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0. Introduction 

Around 1974 Yau ([Yl]) generalized the classical Liouville theorem of com- 
plex analysis to open manifolds with nonnegative Ricci curvature. Specifically, 
he proved that a positive harmonic function on such a manifold must be con- 
stant. Yau's Liouville theorem was considerably generalized by Cheng-Yau (see 
[CgY]) by means of a gradient estimate which implies the Harnack inequality. 
As a consequence of this gradient estimate (see [Cg]) on such a manifold, non- 
constant harmonic functions must grow at least linearly. Some time later Yau 
made the following conjecture (see [Y3], [Y4], [Y5], and the survey article by 
Peter Li [Ll]): 

CONJECTURE For an  open manifold with nonnegative Ricci 0.1 (Yau). 
curvature the space of harmonic functions with polynomial growth of a fixed 
rate i s  finite dimensional. 

*The first author was partially supported by NSF grant DMS 9504994 and an Alfred P. Sloan 
research fellowship. The second author was supported by an NSF postdoctoral fellowship. 
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We recall the definition of polynomial growth. 

Definition 0.2. For an open (complete noncompact) manifold, Mn ,  given 
a point p E M let r be the distance from p. Define 'Ftd(M) to be the linear 
space of harmonic functions with order of growth at most d. This means that 
u E 'Fld if u is harmonic and there exists some C < oo so that 1211 I C(1+  rd).  

The main result of this paper is the following. 

THEOREM0.3. Conjecture 0.1 is true. 

We show Theorem 0.3 by giving an explicit bound on the dimension of 
'Ftd(M) depending only on n and d. 

The case n = 2 of Conjecture 0.1 was done earlier by Peter Li and 
L. F. Tam [LT2] (in fact, for surfaces with finite total curvature). For another 
proof in the case n = 2 using nodal sets, see Harold Donnelly and Charles 
Fefferman [DF]. In [LTl], Peter Li and L. F. Tam settled the case d = 1. See 
the end of this introduction for additional references to results related to this 
conjecture. 

In fact, Theorem 0.3 will be a consequence of a much more general result. 
In order to state this we need to recall the definition of some basic analytic 
inequalities on Riemannian manifolds. 

Let (Mn,  g) be a complete Riemannian manifold. 

Doubling property. We say that M n  has the doubling property if there 
exists CD < oo such that for all p E M n  and r > 0 

(0.4) Vol (Bzr(P)) I CDVal (Br(P)) . 

Neumann-Poincare' inequality. We say that M n  satisfies a uniform 
Neumann-Poincark inequality if there exists CN < oo such that for all p E Mn,  
r > 0 and f E W;~(M) 

Note that if Mn is a manifold with nonnegative Ricci curvature, then &In 
has the doubling property with doubling constant CD = 2n by the classical 
relative volume comparison theorem. Observe also that in [Bu] Peter Buser 
showed that these manifolds satisfy a uniform Neumann-Poincark inequality 
with CN = C N ( n )  < oo. 

In [Y2] (see also [ScY]), Yau proved the following reverse Poincari: in- 
equality. This is the only place where harmonicity is used. 
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Reverse Poincare' inequality. If R > 1,u is harmonic on Mn,  p E M ,  and 
r > 0, then there exists CR = CR(R)< oo such that 

We can now state our more general result. 

THEOREM0.7. If M n  is  a n  open manifold which has the doubling prop- 
erty and satisfies a uni form Neumann-Poincare' inequality, then for all d > 0, 
there exists C = C(d,CD,CN)< oo such that dim'Fld(M) IC.  

Remark 0.8. A particular consequence of our proof is that we need very 
little regularity of the metric (only enough to use Stokes' theorem in the proof 
of the reverse Poincar6 inequality). For example, it suffices that the metric is 
locally Lipschitz. Of course in this case, harmonic is in the weak sense. 

An immediate consequence of Theorem 0.7, in addition to Theorem 0.3, 
is the following. 

COROLLARY If M n  i s  an  open manifold which is  quasi isometric to  0.9. 
an open manifold with nonnegative Ricci curvature then dim'Fld(M) < oo for 
all d > 0. 

Recall that two metric spaces are said to be quasi isometric if they are 
bilipschitz. 

In [Ly], Lyons gave examples showing that, in general, Liouville properties 
are not stable under quasi isometric changes. However, Saloff-Coste [Sal], and 
Grigor'yan [GI independently showed that if an open manifold has nonnega- 
tive Ricci curvature then any other quasi isometric manifold does not admit 
any nonconstant bounded harmonic function. In fact, Saloff-Coste [Sa2], and 
Grigor'yan [GI, gave a lower bound in terms of n, CD and CN for the rate of 
growth of a nonconstant harmonic function on a manifold which has a uniform 
Neumann-Poincar6 inequality and has the doubling property. This theorem 
of Saloff-Coste and Grigor'yan generalizes Yau's Liouville theorem mentioned 
earlier. 

Prior to the results of [GI, [Sal], [Sa2], Lyons and Sullivan [LySu], and 
Guivarc'h [Gu], showed that a normal cover with nilpotent deck group of a 
closed manifold does not admit a nonconstant bounded (or more generally 
positive) harmonic function. As a generalization of this we have the following 
immediate consequence of Theorem 0.7. (See for instance [Gr] for the definition 
of polynomial growth of a finitely generated group.) 

COROLLARY0.10. Suppose that M n  is  a closed manifold and M i s  a 
normal cover of M with deck group of polynomial growth. For all d > 0, 
dim 'Fld (M) < oo. 
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For elliptic operators in divergence form on Rn we get the following the- 
orem. 

0.11. a 
gence form o n  Rn then the linear space of L-harmonic functions o n  Rn, with 
polynomial growth of a fixed rate is finite dimensional. 

THEOREM If L is quasi uniformly elliptic operator in diver-

We refer to Section 6 for the exact definitions involved in the statement 
of Theorem 0.11. Here we will only note that quasi uniformly elliptic is more 
general than uniformly elliptic. 

For area minimizing hypersurfaces, we have the following application of 
Theorem 0.7 (see 57 for the relevant definitions). In [CM6], we will give an 
extension of this result, and some geometric applications, to a more general 
class of minimal submanifolds. 

0.12. 
surface without boundary, L a uniformly elliptic divergence form operator o n  
C, and d > 0. If C has Euclidean volume growth, then dim'Fld(C,L)< oo . 

THEOREM Let En c Rn+l be a complete area minimixing hyper- 

Finally, in the last section, Section 8, we discuss some of the applications 
of Theorem 0.7 to linear subelliptic second order operators. 

In our earlier paper [CM2], we proved Conjecture 0.1 under the additional 
assumption that M n  has Euclidean volume growth. 

Recall that M n  is said to have Euclidean volume growth if there exists 
p E M and a positive constant V such that Vol(B,(p)) > Vrn for all r > 0. 
Note that by the Bishop volume comparison theorem (see [BCr]) we have that 
Vol(B,(p)) 5 V$(l) rn for r > 0. Here, as in the rest of this paper, Vz(r)  
denotes the volume of the geodesic ball of radius r in the n-dimensional space 
form of constant sectional curvature A. 

The proof given in [CM2] relied in an essential way on the Euclidean cone 
structure at infinity of these manifolds which was proven in [ChCl]. If one only 
assumes that M n  has nonnegative Ricci curvature then tangent cones at infin- 
ity may not be Euclidean cones; see the examples given in [ChC2]. In addition 
to this essential difficulty of extending the approach of [CM2] to the general 
case, there is another key point. Namely, if M n  does not have Euclidean vol- 
ume growth (the so-called collapsed case), then rescaled harmonic functions do 
not necessarily converge to harmonic functions on the tangent cones at infinity. 
In fact, the measured Hausdorff convergence poses an additional obstacle; see 
[ChC2] for the concept of measured convergence. 

It should however be pointed out that in [CM2] we described, in addition, 
the asymptotics of these harmonic functions. This important structure ques- 
tion in the general case will not be dealt with in the present paper. See also 
the conjecture about quantitative strong unique continuation raised in [CM3]. 
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We note that F. H. Lin [Ln], proved, independently of [CM2], Conjec- 
ture 0.1 under the additional assumption that M n  has Euclidean volume 
growth, quadratic curvature decay, and the tangent cone at infinity of M n  
is unique. Note that tangent cones at infinity are not unique in general even 
under these additional assumptions; see for instance [ChC2]. 

Important contributions on this conjecture of Yau and related prob-
lems, in addition to  the ones mentioned above, have been made by 
Cheeger-Colding-Minicozzi, Christiansen-Zworski, Donnelly-Fefferman, Kasue, 
Kazdan, Li, Li-Tam, Wang, and Wu (see [ChCM], [CnZ], [DF], [Kl],  [K2], [Kz], 

[Lll, [L21, [LTlI, [LT21, [Wl, and [Wul). 
Most of the results of this paper were announced in [CM4]. See also [CM5], 

[CM6]for related results. 
Finally, in [CM5] we will show Weyl type asymptotic bounds (sharp in the 

rate of growth) for the dimension of 'Fld on manifolds which have a uniform 
Neumann-Poincar6 inequality and have the doubling property. 

1. Definitions and notation 

From now on let Mn  be an open n-dimensional manifold. Fix a point 
p E M ,  and let B, = B,(p) denote the ball of radius r centered at p. For a 
locally square integrable function u on Mn ,  we define the quantity 

Note that this differs from the definition in [CM2]. 
Observe that by definition Iu(r)is monotone nondecreasing for all func- 

tions u on Mn .  
Further, we will use that for each r, Iu( r )  defines a quadratic form on the 

linear space of square integrable functions on B,. The associated bilinear form 
J, is given by 

for functions u and v. Note, in fact, that (1.2) defines an inner product on the 
space of square integrable functions on B, and a positive semi-definite bilinear 
form on L?~,(M). 

If M n  has polynomial volume growth of degree at most no > 0, that is, 

for some V > 0, then for d > 0 we let Pd(Mn)  denote the linear space of 
functions, u, on M such that u E Pd(Mn)  if there exists some K > 0 so that 
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Further, we let 'FIPd(M) denote the space of functions u on M such that 
u E Pd(Mn) and u is harmonic. 

Note in particular that if M n  has nonnegative Ricci curvature, then by 
the Bishop volume comparison theorem, 

More generally, if M n  has the doubling property with doubling constant CD 
then for any integer s > 0 

Hence M n  has polynomial volume growth of degree at most 

no = log-CD and V = CD Vol(Bl(p)). 
log 2 

If u E 'Fld then there exists a constant C such that lul 5 c ( r d+ 1). Using 
this and (1.7) we obtain 

It follows in particular that 'Ftd c %Pd c Pd. 
It is clear that, in the case where harmonic functions on M n  satisfy a 

meanvalue inequality (which is the case when M n  has the doubling property 
and satisfies a uniform Neumann-Poincar6 inequality [GI, [Sa2]), Xd C 'FIPd C 
'FId+,,. However neither the meanvalue inequality nor the Harnack inequality 
is ever used in our proof; see Section 6. 

2. Bounding the number of orthonormal functions with 
bounded energy 

In this section we will give bounds on the dimension of the space of L ~ -  
orthonormal functions with a given energy bound under very general condi- 
tions. 

Since the arguments involved are so flexible, we will state the main result 
of this section, Proposition 2.5, for complete metric spaces equipped with a 
locally finite positive Borel measure and a notion of gradient squared of a 
function. In the applications, we will have a manifold structure and it will be 
clear what is meant by the energy of a function. 

Definition 2.1. Let (Y, d, p) be a complete metric space with a locally 
finite positive Borel measure p and for p E Y let B, = B,(p) be a metric ball. 
Let W 2 > l ( ~ , )  be the (2,l)-Sobolev space on B,. We define the set Wkz(B,) to 
be {u E W 2 ) ' ( ~ , )I u2 + r2 JB,IVuI2 5 k2). 
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Definition 2.2 (7-almost orthonormal functions). Let (X, p)  be a mea- 
sure space with a probability measure, p ,  and suppose that fl , . . . ,f, are L~ 
functions on X .  We say that the fi are 7-almost orthonormal if 

and for i # j 

In the next proposition, we think of r as the scaling factor and k as the 
parameter. 

PROPOSITION Let (Y,d,p) be a complete metric space with a locally 2.5. 
finite positive Bore1 measure p.  For p E Y let X = B,(p) be a metric ball with 
p(X)  = 1. Suppose that Y satisfies a uniform Neumann-Poincare' inequality 
with constant CN and has the doubling property with constant CD. Given 
k > 0, there exist at most N - 1 ;-almost orthonormal (on Br(p)) functions 
in Wk2 (Bz, (p)) where N =N ( k 2  ,CD ,CN). 

Proof. Let fl , . . . ,f, be such functions. We let B,, (xl) ,  . . . ,B,, (x,) be a 
maximal set of disjoint balls with centers in X and with radius 

r - r -=(2.6) rg -

2 0 ~ :  CA k c k '  

First, we note that since p(X)  = 1, 

(2.7) -
1 

I p(Br(xj)) < P ( B ~ ~ ( P ) )5 CD;
CD 

therefore 

Since the B,, (xj) are disjoint, (2.8) implies 

It follows from maximality that double the balls covers X .  We now parti- 
tion X into v (disjoint) subsets S1,. . . ,S,, where B,, (xj)nX C Sj C Bz,, (xj). 

Let ~ ( y )  be the number of j such that y E B2,, (xj) and let C = maxy 7. 

If y E n$g1 (xjm), it follows that B3,, (y) contains all of the balls B, (xj, ), 
Bra (xj2), . . . , BrO ). Since these are disjoint, 
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Also, for each m = 1,. . . ,~ ( y ) ,the doubling property together with the triangle 
inequality yields 

(2.11) ~ ( ~ 3 ~ 0(Y))I ~(B5ro(xj,)) I p(B~To(xj,)) I c$p(Bro (xj,)). 

Combining (2.10) and (2.11), we see that ~ ( y )  5 c;;hence, 

(2.12) c 5 c;. 
Let (P,p') denote the (finite) set of points {xj) with probability measure 

p', where p'(xj) = p(Sj). We can therefore identify functions on P with 
functions on X which are constant on each Sj. 

Set 

It follows from the Cauchy-Schwarz inequality, together with fi E Wk2(B2,), 
and (2.8) that 
(2.14) 

l o g c k  + 1 

Let Adenotetheset {& 1 s E Z,Is(I kC;log2 ). We will now construct 
an injective map M from the orthonormal set of functions, {fi), to the set of 
maps from P (the points {xj)) to  A: let M(fi)(xj)  E A be any closest point 
of A to  Ai,j (there are at most two possibilities). Note that by (2.14) 

(2.15) 2 1
IAi,j -M(fi)(xj)I  5 -400 ' 

By the Neumann-Poincark inequality and (2.15), 

hence, since fi E Wk2(BzT), 
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By the triangle inequality, together with (2.17), for i # j we get, 

Furthermore, since the fi are +-almost orthonormal, we see that 

and for i # j, 

Consequently, for i # j, 

1< ( I f  -fi12)'. 

Combining (2.18) and (2.21),for i # j we obtain, 

Hence, M is injective. The proposition follows by counting the cardinality of 
logck 1 

the set of maps between two finite point sets (in fact, N 5 (20 k CilOg +lIu>", 
3 1 

where c = 20 C z  C i ). 

Remark 2.23. Note that in Proposition 2.5 we need only assume that the 
doubling property and the weak Neumann-Poincari: inequality hold for s 2 

3 1 3 1

&C i '  C,". That is, we need only assume that for y E Y, s > &C i '  C i T ,  
and f E W2"(BzT), 

and the weak Neumann-Poincari: inequality 

3. Growth properties of functions of one variable 

In this section, we will slightly generalize some elementary results from 
[CM2]for functions of a single variable with polynomial growth. These results 
show the existence of infinitely many annuli with bounded growth. 
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The basic idea is that for any set of 2k functions with polynomial growth 
of degree at most d ,  we can find a subset of k functions and infinitely many 
annuli for which the degree of growth from the inner radius to  the outer radius 
of each of the functions in the subset is at most 2d. 

We will think of this elementary fact as a weak version of a uniform Har- 
nack inequality for a set of functions with polynomial growth. 

In the next section, we will produce functions of one variable with the 
properties of the functions of this section. 

LEMMA3.1 (cf. Lemma 7.1 of [CM2]). Suppose that f l ,  . . . ,fl are non- 
negative nondecreasing functions o n  (0,oo) such that none of the fi vanishes 
identically, and for some d ,K > 0 and all i ,  

Id 
For all R > 1,  k I1 ,  and any C > there exist k of these functions 
fa,,. . . ,fa, and infinitely many  integers, m 2 1,  such that for i = 1 , .. . , k ,  

Proof. Since the functions are nondecreasing and none of them vanish 
identically, we may suppose that for some R > 0 and any r > R, f i ( r )  > 0 for 
all i. 

We will show that there are infinitely many m such that there is some 
rank k subset of { f i )  (where the subset could vary with m)  satisfying (3.3). 
This will suffice to  prove the lemma; since there are only finitely many rank k 
subsets of the 1 functions, one of these rank k subsets must have been repeated 
infinitely often. 

Set for r > R, 

note that 

and g is a positive nondecreasing function. Assume that there are only finitely 
many such m 2 m.Let mo - 1be the largest such m; for all j 2 1 we have 
that 

Iterating this, we obtain 
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From the upper bound on g, equation (3.5),for all j > mo we see that 

1d 
where 2 = E(l,mo, R, K ) .  Since C > R1--k+land g(RmO)> 0 this is impossible, 
yielding the contradiction. 

COROLLARY3.9 (Weak version of a uniform Harnack inequality for a set 
of functions with polynomial growth (cf. Cor. 7.9 of [CM2])). Suppose that 
fl , . . . ,f2,+ are nonnegative nondecreasing functions on ( 0 , ~ )such that none 
of the fivanishes identically and for some d , K  > 0 and all i ,  

For all R > 1, there exist k functions fa,, . . . ,fa, and infinitely many integers, 
m 1 1, such that for i = 1, .  . . ,k, 

Proof. This is an immediate consequence of Lemma 3.1 with 1= 2k. 

Remark 3.12. That the upper bound in Corollary 3.9 for the degree of 
growth of fa,, . . . ,fa, from Rm to Rm+l can be made independent of k, R, 
and K is crucial for the applications. 

In the proof of Theorem 0.7, we will use Corollary 3.9 to get an annulus 
on which we have some growth control (see Cor. 4.14). Henceforth, we will 
work on an annulus where we have this control on the growth. 

4. Constructing functions with good properties from given ones 

From now on M n  will denote an open manifold with at most polynomial 
volume growth; i.e., 

for some V > 0 and some no > 0. 
In this section, given a linearly independent set of functions in Pd(M),  

we will construct functions of one variable which reflect the growth and in-
dependence properties of this set. In particular, we shall establish that these 
functions of one variable satisfy the conditions of Section 3. 

We begin with two definitions. The first constructs the functions whose 
growth properties will be studied. 
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Definition 4.2 (wi,, and fi). Suppose that ul ,  . . . ,uk are linearly indepen- 
dent functions on M. For each r > 0 we will now define an orthogonal spanning 
set wi,, with respect to  the inner product 

and functions fi. Set wl,, = wl = ul  and f l ( r )  = I,,(r). Define wi,, by 
requiring it to be orthogonal to  u j  lB, for j < i with respect to  the inner 
product (4.3); hence we have 

Note that Xij(r) is not uniquely defined if uil B, are linearly dependent. How- 
ever, since ui are linearly independent on M ,  for r sufficiently large we see that 
Xij(r) will be uniquely defined. In any case, for all r > 0 wi,, is well defined 
and so is the following quantity (which is in fact positive for r sufficiently large) 

Definition 4.6 (Barrier). We will say that a function f is a (left) barrier 
for a function g at r if f (r)  = g(r) and for s < r, f (s) I g(s). 

We will use the barrier property to conclude that the growth of g from s 
to  r is not larger than the growth of f from s to  r .  

In the next proposition (cf. Prop. 8.6 of [CM2]), we will establish some 
key properties of the functions fi from Definition 4.2. 

PROPOSITION If ul ,  . . . ,uk E Pd(M)  are linearly 4.7 (Properties of fi). 
independent, then the fi from Definition 4.2 have the following four properties. 
There exists a constant K > 0 (depending on the set {ui)) such that 

(4.8) fi(r)  I~ ( r ~+ I ) ,  ~ + ~ ~ 

(4.9) fi is a nondecreasing function, 

(4.10) fi is nonnegative and positive for r suficiently large, 

and 

(4.11) fi is a barrier for IWiSrat r 

Proof. First note that 
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which implies (4.8). Furthermore, for s < r 

where the first inequality of (4.13) follows from the orthogonality of wi,, to  uj 
for j < i ,  and the second inequality of (4.13) follows from the monotonicity of 
I. From (4.13),and since ui are linearly independent, we get (4.9) and (4.10). 

By (4.13),we also see that f i  is a barrier for IWi,,at r ;  this shows (4.11). 

The following corollary of Corollary 3.9 and the properties of the f i  will 
be used to get control of the growth in the proof of Theorem 0.7. 

COROLLARY4.14. Suppose that u l ,  . . . ,u2k E P d ( M )  are linearly in-
dependent. Given R > 1 and mo > 0 ,  there exist m > mo and a subset 
fa , ,  . . . , f a ,  such that for i = 1, . . . ,k 

Proof. This follows immediately by combining Corollary 3.9 and Propo-
sition 4.7. 

Note in particular that the functions Wai,am+lIBam+l given by Corol-
lary 4.14 are linearly independent. 

Further we have the following: 

PROPOSITION4.16. Suppose that u l ,  . . . ,u2k E P d ( M )  are linearly inde-
pendent. Given R > 1 and mo > 0 ,  them exist m > mo, .t ) R-4d-2no , and 

functions v l ,  . . . ,ve in  the linear span of ui such that 

and 

Proof. Let m and wai,am+l be given by Corollary 4.14. 
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Consider the k-dimensional linear space spanned by the functions Wai,Om+l 

with inner product JQm+l. On this space there is also the positive semi-definite 
bilinear form JQm. Let vl, . . . ,vk be an orthonormal basis for Jam+l  which 
diagonalizes Jam. We will now evaluate the trace of J 0 m  with respect to these 
two bases. First with respect to the orthogonal basis w,,,nm+i, by (4.11) (the 
barrier property) and (4.15), we get 

Since the trace is independent of the choice of basis we get when we evaluate 
this on the orthonormal basis vi, 

Combining this with 

(4.21) 1L Ivi(am)2 0, 

which follows from the monotonicity of I, we get that there exist at least 
t 2 $ a-4d-2no of the vi such that for each of these 

With slight abuse of notation we renormalize these t functions to have 

(4.23) I,~(am)= I,  

and denote them by vl, . . . ,ve. This shows the proposition. 

5. Harmonic functions with polynomial growth 

As before, let M be an open n-dimensional Riemannian manifold which 
has a uniform Neumann-Poincari: inequality with constant CN and has the 
doubling property with doubling constant CD. Let p E M be fixed. 

Proof (of Th. 0.7). F i x 0  > 2. Fo rm > 0 let Xm = Born@). Let p =  pm 
be the measure on M given by 

Applying Proposition 2.5 to Xm with the measure p,  we get a constant N = 

N((8  CR + 2)f14d+2n0,CD, CN) (independent of m) such that any set of 
L~(Xm)-orthonormal functions in w(8CR+2)pd+2no (Bznm (p)) has at most N- 1 

elements. Here CR = CR(?) > 0. 
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We will show that if dimlFIPd 2 No = 4R4d+2n~N,then we can for all 
mo > 0 find an m > mo and h' functions in lipdflW(8Cn+2)n4d+2"o(B2nm(p)) 

which are L~(X,)-orthonormal. This contradiction yields the result. 
Suppose therefore that ul ,  . . . ,u ~ ,E lFIFIPd(M) are linearly independent. 
Given this set of harmonic functions, we will now proceed to construct 

for all mo > 0 an m > mo and a set, {vi), of orthonormal harmonic functions 
on the ball Brim. Note also that for different m the vi may be different. By 
Proposition 4.16 together with the reverse Poincar6 inequality we have that 
there exist some m 2 mo and vl, . . . ,ve harmonic functions with 

and 

Note, finally, that since I is monotone and R > 2, (5.4) implies that 

The theorem therefore follows from Proposition 2.5. 

Remark 5.7. Note that while our construction produced infinitely many 
good balls (i.e. infinitely many m),  we needed just a single ball for the proof. 

Remark 5.8. Observe also that the only place where we used that the func-
tions ui are harmonic was in the application of the reverse Poincar6 inequality, 
that is (5.5). In fact, our result applies for polynomial growth L-harmonic 
functions whenever these satisfy a reverse Poincari: inequality. For example, 
the result holds for L = Lo + X + V where Lo is a second order uniformly 
elliptic divergence form operator, X is a vector field with lim,,, T 1x1+ 0, 
and V is a nonpositive function; compare Section 6. 

Remark 5.9. Finally we note that we need only assume that the uniform 
Neumann-Poincar6 inequality holds for harmonic functions. 
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6. Quasi uniformly elliptic operators 

In the proof of Theorem 0.7, very little was used about the harmonic 
functions themselves. The necessary ingredients were the geometry of the 
manifold (i.e., the doubling property and the Neumann-Poincark inequality), 
the linearity of the space of solutions, and Yau's reverse Poincark inequality. 
It is then clear from the proof of the reverse Poincark inequality that the 
arguments carry over for any uniformly elliptic linear second order divergence 
form operator L with symmetric coefficients. Hence Theorem 0.7 holds for 
such L. 

In this section, we will show that, in fact, our arguments work for a more 
general class of operators. 

We say that a second order elliptic operator, L, on Rn is quasi uniformly 
elliptic and in divergence form if for some measurable functions ai,j = aj,i 

with 

and 

for positive constants cl and c2. 
Note that these operators are more general than uniformly elliptic opera- 

tors in divergence form as the following example shows. 

Example 6.4 (Quasi uniformly elliptic but not uniformly elliptic). Fix c2 2 
cl > 0 and let X and p be any two measurable functions on R~ with c1 IX 
and cl 5 p 5 c2. Set 

where 

px: + Ax; px; + Ax: 
a1,1(x) = 

x: + x; 
and a2,2 (x) = 

x: +x; . 
Then L is quasi uniformly elliptic with constants cl and c2. However it is only 
uniformly elliptic if X is bounded. 
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We say that u is L-harmonic if Lu = 0 in'the weak sense. Further we 
define for d > 0 in an obvious way the space 3-Id(Rn,L). With this notation 
we have the following theorem ( ~ h . 0 . 1 1from the Introduction). 

THEOREM6.8. If L is  a quasi uniformly elliptic operator in divergence 
form o n  Rn, then for all d > 0, d imxd(Rn,L)5 C(d,$,n) < oo. 

Proof. From the proof of Theorem 0.7 it follows that it suffices to show 
that any L harmonic function on Rn satisfies a reverse Poincari! inequality 
and that the energy of L bounds the energy of A. The second fact follows 
immediately from (6.2). 

To see that L satisfies a reverse Poincari! inequality, let $ be the radial cut-
off function with $ 1  B,. = 1,support of $ contained in B27-,and with lV$l 5 $. 
Here B, = Br(0). Observe that by the Cauchy-Schwarz inequality we have for 
any function v 

From (6.9), integration by parts, and the Cauchy-Schwarz inequality, for any 
L-harmonic function u we get, 

By (6.3), since r 1x1 2 = -xi on B2, \ B,., (6.10) yields 
(6.11) 

From this we see that 

This shows the reverse Poincari! inequality for the operator L, and completes 
the proof of the theorem. 

Remark 6.13. It is interesting to note that there are well-known examples 
of Plis ([PI])that show that for any 0 < a < 1 there are uniformly elliptic 
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operators in divergence form on Rn with Cff coefficients that do not satisfy the 
unique continuation property. Therefore, one cannot get a uniform frequency 
bound in this situation (cf. [CM2] and [CM3]). As a result, it is not possible 
to prove Theorem 0.11 by bounding the order of vanishing at a single point. 

Next we will discuss quasi uniformly elliptic operators on general Rieman-
nian manifolds. 

Suppose that (Mn,g )  is a Riemannian manifold. We then say that a 
second order elliptic operator, L, on M n  is quasi uniformly elliptic and in 
divergence form if for some measurable section A of the bundle of symmetric 
automorphisms of the tangent bundle, T M ,  

(6.14) Lu = div (A Vu), 

with X E T M ,  

and some p E M ,  

for positive constants cl and c2. Here r is the distance function to p. 
With this definition we have the following theorem. 

THEOREM6.17. Suppose that (Mn,g) satisfies a uni form Neumann-
Poincare' inequality with Neumann constant CN and M has the doubling prop-
erty with doubling constant CD. If L is  a quasi uniformly elliptic operator in di-
vergence form o n  M then for  all d > 0, dim'Fld(M,L)5 C(d,2,CD,CN)< oo. 

Proof. The proof is a slight generalization of that of Theorem 6.8 and is 
therefore left for the reader. 

7. Area minimizing hypersurfaces 

In this section we will give an application of Theorem 0.7 to function the-
ory on area minimizing hypersurfaces in Euclidean space. Let En c Rn+lbe a 
complete minimal hypersurface without boundary with the intrinsic Rieman-
nian metric. For x,  y E Rn+l,lx - yl denotes the Euclidean distance from x 
to y. We will consider uniformly elliptic divergence form operators L on C. A 
particular example is the Laplacian for the intrinsic metric. 

For d > 0, we define the spaces 'Fld(C,L) with respect to the Euclidean 
norm (instead of the induced Riemannian distance). Notice that with this 
definition, the coordinate functions xi are in XI.  In particular, on the catenoid 
in R3 (which is rotationally symmetric about the x3-axis), the function 2 3  
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grows slower than any power of the geodesic distance; however, it is not in 7dd 
for any d < 1. 

The proof of Theorem 0.12 will be a slight modification of the proof of 
Theorem 0.7. Note that we make no assumptions about the uniqueness of the 
tangent cone at infinity of C. 

Recall the following classical facts about minimal hypersurfaces in Eu- 
clidean space (For instance, see [Si]). 

Given any x E R ~ + 'and r > 0, the density is defined by 

LEMMA7.2 (Monotonicity of volume). If C is any complete minimal 
submanifold in Rn+' and x E R ~ + ' ,then Oc(x,r) is monotone nondecreasing 
in r .  

We say that a minimal hypersurface C has Euclidean volume growth if 
given any x E Rn+lthere exists V < oo such that 

for all r > 0. For any minimal hypersurface C with Euclidean volume growth, 
any x E C, and any r > 0, it follows easily from Lemma 7.2 that 

Therefore, C has the volume doubling property with CD= 2nV. 
Note that for x E Rn+', the function 

is Lipschitz with Lipschitz constant 1. Therefore, Yau's reverse Poincari! in- 
equality [Y2], carries over to this setting. Let L be a second order divergence 
form operator on C which is uniformly elliptic with respect to the intrinsic 
metric. Given an L-harmonic function u, fl > 1,and r > 0, then 

where CR= CR( 0 ,L) < oo. 
Finally, if C is an area minimizing hypersurface, Bombieri-Giusti proved 

the following uniform Neumann-Poincark inequality [BOG]. Note that this is 
the only place where we need C to be area minimizing rather than just minimal. 

LEMMA7.7 (Neumann-Poincari! inequality for area minimizing hypersur- 
faces [BOG]). Let C be a complete area minimizing hypersurface. There exists 
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CN < m such that for all E C, r > 0 and f E w~:(c) 

We now have all the ingredients needed to apply Theorem 0.7; hence 
Theorem 0.12 follows. 

In [CM6], we will give generalizations of Theorem 0.12 to more general 
classes of minimal submanifolds. We will also give some applications of our 
function theoretic results to the geometry of minimal submanifolds. 

8. Subelliptic second order operators 

In this section, we will give some applications of Theorem 0.7 to the study 
of uniformly subelliptic operators. Let M be a smooth manifold and p a 
smooth positive measure. 

Let L be a linear second order subelliptic operator on M which is symmet- 
ric and satisfies L1 = 0; i.e. L has no zero order term. Let p be the associated 
Carnot distance on M and let V denote the associated gradient. Assume that 
(M,p) is a complete metric space and take balls to be Carnot balls. See, for 
instance, Fefferman-Phong [FP], and Saloff-Coste [Sa2], for background. 

Let 'Ftd(M, L) be the space of L-harmonic functions on M with polynomial 
growth of rate at most d (here the distance is the Carnot distance). 

With M and L as above, Saloff-Coste showed that the doubling property 
and the uniform Neumann-Poincar6 inequality on balls (for the associated 
gradient) imply the Harnack inequality. This of course implies that positive 
L-harmonic functions on such an M must be constant. 

As a generalization of this, a straightforward application of Theorem 0.7 
yields the following. 

THEOREM8.1. Let M and L be as above. If p satisfies the doubling 
property and we have a n  unzform Neumann-Poincare' inequality o n  balls ( f o r  
the L-gradient),  then for any d > 0, dim yd(M,L)  < oo. 

Recall that a family of vector fields on a manifold is said to have the 
Hormander property if, under Lie bracketing, it generates the full tangent 
space at each point. 

In [SaSt], Saloff-Coste and Stroock proved Harnack inequalities and corre- 
sponding Liouville theorems, for uniformly subelliptic operators on polynomial 
growth Lie groups. Applying Theorem 8.1 to that situation, we get the follow- 
ing: 
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COROLLARY8.2. Let G be a Lie group with polynomial volume growth, 
let XI,  . . . ,XI, be a family of left-invariant vector fields having the Hormander 
property, and let L = XiaifXj, where (ai,j) is a smooth symmetric matrix 
valued function o n  G such that cl I 5 (ai,j) 5 cz I. Then for any d > 0 ,  
dim 'Fld(G,L) < oo. 

Proof. The doubling property is immediate for any polynomial growth Lie 
group. The uniform Neumann-Poincark inequality follows from a generaliza-
tion of Jerison's work in [J];see [SaSt] for details. 

As an example, we note that Corollary 8.2 applies to uniformly subelliptic 
operators on the Heisenberg group. Theorem 8.1 also applies to the following 
more general situation (see [Sa2] for references). 

Suppose that Mn is a closed manifold and M is a normal cover of M 
with deck group of polynomial growth, and let L be a subelliptic operator 
with the Hormander property. If L is uniformly subelliptic with respect to 
the Laplace operator, p is uniformly equivalent to the Riemannian measure, 
and the norm of the gradient associated to L is dominated by a constant 
times the Riemannian norm of the Riemannian gradient, then for all d > 0, 
dim'Fld(M) < oo. 
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