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Chapter Five

Temporally Forced Models

In this chapter, we consider how seasonally varying parameters act as a forcing mechanism
and examine their dynamical consequences. For the most part, we will use measles as a
prototypical directly transmitted infectious disease. We demonstrate how such temporally
forced models allow us to better capture the observed pattern of recurrent epidemics in
contrast to unforced models, which predict oscillations that are damped toward equilibrium
(see Chapter 2). We will follow the historical progress of work in this field, because it
provides a natural progression from simple models to their more complex and realistic
refinements.

5.1. HISTORICAL BACKGROUND

Understanding the mechanisms that generate periodic outbreaks of childhood infectious
diseases had been the subject of much debate among Victorian epidemiologists (e.g.,
Farr 1840; Ransome 1880, 1882; Hamer 1897). In 1880, for example, Arthur Ransome
systematically considered numerous “plausible” mechanisms that may generate regular
epidemics of measles, whooping cough, and smallpox. Having dismissed factors including
meteorological elements (for example, sunspots), isoclinal magnetic lines, the “age-theory”
of disease (where only specific ages may be prone to infection), reduced virulence
following successive transmission events, Ransome settled on changes in the density of
susceptibles as the most likely explanation. He argued that exanthematous diseases wipe
out nearly all susceptibles and, as a consequence, “must necessarily wait a number of
years before the requisite nearness of susceptible individuals has been again secured.” This
is essentially a verbal version of the threshold theorem, which, as discussed in Chapter 2,
gives rise to damped oscillations. The next important conceptual breakthrough came as a
result of classic work by H. E. Soper in 1929. He noticed that in a large population, case
report data for measles, which conforms well to the assumptions of the SIR model, show
large amplitude recurrent epidemics with very dramatic peaks and troughs. This is in direct
contrast to the equilibrium dynamics predicted by simple models, with a steady incidence
of disease (Chapter 2). This pattern of pronounced fluctuations in incidence has, since then,
been documented for a number of other human infectious diseases such as chickenpox,
whooping cough, mumps, and rubella (see, for example, Figure 5.1). When data and
models disagree in such a stark manner, there is invariably an important opportunity to
re-examine the key assumptions of the model and explore ways in which it can be
made more realistic. Focusing on the monthly case reports for measles in Glasgow from
1905–1916, Soper (1929) proceeded to estimate relative transmission rates per month.
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Figure 5.1. Monthly case reports of chickenpox, measles, and mumps in Copenhagen during the
twentieth century, demonstrating dramatic patterns of recurrent outbreaks.

His methodology centered on the argument that

Cases this interval
Cases last interval

∼ Number of susceptibles now
Equilibrium number of susceptibles

,

which can be expressed as the following equation
(Ct+1

Ct

)α

= kθ

Xt+1

X∗ . (5.1)

The parameter α relates the realistic infection “time interval” (the sum of the infectious
and latent periods) to the time scale of the data. For measles, this is approximately two
weeks; therefore for monthly data, we set α = 1/2. The term kθ is “the factor representing
the influence of season θ” (Soper 1929). To estimate X∗, Soper followed Hamer’s (1906)
calculation that the mean number of susceptibles (X∗) is approximately equivalent to 70
weeks’ case reports. Then, once we take into account the fact that at the peak of an
epidemic, Ct+1 ∼ Ct , we have an initial estimate for Xt+1, which can be updated by adding
the documented births and subtracting the number of cases. All that remains now is to fit
the seasonality parameter kθ .

Soper’s findings, averaged over the 12-year period of the data, are presented in Figure 5.2
and clearly demonstrate that estimated transmission was very low in the summer months,
and peaked dramatically in the early autumn (October). Soper argued that based on his
results, a key missing ingredient in the SIR model proposed originally by Hamer (1906)
was seasonal change in “perturbing influences, such as might be brought about by school
breakup and reassembling, or other annual recurrences.”
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Figure 5.2. Average monthly contact coefficient for measles in Glasgow 1905–1916, as estimated by
Soper (1929). The graph clearly highlights the non-constant nature of transmission, with the highest
intensity observed during the fall/winter months. Error bars represent standard errors.

The important, though too often ignored, work of Soper was followed by the highly in-
fluential studies of London and Yorke (1973) and Yorke and London (1973). These authors
were also interested in exploring seasonal influences on transmission, and estimated the
mean monthly transmission rates for measles, mumps, and chickenpox in New York City
from 1935 to 1972. The key concept in their analysis was based on an earlier empirical
observation by Hedrich (1933) that the number of susceptibles has the same value, Xp, at
the peak of every outbreak. Mathematically, we can see this is true because at the epidemic
peak, the number of infectious individuals, Y , has reached its maximum; therefore,
dY
dt

= 0:

dY

dt
= 0 ⇒ βXY/N − γ Y = 0 ⇒ X = Xp = γ N

β
.

Hence, at the start of the epidemic year (which they defined to be from the beginning of
September to the end of August), the number of susceptibles is Xp plus the cumulative
number of reported cases for that year. Then, by using a discrete-time model (see Section
2.7), they were able to explore the pattern of transmission rates that provided model
exposures consistent with the observed case reports. Although there are subtle differences
in the details of London and Yorke’s results compared to those of Soper, they also found
a clearly seasonal pattern of transmission for all three diseases, with a peak that coincided
with the start of school terms in the autumn and a trough that occurred during the summer
months. Since then, more mechanistic approaches for the estimation of transmission rates
have been developed, which involve a more detailed “reconstruction” of the number
of susceptibles in the population. First Fine and Clarkson (1982) and later Finkenstädt
and Grenfell (2000) used case report data for measles in England and Wales, together
with information on the population size and birth rates to estimate transmission rates
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Figure 5.3. House index for Aedes aegypti larvae in five different localities in Delhi, India during
1996–1998. The chart clearly demonstrates the seasonal nature of fluctuations in mosquito numbers.
Data from Ansari and Razdan (1998).The house index is defined as the percentage of houses infected
with mosquito larvae or pupae.

through time. The overall signature detected in these data is consistent with the work of
Soper (1929) and London and Yorke (1973).

A range of statistical approaches have revealed that transmission of childhood
infections varies seasonally, peaking at the start of the school year and declining
significantly in the summer months.

Although epidemiologists have been aware of the importance of seasonal factors in the
transmission of childhood diseases, the modeling of such phenomena has been facilitated
by the advent of accessible computational power. Analytical methods for dealing with
forced models are woefully lacking, and therefore detailed computer integration of forced
equations is often the only practical means of understanding or predicting the dynamics.

5.1.1. Seasonality in Other Systems

Changes in transmission rates through time is increasingly recognized as important in a
range of infectious diseases (for a review, see Altizer et al. 2006; Grassley and Fraser
2006). For human infectious diseases that are vector transmitted (such as malaria or
dengue), seasonality plays an important dynamical role. In these instances, however,
the time dependency in transmission is brought about by the biology of the vector
population. Hence, models need to capture the fact that mosquito numbers in the tropics,
for example, are substantially higher during the rainy season (Figure 5.3). As a result,
the forcing required in these models would essentially represent environmental trends,
such as precipitation levels through the year (vectored populations are covered in detail in
Chapter 4).

In food or waterborne infections, such as cholera, the role played by temporal forcing
is more subtle and interesting. There is strong evidence, for example, that the multi-
annual dynamics of cholera are interlinked with long-term environmental factors. Studying
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historical records of cholera outbreaks in Bangladesh, Pascual et al. (2000) have estab-
lished a correlation with the El Niño Southern Oscillation. However, cholera data also
contain a pronounced annual signature, which is thought to be due to an increase in
transmission during the monsoon seasons (Koelle and Pascual 2004).

Interesting seasonal components are also found in wildlife diseases. These most
frequently arise from changes in host behavior throughout the year. Increased transmission
may result from increased contact arising from flocking behavior (e.g., housefinches;
Hosseini et al. 2004), seasonal migration (e.g., Monarch butterflies; Altizer 2002), or
congregations during the breeding and molting season (e.g., harbor seals; Swinton et al.
1998).

These well-cited studies have established seasonal changes in the contact rates between
susceptible and infectious individuals as an important feature of the dynamics of many
infectious diseases. This chapter, reviews the various methods used to model time-
dependent transmission in human and animal systems.

5.2. MODELING FORCING IN CHILDHOOD INFECTIOUS

DISEASES: MEASLES

The last section reviewed the historical studies of seasonality in case reports of childhood
infections. A large body of theoretical work has also examined the dynamical consequences
of temporal changes in transmission. These studies started with the work of Soper (1929),
Bartlett (1956), and Bailey (1975), who incorporated seasonality in SIR models with the
primary aim of establishing the amplitude of variation in contact rates necessary to produce
the observed 80% fluctuation in epidemics. (It is often difficult to consider the forcing of
childhood infections without considering age structured models (Chapter 3). Throughout
this chapter, age structure is ignored for simplicity; however, toward the end we highlight
that a true mechanistic description of any childhood disease must take into account the
interaction of forcing and age structure.) Bailey (1975) explored a simplified SIR model:

dX

dt
= µN − β(t)XY N, (5.2)

dY

dt
= β(t)XY/N − γ Y. (5.3)

As usual, µ is the per capita birth rate and γ is the recovery rate from the infection. These
equations ignore the death of susceptible and infectious individuals; it therefore assumes
that all individuals contract the infection during their lifetime, which is a reasonable
approximation for measles. The transmission rate is a function of time, β(t), and was taken
by Bailey to be a sinusoid:

β(t) = β0(1 + β1 cos(ωt)). (5.4)

The parameter β0 denotes the baseline or average transmission rate, ω is the period of the
forcing, and β1 is the amplitude of seasonality which is restricted to the unit interval. For
this form of forcing, the basic reproductive ratio, R0, is given by β0

γ
; this value represents a

yearly average and at certain times of the year (when cos(ωt) ≈1), instantaneous growth
rates may be much larger than predicted by this average value. Bailey (1975) proceeded
to explore the dynamics of small perturbations to the unforced equilibrium assuming a
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small amplitude of seasonality (β1 ≪ 1). This was achieved by making the substitutions
X = X∗(1 + x) and Y = Y ∗(1 + y), which, after omitting some intermediate steps, gives a
second order differential equation in the small infectious perturbation y:

d2y

dt2
+ µR0

dy

dt
+ µβ0y = −β1ωγ sin(ωt).

The particular integral of this equation (see, for example, Strang 1986) gives the period
and amplitude of oscillations as driven by the seasonal term. Although the period of the
oscillations is the same as the period of the forcing, the amplitude, M , of the oscillations
is given by:

M = β1ωγ

{(
µβ0 − ω2

)2

+
(

ωµR0

)2}− 1
2

. (5.5)

Now, making the appropriate substitutions for measles, we set 1/γ = 2, µR0 ∼ 0.014, and
ω = π

26 (taking the week as our basic time unit), which gives M ∼ 7.76β1. The implication
of this result is that a 10% variation in the transmission parameter translates into seasonal
variations of 78% in case notifications, as envisaged by Soper (1929).

Relatively modest levels of variation in the transmission rate can translate into large
amplitude fluctuations in the observed disease incidence.

5.2.1. Dynamical Consequences of Seasonality: Harmonic and
Subharmonic Resonance

The first systematic examination of seasonality affecting the dynamical pattern of epi-
demics was made, as far as we are aware, by Klaus Dietz in his seminal 1976 paper. Dietz
carried out a stability analysis of the familiar SIR model:

This is
online
program
5.1

dX

dt
= µN −

(
β(t)

Y

N
+ µ

)
X, (5.6)

dY

dt
= β(t)X

Y

N
− (µ + γ )Y, (5.7)

where β(t) = β0(1 − β1 cos(ωt)) (note that he used a minus sign in his formulation in order
to ensure that contact rates were at their lowest at the start of the epidemic year). He
demonstrated that in the absence of seasonal forcing, the system fluctuated with frequency
F (c.f. Chapter 2, Box 2.4), where

F 2 = µ(γ + µ)(R0 − 1) −
(

µR0

2

)2

. (5.8)

In many realistic situations, µR0 ≪ 1, hence we may ignore the final term in equation
(5.8). Dietz pointed out that for cases in which the natural period of oscillations in the
SIR model are approximately the same as that of the seasonal forcing (i.e., F ≈ω), we
observe harmonic resonance, where model dynamics mimic those of the forcing, although
the amplitude of oscillations may be greatly increased.

When the forcing is relatively small, this result can be made more precise. Looking
at equation (5.5), the amplification of sinusoidal forcing (M/β1) is largest whenever
the forcing frequency, ω, is close to the natural frequency of oscillations, F ≈

√
µβ0.
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Figure 5.4. The predicted amplification of small amounts of forcing for three childhood infections
using equation (5.5). Clear peaks of amplification exist for all three diseases, and these are reasonably
close to the natural period of oscillations, 2π/F , shown by the vertical lines. (µ = 0.02 per year.
Measles: 1/γ = 13 days, R0 = 17. Chickenpox: 1/γ = 20 days, R0 = 11. Rubella: 1/γ = 18 days,
R0 = 6)

Essentially, by forcing the transmission in synchrony with the natural period, we ensure
that sequential forcing effects accumulate rather than cancel (Dushoff et al. 2004). By and
large, we all have firsthand experience of the effects of resonance in a forced oscillator—
on the playground. When pushing (the forcing) a child on a swing (the oscillator), we aim
to optimize our effort by timing each push to coincide with the natural period (i.e., the
high point) of each oscillation. In Figure 5.4, we show how the amplification of sinusoidal
forcing varies with both the forcing frequency and the natural frequency of oscillations
(vertical lines) for three childhood diseases.

Forcing is most greatly amplified when the forcing period is close to the natural
oscillatory frequency of the unforced dynamics.

For different ratios of ω:F , however, it is possible for forcing to excite sub-harmonic
resonance that gives rise to oscillations with a longer period than the period of the forcing.
This phenomenon can occur whenever the natural period of the oscillations 1/F is close to
an integer multiple of the period of the forcing 1/ω. Subharmonic resonance is dependent
on the nonlinearities within the transmission process dynamics and requires substantial
levels of forcing. As a result, subharmonic resonance is generally studied numerically
(see, for example, Greenman et al. 2004; Choisy et al. 2006). Dietz (1976) showed
that for β1 small, some analytical understanding can be gained by setting T = ω/F ,
and noting that the subharmonic resonance occurs only when T is an integer. We can
rearrange equation (5.8) to obtain the following equation that links the observed period of
oscillations (T ) to the infectious period of the infection (1/(µ + γ )) and its mean age at
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Figure 5.5. The subharmonics of a seasonally forced SIR model, as given by equation (5.9). The
surface depicts the relationship between the infectious period, the mean age at infection and the
observed period of oscillations. The period of forcing is assumed to be one year (ω = 2π ).

infection (A = 1/[µ(R0 − 1)]):

A = (γ + µ)
T 2

ω2
. (5.9)

For childhood infections, we can assume that the period of forcing is one year (ω = 2π )
and then examine the predicted period of oscillations as the infectious period and mean age
at infection are varied (Figure 5.5). This permits a relationship to be established between
the natural period of oscillations resulting from the low-level forcing of the system (T ),
pathogen transmissibility (in terms of the transmission rate β), and host demography (birth
rate µ).

To explore in more general terms how the amplitude of seasonality affects dynamics,
Dietz (1976) resorted to numerical integration of the underlying equations. In this way, he
was able to demonstrate that changes in either R0 or β1 can lead to qualitatively different
epidemic patterns. For example, when R0 is large and the level of seasonal forcing is
small, the fraction of infecteds shows harmonic oscillations with small-amplitude annual
epidemics (Figure 5.6, top left). As β1 increases to 0.1, we observe subharmonic resonance
(as ω ≈2F ) giving rise to biennial dynamics (Figure 5.6, middle left). A further increase in
β1 gives rise to four-year cycles that have a noticeable and pronounced biennial as well as
annual component (Figure 5.6, bottom left). However, Dietz (1976) noted that the precise
sequence of dynamical transitions that is observed depends on R0. The second and third
columns in Figure 5.6 exhibit qualitatively different dynamics in response to changes in
the level of forcing. In these cases, when R0 is smaller, increases in seasonal amplitude
do not influence the period of epidemics that remain annual, but do substantially alter the
magnitude of oscillations.
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Figure 5.6. The time course of the number of infectives predicted by an SEIR model as the
amplitude of seasonal forcing (β1) and R0 are varied. The parameters used to generate these
panels were µ = 0.02 per year, 1/σ = 8 days, 1/γ = 5 days. All simulations were started with
S(0) = 6 × 10−2 and E(0) = I (0) = 10−3. The logarithm of the proportion of infectives is plotted for
clarity. The low troughs predicted between epidemics could be sustained only by large population
sizes.

In the absence of seasonal forcing, the SIR family of models exhibit a stable
equilibrium (see Chapter 2). The introduction of time-dependent transmission rates
can generate a variety of dynamical patterns—depending on parameter values—
ranging from simple annual epidemics to multiennial outbreaks and eventually chaos.

5.2.2. Mechanisms of Multi-Annual Cycles

It is straightforward and intuitive to understand how making the transmission rate oscillate
with a period of one year may generate annual epidemics. As described above, this
phenomenon is referred to as simple harmonic resonance, whereby the dynamical system
(in this case, the S[E]IR model) simply tracks the temporal changes in the forcing (i.e.,
F = ω). There is also the possibility (as shown in Figure 5.6) of obtaining subharmonic
resonance, where oscillatory dynamics have a period that is an integer multiple of the
forcing. This phenomenon can be understood by thinking about dynamics within a more
ecological framework.

Consider the equation giving the rate of change of infectives in the SIR system (equation
(5.7)). As demonstrated by Kermack and McKendrick (1927) and discussed in Chapter 2,
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the condition for growth of disease incidence is:

dY

dt
= βX

Y

N
− (γ + µ)Y > 0,

= Y (µ + γ )(R0
X

N
− 1) > 0,

=⇒ X

N
>

1
R0

≈ γ

β
.

Therefore, the spread of the pathogen can occur only if there is a sufficient fraction
of susceptibles in the population, with the critical value determined by the reproductive
ratio (R0). Although this concept is typically thought of in terms of the introduction of a
pathogen into a population, it is also informative when thinking about seasonal systems. In
such systems we can use the seasonally varying value of β(t) to inform whether the current
level of susceptibles is sufficient for the number of cases to increase. We demonstrate this
concept in Figure 5.7, with the top panel depicting two sinusoidal transmission rates and
two lower panels showing the relationship between the fraction of susceptibles (thick lines)
and the threshold for infection spread (thin black lines) when epidemics are annual (middle
graph) and biennial (bottom graph).

In the case of annual epidemics, there is a straightforward sequence of events. The
peak in disease incidence coincides with the point at which the fraction of susceptibles
( X

N
= S) falls below γ /β(t) (labeled point 1 in Figure 5.7). The fractions of susceptibles

and infectives continue to decline until the rate of transmission is less than births, at
which point S begins to increase. Once S > γ /β(t) (labeled point 2 in Figure 5.7) disease
incidence rises. This pattern is repeated once transmission has depleted susceptibles below
the threshold (labeled point 3 in Figure 5.7). In this instance, the seasonal changes in the
transmission rate are intimately associated with the dynamics of susceptibles in driving
harmonic resonance.

For a slightly higher amplitude of seasonality, however, the picture changes in important
ways (Figure 5.7, bottom graph). As before, the peak in the fraction of infectives coincides
with S = γ /β(t) (point 4). In this instance, however, the peak in the infectives is substan-
tially larger than in the middle graph (due to the greater transmission rate), and as a result
the fraction of susceptibles falls to much lower levels than before. Consequently, it takes
much longer for births to replenish the susceptibles above the critical threshold (point 5).
While at this point S > γ /β(t), the transmission rate is very near its annual maximum (the
threshold is near its minimum), and as a result the susceptibles do not remain above the
threshold long enough to produce a large epidemic. It is only when the level of susceptibles
exceeds the threshold for a second time (point 6) that a large epidemic begins. The entire
process from point 4 to point 7 takes two years, representing subharmonic resonance. What
these results show is that as the amplitude of seasonality increases, larger epidemics are
generated that lower the level of susceptibles such that recovery to above the threshold
takes far longer, resulting in longer period cycles.

5.2.3. Bifurcation Diagrams

How do we visually summarize the dynamics of seasonally forced models without needing
to resort to figures containing numerous panels (such as those in Figure 5.6)? This may be
achieved by constructing bifurcation diagrams, where a bifurcation refers to a qualitative
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Figure 5.7. The anatomy of seasonally forced epidemics. In the top panel the seasonally varying
transmission rate (β(t) per year) is plotted, with the solid line representing the weaker forcing used in
the middle graph and the dashed line representing the stronger forcing used in the bottom graph. The
lower two panels demonstrate outbreak dynamics in annual (middle) and biennial (bottom) regions
of parameter space (with β1 = 0.04 and β1 = 0.075, respectively). In addition to the fraction of
susceptibles (thick line) and infectives (dashed line), we have plotted the threshold level of S required
for instantaneous epidemic growth (thin line). The level of susceptibles is color coded indicating
when it is above or below the threshold. The parameters used to generate these panels were µ = 0.02
per year, 1/σ = 8 days, and 1/γ = 5 days. All simulations were started with S(0) = 6 × 10−2 and
E(0) = I (0) = 10−3.

change in model dynamics as a control parameter is altered. This is most painlessly and
commonly achieved by the numerical integration of the equations as the parameter of
interest (in this case, β1) is systematically varied (Figure 5.8). For any specific parameter
value, the model is started according to some specified initial conditions and integrated for
a “reasonable” period of time, after which it is assumed the dynamics have reached their
long-term (or asymptotic) state. Then, some measure of the population is plotted at one
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Figure 5.8. Constructing a bifurcation diagram. The top three panels depict time-series data for
the SEIR model with different levels of seasonality (β1 = 0.025, 0.05, and 0.25, respectively).
The arrows at the top of the panels indicate the points when the time series are sampled in order
to construct the bifurcation diagram below. The parameters used to generate these panels were
µ = 0.02 per year, β0 = 1250, 1/σ = 8 days, and 1/γ = 5 days. All simulations were started with
S(0) = 6 × 10−2 and E(0) = I (0) = 10−3.

particular time-point each year for the subsequent n years; the precise value of n depends
on the timescale of the system but for epidemiological systems 50–100 years represent
good rule-of-thumb values. Often, we produce a graph with different values of β1 along the
x-axis and the prevalence of infection (at one time each year) on the y-axis (Figure 5.8).

A typical bifurcation diagram for parameter values representative of measles is shown
in Figure 5.8. To interpret the figure, we need to consider a value of β1 and count the
corresponding number of points found on the graph. For example, for β = 0.1 we observe
two dots—this informs us that the dynamics are biennial and repeat every two years
(see Figure 5.6, middle left, for an example of the dynamics). The bifurcation diagram
shows the increasing dynamical complexity as seasonality becomes stronger. For modest
levels of forcing, the dynamics mimic those of the forcing function and are rigidly annual.
For β1 greater than approximately 0.0455, the dynamics are biennial, which give way to
multiennial and then aperiodic dynamics when the amplitude of seasonality exceeds 0.2.
For measles, attempts to fit β1 from time-series data have provided estimates of around
0.1–0.2 (Keeling and Grenfell 2002), therefore we have focused our attention to a restricted
region of parameter space: β1 ∈ [0, 0.3]. For values of β1 greater than 0.3, the dynamics
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are largely chaotic with occasional “windows” (regions of β1 that give qualitatively similar
dynamics) of multiennial cycles.

However, many elements can complicate the formulation of a bifurcation diagram,
which is why several different bifurcation diagrams for the SEIR model with measles
parameters are given throughout this chapter. For example, although Figure 5.8 uses
the amplitude of seasonality, β1, as the control parameter, many other parameters or
combinations of parameters could be used. Additionally, in Figure 5.8 a fixed set of initial
conditions were used to generate each point on the bifurcation diagram and, as we show
below, different initial conditions can lead to very different bifurcation patterns. Therefore,
the richness of the dynamics and the large number of possible scenarios that can be
considered means that a single bifurcation diagram can never fully capture the entire range
of behavior.

5.2.4. Multiple Attractors and Their Basins

In Chapter 2, the solutions we obtained were globally attracting—as long as we started with
some infecteds we eventually settled to the same equilibrium level. However, for seasonally
forced models this simple property does not always hold; for some parameter values
(generally higher values of β1 associated with more complex behavior) the qualitative
dynamics are sensitive to the initial conditions. Therefore, more than one possible
dynamical behavior may exist at each point on the bifurcation diagram. In dynamical
systems terminology, there are multiple stable attractors and which attractor is observed
depends on the initial conditions—we no longer have a single globally attracting solution.
Each attractor has an associated basin of attraction, such that whenever we start from
a specific combination of variables (e.g., S, E, and I ) within the basin, we eventually
observe the same dynamics after transients. To demonstrate this idea, in the top graph
of Figure 5.9 the number of infectives is plotted for β1 = 0.19, depicting clear biennial
dynamics as predicted by the bifurcation diagram in Figure 5.8. However, the bottom graph
is also for β1 = 0.19—the only difference between these figures is the initial conditions.
The dynamics of the lower graph are qualitatively different, showing a pronounced
six-year cycle.

The basin of attraction for the biennial and six-year cycles can be determined by
extensive simulations examining different combinations of initial conditions. To achieve
this, we fix all parameter values and systematically explore a grid of initial conditions
and the resulting long-term dynamics. In Figure 5.10, we plot the results of such an
exploration for β1 = 0.19. The dark regions represent the basin of attraction for the
six-year cycle and the light regions represent the combination of initial conditions for
which the biennial dynamics are observed. For some combinations of initial conditions,
there is considerable structure (top-right quadrant of Figure 5.10), whereas in other regions
there is extreme sensitivity to the initial conditions and very small deviations can flip the
long-term dynamics between attractors.

In seasonally forced systems, qualitatively different dynamical patterns can be
stable for any specific combination of parameter values. Which attractor is observed
depends on whether initial conditions are within the basin of attraction.

Given the possibility of many coexisting attractors for the same parameters, it may
be impossible to produce a complete bifurcation diagram that displays and differentiates
between the various multiple attractors (see Figure 5.11). This is especially true if some
of the attractors have very small basins such that finding the appropriate set of initial
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Figure 5.9. Time series from an SEIR model demonstrating the dynamical consequences of using
different initial conditions. The two panels share identical levels of seasonality (β1 = 0.19), but their
initial conditions vary in the number with the exposed class (top graph W (0) = 10−2 × N , whereas
for the bottom graph W (0) = 10−3 × N ). All other initial variables are the same between the two
graphs (X(0) = 6 × 10−2 × N and Y (0) = 10−3 × N ). The parameters used to generate these panels
were µ = 0.02 per year, 1/σ = 8 days, 1/γ = 5 days, R0 = 17, and N = 5 × 106. Note that the
number of infectives is plotted on a logarithmic scale.
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Figure 5.10. The basins of attraction for biennial and six-year dynamics. The black regions represent
the combination of the initial fraction of susceptibles (S(0)) and infectives (I (0)) that give rise to
six-year dynamics, and the white regions lead to the biennial attractor. Gray regions show initial
conditions where S(0) + E(0) + I (0) > 1. Note that we set E(0) = I (0)γ /σ corresponding to an
equal rate of movement through the two classes. A grid of 1,000 susceptible and 460 infectious
initial values was used to construct this picture. Model parameters were µ = 0.02 per year, 1/σ = 8
days, 1/γ = 5 days, β1 = 0.19, R0 = 17.
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Figure 5.11. Bifurcation diagrams demonstrating the dynamical consequences of using different
methods of generating initial conditions. The top graph is constructed using extrapolated initial
conditions starting with β1 = 0, where the lower graph is plotted starting with β1 = 0.3. The
parameters used to generate these panels were µ = 0.02 per year, 1/σ = 8 days, 1/γ = 5 days, and
N = 5 × 106. Note that the number of infectives is again plotted on a logarithmic scale.

conditions is very difficult. In contrast, using a single fixed set of initial conditions can
produce a rather disjoint bifurcation diagram because the changing shape of the basins of
attraction means that we may suddenly jump between different attractors. An alternative is
to use “extrapolated” initial conditions whereby the numbers of susceptibles, exposed, and
infectives at the end of one simulation (when β1 = 0.19, for example) are used to start the
next simulation (for β1 = 0.2). This approach ensures that in general our initial conditions
start near an attractor, leading to more continuous behavior. Hence, any structural changes
in the bifurcation diagram as the control parameter is varied can be confidently attributed
to bifurcations (the loss of stability of one attractor giving way to a new stable regime),
rather than resulting from the effects of crossing the “basin of attraction.”

The use of “extrapolated” initial conditions clearly means that we could obtain different
plots depending on whether we start the bifurcation diagram from the right or from the
left (Figure 5.11). The top graph shows a bifurcation diagram starting from β1 = 0 and
increasing β1 with each increment, whereas the lower graph starts with β1 = 0.3 and
decreases β1. The overall qualitative patterns in the two graphs are similar, though they
clearly differ in much of the dynamical detail.

As usual in mathematical modeling, there is a trade-off between obtaining a speedy
understanding of model dynamics and mathematical rigour. Some of the issues we have
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Box 5.1 Bifurcation Methods
The bifurcation diagrams plotted in, for example, Figures 5.8 and 5.11 were obtained nu-
merically, by integrating the model equations and documenting the observed patterns. Ideally,
however, we would explore model dynamics using the same kinds of principles employed for
unforced models, where we used the Jacobian matrix to evaluate eigenvalues and establish the
stability or otherwise of equilibria. In the forced model, we also need to establish whether
perturbations made to a known trajectory are likely to die out or grow. This is achieved by
studying the stability of the map P (k), which iterates the dynamics forward by k years:

P (k) : (X(0), W (0), Y (0)) *→ (X(k), W (k), Y (k)).

In particular, we are interested in orbits of period k, which corresponds to P (k) having a fixed
point such that after waiting for a period of k years we recover the state variables that we started
with. These periodic solutions are referred to as period k fixed points. To examine their stability,
we need to study the fate of perturbations to the fixed point.

Specifically, we define X∗
k (t), Y ∗

k (t), Z∗
k (t) as a k-period trajectory and make the substitutions

X(t) = X∗
k (t) + x(t), Y (t) = Y ∗

k (t) + y(t), and Z(t) = Z∗
k (t) + z(t), then form equations for the

dynamics of perturbations (x(t), y(t), z(t)) (ignoring terms that are of order x2(t) or higher).
This leads to the following differential equation:

⎛

⎜⎜⎝

dx/dt

dy/dt

dz/dt

⎞

⎟⎟⎠ = JX∗
k (t),Y ∗

k (t),Z∗
k (t)

⎛

⎜⎜⎝

x(t)

y(t)

z(t)

⎞

⎟⎟⎠ .

Whether the perturbations eventually die out is determined by the dominant eigenvalue ((k)

of the Jacobian matrix JP of the map P (k) evaluated at its fixed point. (The Jacobian JP of
the map can be formed by integrating the Jacobian JX∗

k (t),Y ∗
k (t),Z∗

k (t) over a k-year period). The
dominant eigenvalue is called the “floquet multiplier” of the period k solution. A fixed point is
stable if and only if it has no multipliers with ∥((k)∥ ≥ 1. In practical terms, this means that
if we are interested in exploring the stability of the annual trajectory, for example, then we
need to integrate both the SEIR equations and their Jacobian for one year and then examine
the resultant Jacobian’s dominant eigenvalue. Note that the initial conditions here are crucial.
We need to integrate the model equations starting on the annual attractor, whereas the initial
conditions for the Jacobian (also referred to as the relational equations) are the identity matrix. It
is possible to use relatively simple root-finding schemes (such as the Newton-Raphson method)
to work out the period k solutions before we establish the stability.

The main advantage of this dynamical-systems approach is that abrupt changes in the floquet
multipliers are very informative about the dynamics we may expect. For example, if at some
value of the control parameter the multiplier ((k) becomes −1, then we know that we expect a
period doubling bifurcation, leading to solutions with a period of 2k. The major disadvantage
of this method is that it perhaps requires much more experience with dynamical systems theory.
There are, however, at least two well-established freeware programs that can be used to carry out
numerical bifurcation analyses: AUTO (Doedel et al. 1998) and Matcont (Dhooge et al. 2003).

come across concerning multiple stable states and the resulting numerical bifurcation
diagrams may be overcome by using more mathematically sophisticated methods that
allow us to establish the stability of different solutions from basic principles (see Box 5.1).
Such approaches, though substantially more technically involved, will allow us to establish
a priori the range of dynamics we might expect to observe (see, for example, Kuznetsov
1994; Kuznetsov and Piccardi 1994; Seydel 1994).
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TABLE 5.1.
Timings of the major school holidays when Term = −1; during
all other times Term = +1. Note that the autumn half-term break
is included because this is the only short holiday that has an
identifiable signature in the England and Wales data.

Holiday Model Days Calendar Dates

Christmas 356–6 December 21–January 6
Easter 100–115 April 10–25
Summer 200–251 July 19–September 8
Autumn Half Term 300–307 October 27–November 3

5.2.5. Which Forcing Function?

So far, we have explored seasonality by assuming that the transmission rate is time-
dependent and specifically is determined by a simple sinusoidal function. The precise shape
of seasonality was historically thought to be dynamically unimportant, though this view has
changed in recent years. Starting with the influential work of Schenzle (1984), seasonally
forced models of childhood infections now more often use a square wave, attempting
to capture the aggregation of children in schools. Specifically, the transmission rate is
assumed to be high during school terms and low at other times (Bolker and Grenfell 1993;
Keeling and Grenfell 1997a; Rohani et al. 1999; Earn et al. 2000; Keeling et al. 2001a). In
this manner, equation (5.4) is rewritten as follows:

β(t) = β0(1 + b1Term(t)), (5.10)

where Term(t) is +1 during the school term and −1 at other times. We now use the
parameter b1 to represent the amplitude of seasonality: a slightly different notation in order
to distinguish between sinusoidal and term time forcing. The historical dates of school
holidays in England and Wales are presented in Table 5.1, and the resulting transmission
rate throughout the year is plotted in Figure 5.12 (top graph). An important point to note
is that if we sum the number of school holidays given in Table 5.1, we obtain 92, leaving
273 days of school. Because there are many more “+1” days than “−1” days, adopting the
basic equation (5.10) is going to give rise to a mean transmission rate—averaged over the
year—that exceeds β0, with the level of excess depending on b1. As a result, in order to
ensure R0 is constant irrespective of the precise forcing function used and the amplitude
of seasonality, we need to implement a correction to equation (5.10). In general terms, if
there are D+ days of school and D− holidays, then our forcing function would be:

This is
online
program
5.2

β(t) = β0
1

365

(
(1 + b1)D+ + (1 − b1)D−

)
(

1 + b1Term(t)
)

. (5.11)

The denominator in equation (5.11) is the mean of the forcing term, division by which
ensures β(t) = β0. The changes in the transmission rate resulting from the above correction
are depicted in Figure 5.12 (top graph), and the dynamical consequences of this correction
are illustrated in the lower two panels. It is evident that dynamics of the basic term-
time forced model (equation (5.10)) are more complex than when the corrected forcing
is applied, as demonstrated by the period-doubling bifurcation occurring at a smaller
amplitude of seasonality (b1 ∼ 0.0975 as opposed to b1 ∼ 0.1285). Also, without the
correction term, quadrennial and higher-period epidemics ensue once b1 > 0.5, whereas
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Figure 5.12. The top graph gives the transmission rate plotted through the calendar year for three
different forcing functions: the sinusoidal function (solid line), the basic term time (gray line), and
the corrected term time (dashed line). The figure was plotted assuming β0 = 1250, β1 = b1 = 0.25,
and N = 5 × 106. The mean transmission rates (β̄) are 1,250 for the sinusoidal and corrected term
time (R0 = 17) compared with 1,384 for the basic term time (R0 = 19.35). The school term dates
are given in Table 5.1. The lower two graphs show measles bifurcation dynamics with the basic
(middle panel) and corrected term-time forcing function (bottom panel). The insets depict the region
of parameter space around the first period-doubling bifurcation.
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Figure 5.13. The biennial dynamics of a seasonally forced measles-like SEIR model depicted in
state space: the time-evolution of susceptibles versus infectious individuals as school terms change
through the year. The black line demonstrates the actual biennial cycle whereas the gray lines
represent continuation of the trajectory had there not been a switch at those specific points. The cross
represents the position of the term-time fixed point (the holiday-time fixed point is off the right-hand
side of the graph), whereas the circle represents the fixed-point of the unforced model. The figure
was plotted assuming measles parameters: β0 = 1250, 1/σ = 8 days, 1/γ = 5 days, µ = 0.02, and
b1 = 0.25.

if equation (5.11) is used, complex dynamics are observed only after b1 > 0.65. However,
term-time forcing in general produces a much simpler bifurcation picture than sinusoidal
forcing (compare Figures 5.11 and 5.12, noting the very different ranges of forcing), with
complex/chaotic dynamics only occurring for relatively high values of b1.

One way to conceptualize the behavior of a disease subject to such binary term-time
forcing is as switching between two stable points or spiral sinks (one for term-time when
β is high, another for holidays when β is low). Therefore, during term-times β remains
constant at the higher value and the trajectories spiral toward the fixed point given by this
transmission rate in exactly the same manner as predicted by an unforced model. When
holidays start, a new fixed point exists and the trajectories spiral toward that. We therefore
view the changing values of β as switching the model between two attracting fixed points.
This idea is demonstrated in Figure 5.13 for measles parameter values; by “extending” the
orbits (gray lines), the switching between the two spiral-sink attractors is clearly visible.
The orbits are traced out counter-clockwise, with an abrupt change in direction every time
a switch from term-time to holidays (or vice versa) occurs.

Naturally, we need to establish qualitative and the quantitative consequences of different
forcing functions on model dynamics. One way of assessing this is to explore comparable
bifurcation diagrams. In Figure 5.14, we present two-dimensional bifurcation figures for
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Figure 5.14. Bifurcation diagrams for the SEIR model as the mean transmission rate (per year)
and amplitude of seasonality are altered for sinusoidal (top graph) and term-time forcing (bottom
graph). The diagrams were constructed using extrapolated initial conditions and as a result are
much “cleaner” than equivalent diagrams with fixed initial conditions because these figures do not
exhibit multiple stable attractors, especially for small β1 and b1. The period plotted is the dominant
multiennial period of the Fourier spectrum (Box 5.2). The figure was plotted assuming 1/σ = 8 days,
1/γ = 5 days, and µ = 0.02.

the sinusoidal and corrected term-time forced SEIR model, using extrapolated initial
conditions. (Results using a fixed set of initial conditions tend to show more multiennial
cycles; extrapolation allows the annual attractor to be tracked through the parameter space.)
A number of observations need to be made here. In comparison with the sinusoidally forced
model (top graph), term-time forcing (bottom graph) is in some general sense more “stable”
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(Bolker and Grenfell 1993). For example, with the mean transmission rate fixed at 1,250
per year, the bifurcation from annual to biennial epidemics occurs at a larger amplitude
of seasonality for the term-time forcing (b1 ∼ 0.1285 compared with β1 ∼ 0.0455). In
addition, the term-time forced models exhibit biennial epidemics for a far larger region
of the parameter space, with irregular (quasiperiodic or chaotic) outbreaks observed
only once b1 exceeds approximately 0.6 (compared to β1 > 0.2). Additionally, the
sinusoidal-forced model generates very large amplitude dynamics with the proportion
of infectives often falling below 10−20 when β1 is large; in contrast, term-time forcing
the proportion of infectives in the troughs of epidemics in Figure 5.12 always exceeds
10−10. These figures have been produced using extrapolated initial conditions and as a
result do not document the full dynamical complexity of these systems, especially when
mean transmission rates are small (explained in detail below). Finally, if we consider the
dominant period rather than the dominant multiennial period, then the region of annual
behavior is extended further in both models as expected.

The choice of functional form used to represent seasonality in the transmission term
can have a substantial qualitative, as well as quantitative, dynamical effect.

The introduction of time-dependence in transmission has introduced a wide array of
interesting dynamics to the model. The unforced models discussed in Chapter 2 focused
on equilibrium properties, whereas the models here deal with periodic epidemics. The exact
period of these oscillations is determined by the characteristics of the disease, such as its
mean transmission rate (β0) and infectious period (1/γ ), as well as host characteristics,
such as the per capita birth rate (µ) or the amplitude of seasonality (β1 or b1). In order
to relate models to case report data from a specific population we therefore need to be
able to establish the appropriate amplitude of seasonality, as well as determine the more
usual demographic and disease parameters. Unfortunately, a straightforward approach
to this problem does not exist, although a number of authors have proposed different
methods.

Bolker and Grenfell (1993), for example, studied the dynamics of measles in England
and Wales during the 1950s and 1960s, when epidemics were clearly biennial. They
constructed the average biennium (gray lines in Figure 5.15) and explored the relative
goodness of fit of different models. This kind of exercise allows a clear visual inspection
of the comparison between model output and data, but is not statistically rigorous. An
alternative approach, adopted by Keeling and Grenfell (2002), has been to attempt to fit, in
a rigorous sense, the amplitude of seasonality that is most consistent with the data. Keeling
and Grenfell’s findings are presented in Table 5.2. The best-fit model with sinusoidal
forcing results in a lower error because it more accurately captures the timing of the
epidemic peak; in contrast, the best-fit model with term-time forcing generates an epidemic
peak that is slightly delayed, even though it captures more of the qualitative properties of
the biennial cycle. This discrepancy highlights the need for extra biological detail: A more
realistic distribution for the latent and infectious periods or including age structure (see
Chapter 3) greatly reduces the error associated with term-time forcing.

For other childhood diseases, such as pertussis and rubella, where there is no systematic
epidemic pattern, determining the correct level of seasonality is more complex. One
approach is to adapt the time-series methods used for measles (Finkenstädt and Grenfell
2000, Bjørnstad et al. 2002), where the weekly transmission rate is estimated from a
statistical viewpoint. Alternatively, we can attempt to match more generic features of
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Figure 5.15. Comparing model dynamics and measles data from England and Wales. The gray lines
represent the number of weekly cases averaged over the nine biennia from 1950 to 1968, with the
error bars representing the standard error. The black solid line is the best fit SEIR model with
sinusoidal transmission (β1 = 0.09), whereas the dotted line is the fit from the corrected term-
time forced model (b1 = 0.29). (The results from the basic (uncorrected) term-time model are
very similar.) The figure was plotted assuming β0 = 1, 250 per year, 1/σ = 8 days, 1/γ = 5 days,
µ = 0.02 per year, β1 = 0.09, and b1 = 0.29. The estimates for β1 and b1 were taken from Keeling
and Grenfell 2002.

TABLE 5.2.
Optimum level of seasonality estimated from measles
case reports in England and Wales data and the
goodness of fit (associated error, EV ) for the SEIR

model with the two different seasonal forcing
functions (Keeling and Grenfell 2002).

Seasonal Forcing Term-time Sinusoidal

Best Fit b1 = 0.29 β1 = 0.11
Associated Error EV = 1.18 EV = 0.64

the data, such as the strength of annual, biennial, and multiennial signals in the data
(found by taking the Fourier transform). However, if low troughs exist between the major
epidemics, a stochastic framework might be required (Chapter 6) that can account for
chance extinctions—with stochastic models there is the possibility of obtaining likelihood
estimates which provides an alternative means of parameterization.
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Box 5.2 Determining Periodicity
Here we outline two basic methods to characterize two distinct but related elements of
periodicity. In particular, we look at (i) the period of the deterministic attractor and (ii) the
dominant period of the epidemic cycle.

Period of Attractor
If we have an attractor with period n years, then once the dynamics are on the attractor we

have the relationship:

S(t + n) = S(t) and I (t + n) = I (t) ∀t,

where the time, t , is measured in years. Despite this obvious definition, the computational reality
is more far complex due to the time taken for a set of initial conditions to converge close to the
attractor. We therefore stipulate that the dynamics are of period n if:

| log(S(t + n)) − log(S(t))| < ε and

| log(I (t + n)) − log(I (t))| < ε,
∀t > T0 (5.12)

where the time T0 allows for convergence and ε is a small numerical tolerance. The difficulty
comes in deciding on appropriate convergence times and tolerances—long times and small
tolerances are more accurate, but more computationally intensive.

A further complication is that multiples of the true period will also meet criteria (5.12); in
particular if the dynamics are period n, then, once close to the attractor:

| log(S(t + 2n)) − log(S(t))| < | log(S(t + n)) − log(S(t))| ∀t > T0,

and similarly for I . We must therefore insist that our dynamics are period n, if n is the smallest
value for which criteria (5.12) holds.

Dominant Epidemic Period
The difficulty with the above definition is that it cannot be readily applied to real observa-

tional data or the results from stochastic models (Chapter 6). In addition, it is possible for an
attractor to be of very high period and yet display annual epidemics that may take many years
before they precisely repeat. An alternative is therefore to look for the dominant period of the
epidemic cycle using Fourier spectra. We define the strength, Qm, of the m-year cycle to be:

Qm = 1
T

∥∥∥∥∥∥

T0+T∫

T0

Y (t) exp
(

2π t

m
i

)
dt

∥∥∥∥∥∥
,

Qm = 1
T

⎡

⎢⎣

⎛

⎝
T0+T∫

T0

Y (t) cos
(

2π t

m

)
dt

⎞

⎠

2

+

⎛

⎝
T0+T∫

T0

Y (t) sin
(

2π t

m

)
dt

⎞

⎠

2⎤

⎥⎦

1
2

where T0 is again a convergence time, and time is measured in years.
For observational data that is collected or collated at discrete time points, the integrals in the

above equations are replaced by sums. To make a fair comparison, the length of the time-series
used, T , must be a multiple of the period, m, being investigated. We define the dominant period
as that which gives rise to the largest Q value.

One difficulty with this Fourier Spectra approach is that many multiennial cycles have a
strong annual signature, due to the annual pattern of seasonal forcing. For this reason we often
consider the dominant multiennial period (m ≥ 2) and define the dynamics as annual only if
the strength of all other periods is zero or insignificant. A similar result can be achieved by
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calculating the Fourier Spectra of annual data Yt (such as disease incidence at a particular time
each year, or the total annual cases).

Qm = 1
T

∥∥∥∥∥∥

T0+T −1∑

t=T0

Yt exp
(

2π t

m
i

)∥∥∥∥∥∥

For a deterministic model that has converged onto the attractor, the largest m for which Qm is
nonzero generally corresponds to the period of the attractor n defined earlier.

When dealing with observational data, or models where the periodicity appears to change,
a refinement to the Fourier spectra is possible. Morlet wavelet analysis provides a means of
determining the dominant period at any given time. At time T , we define the strength Qm(T ) of
the m-year cycle to be:

Qm(T ) =
∥∥∥∥

∫ ∞

−∞
log(I (T + t) + 1) exp

(
2π (T + t)

m
i

)
exp

(
− t2

2m2V

)
dt

∥∥∥∥ .

In effect this provides a moving average at each time, weighted by a normal distribution. Such
methodology has been used to great effect in interpreting the dynamical effects of changing
birth rates for measles in England and Wales (Grenfell et al. 2001).

5.2.6. Dynamical Transitions in Seasonally Forced Systems

Now that we have a best-fit estimate for the amplitude of forcing for the average biennial
pattern of measles in England and Wales during the 1950s and 1960s, we wish to better
understand why case notification data exhibit a more annual pattern of epidemics from
1944–1950 and irregular 2–3-year fluctuations from 1968 onward (Figure 5.16). This kind
of dynamical variability has been noticed in other childhood disease incidence data (such
as measles in Baltimore or rubella in Copenhagen) and has generated a substantial body
of work in the search for explanations. During the 1980s, the general consensus among
theoretical epidemiologists was that the epidemics of measles were chaotic, determined
by a strange attractor (see, for example, Olsen and Schaffer 1990). In more recent years,
however, authors have increasingly focused on more biological explanations of childhood
disease epidemics. Finkenstädt et al. (1998), for example, demonstrated strong dependence
of measles epidemics on population birth rates with relatively high rates associated with
annual patterns, whereas modest birth rates coincided with biennial cycles.

The interaction between factors affecting host population demography and infection
dynamics was clarified by Earn et al. (2000). As explained in Chapter 8, Earn et al. pointed
out that changes in the recruitment rate of susceptibles—either via systematic trends in
the birth rate or resulting from vaccination—can be dynamically expressed as an effective
change in the mean transmission rate (β0) of the disease. For example, by carrying out a
simple change of variables, it can be demonstrated that vaccination at level p will induce
epidemic patterns identical to those in an unvaccinated population with mean transmission
rate β(1 − p). Similarly, changes in the birth rate µ by a given factor should produce
exactly the same dynamical transitions as changing β by the same factor (see Chapter 8).
Although a simple observation, this has powerful implications because it allows a single
bifurcation diagram to be constructed in order to examine the dynamical consequences of
varying host demography.

Such a summary diagram for the term-time forced SEIR model, with epidemiological
parameters chosen to correspond to measles, is shown in Figure 5.17. The control
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Figure 5.16. Case reports for measles in London and Liverpool from 1944 until 1988. The black
line demonstrates weekly reported cases (around 60% of the true cases), with the gray line depicting
the per capita birth rate. The darker gray dashed lines demonstrate the effective birth rate, correcting
for vaccination that started in 1968 (see Earn et al. 2000).

parameter (x-axis) is the mean transmission rate β (per year), although this is representative
of changes in the vaccination level or birth rate as well. The y-axis shows measles incidence
on January 1 of each year, so annual cycles are represented by a single point, biennial
cycles by two points, and so on. Different shades correspond to different stable solutions of
the model, which attract different sets of initial conditions (basins of attraction). For four
values of the mean transmission rate (β = 500, 750, 1000, 1750), basins of attraction of
the various coexisting attractors are shown above the bifurcation diagram. Where multiple
stable solutions coexist, stochasticity can induce complicated dynamics due to shifts among
attractors (Chapter 6). The upper panels of Figure 5.17 show that the basins of coexisting
attractors are more intermixed if β is smaller, so we expect the effects of stochasticity to
be greater for smaller β (or, equivalently, when the effective β is reduced by vaccination
or a decrease in birth rate).

How can we use this diagram to understand measles epidemics in London and Liverpool
(Figure 5.16)? The estimated mean transmission rate for this period is β0 ∼ 1,240 per year
(Anderson and May 1991), corresponding to a biennial attractor (gray line, Figure 5.17).
Before 1950, epidemics were roughly annual; over the same brief period the birth rate was
much higher, which greatly increased the effective mean transmission rate, leading to an
annual cycle becoming stable (black line, far right of Figure 5.17). After 1968, recruitment
rates steadily decreased because of mass vaccination (for example, when vaccine uptake
reached 60%, the effective mean transmission rate was reduced to β0 ∼ 750 = 0.6 × 1240
per year); this brought the system into the parameter region where there are multiple
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Figure 5.17. Exploring the consequences of changes in the mean transmission rate equivalent to
changing the effective host birth rates (µ) for measles-like parameters. In the top panels, initial
conditions that lead to annual epidemics are colored black, those that lead to biennial epidemics are
dark gray, and those that lead to higher period cycles are light gray. Given the analyses of Keeling
and Grenfell (2002), we assumed b1 = 0.29 throughout the dynamic range. We also take a per capita
birth rate of µ = 0.02 per year, together with a latent period of 1/σ = 8 days and an infectious period
of 1/γ = 5 days.

coexisting attractors with extremely intermixed basins. Stochastic effects then appear
to cause frequent random jumps between these attractors (this can be confirmed using
simulations—see Chapter 6), providing an explanation for the irregular epidemics in the
vaccine era (Rohani et al. 1999). In Liverpool (Figure 5.16, lower graph), the birth rate was
much higher than the mean in England and Wales from 1944 to 1968, leading to a higher
effective transmission rate. This explains the roughly annual cycle of measles epidemics
in this location over the same period. After 1968, the combination of vaccination and a
lower birth rate brought Liverpool, like London, into the regime where irregular dynamics
are predicted.

The bifurcation diagram in Figure 5.17 is plotted for a particular seasonal amplitude
(b1 = 0.29), but the qualitative conclusions of the above discussion are similar for a wide
range of amplitudes. For much higher seasonality, the region with many attractors contains
chaotic attractors as well. Such high seasonal amplitudes would not change our conclusion
that measles dynamics will be irregular in this region. For lower seasonality, many of the
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attractor sequences cease to exist or end at higher β0, but the “ghosts of departed attractors”
influence the dynamics for low β0. This means that often the attractor becomes weakly
unstable, such that if the initial conditions are close to this attractor they may take a long
time to converge to a stable attractor; this generates extremely long and erratic transient
dynamics especially when the unstable attractor is chaotic such that many initial conditions
are close by (Rand and Wilson 1991; Earn et al. 2000). Again, this supports the prediction
of irregularity, so we would expect the same qualitative dynamical picture to emerge in
places that have significantly higher or lower externally imposed seasonality.

5.3. SEASONALITY IN OTHER DISEASES

Although the dynamics of measles provides an ideal test case for our ideas about the effects
of seasonality, it is important to extend these concepts to other diseases (with different
parameters) or to other forms of seasonal forcing.

5.3.1. Other Childhood Infections

The approach outlined above allows us to understand primarily measles epidemics in large
population centers in the modern era. We followed the analysis of Earn et al. (2000)
to demonstrate how changes in birth rates and the onset of vaccination can give rise to
different epidemic patterns, which may provide a qualitative explanation of observed case
notifications in the big cities of the United Kingdom and the United States. However,
this argument ignores a potentially very important issue concerning age structure (see
Chapter 3). Whether thinking about measles epidemics under extensive vaccination
regimes or different infections with smaller R0 values, we need to consider the fact that
a reduction in the basic reproductive ratio gives rise to increasing transmission among
older age groups, for which the effects of seasonality may be substantially different. (From
Chapter 2, we know that the average age of infection is A ≈ 1

µ(R0−1) .)
To understand these effects, we use some straightforward analysis to predict how the

amplitude of seasonality might change with R0. The value of b1 or β1 can be approximated
by calculating the extent of mixing between susceptible and infectious school children of
the same age. Based on the differential equations describing the SIR system, and ignoring
heterogeneities in transmission and host vital dynamics, we can calculate (at equilibrium)
the proportion of the population of age athat are susceptible by solving:

dX∗

da
= −β(t)X∗(a)

Y ∗
T

N
= −X∗(a)

A
, (5.13)

where YT is the total number of infecteds summing over all ages and A is the average age of
infection (Anderson and May 1991). This gives a solution X∗(a) = exp(−µ(R0 − 1)a). We
can now use equation (5.13) to obtain an explicit expression for the number of infectives
of age a. Assuming dY ∗(a)

dt
∼ 0, we get Y ∗(a) = 1

γ
dX∗

da
, which yields

Y ∗(a) = µ(R0 − 1)
γ

e−µ(R0−1)a. (5.14)

Now, having established explicit equations describing X(a) and Y (a), we can estimate
the relative importance of mixing at school by studying the ratio (ψ) of mixing within
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Figure 5.18. Exploring the consequences of changes in infection R0 and host birth rates (µ) for
the strength of seasonality in dynamics. Given the analyses of Keeling and Grenfell (2002), we
assumed b1 = 0.29 for measles during the 1950s and 1960s, when per capita birth rates were
approximately 0.018 and R0 is estimated to be 17. This allows us to use equation (5.15) to
scale the amplitude of seasonality for other infections, such as chickenpox (R0 ∼ 11) and rubella
(R0 ∼ 7). To produce this figure, we assumed children enter school at age AS = 5 and leave at age
AL = 16. The precise shape of the contours (left-hand) giving the highest levels of seasonality varies
slightly given different assumptions about AS and AL values, though the qualitative picture remains
largely unaffected. The right-hand graph shows the dominant epidemic period as determined from
the Fourier spectrum (Box 5.2) using an SEIR with the average incubation and infection periods set
to one week. All simulations are started at the unforced equilibrium solution.

school compared to random mixing:

ψ ∝
∫

school ages X(a)Y (a)da
∫

X(a)da
∫

Y (a)da
,

∝ µR0{e−2µR0AS − e−2µR0AL}, (5.15)

where AS and AL represent ages at which children start and leave school. Equation (5.15)
allows us to establish the relative role of seasonality as host demographic rates (µ) and
the basic reproductive ratio (R0) vary (Figure 5.18). Intuitively, we would expect that for
a given rate of births into the susceptible population, a range of R0 values ensures that
significant transmission occurs in the school-age classes and within this range the effects
of seasonality in transmission will be most pronounced. For England and Wales data in the
1950–1960 era, with mean annual per capita births of approximately 0.018 per year, the
window of R0 values resulting in the largest seasonal variation in transmission is from
6–8, consistent with the estimated reproductive ratio for rubella, which is observed to
have complex multiennial dynamics (Anderson and May 1982). As R0 increases, however,
the mean age at infection decreases and so does the variation in seasonal transmission.
Hence, when attempting to explain the dynamics of childhood infectious diseases, it is
crucial not only to obtain accurate estimates for the primary epidemiological parameters
(such as transmission rates, the infectious and latent periods), but also to take into account
the differential exposure to seasonality (Keeling et al. 2001a). This varying seasonality
obviously has dynamic consequences for the infection within a population (Figure 5.18,
right-hand graph). Multiennial epidemic cycles can be generated; the correspondence
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between the contours in the left-hand graph and the regions of particular periods in the
right-hand graph (Figure 5.18) shows that the degree of mixing between school children
(φ), and therefore the level of seasonality, plays the dominant role in determining the
periodicity.

For a specified pattern of school openings and closures, differences in host demog-
raphy (e.g., the per capita birth rate) and the basic reproductive ratio (R0) result in
different amplitudes of seasonality in disease transmission.

The methodology outlined here is only an approximation to using fully age-structured
models (Chapter 3) in which the seasonal variability is naturally included in the mixing
between schoolchildren. In addition, changes in the age distribution of infectious and
susceptible individuals during the course of an epidemic may cause changes in the strength
of seasonality experienced, leading to deviations away from the simple binary pattern.

5.3.2. Seasonality in Wildlife Populations

In wildlife populations, seasonal changes in flocking and social mixing could also
generate pulses of high transmission rates for directly transmitted infections (Altizer et al.
2006). Indeed, seasonal changes in social grouping have been demonstrated for a wide
range of species in response to variation in food resources and breeding behavior (e.g.,
Newton-Fisher et al. 2000). Fall and winter flocking behavior and aggregations at bird
feeders have been suggested as increasing the transmission and prevalence of Mycoplasma
gallisepticum in house finches (Altizer et al. 2004; Hosseini et al 2004). Regular increases
in the incidence of rabies in skunks during the winter and spring could be driven
by seasonal host crowding (Gremillion-Smith and Woolf 1988). Outbreaks of phocine
distemper virus in seals have coincided with the breeding period when animals haul out and
aggregate on beaches (Swinton et al. 1998). Seasonal changes in aggressive interactions
(male:male) or courtship-related contacts during the breeding season could provide further
opportunities for the transmission of directly transmitted pathogens. In many animals
that breed in seasonal environments, annual aggregations coincide with long-distance
movement events (Dingle 1996), and seasonal migration in insects, birds, and mammals
could further drive variation in parasite pressure (Folstad et al. 1991; Loehle 1995). These
seasonal changes to the transmission rate for wildlife infections can be dealt with in a
similar manner to the seasonal changes experienced for human diseases because their root
cause—the aggregation of hosts—is essentially the same.

5.3.2.1. Seasonal Births

An alternative source of seasonality can arise from concentrating host births into a period
that is short relative to the full year. This will generate a pulse of hosts that are recruited into
the population at approximately the same time each year, thus effectively expanding and
contracting the base of susceptible hosts throughout the course of each year (Gremillion-
Smith and Woolf 1988; Bolker and Grenfell 1995). Furthermore, juveniles recruited into
the population are likely to be immunologically naive and more susceptible to a variety
of pathogens. Levels of herd immunity could also decline when a pulse of new juvenile
hosts enters the population, leading to greater risks of infection among susceptible adults.
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A growing number of empirical studies point to seasonal births, possibly in combination
with changes in social behavior, as a factor important to the dynamics of wildlife patho-
gens, with examples spanning cowpox virus and macroparasites infecting voles and wood
mice (Montgomery and Montgomery 1988; Begon et al. 1999) to phocine distemper
virus in seals (Swinton et al. 1998). Mathematical models based on the biology of both
vertebrate and invertebrate systems further show that the seasonal timing of reproduction
can influence the dynamics of host-pathogen systems (e.g., White et al. 1996; Dugaw et al.
2004; Ireland et al. 2004; Bolzoni et al. 2006).

One way to approach modeling seasonal births is simply to make the influx rate into the
susceptible population time dependent, such that the susceptible equation becomes:

This is
online
program
5.3

dX

dt
= α(t)N − βXY − µX, (5.16)

where α(t) represents the time-dependent per capita birth rate. Here we have assumed
transmission is density dependent, in keeping with the standard models of wildlife diseases.
Often, it is assumed that α(t) = α0(1 + α1 cos(2π t)), where as before α0 is the baseline per
capita birth rate and α1 is the amplitude of seasonality. In this instance, because birth rates
are seasonally varying, it is useful to add one extra equation to keep track of the total
population size N :

dN

dt
= α(t)N − µN.

Using the same bifurcation analysis approach as described in previous sections, it is
straightforward to demonstrate that dynamics in such a model are substantially simpler
than when seasonality affects the transmission rate (Figure 5.19). For illustration purposes,
if we assume model parameters for measles, we find that annual outbreaks dominate
unless the variation in the birth rate is extreme. This is clearly in stark contrast with
Figure 5.8, where oscillations with period 2 or higher are observed for β1 > 0.0455.
This would seem to suggest that incorporating environmental variability in births is
perhaps less likely to give rise to complex dynamics than similar levels of variability in
transmission.

The assumption of a sinusoidally varying birth rate is somewhat naive, we therefore
consider an alternative extreme where births occur in an annual pulse. This parallels the
work in measles where researchers have generally switched from sinusoidal to term-time
seasonality. The per capita birth rate now becomes:

α(t) =
{

α0
T

if 0 ≤mod (t, 1) < T

0 otherwise.

Therefore all births for the year are compressed into a portion T at the start of each year.
As such, the dynamics represent the behavior of a large number of species in temperate
regions where the breeding season may be relatively short. Additionally, we stipulate that
α0 = µ such that births and deaths over the year cancel each other.

Figure 5.20 shows the period of attractors that exist for hosts with an annual pulse
of births. For simplicity we have let T → 0, such that all births happen at the same
instant; however, further numerical studies have shown that the general pattern of periods
remains unchanged even when T takes quite large values (such as T = 0.5 years). Several
interesting features exist in this pattern of coexisting periods. First, low transmission and
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Figure 5.19. The bifurcation diagram showing the period of solutions when the birth rate is
seasonally forced: The control-parameter, plotted on the x-axis, is the level of seasonality in the
birth rate. Measles-like parameters are chosen so that comparison can be made with previous results:
β = 1240 per year, b1 = 0, 1/σ = 8 days, 1/γ = 5 days, α0 = µ = 0.02 per year.

long life expectancy, or high transmission and short life expectancy, lead to an annual
attractor (pale gray) being globally stable. Short life expectancy and low transmission
can give rise to a four-year cycle (dark gray) which is again globally stable because
no other attractors coexist for these parameters. Finally, we turn our attention to the
bands of period 2 (diagonal hashing) and period 3 (vertical hashing). We observe that
the 3-year cycle can coexist with both the annual and biennial attractor; in addition,
the appearance and loss of this 3-year cycle as we move through parameter space is
independent of the stability of the other periods. In contrast, the biennial cycle at its
upper edge (long life expectancy) is formed by the annual cycle undergoing a period-
doubling bifurcation, whereas at its lower edge both biennial and annual attractors
coexist.

Despite the simplicity of the seasonality within this model, the emergent dynamics are
relatively complex. This complexity increases as the infectious period becomes smaller
such that longer-period attractors and even chaotic dynamics can be found.

5.3.2.2. Application: Rabbit Hemorrhagic Disease

In order to examine the relative dynamical consequences of different forms of seasonality,
we now focus on wildlife diseases more closely and explore model dynamics using
parameters estimated for Rabbit Hemorrhagic Disease in the United Kingdom (White
et al. 2001, Ireland et al. 2004). In contrast to the above examples of seasonal variation in
wildlife populations, we now allow both the transmission rate, β, and the per capita birth
rate, ν, to be seasonally varying. In addition, following the generally observed behavior of
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Figure 5.20. For an annual pulse of births, the parameter regimes for which various period attractors
exist. Pale gray signifies annual dynamics, diagonal hashing shows the existence of biennial
dynamics, vertical hashing represents three-year cycles, and dark gray signifies four-year dynamics.
The diagram is computed using 1/γ ≈13 days, while the duration of the birth pulse T is reduced to
zero. The period shown is the exact period of the attractor (Box 5.2), and the dominant period from
the Fourier spectrum generally gives similar results with the exception that the region of exact period
4 is dominant by biennial epidemics.

natural populations, we include density-dependent regulation of the hosts (in terms of an
increased death rate), which results in rewriting of the SIR system taking the basic host
ecology into account:

This is
online
program
5.4

dX

dt
= ν(t)N − βXY −

(
µ + N

K

)
X, (5.17)

dY

dt
= βXY −

(
µ + m + γ + N

K

)
Y, (5.18)

dZ

dt
= γ Y −

(
µ + N

K

)
Z, (5.19)

dN

dt
=

(
ν(t) − µ − N

K

)
N − αY. (5.20)

Note that (ν − µ)K represents the carrying capacity of the habitat, and competition for
resources is assumed to affect all categories equally. In the absence of any seasonality, this
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system possesses a disease-free and an endemic equilibrium. The key difference between
this system of equations (excluding seasonality) and the classic SIR equations is the
presence of density-dependent host regulation (represented by the N

K
per capita mortality

term), which makes this system analytically intractable. For the very high mortality levels
associated with this disease (m ≫ γ ), the SIR model above approximates SI dynamics
with very few rabbits entering the recovered class. Numerical exploration, however, reveals
that as expected density dependence has a strongly stabilizing effect on the endemic
equilibrium (Ireland et al. 2004).

We can explore the dynamics of incorporating a breeding season by making the
birth rate seasonal (such that ν(t) = ν0(1 + α1cos(2π t))). As shown in Figure 5.21 (top
graph, black points), increasing levels of seasonality in the birth rate can generate a
cascade of dynamical exotica with long-period multi-ennial cycles and eventually chaos.
A qualitatively similar picture emerges when seasonality is incorporated solely into the
transmission term, Figure 5.21 (top graph, gray points). An important aspect of these
analyses is, however, that the bifurcation from annual to biennial cycles occurs for larger
values of β1 compared to the human versions of the SIR equations (without density
dependence). Indeed, the results shown in Figure 5.21 (top graph) are rather sensitive to
the choice of ν0. Higher values of this parameter result in a large influx of susceptibles,
leading to annual epidemics irrespective of the amplitude of seasonality.

In some wildlife disease systems, such as conjunctivitis transmitted among house
finches, two sources of seasonality arise from a breeding season which forces the birth rate
and the winter/fall flocking behavior which forces the transmission rate (Hosseini et al.
2004). It is perhaps surprising that the incorporation of time-dependence in both host birth
rates (ν(t)) and transmission (β(t)) in equations (5.17)–(5.20) does not substantially change
the dynamics, Figure 5.21 (bottom graph). Once again, we find that when the amplitude
of seasonality is small, purely annual cycles ensue. As the total seasonality exceeds
approximately 0.4, dynamics become extremely complex; we find a window of coexisting
annual, biennial, and multiennial dynamics is found which gives way to long-period and
eventually chaotic epidemics. However, when both breeding and transmission are very
strongly seasonal, we once again recover more simple behavior with stable biennial cycles.
In fact, if we examine the Fourier spectra (Box 5.2) in some detail we find that annual
epidemics occur across the entire parameter regime, although their amplitude is modulated
by multiennial cycles. This aanlysis although demonstrating some broad dynamical effects,
is clearly both rather brief and somewhat ecologically naive. In reality, we may need to
examine carefully the precise timing of the two seasonal mechanisms. For the house finch
system, for example, the breeding season is during April to September whereas flock
sizes peak during the winter months. To take these factors into account, any detailed
study of the system would need to incorporate a fixed phase difference (ψ) between
seasonality in breeding and transmission dynamics (i.e., β(t) = β0(1 + cos(2π t + ψ)) and
ν(t) = ν0(1 + cos(2π t + ψ)). As shown by Hosseini et al. (2004), the addition of such
features generates realistic double epidemics within a calendar year.

5.4. SUMMARY

In this chapter, we have explored epidemics in seasonally varying environments. The
source of this environmental variability is varied, ranging from social aggregation of hosts
(as seen in measles, phocine distemper, or mycoplasma), pulses of susceptible recruitment
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Figure 5.21. The dynamical consequences of seasonality in equations (5.17-5.20). In the top graph
seasonality is implemented in either the per capita birth rate (ν = ν0(1 + α1cos(2π t)), β = β0; black
points) or the transmission rate (β = β0(1 + β1cos(2π t)), ν = ν0; gray points). In the bottom graph
both disease transmission and population birth rates are assumed seasonal and in phase, although
asynchronous forcing produces similar results. The period shown is the dominant multiennial
period of the Fourier spectrum (Box 5.2). These bifurcation diagrams are computed using
γ = 0.025 per day, µ = 0.01 per day, m = 0.475 per day, ν0 = 0.02 per day, β0 = 0.936 per day
and K = 10000 ⇒ N ≈100.
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following breeding seasons (such as rabbit hemorrhagic disease), and regular disturbances
(such as lettuce stuff). We have seen that a number of different dynamical changes
can follow the introduction of seasonality. In some cases, we get harmonic oscillations,
whereby epidemics simply track the periodic forcing (e.g., low levels of forcing in the
measles model). As the amplitude of forcing increases, however, the phenomenon of
subharmonic resonance is observed with epidemics that are integer-multiples of the forcing
period (Greenman et al. 2004). In other cases, if the period of forcing matches the
underlying natural period of the system, we obtain harmonic resonance.

By concentrating largely on the SIR paradigm, we have been able to demonstrate a
number of important epidemiological principles:

➤ For childhood infections such as measles, chickenpox, and rubella, it is empirically
established that rates of transmission peak at the start of the school year and steadily
decline, reaching a trough during the summer months.

➤ Small levels of seasonal forcing in transmission can give rise to harmonic oscillations,
with large-amplitude cycles in disease prevalence that have the same period as the forcing
function.

➤ Moderate levels of seasonality can result in dynamics that have periods that are integer-
multiples of the forcing function period—this phenomenon is known as subharmonic
resonance.

➤ The effects of forcing are most pronounced when its period matches the natural period
of the system—this is referred to as harmonic resonance.

➤ In systems that experience seasonal forcing, it is possible to observe qualitatively
different dynamics (or multiple attractors) for the same combination of parameter values,
depending on initial conditions.

➤ Whenever multiple attractors coexist, a full understanding of the system requires the
basins of attraction to be determined.

➤ Seasonality may be mathematically implemented using alternative formulations, which
qualitatively affect the predicted dynamics.

➤ The strength of seasonality in transmission depends on the mean age at infection, as
determined by an infection’s basic reproductive ratio, R0.

➤ Seasonality in births is dynamically less destabilizing, with bifurcations from annual to
multiennial dynamics occurring at larger seasonal amplitudes.
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