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Chapter Four

Multi-Pathogen/Multi-Host Models

In this chapter, we follow some recent attempts to develop a theory of “community
epidemiology,” whereby the traditional framework examining one pathogen spreading
through a single host population is extended in two distinct ways: (1) to consider multiple
infectious diseases (or strains) spreading through one host species, or (2) a single infectious
disease that can be transmitted between different species.

The scientific community is only just beginning to understand the range of complex
outcomes when multiple strains compete for a limited supply of susceptibles or when
a number of host species share a pathogen. These conceptual extensions of the simple
one-pathogen one-host paradigm are becoming increasingly recognized as fundamental to
our understanding of key questions in modern epidemiology and public health. Does a
reduction in species diversity amplify or reduce the intensity of outbreaks? What role does
biodiversity play in the maintenance of pathogens? What are the conditions that determine
the spillover of “emerging” pathogens to new host species? How do these community
epidemiology issues impact the invasion of species in new environs?

A complete description of models that examine strain dynamics requires a detailed
knowledge of the host immune systems, and how different strains interact via the immune
response that they elicit. Interest in this area stems from the fact that competition between
strains is fundamental to disease evolution. Thus, if we are to understand and ultimately
predict the emergence of novel pathogens or, for example, the strain of influenza that will
circulate next season, we must better grasp the role of competition between cross-reacting
strains of infection.

When one pathogen is transmitted between multiple host species, the models and
dynamics are very much akin to those developed to deal with subdivided or structured
populations (Chapter 3). The main distinction is that with different species the disease
can have dramatically different infectious periods, mortality, and other characteristics, as
well as the underlying demographic differences between the species. In general, multi-
host models can be partitioned into two different classes: either a secondary obligate
host is required for transmission (such as vector-borne diseases), or transmission can
occur both within and between the various host species. Vector-borne diseases, such as
malaria, dengue fever, and leishmania, are among the most challenging from a public-
health perspective, and so models are frequently required to optimize their control. Finally,
zoonoses form a special class of multi-host diseases, where animals form a reservoir of
pathogens that can be spread to humans. Examples include such high-profile diseases
as avian influenza, bubonic plague, hantavirus, Lyme disease, Q-fever, rabies, SARS,
toxoplasmosis, trypanosomiasis, West Nile virus, and a range of macro-parasitic infections.
In general, the effects of these diseases in humans tends to be quite severe; this is because
humans act as a dead end for such infectious diseases and, therefore, there has been little
evolutionary pressure for benign infection compared to within the reservoir host species.
Although in principle the models for zoonoses have the same structure as other multi-host
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Figure 4.1. Results from the Nonpolio Entrovirus Surveillance scheme in the United States, from
1970–1989. Shown is the total recorded cases of viral aseptic meningitis (dashed line), as well as
the constituent cases for echovirus 9, 11, and 30, and coxsackie B5. The interaction between these
constituent viral types is complex, but must be understood if we are to successfully understand and
predict the incidence of infection (Strikas et al. 1986). (Data from CDC–the Center for Disease
Control, USA.)

models, the implications of infection and therefore the need for control measures will be
far greater.

4.1. MULTIPLE PATHOGENS

We first focus on the interaction of two, or more, pathogens within a population. Many
infectious diseases that we consider as a single disease are in reality comprised of
multiple strains, which interact through the cross-immunity that is invoked within a host.
An accurate understanding of such diseases, which include malaria, dengue fever, and
influenza, requires the consideration of strain structure (Figure 4.1) (Ferguson et al. 1999a;
Gog and Grenfell 2002; Ferguson et al. 2003a). Models incorporating multiple pathogens
allow us to investigate questions of disease evolution, from theoretical questions such as
understanding current disease behavior in terms of an optimal strategy for transmission,
to more applied issues such as predicting the influenza strains for the coming year or
understanding the effects of strain-specific control. Finally, multi-strain models offer
insights into the increasing prevalence of drug-resistant bacteria, and how to limit their
spread (Baquero and Blàzquez 1997; Bohannan and Lenski 2000).

The presence of two or more infectious diseases within a population increases the
possible number of compartments into which the population can be subdivided. In the
most general form, this formulation should uniquely identify the entire infection history
of individuals within each compartment and their immunological status with respect to
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MULTI-PATHOGEN/MULTI-HOST MODELS 107

the various pathogens/strains under consideration. Such completely general models are
more difficult to study due to the large number of degrees of freedom and therefore
the difficulty in both parameterization and analysis. Instead, models usually focus on
particular assumptions about conferred immunity and the interaction between pathogens.
As such, two completely independent infectious diseases provides the simplest model,
although it is of little biological interest. We now consider a range of models based on
more complex assumptions, where either transmission of, or susceptibility to, one strain
is modified due to resistance to another strain. In some cases, it will be assumed that co-
infection (simultaneous infection with two pathogens) is so rare that it can be ignored. This
simplification is often true for many airborne infections, though for sexually transmitted
diseases, infection with one pathogen may increase the susceptibility to others and hence
co-infection is promoted (Renton et al. 1998; Chesson and Pinkerton 2000).

4.1.1. Complete Cross-Immunity

For illustrative purposes, we start with a model of two co-circulating strains within a
simplified SIR framework, assuming complete cross-immunity. This means infection by
either strain confers lifelong immunity to both. The four distinct compartmental classes are:
susceptible to both strains, infectious with strain 1, infectious with strain 2, and recovered
and therefore immune to both. Mathematically this leads to the following differential
equations which are a simple modification to the standard SIR equations:

dS

dt
= ν − β1SI1 − β2SI2 − µS,

dI1

dt
= β1SI1 − γ1I1 − m1I1 − µI1,

(4.1)
dI2

dt
= β2SI2 − γ2I2 − m2I2 − µI2,

dR

dt
= γ1I1 + γ2I2 − µR.

Here, for generality, it has been assumed that the two strains have different transmission
(β), recovery (γ ), and mortality (m) rates. The strain-specific basic reproductive ratio is
given by Ri

0 = βi/(γi + µ + mi) (i = 1, 2). It is natural to attempt an understanding of
this system by deriving and examining its equilibria. This approach soon leads to the
paradoxical situation where the coexistence of both strains requires the fraction susceptible
to be at once 1/R1

0 and 1/R2
0! Closer examination by simulation of equations (4.1) shows

that only one strain can persist in such a scenario. Both are competing for the same limited
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Figure 4.2. The reproductive ratio, R = S × R0, of two competing strains that offer complete cross-
immunity. When the level of susceptibles is low the prevalence of both strains decreases, whereas
when a high proportion are susceptible both strains can increase, although this will eventually lead
to a decrease in the proportion susceptible, changing the dynamics. In the intermediate region,
only strain 1 can increase with the weaker strain 2 being driven to extinction. (β1 = 4, β2 = 1.35,
γ1 + µ = γ2 + µ = 1, m1 = m2 = 0.)

resource (susceptibles), and following the ecological tenet, whichever strain utilizes that
resource more efficiently will dominate. In particular, the strain with the largest basic
reproductive ratio will drive the other to extinction.

When competing strains provide complete protection for each other, the strain with
the largest R0 will force the other strain to extinction.

This competition scenario can be readily understood by considering the growth rate
of each strain, captured by the reproductive ratio Ri , as the level of susceptibles varies
(Figure 4.2). For convenience, we assume that strain 1 has a higher basic reproductive ratio
than strain 2, that is, R1

0 > R2
0. Standard theory tells us that the fraction of infecteds will

increase whenever S > 1/R0 (so that the effective reproductive ratio, R0 × S, is greater
than one), and will decrease whenever S < 1/R0. This behavior leads to three separate
regions and two points where one of the strains is at equilibrium (R0S = 1). If strain 2
is at equilibrium (and therefore S = 1/R2

0), then because the growth rate of strain 1 is
positive, this cannot be a stable equilibrium solution for both strains. However, if strain
1 is at equilibrium (and S = 1/R1

0), then because the growth rate of strain 2 is negative,
this strain cannot invade and is always forced to extinction. The stable solution is therefore
S = 1/R1

0, I1 = (νR1
0 − µ)/β1, I2 = 0 (assuming births exactly balance deaths).

Although R0 determines the eventual competitive outcome, pathogens with a more rapid
life cycle may be favored in the short term. If two strains invade a highly susceptible
population (S ∼ 1), then the strain with the largest growth rate (β − γ − m − d) will be
initially favored. Figure 4.3 shows an example of this type of behavior, starting with two
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Figure 4.3. The level of two competing strains introduced into a totally susceptible population.
During the early epidemic phase (days 0–50), the faster strain 2 dominates, whereas at far later times
strain 1 with the largest R0 is the eventual winner. (ν = µ = 5 × 10−5; β1 = 0.2, γ1 = 0.1, R1

0 ≈ 2;
β2 = 1.8, γ2 = 1, R2

0 ≈ 1.8; m1 = m2 = 0. All rates are in days.)

strains invading a totally susceptible population. Although strain 1 has a larger R0 and
therefore eventually dominates (at a time scale of many years), because the life cycle of
strain 2 is so much faster it wins out during the initial epidemic lasting about 50 days.

Although the relative R0 values determine the long-term competitive success, a rapid
life cycle may allow short-term dominance.

4.1.1.1. Evolutionary Implications

Now consider what the above results mean in terms of the direction that natural selection
would be expected to act. Any mutation that generates a new strain with a larger basic
reproductive ratio will be favored, and over time such mutations should accumulate
such that R0 increases. Relating this behavior to more mechanistic parameters implies
that both the transmission rate, β, and the infectious period, 1/γ , should increase and
where applicable the disease-induced mortality or virulence, m, should decrease (May
and Anderson 1983; Bremermann and Thieme 1989). Hence, when no other constrains
are present, all infections should become highly transmissible, lifelong infections that are
benign or even beneficial to the host (Mann et al. 2003).

Evolution will favor mutants with higher R0, in theory leading to higher transmission
rates, and long-lasting infections associated with a low probability of mortality.

Interestingly, most infectious diseases of public-health concern do not fit this predicted
pattern. The reason for this discrepancy has been the subject of much research, generally
focused on the existence of trade-offs between the transmission rate of the pathogen and
the duration of the infectious period (Bremermann and Thieme 1989; Levin et al. 1999;
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Figure 4.4. Using the power-law trade-off γ + m = kβα , intermediate values of β produce the
maximum basic reproductive ratio, R0. When α ≤ 1, we predict runaway evolution to ever-larger
transmission rates. For α > 1, the optimal transmission rate and associated R0 value (indicated with
a dot) increases as α becomes larger. (k = 0.1, µ = 10−4, rates given per day.)

Boots and Sasaki 1999). The transmission-virulence trade-off is based upon the notion that
any infection producing lots of pathogen particles—while readily transmitted—is likely
to be harmful to the host, resulting in rapid host death (Anderson and May 1991; Boots
and Sasaki 1999). This trade-off could also apply to the infectious period, such that highly
transmissible pathogens are most often of short duration. A crude reflection of this can be
seen in the low-transmissibility and long-infectious period of sexually transmitted diseases
compared to the generally more transmissible airborne diseases that have much shorter
infectious periods. Given a relationship between the duration of infection, 1/(γ + m + µ),
and the transmission rate, β, the disease will evolve to the set of parameters that
maximize R0:

R0 = β

µ + γ + m
.

The trade-off is frequently assumed to be power-law in shape such that:

γ + m = kβα ⇒ R0 = β

µ + kβα
.

Hence, when α > 1, R0 has a well-defined maximum and the transmission rate should
evolve toward the intermediate value of β = α

√
µ/(k(α − 1)). By applying a trade-off

between transmission and infection longevity, we can eliminate runaway evolution and
predict intermediate infection parameters and dynamics of the type observed (Figure 4.4).

Trade-offs between transmission rates and duration of infection mean that R0 is
maximized for intermediate values and runaway evolution is prevented.

Although these forms of analysis provide an intuitive understanding of the sele-
ction pressures that affect disease evolution, several issues still remain unsolved. Most
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immediate is the precise form of the trade-off (Levin 1996). Although the assumed power-
law relationship is quite flexible, the true trade-off is likely to be more complex. To date,
there is little experimental or observational evidence to support the existence of a trade-
off and clearly insufficient data to determine a functional form (Ebert and Bull 2003).
For this formulation to be of practical benefit, the trade-off curve associated with every
pathogen would have to be determined. Finally, the models implicitly assume that infection
parameters occupy a continuous spectrum, whereas in reality their behavior is controlled
by a discrete set of genes. However, the mapping from genotype to phenotypic behavior is
still a major challenge and we are many years from a detailed empirical understanding.

As well as providing an evolutionary perspective on disease behavior, this theory can
also be used to investigate the plausible evolutionary changes in response to social and
medical changes. The most applied use is the investigation of antibiotic resistance—when
it arises and how its spread can be controlled (Austin and Anderson 1999a; Lipsitch
et al. 2000). Consider two bacterial strains, a wild type (Iw) and a resistant strain (Ir ),
that compete for susceptibles. In general, resistance is assumed to be costly, meaning that
the wild type is naturally fitter (has a higher Rw

0 ). It is this assumption that allows the
wild type to dominate in the natural environment. The resistant strain, however, is not
eliminated by antibiotics and therefore maintains its Rr

0 even when medical treatment is
provided. By modeling the effects of treatment on the reproductive ratio of the wild type
strain, treatment regimes can be found that minimize the evolution of resistant strains. For
example, we might suppose that treatment with antibiotics acts to reduce the infectious
period of the wild type strain, allowing individuals to recover more quickly. This leads to
the following set of equations describing the dynamics:

dS

dt
= ν − S(βwIw + βr Ir ) − µS,

dIw

dt
= βwSIw − (γ + T )Iw − µIw,

dIr

dt
= βrSIr − γ Ir − µIR,

where βr < βw, and treatment with antibiotics, T , acts to increase the recovery rate. The
results are shown in Figure 4.5.

As predicted from previous models, it is clear that due to the complete cross-immunity
only one strain can persist; when the treatment level is low the wild type dominates, but
above a critical treatment level, TC , the resistant mutant takes over. This critical level is
observed when both strains have equal reproductive ratios:

βw

γ + Tc

= βr

γ
⇒ TC = γ

(
1 − βw

βr

)
.

Minimizing the prevalence of infection in the population occurs for treatment levels
just below TC ; therefore, there is a careful balance between reducing infection and not
producing conditions favorable to the resistant strains. The greater the difference between
wild-type and resistant strains (in terms of R0), the greater the reduction in prevalence
before resistant strains are favored. Two biological factors complicate this picture: (1)
compensatory mutations can arise that counteract the reduction in fitness suffered by
the resistant strain, and (2) although mutation from wild type to resistant is relatively
common, back mutations are far rarer. An additional, though often ignored, subtlety in such

This content downloaded from 73.8.248.103 on Thu, 14 May 2020 00:10:56 UTC
All use subject to https://about.jstor.org/terms



112 CHAPTER 4

systems is the horizontal transfer of antimicrobial resistance genes mediated by plasmids
(Sørensen et al. 2004).

Application of antibiotic treatments requires a careful balance between combating
infection and not providing suitable conditions for resistant mutants to out-compete
the wild type.

4.1.2. No Cross-Immunity

At the opposite extreme are infectious diseases that result in no cross-immunity. The mod-
eling of such infections only differs from the case of two independent infections in that co-
infection is assumed not to occur. Often, this assumption has a strong epidemiological basis
because those individuals infected or convalescing from one infection are not mixing with
enough individuals to catch subsequent infections. In this instance, the equations become:

dNSS

dt
= ν − β1NSSI1 − β2NSSI2 − µNSS,

dNIS

dt
= β1NSSI1 − γ1NIS − µNIS,

dNRS

dt
= γ1NIS − β2NRSI2 − µNRS,

dNSI

dt
= β2NSSI2 − γ2NSI − µNSI ,

dNRI

dt
= β2NRSI2 − γ2NRI − µNRI , (4.2)

dNSR

dt
= γ1NIS − β1NSRI1 − µNRS,

dNIR

dt
= β1NSRI1 − γ1NIR − µNIR,

dNRR

dt
= γ1NIR + γ2NRI − µNRR,

I1 = NIS + NIR, I2 = NSI + NRI ,

where NAB refers to the proportion of the population that are in state A with respect
to disease 1 and state B with respect to disease 2, so NSI refers to individuals that are
susceptible to disease 1 and infections with disease 2. In this situation, co-existence of the
two strains/diseases is generally possible whenever the two basic reproductive ratios are
greater than one.

Even when there is no cross-immunity, the absence of multiply infected individuals is
epidemiologically plausible, reflecting the reduced number of contacts when ill.

4.1.2.1. Application: The Interaction of Measles and Whooping Cough

One of the clearest applications of this type of model has focused on the dynamics of
measles and whooping cough. Measles is caused by a virus and whooping cough is caused
by a bacterium, hence we would not expect any specific immune-mediated interaction.
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Figure 4.5. The prevalence of wild type, Iw (solid lines), and antibiotic resistant, Ir (dashed lines),
infection in the population as differing amounts of treatment, T , are applied. The upper x-axis
converts the treatment level into a measure of the infectious period. Due to complete cross-immunity,
only one strain can persist. (βw = 1, γ = 0.1, which means that in the absence of treatment,
Rw

0 = 10.) Two resistant scenarios are considered: When the resistant strain is only slightly less
fit, βr = 0.9, R0 = 9 (black), and when the resistant strain is far less fit, βw = 0.5, R0 = 5 (gray).
(ν = µ = 5.5 × 10−5, all rates are per day.)

However, Rohani et al. (1998) argued that the quarantining that occurs during the later
stages of the infectious period and subsequent convalescence means that a fraction of
potentially susceptible individuals might be temporarily unavailable to catch any other co-
circulating infections. Thus, simple behavioral considerations predict a possible interaction
between the epidemics of unrelated infectious diseases. In addition, when pathogens
are associated with a considerable probability of mortality following infection, some of
those infected become permanently unavailable to contract other diseases (similar to the
effects of cross-immunity). This effectively increases the competition for hosts, resulting
in “interference” between the epidemics of unrelated infectious diseases.

Rohani et al. (1998) modified equations (4.2) by incorporating a convalescent class
and demonstrated that the isolation of individuals during their convalescence period is
sufficient to alter the dynamics of competing infectious diseases. They compared the
epidemics of measles and whooping cough predicted by two independent single-disease
SEIR models to those observed in the modified two-disease model described above. In
the two-disease model, the rigidly annual epidemics of whooping cough predicted by the
standard SEIR model give way to a range of biennial dynamics, mimicking the epidemics
of measles. The presence of whooping cough in the two-disease model results in a reduced
effective amplitude of seasonality for measles. As explained by Huang and Rohani (2005),
this is because measles has the higher transmission rate, thereby its epidemic patterns
become imprinted on whooping cough dynamics as a result of their interaction via the
susceptible pool. The most obvious signature of disease interference is, however, out-of-
phase epidemics of the two infections when dynamics are multiennial.
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Figure 4.6. Long-term patterns in measles (black lines) and whooping cough (gray lines) epidemics
in Aberdeen from 1883 to 1901 (data from Laing and Hay 1902). The top panel contains monthly
case notifications; the bottom panel shows monthly case fatalities. The time series for both infections
exhibit a strong biennial component, with a striking phase difference between measles and whooping
cough outbreaks. (Note that the data is plotted on a nonlinear scale to better illustrate the cyclic
nature.)

The most convincing empirical support for this phenomenon has been found in European
case fatality data for measles and whooping cough in the early decades of the twentieth
century (Rohani et al. 2003). As shown in Figure 4.6, the biennial epidemics of measles
and whooping cough are clearly out of phase, particularly from 1891–1902, consistent with
the predictions of the two-disease model.

Notice, however, that children are typically exposed to many more infectious diseases
than just measles and whooping cough. These other infections include mumps, polio,
rubella, or chickenpox, among others. Given the generality of the interaction envisaged
by Rohani et al. (1998), would we expect all of these infectious diseases to dynamically
interact? By extension, ideally, would any modeling work need to include all of these
pathogens? We believe the answer to this question is likely to be “no.” Using simple
homogeneous models without age structure, it has been demonstrated that dynamical inter-
ference effects are most pronounced between infections with a similar basic reproductive
ratio (Rohani et al. 2003, 2007; Huang and Rohani 2006). A complete understanding of this
issue will, however, need age-dependence in contact rates to be taken into account. This
is because the interference concept relies on “competition” for resources (hosts) between
pathogens. For the dynamical effects of this competitive interaction to be noticeable, the
pathogens should be infecting largely the same cohort of hosts. Using a two-disease age-
structured model, Huang and Rohani (2006) showed that the extent of interference effects
is closely determined by the relative distributions of age at infection. Hence, given their
similar R0s, measles and whooping cough are likely to have been strongly “competing”
for children in the same age cohorts, whereas their interaction with the other childhood
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infections is likely to have been less intense. This logic suggests that infectious diseases
such as rubella and polio, or chickenpox and mumps, may also be good potential candidates
for the study of interference effects.

4.1.2.2. Application: Multiple Malaria Strains

A second example of such models comes from the epidemiology of Plasmodium fal-
ciparum, the malaria-causing parasite. Section 4.2.2 of this chapter provides a detailed
description of a modeling approach for malaria that includes the transmission via mosquito
vectors—however, here we simplify the dynamics by approximating malaria by a directly
transmitted infection. The basic reproductive ratio, R0, of malaria is generally estimated
from the increase with age, a, of the proportion of the population seropositive, (i.e., the
proportion that is no longer susceptible, 1 − S(a)). Standard theory (Chapters 2 and 3)
predicts that when all ages suffer equal exposure to the pathogen, the level of susceptibles
decays exponentially with age:

S(a) = exp
(

−R0 − 1
L

a

)
, (4.3)

where L = 1/µ is the average life expectancy. This leads to an average age of first
infection A = L/(R0 − 1). Because the average age of infection is around one year old,
such calculations lead to estimates of R0 in the range 50 to 100, making the eradication
of malaria extremely difficult. However, these calculations assume that malaria is a single
strain infection and that following infection there is complete immunity. However, detailed
serological evidence suggests that a diverse range of antigenically distinct strains may
cause the disease that is labeled malaria (Day and Marsh 1991).

Following the work of Gupta et al. (1994), we consider several strains of Plasmodium
falciparum, each of which causes symptoms that are diagnosed as malaria, and suppose
that the strains offer no cross-immunity, to each other. A relaxation of this assumption, so
that strains confer partial immunity, does not radically change the general conclusions. The
proportion of the population that is still susceptible to strain i at age a is given by:

Si(a) = exp
(

−
Ri

0 − 1
L

a

)
.

However, because there is no cross-immunity, strains act independently. Therefore, the
proportion of individuals who are totally susceptible and have no malaria antibodies against
any strain can be calculated as the independent (and therefore multiplicative) probability
of being susceptible to each strain:

S total(a) =
∏

i

Si(a) = exp

(

−
∑

i

(Ri
0 − 1)

a

L

)

. (4.4)

Thus, comparing equations (4.3) and (4.4), we see that the value of R0 that is derived
under the assumption of a single malaria strain is related to the sum of the separate R0

values when multiple strains co-circulate.

Restimated
0 = 1 +

∑

i

(Ri
0 − 1)
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Hence, the true value of R0 for each strain is likely to be greatly reduced compared to
standard estimates; Gupta et al. (1994) calculated that R0 may be as low as 6 or 7. So that,
instead of having one infectious disease that is very hard to eradicate, this analysis suggests
that we have multiple strains, each of which may be substantially easier to eliminate. A
control measure that could reduce the overall transmission rate to 10%–15% of its current
value would be predicted to eradicate all strains simultaneously. Clearly such results have
a profound impact on our understanding of the dynamics and potential control of malaria.

When there is limited cross-immunity, the individual values of R0 for each strain are
lower than estimated from the seropositive level that ignore strain structure.

4.1.3. Enhanced Susceptibility

We now focus on the situation where co-infection with two or more strains is more
likely than pure chance would dictate. The classic example here is sexually transmitted
infections, where the presence of one infection can increase the susceptibility of the host
to other infections (Coggins and Segal 1998). This enhanced susceptibility can lead to
some surprising results, as discussed below. In addition to these physiological factors, the
risk structuring of the population also increases the level of co-infection as the high-risk
core group is exposed to a higher force of infection for many sexually transmitted diseases
(Chapter 3).

Sexually transmitted infections usually conform to the SIS paradigm, where after
treatment infectious individuals are once again susceptible. There are four differential
equations correspond to the two possible states (S and I) and the two infections:

dNSS

dt
= −β1NSSI1 − β2NSSI2 + γ1NIS + γ2NSI + γ3NII ,

dNIS

dt
= β1NSSI1 − γ1NIS − β̂2NISI2,

dNSI

dt
= β2NSSI2 − γ2NSI − β̂1NSI I1, (4.5)

dNII

dt
= β̂1NSI I1 + β̂2NISI2 − γ3NII ,

I1 = NIS + NII , I2 = NSI + NII .

These equations assume that those individuals with both infections would be treated for
both simultaneously (at rate γ3); we also make the simplifying assumption that infections
are passed on independently, such that those with both infections do not necessarily pass
both on to each individual they infect. (The converse assumption does not affect the
qualitative results discussed below.) We are now particularly interested in the case where
being infected with one disease increases the susceptibility to the other, which translates to
β̂1 > β1 and β̂2 > β2.

One interesting feature of such enhanced susceptibility is its effect on the invasion and
persistence of the two infections. For either infection to invade a naive, totally susceptible
population we require, as usual, that R0 is greater than one; in particular, for each infection
to be able to invade we need:

β1 > γ1 and β2 > γ2.

This content downloaded from 73.8.248.103 on Thu, 14 May 2020 00:10:56 UTC
All use subject to https://about.jstor.org/terms



MULTI-PATHOGEN/MULTI-HOST MODELS 117

10−6

10−4

10−2

100

10−6

10−5

10−4

10−3

10−2

10−1

100

0

0.02

0.04

0.06

In
fe

cte
d 

with
 1

, N
IS

Infected with disease 2, N
SI

In
fe

ct
ed

 w
ith

 b
ot

h 
di

se
as

es
, N

II

Figure 4.7. Example of six trajectories from the enhanced susceptibility model, equation (4.5),
clearly demonstrating the Allee effect. The surface separating persistence from extinction is also
shown as a mesh. Gray orbits start just below the surface and lead to extinction, whereas black
orbits start just above the surface and tend to a fixed point with a high prevalence of both infections.
(γ1 = γ2 = γ3 = 1, β1 = 0.9, β2 = 0.85, β̂1 = 8, β̂2 = 7.)

At invasion, because prevalence is low and hence co-infection very rare, the terms β̂1,
β̂2, and γ3 do not enter into the invasion criterion. However, once the infections are
established and co-infection common, these terms can play a pivotal role in maintenance
of both infections. In particular, if β1 and β2 are small but β̂1 and β̂2 are large, we can
experience what is known in ecology as an Allee effect (Courchamp et al. 1999), whereby
the infections cannot invade but may persist once they become established. This occurs
when the basic reproductive ratio for the infections is below one so that neither can invade
a totally susceptible population; however, given a substantial prevalence of infection 1,
the average susceptibility of the population to infection 2 is increased and so infection 2
can persist—and vice versa. Figure 4.7 shows an example of this; trajectories (in black) that
start above a critical prevalence tend to an endemic equilibrium, whereas orbits (in gray)
that start below tend to zero. The mesh separates the regions of persistence and extinction.

Having one sexually transmitted infection can often increase the susceptibility to
others, promoting co-infection. In such circumstances the Allee effect may operate,
and reducing the prevalence of one infection may lead to a reduction of the other.

The somewhat extreme example of Figure 4.7, where susceptibility is greatly enhanced
by infection, is chosen primarily to illustrate the effects of such nonlinear behavior. In prac-
tice the increase in susceptibility is generally far less, although the basic results may still
hold. The presence of one sexually transmitted infection may make it difficult to eradicate
others compared to a combined control strategy; small changes in sexual practices may
cause significant changes in prevalence due to the nonlinear nature of the system and Allee
effects may be observed. In conclusion, it may be erroneous to study sexually transmitted
infections in isolation and a multi-disease approach may frequently be necessary.

This content downloaded from 73.8.248.103 on Thu, 14 May 2020 00:10:56 UTC
All use subject to https://about.jstor.org/terms



118 CHAPTER 4

4.1.4. Partial Cross-Immunity

Partial cross-immunity refers to the situation where by having experienced and recovered
from one infection, or strain, provides some form of limited protection against other
infections, or related strains. This form of immunity is the most commonly studied and
most widely applicable formulation of the two-strain model. However, a range of differing
assumptions can be made about the nature of cross-immunity. Protection can operate either
through reduced susceptibility, reduced transmissibility, or a mixture of the two. There is
the additional complication that protection might be conferred only to a faction of those in-
dividuals, but for the moment we shall assume a homogeneous response, with all recovered
individuals experiencing the same reduction. Following a similar notation to before:

This is
online
program
4.1

dNSS

dt
= ν − β1NSSI1 − β2NSSI2 − µNSS,

dNIS

dt
= β1NSSI1 − γ1NIS − µNIS,

dNRS

dt
= γ1NIS − α2β2NRSI2 − µNRS,

dNSI

dt
= β2NSSI2 − γ2NSI − µNSI ,

dNRI

dt
= α2β2NRSI2 − γ2NRI − µNRI , (4.6)

dNSR

dt
= γ1NIS − α1β1NSRI1 − µNRS,

dNIR

dt
= α1β1NSRI1 − γ1NIR − µNIR,

dNRR

dt
= γ1NIR + γ2NRI − µNRR,

I1 = NIS + a1NIR, I2 = NSI + a2NRI ,
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where αi is the proportional reduction in the susceptibility to strain i and ai is the
proportional reduction in the transmission of strain i, for individuals who have recovered
from the other strain. Clearly, with so many parameters a full description of all possible
scenarios is a lengthy undertaking (White et al. 1998); instead we will highlight a few
interesting and epidemiologically important points.

Suppose that one strain of the disease has already entered the population and reached
equilibrium. The equilibrium fractions of susceptible, infectious, and recovered individuals
are those of a single disease in isolation (Chapter 2):

N∗
SS = γ1 + µ

β1
, N∗

IS = µ

γ1 + µ
− µ

β1
, N∗

RS = γ1

γ1 + µ
− γ1

β1
.

Whether or not the second strain can invade can be judged by looking at the growth rate of
a small seed of infecteds, seeing whether strain 2 can increase ( dI2

dt
> 0) when strain 1 is

at equilibrium:

dI2

dt
= dNSI

dt
+ a2

dNRI

dt
= β2N∗

SSI2 + a2α2β2N∗
RSI2 − γ2I2 − µI2,

= β2
γ1 + µ

β1
I2 + a2α2β2

(
γ1

γ1 + µ
− γ1

β1

)
I2 − γ2I2 − µI2,

= β2

[
γ1 + µ

β1
− γ2 + µ

β2

]
I2 + a2α2

(
γ1

γ1 + µ
− γ1

β1

)
I2.

So strain 2 can invade if it has a higher reproductive ratio than strain 1, which implies that
β2(γ1 + µ) > β1(γ2 + µ); or if the effects of cross-immunity are not particularly strong:

a2α2 >
β1(γ1 + µ)

[
β1(γ2 + µ) − β2(γ1 + µ)

]

γ1(β1 − γ1 − µ)β2
≈

R1
0(R1

0 − R2
0)(γ1 + µ)

R2
0(R1

0 − 1)
. (4.7)

By symmetry, we can obtain a similar set of conditions by allowing strain 2 to reach
equilibrium and then seeing whether strain 1 can invade. We assume that the strain with
the larger R0 is labeled strain 1; then if condition (4.7) holds, both strains can invade when
the other is at equilibrium and hence coexistence is possible. In fact, more detailed analysis
shows that under these assumptions any initial condition (where both strains are present)
leads to the two strains coexisting at some equilibrium.

Coexistence of strains is possible when their respective R0 values are close and cross-
immunity is weak.

The inclusion of partial immunity bridges the gap between complete cross-immunity
where only one strain persists and no cross-immunity where both strains always coexist.
Because the coexistence condition (4.7) contains only the product a2α2, it is irrelevant for
a two-strain model, whether partial cross-immunity acts on transmission (a), susceptibility
(α), or a mixture of the two. However, when the competition between more than two
strains is considered, differences between reduced transmission and reduced susceptibility
do occur. To understand these differences, consider a three-strain model, in a triangular
arrangement, where strain 1 confers complete immunity against strain 2, strain 2 confers
complete immunity against strain 3, and strain 3 confers immunity against strain 1, with
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no other interactions. In the reduced susceptibility model, an individual recovered from
strain 1 cannot catch strain 2 when challenged, but can later catch strain 3. However, in the
reduced transmissibility model, once an individual has recovered from strain 1 he or she
can catch (but not transmit) strain 2, which provides immunity against strain 3. This simple
conceptual example shows how a detailed understanding of the host’s immunological
responses is necessary to deal with realistic multi-strain models because the implications
of the basic assumptions are profound.

When many cross-reactive strains are circulating within the population, different
assumptions about the nature of cross-reactivity can have profound effects on the
modeling outcome. Detailed immunological studies are required to clarify the typical
behavior.

4.1.4.1. Evolutionary Implications

The partial cross-immunity model can again be considered within an evolutionary setting,
by examining competition between strains. In general, most interest has focused on the
evolutionary dynamics of influenza, where new strains continually arise and face little herd
immunity within the population (Fitch et al. 1997; Earn et al. 2002); models for this type
of dynamics therefore must include the interaction of multiple strains (Andreasen et al.
1996; Andreasen et al. 1997; Gomes et al. 2001; Gog and Swinton 2002; Gog and Grenfell
2002; Ferguson et al. 2003a). However, as shown above, this competition does not have to
lead to the exclusion of one strain; coexistence is possible. What makes the inclusion of
partial cross-immunity so relevant to evolutionary modeling is that when multiple strains
are considered, it is plausible to assume that closely related strains have a high level of
cross-immunity whereas distantly related strains display little or no cross-immunity. This
basic rule has much supporting evidence (de Jong et al. 2000; Earn et al. 2002). Significant
jumps in strain structure, due to recombination, may produce strains with high virulence
and little population-level immunity; these jumps are epidemiologically important because
they may lead to pandemics, as seen 1918 (Gibbs et al. 2001).

The assumption of high cross-immunity for closely related strains has a strong evolution-
ary implication. The vast majority of new strains, which are genetically and phenotypically
close to their parent strain, will face the same level of immunity in the population as
their parent and therefore are unlikely to rise to dominance. It is only the rare distant
mutation that, facing little conferred immunity, can increase dramatically. Thus, evolution
does not lead to the gradual change, but instead progresses by a series of jumps whenever
sufficiently distant mutants occur.

The great difficulty with multi-strain models that attempt to track the evolutionary
progress of diseases is the rapid proliferation in the number of equations with the number
of strains (Gomes et al. 2001). To completely capture the dynamics of n interacting strains
within the SIR framework requires 3n differential equations, or (n + 2)2n−1 equations
if co-infection is ignored. Clearly this sort of exponential growth in model complexity
places severe restrictions on the number of strains that can be simulated, even with
modern computational technologies. However, substantial simplifications to the model
can be made given two reasonable assumptions (Andreasen et al. 1996; Gog and Swinton
2002; Gog and Grenfell 2002). The first is that immunity acts to reduce transmission, not
susceptibility; this means that all individuals are equally at risk to any strain irrespective
of their epidemic history. Physiologically, this assumption implies that even when an
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individual has immunity to a particular strain, if challenged by that strain they still become
infected and mount a full immune response, but clear the pathogen before transmission
can occur. The second assumption is that partial immunity acts heterogeneously, by
making a proportion of recovered individuals totally immune, rather than the homogeneous
assumption when all recovered individuals have an equally reduced transmission rate.
These two assumptions mean that we need to consider only the proportion of individuals
“susceptible to” and infectious with each strain. Hence for a model with n strains there are
only 2n equations:

dSi

dt
= ν −

∑

j

βj cij SiIj − µSi,

dIi

dt
= βiSiIi − γiIi − µIi,

(4.8)

where 0 ≤ cij ≤ 1 provides information on the gain of complete immunity to strain i

due to infection (or challenge) with strain j . We would normally insist that cii = 1
so that the single strain dynamics are SIR. Si refers to the fraction of the population
who are not immune and therefore able to transmit strain i. Hence, the susceptibility
classes are not mutually exclusive; an individual susceptible to (i.e., able to catch and
subsequently transmit) strains 1 and 2 will belong to both S1 and S2. Therefore, the
population components no longer sum to one.

This change of emphasis, from discrete compartments to overlapping classes, can at first
be difficult to grasp. The reasoning behind equation (4.8) can be explained as follows. The
Ii equation is relatively straightforward: Only those individuals without immunity to the
strain (Si) can be infectious following transmission. Those individuals who are immune and
become infected, but are unable to transmit, do not play a role in the spread of infection
and can be ignored. The number of individuals who are susceptible to strain i are not
just reduced due to infection with strain i, but other strains can also affect the immunity
(captured by cij ). By assuming that all individuals can catch all strains, we do not need to
worry about the immune status of an individual with respect to strain j , just the effect of
strain j on the immunity with respect to strain i.

This simple, but powerful, model can now be used to investigate antigenic drift which
is evolution driven by the immunity of the population with no discernible change in
infection characteristics (so βi = β and γi = γ ). Following Gog and Grenfell (2002) (see
also Andreasen et al. 1996), we position strains on a one-dimensional line and assume that
immunity is conferred most strongly to nearby strains:

cij = exp(−A[i − j ]2).

It is also presumed that random mutation, at a rate ε, can lead to the spontaneous creation
of adjacent strains. This modifies the basic equation:

dIi

dt
= βSiIi − γ Ii − µIi − εIi + 1

2
εIi+1 + 1

2
εIi−1. (4.9)

Figure 4.8 shows an example of the type of drift dynamics predicted by this model.
With 100 strains, a traditional approach that tracks all infection histories would require
over 6 × 1031 equations—this is computationally infeasible. Two clear features emerge
from this model that mimic the observed behavior of influenza (Fitch et al. 1997; Earn
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Figure 4.8. Dynamics of a strain-structured model of influenza (equations (4.8) and (4.9)), where
partial immunity is conferred to nearby strains and is assumed to act heterogeneously on the
transmission rate. The left-hand composite of three graphs show the prevalence of infection within
the population. The main graph gives the strain-specific level over time Ii(t) (contours plotted on
logarithmic scale, with darkest contours referring to highest prevalences of infecteds); the top graph
shows the total prevalence of infection with each strain

∫
Ii(t)dt over the 10-year simulation; the

right graph shows the total infected against time
∑

i Ii(t). The right-hand graph gives the level of
“susceptibility” to each strain Si(t); here the contours are linearly spaced. (ν = µ = 5 × 10−5 per
day, 1/γ = 7 days, R0 = 3, A = 0.01, ε = 0.01 per year.)

et al. 2002). First, there are clear oscillations in the fraction of infecteds (summed over
all strains) driven by the strain structure and rate of mutation; in practice, any oscillations
in the prevalence of influenza are reinforced by seasonal effects (however, see Dushoff
et al. 2004 and Viboud et al. 2006). Second, due to the cross-immunity invoked towards
nearby strains, the next epidemic strain must be sufficiently distinct from previous strains;
the time taken for these new distant mutants to arise sets the duration between epidemics.

Although such models are a powerful tool for providing insights into the evolutionary
dynamics of diseases, the assumed structure of strain space is somewhat naive. A better
approximation would be to assume that the space is high-dimensional (Gupta and Maiden
2001), and that, although in general most mutations give rise to nearby strains, some
mutations (or recombination events) may cause a departure to more distant regions of strain
space where there is little cross-immunity. These large jumps, known as antigenic shift,
have profound public health implications and are likely to lead to far larger epidemics
than normal. Genetic evidence suggests that the 1918 influenza pandemic that killed
10–20 million people was due to the recombination of co-circulating strains (Gibbs et al.
2001). It remains a considerable challenge to determine the precise structure of this strain
space and the rate of mutation between various points. The current concerns over H5N1
influenza in poultry emphasizes the need for a detailed genetic understanding of immunity,
virulence, and the factors affecting the ability to transmit between humans.

4.1.4.2. Oscillations Driven by Cross-Immunity

Persistent, large amplitude epidemic cycles are generally considered to be a signature of
underlying seasonal effects or temporal forcing (Chapter 5), with the majority of unforced
models asymptoting to a fixed prevalence. The dynamics of multi-strain models are an
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exception to this rule. Consider the behavior seen in Figure 4.8. If the strains were not
positioned along a line, but the ends were joined together to make a circle, then an
everlasting wave of epidemics could propagate around the circle. By the time one complete
revolution of the circle has been made, there will have been sufficient births to increase
susceptibility to the initial strain.

Slight variants of equations (4.8) and (4.9) can produce self-sustained oscillations with
as few as four interacting strains (Andreasen et al. 1997; Gupta et al. 1998; Gomes et al.
2002; Dawes and Gog 2001). Following the work of Gupta et al. (1998), we consider the
dynamics of four interacting strains in a circular arrangement where recovery from one
strain offers partial protection to neighboring strains (e.g., recovery from strain 1 offers
partial protection against strains 2 and 4, recovery from strain 2 offers partial protection to
strains 1 and 3, etc.). Using the notation of Gupta et al. (1998), we have:

This is
online
program
4.2

dSi

dt
= µ − Si

∑

j

cij λj − µSi,

dPi

dt
= Si

∑

j ̸=i

cij λj − βPiIi − µPi,

dRi

dt
= (Si + Pi)λi − µRi,

dλi

dt
= [Si + aPi] λi − γ Ii − µIi,

(4.10)

where Si , Pi , and Ri are those totally susceptible to, partially susceptible to, and fully
immune to (either recovered from or infected with) strain i, and λi is the force of infection
associated with strain i. (cij is one if i and j are neighboring strains, but zero otherwise.)
Compared to the more complete notation given in equation (4.6), the above model
assumes that partial immunity decreases an individual’s transmissibility (a < 1) acting
homogeneously, but does not affect its susceptibility (α = 1); all strains have identical
characteristics. In particular, we can map the terms in equation (4.10) to those in equation
(4.6); for strain 1 we have:

S1 =
∑

Q∈{S,I,R}
NSSQS,

P1 =
∑

Q∈{S,I,R}

⎡

⎣
∑

A∈{S,I,R}

∑

B∈{S,I,R}
NSAQB − NSSQS

⎤

⎦ ,

R1 =
∑

Q,A,B∈{S,I,R}
NR,A,Q,B + NI,A,Q,B,

λ1 = β
∑

Q∈{S,I,R}
NISQS + aβ

∑

Q∈{S,I,R}

⎡

⎣
∑

A∈{S,I,R}

∑

B∈{S,I,R}
NIAQB − NSSQS

⎤

⎦ ,

so that those individuals totally susceptible to strain 1 must not have encountered strains
1, 2, or 4, but could be in any state with respect to strain 3 because strains 1 and 3 do not
interact. However, those who are partially resistant to strain 1 must not have encountered
strain 1, but must have encountered either strain 2 or 4. Similar arguments can be made to
construct the other terms.
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Figure 4.9. The dynamics of strains 1 and 2 of a four-strain system as typified by the force of
infection for each strain, λi . The level of cross-immunity, a, increases from top left to bottom right
(a = 0.55, 0.6, 0.65, 0.7). (µ = 0.02 per year, γ = 10 per year (1/γ = 36.5 days), β = 40 per year,
hence R0 = 4.)

Figure 4.9 shows that the dynamics of strains 1 and 2 (strains 3 and 4) behave identically
as the level of cross-immunity, a, varies. Increasing the level of cross-immunity increases
the period of the dynamics and the complexity of the epidemic cycles; values of a less
than about 0.53 lead to coexisting equilibrium dynamics where all strains asymptote to the
same constant level. It is important to note that sustained regular oscillations are not always
the signature of seasonal forcing. When a = 0.55 the period is around 21 years, whereas
when a = 0.7 the period has increased to about 79 years. Although the existence of such
cycles is inherently interesting, it is questionable whether such long-term oscillations play
any meaningful role in the dynamics of influenza. However, recent work on dengue fever
(Wearing and Rohani 2006), respiratory syncytial virus (White et al. 2005), and cholera
(Koelle et al. 2005) all show the propensity for multi-strain diseases to exhibit complex
cycles. More long-term strain-structured data and a more detailed understanding of the
levels of partial immunity are required before the implications of these large-amplitude
fluctuations can be practically assessed or their dynamics predicted.

Strain structure and partial cross-immunity between nearby strains can lead to long-
period oscillatory dynamics without the need for external forcing.
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The interaction between partially cross-immune strains can therefore lead to epidemic
cycles in the total infection prevalence (summed across all strains). Two other long-term
behaviors of cross-reactive multi-strain models exist, and both are readily achievable using
equations (4.8) and (4.9). The first, and most simple, is homogeneous equilibria where all
strains asymptote to the equilibrium level of abundance in the population. The second, and
more interesting, is heterogeneous equilibria where some strains persist at a much higher
prevalence than others; which strains are most abundant depends on the initial conditions.
These three scenarios (temporal oscillations, homogeneous abundance, and heterogeneous
equilibria) have interesting parallel with Turing patterns (Turing 1952; Murray 1982).
Strain-structured models possess local suppression (in terms of local immunity), activation
(in terms of susceptibles), and diffusion (in terms of mutation); it is therefore not surprising
that Turing-like dynamics can occur in strain space.

Models of strain structure with local immunity and mutation can lead to traveling
waves (observed as dynamic oscillations) or large amplitude stationary patterns in
strain space, parallelling Turing patterns.

4.1.5. A General Framework

Finally, we present a comprehensive, flexible mathematical framework that incorporates
various possible interactions between pathogens (Rohani et al. 2006). The framework
is presented for two infectious agents (labeled disease 1 and 2), though extending it to
include multiple pathogens is straightforward although lengthy. In developing the model,
we envisage a simplified natural history of infection for each disease:

• All newborns are fully susceptible to both infections.
• Upon infection, a susceptible individual enters the exposed (infected but not yet

infectious) class, and has a probability of contracting the “competing” infection
simultaneously (represented by the cross-immunity parameter φi , where i = 1, 2).
• After the latent period, the individual becomes infectious but is not yet symptomatic

and still has a reduced risk (φi) of becoming co-infected with the other disease.
• Typically, when symptoms appear, the disease is diagnosed and the individual is

sent home to convalesce for an average period given by 1/δi . During convalescence,
the competing infection may be contracted, with the transmission rate additionally
modulated by the parameter ξi , which may represent quarantine or temporary cross-
immunity (if less than one) or temporary immuno-suppression (if greater than one).
• Depending upon the disease, host age, and host condition (typically nutritional status),

infection may be fatal owing to complications (such as pneumonia and encephalitis,
in the case of measles and pertussis). This is represented by per capita infection-
induced mortality probabilities ρi . It is assumed that mortality occurs at the end of the
convalescent period, so that the effects of mortality can be separated from the effects
of the infectious and convalescent period. This is a very different assumption to that
used in Chapter 2, although it is equivalent under a (complex) change of variables.
• Upon complete recovery, the individual is assumed immune to the infection (disease

1) and reactivates susceptibility to disease 2, if previously not exposed to it. At this
stage, we introduce the term αi to explore the implications of long-lasting immuno-
suppression (αi > 1) or cross-immunity (αi < 1) for the susceptibility to disease
j following infection with disease i.
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The model incorporates a large number of possible mechanisms for interaction among
infections. At the immunological level, the parameter αi represents the long-term cross-
immunity or immuno-suppression resulting from becoming infected with infection i. The
term φi represents the extent of cross-immunity to infection j while individuals are
experiencing infection i. At the ecological level, the convalescent class and possible subse-
quent death following infection give rise to competition among infections for susceptibles.
Hence, depending on the system of interest, the model can be adapted accordingly.

Mathematically, these assumptions lead to the following set of ordinary differential
equations:

This is
online
program
4.3

dS

dt
= νN − (λ1 + λ2)S − µS,

dE1

dt
= λ1S − φ2λ2E1 − (σ1 + µ)E1,

dE2

dt
= λ2S − φ1λ1E2 − (σ2 + µ)E2,

dI1

dt
= σ1E1 − φ2λ2I1 − (γ1 + µ)I1,

dI2

dt
= σ2E2 − φ1λ1I2 − (γ2 + µ)I2,

dC1

dt
= γ1I1 − ξ2φ2λ2C1 − (δ1 + µ)C1,

dC2

dt
= γ2I2 − ξ1φ1λ1C2 − (δ2 + µ)C2,

dR1

dt
= (1 − ρ1)δ1C1 − α2λ2R1 − µR1,

dR2

dt
= (1 − ρ2)δ2C2 − α1λ1R2 − µR2,

dR12

dt
= (1 − ρ1)(1 − ρ2) (λ2φ2E1 + φ2I1 + ξ2φ2C1 + λ1φ1E2 + φ1I2 + ξ1φ1C2) ,

+(1 − ψ2ρ2)α2λ2R1 + (1 − ψ1ρ1)α1λ1R2 − µR12,

dϵ1

dt
= λ1S + φ1λ1E2 + φ1λ1I2 + ξ1φ1λ1C2 + α1λ1R2 − (σ1 + µ)ϵ1,

dϵ2

dt
= λ2S + φ2λ2E1 + φ2λ2I1 + ξ2φ2λ2C1 + α2λ2R1 − (σ2 + µ)ϵ2,

dλ1

dt
= β1σ1ϵ1 − (γ1 + µ)λ1,

dλ2

dt
= β2σ2ϵ2 − (γ2 + µ)λ2 .

This model represents an example of history-based formulation, rather than status-based.
The variables require some explanation. All those susceptible to both infections are denoted
by S. The variables Ei, Ii , and Ci (i = 1, 2) represent those currently exposed, infectious,
or convalescing (respectively) after infection with disease i, with no previous exposure to
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the other pathogen. The term Ri (i = 1, 2) represents all individuals who have previously
experienced infection i and as a result are now only (partially) susceptible to infection
j (j ̸= i). For bookkeeping purposes, we let ϵi and λi/βi represent individuals latent
and infectious with disease i (i = 1, 2), irrespective of their status for the other disease.
Additionally, R12 are all those no longer susceptible to either infection, and may include
those who are still exposed or infectious with one or both diseases and expected to fully
recover. Thus, in terms of the parameters used earlier: S = NSS , E1 = NES , I1 = NIS , and
so forth, E2 = NSE , and so forth, ϵ1 =

∑
Q NEQ, ϵ2 =

∑
Q NQE , λ1 = β1

∑
Q NIQ, λ2 =

β2
∑

Q NQI . However, this new notation has the distinct advantage that the parameters ϵi

and λi provide a useful shorthand. The total population size (N ) is the sum of the first
ten variables only (N = S +

∑2
i=1(Ei + Ii + Ci + Ri) + R12). The full derivation of this

model is presented in detail by Vasco et al. (2007). The model’s parameters are explained in
Table 4.1.

TABLE 4.1.
Description of model parameters. Subscripts refer to disease i (i = 1, 2).

Parameter Epidemiological Description Typical Range

ν Per capita birth rate 0.01–0.5 per year
µ Per capita death rate 0.01–0.5 per year
1/σi Latent period 1–2 weeks
1/γi Infectious period 1–3 weeks
1/δi Quarantine period 1–4 weeks
ρi Probability of infection-induced mortality 0–1
φi Co-infection probability 0–1
ξi Temporary immuno-suppression/cross-immunity ≥ 0
αi Permanent immuno-suppression/cross-immunity ≥ 0
ψi Differential infection-induced mortality 0–1

One intuitively obvious possible consequence of interaction among infections is reduced
abundance. Surprisingly, however, detailed analyses have demonstrated that disease in-
terference does not manifest itself by significantly altering infection prevalence; changes
in model parameters such as the convalescence period translate into negligible changes
in the number of infectives of either infection (Huang and Rohani 2005). Perhaps
more surprisingly, epidemiological interference exerts little influence on the coexistence
likelihood of pathogens. Defining the basic reproductive ratio of each infection as
R

j
0 = βj σj /(σj + µ) (γj + µ) (j = 1, 2), it is straightforward to show that coexistence

requires R
j
0 > 1 and

R
j
0 >

Ri
0

1 + ai(Ri
0 − 1)

, (4.11)

where

ai = 1
σi + µ

{
φµ + σi

γi + µ

(
φµ + γi

δi + µ
(ξφµ + α(1 − ρi)δi)

)}
, (4.12)

where i, j = 1, 2, j ̸= i, and the diseases are assumed to have symmetric values of φ,
α, and ξ (such that, for example, φ1 = φ2 = φ; details provided in Vasco et al. 2007).
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Figure 4.10. The figure demonstrates that coexistence of the two infections can be affected by
immuno-suppression and disease interference. In the absence of immune-mediated interactions (φi =
αi = 1, i = 1, 2), large levels of disease-induced mortality (ρi = 50%: dot-dashed line), can cause
the region of two-disease coexistence to shrink somewhat. In contrast, strong levels of permanent
immuno-suppression (φi = 1, αi = 2, ρi = 0, i = 1, 2: dashed line) can expand the coexistence
domain. Taken from Vasco et al. 2007. Model parameters were µ = 0.02, 1/σ1 = 1/σ2 = 8 days,
1/γ1 = 5 days, 1/γ2 = 14 days, ξ = 1, 1/δ1 = 7 days, and 1/δ2 = 14 days.

In Figure 4.10, we explore the conditions for disease coexistence in this model. In the ab-
sence of pathogen-induced mortality (ρ1 = ρ2 = 0) and with no long-term immunological
interactions (α = 1), the lack of coinfection alone has little effect on the stable two-disease
equilibrium, with the coexistence criterion effectively reducing to R1

0, R2
0 > 1. It is only

after we assume a 50% (dash-dotted line) probability of death following infection that the
region of endemic coexistence of both diseases shrinks slightly. On the other hand, if we
ignore ecological factors (such as pathogen virulence), immuno-suppression resulting from
one infection can facilitate the invasion and persistence of the competing disease even if
the invading infection has R0 lower than one (dashed line).

4.2. MULTIPLE HOSTS

Although many diseases are host-specific, many others can infect multiple and often highly
diverse species (Woolhouse et al. 2001b). The models for these types of disease mirror
the risk-structured framework developed in Chapter 3, with species being the important
risk factor. However, in contrast to risk-structured models, different species may have very
different epidemiological and physiological responses to the same infection. In one species
a infection may be short-lived and highly virulent, whereas in another species long-term
chronic infection may be the norm; the spread of infection between two such host species
is a complex problem that can only be understood with mathematical models. We focus on
three distinct scenarios that cover a wide spectrum of infections.
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First we consider two (or more) host species and a single disease that can be transmitted
both within and between the species. This kind of interaction is especially of interest
because, in some cases, the host species do not directly interact. The presence of a
shared natural enemy—the infection—gives rise to an indirect or “apparent” competition
(Holt 1977). A classic high-profile example of such a system is bovine-tuberculosis, where
great attention has been focused on the spread of infection between badgers and cattle.
Bovine-tuberculosis also exemplifies the parameterization difficulties that are encountered.
In modeling terms, the extent of disease spread from badgers to cattle simply relates to one
term in the transmission matrix and yet it is the subject of continual controversy despite
many years of research (Krebs 1997; Bourne et al. 2000). Another example of a multi-
host-pathogen system is foot-and-mouth virus, which can infect a large variety of livestock
species such as cattle, sheep, and pigs, despite their physiological differences. Foot-and-
mouth is a major problem for farmers in many areas of the world, and understanding the
role that different species play in its transmission and persistence is vital for effective, and
often species-specific, control measures.

The second type of multi-host systems are vector-transmitted diseases, such as malaria
or dengue fever, which require a secondary “host” to spread infection between primary
hosts. For both malaria and dengue fever this secondary host is the female mosquito,
which spreads the infecting pathogen as it takes blood-meals from humans or other
primary hosts. Vectors are almost always arthropods, and include a range of blood-sucking
parasites such as fleas, ticks, lice, and mosquitoes. Unlike the range of infectious diseases
considered so far, close contact between infected and susceptible humans is not a requisite
of transmission; instead, vectors can spread the infection over a wide range. Infectious
vectors can even be carried for thousands of miles in aircraft, promoting public health fears
of transporting these vector-born diseases to naive, previously disease-free populations.
Models for vector-transmitted diseases follow a similar pattern to standard multi-species
models, but the parameterization tends to be simpler due to the absence of within-species
transmission; mathematically, the diagonal terms of the transmission matrix are zero.
Additionally, the rapid life cycle of the vector compared to epidemic timescales can be
used to further simplify the modeling.

Finally we focus on zoonoses; these are infections of animals that can also be transmitted
to humans, and therefore form a special class of multi-host model. In general, the animal
population is the main reservoir for the infection and human cases are sporadic. Often
these infections are also vector-transmitted, so that direct contact between humans and the
reservoir species is not required. Examples of zoonoses include such high-profile diseases
as bubonic plague, West Nile virus, and Ebola. The existence of an animal reservoir and
the sporadic nature of transmission to humans has several implications. Without detailed
surveillance of the reservoir species, the pattern of human cases may appear confusing and
spontaneous. Additionally, by the time human cases arise and public health agencies are
aware of the disease’s presence, an epidemic with the reservoir species may be difficult
to control. Finally, zoonotic diseases are often (re-)emerging pathogens, so outbreaks are
unexpected, and experience of control measures is limited.

In the work that follows, due to the fact that we are dealing with different species whose
populations may fluctuate independently, it will be prudent to utilize numbers rather than
proportions. Hence we shall work with X for the number of susceptible individuals, rather
than the proportion S.
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4.2.1. Shared Hosts

The approach to modeling a single infectious disease that can be transmitted within and
between two different species has strong parallels with the work on risk-structured models
(Chapter 3) where there is transmission within and between two different risk groups. Thus
for two species (A and B), the SIR-type dynamics will be given by

dXA

dt
= νA − XA (βAAYA + βABYB) − µAXA,

dYA

dt
= XA (βAAYA + βABYB) − γAYA − µAYA,

dXB

dt
= νB − XB (βBAYA + βBBYB) − µBXB,

dYB

dt
= XB (βBAYA + βBBYB) − γBYB − µBYB.

(4.13)

The birth rates for the two species, νA and νB , may include complex density-dependent
terms, such that in the absence of infection the population levels tend to a carrying capacity.
The transmission term is not divided by the population size because we are dealing with
two separate populations and the interaction is likely to depend on the density of the two
species—we have assumed pseudo mass-action transmission. The main distinction from
risk-structured models of Chapter 3 is that different species are likely to have different
responses to infection and thus differing transmission rates and recovery periods, as well
as differing demographic parameters. The effect of the different transmission parameters
is to break the symmetry that is usually associated with the transmission matrix, β, of risk-
structured models. This is because although the mixing between species A and species
B is the same as the mixing between B and A, the transmission may be far stronger in
one direction because one species may shed more pathogen than the other, or may have
different physiological responses to infection.

In multi-host models, the transmission matrix is no longer expected to be symmetric,
due to species differences.

From the perspective of wildlife species, it is useful to incorporate well-documented
density-dependent population regulation into the modeling framework. This is done by
Dobson (2004), who derived analytical expressions for R0 under alternative assumptions
of disease transmission (also see Diekmann et al. 1990). He found that host species
diversity has an amplifying effect on outbreaks when transmission is density-dependent
(pseudo mass-action; see Chapter 4), as might be the case for pathogens with a free
living stage or transmitted by aerosol. On the other hand, for vector-borne diseases, where
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transmission is frequency-dependent (mass-action), increasing the number of host species
has a detrimental effect on pathogen prevalence (see Section 4.2.2.1). Dobson (2004) also
demonstrated that pathogen persistence is influenced by the relative strength of between-
and within-species transmission, with greater heterospecific transmission leading to greater
likelihood of long-term extinction.

4.2.1.1. Application: Transmission of Foot-and-Mouth Disease

The cause and implications of the asymmetry in the transmission matrix can be more
readily seen by example. We focus on the spread of foot-and-mouth disease (FMD),
which is a highly contagious infection with SIR-type dynamics that is rapidly transmitted
between a variety a livestock, especially cattle, sheep, and pigs. Estimates from the
2001 epidemic within the United Kingdom (Keeling et al. 2001b) showed that FMD is
transmitted slightly better by cattle than sheep (ratio cattle:sheep = 1.8 : 1) and that cattle
are far more susceptible (ratio 15 : 1), although these factors are somewhat offset by the
higher numbers of sheep within the United Kingdom (ratio 1 : 4.2). Hence, sheep and cattle
respond very differently to this infection, so any attempt at prediction must recognize these
differences and model the two species separately. Here, the susceptible and transmission
ratios not only incorporate innate differences between the species, but also differences
in farming practices and therefore the likelihood of infection being moved on and off a
farm. Despite forming the index case, pigs played only a very minor role in the subsequent
epidemic and can therefore be ignored.

If we naively assume random mixing between cattle and sheep, then the transmission
matrix becomes:

βAB = bsAτB β = b

(
27 15

1.8 1

)

, (4.14)

where s and τ give the susceptibility and transmissibility for the two species, and the
parameter b scales the transmission matrix to obtain the observed growth rate of reported
cases such that R0 ≈ 2.5 (Woolhouse et al. 2001a). In truth, cattle and sheep are aggregated
at both the farm and regional level, but to capture these effects requires detailed spatial
models (see Chapter 7; Keeling et al. 2001b). Finally, although there is some speculation
that sheep may be infected for slightly longer than cattle, partly due to the difficulty with
diagnosing infected sheep, we shall assume that both species have an equal infected period
(1/γ ) of around 11 days. This period is composed of around 4 days of latent period, a
further 5 days of infectivity before symptoms emerge, and an average of around 2 days
before the animals are slaughtered to prevent further transmission (Ferguson et al. 2001a).

Figure 4.11 shows the predicted epidemic dynamics of the foot-and-mouth model
(equation (4.13) with the transmission matrix given by (4.14)), starting with 100 infected
sheep and the approximate number of susceptible animals in the Cumbria at the start
of the 2001 UK epidemic (number of cattle, Nc ≈ 5.12 × 105; number of sheep, Ns ≈
2.64 × 106 ⇒ b = 1.38 × 10−8). The model results are highly reminiscent of those for
risk-structured models where the lower-risk group (sheep) is more prevalent. We notice
(inset to top graph) that initially the number of infected sheep decreases because the
infection cannot be sustained in the sheep population alone and cattle are needed to
maintain the transmission. In the absence of cattle, the basic reproductive ratio of this
infection in the sheep population is just 0.4; even with cattle included, each sheep infects
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Figure 4.11. Dynamics of a multiple-host model of foot-and-mouth disease, based on the character-
istic transmission and susceptibility parameters from the 2001 UK outbreak (Keeling et al. 2001b),
and using the animal populations from Cumbria. Despite the much larger number of sheep in the UK,
our model predicts that cattle are the main driving force in agreement with more complex simulations.
The top graph gives the number of infected cattle (solid line) and sheep (dashed line), respectively,
on a logarithmic scale; the inset shows the early epidemic behavior on a linear scale. The bottom
graphs show the proportion of animals infected with the virus from the model (left) and the actual
reported data from Cumbria in 2001 (right); the Cumbrian data assumes that all animals on a farm
are infected. (Birth and deaths are not included in these model results.)

only 1.5 other animals. This strongly indicates that a control measure (such as vaccination)
should be primarily focused toward the cattle industry (Tildesley et al. 2006) because
without susceptible cattle the disease would soon die out.

The importance of cattle is further illustrated in the lower left-hand graph, showing that
throughout much of the epidemic the prevalence of infection in cattle was far higher than
it was in sheep; however, toward the end of the epidemic the levels became comparable.
The actual data from the 2001 epidemic in Cumbria (lower right-hand graph) supports this
basic result, although the difference between cattle and sheep is less pronounced.

Many elements are missing from this simple model, most obviously that livestock do
not randomly mix but are aggregated into farms. It may therefore be more appropriate
to formulate the “multi-host” model at the farm level, partitioning the population into
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different farm types, rather than different species.

dXF

dt
= νF − XF

∑

f

βFf Yf ,

dYF

dt
= XF

∑

f

βFf Yf − γF YF ,

where F and f are farm types, XF and YF refer to the number of farms of a particular type,
and again 1/γF ≈ 11 days is the time from infection to slaughter. A plausible partitioning
of farms would distinguish between large and small numbers of livestock as well as
predominantly sheep, predominantly cattle, or mixed (Ferguson et al. 2001a), leading to six
distinct “species” of farms. Although such a high-dimensional model can be parameterized
from our knowledge of the 2001 epidemic, a realistic model would also need to account for
the complex temporally varying control measures and the intense local spread of infection
(Keeling et al. 2001b). Such a data-intensive model is beyond the scope of this book,
although see Chapter 8, Box 8.1.

4.2.1.2. Application: Parapoxvirus and the Decline of the Red Squirrel

Since its introduction from America at the start of the twentieth century, the gray squirrel
(Sciurus carolinensis) has displaced the red squirrel (S. vulgaris) from much of its
home range in the United Kingdom and mainland Europe (Lloyd 1983; Reynolds 1985).
Although gray squirrels have an innate competitive advantage over reds (MacKinnon
1978), this advantage is not sufficient to explain the gray’s rapid expansion and the
reds’ decline (Rushton et al. 1997). The action of a disease, parapoxvirus, has therefore
been postulated as a likely cause of red squirrel decline—two-species disease models are
therefore needed to understand and predict the likely competitive outcome. This infection
has a negligible effect on gray squirrels but causes high mortality in reds, and therefore
further decreases the red’s competitive ability. Following the work of Tompkins et al.
(2003), the following set of equations form a suitable model for the two populations:

dXG

dt
=

[
rG − NG + cRNR

KG

]
NG − µGXG − (βGGYG + βGRYR)XG,

dYG

dt
= (βGGYG + βGRYR)XG − γGYG − µGYG,

dZG

dt
= γGYG − µGZG,

dXR

dt
=

[
rR − NR + cGNG

KR

]
NR − µRXR − (βRGYG + βRRYR)XR,

dYR

dt
= (βRGYG + βRRYR)XR − mRYR − µRYR.

(4.15)

The first term in both of the susceptible equations leads to a density-dependent birth
rate, with the parameters cG and cR = 1/cG measuring the competitive effect of gray
squirrels on red and visa versa (Begon et al. 1996). The remaining terms are the familiar
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Figure 4.12. Invasion dynamics of gray squirrels into a population of red squirrels. The top graph
shows the competitive effects of gray squirrels on the red population in the presence (solid line)
and absence (dashed line) of the parapoxvirus. The lower left- and right-hand graphs give the levels
of susceptible, infected, and recovered squirrels in the gray and red populations, respectively. The
simulations are initialized with the invasion of one gray squirrel (either infected or susceptible)
into a 5 × 5 kilometer area. (Parameters taken from Tomplins et al. (2003) are rG = 1.2, rR = 1.0,
KG = 4, KR = 4, cR = 0.61, cG = 1.65, µG = µR = 0.4, βGG = βGR = βRR = βRG = 17.5, γG = 13,
mR = 26.)

epidemiological ones, although whereas gray squirrels recover from infection (at rate γG),
the disease is always fatal to red squirrels (with mortality rate mR). We have again assumed
density-dependent (pseudo mass-action) transmission, in line with the standard paradigm
on how directly transmissible wildlife diseases spread.

Figure 4.12 (top graph) shows the competition between red and gray squirrels, following
the release of a low number of grays, both when parapox disease is present (solid lines)
and absent (dashed lines). With parapoxvirus, during the first year there is a dramatic early
decline in the red squirrel population; this is predominantly due to the epidemic dynamics
rather than interspecific competition. In general, the addition of this infection into the
model leads to the localized extinction of red squirrels within about 8 years, approximately
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twice as fast as without the infection and more in keeping with field observations
(Rushton et al. 1997; Reynolds 1985).

Although the assumption of random mixing between red and gray squirrels can be
justifiable at the scale of an individual wood, when contemplating invasion and extinction
at a national scale spatial factors play a more dominant role—with invasion moving
in a wave-like fashion across the country (Reynolds 1985). A fully predictive model
would need to account for such localized movements, as well as the variablity in habitat
quality between regions (see Chapter 7). In addition, when dealing with invasions and
extinctions—both of which involve low numbers of individuals—a stochastic element
to the model becomes vital (see Chapter 6). Despite these shortcomings, this relatively
simple model highlights the importance of pathogens that may be introduced along with
an invading and competitive species.

4.2.2. Vectored Transmission

Many infections are transmitted via blood-sucking arthropods known as vectors. Malaria,
yellow fever, dengue fever, trypanosomiases, and leishmania are all highly prevalent
diseases of tropical and subtropical regions that are spread by this mechanism. Malaria
alone is responsible for one million deaths and 300 million acute illnesses per year
worldwide, making it one of the most devastating of all diseases. From a public health
perspective, models may be crucial in determining which strategies or combinations of
strategies are likely to be most successful against these devastating infections. Given the
vast scale of these diseases, in some of the poorest areas of the world, cost-effective
and optimally targeted controls are vital—well parameterized models, informed by good
epidemiology and entomology, can play an important role in assessing the likely success
of any policy.

In general, vector-borne diseases cannot be passed between primary hosts (person to
person or animal to animal) but only through an intermediate insect host or vector. The
natural history of vector-borne diseases therefore follows a standard pattern. An insect
vector takes a blood-meal from an infected primary host (human or animal); therefore, with
a given probability it becomes infected and is soon infectious. When the insect next feeds
on a susceptible (and hence different) host, the pathogen enters the host’s bloodstream
and infection can occur, again with a given probability. In this way the 2 × 2 transmission
matrix has zero on the diagonal elements, with all the transmission operating through the
off-diagonal terms.

For vector-borne diseases, because no transmission occurs between humans (or
animals) or between vectors, the diagonal elements of the transmission matrix
are zero.

As mentioned in Chapter 1, malaria is caused by a single-celled protozoan, generally
Plasmodium falciparum, but also Plasmodium vivax, Plasmodium malariae, and Plas-
modium ovale. The life cycle associated with malaria is more complex than we have
considered thus far, largely because there is sexually reproducing phase within humans
and an asexually reproducing phase within Anopheles mosquitoes. However, despite these
complexities, dynamics within humans are sufficiently fast that the SIR modling paradigm
represents a reasonable description.
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4.2.2.1. Mosquito Vectors

We now consider a simple model for the spread of infection between humans (or other
primary hosts) via mosquitoes following the framework founded by MacDonald (1957).
This model is also applicable to other vectors, such as tsetse flies, midges, or ticks, that take
a single blood-meal from a host and then move on. First, we focus on the distinguishing
feature of these models—the rate, r , at which a particular human is bitten by a particular
mosquito:

r = b

NH

,

where b is the bite rate of mosquitoes (the number of bites per unit time) and NH is the
number of humans. This formula therefore assumes that each mosquito bites at a constant
rate b and that this is shared among all the human hosts within an area. The equations for
the disease dynamics (dealing with numbers of individuals) now become:

This is
online
program
4.4

dXH

dt
= νH − rTHMYMXH − µH XH ,

dYH

dt
= rTHMYMXH − µH YH − γH YH ,

dXM

dt
= νM − rTMH YH XM − µMXM,

dYM

dt
= rTMH YH XM − µMYM,

(4.16)

where THM (≤ 1) is the probability that an infected mosquito biting a susceptible human
transmits the infection, with TMH being the probability of transmission in the reverse
direction. Although at first this transmission mechanism appears to be density-dependent,
the inclusion of the parameter r means that transmission is actually frequency-dependent
with respect to the human population. This is because it is assumed that each mosquito
bites at a constant rate (irrespective of the number of available humans), whereas the
rate at which humans are bitten will increase proportionally to the number (or density) of
mosquitoes (Box 4.1). Finally, we note that this formulation assumes that the mosquitoes
(or other appropriate vector) can feed only on humans; when other species are part
of the menu, a three- or more species model is required, accounting for the differ-
ent epidemiological parameters associated with each host.
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Box 4.1 Minimum Infected Ratio
Measuring the proportion of infected mosquitoes, IM = YM/NM , for wild populations is a
difficult and time-consuming task. In general, the fraction of infecteds is low, so testing each
individual mosquito would realize a vast number of uninfected mosquitoes for every positive
one. Instead, groups of mosquitoes are tested in batches (or pools), thereby increasing the
chance that a batch is infected. This leads to the Minimum Infected Ratio (MIR) per thousand
mosquitoes, which is defined as:

MIR = 1000
Number of infected batches

Total number of mosquitoes tested

In the ideal scenario, every batch would contain exactly M mosquitoes, which provides a
direct link between MIR and the proportion of infected mosquitoes, IM . Suppose that b batches
are tested, then:

MIR = 1000
b × [proportion of infected batches]

b × M
= 1000

[1 − (1 − IM )M ]
M

.

Thus, when IM is small, the Minimum Infected Ratio scales almost linearly with increasing
prevalence:

MIR = 1000IM − 500(N − 1)I 2
M + . . .

but as IM and the batch size, M , increase, MIR becomes an underestimate hence—the name
Minimum Infected Ratio.

The relationship between the actual prevalence of infection in mosquitoes and that estimated
by MIR. Clearly, using smaller batch sizes produces more reliable results, but with the
disadvantage that more batches need to be tested for the same total number of mosquitoes.
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Simulations show that (assuming a plentiful supply of mosquitoes), the number per batch M

should be chosen such that 1 − (1 − IM )M ≈ 1
2 IMM . This ensures that IM can be estimated from

MIR with the greatest accuracy; if M is too large or too small, then either most of the batches
will be infected or most will be uninfected, reducing the sensitivity of the results.
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The disease transmission dynamics are specified in terms of the bite rate of mos-
quitoes and the probabilities of transmission following a bite.

In terms of a traditional multi-host model, the transmission matrix is given by:

β =
(

0 rTHM

rTMH 0

)

.

The set of equations (4.16) is for the number of individuals or the density within a given
area (and not the proportion); often we can interchange proportions and numbers at will
(Chapter 3), but because human and mosquito populations may fluctuate independently,
this interchange is no longer viable.

The mosquito parameters, νM and µM , are likely to vary with climatic conditions. Thus,
in regions of the world where there are pronounced climatic variations, strong seasonal
effects may dominate the dynamics (Chapter 5). The extreme case of this is temperate
regions, where only a low number of mosquitoes successfully overwinter, and hence
transmission may be negligible for a significant fraction of the year.

To get a better understanding of the range of dynamics of these vector-transmitted
diseases, we shall calculate the basic reproductive ratio, R0. This can be done from first
principles, which provides a more intuitive understanding of the early dynamics. Let us
start with one mosquito that has just become infected, then R0 is the number of secondary
infections in mosquitoes that will be generated. First, we calculate the expected number of
infected humans from this primary mosquito assuming all humans are susceptible:

infected humans = rTHMNH

µM

= bTHM

µM

.

Now we calculate the number of mosquitoes infected by an infectious human:

infected mosquitoes = rTMH NM

γH + µH

= bTMH NM

(γH + µH )NH

.

Thus, R0 is given by the product of these two terms:

R0 = b2THMTMH NM

µM (γH + µH )NH

. (4.17)

Note that each mosquito could infect less than one human on average, and yet R0 could
still be more than one. This definition of R0, which is used throughout vector-borne
epidemiology, does not correspond exactly with the definition from two-species or risk-
structured models (Chapter 3). Although both methods agree at the critical point when
R0 = 1, the vector approach is the square of the two-species approach because the vector
approach includes the multiplication of two transmission steps.

The ratio of mosquitoes to humans is vital in determining both R0 and the dynamics
of infection. When there are many more humans compared to mosquitoes, sustained
transmission may be impossible.

R0 increases with the number (or density) of mosquitoes, but surprisingly decreases
with the number (or density) of humans. This is because when there are many humans (and
relatively few mosquitoes), the chance of someone being bitten twice in quick succession—
once to catch the infection and once to pass it on before recovery—is very small. Therefore,
for the infection to successfully spread and invade, the ratio of mosquitoes to humans has
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Figure 4.13. The top two graphs show typical dynamics of infected and susceptible humans and
mosquitoes against time, starting with a single infected mosquito. The left-hand graph focuses on the
early epidemic dynamics, whereas the right-hand graph shows the eventual equilibrium distribution.
The lower graphs give the prevalence of infection in humans as the ratio of mosquitoes to humans
( NM

NH
) varies. The left-hand graph shows the final equilibrium prevalence in humans (solid line) and

the proportion that have recovered from the infection and are seropositive (dashed line). The right-
hand graph shows the maximum prevalence of infection in both humans and mosquitoes which
occurs during the peak of the initial epidemic. (NH = 1000, µH = 5.5 × 10−5 (50-year human life
span), νH = NH µH (constant human population size), µM = 0.143 (1-week mosquito life span),
νM = NMµM (constant mosquito population size), γH = 0.033 (infectious period of one month),
THM = 0.5, TMH = 0.8, b = 0.5. In the top graphs NM = 104, which means that R0 ≈ 200.)

to be sufficiently large that double bites are common:

mosquitoes per human needed for invasion,
NM

NH

>
µM (γH + µH )
b2THMTMH

.

Figure 4.13 gives an example of the typical dynamics, starting with a single infectious
mosquito and susceptible mosquitoes and humans at equilibrium. Again, as expected from
this type of two-species model, the rates of increase during the early epidemic are slaved
(Chapter 3). Due to the high value of R0, a large epidemic occurs on the timescale of a
few weeks, after which the prevalence settles toward their equilibrium values, with the
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vast majority of humans having experienced infection. The lower two graphs consider the
dynamics because the ratio of mosquitoes to humans varies. The critical ratio of around
0.048 mosquitoes per human, when R0 = 1, is clear in both graphs as the point where
an epidemic is just possible. Above this level, the equilibrium prevalence and proportion
of seropositive individuals (left-hand graph) rapidly increase to their asymptotic values.
In contrast, the peak human prevalence during the initial epidemic shows much weaker
saturation as the ratio of mosquitoes to humans increases. Therefore, although ratios in
excess of 1:1 have little impact on the equilibrium prevalence, when faced with the invasion
of a infection the precise ratio has a significant impact of the scale of the human epidemic.

In most situations, we expect the number of mosquitoes to far exceed the number of
humans (or other hosts). The only notable exception is in subtropical or temperate regions
where the number of vectors may be low during the colder winter months and hence disease
transmission may be negligible. Such regions often form the boundary to areas where these
infections are endemic, and thus understanding their dynamics is crucial if we wish to
predict the spread of infection and the epidemiological implications of global warming.
Including temporal (climatic) forcing into these vector-based models requires a detailed
understanding of the entomology and vector ecology of these species and the models
will rely on the techniques developed in Chapter 5. The example of West Nile Virus in
Section 4.2.3.2 illustrates how this climatic forcing could be included.

Given that the life cycle of mosquitoes is much faster than both the epidemic and human
timescales, each mosquito effectively experiences a constant level of human infection
during its lifetime. Mathematically, we can use this fact to produce quasi-equilibrium
calculations (Box 4.2) which assume that the mosquito population rapidly converges to
an equilibrium state that depends exclusively on the current host population levels.

Due to the rapid life cycle of mosquitoes, a quasi-equilibrium approach can be used
wherein mosquito populations are assumed to rapidly converge to equilibrium levels
that are functions of the human population.

The quasi-equilibrium solution shows that the force of infection to humans rapidly
saturates with increasing levels of human infection. This contrasts with the linear
behavior of directly transmitted infections.

The quasi-equilibrium relationship between infection prevalence in mosquitoes and its
prevalence in humans provides a deeper understanding of the behavior of vector-borne
diseases (Figure 4.14). We observe that the quasi-equilibrium prevalence in mosquitoes
begins to saturate with increasing prevalence in the host (solid line). This allows a
comparison between the dynamics of vector-born and directly transmitted infections.
The dashed line shows the expected linear behavior for a directly transmitted infec-
tion with a similar basic reproductive ratio, R0 ≈ 200; in contrast, the saturation of
the vector-based infection curve, Y ∗

M , shows that the force of infection (to humans)
saturates. Therefore, relatively less transmission occurs when the prevalence in the host
is high, and hence the equilibrium level of seropositives is lower in a vector-borne
disease compared to a directly transmitted infection with the same R0. The converse
argument is also true; for a given level of seropositives in the human population,
R0 is larger for a vector-borne infection and the infection is more difficult to erad-
icate than results based on directly transmitted pathogens would suggest.
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Box 4.2 Fast Vector Dynamics
One difficulty with such vector-based transmission of diseases is that there are double the
number of equations compared to standard single-species models: a set for both the host and
the vector. However, we can take advantage of the rapid vector life cycle (often 1 to 2 weeks) to
simplify the equations. By assuming that the dynamics of the vector are fast compared to those
of the host, we can find (quasi-)equilibrium vector abundances for any host population levels by
setting the vector rates of change equal to zero:

dXM

dt
= νM − rTMH YH XM − µMXM = 0,

dYM

dt
= rTMH YH XM − µMYM = 0,

which implies that

X∗
M (XH , YH ) = νM

rTMH YH + µM

, Y ∗
M (XH , YH ) = rTMH νMYH

(rTMH YH + µM )µM

.

These (quasi-)equilibrium vector population levels, which depend on the current host popula-
tion, can then be substituted into the host equations to give a smaller, but more complex, set of
differential equations:

dXH

dt
= νH − THMb

bTMH νMYH

(bTMH YH + µMNH )µMNH

XH − µH XH ,

dYH

dt
= bTHM

bTMH νMYH

(bTMH YH + µMNH )µMNH

− µH YH − γH YH .

These equations give exact equilibrium solutions; however, the dynamic approach to equilib-
rium is an approximation and will be affected by the quasi-equilibrium assumption for the
vector.

These results emphasize the crucial point that although the vector-borne infections
generally spend the vast majority of their time in the primary (human or animal) host, the
role of the vector cannot be simply ignored. The nonlinear behavior due to the obligatory
role of the vector in transmission between hosts can have a pronounced effect on our
understanding and parameterization of such disease models.

4.2.2.2. Sessile Vectors

Some blood-sucking arthropods, such as fleas and lice, tend to remain with a host for
several generations. In such cases, the bite rate of the vector has little relevance to infection
transmission because the vector is unlikely to have left the host. A more plausible model is
therefore to consider transmission through a pool of free-living infected vectors (YV ) that
are in search of a new host:

dXH

dt
= νH − rTHV NH YV

XH

NH

− µH XH ,

dYH

dt
= rTHV NH YV

XH

NH

− µH YH − γH YH − mH YH ,

dYV

dt
= TVH (µH + mH + l)YH KV − rNH YV − µV YV ,

(4.18)
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Figure 4.14. The number of infected mosquitoes (solid line) as calculated from the quasi-
equilibrium equations. The dashed line shows the linear function that would be needed for the
dynamics to approximate host-to-host transmission. All parameters are the same as Figure 4.13,
with NM = 10,000.

where the subscripts V and H refer to vector and host. Whenever an infected host
dies (either naturally at rate µH or due to disease-induced mortality at rate mH ), the
vectors leave the dead host in search of another live one at rate r . It is assumed that
the vector life cycle is rapid so that each host on average supports a population of KV

vectors, and that a proportion TVH of these are infected. Additionally, vectors may leave a
living infected host at rate l, thus increasing transmission. The free-living infected vectors
then encounter a new host at rate rNH , and if this host is susceptible ( XH

NH
), they may

transmit the infection with the probability THV . Finally, free-living vectors have a natural
death rate, µV .

Figure 4.15 gives typical equilibrium-level dynamics for this type of vector. Not
surprisingly, as the number of vectors per host increases, so does prevalence in the
population (left-hand graph)—this increase in the number of vectors will have a linear
effect on the overall transmission. For the parameters used in the model, each host must
support more than approximately 25 vectors before transmission is possible. The dynamics
with respect to mortality is more complex (right-hand graph). With directly transmitted
infections, an increase in the mortality rate, mH , decreases the infectious period and
therefore decreases R0. However, for this class of vector-borne diseases, the death of an
infected host actually releases infected vectors into the environment. Thus as the mortality
increases, the number of new cases (gray line), and the number of infected vectors in the
environment (dashed lines), also increases.

• For infections spread by ticks, fleas, or lice, a high disease mortality may lead to
greater transmission (despite the shorter infectious period) because it increases the
rate at which vectors leave the host.
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Figure 4.15. The left-hand figure shows the equilibrium number of infected hosts and free-living
infected vectors, because the average number of vectors per host, KV , is varied. The right-hand
figure considers the effects of changes in the disease mortality; it also shows the equilibrium number
of infected hosts and free-living infected vectors, but additionally gives the number of daily cases.
(NH = 1000, µH = 5.5 × 10−4 (5-year host life span), νH = NH µH (constant host population size),
µV = 0.071 (2-week life span of free-living vectors without a host), γH = 0.033 (infectious period
of one month), THM = 0.5, TMH = 0.8, r = 10−3, l = 2.7 × 10−3 (once per year). Left-hand graph
mH = 0, right-hand graph KV = 10 (an average of 10 vectors per host).)

Again, some understanding is gained by calculating R0 from the first principles starting
with one free-living infected vector:

R0 = Probability that a vector finds a host × Probability of infection

× Number of infected vectors released during host’s infectious period

= rNH

rNH + µV

× THV × TV H

µH + mH + l

µH + mH + γH

KV . (4.19)

Although complex, this formula explains the model behavior because KV and mH

are varied.

4.2.3. Zoonoses

Zoonotic diseases are defined as those that can be passed from animals to humans. In
general, the animal host is the main reservoir for the infection, and humans contribute
little to the overall transmission. From the disease’s perspective, human cases are an
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irrelevance, but are obviously the focus of public health interest. This dichotomy is also
present in the models, where the animal population controls the infection dynamics but
the human population determines the disease’s impact. In this way, models of directly
transmitted zoonoses are much simpler than standard multi-species models, because the
2 × 2 transmission matrix has zeros in one column (representing the lack of transmission
from humans). Models of vector-borne zoonoses follow the standard template for all
vector-borne diseases but include the additional transmission to humans. These two distinct
classes are dealt with separately.

4.2.3.1. Directly Transmitted Zoonoses

Zoonoses are a ubiquitous challenge to human health, and are associated with a wide
range of reservoir species (Acha and Szyfres 1989; Frank and Jeffrey 2001). It has been
estimated that three-quarters of emerging human pathogens are zoonotic (Woolhouse
2002), thus a better understanding of their dynamics is likely to play an important role
in public health planning. Many prominent zoonoses are associated with reservoirs in
household pets (e.g., toxoplasmosis in cats) and livestock (e.g., brucellosis in cattle); this
prominence reflects the greater mixing, and therefore transition, between these species
and humans, rather than any epidemiological characteristics of the infections. Although
the model given below (equation (4.20)) is generic, and could be applied to many
directly transmitted zoonoses with appropriate parameterization, several zoonotic diseases
deserve special mention due to their epidemiological importance, and scientific and public
interest:

• Anthrax is a bacterial infection that affects a wide range of species, especially
herbivores. Whereas early modeling focused on the transmission of infection between
animals (Furniss and Hahn 1981; Hahn and Furniss 1983), more recent attention has
concerned its use as a bioterrorism weapon (Webb and Blaser 2002; Wein et al. 2003),
although the risk of subsequent transmission (and therefore R0) in such situations is
very low.
• Brucellosis is a coccobacilli that can be transmitted to humans from cattle, pigs,

sheep, and dogs (Corbel 1997). It was once a major public health concern, and
although veterinary efforts have dramatically reduced the number of cases in the
United States and Europe, there are still several hundred thousand cases per year
in humans worldwide. Modeling interest has primarily focused on the effect of
the disease on the natural bison population, due to conservation issues, rather than
the implications for human health (Peterson et al. 1991; Dobson and Meagher
1996).
• Ebola is one of the most notorious zoonotic diseases, causing a rapid onset

hemorrhagic fever and very high mortality. The need for very close contact, and the
severity of the symptoms soon after infection, means that outbreaks have been locally
isolated. The animal reservoir species for Ebola is still unknown, despite much
research.
• Hantavirus is primarily associated with rodent hosts, with each viral type having

its only preferred host species. The “Four-Corners” outbreaks in Arizona, Colorado,
New Mexico, and Utah in the 1990s have been linked to an infectious reservoir in
the deer mouse (Peromyscus maniculatus) (Mills et al. 1999). Infection leading to
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Hantavirus Pulmonary Syndrome is frequently fatal in humans, unless early treatment
is given. Modeling of hantavirus has focused on the role of fluctuating rodent reservoir
populations in an attempt to understand the observed large amplitude spatial and
temporal variability (Abramson and Kenkre 2002; Abramson et al. 2003; Sauvage
et al. 2003; Buceta et al. 2004).
• Rabies has been the focus of much mathematical modeling, due to its public health

importance and the long-term spatiotemporal data that has been available. Many
species can act as a reservoir for rabies, with foxes (in Europe), raccoons (in
United States), and dogs (worldwide) being the primary sources for human infection.
Early characteristics of rabies in humans occur 1 to 3 months after infection
and are nonspecific and flu-like, with rapid progression to neurological symptoms
including anxiety, confusion, slight or partial paralysis, excitation, hallucinations,
agitation, hypersalivation, and hydrophobia. Rabies is almost inevitably fatal once
symptoms emerge. Modeling efforts can be partitioned into two overlapping groups:
Following the lead of Murray and co-workers (Kallen et al. 1985; Murray et al. 1986),
many models consider the spatial spread of rabies in a wavelike manner (Moore
1999; Smith et al. 2002), whereas more applied models focus on the impact of
specific control mechanisms for either preventing epidemic invasion (Smith and Harris
1991) or reducing the impact where the disease is endemic (Tischendorf et al. 1998;
Rhodes et al. 1998; Suppo et al. 2000; Bohrer et al. 2002; Kitala et al. 2002;
Smith and Wilkinson 2003). All of these models focus on the infection dynamics
within the host reservoir, with little quantitative consideration given to the number of
human cases.
• Toxoplasmosis is one of the most well-known zoonotic infections in the developed

world. Its natural reservoir is the domestic cat (although sheep and other livestock
are often infected), which explains its high prevalence in humans. Generally the
symptoms of toxoplasmosis are mild and flu-like, but if caught during pregnancy
the effects on the unborn child may be severe (Dubey 1988). Due to its usually
benign nature, little quantitative informative is known about the epidemiology and
transmission rates of this infection, which limits the amount of predictive modeling
that is feasible (Ades and Nokes 1993).

We now consider a very general model for the dynamics of a zoonotic disease in both
its animal reservoir and in humans. Assuming SIR-type dynamics in both the human
(H ) and animal (A) reservoir populations, the equations for directly transmitted zoonoses
are:

dXA

dt
= νA − βXAYA − µAXA,

dYA

dt
= βXAYA − µAYA − γAYA − mAYA,

dXH

dt
= BH − εβXH YA − µH XH ,

dYH

dt
= εβXH YA − µH YH − γH YH − mH YH ,

(4.20)
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where ε is generally small and measures the trickle of infection from the animal population
into the human one. The birth and death rates for the animal population (νA and µA) may
be quite complex; seasonal factors, density dependence, and stochastic variation may all
impact the dynamics. In fact, it is often our lack of quantitative knowledge of the basic
ecology of the reservoir species that limits our modeling of the zoonoses. Because all
transmission events are assumed to be from infectious animals, we have again adopted a
density-dependent approach; this means that large fluctuations in the wildlife population
can greatly increase the risk of an epidemic. Outbreaks of hantavirus are thought to arise
via such a mechanism.

In a purely deterministic setting, the number of human cases parallels the number
of animal cases (βXAYA ∝ εβXH YA), although there will be far fewer human cases.
However, due to the low numbers involved, it is often far better to use a stochastic approach
(Chapter 6). As such, εβXH YA is the probabilistic rate of new cases in humans, and the
probability of detecting at least one human case within time-interval t1 to t2 is:

P (t1, t2) = 1 − exp
(

−DεβXH

∫ t2

t1

YAdt

)
, (4.21)

where D is the probability of successful diagnosis. For many zoonoses, it is difficult
(and time consuming) to monitor the infection within the animal population, therefore the
onset of human cases is usually the only indicator of a major epidemic within the animal
population and therefore an elevated risk to humans. The problem is then a statistical one,
determining whether the increase in human cases is merely a statistical fluctuation or the
signature of an underlying epidemic.

For zoonotic diseases when human cases are rare, it may be difficult to separate the
observation of a few chance human cases and the start of a larger-scale outbreak.

The typical dynamics of a zoonotic infection where humans play a negligible role in
transmission are shown in Figure 4.16. The epidemic in the animal population has the
characteristic shape that we have come to expect from such simple epidemics, and is
unaffected by the behavior of the human population. As seen in the left-hand figure, the
chance of observing human cases increases with number of animals infected so far, the
relative transmission rate to humans ε, the size of the susceptible human population XH ,
and the detection rate D. In particular, the size of the detected human epidemic can be
estimated as:

Number suscept. humans × prob. of infection = XH (0)
[
1 − exp(−εDR0R∞)

]

where, using standard notation, R∞ is the proportion of animals infected. Hence, if R0 is
significantly larger than 1, and therefore R∞ is close to one, we expect to see human cases
if εDR0XH > 1.

The right-hand graph of Figure 4.16 considers the probabilistic nature of human
infection in more detail, assuming that at least one human case is diagnosed and hence
the epidemic is identified. The gray line shows the expected number of observed human
cases after the initial diagnosis; clearly, this increases rapidly with the scaling factor,
εDXH , and shows remarkably little stochastic variation. In contrast, the number of infected
animals when the first human case is observed shows much more variation and, in general,
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Figure 4.16. The left-hand figure shows a typical animal epidemic (solid line) (NA = XA + YA +
ZA = 104, γA = 0.1, mA = 0, R0 = 10, µA = 2.74 × 10−4 (life expectancy of around 10 years), νA =
µANA), and the probability of there being at least one human case detected (dashed line), (scaling
factor εDXH = 0.01, 0.1, 1). The right-hand graph uses the same animal epidemic, but is conditional
on there being at least one human case detected. The black line shows the expected number of
infected animals, YA(t), when the first human case is detected. The dashed lines correspond to
values of YA with early and late detection (based on 95% confidence intervals for the timing of
the first human case), and the shaded area shows the corresponding range of YA. The gray lines
give the number of detected human cases (and 95% confidence intervals), assuming no control and
XH = 1000.

decreases as the scaling factor increases. Given that there is at least one human case, the
first case is expected to occur at time T1, such that:

P (0, T1)
P (0, ∞)

=
1 − exp

(
−εDβXH

∫ T1

0 YAdt
)

1 − exp (−εDXH R0R∞)
= 1

2
,

where P is defined in equation (4.21) as the probability of identifying at least one case
within a given time interval. The solid black line gives the number of infected animals at
this time, YA(T1). Similarly, times can be found when the conditional probability is 0.05
and 0.95; the number of infected animals at these times are shown as dashed lines and the
range incorporated is shaded.

Two opposing public health implications are associated with the results of this simple
model. Although a low scaling factor (εDXH ) means that few human cases will arise,
it also implies that the animal epidemic is likely to be large before cases are detected
and therefore difficult to control. Conversely, a high scaling factor should mean that the
epidemic is detected far sooner allowing for easier control, but the cost to human health for
not controlling the disease is more severe. Intermediate values of the scaling may present
the greatest challenge; there is a potential for many human cases so the epidemic must be
controlled, but detection is often delayed, making control much more difficult. All these
problems become exacerbated if early cases are not quickly diagnosed, as tends to be the
case with emerging zoonoses.
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When a zoonoses is identified only by rare human cases, an epidemic within the
animal hosts can be large before it is discovered. In such cases the epidemic may
be difficult to control.

4.2.3.2. Vector-Borne Zoonoses: West Nile Virus

There are many infectious diseases that have a primary animal host, but that can
be spread to humans via an insect vector. Examples include Chagas’ disease (which
infects dogs and is spread by the Triatoma and Rhodnius species of the True Bugs
or Heteroptera family), Lyme disease (which infects rodents and dogs and is spread
by Ixodes ticks), Q fever (which infects birds, rodents, and a range of household
pets and is spread by ticks), leishmaniasis (which infects dogs and is spread by mos-
quitoes), and bubonic plague (which infects rats and other rodents and is spread by
fleas). In recent years, West Nile virus (WNV, which infects birds and is spread by
mosquitoes) has hit the headlines due to a significant number of deaths in the United
States. Here we will concentrate on developing a model of WNV as an illustration
of the general methods and complexities involved with understanding vector-borne
zoonoses.

West Nile virus (WNV) provides an encompassing example of all that has been
discussed in this chapter. It is a vector-borne zoonoses that has multiple host reservoirs, and
during the 1990s a new strain (Lineage 1) emerged that has been associated with increased
virulence and a range expansion. These elements make WNV a major health concern
(especially in the United States but increasing in Europe), negate standard epidemiological
rules-of-thumb which are based on experience from directly transmitted single-species
pathogens, and make the formulation and parameterization of a detailed model extremely
complex.

West Nile virus was first identified in 1937 in the West Nile region of Uganda, hence
its name. It is a flavivirus commonly found in Africa, West Asia, and the Middle East.
The natural host reservoir for WNV is birds (of many different species), with infection
vectored by mosquitoes; occasionally an infected mosquito will bite a human, leading
to infection. For the vast majority of human cases, symptoms are mild and flu-like
with most individuals not even realizing that they have been infected. However, in a
small proportion of cases, the infected person can develop meningoencephalitis, which
can be fatal.

West Nile virus made international headlines in 1999 when it was responsible for a
number of deaths in New York state, echoing an increasing trend for severe human cases
and a high rate of avian mortality (Hubalek and Halouzka 1999; Petersen and Roehrig
2001; Campbell et al. 2002). In subsequent years this infection has spread to cover the
majority of the United States, has invaded Canada and the Caribbean, and the death
toll has continued to rise (see Figure 4.17). In the United States in 2002 there were,
3,873 clinical cases and 246 deaths, and data from New York City suggests that around
80% of the cases are subclinical (asymptomatic). Despite the shocking number of severe
cases and fatalities, the actual incidence in the human population is very low. Levels of
seroprevalence in Queens (New York) after the 1999 outbreak were estimated at only 3%.
This is in direct contrast to the data from areas of Africa where the infection is endemic
(and probably Lineage 2), where seroprevalence levels are about 50% in children and 90%
in adults.

This content downloaded from 73.8.248.103 on Thu, 14 May 2020 00:10:56 UTC
All use subject to https://about.jstor.org/terms



MULTI-PATHOGEN/MULTI-HOST MODELS 149

1999 2000 2001 2002 2003

2000

4000

6000

8000

10000

12000Deaths
Clinical cases

1999 2000 2001 2002 2003
10

0

10
2

10
4

Figure 4.17. Data from the spread of West Nile Virus in the USA from 1999 to 2003. From its initial
focus in New York State, the left-hand graph shows the dramatic range expansion that has occurred
as the invading wave spreads west. The right-hand graph gives the number of reported clinical cases
(light gray) and deaths (dark gray) due to WNV over the same period; the inset graph is plotted on a
logarithmic scale to improve the clarity of the early data.

Modeling of West Nile virus within the United States (and its possible spread to other
areas) is complicated by a variety of factors:

1. WNV has been found in 138 bird species within the United States, with susceptibility,
transmissibility, and infectious period varying between species. House sparrows
(Passer domesticus) may be a major reservoir due to their long infectious period and
high-level of exposure to the virus—up to 60% (Komar et al. 2001). In contrast, the
American crow (Corvus brachyrhynchos) is considered a sentinel species, due to its
high level of mortality—crows comprised over 70% all the dead antibody positive
birds reported. Sentinel species may be pivotal in providing an early warning of
increasing incidence within the bird population (Eidson et al. 2001).

2. Multiple mosquito vectors may be responsible for transmission. Some, such as Culex
restuans, feed predominantly on birds (ornithophilic) and therefore are responsible
for amplification of the infection within the bird population but cause few human
cases. In contrast, more opportunistic mosquito species (such as Cx pipiens) that feed
on both birds and mammals may generate more human cases.

3. The temperate climate in the United States means that mosquito (and bird) popula-
tions fluctuate throughout the year—introducing temporal forcing into the model. The
persistence of WNV from one year to the next relies on the successful overwintering
of infected mosquitoes.

We have a very limited quantitative knowledge of the basic ecology of the species
concerned and the epidemiological parameters and characteristics of their infection.
However, a plausible attempt can be made at defining the basic structure of a full model for
West Nile virus, after which simplifications can be made that will allow us to parameterize
and simulate its dynamics. There are four basic components to the full dynamics of West
Nile virus: birds, ornithophilic mosquitoes, opportunistic mosquitoes, and humans, with
each being subdivided into a number of species. We start with the transmission matrix β,
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which can be partitioned into a number of nonzero components:

β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

to birds from to birds from

0 ornithophilic opportunistic 0

mosquitoes mosquitoes

to ornithophilic

mosquitoes 0 0 0

from birds

to opportunistic

mosquitoes 0 0 0

from birds

to humans from

0 0 opportunistic 0

mosquitoes

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Given the 29 mosquito species and 138 bird species that are known to have been infected
with WNV within North America, the transmission matrix is 168 × 168 with over 8,000
parameters to be estimated. This is clearly impractical; we therefore focus on a much
reduced model, which contains five basic elements: house sparrows (as the reservoir bird
species), crows (as a sentinel bird species), ornithophilic and generalist (opportunistic)
mosquitoes, and finally humans. With five interacting groups, parameterization will still
be difficult, although some progress can now be made. The formulation of the equations
follows the same mechanisms as elsewhere in this chapter, just with a greater number
of components. We subdivide the populations into X, W , Y , and Z corresponding to
susceptible, exposed, infectious, and recovered, and use the subscripts S, C, O, G,
and H , to refer to sparrows, crows, ornithophilic mosquitoes, generalist mosquitoes, and
humans:

dXb

dt
= νb − (rOTbOYO + rGTbGYG)Xb − µbXb,

dWb

dt
= (rOTbOYO + rGTbGYG)Xb − σbWb − µbWb,

dYb

dt
= σbWb − γbYb − mbYb − µbYb,

dZb

dt
= γbYb − µbZb where b ∈ {S, C},

dXm

dt
= νm − (rmTmSYS + rmTmCYC)Xm − µmXm,

dWm

dt
= (rmTmSYS + rmTmCYC)Xm − σmWm − µmWm,

dYm

dt
= σmWm − µmYm where m ∈ {O, G},
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dXH

dt
= νH − rGTHGYGXH − µH XH ,

dWH

dt
= rGTHGYGXH − σH WH − µH WH ,

dYH

dt
= σH WH − γH YH − mH YH − µH YH ,

dZH

dt
= gH YH − µH ZH ,

rO = bO

NS+NC
rG = bG

NS+NC+NH
.

(4.22)

Here we explicitly assume that sparrows always recover from infection (mS = 0), crows
always die of the disease (γC = 0), mosquitoes can catch WNV only from birds, and
humans can catch WNV only from generalist (opportunistic) mosquitoes. As with many
wildlife diseases and vector-borne infections, the birth and death rate of the birds and
mosquitoes may well be seasonal and density dependent.

The results of the model for West Nile virus given by equation (4.22) are shown in
Figure 4.18. Although this model is much reduced in complexity from one that includes
all species and all possible interactions, many of the parameters are largely a matter of
speculation, and a rich variety of dynamics are possible. The parameters we have chosen
mean that after the initial epidemic the level of seroprevalence in the sparrow population
is around 50%, which is in agreement with observations (Komar et al. 2001). We also find
from this model that the peak numbers of infectious generalist mosquitoes occur in late
August early September, which is slighter later than the peak in mosquito numbers and
agrees with the times when humans are most at risk.

This model demonstrates that using the methodology developed within this chapter, we
can readily create models for a large number of interacting species. The primary difficulty
comes from parameterizing such models, because data on the individual constituent
mechanisms is difficult and time consuming to obtain—our knowledge of the basic ecology
of both birds and mosquitoes is still too poor to allow a detailed parameterization of this
model. However, such models can still be used to consider a variety of control measures
(such as the use of insecticides) in order to limit the disease dynamics, with the ultimate aim
of minimizing human cases. However, great care must be taken to ensure that the results are
robust to the uncertainties in parameter values. To fully predict the complete behavior of
West Nile virus however, would necessitate a model that can capture the heterogeneities at
a variety of scales, from the local patchiness of mosquito breeding grounds to the national-
scale spread of infection. Such spatial models are explored in Chapter 7.

4.3. FUTURE DIRECTIONS

In the coming decades it is likely that far more genetic, molecular, and immunological data
will become available. The challenge will be to integrate this knowledge with the evolution-
ary disease models developed earlier in this chapter. Currently, models of disease evolution
are in their infancy—far more work is required to integrate the type of models outlined
in this chapter with the novel immunological models that are currently being developed
(Nowak and May 2005). A comprehensive understanding of disease evolution would
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Figure 4.18. Model results for the spread of West Nile virus between species, using the formulation
given in equation (4.22). Some parameters are easily found from the literature, 1/µG ≈ 1/µO ≈ 7
days, TSO ≈ TCO ≈ TSG ≈ TCG ≈ 0.4 (Goddard et al. 2002), TOS ≈ TOC ≈ TGS ≈ TGC ≈ 0.5 (range
0.3–0.8), 1/σS ≈ 1/σC ≈ 1/γS ≈ 1/mC ≈ 3.5 days (Komar et al. 2001), 1/σH ≈ 1/γH ≈ 5 days,
mH ≈ 1.3 × 10−3 (Campbell et al. 2002), 1/bO ≈ 1/bG ≈ 3 days. Other parameters can be found
by matching to the observed proportion of seropositive birds, the minimum infectious ratio of
mosquitoes, and the number of human cases. In addition, the number of bird and mosquito
births are assumed to have a Gaussian distribution νQ = ν̂Q exp(− 1

2 (t − tQ)2/VQ), where Q ∈
{S, C, O, G}. (1/ν̂S = 20 days, 1/ν̂C = 60 days, 1/ν̂O = 1/ν̂G = 0.127 days, tS = tC = 190,
tO = 170, tG = 210, VS = VC = 1800, VO = VG = 150.)

allow us predict the short-term behavior of influenza, including the probable strains for
the next season as well as the likelihood of a pandemic. In addition, a more complete
knowledge of viral and bacterial genetics may allow us to predict with greater accuracy
methods of preventing the evolution of drug-resistant strains and their spread through the
population.

A second area where substantial advances are required is in the parameterization of
multi-species models, where the number of parameters usually grows quadratically with
the number of species. However, it is often our understanding of the basic ecology of the
host species that is lacking, and only detailed field work can resolve many of the issues.
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From a modeling perspective, it is important that we ascertain how sensitive models are to
these unknown ecological factors, so that field work can be directed toward the key factors
that can shape an epidemic.

4.4. SUMMARY

This chapter addressed two contemporary but very different issues, the competition and
evolution of infections/strains in a single host population and the spread of a single
infection between multiple host species. Both of these modeling issues have important
applied implications to public health. Understanding disease evolution would enable us
to predict and prepare for future epidemics. The study of infections in multiple hosts
has a more immediate impact, because it concerns a range of high-profile diseases (such
as malaria) that are responsible for millions of deaths worldwide every year.

The main findings about competing and evolving infections can be summarized as
follows:

➤ When competing strains provide complete protection for each other, the strain with the
largest R0 will force the other strain to extinction, although a rapid life cycle may allow
short-term dominance.

➤ Evolution will favor mutants with higher R0, leading to higher transmission, life-long
infections with low mortality. However, trade-offs between transmission rates and duration
of infection mean that R0 is maximized for intermediate values and runaway evolution is
prevented.

➤ Application of antibiotic treatments requires a careful balance between combating
infection and not providing suitable conditions for resistant mutants to outcompete the
wild type.

➤ Even when there is no cross-immunity, the absence of multiply infected individuals is
epidemiologically plausible, reflecting the reduced number of contacts when ill. This is
believed to be why cases for measles and whooping cough are often out of phase.

➤ Research into malaria strains shows that when there is limited cross-immunity, the
individual values of R0 for each strain are lower than estimated from seropositive levels
that ignore strain structure, reducing R0 for each malaria strain to as low as 6 or 7.

➤ Having one sexually transmitted infection can often increase the susceptibility to others,
promoting coinfection. In such circumstances the Allee effect may operate, and reducing
the levels of one infection may lead to a reduction of the other.

➤ Coexistence of competing strains is possible when their respective R0 values are close
and the level of cross-immunity is weak.

➤ Models of strain structure with immunity to genetically close strains and mutations can
lead to both traveling waves or large amplitude patterns in strain space.

Multiple-host models have much in common with the risk-structured models of Chapter
3, with species playing the role of risk. A number of general issues of importance are:

➤ In multi-host models (unlike risk-structured models), the transmission matrix is
nolonger expected to be symmetric due to species differences. However, we still expect
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to see very early dynamics determined by the initial conditions before the behavior of
infection in all the hosts becomes slaved, increasing with an exponent determined by R0.

➤ For vector-borne diseases, such as malaria, because there is no transmission between
humans (or animals) and no transmission between vectors, the diagonal elements of the
transmission matrix are zero—which dramatically simplifies the calculation of R0.

➤ The ratio of mosquitoes to humans is vital in determining both R0 and pathogen
dynamics. When there are many more humans compared to mosquitoes, sustained
transmission may be impossible because humans rarely experience two bites—one to infect
the human and one to infect subsequent mosquitoes.

➤ Due to the rapid life cycle of mosquitoes, a quasi-equilibrium approach can be used
where mosquito populations are assumed to rapidly converge to equilibrium levels that are
functions of the human population. The quasi-equilibrium solution shows that the force
of infection to humans rapidly saturates with increasing levels of human infection. This
contrasts with the linear behavior of directly transmitted infections.

➤ For infections spread by ticks, fleas, or lice, a high disease mortality may lead to greater
transmission (despite the shorter infectious period) because it increases the rate at which
vectors leave the host.

➤ For zoonotic diseases (those spread from animals to humans) when human cases are
rare, it may be difficult to separate the observation of a few chance human cases and
the start of a larger scale outbreak. When the zoonoses is identified only by rare human
cases, an epidemic within the animal hosts can be large before it is discovered, making the
epidemic difficult to control.

➤ For zoonotic diseases such as West Nile virus, the vast number of animal hosts and
mosquito vectors makes parameterization of even the simplest model very difficult—a
greater understanding of host and vector ecology is needed.
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