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Chapter Two

Introduction to Simple Epidemic Models

The process of modeling in epidemiology has, at its heart, the same underlying philosophy
and goals as ecological modeling. Both endeavors share the ultimate aim of attempting
to understand the prevalence and distribution of a species, together with the factors that
determine incidence, spread, and persistence (Anderson and May 1979; May and Anderson
1979; Earn et al. 1998; Shea 1998; Bascompte and Rodriguez-Trelles 1998). Whereas
in ecology the precise abundance of a species is often of great interest, establishing or
predicting the exact number of, for example, virus particles in a population (or even
within an individual) is both daunting and infeasible.' Instead, modelers concentrate on the
simpler task of categorising individuals in the “host” population according to their infection
status. As such, these epidemiological models can be compared to the metapopulation
models used in ecology (Levins 1969; Hanski and Gilpin 1997), where each individual
host is considered as a patch of resource for the pathogen, with transmission and recovery
analogous to dispersal and extinction (Nee 1994; Rohani et al. 2002).

There is a long and distinguished history of mathematical modeling in epidemiology,
going back to the eighteenth century (Bernoulli 1760). However, it was not until the
early 1900s that the increasingly popular dynamical systems approaches were applied to
epidemiology. Since then, theoretical epidemiology has witnessed numerous significant
conceptual and technical developments. Although these historical advances are both
interesting and important, we will side-step a detailed account of these progressions and
instead refer interested readers to the lucid texts by Bailey (1975), Anderson and May
(1991), Grenfell and Dobson (1995), Daley and Gani (1999), and Hethcote (2000).

In this chapter, we start with the simplest epidemiological models and consider
both infections that are strongly immunizing as well as those that do not give rise
to immunity. In either case, the underlying philosophy is to assume individuals are
either susceptible to infection, currently infectious, or recovered (previously infected
and consequently immune). Although the progress between these classes could be
presented as a verbal argument, to make quantitative predictions we must translate
them into formal mathematical terms. This chapter presents the mathematical equations
describing these models, together with the kinds of model analyses that have proved useful
to epidemiologists. These approaches encompass both deterministic and probabilistic
frameworks. The preliminary models will, of necessity, be somewhat primitive and ignore a
number of well-known and important heterogeneities, such as differential susceptibility to
infection, contact networks, variation in the immunological response, and transmissibility.
Many of these complexities are addressed in subsequent chapters.

A clear exception to this is the study of macroparasitic infections (such as helminthic worms)
where the worm burden is of great interest because it can substantially affect both host and parasite
demography. In this book, we do not deal with such systems and refer interested readers to Anderson
and May’s (1991) thorough treatment of the subject.
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16 CHAPTER 2

2.1. FORMULATING THE DETERMINISTIC S/R MODEL

In order to develop a model, we first need to discuss terminology. Infectious diseases
are typically categorized as either acute or chronic. The term acute refers to “fast”
infections, where relatively rapid immune response removes pathogens after a short period
of time (days or weeks). Examples of acute infections include influenza, distemper, rabies,
chickenpox, and rubella. Chronic infections, on the other hand, last for much longer periods
(months or years) and examples include herpes and chlamydia. We start the development of
models by focusing on acute infections, assuming the pathogen causes illness for a period
of time followed by (typically lifelong) immunity. This scenario is mathematically best
described by the so-called S-7-R models (Dietz 1967). This formalism, which was initially
studied in depth by Kermack and McKendrick (1927), categorizes hosts within a popula-
tion as Susceptible (if previously unexposed to the pathogen), Infected (if currently colo-
nized by the pathogen), and Recovered (if they have successfully cleared the infection).

Now that we know how many categories there are and how these categories are defined,
the question becomes how individuals move from one to the other. In the simplest
case (ignoring population demography—births, deaths, and migration), we have only the
transitions S — [ and I — R. The second of these is easier, so we deal with it first. Those
infected can move to the recovered class only once they have fought off the infection. For
acute infections, it is generally observed that the amount of time spent in the infectious
class (the “infectious period”) is distributed around some mean value, which can be often
estimated accurately from clinical data. From a modeling perspective, this translates into
the probability of an individual moving from / to R being dependent on how long they
have been in the / class. However, modelers often make the simplifying assumption that
the recovery rate y (which is the inverse of the infectious period) is constant; this leads
to far more straightforward equations and exponentially distributed infectious periods. In
Section 3.3 we deal with the dynamical consequences of alternative, more realistic
formulations of the infectious period.

The progression from S to / clearly involves disease transmission, which is determined
by three distinct factors: the prevalence of infecteds, the underlying population contact
structure, and the probability of transmission given contact. For a directly transmitted
pathogen, there has to be contact between susceptible and infected individuals and the
probability of this happening is determined by the respective levels of S and 7, as well
as the inherent contact structure of the host population. Finally, we need to take into
account the likelihood that a contact between a susceptible and an infectious person results
in transmission.

S 2 | » R

These conceptual descriptions of the model can be represented by a flow diagram. The
flow diagram for the S7R model uses black arrows to show the movement between the
S and [ classes and the / and R classes. The fact that the level of the infectious disease
influences the rate at which a susceptible individual moves into the infected class is shown
by the dotted gray arrow. This book uses such flow diagrams to illustrate the essential
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INTRODUCTION TO SIMPLE EPIDEMIC MODELS 17

epidemiological characteristics. In general, demography will be ignored in these diagrams
to reduce the number of arrows and hence improve their clarity.

Flow diagrams provide a useful graphical method of illustrating the main epidemio-
logical assumptions underlying a model.

The previous paragraphs make the derivation of the transmission term seem relatively
straightforward. Unfortunately, the precise structure of the transmission term is plagued
by controversy and conflicting nomenclature. To explain some of these issues, we start
by defining the force of infection, A, which is defined as the per capita rate at which
susceptible individuals contract the infection. Thus, the rate at which new infecteds are
produced is A X, where X is the number of individuals in class S. This force of infection
is intuitively proportional to the number of infectious individuals. For directly transmitted
pathogens, where transmission requires contact between infecteds and susceptibles, two
general possibilities exist depending on how we expect the contact structure to change with
population size: A = BY /N and A = BY (where Y is the number of infectious individuals,
N is the total population size, and B is the product of the contact rates and transmission
probability). The first of these formulations will be referred to as frequency dependent (or
mass action) transmission and the second as density dependent (or pseudo mass action)
transmission. (We note, however, that Hamer (1906) refers to A = 8Y as mass-action;
this duality of nomenclature causes much confusion). A mechanistic derivation of the
transmission term is provided in Box 2.1.

It is important to distinguish between these two basic assumptions in terms of the
underlying structure of contacts within the population. Frequency-dependent transmission
reflects the situation where the number of contacts is independent of the population size.
At least as far as directly transmitted diseases are concerned, this agrees with our natural
intuition about human populations. We would not expect someone living in, for example,
London (population 7 million), or New York (population 8 million), to transmit an
infectious disease over 50 times more than someone living in Cambridge, United Kingdom
(population 130,000) or Cambridge, Massachusetts (population 100,000). The number of
close contacts that are likely to result in disease transmission will be determined by social
constraints, resulting in similar patterns of transmission in any large town or city. Indeed,
estimates of measles transmission rates in England and Wales demonstrate no relationship
with population size (Bjgrnstad et al. 2002). In contrast, density-dependent transmission
assumes that as the population size (or more accurately, as the density of individuals)
increases, so does the contact rate. The rationale is that if more individuals are crowded
into a given area (and individuals effectively move at random), then the contact rate will be
greatly increased. As a rule of thumb, frequency-dependent (mass action) transmission is
considered appropriate for vector-borne pathogens and those with heterogeneous contact
structure. Density-dependent (psuedo mass action) transmission, however, is generally
considered to be more applicable to plant and animal diseases, although care must be taken
in the distinction between number and density of organisms (for further discussion, we
refer interested readers to McCallum et al. 2001; Begon et al. 2002).

The distinction between these two transmission mechanisms becomes pronounced
when host population size varies, otherwise the 1/N term can be absorbed into the
parameterization of B in the mass-action term. As a simplification to our notation, it
is convenient to let S(= X/N) and /(=Y /N) to be the proportion of the population
that are susceptible or infectious, respectively. In this new notation our mass-action
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18 CHAPTER 2

(frequency-dependent) assumption becomes 857, which informs about the rate at which
new infectious individuals (as a proportion of the total population size) are infected.

In some instances, such as when we need to employ integer-valued stochastic models
(Chapter 6), variables need to reflect numbers rather than proportions. To distinguish
between these different approaches, this book will consistently use X, Y, and Z to
represent the numbers in each class and S, /, and R to represent proportions (see
Parameter Glossary).

Box 2.1 The Transmission Term
Here, we derive from first principles the frequency-dependent (mass action) transmission term
(also called proportionate mixing; Anderson and May 1992), which is commonly used in
epidemic models. It assumes homogenous mixing in the population, which means everyone
interacts with equal probability with everyone else; it discards possible heterogeneities arising
from age, space, or behavioral aspects (see Chapters 3 and 7).

Consider a susceptible individual with an average x contacts per unit of time. Of these, a
fraction / = Y/ N are contacts with infected individuals (where Y is the number of infectives and
N is the total population size). Thus, during a small time interval (from ¢ to ¢ 4 §¢), the number
of contacts with infecteds is (kY /N) x (§t). If we define ¢ as the probability of successful
disease transmission following a contact, then 1 — ¢ is the probability that transmission does
not take place. Then, by independence of contacts, the probability (denoted by 1 — §q) that a
susceptible individual escapes infection following (kY /N x §t) contacts is

1—38g =(1—c)*"/™M,

Hence, the probability that the individual is infected following any of these contacts is
simply 8q.

We now define 8 = —k log(1 — ¢) and substitute into the expression for 1 — §¢, which allows
us to rewrite the probability of transmission in a small time interval §¢ as

8 =1— e PYUN,

To translate this probability into the rate at which transmission occurs, first we expand the
exponential term (recalling that e* = 1 +x + %, + % ...), divide both sides by 8¢, and take the
limit of 6q /6t as 8¢+ — 0. This gives:
dq
2 =PIV,
which is the transmission rate per susceptible individual. In fact, this quantity is often
represented by A and referred to as the “force of infection”—it measures the per capita
probability of acquiring the infection (Anderson and May 1991). Then, by extention, the total
rate of transmission to the entire susceptible population is given by
ax _ X=-BXY/N
= —hX=—BXY/N,
where X is defined as the number of susceptibles in the population. If we rescale the variables
(by substituting S = X/N and I = Y /N) so that we are dealing with fractions (or densities), the
above equation becomes

ds
— =-pIS.
dt p
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INTRODUCTION TO SIMPLE EPIDEMIC MODELS 19

The transmission term is generally described by frequency dependence 3 XY /N (or
BSI), or by density dependence 5 XY.

The differences between frequency- and density-dependent transmission become
important if the population size changes or we are trying to parameterize disease
models across a range of population sizes.

2.1.1. The SR Model Without Demography

To introduce the model equations, it is easiest to consider a “closed population” without
demographics (no births, deaths, or migration). The scenario we have in mind is a
large naive population into which a low level of infectious agent is introduced and
where the resulting epidemic occurs sufficiently quickly that demographic processes are
not influential. We also assume homogeneous mixing, whereby intricacies affecting the
pattern of contacts are discarded, yielding S/ as the transmission term. Given the
premise that underlying epidemiological probabilities are constant, we get the following
S1R equations:

ds
dl
S =BSI=vI. (2.2)
dR

The parameter y is called the removal or recovery rate, though often we are more interested
in its reciprocal (1/y), which determines the average infectious period. For most diseases,
the infectious period can be estimated relatively precisely from epidemiological data. Note
that epidemiologists typically do not write the equation for the R class because we know
that S+ 7 + R = 1, hence knowing S and / will allow us to calculate R. These equations
have the initial conditions S(0) > 0, /(0) > 0, and R(0) = 0. An example of the epidemic
progression generated from these equations is presented in Figure 2.1; the conversion of
susceptible to infectious to recovered individuals is clear.

Despite its extreme simplicity, this model (equations (2.1) to (2.3)) cannot be solved
explicitly. That is, we cannot obtain an exact analytical expression for the dynamics of §
and / though time; instead the model has to be solved numerically. Nevertheless, the model
has been invaluable for highlighting at least two very important qualitative epidemiological
principles.

2.1.1.1. The Threshold Phenomenon

First, let us consider the initial stages after /(0) infectives are introduced into a popu-
lation consisting of S(0) susceptibles. What factors will determine whether an epidemic
will occur or if the infection will fail to invade? To answer this, we start by rewriting
equation (2.2) in the form

dl

—=1(BS—y). 2.4)
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20 CHAPTER 2
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Figure 2.1. The time-evolution of model variables, with an initially entirely susceptible population
and a single infectious individual. The figure is plotted assuming 8 = 520 per year (or 1.428 per
day) and 1/y =7 days, giving Ry = 10. (See the following pages for a definition of the crucial
parameter Ry)

If the initial fraction of susceptibles (S(0)) is less than y /8, then % < 0 and the infection

“dies out.” This is a famous result due to Kermack and McKendrick (1927) and is referred
to as the “threshold phenomenon” because initially the proportion of susceptibles in the
population must exceed this critical threshold for an infection to invade (see also Ransom
1880, 1881; Hamer 1897). Alternatively, we can interpret this result as requiring y /8, the
relative removal rate, to be small enough to permit the disease to spread. The inverse of
the relative removal rate is called the basic reproductive ratio (universally represented
by the symbol R;) and is one of the most important quantities in epidemiology. It is
defined as:

the average number of secondary cases arising from an average primary case in an entirely
susceptible population

and essentially measures the maximum reproductive potential for an infectious disease
(Diekman and Heesterbeek 2000). We can use R to re-express the threshold phenomenon;
assuming everyone in the population is initially susceptible (S(0) = 1), a pathogen can
invade only if Ry > 1. This makes very good sense because any infection that, on
average, cannot successfully transmit to more than one new host is not going to spread
(Lloyd-Smith et al. 2005). Some example diseases with their estimated Rys are presented
in Table 2.1; due to differences in demographic rates, rural-urban gradients, and contact
structure, different human populations may be associated with different values of Ry for
the same disease (Anderson and May 1982). The value of Ry depends on both the disease
and the host population. Mathematically, we can calculate R, as the rate at which new
cases are produced by an infectious individual (when the entire population is susceptible)
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INTRODUCTION TO SIMPLE EPIDEMIC MODELS 21

TABLE 2.1.

Some Estimated Basic Reproductive Ratios.

Infectious Disease Host Estimated R, Reference

FIV Domestic Cats 1.1-1.5 Smith (2001)

Rabies Dogs (Kenya) 2.44 Kitala et al. (2002)

Phocine Distemper Seals 2-3 Swinton et al. (1998)

Tuberculosis Cattle 2.6 Goodchild and

Clifton-Hadley (2001)

Influenza Humans 34 Murray (1989)

Foot-and-Mouth Livestock farms 3.54.5 Ferguson et al. (2001b)
Disease (UK)

Smallpox Humans 3.5-6 Gani and Leach (2001)

Rubella Humans (UK) 6-7 Anderson and May (1991)

Chickenpox Humans (UK) 10-12 Anderson and May (1991)

Measles Humans (UK) 16-18 Anderson and May (1982)

‘Whooping Cough Humans (UK) 16-18 Anderson and May (1982)

multiplied by the average infectious period:

For an infectious disease with an average infectious period given by 1/y and a
transmission rate g, its basic reproductive ratio R, is determined by 8/y.

In a closed population, an infectious disease with a specified R, can invade only if
there is a threshold fraction of susceptibles greater than 1/ R.

Vaccination can be used to reduce the proportion of susceptibles below 1/R; and
hence eradicate the disease; full details are given in Chapter 8.

2.1.1.2. Epidemic Burnout

The above observations are informative about the initial stages, after an infectious agent
has been introduced. Another important lesson to be learned from this simple S7R model
concerns the long-term (or “asymptotic”) state. Let us first divide equation (2.1) by
equation (2.3):

as _ _BS
dR ~  y’
= —RyS. 2.5)

Upon integrating with respect to R, we obtain
S(t) = S(0)e R0, (2.6)

assuming R(0) = 0. So, as the epidemic develops, the number of susceptibles declines and
therefore, with a delay to take the infectious period into account, the number of recovereds
increases. We note that S always remains above zero because e~ %% is always positive; in
fact given that R <1, S must remain above e~®0. Therefore, there will always be some
susceptibles in the population who escape infection. This leads to the another important
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Figure 2.2. The total fraction of the population infected as a function of disease Rj. The curve is
obtained by solving equation (2.7) using the Newton-Raphson method, and assuming that initially
the entire population is susceptible, S(0) = 1, which generates the largest epidemic size.

and rather counter-intuitive conclusion that emerges from this simple model:

The chain of transmission eventually breaks due to the decline in infectives, not due
to a complete lack of susceptibles.

This approach to model analysis can also shed some light on the fraction of the pop-
ulation who eventually contract an infection (Kermack and McKendrick 1927, Waltmann
1974). As shown in the steps leading to equation (2.6), it is possible to remove the variable
I from the system by the division of equation (2.1) by equation (2.3), which (after
integrating) gave an expression for § in terms of R. Bearing in mind that by definition
S+ 17+ R =1, and that the epidemic ends when / =0, we can rewrite the long-term
behavior of equation (2.6):

S(0)=1— R(c0) = S(0)e R
= 1 — R(c0) — S(Q)e FR — (. .7

where R(oo) is the final proportion of recovered individuals, which is equal to the total
proportion of the population that gets infected.

This equation is transcendental and hence an exact solution is not possible. However,
by noting that when R(oco) = 0, equation (2.7) is positive, whereas if R(co) =1 then the
equation is negative, we know that at some point in between the value must be zero and a
solution exists. Using standard methods, such as the Newton-Raphson (Press et al. 1988),
or even by trial and error, it is possible to obtain an approximate numerical solution for
equation (2.7); this is shown for the standard assumption of S(0) =1 in Figure 2.2. This
figure reinforces the message that if Ry < 1, then no epidemic occurs. It also demonstrates
the principle that whenever an infectious disease has a sufficiently large basic reproductive
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INTRODUCTION TO SIMPLE EPIDEMIC MODELS 23
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Figure 2.3. The epidemic curve. The filled circles represent weekly deaths from plague in Bombay
from December 17, 1905 to July 21, 1906. The solid line is Kermack and McKendrick’s approximate
solution given by d R /dt = 890 sech?(0.2¢ — 3.4).

ratio (R is larger than approximately 5), essentially everyone (>99%) in a well-mixed
population is likely to contract it.

Note that the expression derived in equation (2.7) is not specifically dependent on the
structure of the S7R model. It can be alternatively derived from a probabilistic argument
as follows: If a single individual has been infected, then assuming the rest of the population
are susceptible, they will on average infect Ry others. Therefore, the probability of a ran-
domly selected individual escaping infection and remaining susceptible is exp(—Ry/N).
Now, if Z individuals have been infected, then the probability of an individual escaping
infection is exp(—Z Ro/N). If at the end of the epidemic a proportion R(co) =Z/N
have been infected, then the probability of remaining susceptible is clearly S(co) = exp
(= R(c0)Ry), which again must be equal to 1 — R(c0). Therefore, we once again find that:
1 — R(00) = exp(— R(c0)Rp), which is independent of the exact structure of the model.

As we mentioned above, an exact solution of the S7R model (equations (2.1) to (2.3))
is not feasible due to the nonlinear transmission term, 8S/. It is possible, however, to
obtain an approximate solution for the “epidemic curve,” which is defined as the number
of new cases per time interval (Waltmann 1974; Hethcote 2000). A classic example of
the epidemic curve is provided in Figure 2.3 which shows the number of deaths per week
from the plague in Bombay during 1905-1906. Assuming new cases are identified once an
individual exhibits the characteristic symptoms of the infection, we can get a handle on the
epidemic curve by exploring the equation involving dR/dt (details provided in Box 2.2).
This gives the following inelegant but useful approximation:

dR ya? , (1
o T sech? (zayi—o). 28
@~ asore (g0t 28)

The quantities & and ¢ depend in a complex way on the parameters and initial conditions,
and are defined in Box 2.2. For any specific epidemic, the parameters in equation (2.8) can
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24 CHAPTER 2

Box 2.2 The Epidemic Curve
To obtain an expression for the epidemic curve, we start by considering equations (2.1)—(2.3).
As shown in the steps leading to equation (2.6), it is possible to remove the variable / from
the system by the division of equation (2.1) by equation (2.3), which (after integrating) gives
an expression for S in terms of R. Bearing in mind that by definition S+ 7/ + R = 1, we can
rewrite equation (2.3):

dR
—=y(1-8-R).
7 = )
After substituting for S from equation (2.6), this gives
dR
i y(1 = S(0)e PR _R). (2.9)

As it stands, this equation is not solvable. If, however, we assume that RyR is small, we can
Taylor expand the exponential term to obtain:

dR S(0)R?
— =y(1-S0)+( SOR,—1 beRz . (2.10)
dt 2
It is messy but possible to solve this equation. Omitting the intermediate steps, we get
1 1
Rit)= ——— | SO)Ry— 1 tanh [ —ayt — , 2.11
) RZS(0) ( (O)Ry — 1 +atan <20!)/ ¢)) (211
where
1
a = [(SO)Ry — 1)* + 2SO I(0)RF]? ,
and

¢ = tanh™! B (S(0)Ry — 1)] .

To obtain the epidemic curve as a function of time, we need to differentiate equation (2.11) with
respect to time, giving

ted wime~ R 2 YL e (Lo 2.12

reported cases per unit time s O sec <§ay —¢) . (2.12)
As usual, it is important to scrutinize the assumptions made while deriving this result. The
key step was in going from equation (2.9) to equation (2.10) and it involved the assumption
that RyR is small. This condition is most likely to be met at the start of the epidemic (when
R < 1) or if the infection has a very small Ry. Hence, the approximation will, in general,
probably not be very accurate for highly infectious diseases such as measles, whooping cough,
or rubella with estimated R, values of 10 or higher (see Table 2.1.). In addition, the ease with
which these equations can be numerically integrated largely negates the need for such involved
approximations on a regular basis.

be estimated from the data, as shown in Figure 2.3. Note that the derivation of this equation
requires RyR to be small, which is unlikely to be the case for many infectious diseases,
especially near the end of the epidemic when R typically approaches 1 (see Figure 2.2),
but is a good approximation during the early stages often up to the peak of the epidemic.
For most practical purposes, however, we need to numerically solve the S/ R equations to
calculate how variables such as X and Y change through time. The basic issues involved
in such an endeavor are discussed in Box 2.3 and the associated figure.
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INTRODUCTION TO SIMPLE EPIDEMIC MODELS 25

Box 2.3 Numerical Integration

Given the nonlinearity in epidemiological models, it is typically not possible to derive an
exact equation that predicts the evolution of model variables through time. In such cases, it
is necessary to resort to numerical integration methods. By far the simplest algorithm is called
Euler’s method, due to the eighteenth century Swiss mathematician. It involves the translation
of differential equations into discrete-time analogues. Simply, if we are interested in integrating
the S7R equations, we consider the change in each variable during a very small time interval,
8t. This is approximately given by the rate of change of that variable at time ¢ multiplied
by 6¢. For example, the equation describing the dynamics of the fraction of infectives is
given by

dI
1+60) ~ 10)+80x —

~ (1) 46t x (BS®I() — (n+ y) ().

Using this scheme, we can simulate the dynamics of a system of ordinary differential equations
(ODEs) through time. The problem with the method, however, is that it is rather crude and
possesses low accuracy (the error in predicted trajectories scales with 6¢ rather than a higher
power). In extreme cases (with &7 too large), the method has been known to generate spurious
dynamics such as cyclic trajectories when it is possible to demonstrate analytically that all
solutions converge to a stable equilibrium (see figure below).

=~  x10" x10™* x10™*

é 06 ODEss| o ooezs| ODE15s

Q

£ 2580 . 258 2.58

c

ke

5 2.56 2.56 2.56

©

L 199.8 199.9 200 199.8 199.9 200 199.8 199.9 200
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This figure demonstrates SE /R (see Section 2.5) dynamics predicted by different numerical
integration schemes. The gray line depicts model predictions using untransformed variables, and
the black line represents log-transformed variables (see below). The three different integration
schemes demonstrated are the Runge-Kutta Dormand-Prince (“ODE45” in Matlab; left),
Runge-Kutta Bogacki and Shampine pairs (“ODE23”; center), and Gear’s method (“ODE15s”;
right) (see Shampine and Reichelt 1997 for more details of these methods). As shown by
the fluctuations in the left and center, numerical integration schemes can generate spurious
dynamics, highlighting the importance of a thorough examination of model dynamics using
alternative methods, as well as potentially substantial gains from log-transforming variables.
(Parameter values are 8 = 1250 per year, i = 0.02 per year, 1 /0 = 8 days, and 1/y =5 days.)

Such numerical issues can be easily overcome using more sophisticated integration methods,
where the deviation from the true solution scales with higher powers of §¢ (see Press et al.
(1988) for a review of different methods, as well as algorithms for their implementation).

However, no numerical scheme will ever be exact due to computational rounding error
and therefore it is optimal to reformulate the equations so that such errors are minimized.
Dietz (1976) suggested the use of log-transform variables (¥ =1log(S) and $ =1log(/)). The
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transformed S7 R equations become

.dx e .
by — _ J+X by
e o n—Be ne
~dy N N
P — X+9 %
o Be (u+y)e,
which after simplification become
ds e
— = e " — fPe’ —
dt 14 Hn
dy R
a TPy

These new equations, although looking inherently more complex, are far less prone to numerical
error. In the above figure, we show that although some integration schemes applied to the
standard S/ R equations can generate spurious fluctuating dynamics (gray lines), the use of log-
transformation of variables (black lines) can overcome this problem—as can the use of more
sophisticated integration methods.

2.1.1.3. Worked Example: Influenza in a Boarding School

An interesting example of an epidemic with no host demography comes from an outbreak
of influenza in a British boarding school in early 1978 (Anon 1978; Murray 1989). Soon
after the start of the Easter term, three boys were reported to the school infirmary with
the typical symptoms of influenza. Over the next few days, a very large fraction of the
763 boys in the school had contracted the infection (represented by circles in Figure 2.4).
Within two weeks, the infection had become extinguished, as predicted by the simple S/ R
model without host demography.

We can get an understanding into the epidemiology of this particular strain of influenza
A virus (identified by laboratory tests to be A/USSR/90/77 (HIN1)) by estimating the
parameters for the S7/R model from these data. Using a simple least squares procedure
(minimizing the difference between predicted and observed cases), we find the best fit
parameters yield an estimated active infectious period (1/y) of 2.2 days and a mean
transmission rate () of 1.66 per day. Therefore, the estimated Ry of this virus during this
epidemicis f/y = 1.66 x 2.2, which is 3.65. As shown in Figure 2.4, model dynamics with
these parameters is in good agreement with the data. Note, however, that as pointed out by
Wearing et al. (2005), the precise value of Ry estimated from these data is substantially
affected by the assumed model structure (in Section 3.3 we deal with this issue in
more detail).

2.1.2. The SR Model With Demography

In the last section, we presented the basic framework for the S7/R model given the
assumption that the time scale of disease spread is sufficiently fast so as not to be
affected by population births and deaths. Some important epidemiological lessons were
learned from this model, but ultimately, the formalism ensured the eventual extinction of
the pathogen. If we are interested in exploring the longer-term persistence and endemic
dynamics of an infectious disease, then clearly demographic processes will be important.
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Figure 2.4. The SR dynamics. The filled circles represent the number of boys with influenza in an
English boarding school in 1978 (data from the March 4th edition of the British Medical Journal).
The curves represent solutions from the S7R model fitted to the data using least squares. Estimated
parameters are 8 = 1.66 per day and 1/y = 2.2 days, giving an R, of 3.65.

In particular, the most important ingredient necessary for endemicity in a population is the
influx of new susceptibles through births.

The simplest and most common way of introducing demography into the S/ R model is
to assume there is a natural host “lifespan”, 1/u years. Then, the rate at which individuals
(in any epidemiological class) suffer natural mortality is given by w. It is important to
emphasize that this factor is independent of the disease and is not intended to reflect the
pathogenicity of the infectious agent. Some authors have made the alternative assumption
that mortality acts only on the recovered class (see Bailey 1975; Keeling et al. 2001a;
Brauer 2002), which makes manipulation easier but is generally less popular among
epidemiologists. Historically, it has been assumed that u also represents the population’s
crude birth rate, thus ensuring that total population size does not change through time
(dff + % + dd—f =0). This framework is very much geared toward the study of human
infections in developed nations—our approach would be different if the host population
exhibited its own “interesting” dynamics (as is often the case with wildlife populations;
see Chapter 5). Putting all these assumptions together, we get the generalized S/R
model:

— = BSI S (2.13)
;= 7 wS, .
! = BSI—yl—ul (2.14)
dt ’ ’
=yl R (2.15)
/ =Yy nWR. .
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Note that for many diseases, such as measles, newborns may have passive immunity
derived via the placental transfer of maternal antibodies (if the mother had experienced
infection or had been vaccinated). Given that the average age at which this immunity to
measles and other childhood infections is lost (approximately 6 months) is considerably
smaller than the typical age at infection (4-5 years in developed nations; Anderson & May
1982), the assumption that all newborns enter the susceptible class is not unreasonable. In
cases when the mean age at infection is very small—in developing nations, for example—
maternally derived immunity needs to be explicitly incorporated into models (see McLean
and Anderson 1988a,b; and Hethcote 2000).

Before proceeding further, it is useful to establish the expression for Ry in this model.
Starting with the basic definition of Ry (number of secondary infectives per index case
in a naive population of susceptibles), we can look closely at equation (2.14) to work it
out. The parameter 8 represents the transmission rate per infective, and the negative terms
in the equation tells us that each infectious individual spends an average ﬁ time units
in this class—the infectious period is effectively reduced due to some individuals dying
while infectious. Therefore, if we assume the entire population is susceptible (S = 1),
then the average number of new infections per infectious individual is determined by the
transmission rate multiplied by the infectious period:

_ B

v+
This value is generally similar to, but always smaller than, R, for a closed population
because the natural mortality rate reduces the average time an individual is infectious.
Having established the expression for the Ry, we can now explore some of the properties
of the system. This model has proved very useful, primarily for (1) establishing disease
prevalence at equilibrium, (2) determining the conditions necessary for endemic equilib-
rium stability, (3) identifying the underlying oscillatory dynamics, and (4) predicting the
threshold level of vaccination necessary for eradication. We will successively explore these
features and discuss some of the relevant mathematical underpinnings.

Ro (2.16)

2.1.2.1. The Equilibrium State

The inclusion of host demographic dynamics may permit a disease to persist in a population
in the long term. One of the most useful ways of thinking about what may happen
eventually is to explore when the system is at equilibrium, with % = % = ‘fI—f =0. We
therefore set each equation in the system (equations (2.13)—(2.15)) to zero and work out
the values of the variables (now denoted by S*, I*, and R*) that satisfy this condition.

Without needing to do much work, the disease-free equilibrium is self-evident. This is
the scenario where the pathogen has suffered extinction and, in the long run, everyone in the
population is susceptible. Mathematically, this state is expressed as (S*, [*, R*) = (1, 0, 0).
Below, we discuss the likelihood of observing this state in the system.

Establishing the endemic equilibrium requires slightly more work. Perhaps counterintu-

itively, we start by setting the equation for the infectives (equation (2.14)) to zero:
BSI —(y +u)l =0. 2.17)
After factoring for /, we have

I(BS —(y + ) =0, (2.18)
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which is satisfied whenever /* = 0 or §* = Y49 The first condition is simply the disease-

free equilibrium, so we concentrate on the second. The quantity on the right-hand side of
the equality should look familiar: It is the inverse of the Ry. This leads to an important
result:

In the S7R model with births and deaths, the endemic equilibrium is characterized
by the fraction of susceptibles in the population being the inverse of R,.

Having established that S* = Ri, we substitute this into equation (2.13) and solve for 7*.

0
Missing out a few lines of algebra, we eventually arrive at

U 1 z
F==(l—-—)==(Ry—1. 2.19
y( Ro) ﬂ(o ) (2.19)

One universal condition on population variables is that they cannot be negative. Hence the
endemic equilibrium is biologically feasible only if Ry > 1, which agrees with our earlier
ideas about when an epidemic is possible. Now, utilizing §* + /* + R* = 1, we can obtain
an expression for R*. The endemic equilibrium is, therefore, given by:

N L N . P
(S’I’R)_<RO’,B(RO 1,1 R ﬁ(RO 1)).

2.1.2.2. Stability Properties

So far, we have derived expressions for the disease-free and endemic equilibrium points
of the STR system, and the restrictions on parameter values for these equilibria to be
biologically meaningful. We now would like to know how likely we are to observe them.
In mathematical terms, this calls for a “stability analysis” of each equilibrium point, which
would provide conditions on the parameter values necessary for the equilibrium to be
(asymptotically) stable to small perturbations. The basic idea behind stability analysis is
explained in Box 2.4. When this technique is applied to our two equilibrium states, we
find that for the endemic equilibrium to be stable, Ry must be greater than one, otherwise
the disease-free equilibrium is stable. This makes good sense because the pathogen
cannot invade if each infected host passes on the infection to fewer than one other host
(i.e. Ry < 1). However, if successively larger numbers are infected (Ry > 1), then the
“topping up” of the susceptible pool by reproduction ensures disease persistence in the
long term.

In the S/ R model with births and deaths, the endemic equilibrium is stable if Ry > 1,
otherwise the disease-free equilibrium state is stable.

2.1.2.3. Oscillatory Dynamics

An important issue for any dynamical system concerns the manner in which a stable
equilibrium is eventually approached. Do trajectories undergo oscillations as they approach
the equilibrium state or do they tend to reach the steady state smoothly? The S7R system is
an excellent example of a “damped oscillator,” which means the inherent dynamics contain
a strong oscillatory component, but the amplitude of these fluctuations declines over time
as the system equilibrates (Figure 2.5).

Figure 2.6, shows how the period of oscillations (as determined by equation (2.23) in
Box 2.4) changes with the transmission rate (8) and the infectious period (1/y). We note
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that (relative to the infectious period) the period of oscillations becomes longer as the
reproductive ratio approaches one; this is also associated with a slower convergence toward
the equilibrium.

Box 2.4 Equilibrium Analysis
Here, we outline the basic ideas and methods of determining the stability of equilibrium
points. Although we are specifically concerned with the S/ R model here, the description of
the concepts will be quite general and could be applied to a range of models discussed in this
book. Assume we have n variables of interest, N; (i =1, 2, ...n). The dynamics of the system
are governed by n coupled Ordinary Differential Equations (ODEs; in the S/R equations,
n is three):

dN[
dt

= fi(N\, N2, ..., N,), i=1,2,...,n (2.20)

To explore the equilibrium dynamics, we must first determine the system’s equilibrium state
(or states). This is done by setting equations (2.20) to zero and solving for the solutions
Ny, Nj, ..., Ny—noting that multiple solutions may exist. We know that if the system is at
equilibrium, then it will remain at equilibrium (by definition). But what happens when the
system is (inevitably) perturbed from this state? In mathematical jargon, we are interested in
determining the consequences of small perturbations to the equilibrium state. This is achieved
by looking at the rates of change of these variables when each variable is slightly shifted
away from its equilibrium value. This is done by making the substitutions N; = N +¢; in
equations (2.20) and exploring the growth or decline of the perturbation terms, €;, over time.
In any specific case, we can carry out each of these steps, but there is a more generic
methodology.

Mathematical results dating back some 200 years have established that for a series of
equations such as those described by equations (2.20), the stability of an equilibrium point
is determined by quantities known as eigenvalues, here represented by A;. For a system of n
ODE:g, there will be n eigenvalues and stability is ensured if the real part of all eigenvalues are
less than zero—these eigenvalues are often complex numbers. Having established the usefulness
of eigenvalues, we need to explain how to calculate these terms. Before we can do that, a matrix,
J . known as the Jacobian must be introduced. It is given by:

aff  aff off
N, N, T AN,
afy afy afy
J— N, N, oN,
afr afr afy
N, AN, AN,
The terms f;* refer to the functions f;(N;, Na,..., N,) calculated at equilibrium, i.e.

Si(NY, N3, ..., Ny). Theeigenvalues A; (i = 1,2, ..., n)are the solutions of det(J — AI) = 0;
where I is the identity matrix. That is, we subtract A from each diagonal element of the Jacobian
and then work out the determinant of the matrix. This will give rise to a polynomial in A of order
n. This is called the characteristic polynomial, which, when set to zero and solved, gives rise to
the eigenvalues (A1, A, ..., Ay).
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Let us demonstrate these ideas by applying them to the S7R system of equations. Finding
the two equilibrium states is described in the main text. So next, we work out the Jacobian:

—BI*—pu —BS* 0
J= BI* BS*—(u+y) O
0 Y —u

To obtain the characteristic polynomial, we subtract A from the diagonal elements and calculate
the determinant. This gives:

(BI" == AYBS" — (u+y) = A)(—p — M)+ (BINBS)—p — A)=0.

Notice that (—u — A) can be factored immediately, giving one eigenvalue (A; = —pu) that
is negative. The remaining two solutions A, 3 are found by solving the following quadratic
equation:

(BI" — = M)(BS* —(u+y)— A) +BI"BS* =0. @21

Let us first consider the disease-free equilibrium. If we make the appropriate substitutions
(§* =1 and I'* = 0), we have
(= —=M)(B—(u+y)—A)=0.

This clearly has two solutions, A, = —p and Az = — (i + y). For this equilibrium to be
stable, we need to ensure all eigenvalues are negative, hence the stability criterion becomes
B < u+ y, which translates into ensuring Ry < 1.

To explore the endemic equilibrium, again we substitute the expressions for $* and /* into
equation (2.21) and explore the condition required for the remaining two eigenvalues to be
negative. After making some simplifications, we arrive at the following quadratic equation,

A*+ WRoA + (u+y)u(Ry — 1) =0, (2.22)

the solutions of which can be obtained by the standard formula, giving:

Ry | V(1R — S5

Axz = 2 2 ,
where the term 4 = m denotes the mean age at infection (see Section 2.1.2.4) and G = ﬁ
determines the typical period of a host’s infectivity.
To make further progress with this equation, we notice that often (u Ry)? is small enough to

ignore and hence we can approximate the above solutions to

7MRoj: i
2 JAG'

where i = /—1. Therefore, the endemic equilibrium is feasible only when R, is greater than
one, but it is always stable. The fact that the largest (“dominant”) eigenvalues are complex
conjugates (they are of the form A, 3 = x % iy) tells us that the equilibrium is approached via
oscillatory dynamics. The period of these damped oscillations, T, is determined by the inverse
of the complex part of the eigenvalues multiplied by 27:

T ~27/AG. (2.23)

Ay~

2.1.2.4. Mean Age at Infection

When dealing with infectious diseases in the real world, an important indicator of
prevalence is the host’s mean age at infection, A4 (if it possible to contract the infection
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Figure 2.5. The S/R model’s damped oscillations. The main figure shows how the fraction of
infectives oscillates with decreasing amplitude as it settles toward the equilibrium. The inset
shows a slice of the time-series with the period of fluctuations as predicted by equation (2.23).
The figure is plotted assuming 1/u =70 years, § =520 per year, and 1/y =7 days, giving
Ry = 10. Initial conditions were S(0) = 0.1 and I(0) = 2.5 x 107*.
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Figure 2.6. The period of damped oscillations in the S7 R model as the transmission rate (8) and in-
fectious period (1/y) are varied. The gray line on the surface depicts the oscillatory period whenever
the parameters combine to yield an R, of 15. The figure is plotted assuming 1/ = 70 years.
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Figure 2.7. The mean age at infection for the S7R model as a function of the basic reproductive
ratio (R,) and the average life expectancy (1/u). Using equation (2.24), we see that as R increases,
there is a dramatic decline in the mean age at infection, whereas changes in p are not as influential.

multiple times, then we would be interested in the mean age at first infection). This
quantity can be measured in a straightforward way for many human or animal infections
by analyzing age-specific serological data, which detect the presence of antibodies specific
to pathogen antigens. The rate at which individuals seroconvert (from negative to positive)
provides information on the force of infection (see Box 2.1). Age-stratified serological
surveys, when conducted randomly through the population, can yield a relatively unbiased
population level estimate of the mean age at infection. Typically, we may also have accurate
independent estimates for some of the model parameters such as the host life expectancy
(from demographic data) and the infectious period (from clinical epidemiology data). Thus,
once we have an estimate of the mean age at infection from serological surveys, we can
estimate the transmission rate B as long as we have an expression for 4 derived from the
model (see Figure 2.7).

How do we calculate the average age at which susceptibles are infected, especially given
a nonage-structured model? We can approach this question by taking equation (2.13) at
equilibrium and calculating the mean time an individual remains susceptible—that is, the
mean time from birth (or loss of maternally derived immunity) to infection. Ignoring the
small, disease-independent mortality term, the average period spent in the susceptible class
is approximated by the inverse of the force of infection, namely ﬂi[ Upon substituting for
I* from equation (2.19), we obtain an expression for the mean age at infection:

1
~ . (2.24)
w(Ro—1)
This equation can be rephrased as Ry — 1 & %, where L is the host’s life expectancy. The

above step has proven historically very important in establishing a robust link between
model parameters and population level quantities such as L and A. In their classic work,
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Anderson and May (1982; 1991) used the estimates of 4 and L to calculate R, for
numerous infections in different geographical regions and eras (see Table 2.1).

The mean age of (first) infection is equal to the average life expectancy of an individual
divided by Ry — 1.

2.2. INFECTION-INDUCED MORTALITY AND S/ MODELS

The models described in the previous section have implicitly assumed that the infection
is essentially benign. Transmission results in a period of illness, which is followed by
recovery and lifelong immunity. This scenario is reasonable for largely harmless infections
such as the common cold or chickenpox. However, numerous infectious diseases are
associated with a substantial mortality risk. Examples include malaria, measles, whooping
cough, SARS, and dengue fever, among others. How do we explore the consequences of
infection-induced mortality? Specifically, how do we incorporate a mortality probability
into the S/R equations? The obvious approach would be to add a term such as —m/
to equation (2.14), where m is a per capita disease-induced mortality rate for infected
individuals. However, this may be tricky to interpret biologically or estimate from data.
Instead, it is preferable to think about the probability, p, of an individual in the / class
dying from the infection before either recovering or dying from natural causes. This is the
quantity most likely estimated from clinical studies or case observations. Mathematically,
this translates into the following equation:

? = BSI—(y +m ———( + I, (2.25)
t 1—p

where p represents the per capita probability of dying from the infection and takes values
from zero to one. (The S equation remains as before.) Therefore, in order to convert this to
a mortality rate, we should set m = ﬁ(y + w). This equation for the infection dynamics
can be tidied up to give

dl +
I _gsr— (y + 1)
dt 1—p
Note that as p approaches unity, new infectives die almost instantaneously and R, drops
to zero; for such diseases it may be more appropriate to further subdivide the infectious

period and allow mortality only in the later stages of infection (see Section 3.3).

1. (2.26)

2.2.1. Mortality Throughout Infection

Because infection actively removes individuals from the population, we can no longer
implicitly assume that the population size is fixed—disease-induced mortality could lead
to an ever-declining population size. One way around this is to incorporate a fixed birth
rate (v) into the susceptible equation (2.13), independent of the population size:

ds

— =v—BSI—us. 2.27
T BSI—uS (2.27)

However, the fact that the population size N can vary means that we need to consider
the transmission term B8S/ in much more detail. Until now, it has made little difference
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whether density or frequency-dependent transmission was assumed, because the N term
was constant and could be absorbed by rescaling the population size or rescaling the
transmission rate 5. However, because N is now variable, this is no longer possible and
the choice of transmission mechanism can profoundly affect the dynamics. Given that this
problem illustrates an important (and often confusing) issue in epidemiological modeling,
we will deal with the two cases separately, paying particular attention to the underlying
assumptions. To make matters explicit, we will deal with numbers rather than proportions
throughout this section.

2.2.1.1. Density-Dependent Transmission

For density-dependent (pseudo mass action) transmission, we specifically consider the case
where as the total population size N decreases, due to disease-induced mortality, there is
reduced interaction between hosts. In this density-dependent formulation, the rate at which
new cases are produced is 8 XY, which scales linearly with both the number of susceptibles
and the number of infectious individuals.We start by considering the values of v and p and
the dynamics of the disease-free state. In the absence of disease, we find that

dN v
— =v—uN = N — — (2.28)
dt %

Hence, we can equate i with the ecological concept of a carrying capacity for the

population.

We can now repeat the kinds of analyses that were carried out on the generalized SIR
model in Section 2.1.1.2. Once again, we find the system possesses two equilibrium points:
one endemic (X*, Y*, Z*) and one disease free (ﬁ, 0, 0). Missing out a few lines of algebra,
we find the endemic equilibrium to be:

x = H#rtr _ v (2.29)
Bl—p)  nRo
v = LR 1), (2.30)
B
« = Yop _
Z* = Z(Ry—1). (2.3
B
v
= N*" = —[1+{—p)Ro—D]. (2.32)
R
In this case, Ry (= f/i]gy/’)zf) contains a correction term (1 — p) that takes into account the

reduced period of infectivity due to disease-induced mortality, as well as a term that takes
into account the population size at the disease-free equilibrium. The condition necessary
to ensure the feasibility of the endemic equilibrium (and hence the instability of the
disease-free steady state) is found by ensuring Y* > 0, which translates to Ry > 1, as we
have previously seen. This means that if p > 0, then the pathogen has to have a higher
transmission rate per unit of infectious period (M%) in order to remain endemic, compared
to a similar infectious disease that is benign—due to the fact that the effective infectious
period is reduced by disease-induced mortality.

The stability properties of this system are similar to the basic S/R model. Indeed,
stability analysis reveals the endemic equilibrium to be always locally asymptotically
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stable. The approach to the equilibrium is also via damped oscillations, the (natural) period
of which are determined by the following equation:

T ~2n+vAG. (2.33)

This is identical to equation (2.23), though note that here the terms A (the average age of
infection) and G (the average generation length of infection), respectively, both contain a
correction term due to taking infection-induced mortality into account.

When disease-induced mortality is added to the S/ R model with density-dependent
transmission, the equilibrium and stability properties simply reflect a change in
parameters.

2.2.1.2. Frequency-Dependent Transmission

For frequency-dependent (mass action) transmission, the calculation is somewhat more
involved. Recall that if X and Y are the number of susceptible and infectious hosts, then the
mass-action assumption means that the transmission rate is given by XY /N. Previously,
we rescaled the variables such that S and [ represented fractions of the population,
which removed the N term in the transmission rate, leaving us with more elegant-looking
equations. However, in this scenario N is varying and that trick is no longer appropriate.
Instead, we retain the notion that X and Y are numbers of hosts. Our equation for the
number of infectious individuals is therefore:
dy — BXY/N — (y+u)y'
dt 1—p
We note that the mass-action assumption means that even when the population size is
reduced, each individual still has the same average number of contacts.
It will not be a surprise that two equilibria exist: the endemic (X*, Y*, Z*) and the
disease-free (i, 0, 0). The endemic equilibrium can again be found by setting the rates
of change equal to zero:

(2.34)

- vd=py+p :ﬁ’ o 5= (r+u :L’
uwBd—=p)—pp—vp) Ro Bl—p) Ro
1= pP —v(u+y)1=p) o
£ _ vB( p) v +y 14 L o= IF= M (Ry— 1),
(u+y)B( —p) — o — yp) B(1—p)
N = pv(l - p)* v (Ro(l —p)>
wBA—p)—pp—yp) w\ (Ro—p) )"

As the expressions on the right-hand side demonstrate, equilibrium values are easier to
understand intuitively if we deal with the proportion of the population in each state, rather
than the absolute number. Again, we note that Ry > 1 is necessary and sufficient for the
disease to invade the population and for the equilibrium point to be feasible and stable.
For both the frequency- and density-dependent models, the population size can be
reduced from its carrying capacity of }KL by the impact of the disease. Not surpris-
ingly, infectious diseases with the highest mortalities (p close to one) and largest Ry
have the greatest impact on the population (Figure 2.8). Although for low mortality
levels both mixing assumptions lead to similar results, when the mortality is high the
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Figure 2.8. The population size, N*, for diseases that are associated with mortality. Two different
disease mortality probabilities are considered, p = 0.1 and p = 0.9, and the two mixing assump-
tions of density dependence (8XY, solid line) and frequency dependence (8 XY /N, dashed line)
are shown.

frequency-dependent (mass-action) assumption leads to the largest drop in the total
population size. This is because pseudo mass-action mixing places a natural damping on
transmission, such that as the population size decreases so does the contact rate between
individuals, limiting disease spread and reducing disease-induced mortality. From this
relatively simple example it is clear that when population sizes change, our assumption
about mixing behavior can have profound effects on the dynamics.

When disease-induced mortality is added to the S/R model with frequency-
dependent transmission, the equilibrium and stability properties can change substan-
tially, especially if the probability of mortality is high.

2.2.2. Mortality Late in Infection

One difficulty with equation (2.26) is that when the mortality rate is very high, the
infectious period is substantially reduced. In some cases, we may wish to consider a disease
where mortality generally occurs at (or toward) the end of the infectious period. This is
often plausible because the onset of disease (and symptoms) may be significantly delayed
from the onset of infection. In such cases, the following model would be appropriate:

ds
— =v—BSI—us, 2.36
7= B " (2.36)
dl
i BSI —(y + ), (2.37)
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dR

—7 =(=pyl—uR. (2.38)

For this form of model mortality, we again need to consider the precise form of
transmission. For frequency-dependent transmission, the reduction in the recovered pop-
ulation has no effect on the dynamics and hence this model has the same properties
as the standard S/R model. However, for density-dependent transmission, we find

that X* = %W and Y* = %, although again this is stable and feasible
if Ry =

v
u(y+p) > L

The equilibrium levels of diseases that cause mortality are critically dependent upon
whether frequency- or density-dependent transmission is assumed, due to the changes
in the total population size that occur. However, we generally find that the endemic
equilibrium is feasible and stable as long as Ry > 1.

2.2.3. Fatal Infections

S — 1

The models of Sections 2.2.1 and 2.2.2 represent cases where infection does not always kill.
There are, however, numerous examples of animal and plant pathogens that are always fatal
(Feline Infectious Peritonitis (FIP), Spongiform Encephalopathy (BSE), Leishmaniasis,
Rabbit Haemorrhagic Disease, and Highly Pathogenic Avian Influenza (H5N1)). In this
situation, we can simplify the S/R equations by removing the recovered class, which
leads to a family of models known as S7 models. Here, infecteds are assumed to remain
infectious for an average period of time (1/y), after which they succumb to the infection.
Assuming frequency-dependent transmission, the equations describing the S/ model
are simply:

dX
S = V= BXY/N -y, (2.39)
W~ pxr N+ (2.40)

It is straightforward to demonstrate that the endemic equilibrium (X* = ﬂﬁy, Y*=

v(B—y—it) ; __B ;
(ﬂ*}/)()ﬂfﬂ)) is feasible as long as Ry = ke 1 and is always locally stable.

Alternatively, if we assume pseudo mass-action transmission, such that the contact rate
scales with density, we obtain:

dx
T =v- BXY — X, (2.41)
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dY

T =BXY —(y +w)Y. (2.42)
Similarly, for this system the endemic equilibrium (X* = V;%, Y*= (y:m - %) is feasible
as long as Ry = —BY_ > 1 andis again always locally stable.

(n+y)n

2.3. WITHOUT IMMUNITY: THE S/S MODEL

The S1 and S7R models both capture the dynamics of acute infections that either kill or
confer lifelong immunity once recovered. However, numerous infectious diseases confer
no long-lasting immunity, such as rotaviruses, sexually transmitted infections, and many
bacterial infections. For these diseases, a individuals can be infected multiple times
throughout their lives, with no apparent immunity. Here, we concentrate briefly on this
class of models, called S/S because recovery from infection is followed by an instant
return to the susceptible pool.

S —» 1
A |

Simply, these SIS models are described by a pair of coupled ordinary differential
equations:

ds
= yI-BIs, (243)
dl
T BSI—yl. (2.44)

The parameters are as defined in the previous section, but with S+ / = 1. In this simple
example, demography (births and deaths) has been ignored. Despite this lack of susceptible
births, the disease can still persist because the recovery of infectious individuals replenishes
the susceptible pool. We can, therefore, substitute S =1— [ into equation (2.44) and
simplify to get

dl
27 =B =BI=y) = BI(1—=1/Ro) = D), (2.45)

where, as usual, Ry = f/y. This equation is the equivalent of the logistic equation used to
describe density-dependent population growth in ecology (Murray 1989). The equilibrium
number of infectives in this population is obtained by setting equation (2.45) to zero and
solving for 7*. This gives 7* = (1 — 1/ Ry), hence yet again §* = 1/ Ry, and the equilibrium
will be stable as long as Ry > 1. However, for this class of model, convergence to the
equilibrium is monotonic with no oscillatory behavior. The dynamics of S7.5 models and
sexually transmitted diseases is described in more detail in Chapter 3.

For an infectious disease that does not give rise to long-term immunity, as long as the
infection is able to invade the population, loss of immunity will guarantee its long-
term persistence.
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2.4. WANING IMMUNITY: THE S/R MODEL

The STR and SIS models are two behavioral extremes where immunity is either lifelong
or simply does not occur. An intermediate assumption is that immunity lasts for a limited
period before waning such that the individual is once again susceptible.

S X » | —— R
A |

This translates into the following model:

dS
a nw+wR—BSI—usS (2.46)
dl
— = BSI—yl—pul (2.47)
dt
dR
n =yl —wR—uR, (2.48)

where w is the rate at which immunity is lost and recovered individuals move into the
susceptible class. Not surprisingly, the dynamics of this model provide a smooth transition
between the S7 R framework (when w = 0) and the §7.S model (when w — o0). As before,
Ry = V%M and we require R > 1 to obtain a plausible stable endemic solution. Once again,
it is possible to obtain the oscillatory damping toward endemic equilibrium that was seen
in the S7 R model; the period of these oscillations is given by:

4
T = ,

AR 1)1 1 1 1)\?
07 VG,6r \Gr 4
wtpty

where 4 = TG is again the average age at first infection, whereas G; = 1/(y +
W) is the average period spent in the infectious class, and Gz = 1/(w + ) is the average
time spent in the recovered class.

Figure 2.9 shows the dramatic effects of changing the level of waning immunity: As the
period of immunity (1/w) is reduced (and the dynamics more closely resemble those of the
S1S model), we observe a dramatic increase in the prevalence of infectious disease together
with a marked drop in the period of the damped oscillations. This waning immunity result
was used by Grassly et al. (2005) to explain the 9—10-year cycle observed in syphilis cases
in the United States. It was postulated that these cycles were determined by the natural
oscillations of syphilis infection if waning immunity was assumed. Grassly et al. (2005)
found that oscillations consistent with those observed could be generated by a model
with Ry =1.5, 1/w =10 years, 1/y =2 months, and 1/u = 33 years—this high birth
rate accounts for individuals entering and leaving the pool of sexually active individuals.
We note that although the deterministic model predicts that eventually such oscillations
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Figure 2.9. The effects of waning immunity on the equilibrium infection prevalence (left graph) and
the period of the damped oscillations (right graph). (Ry = 10, 1/ = 70 years, 1/y = 10 days.)

will decay to zero, the chance nature of transmission can lead to sustained oscillations
generally close to the natural period, T (see Chapter 6).

2.5. ADDING A LATENT PERIOD: THE SEIR MODEL

We briefly introduce a refinement to the S7R model to take into account the latent period.
The process of transmission often occurs due to an initial inoculation with a very small
number of pathogen units (e.g., a few bacterial cells or virions). A period of time then
ensues during which the pathogen reproduces rapidly within the host, relatively unchal-
lenged by the immune system. During this stage, pathogen abundance is too low for active
transmission to other susceptible hosts, and yet the pathogen is present. Hence, the host
cannot be categorized as susceptible, infectious, or recovered; we need to introduce a new
category for these individuals who are infected but not yet infectious. These individuals are
referred to as Exposed and are represented by the variable E in SE IR models.

S —» E —m» | ——» R

Assuming the average duration of the latent period is given by 1 /o, the SEI R equations
are:

ds

= = u—(BI+ws. (249)

dE is i

— = BSI—(u+o)E. 250) quine
il 26
= oE—(utpL, @51

dt

R _ R (2.52)

ar VTR '
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As before, we typically assume S+ E + / + R = 1 and hence equation (2.52) is redundant.
The addition of a latent period is essentially akin to introducing a slight time delay into the
system and we may expect that such a feature may act to destabilize and slow the system.
As we will demonstrate, the dynamic properties of the SE/R model are qualitatively
similar to those of the S7R system.

Standard equilibrium stability analysis proceeds by finding the steady states of the
system and determining the criteria for their stability. As with previous disease models,
the SEIR model also possesses both an endemic (S*, E*, I*, R*) and a disease-free
(1,0, 0, 0) equilibrium solution. As usual, the endemic fixed point is of greater interest
and is given by

wtyputo) 1

5 = o = (2.53)

o= MBI p ) (2.54)
Bo

= 2R —1), (2.55)

B

with R* =1— §*+ E* 4 I'*. The expression for R, is now slightly different, due to the
death of some individuals in the exposed class who do not contribute to the chain of
transmission. However, this difference is often negligible because typically o /(i +0) ~ 1
as the latent is far smaller that the expected lifespan. As expected, if the latent period is
infinitesimally small (i.e., o — 00), then we recover the same expression for Ry as for the
STR model (Ry = B/(y + 1)).

For the endemic equilibrium to be feasible and stable (and the disease-free equilibrium to
be unstable), equation (2.55) once again requires that the basic reproductive ratio exceed
one (Ry > 1). By exploring the Jacobian of the system (equations (2.49)—(2.51)) in the
usual way, we obtain a quartic in the eigenvalues A. As for the STR model (Box 2.4),
A = —p is an obvious solution, leaving us with a cubic equation:

A+ (URy+ 21+ 0+ Y)A* + Ry 2p+0 + y)A + (Ro — D(pe + o)+ y) =0.

Unfortunately, there is no obvious solution to this equation. As pointed out by Anderson
and May (1991), however, in many cases ¢ and y will be much larger than © and wRy.
If so, then one solution to this equation is approximately A ~ —(o + y), which leaves us
with a quadratic for the two remaining eigenvalues:

A2+ puRoA + X2 Ry — 1)~
HRyA + (R )~ 0.
o+vy

Clearly, this is similar to the analogous equation for the S/R model (equation (2.22)),
with a slight correction term due to the death of exposed individuals. By working out
the expression for these eigenvalues, the endemic equilibrium is stable given Ry > 1 with
perturbations dying out in an oscillatory manner. Again, we can find an expression for the
natural period of oscillations in this case, which is given by T ~ 27+/AG, where G (the
“ecological generation length” of the infection) is slightly modified to include the latent
period: G = MITV + ﬁ

From this analysis, one may be tempted to conclude that the SE/R model is an
unnecessary complication of the S7 R model. Given a small death rate (4 < y, o), the STR
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Figure 2.10. The effects of an exposed period on the initial growth rate of an infection in a
totally susceptible population. Although a small exposed period leads to dynamics close to those
predicted by the S7R model, a long exposed period can dramatically slow the spread of infection,
or even prevent the spread if too many individuals die before becoming infectious. (1/u = 70 years,
1/y =10 days.)

and SE IR models behave similarly at equilibrium as long as the basic reproductive ratio
(Bsir/vsir = Bseir/vserr) and average infected period (1/ysig = 1/yseir +1/0se1R)
are identical. However, the two models behave very differently at invasion, with the
presence of an exposed class slowing the dynamics. Examining the eigenvalues at the
disease-free equilibrium allows us to describe the increase in prevalence during the
invasion phase:

1
Isin) ~ 10)exp (5 [VaR =Dy + 77 =@ +7)] t) ,

[~ 10 (IR = 1y1t)  ifo =y},
whereas without an exposed class the dynamics are given by:

Lsir(t) = 1(0) exp([(Ro — Dy ]0),

where natural mortality has been ignored to simplify the equations. This behavior is
exemplified in Figure 2.10, showing how long exposed periods can slow or even prevent
the spread of infection. Therefore, if large fluctuations in the prevalence of infection are of
interest, or we wish to consider both invasion and equilibrium properties, the exposed class
must be realistically modeled.

Although the S/R and SE/R models behave similarly at equilibrium (when the
parameters are suitably rescaled), the S£/R model has a slower growth rate after
pathogen invasion due to individuals needing to pass through the exposed class before
they can contribute to the transmission process.
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2.6. INFECTIONS WITH A CARRIER STATE

Although the S/R and SEIR model paradigms are a good approximation to the
epidemiological characteristics of many infectious diseases, such as measles or influenza,
other infections have a more complex natural history. As an example of how such
complexities can be accommodated in the model, will we consider infections such as
hepatitis B or herpes, where a proportion of infected individuals may become chronic
carriers, transmitting infection at a low rate for many years. The greater biological
complexity of these systems can be readily incorporated into our current modeling
framework, although accurate parameterization becomes more complex. Here we focus on
the inclusion of a single carrier class, using hepatitis B as our prototypic infectious disease.

This general framework of building compartmental models can be readily extended
to infections with more complex biology.

C

/V
\

R

For diseases with carrier states, susceptible individuals can be infected by either carriers
or acutely infectious individuals. It is generally assumed that the progress of infection
within an individual is independent of their source of infection; that is, those infected
by acutely infectious individuals and those infected by carriers are indistinguishable. A
recently infected individual is acutely (highly) infectious for a given period and then
either recovers completely or moves into the carrier class. Such dynamics lead to the
following model:

ds
T w—(BI+epC)S—pusS, (2.56)
dI
i (BI+eBCOYS—yI—pl, (2.57)
dc
— = ygl-TC—uC, (2.58)
dt
dR
= yU=@I+TC—uR. (2.59)

Here, C captures the proportion of carriers in the population, ¢ is the reduced transmission
rate from chronic carriers compared to acute infectious individuals, ¢ is the proportion of
acute infections that become carriers while a fraction (1 — ¢) simply recover, and I' is the
rate at which individuals leave the carrier class—all other parameters have their standard
meanings.

As with any new epidemiological model, it is important to understand when an epidemic
can occur and hence to calculate the basic reproductive ratio, Ry. For infections with
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Figure 2.11. The equilibrium values of a model with a carrier class. (8 = 73 per year, 1/y = 100
days, 1/T" = 1000 days, ¢ = 0.1, 1/u =50 years.) Using these parameters R, is relatively large
(from 19.9 to 38.8), hence the level of susceptibles is always low and therefore the variation in the
level of acute infections is negligible.

a carrier state, Ry has two components: One comes from acutely infectious individuals,
which follow the standard calculation for Ry that has been given throughout this chapter;
the other comes from infections caused while in the carrier state and must take into account
the fraction of infecteds becoming carriers:

__# qy eB
v+ r+wT+p)’

where the term % accounts for those individuals that do not die in the infectious class

and go on to be come carriers. Therefore, as expected, the fact that infected individuals can
enter an infectious carrier state rather than simply recovering increases the value of Ry.

The value of Ry is the sum of separate components from the acutely infected and
chronic carriers.

With only a little more work than usual, the equilibrium values of the model can
be found:

o ytu 1
S =S ow T Ry
ﬁ+f‘+/t 0
U o N 77t
y+u ' (y+mI@+p’

Figure 2.11 shows how these equilibrium values change as ¢, the fraction of infected
individuals that become carriers, varies. Due to their much longer “infectious” period,
carriers can easily outnumber acutely infected individuals.
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In practice, the epidemiology of diseases such as hepatitis B virus (HBV) is more
complex, because the risk of becoming a carrier is age-dependent, with infected children
more likely to become carriers. This can potentially lead to some surprising behavior
with two stable endemic situations for a given set of parameters due to positive feedbacks
between Ry and the number of carriers (Medley et al. 2001). When Ry is high, the average
age of infection is low, which in turn leads to many carriers and hence a higher Ry; in
contrast, a low Ry means that the average age of infection is high and so few carriers
are produced and R( remains low. In this manner, and using an age-structured formalism
(Chapter 3), it is possible to observe “endemic stability” where both high and low Ry
solutions are stable and the equilibrium prevalence of infection depends on the initial
starting conditions.

2.7. DISCRETE-TIME MODELS

This chapter has concentrated exclusively on epidemiological models written as differential
equations. This is partly because the vast majority of models in the literature are based
on this framework. The inherent assumption has been that the processes of disease
transmission occur in real time and that variability in factors such as the infectious period
may be dynamically important. Some have argued that if the latent and infectious periods
are relatively constant, it is reasonable to construct models phrased in discrete time. Such
models were first developed by Reed and Frost in 1928 (Abbey 1952) as probabilistic
entities, assuming transmission probabilities are binomial (giving rise to “chain binomial”
models; see Bailey 1975 and Daley and Gani 1999 for more details). Here, we introduce
these models within a deterministic setting and refer interested readers to Chapter 6 for a
discussion of analogous stochastic models.

An important issue that arises in modeling epidemics in discrete time is precisely what a
time increment represents. Ideally, units of time should represent the “generation” length of
the infection through a host, though in some cases this can lead to some difficulty especially
if latent and infectious periods differ markedly. To demonstrate this approach, consider a
disease with latent and infectious periods of exactly a week. We are therefore interested
in determining the future changes in the fraction of individuals in the population who
are susceptible (S;), exposed (E;), or infectious (/;) in week ¢. The following difference
equations can be used to represent such a scenario:

Siy1 = M_Steiﬁh, (2.60)
Epi = S(1—e Py, @.61)
Iy = Ei, (2.62)

where p now represents the weekly per capita births. The exponential term in
equation (2.60) represents the per capita probability of not contracting the infection given
I, infectives with transmission B8 (Box 2.1). This formalism inherently assumes that
transmission probability per susceptible follows a Poisson distribution, with mean 1.
Hence, the probability of escaping infection is given by the zero term of this distribution.
The transmission parameter (8) is now analogous to the maximum reproductive potential—
or Rp—of the infection. Consider the situation where everyone in the population is
susceptible and a single infectious individual is introduced. Then, the initial spread of the
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disease occurs at rate 8, very much analogous to Ry in the continuous-time models. Thus,
as before, for the infection to invade, we require § > 1.

The introduction of discrete time does little to change the analytical approaches used
to explore model dynamics. For example, we can easily perform equilibrium analysis on
these equations (2.60)—(2.62) by solving for $* = S, = S, E* = E,+1 = E;, and so forth.
Such an exercise yields the following equilibrium solutions:

I

E* = u, (2.64)
I = u. (2.65)

To establish the criterion for endemicity, we insist that at equilibrium the proportion
of susceptibles is less than one (S* < 1). From equation (2.63), this translates into
requiring that

> log(1 /VL).
This relationship is nearly always satisfied because (1) log |1 — | ~ u (for u <« 1) and (2)
for the infection to successfully invade, we require 8 > 1.

To establish the stability of this equilibrium, we follow a similar procedure to that
outlined in Box 2.4. The Jacobian for this system is simply a matrix whose elements
represent the partial derivatives of equations (2.60)—(2.62) with respect to S;, E;, and /,,
evaluated at equilibrium (for more details, see Murray 1989):

e hr 0 —pBSteFl
J=|1—-e?" 0 pSe B
0 1 0

To obtain a polynomial for the eigenvalues, we subtract A from the diagonal elements
and work out the determinant for the Jacobian (i.e. set det|J — AI|=0). As for the
SIR equations, because we have three variables, we obtain a cubic equation in the
eigenvalues. In this instance, because of the discrete time nature of the model, stability
of the equilibrium solution requires the dominant eigenvalue to have magnitude less than
one (May 1973; Nisbet and Gurney 1982; Murray 1989). For the system described by
equations (2.60)—(2.62), this reduces to requiring all roots of the following equation to lie
in the unit circle:

A —e PN _BS*e P A+ BS e Pl =0.

Although an analytical solution to this equation is not possible, we can use any number
of commands in mathematical software packages to find its roots. In Figure 2.12, we have
numerically calculated the dominant eigenvalues for a range of parameter combinations
and show that as long as the endemic equilibrium is feasible, it is also stable. Note,
however, that the absolute values of A are very close to unity, suggesting a weakly stable
equilibrium: perturbations eventually decay to zero, but this may happen over a long time.

Recently, some authors (Finkenstiddt and Grenfell 2000; Bjgrnstad et al. 2002; Xia et al.
2004) have argued that when infection prevalence is relatively small, we may conveniently
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Figure 2.12. The stability of the endemic equilibrium for the S7R model phrased in discrete-time.
The magnitude of the dominant eigenvalue is always less than one, but not massively so, suggesting
very weakly stable dynamics; the dominant eigenvalue is also real and negative, indicating a 2-week
oscillatory cycle in the approach to equilibrium.

rewrite equation (2.60) using a bilinear term to represent the transmission term:

Sir1=8+pn—BS1.

This is essentially the same as expanding the exponential term in equation (2.60) and
ignoring the B21? and higher-order terms. (For an ecological example, contrast the host-
parasitoid models of Hassell (1978) and Neubert et al. (1995)). If we proceed with an
equilibrium analysis, as above, we find that the dominant eigenvalue is always equal to
unity. In this system, the endemic equilibrium is neutrally stable, with small perturbations
to the equilibrium neither decaying nor growing. This is an undesirable and unrealistic
property of the model and results largely from the above simplification. To overcome
this undesirable structural instability of the model, Finkenstddt and Grenfell (2000)
incorporated an exponent into the S; and /; terms:

Spi=8+np _ﬂS7[r¢-

When « and ¢ are less than one, the endemic equilibrium is stabilized.

The major benefit of formulating a model in discrete time is that it is much easier to
parameterize using discrete time data than the associate differential equation counterparts
(Bailey 1975; Mollison and Ud-Din 1993; Finkenstiddt and Grenfell 2000). Their major
drawback, however, is their demonstrated mathematical fragility (Glass et al. 2003).

2.8. PARAMETERIZATION

Although models in isolation can provide us with a deep understanding of the transmission
and control of general infectious diseases, if we wish to examine the epidemiology of
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Figure 2.13. The effect of sample size on the estimated value of Ry. The true value of Ry is 17,
and the lines show the 95% confidence intervals associated with various estimation methods. For
the serological estimates, the sample size refers to the number of sampled individuals (irrespective
of disease status); for the case-based estimates (triangles), the sample size refers to the number of
recorded cases. We have assumed no age bias in the reporting of cases.

a specific pathogen, we need to parameterize our models accordingly. Although generic
models provide an intuitive explanation, it is only though detailed parameterization that
useful public health guidance can be generated. From a modeling perspective, only the
parameterization differentiates models of smallpox and measles, or models of chlamydia
and HIV.

The standard S7R model has four parameters: the birth rate, the natural death rate,
the average infectious period (or, conversely, the rate of recovery), and the transmission
rate. In an ideal world, robust statistical inference would provide information on all
parameters. In reality, this approach is hampered both by limited data, as well as
underdeveloped appropriate inferential methdologies, though a substantial body of ongoing
work redresses this shortcoming (see King and Lele, in prep, lonedes et al. 2006,
Vasco and Rohani, in prep). As a result, we often use other relevant information to
assist with parameterization. A good understanding of the host’s biology, for example,
will provide accurate estimates of the birth and death rates (which we have generally
assumed to be equal). The infectious period can usually be estimated independently
via clinical monitoring of infecteds, either by observation of transmission events or by
more detailed techniques measuring the amount of pathogen excreted. This leaves us
with a single parameter—the transmission rate, fB—to estimate. In practice, researchers
generally focus attention on estimating the basic reproductive ratio, Ry, from which
the transmission rate can be derived. There are multiple approaches to finding the
value of Ry, which if appropriate will depend on the type of data that is available
(Figure 2.13).
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2.8.1. Estimating R, from Reported Cases

An initial response to estimating transmission, 8, or the basic reproductive ratio, R, would
be to record the total number of reported cases of infection within a given community or
area. However, if we examine the equilibrium prevalence (equation (2.19)), we find that:

r="%R-n=-"— [1—i].
B yt+u Ry
Therefore, if Ry is substantially larger than one, then estimation is going to be very difficult
because the effect of R on prevalence is relatively small. In addition, we are unlikely to
record every case within a population as many infections will go unreported. Even for
measles in England and Wales (for which we possess one of the most accurately recorded
long-term epidemiological data sets), the reporting rate is only 60% (Clarkson and Fine
1985; Finkenstadt and Grenfell 2000), which swamps the small effects of R, that we wish
to detect.
An alternative approach is to examine the early behavior of an epidemic. The S/ R model
predicts that the early growth of an epidemic will be exponential:

1) ~ 1(0)exp([Ro — 11(y + w)1)

Fitting to this type of behavior is possible, and during the early stages of a novel infection
(such as the 2001 foot-and-mouth epidemic in the United Kingdom or the 2003 SARS
epidemic in China) is the only way of estimating transmission levels. However, in general,
three difficulties may exist: (1) this method can work only if there is an epidemic to be
observed, and cannot provide information on endemic diseases; (2) in the early stages of
an epidemic, due to the low number of cases, the dynamics may be highly stochastic and
influenced by large fluctuations (see Chapter 6), which will cause the estimates of Ry to
also fluctuate. By the time stochastic fluctuations become negligible, it is likely that the
epidemic behavior is nonlinear and therefore the exponential approximation is no longer
valid. (3) The final difficulty with this approach is that unless the pathogen is novel to the
population, some individuals are likely to be immune. Although this partial susceptibility
can be incorportated into the equations leading to /(¢) ~ 1(0) exp([S(0)Ry — 11(y + w)t),
it is impossible to separate its effects from the value of Ry. One plausible solution is to
fit to the entire epidemic, finding which values of Ry, the initial level of susceptible, S(0),
and case identification probability lead to a model epidemic that most closely matches the
recorded profile of cases (see Gani and Leach 2001 for an example of this method applied
to smallpox data). Additional aspects affecting the use of this approach in estimating Ry
are discussed in Chapter 3 and Wearing et al. (2005).

At this stage, it is important to distinguish between the variable Y (¢) in models and the
kinds of longitudinal epidemiological data typically available. The plague case notification
data plotted in Figure 2.3, for example, represent the total number of new cases diagnosed
in a given week—the incidence of infection. This is distinct from Y (¢), which is the number
of individuals infectious at time #—the prevelance of infection. If the infectious period of
a disease happens to be approximately the same as the resolution of the data, then the
cases and Y are comparable (Ferrari et al. 2005). Otherwise, we need to introduce a new
model variable that can be used in any estimation procedure. In general, it is reasonable
to assume that case reports take place once an individual leaves the infectious class. This
may be because diagnosis occurs most readily once an individual is symptomatic, at which
point either the infection has already been cleared or the individual remains infectious but
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has reduced transmission opportunities due to quarantining and convalescence. Therefore,
K(T), the number of new cases reported at time point 7, may be represented by

T
K(T) = / y1dt.
T

—1

This formulation assumes no reporting error, which may be inappropriate and should
be addressed before estimation to ensure bias-free parameter values (see, for example,
Finkenstddt and Grenfell 2000; Clarke 2004). The implementation of reporting error is
discussed in more detail in Chapter 6.

Finally, one of the most powerful approaches using case reports it to identify the average
age at infection in an endemic situation. We have already seen (equation (2.24)) that the
average age of infection is given by 4 & 1/[u(Ro — 1)], and this approximation is most
reliable when R is large. The average age of infection is generally estimated by simply
finding the average age of all reported cases. Figure 2.13, triangles, shows how successful
this estimation procedure is at finding the value of R, as the number of sampled cases
varies. Two potential difficulties exist with this methodology: (1) the age of patients may
not be recorded as a matter of course, and therefore it may be impossible to analyze
historical data with this technique; and (2), the researcher generally has little control over
which individuals report infection, and therefore age-related reporting biases can influence
the results.

2.8.2. Estimating R, from Seroprevelance Data

Estimating R, from case report data is problematic in humans because reporting is often
patchy and biased because not all infected individuals seek medical advice. For wildlife
diseases, obtaining data on individual cases is even more difficult. An alternative approach
is to use standard molecular techniques to detect the presence of an antigen against
a particular pathogen. In this way, we can differentiate the population into those who
have not experienced infection (susceptibles) and those who have (either recovered or
currently infected). The primary advantage of working with such serological data is that the
researcher has full control over the sampling of the population. In contrast, the advantage
of working with infectious cases (as detailed above) is that a larger amount of data can be
collected during normal medical practices.

The simplest way of utilizing serological information is via the relationship that
S =1/Ry; this is shown by the crosses in Figure 2.13. Here the concept is relatively
simple: Ry is estimated as the inverse of the proportion of our sample that are seronegative
(susceptible). The complication with this approach is that we need to make sure that our
sample represents of the entire population, because the level of seroprevalence (proportion
of individuals recovered from infection) is expected to increase with age.

An alternative method that can take far better advantage of the information from a
serological survey is to once again utilize the age-dependent nature of the likelihood of
being susceptible (Anderson and May 1991). For an individual of age a, the standard
STR model predicts that the probability an individual is still susceptible is given by
P(a) ~ exp(—apu(Ro — 1)). Therefore, if we know the ages of our serological sample,
we can construct the likelihood that the data comes from a disease with a particular Ry
value, and then find the R, that maximizes this likelihood. If we have » individuals who
are susceptible (seronegative) of ages ay, ..., a,, and m individuals who are seropositive
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(ages by, ..., by), then the likelihood is:

n m
L(Ro) = [ Jexp(—ain(Ro— 1) [ [ [1 — exp(—bip(Ry — 1))] .
i=l1 i=1
This use of additional age-related information together with serology provides a much
better prediction of the value of Ry (Figure 2.13, circles). However, if we are free to choose
our serological sample from any members of the population, then we should preferentially
select individuals of an age close to (what we initially believe to be) the average age of
infection—sampling many older individuals will provide little information because they
are all likely to be seropositive. In Figure 2.13, where Ry = 17, then sampling individuals
just in the 3- to 7-year-old age range produces estimates of similar accuracy to those from
the case-based average age of infection assuming unbiased reporting (triangles).

2.8.3. Estimating Parameters in General

The above likelihood argument provides a general framework in which models can be
successfully parameterized from data. Ideally, as much information (and parameterization)
should be gained from individual-level observations; often this provides a very accurate
parameterization of individual-level characteristics such as average infectious and latent
periods, but is generally unreliable for transmission characteristics. For the missing
parameters (for example, in Section 2.6, equations (2.56)—(2.59) require a transmission rate
for both the infectious and carrier class), a maximum likelihood approach is often the most
suitable. For a given set of parameters, we can determine the dynamics predicted by the
model and then calculate the likelihood that the observed data came from such dynamics.
By finding the set of parameters that maximize this likelihood, we are selecting a model that
is in closest agreement with the available data. In the above example, the dynamics were
the long-term equilibrium age-distribution of susceptibility, but there is no reason why
more dynamic behavior could not be utilized. Finally, this maximum likelihood approach
is not confined to parameter selection and can even allow us to distinguish between models,
providing us with a means of selecting the most appropriate framework.

The ensuing chapters return to this question of parameterization, where appropriate,
and show how the extra levels of heterogeneity can be characterized from the type of
observation and available survey data.

2.9. SUMMARY

In this chapter, we have introduced the simplest models of epidemics, whose structures
have been determined by the biology of the aetiological agent and its effects on the host.
We have met (1) the S7 model, which represents infections that are fatal; (2) the SIS
model for infections that do not illicit a long-lasting immune response; (3) the S/R.S when
immunity is not permanent; and (4) the S7 R and S E' I R models that describe host-pathogen
systems with lifelong protection following infection.

This chapter also introduced the epidemiologically important measure of a pathogen’s
reproductive potential, Ry. It summarizses the number of new individuals infected by
a single infectious individual in a wholly susceptible population. Irrespective of model
structure, the infection will experience deterministic extinction unless Ry > 1, which is
intuitively appealing (and obvious).
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By concentrating on these simple models, a number of important epidemiological
principles can be demonstrated:

» For an infection to invade a population, the initial fraction of the population in the
susceptible class has to exceed RLO.

» Initially, the infection grows at a rate proportional to Ry — 1.

» In the absence of host demography, strongly immunizing infections will always go
extinct eventually. After the infection has died out, some susceptibles remain in the
population. Thus, the chain of transmission is broken due to too few infectives, not a lack
of susceptibles.

» To maintain an immunizing infection, the susceptible pool must be replenished via
recruitment.

» In the S/R model with host demography, the endemic equilibrium is feasible if
Ro > 1 and is always stable. In this system, trajectories converge onto the asymptotic
state via damped oscillations, the period of which can be determined as a function of
epidemiologically simple measures such as the mean age at infection and the effective
infectious period of the disease. This is often referred to as the “natural period” of the
system.

» For diseases that fail to elicit long-term immunity to subsequent reinfection, the S7.
model is appropriate, which is identical to the standard logistic model population growth.
The key feature of that model is the presence of an exponentially stable equilibrium point.
This means the infection will always be feasible and stable if Ry > 1 and the approach to
the equilibrium is not oscillatory.

» If we assume that infectious and latent periods are exactly fixed, then it is possible to
formulate models in discrete time. The take-home message from these models is qualita-
tively similar to the standard S/ R models, with the endemic equilibrium feasible and stable
as long as Ry > 1.

» Not surprisingly, discrete-time models are much less stable than their continuous-time
counterparts. The endemic equilibria are very weakly stable, with perturbations decaying
over long periods.

This chapter has focused on model simplicity, often sweeping known epidemiolog-
ical and demographic complications under the carpet. In particular, we have focused
exclusively on deterministic approaches to understanding disease dynamics. Implicit in
this approach is an assumption that chance events (in the transmission process or host
population demography) are either unimportant or can be “averaged out,” to reveal the true
underlying system traits. Chapter 6, relaxes this assumption and explores the consequences
of stochasticity in S/R and S7S systems.
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