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Chapter One

Introduction

This book is designed as an introduction to the modeling of infectious diseases. We start
with the simplest of mathematical models and show how the inclusion of appropriate
elements of biological complexity leads to improved understanding of disease dynamics
and control. Throughout, our emphasis is on the development of models, and their use
either as predictive tools or as a means of understanding fundamental epidemiological
processes. Although many theoretical results can be proved analytically for very simple
models, we have generally focused on results obtained by computer simulation, providing
analytical results only where they lead to a more generic interpretation of model behavior.
Where practical, we have illustrated the general modeling principles with applied examples
from the recent literature. We hope this book motivates readers to develop their own models
for diseases of interest, expanding on the model frameworks given here.

1.1. TYPES OF DISEASE

The Oxford English Dictionary defines a disease as “a condition of the body, or of
some part or organ of the body, in which its functions are disturbed or deranged; a
morbid physical condition; a departure from the state of health, especially when caused
by structural change.” This definition encompasses a wide range of ailments from AIDS
to arthritis, from the common cold to cancer. The fine-scale classification of diseases
varies drastically between different scientific disciplines. Medical doctors and veterinary
clinicians, for example, are primarily interested in treating human patients or animals and,
as such, are most concerned about the infection’s pathophysiology (affecting, for example,
the central nervous system) or clinical symptoms (for example, secretory diarrhea).
Microbiologists, on the other hand, focus on the natural history of the causative organism:
What is the etiological agent (a virus, bacterium, protozoan, fungus, or prion)? and what are
the ideal conditions for its growth? Finally, epidemiologists are most interested in features
that determine patterns of disease and its transmission.

In general terms, we may organize diseases according to several overlapping classifica-
tions (Figure 1.1). Diseases can be either infectious or noninfectious. Infectious diseases
(such as influenza) can be passed between individuals, whereas noninfectious diseases
(such as arthritis) develop over an individual’s lifespan. The epidemiology of noninfectious
diseases is primarily a study of risk factors associated with the chance of developing
the disease (for example, the increased risk of lung cancer attributable to smoking). In
contrast, the primary risk factor for catching an infectious disease is the presence of
infectious cases in the local population—this tenet is reflected in all the mathematical
models presented in this book. These two categories, infectious and noninfectious, are
not necessarily mutually exclusive. Infection with the human papillomavirus (HPV), for
example, is firmly associated with (although not necessary for developing) cervical cancer,
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2 CHAPTER 1

Figure 1.1. A representation of the various types of diseases. The two main groups of infectious
and noninfectious diseases are represented by the two circles. The infectious group can be further
subdivided into directly transmitted (gray) and indirectly transmitted infections as well as into
diseases due to microparasites (hatched) and macroparasites. The focus of this book are the diseases
subsumed within the intersection of the hatched and gray areas, which is offset and bounded by a
thick black line.

thus bridging the two fields. This book focuses on infectious diseases, where models have
great predictive power at the population scale and over relatively short time scales.

Infectious diseases can be further subdivided (Figure 1.1). The infecting pathogen can
be either a microparasite (hatched in diagram) or a macroparasite. Microparasites, as the
same suggests, are small (usually single-cell organisms) and are either viruses, bacteria,
protoza, or prions; macroparasites are any larger form of pathogen and include helminths
and flukes. Although the biological distinction between these two groups of organisms
is clear, from a modeling perspective the boundaries are less well defined. In general,
microparasitic infections develop rapidly from a small number of infecting particles so
the internal dynamics of the pathogen within the host can often be safely ignored. As a
result, we are not interested in the precise abundance of pathogens within the host; instead
we focus on the host’s infection status. In contrast, macroparasites such as helminths have
a complex life cycle within the host which often needs to be modeled explicitly. In addition,
the worm burden, or the number of parasites within the host, represents an important
contributing factor to pathogenicity and disease transmission. We focus in this book on
microparasites, where extensive long-term data and a good mechanistic understanding of
the transmission dynamics have led to a wealth of well-parameterized models.

Infectious diseases (both macro- and microparasitic) can also be subdivided into two
further categories (Figure 1.1), depending on whether transmission of infection is direct
(shaded gray) or indirect. Direct transmission is when infection is caught by close contact
with an infectious individual. The great majority of microparasitic diseases, such as
influenza, measles, and HIV, are directly transmitted, although there are exceptions such
as cholera, which is waterborne. Generally, directly transmitted pathogens do not survive
for long outside the host organism. In contrast, indirectly transmitted parasites are passed
between hosts via the environment; most macroparasitic diseases, such as those caused
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INTRODUCTION 3

by helminths and schistosomes, are indirectly transmitted, spending part of their life cycle
outside of their hosts. In addition, there is a class of diseases where transmission is via a
secondary host or vector, usually insects such as mosquitoes, tsetse flies, or ticks. However,
this transmission route can be considered as two sequential direct transmission events, from
the primary host to the insect and then from the insect to another primary host.

The models and diseases of this book are focused toward the study of directly
transmitted, microparasitic infectious diseases. As such, this subset represents only a
fraction of the whole field of epidemiological modeling and analysis, but one in which
major advances have occurred over recent decades.

Worldwide there are about 1,415 known human pathogens of which 217 (15%) are
viruses or prions and 518 (38%) are bacteria or rickettsia; hence around 53% are micro-
parasites (Cleaveland et al. 2001). Of these pathogens, 868 (61%) are zoonotic and can
therefore be transmitted from animals to humans. Around 616 pathogens of domestic lives-
tock are known, of which around 18% are viral and 25% bacterial. However, if we
restrict our attention to the 70 pathogens listed by the Office International des Epizooties
(which contain the most prominent and infectious livestock diseases), we find that 77% are
microparasites (Cleaveland et al. 2001). The lower number of known livestock pathogens
compared to human pathogens probably reflects to some degree our natural anthropocentric
bias. Similarly, very few infectious diseases of wildlife are known or studied in any detail,
and yet wildlife reservoirs may be important sources of novel emerging human infections.
It is therefore clear that the study of microparasitic infectious diseases encompasses a huge
variety of hosts and diseases.

1.2. CHARACTERIZATION OF DISEASES

The progress of an infectious microparasitic disease is defined qualitatively in terms
of the level of pathogen within the host, which in turn is determined by the growth rate of
the pathogen and the interaction between the pathogen and the host’s immune response.
Figure 1.2 shows a much simplified infection profile. Initially, the host is susceptible
to infection: No pathogen is present; just a low-level nonspecific immunity within the
host. At time 0, the host encounters an infectious individual and becomes infected with
a microparasite; the abundance of the parasite grows over time. During this early phase the
individual may exhibit no obvious signs of infection and the abundance of pathogen may
be too low to allow further transmission—individuals in this phase are said to be in the
exposed class. Once the level of parasite is sufficiently large within the host, the potential
exists to transmit the infection to other susceptible individuals; the host is infectious.
Finally, once the individual’s immune system has cleared the parasite and the host is
therefore no longer infectious, they are referred to as recovered.

This fundamental classification (as susceptible, exposed, infectious, or recovered) solely
depends on the host’s ability to transmit the pathogen. This has two implications. First,
the disease status of the host is irrelevant—it is not important whether the individual
is showing symptoms; an individual who feels perfectly healthy can be excreting large
amounts of pathogen (Figure 1.2). Second, the boundaries between exposed and infectious
(and infectious and recovered) are somewhat fuzzy because the ability to transmit does
not simply switch on and off. This uncertainty is further complicated by the variability
in responses between different individuals and the variability in pathogen levels over the
infectious period; it is only with the recent advances in molecular techniques that these
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4 CHAPTER 1

Figure 1.2. A caracature of the time-line of infection, showing the dynamics of the pathogen
(gray area) and the host immune response (black line) as well as labeling the various infection classes:
susceptible, exposed, infectious, and recovered. Note that the diseased period, when symptoms are
experienced, is not necessarily correlated with any particular infection class.

within-host individual-level details are beginning to emerge. Our classification of hosts as
susceptible, exposed, infectious, or recovered can therefore be compared to the ecological
concept of a metapopulation (Levins 1969; Hanski and Gilpin 1991), in which the within-
host density of the pathogen is ignored and each host is simply classified as being in one
of a limited number of categories.

Although Figure 1.2 shows an example of a disease profile that might be modeled
as SEIR (susceptible-exposed-infectious-recovered), other within-host profiles are also
common. Often, it is mathematically simpler and justifiable at the population scale to
ignore the exposed class, reducing the number of equations by one and leading to SIR

dynamics. Some infections, especially of plants, are more appropriately described by
the SI (susceptible-infectious) paradigm; for such diseases, the host is infectious soon
after it is infected, such that the exposed period can be safely ignored, and remains
infectious until its death. Other infectious diseases, in particular sexually transmitted
infections (such as gonorrhoea), are better described by an SIS (susceptible-infectious-
susceptible) framework, because once recovered (or following treatment) the host is once
again susceptible to infection. In the majority of cases this renewed susceptibility is due to
the vast antigenic variation associated with sexually transmitted diseases. Finally, many
diseases have profiles that are individualistic and require specific model formulation.
Smallpox has a definite short prodromal period before the symptoms emerge when the
infected individual is mobile and can widely disseminate the virus but infectiousness has
not reached its peak. Hepatitis B has a carrier state such that some infected individuals
do not fully recover but transmit at a low level for the rest of their lives. Chlamydia (and
many other sexually transmitted diseases) may be asymptomatic, such that some infected
individuals do not suffer from the disease even though they are able to transmit infection.
Similarly, infections such as meningitis or MRSA (methicillin resistant streptococus
aurius) are widespread in the general population and usually benign, with only occasional
symptomatic outbreaks. All of these more complex epidemiological behaviors require
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INTRODUCTION 5

greater subdivision of the population and therefore models that deal explicitly with these
extra classes.

Although such qualitative descriptions of disease dynamics allow us to understand the
behavior of infection within an individual and may even shed some light on potential trans-
mission, if we are to extrapolate from the individual-level dynamics to the population-scale
epidemic, numerical values are required for many of the key parameters. Two fundamental
quantities govern the population-level epidemic dynamics: the basic reproductive ratio,
R0, and the timescale of infection, which is measured by the infectious period for SIS and
SIR infections or by a mixture of exposed and infectious periods in diseases with SEIR

dynamics (for details, see Chapter 2). The basic reproductive ratio is one of the most critical
epidemiological parameters because it defines the average number of secondary cases an
average primary case produces in a totally susceptible population. Among other things, this
single parameter allows us to determine whether a disease can successfully invade or not,
the threshold level of vaccination required for eradication, and the long-term proportion of
susceptible individuals when the infection is endemic.

One of the key features of epidemiological modeling is the huge variability in infection
profiles, parameter values, and timescales. Many childhood infectious diseases (such
as measles, rubella, or chickenpox) follow the classic SEIR profile, have high basic
reproductive ratios (R0 ≈ 17 for both measles and whooping cough in England and Wales
from 1945 to 1965), and short infected periods (of less than one month). In contrast,
diseases such as HIV have a much more complex infection profile with transmission
rates varying as a function of time since infection, R0 is crucially dependent on sexual
behavior (R0 ≈ 4 for the homosexual population in the United Kingdom, whereas R0 ≈ 11
for female prostitutes in Kenya), and infection is lifelong. Between these two extremes
lies a vast array of other infectious diseases, with their own particular characteristics and
parameters.

1.3. CONTROL OF INFECTIOUS DISEASES

One of the primary reasons for studying infectious diseases is to improve control and
ultimately to eradicate the infection from the population. Models can be a powerful
tool in this approach, allowing us to optimize the use of limited resources or simply
to target control measures more efficiently. Several forms of control measure exist; all
operate by reducing the average amount of transmission between infectious and susceptible
individuals. Which control strategy (or mixture of strategies) is used will depend on the
disease, the hosts, and the scale of the epidemic.

The practice of vaccination began with Edward Jenner in 1796 who developed a
vaccine against smallpox—which remains the only disease to date that has been erad-
icated world-wide. Vaccination acts by stimulating a host immune response, such that
immunized individuals are protected against infection. Vaccination is generally applied
prophylactically to a large proportion of the population, so as to greatly reduce the number
of susceptible individuals. Such prophylactic vaccination campaigns have successfully
reduced the incidence of many childhood infections in the developed world by vaccinating
the vast majority of young children and infants. In 1988, the World Heath Organization
(WHO) resolved to use similar campaigns to eradicate polio worldwide by 2005—this is
still ongoing work although much progress has been made to date.
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6 CHAPTER 1

Although vaccination offers a very powerful method of disease control, there are many
associated difficulties. Generally, vaccines are not 100% effective, and therefore only a
proportion of vaccinated individuals are protected. Some vaccines can have adverse side
effects; the vaccine against smallpox can be harmful (sometimes fatal) to those with
eczema, asthma, or are immuno-suppressed, and may even cause cases of smallpox. Some
vaccines provide only limited immunity, whether this is due to the natural waning of
immunity in the host or to antigenic variation in the pathogen. Finally, in the face of a
novel (or unexpected) epidemic, reactive vaccination may prove to be too slow to prevent
a large outbreak. Therefore, in many situations, alternative control measures are necessary.

Vaccination operates by reducing the number of susceptible individuals in the
population.

Quarantine, or the isolation of known or suspected infectious individuals, is one of
the oldest known forms of disease control. During the fifteenth and sisteenth century,
Venice, Italy, practiced a policy of quarantine against all ships arriving from areas infected
with plague, and in 1665 the village of Eyam in Derbyshire, UK, famously quarantined
themselves in an effort to prevent the plague spreading to neighboring villages. Today
quarantining is still a powerful control measure; was used to combat SARS in 2003,
and it is a rapid first response against many invading pathogens. Quarantining essentially
operates by preventing infectious individuals from mixing with susceptible individuals,
hence stopping transmission. The primary advantage of quarantining is that it is simple
and generic; quarantining is effective even when the causative agent is unknown. However,
quarantining can be applied only once an infectious individual is identified, by which time
the individual may have been transmitting infection for many days. In addition, unless the
number of cases is small, quarantining can be a prohibitive drain on resources.

Quarantining operates by reducing the number of infected individuals freely mixing
in the population.

Culling acts by depleting the host population by killing hosts. From recent years, there
are three clear examples of culling as a means of control. During the 2001 foot-and-
mouth epidemic in the United Kingdom, culling was used as a fast and effective control
measure. Ring culling, removing all citrus trees within, 1900 feet of identified infected
trees, is currently being used to control Citrus Canker disease (caused by the Xanthomonas
axonopodis pv. citri bacterium) in Florida. For this disease, proximity was judged to be the
main risk factor, with around 95% of inoculum dispersal being within 1,900 feet. Finally,
large-scale field trials in the United Kingdom and Ireland have examined the effect of
culling badger populations on the spread of bovine tuberculosis in cattle—based on the
assumption that badgers act as a reservoir of infection.

Obviously culling is applicable only to animal and plant diseases, and even then it is
used only against harmful, rapidly spreading, pathogens when other control measures are
ineffective. Culling is usually indiscriminate, killing both infected and susceptible hosts
and thereby reducing transmission in two distinct ways. However, culling is often locally
targeted such that this severe action is limited to regions of high risk. It is vitally important
that culling measures are highly targeted and tightly controlled—there is a clear trade-off
between sufficient culling to control the epidemic and excess culling that could be more
detrimental than an uncontrolled epidemic. Models can be extremely powerful tools of
discrimination in such situations.
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INTRODUCTION 7

Culling operates by reducing both the number of infected and susceptible individuals
in the population.

Contact tracing, although not a control measure in itself, is an important tool in
efficiently targeting other control measures and therefore limiting disease spread. Contact
tracing operates by questioning infected individuals about their behavior, identifying
potential transmission contacts, and therefore finding individuals who are likely to be
infected but are not yet symptomatic. The individuals identified by contact tracing can
then be vaccinated, quarantined, or hospitalized, depending on the nature of the infection.

Contact tracing operates by refining the targeting of other control measures.

1.4. WHAT ARE MATHEMATICAL MODELS?

Recent years have seen an increasing trend in the number of publications, both in high-
profile journals and more generally, that utilize mathematical models (Figure 1.3). This
is associated with an increased understanding of what models can offer in terms of
prediction and insight. Any model can be typically thought of as a conceptual tool that
explains how an object (or system of objects) will behave. A mathematical model uses
the language of mathematics to produce a more refined and precise description of the
system. In epidemiology, models allow us to translate between behavior at various scales,
or extrapolate from a known set of conditions to another. As such, models allow us to
predict the population-level epidemic dynamics from an individual-level knowledge of
epidemiological factors, the long-term behavior from the early invasion dynamics, or the
impact of vaccination on the spread of infection.

Models come in a variety of forms—from highly complex models that (like jet aircraft)
need a range of experts to create and maintain them, to simple “toy” models that (like
bicycles) can be easily understood, modified, and adapted. The decision whether to travel
by bike or aircraft depends on several factors, such as time, distance, and cost. Similarly,
which sort of model is the most appropriate depends on the precision or generality required,
the available data, and the time frame in which results are needed. By definition, all
models are “wrong,” in the sense that even the most complex will make some simplifying
assumptions. It is, therefore, difficult to express definitively which model is “right,” though
naturally we are interested in developing models that capture the essential features of a
system. Ultimately, we are faced with a rather subjective measure of the usefulness of any
model.

Formulating a model for a particular problem is a trade-off between three important and
often conflicting elements: accuracy, transparency, and flexibility. Accuracy, the ability
to reproduce the observed data and reliably predict future dynamics, is clearly vital, but
whether a qualitative or quantitative fit is necessary depends on the details of the problem.
A qualitative fit may be sufficient to gain insights into the dynamics of an infectious
disease, but a good quantitative fit is generally necessary if the model is used to advise
on future control policies. Accuracy generally improves with increasing model complexity
and the inclusion of more heterogeneities and relevant biological detail. Clearly, the
feasibility of model complexity is compromised by computational power, the mechanistic
understanding of disease natural history, and the availability of necessary parameters.
Consequently, the accuracy of any model is always limited. Transparency comes from
being able to understand (either analytically or more often numerically) how the various
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Figure 1.3. An indication of the increasing importance and use of mathematical models in the
epidemiological literature. White bars show the approximate number of publications in the entire
scientific literature that utilize models of infectious diseases. (Data are obtained from ISI Web of
Science, and include all publications that contain in their title or abstract the words “epidemic,” and
“infect*,” and either “model*” or “simulat*.”) The gray and black bars show the number of these
publications to be found in Nature and Science respectively, providing some indication of the high
impact of such work. (These papers were identified from their title and abstract.) Note the different
scales for general papers and those in Nature or Science.

model components influence the dynamics and interact. This is usually achieved by
successively adding or removing components and building upon general intuitions from
simpler models. As the number of model components increases, it becomes more difficult
to assess the role of each component and its interactions with the whole. Transparency is,
therefore, often in direct opposition to accuracy. Flexibility measures the ease with which
the model can be adapted to new situations; this is vital if the model is to evaluate control
policies or predict future disease levels in an ever-changing environment. Most mechanistic
models (such as those within this book) are based on well-understood disease transmission
principles and are therefore highly flexible, whereas “black-box” time-series tools (such as
neural nets) that may be able to accurately reproduce a given time series of reported cases
are less amenable to modification.

1.5. WHAT MODELS CAN DO

Models have two distinct roles, prediction and understanding, which are related to the
model properties of accuracy and transparency, and therefore can often be in conflict. We
usually require a high degree of accuracy from any predictive model, whereas transparency
is a more important quality of models used to improve our understanding.
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INTRODUCTION 9

Prediction is the most obvious use of models. It requires that the model is as accurate
as possible and therefore includes all of the known complexities and population-level
heterogeneities. Predictive models can have great power in specific situations, guiding
difficult policy decisions where a trade-off between two (or more) alternative control
strategies exists. It is interesting to contrast how models were used during the 2001 UK
foot-and-mouth epidemic to how models were used to investigate the control of potential
bio-terrorist releases of smallpox. Both of these scenarios called for detailed, accurate
predictive modeling. Chapter 8 provides a comprehensive description of the types of
models that could be used to tackle these two problems.

During the UK foot-and-mouth epidemic in 2001, two primary questions were addressed
using models: first, was the epidemic “under control” and second, whether additional
targeted culling would lead to a reduction in the total loss of livestock. Three distinct
models were used, based on different judgements of the known dynamical complexity.
Each of these models had their own advantages and problems, but fortunately—due to
the robustness of the problem—all three models provided similar advice: A large-scale
epidemic was predicted and additional, locally targeted culling would reduce the overall
loss of livestock by dramatically reducing the number of cases (Keeling 2005).

Smallpox is a potential bio-terrorist weapon given the high mortality rate and the large
number of susceptible individuals in the population. Here the main question focused on
the best method of control, mass-vaccination or targeted measures. Mass-vaccination is
obviously most effective against a large-scale outbreak, but due to side effects of the
vaccine, a large-scale vaccination campaign could cause more health problems than a
small-scale epidemic. Again a variety of models were used, ranging from the very simple
(Meltzer et al. 2001) to highly complex (Halloran et al. 2002). However, these models
provided conflicting advice, in part due to uncertainties in the epidemiological parameters
and to the different underlying assumptions. It is still an open problem to determine under
what conditions it is optimal to mass-vaccinate against smallpox.

Accurate predictive models can have an additional use as a statistical tool. The failure
to accurately predict epidemic behavior in a particular area can act as a diagnostic warning
that underlying parameters and behavior may be different from the norm. For example,
whereas isolated cases of meningitis may be the norm, several clustered cases can signify
the start of a localized epidemic; accurate models should be able to predict a threshold
number of cases above which prompt action is required (Stollenwerk and Jansen 2003).
Similarly, during an eradication campaign, regions that do not respond as rapidly as the
models predict could be detected and targeted for more intensive control measures. Finally,
detailed modeling and robust statistical analysis of reported and hospitalized cases may be
able to identify the early emergence of an epidemic.

Models can also be used to understand how an infectious disease spreads in the real
world, and how various complexities affect the dynamics. In essence, models provide
epidemiologists with a ideal world in which individual factors can be examined in isolation
and where every facet of the disease spread is recorded in perfect detail. With such tools
we can examine, in a fairly robust and generic framework, a range of issues such as the
effects of variable numbers of partners on the spread of sexually transmitted diseases, the
effects of increased transmission between children during school terms, or the effects of
localized spread of infection.

It might seem that such modeling approaches are driven purely by scientific curiosity
with little relevance to practical matters or particular infections. However, the insights
gained from such modeling are often robust and generic, and therefore can be applied
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10 CHAPTER 1

to a wide variety of particular problems. Moreover, the understanding gained can help us
to develop more sophisticated predictive models and gather more relevant epidemiological
data, allowing us to decide which elements are important and which can be neglected.
Finally, it is only by developing an intuition for infection patterns, building from simple
models to more complex ones, that we can begin to understand all the rich complexities
and dynamics that are observed in the real world.

Although some of the model examples given in this book are predictive in nature,
because they are accurate characterizations of reality, the majority of this book is devoted
to obtaining a deeper understanding of epidemiological patterns. However, the techniques
can be utilized to build more complex predictive models.

1.6. WHAT MODELS CANNOT DO

Models also have their limitations. It is impossible to build a fully accurate model;
there will always be some element of the host behavior or quirk of the disease that is
unknown or even unknowable. Consider trying to make an accurate model for a human
airborne infection (say influenza); such a model would need to account for variations
in transmission with temperature and climate, capture the day-to-day movement and
interaction of individuals, and encompass the variability in susceptibility due to genetic
factors or past infections. Even if such a model could be built, the chance nature of
transmission would still prevent perfect prediction. We will never be able to predict the
precise course of an epidemic, or which people will be infected. The best that we can hope
for is models that provide confidence intervals on the epidemic behavior and determine the
risk of infection for various groups of hosts.

1.7. WHAT IS A GOOD MODEL?

It is clear from what has already been said that no model is perfect, and no model
can accurately predict the detailed outcome of an infection process. However, two key
points define a good model. First, a model should be suited to its purpose—that is,
it should be as simple as possible, but no simpler—having an appropriate balance of
accuracy, transparency, and flexibility. A model that is designed to help us understand
the behavior of an infectious disease should concentrate on the characteristics that are of
interest while simplifying all others. A model built for accurate prediction should provide
a comprehensive picture of the full dynamics, and include all the relevant features of the
disease and host, although determining which factors are relevant and which may be safely
ignored is a complex and skilled process. Second, the model should be parameterizable
(where necessary) from available data. Thus, although a predictive model requires the
inclusion of many features, it is important that they can all be parameterized from available
data. Hence, in many situations—such as at the start of an emerging (novel) epidemic—it
may be impossible to produce a good predictive model. In contrast, if we are interested
only in understanding an epidemic pattern, there is far less need for a model to accurately
represent a particular scenario, and so parameterization and availability of data are less
important. Therefore, it is clear that what constitutes a good model is context dependent.
Throughout this book we have attempted to use only examples of good modeling
practice.
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1.8. LAYOUT OF THIS BOOK

This book is divided into seven major chapters (plus this introduction), which deal with
different characteristic patterns of epidemics and the models that can be used to understand
and capture their behavior. Each chapter can be further subdivided into methods and
applications or case studies: Methods explain the underlying principles of models, and
applications show how this type of model has been used in understanding specific disease
dynamics in human and animal populations. Finally, to help with a rapid understanding of
each chapter, crucial synopsis of the main points are highlighted throughout the chapter as
follows:

This sentence is an important summary of this section.

The chapters are as follows:

1. Introduction

This chapter introduces the basic concepts and ideas of modeling, as well as providing a
brief overview of epidemiological characteristics and behavior.

2. Introduction to Simple Epidemic

This first true chapter reviews the basic building blocks of most epidemiological models:
the compartmental SIS and SIR models. For these models it is possible to develop some
analytical results, which are useful in the understanding of simple epidemics and in our
interpretation of more complex scenarios. Therefore, although much of the analytical detail
of this chapter has been considered elsewhere in far greater depth, this work is included to
provide a firm foundation to further developments. In addition, we discuss the dynamics of
other compartmental models, such as those with exposed or carrier classes.

3. Host Heterogeneities

Almost all populations (with the exception of large clonal agricultures) can be sub-divided
into different groups, depending upon characteristics that may influence the risk of catching
and transmitting an infection. For example, an individual’s pattern of sexual behavior
clearly determines the likelihood of catching sexually transmitted diseases. Models that
include such heterogeneities, therefore, are a better representation of reality in such cases.
Other important population-level heterogeneities include age, gender, behavior, and even
generic susceptibility, although this may be difficult to ascertain. Understanding how
such heterogeneities influence transmission allows us to determine which individuals in
a population are most at risk and the most effective means of targeting control.

4. Multi-Pathogen Multi-Host Models

Many diseases can be caught and transmitted by numerous hosts (e.g., most livestock
species are susceptible to foot-and-mouth disease); other diseases require an obligatory
second host species to complete the transmission cycle (e.g., vector-borne diseases such
as malaria). These are all examples of multi-host single-pathogen systems. The converse
situation, single-host multi-pathogen, occurs if we are interested in the competition
between two strains that are to some degree cross-reactive. The dynamics of many diseases
can be fully explained only as the interaction of many cross-reactive strains. The prediction
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of future worldwide influenza strains and the possibility of pandemics are based on such
models.

5. Temporally Forced Models

Many diseases undergo periodic forcing from some external environmental factor. Exam-
ples include the opening and closing of school terms for childhood diseases, climatic
variations affecting the transmission of diseases by arthropod vectors, or the annual
planting and harvesting of agricultural crops. Such simple periodic perturbations to the
basic models can have dramatic consequences, driving regular multi-year epidemic cycles
or even complex/chaotic dynamics. Much of this dynamical behavior is illustrated for
measles infection, where there is a rich history in studying the seasonal behavior observed
in major cities in Europe and the United States. The concept of a bifurcation diagram
is introduced, which provides a powerful and intuitive visualization of epidemic patterns
because a key parameter is varied.

6. Stochastic Dynamics

All diseases are subject to stochasticity in terms of the chance nature of transmission,
and so, in principle, a stochastic model is always more realistic than a deterministic
one. However, the relative magnitude of stochastic fluctuations reduces as the number of
cases increases; therefore, in large populations, with a high level of disease incidence,
a deterministic model may be a good approximation. However, when the population is
small or the disease is rare (for example, due to vaccination or early during an epidemic),
stochasticity can have a major impact. In particular, stochasticity can have three major
effects: It pushes the system away from the deterministic attractor such that transients
may play a significant role, it can cause chance extinctions of the disease, and finally it
introduces variances and co-variances that can influence the deterministic behavior. Hence,
if we are interested in eradication of a disease, or if irregular epidemics are observed,
stochastic modeling is generally necessary.

7. Spatial Models

Spatial heterogeneities occur at a range of scales, although it is the two extremes that
are most commonly studied. At the local scale, strong correlations emerge between the
infectious status of interacting individuals, such that infected hosts are spatially aggregated
and patches of susceptibles exist. It is with such individual-based models that we can
capture the wavelike spread of invading diseases through populations. At the other extreme,
there are the heterogeneities between distinct populations, such as different towns and
cities, or different geographic regions. Models for such scenarios act at a much larger
scale, and are generally concerned with the correlation between the populations and the
effects of the transmission between them. This chapter provides a comprehensive review
of a large range of model types that are used to capture the spatial spread of infection.

8. Controling Infectious Diseases

The final chapter deals with the applied issue of control, and as such focuses on issues that
are of public health and veterinary importance. In particular it discusses how the models
and understanding gained in the previous chapters can be used to optimally target control
measures so as to minimize the impact of infection. Vaccination, quarantining, culling, and
contact tracing are all together, as well as detailed studies of smallpox, foot-and-mouth
disease, and swine fever virus.
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1.8.1. Accompanying Software

Given that much of the focus in this book is on understanding epidemiological problems
that are analytically intractable, a variety of programs are available at the Web page:

http://press.princeton.edu/titles/8459.html

The purpose of these programs is to help those interested in further exploring the models
presented and to aid in the development of new models. For each model, four different
versions of the program are included: a Java program that allows parameters to be adjusted
and the dynamics to be inspected graphically, and programs in C, Fortran and Matlab that
can be freely adapted and tailored to suit a given situation. These programs serve to ease
and facilitate the use of models in epidemiological problems—they are not intended as
a programming guide and are not necessarily the most refined or efficient programming
approach.

1.9. WHAT ELSE SHOULD YOU KNOW?

An epidemiological modeler requires a wide arsenal of tools and techniques in addition to
an understanding of disease behavior and the ability to construct models (which is the focus
of this book). Here we give a brief summary of potentially useful additional techniques and
disciplines, and point the reader to general texts that provide an introduction to the subject
matter.

In much of this book, we go about modeling by first considering the underlying
assumptions about the processes involved and how these scale the number of infected
and susceptible individuals. We then proceed to express these assumptions in terms of
mathematical equations, which are then analyzed. The actual process of analysis usually
involves computing the solution numerically, because the models are often analytically
intractable. A variety of off-the-shelf software may be used to solve ordinary differential
equations. Examples include ModelMaker and Stella. Numerous scientific computing
packages also permit quite sophisticated modeling, such as Mathematica, Maple, R,
Mathcad, and Matlab. Our personal preference is to carry out (nearly) all model analyses
in code written in a low-level computing language, such as C or Fortran. Almost all
the figures in this book were generated by first simulating the equations using C-code,
followed by analyses of these computer-generated data in Matlab, which has the additional
advantage of superb graphics capabilities.

A sound knowledge of statistics is obviously an essential asset, allowing us to link
models with available data, and providing a framework for analyzing the results of model
simulations. Statistics therefore has three main purposes in epidemiological modeling.
First, it allows us to analyze any data that are available and to use this information to derive
parameters (and associated confidence intervals) for our model. Second, statistics provides
a powerful set of tools to compare model output with available data, with the general aim
of showing that the model is a good fit. Finally, statistics can be used to compare the
results of multiple model simulations, and so elucidate the differences between them—
this is particularly important if the models are stochastic. Statistics itself is a very diverse
subject area and no single publication could possibly cover the entire disciple. However,
Statistics in Theory and Practise by Robert Lupton (1993) or Introductory Statistics by
Ronald and Thomas Wonnacott (1990) provide a good introduction to the basics, whereas
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Markov Chain Monte Carlo by Dani Gamerman (1997) is a suitable primer for the rapidly
expanding field of MCMC and Bayesian analysis.

When we are lucky enough to have long-term case reporting data for a particular
infection (as is the case with measles in England and Wales), then techniques from time
series analysis become important. Although technically part of the discipline of statistics,
time series analysis is a subject area in its own right with many powerful tools that
can be used to examine longitudinal data and to extract meaningful patterns, such as
periodic oscillations or density dependence. The two books, Time Series Analysis by James
Hamilton (1994) and Non-linear Time Series, A Dynamical System Approach by Howell
Tong (1990) review the range of techniques and possible applications.

From a more model-based perspective, both dynamical systems and numerical tech-
niques play important roles. Dynamical systems provides an understanding of model
behavior, in terms of fixed points, attractors, and stability. Some basic knowledge of this
subject area has been assumed throughout the book (generally in terms of equilibria and
their stability), but readers seeking a more detailed knowledge could consult Introduction
to the Modern Theory of Dynamical Systems by Anatole Katok and Boris Hasselblatt
(1996) or Dynamical Systems: Differential Equations, Maps and Chaotic Behavior by
D. K. Arrowsmith and C. M. Place (1992).

Numerical techniques are often important; the models that are developed are unlikely
to be analytically tractable; therefore, it is imperative that we can compute the solutions
accurately (and rapidly). The Numerical Recipes series of books give a wide range of
techniques and sample routines, in a variety of programming languages, that can be
readily used. Throughout this book, the vast majority of differential equations models
have been integrated using the fourth-order Runge-Kutta scheme, which provides a
good balance between accuracy and simplicity; stochastic models and partial-differential
equation models have their own particular methods of simulation that are discussed at the
relevant places in the text.

Many other subject areas impinge upon epidemiological modeling. There are clear
parallels between ecology and epidemiology, with many ecological concepts possessing a
counterpoint in epidemiological theory. In addition, if we are interested in wildlife diseases,
then a solid ecological knowledge and model of the host dynamics in the absence of
infection is a necessary starting point. Over the past few years, molecular and genetic
techniques have provided the epidemiologist with unparallelled insights into the dynamics
of infection within the host organism and how the pathogen operates at a fundamental
level. Nowadays it is common to study infections where the genome of the causative
agent has been fully sequenced and annotated. An understanding of immunology and
genetics is vital if epidemiological modelers are to take advantage of this growing body of
knowledge that underpins the basic infection behavior. Finally, we are often interested in
how infectious diseases relate to humans and human activities. In such circumstances, it is
often impossible to separate disease control from issues of economics and social sciences.
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