given to prove the converse to this proposition.)

We can assume M is replaced by the Borel-Serre compactified version. If the Q-
rank(I") > 3, this is a n-m manifold, so Wall’s theorem reduces it to a classifying space
question — and the cohomological condition is exactly equivalent to the set of homotopy
classes of maps M — F/Top to be infinite (and infinitely many of these classes will
automatically be smoothable).

"%Vt turns out that BO — BTop is an isomorphism on homotopy groups rationally (the

injectivity of this map being Novikov’s theorem on topological invariance of rational
Pontrjagin classes, and the rational surjectivity following from the finiteness of the
number of differential structures on the sphere).
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Following Farrell and Hsiang, we presently observe that for n > 176, Borel’s work
gives on cohomology of arithmetic groups gives us this conclusion for
SOM)\SL,,(R)/SL(Z) (or more precisely a lattice in SL(Z) that is of finite index and

torsion free). (We remark that for Z[i], Borel’s results would have allowed the choice of
n>32.)

The proper setting for this work is the relation between cohomology of arithmetic
groups and representation theory, but we will avoid a general discussion focusing on just
the contribution of the trivial representation — which Borel shows is the whole story in a
“stable range”' .

The result is that:

Theorem: For k < Q-rank(I")/4, Hk(K\G/F ; R) is represented by differential forms on
K\G that are right G invariant.

In particular, the lattice itself is irrelevant! (We will see that however, above this
value of k, the cohomology group can indeed change with the choice of lattice I'.)

Here’s a way to think about this. Suppose L is a compact Lie group containing K,
then by the Hodge theorem, we can compute H*(K\L) by means of harmonic forms, but
by integrating with respect to L, and using the uniqueness of harmonic representatives,
we can essentially identify the cohomology with the forms on K\L that are invariant
under the action of L.

Now if G is a real semisimple group, with K its maximal compact, we denote by
G its complexification, and by G’ the maximal compact of G¢. The Cartan
decomposition for G’ and G¢ only differ by a multiplication by 1. This implies that the G

invariant forms on K\G are essentially the same as the G’ invariant forms on K\G’. K\G’
is called the compact dual of K\G.

For a uniform lattice, this copy of the cohomology of K\G’ actually embeds in
HK(K\GIT; R).

For nonuniform lattices, this is not the case, and it is not easy to tell which of
these cohomology are actually present in H*(K\G/T') (e.g. the top class never survives).
However, here Borel’s theorem tells us that in the range mentioned above this is actually
a complete description of the cohomology.

For SL,,(R), the complexification is SL;,(C), whose maximal compact is SU(n).

Thus the compact dual is SO(n)\SU(n). Thus the cohomology is that of a product of
spheres of dimensions 5,9,13,17.... The smallest dimension that is a sum of these and a
multiple of 4 is 44. Giving the result for n> 176.

192 [Borel 3]
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For SL,,(C) thought of as a real Lie group, the complexification is SL,(C) X
SL,(C). Thus, the compact dual of SU(n)\SL,,(C) is SU(n) and therefore a product of

spheres of dimension 3,5,7,9...The first relevant cohomology is in dimension §, so for
n>32 these produce examples.

This method shows failure of proper rigidity for SL,(OF) for n>32 if F has a

complex embedding, and n>176 when F is totally real. These counterexamples are
“stable” in at least two senses: (1) they do not go away if we stabilize the manifold by

taking products with Euclideaan space, Rk and (2) they survive on passing to any further
finite cover.

However, this method is insensitive to the lattice in SL,, and for example, this
cannot lead to the idea that as the volume of the symmetric space goes up, so does the
size of this set of manifolds, which actually seems to be the typical behavior.

More precisely, we will soon see that there is a finitely generated abelian group
structure on this set of topological manifolds, and that (via a nonlinear map related to the

Pontrjagin classes but distinct from it) it is = @H4i(r; Q) after ®Q.'” We shall see that
frequently the rank of this abelian group (even rationalized) grows with I'.

However, the impatient reader who wants to move on to matters more directly
concerned with the validity of rigidity can now skip to the end of this chapter or to the
next (with occasional references to the skipped sections, especially about Property (T).).

3.4 Strong approximation, etc.

Our first order of business is to give a fairly straightforward argument that in the
case of SL,,(OF), n>4, there is always a finite sheeted cover with a substantial amount of

cohomology. In 3.7, we will use this to give an essentially elementary replacement for
the work of Borel used in the previous section to disprove the proper Borel conjecture for
n>4. (The argument for n=4 will not be quite as elementary and will require material
from 3.6.) We will write down the argument in the case of Z, but the arguments are
completely general. Following this we will discuss strong approximation, which gives a
good understanding of the quotients of quite general linear groups. Ultimately, this will
imply that all Q-rank > 2 lattices have finite covers that are not properly rigid'**.

' The smooth version maps to the topological one so that the map is finite-to-one, and

the image need not be a subgroup, but it contains a lattice in this cohomology group by an
argument we will give in 3.7.

1% But it will not imply stability in the second sense of last section. Indeed we will see a
rank 3 reducible lattice where every proper homotopy equivalence to any finite sheeted
cover becomes properly homotopic to a homeomorphism in a further cover.
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We begin by noting that SL(Z) — SLn(Zp) is a surjection. The kernel SL,(Z;
p) consists of matrices of the form (I + pA) where A € Mp(Z) is such that (I + pA) is
invertible. The key thing is that this congruence kernel has a homomorphism — Mn(Zp),

assigning A to [+pA. Note that det((I + pA) = +plp(-1/p) and hence we need that A
have trace 0 mod p. (Of course, this is the Lie algebra of G in general.)

Now we can write down explicitly a 3-cycle in the congruence subgroup that is p-
torsion and detected by projection to this abelian p-group. Itis a Z3 in SL5(Z). There is a
Z2 which consists of matrices that are 1’s on the diagonal and the top row is (1 0 0 pa
pb). This commutes with the Heisenberg group (Heis) of upper diagonal matrices in
SL3(Z) c SL3(Z)*SLy(Z) c SL5(Z). We obtain a 73 by taking the product of the 72
with the central pZ in the level-p congruence subgroup of the Heisenberg group.

This Z3 gives us a cycle in H3(SL(Z; p); Z) which is nontrivial, because it is
detected by mapping to Mn(Zp) (by the Kunneth formula), but is p-torsion, because the
central Z is of order p in H|(Heis3(Z; p); Z) (i.e. the homology of the level p congruence
subgroup of the Heisenberg group) since the 3x3 matrix

10p’
010
001

is a commutator in this group. Consequently we have found an element of order p in
H4(SLn(Z; P); Z) by the universal coefficient theorem.

We will see in 3.7 below that for p sufficiently large this element is the first
Pontrjagin class of some manifold proper homotopy equivalent to SO(n)\SL,,(R)/SL(Z;

p). Actually, these elementary calculations with Lie algebras and playing with
congruence subgroups suffice to show that for Q-rank >6 one can always find a
congruence cover where there are arbitrarily large finite number of manifolds that can be

distinguished by pj — the first Pontrjagin class'®,

Reduction modulo primes for linear groups over fields of characteristic 0 is a very
powerful method and produces many useful homomorphisms. This is, for instance, used
to prove (see e.g. [Wehrfritz]) that such groups are residually finite (Malcev) and also
virtually torsion free (Selberg).

195 As explained in 3.7, Novikov’s theorem that rational Pontrjagin classes are topological
invariants can be refined for pj to the statement that in H4(BST0p; Z[1/2)) it is definable
for oriented topological bundles.
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Let us describe some easy homomorphisms if I' © GL,(F) is a finitely generated

group over a field F of characteristic 0. By considering the generators of I as lying in a
finitely generated ring over Z. Its field of fractions is a finite (algebraic) extension of a
field of finite transcendence degree. We can then “specialize” values for the
transcendentals so that these matrices all lie in an algebraic extension (as the determinant
will be a rational function that is not identically 0). Then the matrix entries really are
algebraic numbers with finitely many primes in their denominators, and we can therefore
reduce modulo large primes. However, for simplicity of exposition, we will imagine that
our groups lie just over the integers, perhaps with finitely many denominators.

These congruence subgroups provide a natural sequence'® of subgroups that
converge to the trivial group. Amazingly, the image of a linear group under such
reductions is, with finitely many exceptions, governed by the Zariski closure of the
group. (This is the content of the strong approximation theorem.) Thus, any Zariski
dense finitely generated subgroup of SL,(Q) surjects onto PSLn(Zp) for all but finitely

many primes. Indeed, like in the Chinese remainder theorem, one can map onto almost
any finite product X PSLn(Zpi)-

Slightly more precisely, let S be a finite set of primes. We consider Z[1/S] the
ring of rational numbers whose denominators have all prime factors in S. Suppose that I"
c GL,(Z[1/S]) with Zariski closure G. Strong approximation asserts that the closure of

I'in HG(Zp) is of finite index. Informally, strong approximation says that the closure of

a linear group in the congruence topology is essentially determined by its closure in the
Zariski topology.

A nice application of this is due to Lubotzky [Lubotzkyl] . Recall that the start of
the Gromov-Piatetski-Shapiro examples was the construction of a separating
hypersurface in a hyperbolic manifold. Millson had noticed (see [Millson]) that on taking
a finite cover, this hypersurface lifts to several components.

Actually this virtual disconnectedness be true in general, as the fundamental
group of the hypersurface is not Zariski dense in O(n,1) (it lies in a smaller O(n-1,1)) and
therefore not congruence dense. A suitable deep finite congruence cover will therefore
have the hypersurface disconnected.

As each of the sides is Zariski dense in the group, these both have full image,
which means that the complement of the union of the lifts of the hypersurface have two
components.

19 Which corresponds to a tower of covering spaces if one chooses a sequence of moduli

that divide one another. A different choice, which does not form a directed system, but
rather is just a sequence of covers, is the congruence kernels as one varies over different
primes. Those still converge to the universal cover, for example, in the pointed Gromov-
Hausdorftf sense.
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A corollary of Van Kampen’s theorem and these observations directly gives:

Theorem: Every hyperbolic manifold with a separating hyperbolic hyper-surface has a
finite index subgroup whose fundamental group surjects to a free group'"’.

This then implies that such a lattice has many subgroups of finite index — indeed
super-exponentially in the index (since nonabelian free groups do).

Another nice application of strong approximation, also due to Lubotzky
[Lubotzky4], is that:

Theorem: Any finitely generated group linear group in a field of characteristic 0 always
has subgroups of index divisible by d (for any given d).

We refer to the book [Lubotzky-Segal] for a more thorough discussion of strong
approximation, its literature and applications.

3.5 Property (T)

In this brief section we will discuss the notion of property (T), discovered by
Kazhdan during the 1966 Moscow ICM (during a game of ping pong with Atiyah).
While it seems at first like a technical property about unitary representations, it has had
applications — surely not all foreseen at that point -- to many areas of mathematics, and
(via the notion of expander graph) theoretical computer science.

We shall also discuss the opposite notion, amenability, originally introduced by
von Neumann in his analysis of the Banach-Tarski paradox. These are both fascinating
subjects deserving (and having received) book length treatments; here they are merely
introduced in recognition of the role they will play several times below.

We will begin on the amenable side of the universe, since it is more familiar. For
finite groups G, averaging the values of a real valued function on G is a general and
straightforward algebraic procedure that involves no limiting procedures. If G is
compact, then at least for continuous functions this can be done by integration with
respect to Haar measure.

Remarkably, using weak-* limits it is possible to define averaging processes on

some infinite groups. Even for Z this is a remarkable statement.: We are asserting that
there is a functional

A:L®(Z) > R

197 Explicitly, let M be a manifold containing two hypersurfaces A,B whose union does
not separate M and * be a base point off AU B, then making a curve transverse to AU B

one can write a product aabba-l... € F recording the order and directions of the
intersections. This gives a (surjective) homomorphism nj(M) — F».
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that assigns a number to any bounded sequence of real numbers, agrees with ordinary
limit when it exists, and is positive, linear, and translation invariant. Positivity means
that A(f) > 0 if £>0. Linear is obvious and translation invariant means that A is invariant

under the action of Z on L®°(Z) by translation. Positivity and linearity can be achieved
by extending any f (since Z is discrete, any function is continuous) to fZ, the Stone-Cech
compactification and evaluating this extension on any point in BZ - Z.

The invariance requires using a bit of the geometry of Z, but this is the key!
Replace the sequence by its averages (i.e. like Cesaro means). Let g(n) = 1/(2|n+1)|
> f(m) (where the sum is over the interval I, = [-n], [n[].

Observation: A, defined as the limit of the sequence g(n), is translation invariant
because the number of elements in the symmetric difference I;; A Ty, is o(#1y).

Remark: We made the construction using the Stone-Cech compactification. Sometimes
(as hinted above) people construct A as a weak™® limit of the averaging functionals that
define the values of g; sometimes non-principal ultrafilters are used in making this
construction. These are just cosmetic differences — although they have somewhat
different feels (point set topology versus functional analysis versus logic).

Note the averaging procedure (and the limiting procedure) is well defined when
the sequence has a limit. However, in general, it is very dependent on our choices. For
example, suppose we had replaced the intervals I;; = [-|n|, |n|] by intervals J,, = [n!-|n],

n!+|n|], we still would obtain an averaging function that satisfies all the above properties,
yet would have a much less democratic'® feel than the I, seem to have - the values of f at

most integers (e.g. those outside of union of the J,s) will then be completely irrelevant.

Democracy put aside, the above consideration suggests defining a Folner'"
sequence to be a sequence of subsets A, of I', so that for any vy, #(YAnAAp)/#A — 0.

(This need only be checked for generators.) Under those conditions we can define a left
invariant positive linear functional by the procedure above. Folner proved the converse,
that a group has a mean iff there is a sequence of such sets. Groups that have such a
mean, or equivalently, an exhaustion''’ by subsets whose “boundaries” are
asymptotically negligible, are called amenable.

(The boundary of a set in I' is precisely the the union symmetric difference of the
set with its translates under a generating set of I'. If we consider the volume of a set the

1% And more fickle, in that J, is disjoint from the later sets averaged over.

1% These considerations do not explain why we would give this name to this class of
subsets, only that we call attention to them. The last sentence in the paragraph is
necessary for that point.

"9t is a very elementary fact that if a discrete metric space X has a Folner sequence of

subset, then it has an exhaustion by Folner sets B; i.e. B; € Bi;; and X = UB,.
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number of elements it contains, then the last sentence is just a restatement in words of the
formula of the previous one.)

There is a close connection between amenability and unitary representation

theory. Consider the unitary action of I" on L2T. 1t has a nontrivial fixed vector if and
only if I' is finite.

However, v, = (1/V#A)Yy where the sum is taken over A, is a sequence of
almost invariant vectors. That is, ||vy|| = 1 but for every vy, ||yvy - vpl| — 0. One can

describe this as saying that the trivial representation is weakly contained in the regular
representation — another equivalent of amenability.

Yet another interpretation of amenability can be given in terms of the laplacian on

functions A: L2I" — LT defined as follows. We shall consider I as a graph, as usual,
choosing a finite symmetric generating set S, and connecting two elements g and g’ if

there is an s € S so that g = sg’ (so that I" acts on the right by isometries). Define the

Laplacian by Af(x) = f(x) — 1/#S Xf(sx). It compares f to its average. Note that Aisa
(bounded) self adjoint and positive operator (by direct calculation of <Af, f>).

Theorem [Kesten]: 0 € Spec(A) if and only if I" is amenable. This is equivalent to each
of the following two statements:

[1] The symmetric random walk on I does not have exponentially decaying
return probabilities: i.e. pop(e,e) # O(ch) for any c<1

[2] The number of words (in the symmetric set of generators S) of length 2n
representing the trivial element W(n) satisfies W(n)l/2n - #s.

Note that the statement 0 € Spec(A) does not mean that there are any eigenvectors
with eigenvalue 0 (although that would be the simplest explanation) i.e. kerA need not be
nontrivial, because of the possibility of nondiscrete spectrum. Indeed, 0 is an
eigenvalue''! if and only if I is finite.

However, the almost invariant vectors are test functions of norm 1 with | Af,| <
ZH(YAnAAL)/#AL (summed over the elements of S) showing that it is not true that

<Af,f> > ¢||fi|2 for any c¢>0.

The connection between random walk, heat flow, and the laplacian is important.
Note that A =1— M, where M is the Markov operator, defined by:

Mfi(x) = E(f(yx))

""" There is a natural generalization of A to differential forms, and then as we will discuss

in 3.6, there is frequently kernel to A on forms.
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where E means, as always, the expectation value of a random variable, and here it is f of
a random neighbor of x (i.e. the translate by a random generator of I'). Note |[M|| <1, and
equality holds if and only if I" is amenable. The probability of return is given by

pn(e.e) = <, M §¢ >.

So if 0 € Spec(A), we get exponential decay of the return probabilities. (The converse is
tricky.) The expression W(n)/#S2n is simply another calculation of py,(e,e) and hence
statement (2) is equivalent to (1).

Property (T) is opposite to amenability, (not its negation!) and it is quite nontrivial
that there are any infinite groups at all that have this property.

Definition: A group I' has property (T) if every unitary representation that has almost
invariant vectors has a fixed vector. (In other words, given a generating set S, there is a
Kazhdan constant ¢ — that typically depends on S — such that for any nontrivial
irreducible representation p (or - equivalently - any representation with no nontrivial
fixed vectors p), the only v with [|p(s)v — v|| < & [|v] is v="0 "%

An amenable discrete group has property (T) if and only if it is finite -- one can
construct almost invariant vectors by averaging over a sequence of Folner sets.

Margulis showed that higher rank lattices have only finite or finite index normal
subgroups by the crazy strategy of showing that all quotients are amenable and have
property (T). Obviously arbitrary quotients of property (T) groups have property (T).

Kazhdan’s original paper observes [Kazhdan], via consideration of induced
representations:

Proposition: A locally compact group G has property (T) if and only if any (and hence
every' ) lattice I’ CG does.

It also shows.
Proposition: A discrete group with property (T) must be finitely generated.

For suppose that I' = UT, is an ascending union of proper subgroups. Then

@Lz I'/T},) is a unitary representation which has almost invariant vectors (each
n ry rep Y

ultimately acts trivially, so vectors that are in late factors of the product for an almost
invariant sequence), but it will have an invariant vector only if some Fj =T.

"2 The notation is supposed to indicate that the trivial representation T is separated from

all the other irreducible representations (by the parentheses).
'3 Assuming there is at least one!
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Theorem (Kazhdan) Products of real simple Lie groups of rank > 1 have property (T).
He deduced that lattices in these groups were finitely generated.

We already know enough to see that O(n,1) does not have property (T), because
we know lattices that have nontrivial Z quotients, and note that property (T) is
(obviously!) inherited by quotients. Less simple is that U(n,1) also does not have
property (T). This is shown in [Kostant] as is the following positive result:

Theorem (Kostant) Sp(n,1) has property (T), as does the real rank one form F4(-20) of
the exceptional complex Lie group of type F4.

This gives us now negatively curved examples of property (T) groups, we can add
large powers of all the elements one at a time''*, and maintain negative curvature, giving
(uncountably many!' ") Property (T) groups that are torsion.

The early history of property (T) only had examples that came out of
representation theory. Now there are completely different mechanisms for this of both
algebraic and analytic geometric origin — so now there are many other property (T)
groups known. Before saying a little more about this, we digress to give another
characterization of property (T) (see [Bekka, de la Harpe, and Valette, Shalom?2]).

Theorem (Delorme-Guichardet, Shalom): A group has property (T) if and only if
every action of I on a Hilbert space by affine isometries has a fixed point. If the group
does not have (T) then there is an action where not only is there no fixed point, but the

displacement )’ ||V-’Y(V)H2 has a realized minimum on the unit sphere (where X is over the
generating set).

All amenable groups have affine isometric actions that are metrically proper, i.e.
actions for which the orbits of vectors — oo in norm (as y—o0) as was shown by Bekka,
Cherix and Valette — yet another way in which property (T) and amenable are at opposite
poles.

A consequence of this theorem is that:

Corollary: If a group I' acts simplicially on a tree (without inversions) without fixing any
vertex, then I' cannot have property (T).

This excludes nontrivial amalgamated free products and HNN extensions, as well
as giving another argument for the finite generation of Property (T) groups (see [Serre,
Trees]). We shall use the prove the corollary by noting that if I" acts on a tree T, then it

acts on L2(T).

"!* This is an application of the “Dehn filling” idea as in the previous chapter.

"> And hence the fact that Property (T) does not force finite presentability.
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Proposition (Cartan) If T acts on a tree T and it has a bounded orbit, then it has a fixed
point.

Cartan was actually working on other spaces of non-positive curvature''°. The
proof goes like this. Given a bounded set in a tree, it lies in a unigue ball of smallest

radius. As this the bounded set is I" invariant, so is that ball, and therefore its center is
fixed.

If the action of I" on T has no bounded orbit, then L2(T) has no fixed vectors,
which is incompatible with property (T).

Appendix: Property (T) and Expanders.

Expander graphs are graphs that are hard to disconnect, i.e. require the removal of
many edges to separate a large number of vertices from the rest. It (now) seems obvious
that such graphs should be valuable for the construction of things like communication
networks. But, in fact, they have legion applications in theoretical computer science
[Hoory-Linial-Wigderson] and pure math [Lubotzky 2 ,3].

We consider finite d-regular graphs I'j (for simplicity --- a bound on valence is
really all that’s necessary). We consider the Cheeger constant of these graphs

h(T) = inf (HOA/4A)

where A is a subset of I" with fewer than half of the vertices, and JA is the set of vertices
of A that share an edge with I'-A. If we allowed big A’s then setting A =T" we’d get 0 as
our inf always.

This notion makes sense for infinite graphs, as well as finite ones, if we impose
the condition that A is finite in the infinite case. Note that I is amenable as a group if
and only if h(I') = 0 viewing I as a (Cayley) graph — and that this condition is equivalent

to 0 € Spec(A).

However, for expansion, we are interested in finite graphs, and we want the
reverse, 1.e. that h(I'j) > € > 0.

To summarize:

Definition: An expander sequence of d-regular graphs is a sequence I'j (of d regular
graphs) such that h(I'j) > &> 0.

191 believe that Cartan’s application was the uniqueness of the maximal compact in a

semisimple group by considering the action of such a group on G/K, a complete manifold
of non-positive curvature. Incidentally, the analogous fact in the case of Lie groups over
local fields makes use of the curvature properties of Tits buildings.
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These were first introduced and studied explicitly by M. Pinsker (in a paper with

L. Bassalygo) — and in a paper presented at 7th International Teletraffic Conference, he
showed that they exist, by arguing that random graphs are expanders. They have become
an important tool in theoretical computer science ever since, and you can find much
interesting material and history in {Hoory-Linial-Wigderson].

More recently, it was pointed out in [Gromov-Guth] that he was preceded by a
paper of Kolmogorov and Barzdin that studied expanders as models for the brain (nodes
on the surface and axons going through the bulk, without disjoint axons getting too close
to one another), but then, alas, having an upper bound on size''” to fit into our heads.
Expanders were their examples of graphs that would be hard to fit in our head.

Why this genericity of expansion should be true is clear if one considers a toy
variant: Consider the graph I" with n vertices determined by 2 permutations, using each

permutation to connect [i] to [ri]. ([i] is also connected to [n'li]). Given a subset A, the

expected number of edges leaving A is #A(1 - HAMT)A suggesting a bound of at most
1/16 independently of #I'. Of course, there are many choices of A, and we have to
compute the expected extremal. This means one should look at subsets A of size n/2 that
contain significantly fewer edges leaving it, say n/20 and then estimating tail probabilities

in a binomial distribution. The details are left to the reader''®.

If one is interested in using this for building a network (or an error correcting
code or...), then random methods are not so useful — buildings surely must be built from
blueprints'"”. The applications in mathematics often require knowing that certain graphs
form expander sequences' .

Now, for finite graphs, 0 is always in the spectrum of A. Constant functions have
Af=0. 0 has multiplicity > 1 if and only if I is disconnected (different constant
functions on the different components). Graphs that are connected but easily

"7 There is a bound to how much of an expander can be fit without distortion, even in
Hilbert space. This will be is of critical importance later for purposes of the Novikov
conjecture. For science fiction purposes, the cognitive capacities of aliens elsewhere in
the multiverse can be expected to be greater than ours, in the Kolmogorov-Barzdin
model, only if the number of spatial dimensions increases (or they have better
programming of their neural nets).

'8 Actually, to the active reader. An inactive reader can find them written down in many
places.

"9 T expect this to be my bon mot quoted years after I have otherwise been forgotten,
showing how shortsighted people were back at the beginning of the 3™ millennium.
Indeed, I almost deleted this comment during revision.

20 Many of these are closer to the Selberg example explained below than the Property
(T) examples we begin with now. This is a good moment to mention that there are now
many constructive methods of getting expanders that do not come out of Property (T).
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disconnected should therefore be characterized as having an eigenvalue near 0. This is
the content of the following basic theorem:

Theorem: A sequence of d-regular graphs is an expander sequence if and only if there is
an € > 0 so that the spectrum of A restricted to functions with [f=0 (the orthogonal
complement of the constants) is bounded > & > 0.

We will denote LZ(I')° this subspace of L2(D).

This theorem is inspired by Cheeger’s theorem in Riemannian geometry (see
[Cheeger2]) that bounds the isoperimetric constant of a Riemannian manifold in terms of
the spectrum of the Laplacian. Note that for a subset A, the modified characteristic
function, fo = 1A - #A/#T has | = 0, and A related to #OA/#A. The isoperimetric constant

is approximately realized by a level set of an eigenfunction for a small eigenvalue.

A consequence of this theorem is that random walk on an expander sequence is

rapidly mixing'?'.

The following important result of [Margulis 2] is now perhaps anticlimactic,
given our discussion.

Theorem: Suppose that I' is a group with property (T), and I'/T’j is a sequence of finite

quotients of I" (all viewed as graphs with a common generating set S of I') is an expander
graph.

To see why the isoperimetric inequality is true, consider L2(F/Fi)° (where the

superscript ° means that we are considering the orthogonal complement of the constant
vectors) and, since there are no fixed vectors, there can be no almost invariant vectors,
which means that Afa, is large, which means that 0A, is also large.

Concretely we can set I' = SLy(Z) for any n>2 (and use the elementary matrices
as a generating set) and obtain the expander sequence SL(Z/m) -- where m is varying.

Note, by the way, that the representations arising in this proof are all (sums of)
finite dimensional representations of the group I', so we are nowhere near the full power
of property (T). Lubotzky and Zimmer have suggested the notion of property t, which is
property (T) for finite dimensional representations, or even restricting further to a class of
finite quotients (say ones factoring through some finite quotient or some congruence
quotient).

A good example of this is SL(Z) for n =2. We shall work with a congruence
subgroup of this group, which is a free group. Obviously it does not have property (T), as

21 Which perhaps suggests its application to de-randomization.
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it has a Z quotient, and just as obviously covers corresponding to the subgroups kZ for a
surjection of this group to Z have isoperimetric constant — 0 (consider the inverse image
of the interval [0, k/2] in the cycle) and just as obviously, the bottom of the spectrum of
these quotients of SO(2)\SL»(R) — 0 (by considering functions that are 1 on [0, k/2] and

-1 on [k/2, k-1]).

However, when we restrict our attention to the family of congruence quotients,
then a theorem of Selberg asserts that for all of these manifolds SO(2)\SL>(R)/SL2(Z; k)
has A1 > 3/16. One can translate between graphs and manifolds, and actually this is a

123

family of expander graphs whose girth'** grows'* (logarithmically) with k.

Finally, we close our discussion by mentioning one of the more recent methods
for proving property (T), because it turns our discussion on its head and uses expander
properties as a way of obtaining property (T).

Theorem: Let I' be a group generated by a finite symmetric set S, with e € S. Let L(S) be

the graph with vertex set S and in which {s,s'} is an edge if and only if s™1 s’ € S.
Suppose that L(S) is connected and has spectral gap greater than 1/2. Then I has property

().

As a nontrivial consequence of this, in some models of random groups, having
property (T) is generically the case — a far cry from the essentially Lie theoretic origin of
the first examples. Moreover, this method produces groups with very strong fixed-point
properties, often stronger than those true for lattices in high rank groups. See the notes
for some more discussion of this important direction.

3.6 Cohomology of Lattices.

a. Property (T) and H'
b. Matsushima formula
c. Generalized modular symbols

d. L?cohomology

'22 The girth of a graph is the length of the shortest cycle in the graph; it is an analog of

the length of the shortest geodesic (= twice the injectivity radius) of a compact manifold.
'3 Note that if we use the property (T) expanders, relations in the fundamental group give
bounded cycles everywhere in the graph. Random graphs will frequently have some
short cycles, but relatively few of them.
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The cohomology of lattices is a topic of endless fascination that can be studied
from many viewpoints, from the geometric'** (construction of explicit cycles) to the

analytic (e.g. Hodge theory and L2 cohomology) to the number theoretic (such as
Langands functoriality). In this section we will touch briefly on a few methods for
producing cohomology classes motivated by purely utilitarian needs. For simplicity we

will divide our discussion into four parts: H!, the Matsushima formula and connection to
representation theory, geometric cycles, and finally, L2 cohomology.

a. Hland Property (T)

We have already tacitly discussed HI(T ;R) when discussing property (T). Its
vanishing is necessary if I satisfies (T), because otherwise Z is a quotient of I, and (T) is
inherited by quotients.

Actually we had less obviously given a cohomological interpretation of property
(T) in characterizing those groups by the fixed-point property: Any action of I' on a
Hilbert space H by affine isometries has a fixed point.

This statement can be expressed cohomologically. Any affine action has a unitary
part p:I' = U(H). (It can be obtained by letting p(y)(v) = lim ty(t‘lv) ast— 0.) Affine
actions are associated to cocycles, and cohomologically trivial ones are the ones with
fixed points (i.e. are actually unitary after conjugating by a suitable translation).

Thus, the Delorme-Guichardet fixed point theorem can be viewed as the
cohomological statement that:
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