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Chapter Three

Host Heterogeneities

The standard models introduced in Chapter 2 compartmentalize the population only in
terms of infection status and history—classifying individuals as susceptible, infected, or
recovered—and modeling the number of individuals in each compartment. As such, there is
only one degree of subdivision within the population. In this chapter, we introduce a second
degree, further dividing the population into classes with similar behavioral characteristics.
These characteristics should be chosen such that all members of a class have comparable
risk of both contracting and transmitting infection.

Two clear motivating examples dominate the literature of models dealing with risk:
(1) age structure for childhood infections, and (2) risk structure for sexually transmitted
infections (STIs). Models for STIs frequently subdivide the population into classes
dependent upon the risk associated with the behavior in each class. High-risk individuals,
for example, have many sexual partners (or for some STIs could partake in intravenous drug
use, frequently sharing needles). As a result, individuals in this class have a higher risk of
both contracting and transmitting infection. Given the very clear link between the number
of partners and the risk of infection, and the heterogeneity between individuals (Johnson
et al. 1994), it seems intuitive to include such variation in models if we wish to under-
stand and predict the patterns of sexually transmitted infections. Although ignoring the
behavioral heterogeneity and assuming that everyone has the same number of partners is
appealing for its simplicity, we will show that such averaging can produce very misleading
results.

For many infections, such as measles, mumps, or chickenpox, a high basic reproductive
ratio (R0) means that the average age at first infection is low (see Chapter 2), and therefore
they are most commonly encountered during childhood. The modeling of these so-called
“childhood diseases” also requires further partitioning of the population, this time in
terms of age. For STIs, the subdivisions are determined by the number of contacts. For
childhood diseases, in contrast, the subdivisions are due to the nature of contacts. Because
such diseases are common in childhood but rare in adults, those individuals who mix
most with children are at the greatest risk. Due to their aggregation in schools, children
predominantly mix with other children, and therefore age acts as the major determinant
of risk.

Both of these examples show how differential patterns of mixing influence the likelihood
of contracting and transmitting an infection. Some subsets of the population are clearly at
greater risk, whereas some are relatively isolated. By incorporating such heterogeneities
into models, we gain three distinct advantages: The aggregate behavior of models becomes
more accurate, we can determine the prevalence of infection within the different classes,
and finally we can use this information to determine more efficient targeted measures for
disease control.

Including risk heterogeneities inevitably increases the number of equations. Incorpo-
rating high-risk and low-risk classes with STI models doubles the number of equations
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HOST HETEROGENEITIES 55

compared to homogeneous (averaged) models. With age-structured models, which can
have tens of age classes, the increase in the number of equations is even more pronounced.
However, the equations for each class have a very similar structure, so an increase in their
number does not correspond to an increase in the intellectual challenge or computational
difficulty, merely an increase in computational time. However, including heterogeneities
does increase the number of parameters it is necessary to estimate—this often translates
into a need for more biological data. Generally, it is preferable to have case reports (or other
information) subdivided into the same classes as used in the model because this simplifies
parameterization and the comparison of model results with data.

Finally, in this chapter we consider levels of heterogeneity within the infected class,
discriminating between individuals due to the time since infection. Frequently, very
accurate data is available to parameterize these forms of models, where the distribution
of latent and infectious periods is well known. Although these changes in the shape of
the distribution may at first appear trivial, they can often have a profound impact on the
infection dynamics.

Ultimately, three applied questions drive the work in this chapter:

1. How does risk structure influence the spread and prevalence of pathogens?
2. Can risk structure be used to more effectively control the spread of infection?
3. How can risk structure be parameterized in realistic scenarios?

To answer these questions, we need to extend the basic models of Chapter 2 to include the
various risk groups.

3.1. RISK-STRUCTURE: SEXUALLY TRANSMITTED INFECTIONS

In this section, we introduce the concepts of modeling population heterogeneity with the
particular example of sexually transmitted infections and just two groups (high risk and low
risk). In practice, there are a vast range of sexual risk groups, from prostitutes to celibate
individuals, and each ideally requires its own particular class within the model. However,
the two-class model used as the primary example in this chapter is sufficiently complex
to demonstrate the necessary tools and techniques, yet simple enough to be intuitively
understood.

Sexually transmitted infections are a growing problem in many areas of the world. The
AIDS epidemic that began in the 1980s is continuing to increase, and in recent years there
has been a rise in the prevalence and incidence of many other less well-known STIs. It
is important to understand how our ever-changing sexual practices dictate the prevalence
of such infections, and how their increase can be effectively combated. Since HIV and
AIDS were first diagnosed in 1983 (Barre-Sinoussi et al. 1983), it has spread worldwide
with alarming speed (Mertens and LowBeer 1996). In 2002, this pandemic was estimated
to infect around 42 million people, increasing at a rate of 5 million new cases a year,
and be responsible for around 3 million deaths per year—the vast majority of which are in
Sub-Saharan Africa and the heterosexual community (UNAIDS/WHO 2002). In the United
States, over 15 million new cases of sexually transmitted infections are diagnosed every
year (Cates et al. 1999). In the United Kingdom, there has been a clear increase in many
STIs over the last decade (Figure 3.1), with the greatest growth in syphilis, gonorrhoea,
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Figure 3.1. The recent trends in three sexually transmitted infections in England, highlighting the
dramatic rise in STIs over a nine-year period. The y-axis has been split to show the lower but
increasing levels of syphilis. (Data from the Public Health Laboratory Services www.phls.co.uk/
infections/topics_az/hiv_and_sti/epidemiology/dataresource.htm).

and chlamydia. This has prompted a great deal of research activity to be focused on
modeling these sexually transmitted infections and asserting effective means of control.
(syphilis: Cates et al. 1996; Oxman et al. 1996; Chesson et al. 1999; Morris 2001;
Pourbohloul et al. 2003. Gonorrhoea: Kretzschmar et al. 1996; Garnett et al. 1999.
Chlamydia: Delamaza and Delamaza 1995; Welte et al. 2000; Kretzschmar et al. 2001;
Kretzschmar 2002. General: Boily and Masse 1997; Stigum et al. 1997; Garnett and
Bowden 2000.)

The majority of sexually transmitted infections conform to the SIS framework
(Chapter 2), which leads to one of the simplest of all disease models. For the purposes
of epidemiological modeling, the natural history of sexually transmitted infections is
relatively simple: Individuals are born susceptible to infection and remain so until they
enter sexually active relationships. Transmission of infection, from an infected to a
susceptible individual, occurs during sex—the potential transmission routes are, therefore,
more clearly defined and determinable than for airborne infections. Recovery from
infection generally occurs only following medical treatment, after which the individual
becomes susceptible again. HIV is the notable exception to this rule because individuals
never recover from the infection. Although the population-level dynamics of STIs with SIS

behavior are relatively simple, the within-host dynamics are far more complex. In many
cases, the immune response is suppressed so that the infection persists without clinical
symptoms for many months or years, thus increasing the number of partners to which it
can be spread. As laid out in Chapter 2, for an unstructured (sexually active) population,
where everyone is assumed to be at equal risk, the SIS framework of progression leads to
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the following equations:

dS

dt
= −βSI + γ I

dI

dt
= βSI − γ I,

(3.1)

where the effects of individuals entering and leaving the sexually active population have
been ignored. As before, the parameter β determines the contact and transmission rates
between susceptible and infectious individuals, and γ is the rate at which treatment is
sought. If the population size is constant, the rates of change in the fractions susceptible
and infectious are always reflections of each other ( dS

dt
= − dI

dt
) and only one needs to be

calculated. We now consider how this framework can be extended to include multiple
interacting groups.

3.1.1. Modeling Risk Structure

From biological and mechanistic principles, we can derive sets of equations for the various
risk groups within the population, and from these equations develop a robust, generic
framework to explain the interaction between risk and epidemiological dynamics. We start
with a simple two-class model, incorporating high-risk and low-risk individuals.

3.1.1.1. High-Risk and Low-Risk Groups

We focus initially on the behavior of the high-risk group, and denote the number of
susceptible and infectious individuals within this group by XH and YH , and the total
number in the high-risk group by NH (= XH + YH ). Alternatively, it is often simpler to
use a frequentist approach, such that SH and IH refer to the proportion of the entire
population that are susceptible or infectious and also in the high-risk group, in which case
nH is the proportion of the population in the high-risk group: SH = XH /N , IH = YH /N ,
nH = NH /N . This is the approach that will be adopted throughout this chapter. With this
formulation, a disease-free population has SH = nH < 1, which is crucial when calculating
R0 or invasion criteria. (A third formulation is to model the proportion of each group that
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58 CHAPTER 3

are infected or susceptible, such that ŜH = XH /NH , ÎH = YH /NH , ŜH + ÎH = 1; however,
this approach does not correspond intuitively with the earlier unstructured models.)

The dynamics of either group is derived from two basic events, infection and recovery.
In this simple formulation we explicitly do not allow the movement of individuals between
risk groups; individuals are “born” into a risk group and remain so for life. We initially
focus on the dynamics of the high-risk group. Recovery, or the loss of infectious cases, can
occur only through treatment and, following the unstructured formulation, we assume this
occurs at a constant rate γ . For more generality, we could let the treatment rate be specific
to the group (i.e., use γH ), but at this stage such complexity is unnecessary. New infectious
cases within the high-risk group occur when a high-risk susceptible is infected by someone
in either the high- or low-risk group. These two distinct transmission types require different
transmission parameters: We let βHH denote transmission to high risk from high-risk and
βHL represent transmission to high risk from low risk. (Note throughout this book we use
the same ordering of subscripts such that transmission is always βto from.) Putting these
elements together, we arrive at the following differential equation:

dIH

dt
= βHH SH IH + βHLSH IL − γ IH . (3.2)

By a similar argument, we can derive an expression for the low-risk individuals:

This is
online
program
3.1

dIL

dt
= βLH SLIH + βLLSLIL − γ IL. (3.3)

As demonstrated in Chapter 2, the susceptible equations can be ignored because their
dynamics are determined by the number of infectious individuals: SH = nH − IH and
similarly for the low-risk group (assuming proportions in each group do not change).

There are now four transmission parameters, and the simplest way to encapsulate this
information is in a matrix β:

β =
(

βHH βHL

βLH βLL

)

.

These transmission matrices are often termed WAIFW (Who Acquires Infection From
Whom) matrices, and provide a convenient means of capturing the mixing between
different social groups. This matrix β plays a similar role to the scalar parameter β of
the unstructured model. We now seek to make that relationship more transparent. The first
consideration is the relative magnitudes of the four terms. The individuals in the high-
risk group should be at a higher risk of infection, therefore βHH + βHL should be larger
than βLH + βLL. We would also expect assortative mixing, where individuals from the
high-risk group are more likely to partner with other high-risk individuals, and low-risk
individuals are more likely to be in long-term relationships with another member of the
low-risk group (see Section 3.1.6 and Box 3.4). This means that the diagonal elements of
the matrix dominate, with βHH being the largest term. Finally, we insist that interactions
between the groups are symmetric such that the number of interactions between high-
and low-risk groups is the same as interactions between low and high; this implies that
βHL = βLH , or more generally that the matrix is symmetric. This assumption equates with
the fact that individuals in both groups have an equal response to infectious challenge—if
one group was, for some reason, more susceptible, then the symmetry property may break
down (see Section 3.1.2.2 for an example of such asymmetry).
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Figure 3.2. The dynamics of an STI introduced into the low-risk class at a small level, showing
the prevalence of infection in the high- and low-risk groups relative to the entire population size
(IH and IL, respectively). Three distinct phases of dynamics can be observed; a transient phase that
is determined by the initial distribution of infection, a phase dominated by the value of R0 when
the prevalence of infection increases (or decreases) exponentially, and finally an asymptotic phase
when density-dependent factors begin to operate and the equilibrium levels are achieved.

The single transmission parameter in the unstructured models is replaced by a matrix
of values for structured models. In general, when all groups have an equal response
to infection challenge, this matrix is symmetric.

From the above arguments, a plausible transmission matrix is therefore:

β =
(

10 0.1

0.1 1

)

,

and we shall use this particular example in the illustrative calculations that follow. We
suppose that high-risk individuals make up 20% of the population, with the remaining
80% being low risk. Finally, we make the convenient assumption that γ = 1.

3.1.1.2. Initial Dynamics

For unstructured models, the single parameter β was vital in determining the basic
reproductive ratio, R0, and hence the rate of increase in infection following invasion. A
naive proposition might be to assume that there is a specific R0 for each class, and this
can be calculated from the expected number of secondary cases a primary case (in a
particular group) would cause. So, using the above matrix, the R0 for the high-risk group
is 2.08 (RH

0 = 10 × 0.2 + 0.1 × 0.8 = [βHH nH + βLH nL]/γ ), whereas the R0 for the low-
risk group is 0.82 (RL

0 = 0.1 × 0.2 + 1 × 0.8). For the disease-free state SH = nH < 1 and
SL = nL < 1, and so the size of the risk groups enters the calculation.

Although such formulations provide some insight into the dynamics (generally allowing
us to bound the possible rates of increase following invasion), soon both risk groups contain
infected individuals and their dynamics become slaved, increasing at the same exponential
rate (Figure 3.2). The rate of increase in this slaved region is independent of the initial
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60 CHAPTER 3

seed of infection and determines whether or not a infection will successfully invade and,
as such, it is related to our basic intuition about R0. R0 for the entire population lies
between the values calculated for members of each group, and is generally greater than the
weighted average if the WAIFW matrix is assortative. To calculate the actual value of R0,
an eigenvalue value approach is required to deal with the recursive nature of transmission
(Diekmann et al. 1990; Heesterbeek 2002); Box 3.1 outlines this approach in more detail.

To keep the sense of the original verbal definition of R0 (Chapter 2), for structured
models we may wish to consider R0 as:

the average number of secondary cases arising from an average infected individual in an
entirely susceptible population, once initial transients have decayed

We therefore calculate R0 from the distribution of infection across risk groups in the region
of slaved dynamics, where the behavior is independent of the initial conditions. This slaved
distribution provides a natural weighting for the number of secondary cases generated by
a primary case in each group.

Box 3.1 Eigenvalue Approach
Let us consider infection dynamics in both classes following invasion. The standard mathe-
matical way of doing this is to linearize the equations about the disease-free state. Simply put,
during the initial invasion phase, the relative change to the number of susceptibles is small, and
therefore we can fix their values at the disease-free equilibrium (SH = nH and SL = nL). This
leads to:

dIH

dt
≈ (βHH nH − γH )IH + (βHLγH )IL

dIL

dt
≈ (βLH nL)IH + (βLLnL − γL)IL.

Note that for generality, different recovery rates have been allowed. Such a linear system of
differential equations is understood by looking at the matrix of coefficients, J :

J =
(

βHH nH − γH βHLnH

βLH nL βLLnL − γL

)

=
(

1 0.02

0.08 −0.2

)

and its dominant eigenvalue λ1 ≈ 1.0013 (taking γL = γH = 1). This eigenvalue then determines
the dynamics in the slaved phase:

IH ∝ exp(λ1t) and IL ∝ exp(λ1t).

Thus it is clear that when λ1 > 0 the infection can successfully invade (c.f. R0 > 1), and when
λ1 < 0 the infection will always die out (c.f. R0 < 1).

The ratio of IH to IL is determined by the eigenvector (e1) associated with the maximum
eigenvalue. We let I s

H and I s
L be the distribution of infection in the slaved region as determined

by the eigenvector, specifying that I s
H + I s

L = 1. For the particular matrix under consideration
I s

H = 0.9376 and I s
L = 0.0624, such that in the slaved region the high-risk group has about 15

times more infection than the low risk group.
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HOST HETEROGENEITIES 61

We can now use this slaved distribution to weight our average of R0 for each of the classes:

R0 = RH
0 I s

H + RL
0 I s

L,

=
(

βHH nH + βLH nL

γH

)
I s

H +
(

βHLnH + βLLnL

γL

)
I s

L, (3.4)

≈ 2.08 × 0.9376 + 0.82 × 0.0624,

≈ 2.0013.

Equal Recovery Rates
Finally, for the simpler situation where the recovery rates within all classes are equal, the
calculation of the basic reproductive ratio can be simplified and a more intuitive relationship
to the single-class results can be obtained. If we define a matrix of the number of secondary
cases produced in each class:

R =
(

βHH nH /γ βHLnH /γ

βLH nL/γH βLLnL/γ

)

=
(

2 0.02

0.08 0.8

)

,

then the dominant eigenvalue of this matrix is simply R0. In addition, for the case of equal
recovery rates, in the slaved region the growth rate is given by:

I ∝ exp([R0 − 1]γ t),

which is the same relationship as found in the nonstructured models.

The basic reproductive ratio for the entire population is bounded by values for
individuals in each group.

The basic reproductive ratio from structured models is generally larger than if the
structures were ignored and all individuals had the same average transmission rates.

The basic reproductive ratio is found using an eigenvalue approach.

Figure 3.2 shows the dynamics for our simple example, starting with a few infectious
individuals in the low-risk group. Initially, prevalence drops; this is because the majority
of infecteds are in the low-risk group and its “reproductive ratio” in isolation is less than
one. The initially steep rise of cases in the high-risk group is due to infection spreading
from the low-risk class, governed by βHL. The exact behavior in this transient period is
determined by the initial conditions. Only by assuming that infection starts in the low-risk
group do we obtain this counterintuitive decreasing-then-increasing behavior, the more
common assumption that infection starts in the high-risk group leads to an increasing
number of cases from the beginning. The converse is also true; it is possible to have a
situation in which the total number infected increases before dying away to zero. With the
same 20 : 80 ratio of high-to low-risk groups, the WAIFW matrix:

β =
(

1 1.5

1.5 0.5

)

possesses this surprising behavior. If infection starts in the high-risk group, then this on
average causes 0.2 (= βH H × nH ) cases in the high-risk group and 1.2 (= βLH × nL) in
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the low-risk group; a net increase to 1.4 cases. However, the eventual dynamics is given
by the basic reproductive ratio, and for this matrix R0 = 0.9083—which is less than one—
hence in the long-term the disease fails to persist.

The dynamics of Figure 3.2 exemplify the three major phases observed in all structured
models. During the initial transient phase, the dynamics are often complex and frequently
related to the reproductive ratios for each group in isolation. During this early phase,
the relative disease prevalence rapidly approaches the distribution predicted by the right
eigenvector of the equilibrium—this is analogous to the “stable age distribution” of matrix
models used in ecology (Caswell 2000). Once this distribution is achieved, the prevalence
of infection in all groups grows at the rate determined by the basic reproductive ratio R0,
until the number of susceptibles is sufficiently depleted and density-dependent effects arise.
We then enter the final asymptotic phase where prevalence levels tend to their equilibrium
value.

The initial behavior of a structure model depends on the initial conditions, not just
the basic reproductive ratio, R0.

3.1.1.3. Equilibrium Prevalence

Calculation of the prevalence of infection at equilibrium is far from trivial. Mathematically,
we need to find where the rates of change are zero; hence, remembering that SH =
nH − IH , we need to solve:

0 = βHH (nH − IH )IH + βHL(nH − IH )IL − γ IH ,

0 = βLH (nL − IL)IH + βLL(nL − IL)IL − γ IL.

These equations both contain quadratic terms, and therefore finding simple analytical
solutions is generally impossible. We therefore have to rely on either numerical solutions
of the above equilibrium equations, or more frequently we iterate the model forward to find
the equilibrium levels.

For simple unstructured models, a clear relationship exists between the initial growth
rate and the equilibrium density, S(∞) = 1/R0. In our example, we find (looking at
Figure 3.2) that IH (∞) ≈ 0.1 and IL(∞) ≈ 0.033; the total proportion of the popula-
tion that is susceptible is therefore 0.867(= [0.2 − 0.1] + [0.8 − 0.033]). However, our
calculations and the observed rate of increase suggest that R0 ≈ 2. It is therefore clear
that the simple relationship between equilibrium and invasion dynamics no longer holds
in structured populations. In our example, the small high-risk group is responsible for
the value of R0, but due to the large low-risk group, the prevalence of infection is
much smaller than unstructured theory would predict. This also implies that density-
dependent saturation effects occur far earlier in risk-structured models compared to their
homogeneous counterparts.

In many structured models that have high associativity, the equilibrium fraction of
susceptibles is much higher, and density-dependent saturation effects occur earlier
than in unstructured models (where S(∞) = 1/R0). Hence, although the equilibrium
prevalence of infection is low, the disease may be difficult to eradicate because R0 is
still large.
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Figure 3.3. The critical level of vaccination needed to eradicate a STI, as a percentage of the entire
population, for a range of coverage in the high-risk group. In this example, the transmission matrix is

β =
(

10 1
1 2

)
, with nH = 0.2, nL = 0.8, and γ = 1 as before. For each level of vaccination within

the high-risk group, we have searched for the corresponding level of vaccination in the low-risk group
that sets R0 equal to one. Optimal control, which minimizes the amount of vaccine used, is achieved
when vaccinating about 75% and 40% of the high- and low-risk groups, respectively.

3.1.1.4. Targeted Control

In unstructured models, a further simple relationship exists between the basic reproductive
ratio (or the equilibrium distribution) and the level of control, such as vaccination, required
for eradication of the disease. Standard models predict that the critical level of vaccination
pC needed to eradicate infection is given by:

pC = 1 − S(∞) = 1 − 1/R0.

We now wish to investigate whether this basic formula holds and if it can be improved by
targeting the control measures at those individuals who are most at risk. We again want a
specific example to illustrate the basic concepts behind targeted control, and this is given in
Figure 3.3. We have adjusted the matrix from the previous example to better demonstrate
the trade-offs. In this graph, we have taken a series of vaccination levels within the high-
risk group (pH , dot-dash line) and found the level of vaccination in the low-risk group
(pL, dashed line), which forces the effective reproductive ratio R (calculated in a similar
manner to R0) to be one. The total percentage of the population that needs to be vaccinated
(solid line) is then a measure of the cost associated with eradication and the prevention of
successful re-invasion.

Only for the very simplest of models can the calculation of optimal targeting be
performed analytically. In general, for a given level of control (e.g., vaccination, screening,
or quarantining), we must search through all possible deployments to find which produces
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the more desirable results. In Figure 3.3, we explore the minimum level of vaccination
that could set R0 below one and hence eradicate infection. Alternatively, control measures
may be optimally targetted to reduce the number of cases for a given control effort,
or minimize the duration of an epidemic for given logistical limitations. Whatever the
particular scenario, the quantity to be optimized (and any constraints) must be clearly
specified by policy makers and planners. More examples of optimal control are discussed
in Chapter 8.

For the transmission matrix in Figure 3.3, the basic reproductive ratio is around 2.25.
After invasion, each case in the high-risk and low-risk groups causes 2.8 and 1.8 further
cases, respectively. If we vaccinate at random (ignoring which group an individual belongs
to), then the vaccination threshold is 1 − 1/R0 ≈ 55%, so we can always do as well as this
standard result. However, as can be seen in Figure 3.3, the optimal strategy is to vaccinate
nearly 75% of the high-risk group and only 40% of the low-risk class. A second point is
that although excessive targeting of the high-risk group has only moderate adverse effects,
failure to meet vaccination targets within this group has severe penalties. In many real
scenarios, the difference between high- and low-risk groups is far more extreme, in which
case the incentive for optimal targeting is far greater.

In structured models, the critical level of vaccination that eradicates infection is the
same as in unstructured models, 1 − 1/R0, if vaccination is applied at random.

Targeting vaccination or other control measures generally works far better than
random control. It is generally better to over-target the most at-risk groups rather
than under-target.

3.1.1.5. Generalizing the Model

The matrix formulation for β can be readily adapted to model the interaction of multiple
groups (e.g., high-, medium- and low-risk groups). Those infected individuals in group i

obey the following differential equation:

This is
online
program
3.2

dIi

dt
=

∑

j

β ij SiIj − γiIi , (3.5)

where the matrix form of β is again used to parameterize transmission between the groups.
The above set of equations can be recast into vector notation (as shown in Box 3.2), which
can simplify the formulation and in some cases speed the computational solution. The
value of R0, and therefore whether the infection can successfully invade or not, is again
determined by an eigenvalue approach as illustrated in the Box 3.1. When there are a large
number of classes, this technique is particularly valuable.

3.1.1.6. Parameterization

The main key to applying such structured models is successful parameterization. For
unstructured models there were few parameters to estimate. The infectious period (and
latent period, if necessary) can usually be estimated from careful observation of infected
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Box 3.2 Vector Notation
We have already stated that the contact rates are now most naturally specified as a matrix
of values. To correspond to this notational change, we specify the number of infected (or
susceptible) individuals in each class as a vector. In this notation the full set of equations
becomes:

dI

dt
= S ⊗ (βI ) − γ ⊗ I ,

where ⊗ refers to the piecewise multiplication of two vectors.

hosts; this leaves a single transmission parameter β. The traditional means of finding
this value is through the use of the relationship S∗ = γ

β
, where the equilibrium level of

susceptibles (S∗ = 1 − I ∗ − R∗) can be estimated from either serological surveys or long-
term case records.

For structured models, the parameterization is far less straightforward. Whereas the low
number of parameters needed for unstructured models allows us to sweep through all
possible configurations and develop an intuitive understanding, the complexity and variety
of structured models means that they are more reliant on good data with which they can be
parameterized. The first step is to determine the appropriate risk groups and the proportions
within them. The divisional structure of the model will come from good epidemiological
evidence and should hopefully correspond with the structure of any sampled data. The
infectious/latent period can once again be found from observing infected hosts. However,
we now need a matrix of transmission rates and yet we have only a vector of serological or
other information. So, for a general structured model with n distinct classes, we require n2

transmission terms, but we have at most one piece of information for each class (e.g., we
might know S∗

i ). The usual way to deal with this lack of specificity is to assume a simplified
structure for the transmission matrix; this approach is dealt with in more detail in the next
section which considers age-structured models.

Because the transmission matrix generally has more terms than the structured data,
simplifications are needed to overcome this deficit in information.

For sexually transmitted infections, there is a very natural and parsimonious means of
subdividing the population: using the number of sexual partners. We let class i refer to
those individuals who have exactly i partners within a given period. If we then assume
that individuals form partnerships at random, but in proportion to their expected number
of partners, then the form of the matrix β is given, with only a scaling parameter to be
determined:

β ij = β
ij∑
k knk

, (3.6)

where, as usual, nk is the proportion of individuals in class k. This approach has proved
extremely popular and highly successful, as it has the huge advantage that only a single
parameter (the scalar β) needs to be estimated. We can now examine what effect this form
of heterogeneity has on the basic reproductive rate R0. Because of the random formation
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Box 3.3 Random Partnership Model
Given the situation where partnerships are formed at random but in proportion to the expected
number of partners, the contact matrix is given by:

β ij = β
ij∑
k knk

.

To calculate R0 for this epidemic model, it is easier and more informative to go back to first
principles rather than use the eigenvalue approach. Irrespective of who is initially infected,
due to the random nature of the mixing, the distribution of infection across the classes soon
asymptotes:

Ii

I
→ ini∑

k knk

, where I =
∑

i

Ii

and remains in this distribution throughout the slaved period. This means that during this early
growth phase the level of infection within a class (Ii/ni) is proportional to the number of
partners. We can thus find R0 as the number of new cases we expect to be caused by infection
with this distribution:

R0 = Number of secondary cases produced per primary case,

R0 = 1
γ

∑

i,j

Siβij Ij /I = 1
γ

∑

i,j

niβ
ij∑
k knk

jnj∑
k knk

= β

γ

∑
i ini

∑
j j 2nj

[∑
k knk

]2 = β

γ

M(M2 + V )
M2

= β

γ

M2 + V

M
,

where M and V are the mean and variance of the number of sexual partners.

of partnerships, the eigenvalue approach is no longer necessary, and we find:

R0 = β

γ

M2 + V

M
,

where M and V are the mean and variance of the number of sexual partners (greater detail
is given in Box 3.3). If the heterogeneities had been ignored, and everyone assumed to have
the same average number of partners, then the basic reproductive ratio is reduced to βM

γ
.

Hence even though we assume that partnerships are formed at random, heterogeneities can
play a major role as the infection “focuses” on those high-risk individuals who are both
more likely to catch the infection, and also more likely to transmit it.

Assuming individuals form contacts at random and proportional to their expected
number of partners provides a very natural means of specifying the matrix β. We
find that R0 is increased due to the variance in the number of partners.

We can make this approach more explicit by returning to our simple model with high-
risk and low-risk groups. If we assume that individuals in the high-risk group have an
average of 5 new partners per year, whereas those in the low-risk group average 1 only,

This content downloaded from 
             73.8.248.103 on Thu, 14 May 2020 00:10:31 UTC               

All use subject to https://about.jstor.org/terms



HOST HETEROGENEITIES 67

then the matrix becomes:

β = β

⎛

⎜⎜⎜⎝

5 × 5
0.2 × 5 + 0.8 × 1

5 × 1
1.8

1 × 5
1.8

1 × 1
1.8

⎞

⎟⎟⎟⎠
≈ β

(
13.9 2.78

2.78 0.556

)

,

for which the mean and variance are M = 1.8, V = 2.56, and calculating the basic
reproductive ratio by either the eigenvalue or the method outlined above gives R0 =
3.22β/γ .

Although this random partnership assumption captures many aspects of the transmission
of STIs, it loses the property of assortative mixing where individuals are more likely to
form partnerships with others in the same or similar classes. Two mechanisms can be used
to overcome this problem. First, given a small amount of extra information on disease
incidence, we could add a second parameter, α, to the transmission matrix that scales the
proportion of within-group mixing. (More precisely, in the example given below, α is the
fraction of partnerships that are forced to be made within the same class, with the remainder
still being formed at random.) For example,

β ij = β(1 − α)
ij∑
k knk

β ii = β

[
α

i

ni

+ (1 − α)
i2

∑
k knk

]
,

where although the distribution of transmission from an individual may change, the total
amount of transmission remains constant.

In this model, as α increases, the matrix becomes closer to diagonal and the degree of
assortative mixing becomes larger. When α is close to one, the eigenvalue of the matrix is
dominated by the largest diagonal element; hence

R0 ≈ β

γ
max

i
(i),

which is always larger than the random partnership formation example. Figure 3.4
illustrates this change in R0 for the simple high-risk/low-risk example given above. We
always expect more assortative mixing to lead to larger values of R0; intuitively this is
because as assortativity increases, spread is focused with the high-risk with less being
“wasted” by infecting low-risk individuals. Interestingly, as assortativity increases, the
targeting of vaccination may also change. For the first scenario considered in Figure 3.4, it
is never worthwhile to vaccinate the low-risk group because they cannot maintain a chain
of transmission because each infected individual can infect at most only one susceptible
person. In contrast, the second example shows that although greater assortative mixing
focuses more of the early growth within the high-risk class, the optimal vaccination
strategy is increasingly spread between the two groups. This surprising result can be
understood by realizing that when the mixing is random, it is always more efficient
to concentrate vaccination on the high-risk individuals; however, when the mixing is
completely assortative (α = 1), then the risk groups act independently and the vaccination
level in each must be sufficient to control transmission. More formally, the degree of
assortative mixing for any matrix can be measured (Gupta et al. 1989), the details of which
are given in Box 3.4.
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Figure 3.4. The effect of assortativity on the epidemic behavior of a population split into two classes,
a high-risk group that comprises 20% of the population and a low-risk group that makes up the
remaining 80%. In the top graph, individuals in the high-risk group have an average of five partners
per year, whereas the low-risk group averages only one per year. In this situation it is always optimal
to focus control exclusively on the high-risk group. For the bottom graphs, members of the high-risk
group again average five partners per year, but now the low-risk group averages two partners per
year. In this latter case, the optimal control strategy is a complex mix between the two groups. (For
simplicity of presentation we have assumed that β = γ = 1.)

Increased assortative mixing increases R0, but may mean that the optimal vaccination
strategy is less targeted toward the high-risk groups.

A second approach to fully parameterize the transmission matrix is to utilize the very
detailed data that has been collected on sexual partnership networks. In a few isolated
examples this method has allowed researchers to reconstruct the full network of sexual
partners within a population (Klovdahl 1985; Potterat et al. 2002). Although this type
of network reconstruction may be highly sensitive to the occasional missing connection
(which can vastly alter the topology of the network), the transmission matrix that emerges
is far more robust, although some elements of the network structure are lost (see Chapter 7).
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Box 3.4 Degree of Assortative Mixing
Given a contact matrix β and a vector of the proportion of individuals in each risk-group n,
we first define a new matrix β̂ij = βij ni . We next define the matrix B, which is the relative
proportion of transmission from one group to all others:

Bij = β̂ij∑M
i=1 β̂ij

,

where M is the number of classes being modeled. The degree of assortative mixing, Q, can be
determined by comparing the relative amounts of within-group transmission to what is expected
from the random formation of partnerships (Gupta et al. 1989):

Q =
∑M

i=1 Bii − 1
M − 1

.

As such, a matrix that comes from random formation of partnerships will have degree Q = 0,
whereas one with complete assortative mixing (all diagonal elements) will have Q = 1.
However, this weights all risk groups equally, therefore a more appropriate measure might be to
utilize the eigenvalues of the matrix.

The values of the minor eigenvalues (̂λ2 . . . λ̂M ) relative to the dominant eigenvalue (̂λ1) of β̂

provides a more natural description of the spread of infection between classes. In particular,

q = λ̂2

λ̂1

is an alternative measure of assortative mixing, which effectively weights mixing between
similar classes.

Figure 3.5 shows an example of a detailed traced network from Colorado Springs together
with the associated transmission matrix that arises. For this matrix, the degree of assortative
mixing can be calculated as Q = −0.0776 or q = 0.2452 (see Box 3.4), hence showing that
the matrix is either almost random, or only moderately assortative. This type of approach
has been advocated by Garnett and Anderson (1993b), where individuals are classified into
three basic groups (core, adjacent, and peripheral), and where the partnerships within and
between the group are determined by detailed interviews (Rothenberg 1983).

Detailed information on the exact network of sexual partners can be used to
parameterize the transmission matrix.

3.1.2. Two Applications of Risk Structure

We now consider two applications from the literature that complement the methodology
detailed above. The first comes from the vast body of work done on the early spread of the
HIV epidemic in developed countries, and using detailed epidemiological and sociological
data illustrates many of the points already made. The second example of an STI comes
from the work on chlamydia in koalas, because this provides a radical departure from the
standard models and demonstrates some more unusual attributes associated with wildlife
diseases.
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.8 1.6 2.5 3.2 4.8 4.4 8.1 12.1 9.7 17.7

0.8 3.1 1.9 4.8 4.3 6.9 8.7 3.5 3.5 13.9 13.9

1.6 1.9 5.7 6.1 7.1 6.8 5.7 11.4 5.7 22.7 28.4

2.5 4.8 6.1 5.9 9.6 0 19.2 0 0 19.2 28.8

3.2 4.3 7.1 9.6 7.8 12.5 7.8 0 15.6 0 62.5

4.8 6.9 6.8 0 12.5 0 12.5 25 250 0 50

4.4 8.7 5.7 19.2 7.8 12.5 0 62.5 31.3 62.5 0

8.1 3.5 11.4 0 0 25 62.5 0 0 0 0

12.1 3.5 5.7 0 15.6 25 31.3 0 0 0 0

9.7 13.9 22.7 19.2 0 0 62.5 0 0 0 0

17.7 13.9 28.4 28.8 62.5 50 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3.5. An example of a sexual contact network, taken from the study of HIV transmission in
Colorado Springs (Potterat et al. 2002). The matrix below the network, is the associated mixing
matrix for individuals with 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, and 20 partners, and is calculated as β ij ∝
(number of i–j partnerships)/(ninj ).
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Figure 3.6. Frequency distribution of the number of sexual partners of male homosexuals from two
studies in and around London in the mid-1980s. (Data from Anderson and May 1991, taken from
original surveys by Carne and Weller (unpublished), and McManus and McEvoy (1987).)

3.1.2.1. Early Dynamics of HIV

To illustrate the use of the methodology already described, we focus on the early work
that attempted to predict the spread of HIV in male homosexual communities (Anderson
et al. 1986; Kolata 1987; May and Anderson 1987; Jacquez et al. 1988; May and Anderson
1989; Bongaarts 1989). This narrow focus has the distinct advantage that the models used
at the time had a small number of risk classes and so the parameterization and dynamics
can be shown explicitly.

Recent models, which focus on the more immediate problem of HIV spread in sub-
Saharan Africa and elsewhere, are often much more complex either with a large number
of risk classes or explicitly model the transmission network (Anderson et al. 1992; Arca
et al. 1992; Garnett and Anderson 1993a; Downs et al. 1997; Koopman et al. 1997;
Artzrouni et al. 2002; Koopman 2004). Therefore, although such models essentially follow
the same principles outlined above, the degree of complexity and number of parameters
required makes them infeasible as illustrative examples. A complete description of the
spread of an STI would involve multiple overlapping classes, such as gender, age, level
of sexual activity, sexual preference, drug use, condom use, visits to sex workers, and so
forth, as well as transmission parameters that depend on time since infection (Longini
et al. 1989). As such, for any complete model, there could be thousands of classes
and at least as many parameters. Here, we will concentrate on the work of Anderson
et al. (1986) and May and Anderson (1987), who used data on the number of partners
per year together with the assumption of random partnership formation to develop simple
mechanistic models. Many model assumptions are clearly vast simplifications of the
underlying system, but these models help to demonstrate how an element of risk may be
included.

The underlying mixing matrix comes from detailed social studies of the distribution of
the number of sexual partners over a given period. The data we were recollected from
homosexual males attending STI clinics in and around London, and shows a significantly
skewed distribution, with a significant proportion of those questioned having a very large
number of partners (Figure 3.6). Clearly these data will be biased by the sampling methods
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and are probably focused toward the high-risk groups that are more likely to be infected
with an STI and therefore more likely to attend a clinic. However, similar patterns of
partners have been recorded in other studies (McKusick et al. 1985). Since then, more
detailed and large-scale studies have been performed, most notably by Johnson et al.
(1994), who attempted to document the range and distribution of sexual practises in the
United Kingdom—such data could be used to study the spread of STIs in the population
as a whole, rather than a restricted class of high-risk individuals. The presence of a small
core group of high-risk individuals makes the use of risk-structured models necessary for
understanding the spread and persistence of sexually transmitted infections in general and
HIV in particular.

We are now in a position to develop a model of this epidemic. For simplicity and brevity
we adopt the data from the right-hand graph of Figure 3.6, and assume that there are five
classes with 0, 3, 10, 60, and 100 partners per year in each class. This gives a matrix and
population distribution

β = β

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0.65 2.15 12.9 21.5

0 2.15 7.17 43.1 71.8

0 12.9 43.1 258 431

0 21.5 71.8 431 718

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0.06

0.31

0.52

0.08

0.03

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

The full set of equations is therefore:
dSi

dt
= νi −

∑
j β ij SiIj − µSi,

dIi

dt
=

∑
j β ij SiIj − µIi − γ Ii,

dAi

dt
= γ dIi − µAi − mAi.

(3.7)

For greater realism, the class A of infected individuals that have developed AIDS is
modeled separately, with d being the proportion of infected individuals who develop AIDS.
It is assumed that individuals with AIDS curb their sexual behavior and therefore no longer
contribute to the spread of infection. “Births” or recruitment, (νi), have been added to the
susceptible equation, and natural deaths, µ, and AIDS-induced mortality, m, have also been
included. This precise form of the equations is specific to HIV, a disease that does not obey
the assumptions of the standard SIS framework typical of sexually transmitted infections.
Anderson et al. (1986) quote a value for R0 of around 5; this comes from examination of the
doubling time of the epidemic during the early stages and allows us to fix the multiplicative
parameter which is part of the mixing matrix. Using the theory developed earlier (Box 3.3),
we can calculate the value of R0 from the given matrix:

R0 = 5 ≈ 46.14
β

γ
,

where 46.14 is the largest eigenvalue of the associate matrix. Other parameters for the
model are µ = 0.0312, νi = µni , γ = 0.2, m = 1, and d = 0.3, with all rates in years
(Anderson et al. 1986). These high birth and natural death rates merely reflect the rate
at which individuals enter and leave the sexually active class. From these parameters, we
find that β ≈ 0.0217.
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Figure 3.7. The dynamics of HIV infection from the structured model, equation (3.7), showing
the behavior within the four classes (the zero class is ignored) and the average behavior. The
simulations are begun with 1 infected individual in a population of 100,000. The left-hand graph
shows the incidence of AIDS (those entering the Ai classes) per year—this can be substantially
different from the prevalence of the infection but corresponds more closely to the information
that is recorded. The right-hand graph shows the percentage of each class that are susceptible,
Si/ni , which provides some indication of the force of infection experienced.

Figure 3.7 shows the dynamics of this system; the results for the class with no partners
have not been plotted because there is no risk of these individuals becoming infected. From
the left-hand graph, the slaved exponential growth phase lasts for about 10–15 years. The
peak in incidence occurs first in the highest-risk group, and because the low-risk groups
are primarily infected from more high-risk groups, the other peaks lag by about 3 years.
As expected, the high-risk groups show a far greater incidence of HIV. After the peak, the
incidence drops, showing damped oscillations toward an equilibrium solution. This type of
dynamics is uncharacteristic of sexually transmitted infections and is because the mortality
(removal) of infected individuals and recruitment of new susceptibles effectively makes
the dynamics SIR (see Chapter 2). This oscillatory nature makes it difficult to assess the
impact of control strategies from case report data; the natural decline predicted in years
20 to 40 could easily mask any control efforts. Switching attention to the proportion of
susceptibles within each class, we find that although only 20% of the high-risk group are
susceptible at equilibrium, for the population as a whole the susceptibility is more than
70%. In a homogeneous model, this would be in direct conflict with the R0 value of 5,
whereas in this structured population R0 is driven by the small high-risk group.

The parameters used in this model are taken from a select subset of the population
(male homosexuals), whose behavior puts them at greater risk than the norm. Therefore,
all results pertain to this small subset and not the population as a whole. However, two
interesting and robust conclusions can be ascertained from such models: (1) the expected
peak numbers of AIDS cases will be much higher (double for the parameters used here)
than the equilibrium level, and (2) the time-scale of the epidemic dynamics is long, taking
40–50 years before equilibrium is reached. Over such long time scales social changes may
have a significant impact on the dynamics.

Although inherently simple and easy to parameterize from available data, this model
demonstrates the power of modeling as a tool for understanding disease dynamics and
predicting long-term trends. Obviously, more accurate predictions require more complex
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models with more classes; however, although such models are relatively easy to formulate,
their parameterization is more awkward and obtaining the necessary social and sexual-
behavior data is a difficult and time-consuming task (Johnson et al. 1994). However, several
key features could be included to make this a more realistic model of HIV transmission.
Infection risk for HIV is known to be highly dependent of time since infection, which can
be modeled by subdividing the infectious class (see Section 3 of this chapter). Transmission
through shared needles by intravenous drug users is another important route and one that
could be modeled by a similar risk-structured approach. Finally, greater realism of sexual
behavior could be included, capturing both the assortative nature of contacts, as well as
both the heterosexual and homosexual communities.

3.1.2.2. Chlamydia Infections in Koalas

Localized koala (Phascolarctos cinereus) populations have undergone significant declines
in recent years (Phillips 2000). One possible cause of this decline is infectious disease,
which has been demonstrated to regulate other natural populations (Hudson et al. 1998).
Chlamydia infections in koalas are known to lead to sterility of females and increased
mortality. It therefore seems likely that chlamydia will have an impact on koala population
dynamics. Here, we follow the work of Augustine (1998), although we consider a much
reduced model to highlight the factors we have already discussed. The original paper used
a discrete-time model to mimic the seasonal reproduction of koalas (see Chapter 5), but
also included age-structure (see Section 3.2) and stochasticity (see Chapter 6) to achieve
greater realism.

This example considers the interaction between epidemiological and ecological interac-
tions. For human populations, there are little or no density-dependent effects; in contrast,
most wildlife populations experience considerable density-dependence, limiting their
numbers (e.g., Clutton-Brock et al. 1997; Gaillard et al. 2000). The interplay between the
epidemiological and ecological factors can substantially complicate the infection dynamics
and negate some of our understanding based upon human disease models (Hudson et al.
2001). This issue is further discussed in Chapter 8.

For this sexually transmitted infection, we do not structure the population by the number
of sexual partners, but instead males and females are treated as the two risk groups. This
gender-based structuring is necessary due to the very different behavior of males and
females, both in terms of transmission and in terms of response to infection. A similar
argument could be made for models of chlamydia transmission in humans. Finally, the
assumption of heterosexuality within the koala population means that the transmission
matrix β takes a relatively simple form.

We first assume that the underlying population dynamics of koalas can be described by
a continuous-time logistic growth model, with density-dependent mortality, and that the
carrying capacity is normalized to one. We now structure the population into males and
females, such that in the absence of infection the number of susceptible males and females
obeys the following differential equations:

dXF

dt
= rXF − rXF N,

dXM

dt
= rXF − rXMN, N = XF + XM.

Thus, in an uninfected population, the koalas have a carry-capacity of 1 (N = 1) and an
equal ratio of males and females. Infection with chlamydia is assumed to be lifelong,
and transmission is modeled as frequency dependent (mass-action), which agrees with
observations of koala having a fixed number of mates per year irrespective of population
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size or density. We initially consider only horizontal transmission (between male and
female koala) during intercourse, which leads to the following set of equations:

dXF

dt
= r(XF + αYF ) − rXF N − βFMXF YM/N,

dXM

dt
= r(XF + αYF ) − rXMN − βMF XMYF /N,

dYF

dt
= βFMXF YM/N − rYF N − mYF ,

dYM

dt
= βMF XMYF /N − rYMN − mYM,

N = XF + XM + YF + YM.

where α is the reduction in fertility due to disease, and m is the additional disease-induced
mortality rate. There is negligible vertical transmission, so a mother does not pass infection
to her offspring and all newborns are susceptible. It is interesting to consider the structure
of the transmission matrix β in more detail. Based on the work of Augustine (1998), a
plausible matrix is:

β =
(

0 1.0

1.2 0

)

.

First, we note that the diagonal terms βMM and βFF are zero, which breaks the common
assumption of assortative mixing (in fact Q = −1, because there are only two classes)—
this is because we are interested in transmission between males and females instead of
“risk groups,” per se. The second is that the matrix is nonsymmetric because females
are more likely to catch chlamydia from an infected male than vice versa, although this
is outweighed by the fact that breeding males are likely to have more mates. When
the koala population is at its disease-free equilibrium, XF = XM = 1

2 ; this simple, but
unconventional, transmission matrix leads to a basic reproductive ratio of:

R0 =

√
1.0 1

2 × 1.2 1
2

r + m
= 0.5477

r + m
.

Thus, although high disease mortality (large m) may be problematic for the koala
population, it can be devastating for chlamydia because it can easily reduce R0 below one.

Figure 3.8 illustrates the effect the disease can have on the breeding population of koalas,
by plotting XF + αYF as a function of both α and m. We observe that if infected females
have sufficiently reduced fecundity (as in humans, chlamydia infection is likely to cause
sterility), then the entire population can be driven extinct. In contrast, the behavior with
respect to disease mortality, m, is more complex and intermediate levels of mortality have
the most detrimental effects on the total population size. This is because with very high
mortality the infection has a low R0 and cannot spread. At the other extreme, although
low mortality allows the pathogen to spread further it does little to reduce the population
size. These results echo the findings of Augustine (1998) and illustrate why detailed
mathematical models are often necessary and insightful.
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Figure 3.8. The level of reproducing females, XF + αYF , as a function of two infection attributes:
disease-induced mortality rate, m, and reduced fertility, α. When infected females have low fertility
it is possible for the infection to drive the population to extinction. We take r = 0.2; all parameters
are within the ranges given by Augustine (1998).

3.1.3. Other Types of Risk Structure

The formulation of risk-structured models and the WAIFW matrices provide a useful
distinction between two types of important individuals in airborne infections: super-
shedders and super-spreaders (Austin and Anderson 1999b; Riley et al. 2003). Although
rare, both of these types of individuals can be responsible for a disproportionately large
number of secondary cases and, therefore, can severely hamper control efforts. Let us
consider a population in which only a small proportion are either super-shedders or super-
spreaders and consider how the transmission matrix β reflects their intrinsic differences.

Here, we define super-shedders as individuals who once infected excrete large amounts
of the infectious agent. This super-shedding is often due to genetic attributes of the host or
a compromised immune system. Although able to produce many more secondary cases,
super-shedders are not necessarily at any greater risk of coming into contact with the
infections disease. Therefore, labeling super-shedders with a subscript S and the rest of
the population with a subscript R, a suitable transmission matrix would be:

β =
(

βSS βSR

βRS βRR

)

=
(

fβ β

fβ β

)

,

where f > 1 reflects the greater transmission from super-shedders in comparison with the
rest of the population. Because super-shedders are assumed to have different epidemiolog-
ical responses to infection compared to the rest of the population, the WAIFW matrix is no
longer symmetric.

In contrast, we define super-spreaders as individuals with a very high number of
contacts, often due to their occupation. Hence these individuals could generate many
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secondary cases but are also at a much higher risk of being infected. Therefore, using
subscript S to now represent super-spreaders, a suitable transmission matrix would be:

β =
(

βSS βSR

βRS βRR

)

=
(

f 2β fβ

fβ β

)

,

where f > 1 reflects greater transmission from and to super-spreaders. It should be
clear from this formulation that super-spreaders generate a much greater risk than super-
shedders, because their behavior means that they are much more likely to be infected and
subsequently much more likely to transmit.

A recent approach to capture heterogeneities in transmission has been proposed by
Lloyd-Smith et al. (2005). They examined contact tracing data for eight directly transmitted
diseases, including measles, smallpox, pneumonic plague, and SARS, and found the
distribution of individual infectiousness around R0 to be often rather skewed. To study the
epidemiological implications of this, Lloyd-Smith et al. (2005) used results from branching
process theory (see Chapter 6) by assuming that the number of secondary cases resulting
from each infected is described by an “offspring distribution” given by Z ∼ negative
binomial (R0, k), where the parameter k captures the skew in the transmission distribution
(note: k → ∞ gives the Poisson distribution and k = 1 yields the geometric). The values
of k estimated from data ranged from 0.01 to approximately 0.1, highlighting the large
variance in individual infectiousness. These results suggest the 20/80 “rule” (whereby 20%
of individuals are responsible for 80% of transmission)—which was previously thought to
apply to STIs and vector-borne diseases—may also apply to directly transmitted infectious
diseases.

The epidemiological implications of these observations are interesting and important.
For example, compared to models that assume little individual variation in transmission
(k very large), this documented heterogeneity implies an increased disease extinction risk,
and a reduced likelihood of epidemics, though outbreaks are more severe when they do
occur. Additionally, the public health lessons highlight the importance of individual-
specific control measures, rather than population-wide approaches. Let us assume
control effort c is imposed (c = 0 represents no control and c = 1 reflects the
full blockage of transmission). Under population-wide control, the infectiousness of
every individual in the population is reduced by c—control is homogeneous. Al-
ternatively, with individual-specific control, a proportion c of infecteds (chosen at
random) are traced and isolated completely such that they cause zero infections
(also see Chapter 8)—control is heterogeneous. Individual-specific control raises the
degree of heterogeneity in the outbreak as measured by the variance-to-mean ra-
tio of Z, whereas population-wide control reduces heterogeneity. Both approaches
yield the effective reproductive number R = (1 − c)R0, so the threshold control ef-
fort for guaranteed disease extinction is c ≥ 1 − 1/R0, as in conventional models
(compare Chapter 8). For intermediate values of c, however, the individual-specific
approach always works better because higher variation favors disease extinction.

3.2. AGE-STRUCTURE: CHILDHOOD INFECTIONS

The dynamics of childhood infections, such as measles, mumps, chickenpox, rubella, or
whooping cough, have been extensively studied by epidemiologists and mathematical
modelers (Hamer 1906; Bartlett 1957; Black 1966; Yorke and London 1973; Cliff et al.
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1981; Fine and Clarkson 1982; Schenzle 1984; Schwartz 1983; McLean and Anderson
1988a,b; Olsen and Schaffer 1990; Rand and Wilson 1991; Grenfell 1992; Grenfell et al.
1994; Bolker and Grenfell 1995; Ferguson et al. 1996a,b; Keeling and Grenfell 1997a;
Finkenstädt and Grenfell 1998; Earn et al. 2000; Grenfell et al. 2001; Bjørnstadt et al.
2002; Rohani et al. 2002). From a theoretical perspective, the study of such diseases is
facilitated by the relative simplicity of the natural history of the infection, the large number
of cases, the high quality of the recorded data, and the interesting dynamics that emerge.
From an epidemiological and public health standpoint, these diseases are important to
understand because they have high R0 and can therefore produce large epidemic outbreaks
and, although usually fairly benign, complications and mortality can occur (Rohani et al.
2003).

Although the standard theory for unstructured models provides many insights into the
dynamics of such infections—especially when seasonal forcing is included (see Chapter 5)
—these diseases predominantly affect a subset of the population (children) and hence any
models developed should reflect this. The formalism of such age-structured models is
superficially the same as the risk-structured models described above, but with the addition
of individuals aging. Thus, whereas with risk-structured models hosts are generally
assumed to stay in the same risk class for their entire lives, with age-structured models
hosts move sequentially through the age classes.

In many countries, these childhood diseases are notifiable with local and national
statistics being compiled. The primary reason for collecting these data is public health
motivated, enabling health agencies to determine the effects of control measures and
providing an insight into the future epidemic behavior. However, these statistics are also
a rich source of data for model parameterization and time-series analysis. In England
and Wales, the number of cases reported weekly in over 1,400 locations has been
collected since 1944, providing the largest such epidemiological data set in existence (Cliff
et al. 1981; Finkenstädt and Grenfell 1998; Grenfell et al. 2001). To date, most interest
has been focused on measles, which has been recorded with an efficiency of around 60%
(Finkenstädt and Grenfell 1998), however data on other childhood diseases is now being
examined (Rohani et al. 1999, 2000). In addition, the use of age-structured models is
particularly useful when considering pandemic infections, because a significant amount
of transmission could occur within schools, and closing schools may be a relatively easy
way of restricting disease spread (Ferguson et al. 2006).

3.2.1. Basic Methodology

The standard approach is again to subdivide the population into a number of discrete
compartments, classified by the age of the host. Although for sexually transmitted
infections there was some arbitrary choice to the qualities used to divide the population,
here the situation is much more clear cut and only the age range within each compartment
has to be determined. In principle, age is a continuous variable (which would suggest a
partial-differential-equation approach, see Box 3.5), but because children are generally
grouped into school classes of a given age cohort, the compartmental approach is often
more realistic.

Although a continuous parameter, age-structured models usually group individuals
into a limited number of classes—often representing school years.
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Box 3.5 PDE Model
This type of model considers the variables S, I , and R to be functions of both age and
time. As such, S(a, t) refers to the probability-density of susceptibles of age a at time t .
The age-dependent SIR equations can now be written as a PDE:

∂S(a)
∂t

= νδ(a) − S(a)
∫ ∞

0
β(a, a′)I (a′, t)da′ − µS(a) − ∂S

∂a
,

∂I (a)
∂t

= S(a)
∫ ∞

0
β(a, a′)I (a′, t)da′ − µI (a) − γ I (a) − ∂I

∂a
,

where the delta-function forces all births to be age zero, and the last partial derivative term
in each equation accounts for the population getting older. Although this formalism has its
mathematical elegance, it is computationally difficult to implement and would be solved
numerically by discretization into multiple age classes. Finally, the contact rate β, which is
now a function of two continuous ages, would be very difficult to parameterize from real data.

We again start by considering a model that subdivides the population into two classes, in
this case children and adults identified by subscripts C and A, respectively. Although most
childhood diseases have a clearly defined latent-period leading to SEIR-type dynamics,
for clarity we begin with an age-structured version of the SIR equations:

This is
online
program
3.3

dSC

dt
= ν − SC (βCCIC + βCAIA) − µCSC − lCSC,

dIC

dt
= SC (βCCIC + βCAIA) − γ IC − µCIC − lCIC,

dSA

dt
= lCSC − SA (βACIC + βAAIA) − µASA,

dIA

dt
= lCIC + SA (βACIC + βAAIA) − γ IA − µAIA.
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The parameters µC and µA are the age-specific death rates, lC is the rate that individuals
mature (leave the childhood class and move to the adult class), and ν is the birth rate
(assuming no maternally derived protection). In this model, the interaction between the two
classes comes from transmission between them (as captured by the off-diagonal elements
of the matrix β) and due to the slow trickle of individuals moving from the childhood
to the adult class. Again, we are dealing with parameters that represent proportions of
the entire population, such that SC = XC/N is the proportion of the population that is
susceptible children. We now seek to compare the general dynamics observed for this
type of model with those of the risk-structured approach, contrasting with the behavior of
nonstructured models.

Age-structured models differ from the earlier risk-structured models due to the
regular progression of individuals into increasingly older age classes.

3.2.1.1. Initial Dynamics

The first observation is that when the transmission dynamics are rapid in comparison with
both host demography and the aging process, the initial behavior and in particular the
basic reproductive ratio are largely unchanged from the risk-structured results given earlier,
where there was no movement between risk classes. Although this assumption is generally
true for common childhood infections of humans, if the infection dynamics are particularly
slow relative to the life expectancy (for example BSE in cattle, see Section 3.2.2), we need
to use the eigenvalues approach for the full system of equations, which includes the effects
of movement between age classes while infected. This can be done in a similar manner to
described in Box 3.1, finding the eigenvector distribution of infecteds in the slaved growth
phase and using this to weight the individual number of secondary cases expected for each
age class.

3.2.1.2. Equilibrium Prevalence

When contrasting risk-structured models of STIs and age-structured models of childhood
infections, two distinct elements lead to differences in the equilibrium distribution of
infection: (1) the nature of the infectious disease and the inherent differences between
SIS- and SIR-type models, and (2) the sequential progression through the age classes,
which means that at equilibrium, the proportion of susceptible individuals in the older age
classes must be lower,

S∗
i

ni

≥
S∗

j

nj

∀i < j.

For diseases conferring life-long immunity, this must be true because hosts in older age
classes must have been subjected to at the very least the same risks of infection as hosts
in younger classes. An extreme version of this is the case where the force of infection
experienced is independent of age, in which case the fraction susceptible decreases
exponentially with age. We note, however, that if immunity to infection can wane, then this
result no longer holds, because older individuals may have had sufficient time to recover.

For SIR-type infections at equilibrium, the proportion recovered (measures by
seroprevalence) must increase with age.
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From this understanding, the equilibrium serological profile (which measures the
proportion of the population that have been exposed to the infection) with respect to age
can be used to estimate both the incidence of infection and the force of infection acting
within that age class. Let us consider the ith age class, and assume that this class lasts
for an average of Ti years. Individuals who enter the ith age class are susceptible with
probability Si−1/ni−1, whereas when individuals leave the ith age class the probability of
being susceptible has dropped to Si/ni . Thus, ignoring mortality, during the Ti years a
fraction Si−1/ni−1 − Si/ni must have been infected; this sets the force of infection in this
age class to be:

λi = 1
Ti

(
Si−1

ni−1
− Si

ni

)
ni

Si

= 1
Ti

(
Si−1ni

Sini−1
− 1

)

and the equilibrium disease prevalence is:

I ∗
i = 1

γ Ti

(
Si−1ni − Sini−1

ni−1

)
. (3.8)

As such, the gathering of age-structured seroprevalence information is a vital step in
understanding the dynamics and relative transmission strengths of childhood infections
(Figure 3.10).

3.2.1.3. Control by Vaccination

For risk-structured models, it was clear that targeting controls toward the high-risk
groups was the most efficient means of combating infection. However, this was because
individuals in the high-risk group were assumed to remain there indefinitely. For age-
structured models, most individuals make it through all the age classes and therefore
experience, and contribute to, the full range of dynamic behaviors. In such situations, and
assuming the vaccine provides lifelong protection, it is always best to vaccinate as early as
possible so that immunity covers the greatest proportion of the host’s lifespan.

For age-structured models, when vaccination offers lifelong protection, it is always
best to target the youngest age groups.

Figure 3.9 shows the equilibrium results from an age-structured model with just two
classes, children and adults. To allow comparisons to previous work, we take the contact
matrix to be a multiple of the risk-structured matrix seen previously:

β =
(

100 10

10 20

)

,

with children having the higher transmission rate, and an infectious period of length 0.1
years. (This set of parameters gives dynamics very similar to those in Figure 3.2, but
operating ten times faster). Finally, we also assume that the childhood class is from ages 0
to 15 years, and that life expectancy is 75 years. Setting µC = 0, this implies that nC = 0.2,
nA = 0.8, lC = 0.0667, and µA = 0.0167 per year. Clearly, epidemiological dynamics are
on a much faster time scale than the demography—and so the birth and death rates have an
insignificant impact on R0 ≈ 2.

Figure 3.9 also illustrates a few basic points that were made earlier. First, a smaller
proportion of adults are susceptible compared to children, although obviously the two

This content downloaded from 
             73.8.248.103 on Thu, 14 May 2020 00:10:31 UTC               

All use subject to https://about.jstor.org/terms



82 CHAPTER 3

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Proportion vaccinated, p

P
ro

po
rt

io
n 

of
 c

la
ss

 s
us

ce
pt

ib
le

, S
i /

n  
i

Childhood class
Adult class
Total

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
× 10

–3

Proportion vaccinated, p

P
re

va
le

nc
e

I i

Childhood class
Adult class
Total

Figure 3.9. Equilibrium results from an age-structured model with vaccination at birth, such that the
birth rate of susceptible children is reduced to ν(1 − p). The left-hand graph shows the proportion of
each age class that are susceptible (S∗

i /ni). The right-hand graph shows the absolute prevalence of
infection in each class as well as the total.

levels are equal once the disease has been eradicated (p > 0.55). However, notice that
vaccination actually increases the proportion of the adult class who are susceptible to
infection (SA/nA) and hence leads to an increase in the proportion of the entire population
that is susceptible (SC + SA). These results can be explained as follows: With increasing
vaccination at birth, the decrease in prevalence is greater than the decrease in newborn
individuals who are susceptible—although there are fewer susceptible births and even
fewer infectious cases and hence the total fraction of susceptibles increases. Considering
disease prevalence (right-hand graph), although the adult class contains four times as
many individuals as the childhood class, it contains fewer infecteds. Vaccination can
also be seen to have a stronger effect on prevalence among children. This is compa-
rable with earlier results (see Chapter 2)—that a lower reproductive ratio (in this case
(1 − p)R0) corresponds to a higher average age of infection, which means that proportion-
ally fewer cases occur in children. Finally, we find that vaccinating 55.35% of children
at birth is sufficient to control the epidemic, which is just slightly less than the standard
1 − 1/R0. Pragmatically, it is reassuring that despite substantial heterogeneity and as-
sortative mixing in the transmission matrix, the simple eradication threshold remains a
surprisingly accurate approximation when vaccinating newborns. An intuitive explanation
for this close agreement is that, as the newborns age, eventually the entire population
is vaccinated at a proportion p, and hence this is asymptotically equivalent to random
vaccination. We note, however, that for vaccination at birth, the dynamics just after the start
of a vaccination campaign may be very different from the standard random-vaccination
models (see Chapter 8).

3.2.1.4. Parameterization

Although risk-structured models for STIs often have a natural parameterization of the
contact matrix, age-structure models are more difficult to parameterize (Grenfell and
Anderson 1985). We return to the problem stated earlier of having an n × n matrix of
values to find, and only a vector of n observed values to use. The standard way to cope
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with this sort of problem is to reduce the number of terms needed in the matrix, usually
focusing on the age classes that are most responsible for infection transmission.

In our simple two-class example, we may have data on the proportion of susceptibles in
each class. Thus, given two pieces of information, we need to specify the matrix with just
two parameters. The most natural way to do this is to isolate the childhood interactions,
such that the contact matrix becomes

β =
(

β1 β2

β2 β2

)

.

Clearly we have lost some of the model structure, but it is now possible to estimate this
reduced matrix. As shown in equation (3.8), it is possible to estimate the equilibrium
prevalence of infection from the fraction of susceptibles:

I ∗
C = 1

γ y C

(
nC − S∗

C

)
I ∗

A = dA

γ

(
S∗

CnA − S∗
AnC

nC

)
,

where y C and 1/dA are the average times spent in the childhood and adult classes. For this
solution to be at equilibrium, we require the transmission matrix parameters to satisfy

dIC

dt
= 0 = S∗

C

(
β1I ∗

C + β2I ∗
A

)
− γ I ∗

C − mCI ∗
C,

dIA

dt
= 0 = S∗

A

(
β2I ∗

C + β2I ∗
A

)
+ mCI ∗

C − γ I ∗
A − µAI ∗

A.

After some rearranging, this gives:

β2 = γ I ∗
A + µAI ∗

A − mCI ∗
C

S∗
A(I ∗

C + I ∗
A)

, β1 = γ + mC

S∗
C

− I ∗
Aβ2

I ∗
C

.

We can test this result using the transmission matrix defined earlier. The results in
Figure 3.9 show that in the absence of vaccination, S∗

C ≈ 0.097 (S∗
C/nC ≈ 0.485) and

S∗
A ≈ 0.22 (S∗

A/nA ≈ 0.275). This translates into infection levels of I ∗
C ≈ 6.8 × 10−4 and

I ∗
A ≈ 2.8 × 10−4, which agrees well with the full numerical calculations, and produces a

reduced matrix with β1 ≈ 98.8 and β2 ≈ 12.9, which again is in line with the actual values.
The choice of matrix is a question of good epidemiological judgment. Any matrix that

contains two free parameters can be made to fit the serological data, but may poorly reflect
the general understanding of how transmission operates. In the above example, we chose to
focus our attention on transmission between children as distinct from all other transmission
events, however we could have equally made the assumption that all transmission involving
children was equal and that only transmission between adults was different. Finally, there
are a range of bizarre and unlikely matrices:

βunlikely =
(

β1 β2

β2 β1

)

,

(
β1 0

0 β2

)

,

(
0 β1

β2 0

)

, . . .

all of which could be made to fit the available data, but would not agree with our intuition
about the transmission of childhood diseases.

This method can, of course, be extended to deal with higher dimensional models with
more age classes, although the algebra gets increasingly ugly (Grenfell and Anderson
1985). However, one particular case is worth describing in some detail. The most common
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formulation for age-structured models of childhood diseases is to divide the population into
four age-classes: pre-school (0–5 years), primary school (5–11 years), secondary school
(11–16 years), and adults (16 or over). Thus, the division of the population reflects the
standard epidemiological knowledge that it is the mixing of school children (mainly at
primary schools) that is responsible for driving the progression of most childhood diseases
(Fine and Clarkson 1982; Schenzle 1984; Finkenstädt and Grenfell 2000). There is some
degree of freedom in the way that the reduced transmission matrix β is chosen; clearly,
primarily school contacts must play a dominant role, but there is no clear general format.
Two possible formulations are

β =

⎛

⎜⎜⎜⎜⎝

b2 b2 b3 b4

b2 b1 b3 b4

b2 b3 b3 b4

b4 b4 b4 b4

⎞

⎟⎟⎟⎟⎠
β =

⎛

⎜⎜⎜⎜⎝

b2 b4 b4 b4

b4 b1 b4 b4

b4 b4 b3 b4

b4 b4 b4 b3

⎞

⎟⎟⎟⎟⎠
,

where b1 < b2 < b3 < b4. In the first formulation, the interaction strength is determined
by the weakest member, and it is assumed that primary-school children followed by
preschool and secondary school children are most responsible for transmitting infection.
In the second formulation, the degree of assortative mixing is high, and transmission to
outside the age class is considered to be less important. When seasonal forcing is included
to mimic the effects of opening and closing schools, generally only the b1 parameter is
forced (Chapter 5).

Age-structured data on the proportion of seropositives can be used to determine
n terms of the n × n transmission matrix. The way these n terms are used to define
the entire matrix should match the underlying biology.

3.2.2. Applications of Age Structure

We again consider two examples from the recent literature. The first is an amalgamation of
the huge body of research into the dynamics of measles. This is one of the best understood
of all childhood diseases, and as we will show, the implications of age structure are vital if
we are to model the observed dynamics. The second example is the control of BSE (Bovine
Spongiform Encephalopathy), where age-structured models are again necessary if we are
to understand the dynamics of this infection and curtail its spread.

3.2.2.1. Dynamics of Measles

As noted in Chapter 2, the distinguishing feature of measles and other childhood diseases
is their large basic reproductive ratio, R0. For a non-age-structured population of constant
size, this translates into an average age at first infection of (life expectancy)/(R0 − 1),
hence a large basic reproductive ratio coupled with life-long immunity is synonymous
with childhood infections. As with all infections, the value of R0, estimated from age-
structured seroprevalence data, varies between locations. For measles in modern era
England and Wales, several studies have estimated R0 to be around 17 (Anderson and
May 1982; Grenfell 1982; Schenzle 1984; Grenfell and Anderson 1985), and this value
is used throughout this section. Age structure is important in the modeling of childhood
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diseases because of the greater mixing between susceptible and infected children that
occurs at schools. In general, although preschool children are the most likely age group
to be susceptible, they generally mix only with a small number of other children so the
potential to catch and transmit infection is low. However, as soon as children enter school,
the number of potential contacts increases to at least class size (20–30 children), and hence
the risk of transmission also rises.

The seminal work of Schenzle (1984) modeled measles dynamics using an SEIR

framework (Chapter 2) and 21 age classes, where the members of each of the four school
groups (preschool school 0 → 6, primary school 6 → 10, secondary school 10 → 20, and
adults) share a common mixing pattern. Thus, the mixing matrix is comprised of 16 blocks
of identical transmission terms. This early work into realistic age-structured (RAS) models
has been greatly extended and expanded by Grenfell and coworkers (Bolker and Grenfell
1993; Bolker 1993; Grenfell et al. 1994; Keeling and Grenfell 1997a; Finkenstädt and
Grenfell 1998) using the extensive spatio-temporal record of measles cases available for
England and Wales. The values given in Bolker and Grenfell (1993), for a RAS model
similar to Schenzle’s, are:

β = γ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.875 . . . 1.875 2.175 . . . 2.175 0.975 . . . 0.975 0.6
...

...
...

...

1.875 . . . 1.875 2.175 . . . 2.175 0.975 . . . 0.975 0.6

2.175 . . . 2.175 10.74 ± 8.56 . . . 10.74 ± 8.56 0.975 . . . 0.975 0.6
...

...
...

...

2.175 . . . 2.175 10.74 ± 8.56 . . . 10.74 ± 8.56 0.975 . . . 0.975 0.6

0.975 . . . 0.975 0.975 . . . 0.975 0.975 . . . 0.975 0.6
...

...
...

...

0.975 . . . 0.975 0.975 . . . 0.975 0.975 . . . 0.975 0.6

3 . . . 0.6 0.6 . . . 0.6 0.6 . . . 0.6 0.6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where individuals are assumed to be exposed (but noninfectious) for an average of
eight days and infectious for an average of five days—leading to SEIR-type dynamics.
Rather than maturation being a continual process, to better mimic the school structure, all
individuals except adults are assumed to move up an age class at the start of each school
year. Finally, the ± 8.56 terms in the primary-school interactions refer to the changes in
mixing that occurs between school terms and holidays (Chapter 5). In Schenzle’s original
formulation, Sundays are treated as school holidays, although this high-frequency variation
has little effect on the dynamics.

Figure 3.10 shows model results together with actual data for measles. The results
shown, using Schenzle’s formulation, ignore temporal forcing and instead show the
equilibrium level of seropositives (effectively the proportion recovered within each age
class Ri/ni) for the term time and holiday matrices separately. The boxes show the
maximum and minimum levels over each year, and hence correspond to the seropositive
levels just before and just after everyone moves up into the next age class. The high
degree of mixing between primary school children during school terms means that
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Figure 3.10. Left-hand graph: results from an age-structured model of the same form as Schenzle
(1984), showing the level of seropositives across age classes. The boxes show the maximum and
minimum levels across the yearly cycle of aging. The results ignore the complexities of temporal
forcing and are given for the equilibrium values using the term-time and holiday matrices separately.
The right-hand graphs show the measured level of seropositives and the derived distribution of cases
from two studies of measles in Europe before vaccination: Collins et al. (1942) and Fine and Clarkson
(1982). The lower graph also shows the recent age-structured distribution of cases in England and
Wales from the Public Health Laboratory Service, giving some insight into the role of vaccination.

the risk of infection is greatest in these age classes, and therefore the proportion of
seropositives increases dramatically. The difference between the school holiday and school
term distributions reflects the impact of the extra mixing that occurs within primary
schools.

The two right-hand graphs of Figure 3.10 present data from England and Wales (Fine
and Clarkson 1982; PHLS 1989–2001) and Germany (Collins et al. 1942). The top graph
gives the fraction of seropositives in each age class (Ri/ni) before the onset of mass
vaccination against measles; both data sets show a larger increase in seropositives during
the primary school years, with the increase in England and Wales being more pronounced.
This information can be translated into prevalence levels (Ii ∝ Ri+1/ni+1 − Ri/ni), and
the lower graph shows the distribution of infection (Ii/

∑
k Ik) across all age classes for

the two prevaccination samples. Prevalence clearly peaks in children around age 5–6. Also
plotted on the same axes are the maximum and minimum of the modern case-report data for
England and Wales (taken from www.phls.co.uk); mass vaccination has clearly driven a
substantial shift in the age structure of those individuals who become infected. In recent
years, infection has been concentrated in children under one year of age, and presumably
occurs in the window between the loss of maternally derived immunity and the age at
which the child is vaccinated.

The age-structured nature of the population can be simplified even further, by just
dealing with four distinct groups. This was the approach used by Keeling and Grenfell
(1997a), with the four classes: preschool (0–5), primary school (6–9), secondary school
(10–19) and adult (20+). In this formulation, each age class contains several yearly cohorts;
therefore, only a fraction of each class moves to the class above each school year. The
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SEIR-type model is therefore:

This is
online
program
3.4

dSi

dt
= νin4 −

∑
j β ij Ij Si − µiSi,

dEi

dt
=

∑
j β ij Ij Si − σEi − µiEi,

dIi

dt
= σEi − γ Ii − µiIi,

dRi

dt
= γ Ii − µiRi,

(3.9)

and at the start of the school year, moving up an age group is controlled by:

Q1 = Q1 − Q1/6

Q2 = Q2 + Q1/6 − Q2/4

Q3 = Q3 + Q2/4 − Q3/10

Q4 = Q4 + Q3/10

where Q ∈ {S, E, I, R}.

Here ν1 = µ4 = (365 × 55)−1 = 4.98 × 10−5 per day and all other ν and µ terms are zero,
such that all individuals survive until adulthood (aged 20), the average life expectancy is
75 years, and birth and death are equal. We also set 1/σ = 8 days and 1/γ = 5 days to
capture the known latent and infectious periods.

Although the use of just four age classes has conceptual and computational appeal, this
simplicity comes at a price. In Schenzle’s model with 21 age classes, individuals remain
with a particular age cohort throughout their school lives, and each individual spends
an exact number of years in each school group (i.e., exactly four years in the preschool
group). In contrast, when just four age classes are used, the time spent in each age class
and therefore in each school grouping is exponentially distributed. This in turn leads to
effectively extra mixing between the age cohorts, and a smoother age-related serology
pattern. (This difference between the 4 and 21 age-class models can be compared to the
distinction between exponential and constant distributions discussed in Section 3.3 of this
chapter). Clearly the 21 age-class model is a more realistic representation of the actual
movement of children through the school system, however this requires the use of an extra
17 equations. It should also be noted that although the Schenzle model contains 21 age
classes, only four distinct transmission values are still used in the transmission matrix
β. The ideal model would use the full 21 age classes and a transmission matrix with (at
least) 21 independent transmission values—however, the historical data on the incidence
of measles infection are not sufficiently detailed to support such a parameterization with so
many degrees of freedom. We are therefore left with a choice between simplicity or greater
realism.

For the reduced four age-class models (equation (3.9)), the matrix of parameters was
estimated by fitting the deterministically predicted biennial epidemic curve from the
temporally forced model to the available prevaccination (1948–1968) data from England
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Figure 3.11. Results from a reduced age-structured model of a similar form to Keeling and Grenfell
(1997a), where seasonal forcing is included to mimic the opening and closing of schools (Chapter 5).
The dots show the average data from England and Wales over the duration of biennial epidemics, the
thick gray line gives the deterministic attractor, and the black rectangles show the timing of school
terms when the mixing matrix is increased.

and Wales. The best-fit matrix was found to be

β = γ

⎛

⎜⎜⎜⎜⎝

2.089 2.089 2.086 2.037

2.089 9.336 ± 4.571 2.086 2.037

2.086 2.086 2.086 2.037

2.037 2.037 2.037 2.037

⎞

⎟⎟⎟⎟⎠
,

such that only the primary-school class shows any significant difference from the norm.
It was assumed that only the primary-school class experiences temporal forcing due to
the opening and closing of schools (see Chapter 5). Aggregate results (I =

∑
i Ii) from

this model are compared to the average biennial cycle in Figure 3.11. There is reasonable
agreement between the deterministic model and the available data. We note, however, that
the observed average epidemic peak is far broader than predicted by the deterministic
simulations. In part, this is because different communities and different biennial segments
of the data experience peak infection at slightly different times, and the averaging process
smears the sharp peaks. We would need to include both stochasticity (Chapter 6) and spatial
effects (Chapter 7) to fully correct this discrepancy.

This approach of fitting to the aggregate data is only successful for measles due to the
high degree of synchrony between all the communities in England and Wales. For other
childhood diseases (e.g., whooping cough), the spatial dynamics in the prevaccination
era are far less synchronized (Rohani et al. 1999) and hence the average dynamics are
an amalgamation of a variety of epidemic curves. In such cases, we would need to fit
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simultaneously to the entire time-series of all communities taking into account the
stochastic nature of transmission (Keeling and Grenfell 2002). A more practical approach
that is generally taken is to match to some aggregate quality of the epidemic data, such as
the power spectrum, so that model and data have a similar frequency of epidemics (Bolker
1993). However, it is probable that the transmission matrix for measles could act as a
template for other childhood infections because similar routes of transmission are involved
in their spread (Chapter 5).

Although more recent advances have shown that in some situations the age structure may
be effectively replaced by more complex seasonality (Earn et al. 2000; Finkenstädt and
Grenfell 2000; Bjørnstadt et al. 2000), these models lack the mechanistic framework of the
more traditional RAS models. The complex seasonality in these models mimics changes in
the average transmission rate that are due to changes in the distribution of infection across
age classes over the biennial cycle. RAS models will therefore always be an essential tool
in predicting the number of cases of childhood diseases, and the effects of vaccine uptake.
The extra age-structured information is often particularly useful in targeting vaccination
campaigns toward those age classes that are most at risk and modeling the short-term
dynamics of control measures.

3.2.2.2. Spread and Control of BSE

In 1986, a disease known colloquially as “mad-cow-disease” was observed spreading
through the cattle farms of the United Kingdom. Later identified as bovine spongiform
encephalopathy, or BSE for short, this disease is caused by the transmission of a prion and
is thought to have entered the cattle population via supplementary food stuffs containing
meat and bonemeal from other cows. This feedback loop enabled the pathogenic agent
to spread through the food chain. As well as a problem to the cattle industry, BSE also
has important, but as yet unquantified (Ghani et al. 2000; Ghani et al. 2003a,b; Hilton
et al. 2004) implications for human health, as consumption of infected meat can result
in new variant Creutzfeldt-Jacob Disease (CJD) (Caughey and Chesebro 1997; Almond
1998; Narang 2001).

Mathematical models, explicitly including the age structure of the cattle population,
were developed and played a major role in determining policy (Donnelly et al. 1997;
Ferguson et al. 1997b). Here, we consider a simplified version of these models that
illustrates the main mechanisms and results. The original equations took the form of
complex integro-differential equations (see Box 3.5) and accounted for both the age of
cattle, the time since infection, and farming practices in the United Kingdom. For greater
clarity, the model presented here ignores the time since infection, and aggregates cattle into
discrete age groups.

There are three main routes of infection for each cow: maternal (vertical) transmission,
horizontal (cow-to-cow) transmission, and consumption of infected feed—cattle were
routinely fed on high-protein food supplements containing meat and bonemeal from other
cows. We again use an age-structured framework to study this infection, modeling the three
transmission routes separately. The dynamics of infection is best captured as SEI, with
infected cattle being destroyed as soon as clinical symptoms emerge. Due to the changing
population size, we formulate the equations in terms of the number of cattle in each
state, and model transmission as mass-action (frequency dependent) due to the density-
independent nature of contacts within the farming industry. Separating out newborn and
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TABLE 3.1.

Parameter Value

νa 1 if a > 2 years, zero otherwise.
µa 0 if a < 2 years, 0.25 otherwise.
m 3
σ 0.2
la 4, using 3-month cohorts
βM 0.082
sH

a = sF
a 0.3 × 0.55a

τ H
a 12

τ F
a 160

older cattle, the equations are:

dX0

dt
=

∑
bνb(Xb+ Wb+ (1 − βM )Yb) −

∑
b(βH

0bYb+ βF
0bµb(Wb+ Yb))X0/N

− µ0X0 − l0X0,

dW0

dt
=

∑
bνbβMYb +

∑
b(βH

0bYb+ βF
0bµb(Wb+ Yb))X0/N − µ0W0 − l0W0 − σW0,

dY0

dt
= σW0 − µ0Y0 − l0Y0 − mY0,

dXa

dt
= la−1Xa−1 −

∑
b(βH

abYb+ βF
abµb(Wb+ Yb))Xa/N − µaXa − laXa,

dWa

dt
= la−1Wa−1 +

∑
b(βH

abYb+ βF
abµb(Wb+ Yb))Xa/N − µaWa − laWa − σWa,

dYa

dt
= la−1Ya−1 + σWa − µaYa − laYa − mYa.

where, at age a, νa is the rate at which a cow gives birth, µa is the rate of slaughter,
and la is the rate that an individual cow leaves an age class and matures into the next.
The latent period of BSE is 1/σ ; m is the death rate due to infection; and βM , βH ,
and βF refer to maternal transmission, horizontal transmission, and transmission via food
supplements. The total population size is N (=

∑
bXb+ Wb+ Yb). It is assumed that each

transmission matrix (for horizontal and food supplements) βab is the product of an age-
dependent susceptibility vector sa and an age-dependent transmission vector τb. Parameter
values are given in Table 3.1, where rates are all measured in months. Note that this is
a highly infectious disease, with R0 for the food supplement route alone estimated to be
around 10 (Ferguson et al. 1999b).

We emphasize that the three transmission routes occur at very different stages. Maternal
transmission can pass only from a mature cow (older that 2 years) to a newborn calf.
Horizontal transmission can occur throughout the lifetime of a cow, but susceptibility
declines with age. Finally, transmission via food supplements only occurs once a cow dies;
we assume only cattle that die of “natural” causes (i.e., those slaughtered) are processed
into food supplements, those that obviously die of BSE are not fed back into the food
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Figure 3.12. Results from a simplified age-structured model of BSE in cattle populations, showing
the proportion infected (latent +infectious). The left-hand graph shows the distribution of infection
across age-classes measured in years; the infection takes off sooner in young cattle, but reaches
higher prevalence in older ones. The right-hand graph shows the effects of controls on feed and
age-structured culling.

chain. This age-based heterogeneity in transmission and susceptibility makes the use of
age-structured models vital in understanding this infection.

Figure 3.12 shows examples of the infection dynamics predicted by this comparatively
simple model. These dynamics display the characteristics that are expected from any such
structured model. There is an early short phase (not discernible on the graphs) that depends
on the initial distribution of infecteds; during this phase prevalence in young cows increases
most rapidly due to their greater susceptibility. In the second phase, the prevalence of
infection within the age classes becomes “slaved”, increasing at the same exponential rate.
Finally, density-dependent forces begin to act and the infection levels settle to equilibrium
values. Interestingly, although young cows dominate the early stages of the epidemic, at
equilibrium older cattle are most likely to be infected because they will have had a longer
exposure. Due to the very high transmission by infected feed and the long duration of the
exposed period, the equilibrium prevalence of infecteds is very high. This clearly poses
both a considerable hazard to human health, as well as devastating consequences for the
farming industry. Control measures therefore needed to be implemented to wipe out the
epidemic as quickly as possible, while not creating too large an economic burden. The
costs associated with BSE control in Europe during 2001 were estimated at 7 billion euros.
Therefore, determining a cost-effective and efficient policy is vital.

Three different control measures are investigated for this model (right-hand graph); these
are the slaughter of all animals over 30 months of age (µ10 = ∞), the ban of cattle meat
and bonemeal in supplementary food (τ F = 0), and the adopted policy which is both of
these measures. Surprisingly, although older animals are the most likely to be infected, a
policy that involves just culling these animals actually leads to an increased epidemic. This
is for two major reasons: (1) young animals are most susceptible to the infection, so the cull
of older animals raises the average susceptibility of the population; and (2) by slaughtering
animals much earlier there has been a significant shortening of the generation time for this
infection, so infected animals are quickly converted into food supplements which speeds
up the epidemic rise.
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The major transmission route for BSE is via infected feed, therefore, it is intuitive that
a ban on the inclusion of meat and bonemeal, effectively setting τF = 0, should rapidly
bring the epidemic under control. However, it is more surprising that a combination of
early slaughter and a feed ban results in a faster eradication of the disease. This is again
attributable to the fact that early slaughter of cattle reduces the infection generation time
and thus the controls operate at a faster rate. This faster route to eradication is offset by a
less rapid initial decrease, which is again due to the rise in average susceptibility caused
by the slaughter of older less-susceptible animals.

Several other features were included in the predictive models used at the time (Donnelly
et al. 1997; Ferguson et al. 1997b). The seasonal and demographic trends for cattle herds
in the United Kingdom were incorporated. Also, most notably, infectious status was
modeled in terms of time-since-infection (see Section 3.3 of this chapter), rather than
the standard compartmental (SIR or SEIR) approach. This adds an extra dimension to
the calculations, because each cow is now indexed by two variables (age and time-since-
infection) rather than simply by age. Hence the full model is both age-and stage-structured.
This complication allows a great deal more flexibility and realism compared to the simple
model illustrated here. The distribution of incubation and latent periods can be modeled
explicitly, and the transmission rate can be modified as the infection progresses within
each animal. These more realistic features mean that the speed of infection reduction and
timing of eradication can be predicted with far greater accuracy.

It is interesting and important to question what benefits can be obtained from such
modeling approaches. The ban on meat and bonemeal in feed is an intuitive measure given
the strengths of the various transmission routes. So at this level, models of any kind are
clearly unnecessary. However, the real power of models comes when investigating issues
such as the culling of older cattle, where feedback from nonlinear processes can produce
counterintuitive results. Models are also useful in determining whether a control measure
is likely to be sufficient; although it was clear that a feed ban was necessary, whether it
would control the epidemic, in either the short or long term, could be addressed only with
predictive models. Similarly, more or less drastic culls on cattle of different ages could be
simulated to assess the benefits they produced. Implicit in all the calculations is a desire to
minimize the risks to human health and eradicate infection to re-open export markets, while
not placing unnecessary burdens on the farming industry. This type of modeling approach
ideally needs to tie into economic models to produce a detailed cost-benefit analysis of
various control options.

Finally, we raise the question of how complex the models need to be, what are the
advantages of moving from the simple age-structured model developed here to the full
(age-and stage-structured) model developed by Ferguson and coworkers (Ferguson et al.
1997b; Ferguson et al. 1999b). Although both models produce qualitatively similar results,
the inclusion of time-since-infection allows far more accurate predictions of the future
course of the epidemic—this degree of accuracy is required if economic factors are to be
assessed. We can be convinced of the accuracy of our simple model only because it agrees
with the more complex models that are believed to be a better representation of reality. In
conclusion, given the economic and human health importance of the epidemic, it is vital
that the predictive models used are believed to be the most accurate description available,
while still maintaining sufficient transparency that their results can be interpreted. This
trade-off between accuracy and transparency is one that permeates the entire field of
mathematical modeling.
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Figure 3.13. Frequency distribution of incubation periods for measles from Hope Simpson’s (1952)
classic household study. The data (gray bars) demonstrate that on average, the incubation period
following measles infection is around 10 days, with some individual variation around this figure. The
solid line represents the maximum likelihood fit to a gamma distribution, with the shape parameter
(n) given by 20.

3.3. DEPENDENCE ON TIME SINCE INFECTION

In this section, we introduce another aspect of “risk structure” into the standard SIR model.
Specifically, we are concerned with an individual’s probability of remaining infectious as
a function of time since infection, as well as the possibility that the risk of transmission
may vary with the time since infection. To motivate this discussion, consider the standard
SIR framework (Chapter 2) which assumes that the recovery rate is constant, independent
of the time since infection. Thus, if we consider only the recovery and death processes of
individuals infected at time T = 0, we have the classic equation:

dI

dT
= −γ I − µI.

Upon integrating this equation, we see that the assumption of a constant recovery rate leads
to the infectious period being exponentially distributed:

P(Infectious after time T) = exp(−(γ + µ)T ). (3.10)

Biologically, this means that some individuals are infectious for only a very short period
of time and contribute little to transmission, whereas others may be infectious for much
longer. This assumption contradicts many empirical observations for a number of infec-
tious diseases, especially those affecting the respiratory system. Classic work by Sartwell
(1950) and Hope Simpson (1952) demonstrated that incubation period distributions for
infections such as measles, chicken pox, polio, and the common cold typically show a
strong central tendency. As demonstrated for measles in Figure 3.13, the incubation period
has a pronounced mode, with some individual variation; the infectious period shows a
similar type of distribution. As we show in Section 3.3.1, the precise assumptions made
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concerning the distribution of latent and infectious periods have profound epidemiological
implications, especially in the early stages of an epidemic when by chance an individual
having a long infectious period will promote invasion (Keeling and Grenfell 1999).

3.3.1. SEIR and Multi-Compartment Models

To begin this analysis, we start by comparing and contrasting the dynamics of SIR and
SEIR models (Chapter 2). We can view the SEIR model as a multi-compartment version
of the standard SIR model, in which the infected class has been subdivided into an exposed
and an infectious class. As described in Chapter 2, the SEIR model is given by:

dS

dt
= ν − βSI − µS,

dE

dt
= βSI − σE − µE,

dI

dt
= σE − γ I − µI.

(3.11)

For this system of equations, the probability of being infectious at time T after becoming
infected is given by:

P(infectious after time T ) = σ exp(−µT )
exp(−γ T ) − exp(−σT )

σ − γ
. (3.12)

This accounts for the exponential distribution of the exposed period, the exponential
distribution of the infectious period, and the risk of natural mortality. For the SIR and
SEIR models, Figure 3.14 shows the two infectious probability distributions (equations
(3.10) and (3.12)) and the epidemic curves generated assuming equal R0 and equal infected
(infectious + exposed) periods in both cases. This highlights an important issue; these
two models have comparable equilibria (equilibrium traits in terms of the prevalence of
infection and the level of susceptibles), however the SEIR has a much slower growth rate.
This slower growth is attributable to the delay that infected individuals wait before they
can start transmitting caused by the exposed period. Chapter 2 provides a full description
of this phenomenon.

We can extend this concept of compartmentalization still further, by subdividing the
infected class:

This is
online
program
3.5

dS

dt
= ν − βS

n∑
i=m+1

Ii − µS,

dI1

dt
= βS

n∑
i=m+1

Ii − γ nI1 − µI1,

dIi

dt
= γ nIi−1 − γ nIi − µIi ∀i = 2, . . . , n,

(3.13)
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Figure 3.14. Comparison of SIR and SEIR models. The left-hand graph shows the probability
of being infectious at time T after being first infected, as given in equations (3.10) and (3.12).
The right-hand graph shows the epidemic curve associated with these two distributions. Here we
have assumed that the average time from infection to recovery is equal in both models 1

γSIR
=

1
γSEIR

+ 1
σSEIR

, and R0 = 5 for both models. (SIR model: B = µ = 5.5 × 10−5, β = 5, γ = 1. SEIR

model: B = µ = 5.5 × 10−5, β ≈ 10, γ = 2, σ = 2.)

where it is assumed that only individuals in Im+1, . . . , In are infectious, with the rest being
in an exposed state. These equations are explicitly formulated to ensure that the average
time between infection and recovery remains constant, so as the number of subclasses
increases so does the rate at which individuals move between them. When n = 1, we return
to the standard SIR model and when n = 2, m = 1, we obtain the SEIR model with equal
exposed and infectious periods. For general n (Figure 3.15), the exposed period, infectious
period, and infected period (exposed plus infectious periods) are all gamma distributed
(Lloyd 2001):

P(infected after time T ) =
∫ ∞

T

(γ n)n

(n − 1)!
τ n−1 exp(−γ nτ )dτ.

This probability distribution means that the variance in the length of the infected period
decreases to zero as n increases, such that in the limit when n → ∞ all individuals spend
exactly the same amount of time in the infected class.

Subdividing the infected period allows some control over the distribution of this
period, scaling from exponential (when there is just one class) to constant (when there
are many classes)

Associated with this change in the distribution of the infectious period at the individual
level is a change in the epidemic profile at the population level (Figure 3.15). Despite
having identical values of R0 and the same average infectious period, changing the number
of subdivisions (n) has a profound impact on the dynamics. As shown by Wearing et al.
(2005), when n is large, the epidemic takes off more quickly and ends more abruptly. This
difference is due to the different generation times in the two approaches. When n = 1,
those individuals with long infectious periods produce the majority of the secondary cases
and a high proportion of these are produced when the individual has been infectious
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Figure 3.15. The change in the probability of infection and the epidemic profile as the number of
subdivisions within the infected class increases from n = 1 to n = 100. Throughout we assume that
all individuals in the infected class are infectious. Left-hand graph: for n = 1 the distribution of
infected periods is exponential, whereas as n increases the infectious period becomes closer to a
constant length (γ = 1). The right-hand graph shows the consequences of this change for the SIR-
type epidemic without births or deaths. For the same basic reproductive ratio, R0 = 5, and the same
average infectious period, γ = 1, more subdivisions of the infectious period lead to a steeper rate of
increase and an epidemic of shorter duration. Here we have ignored the exposed class by assuming
that m = 0.

for a long time. Thus, when n is small, the rate of increase is much slower than when
n is large (Kermack and McKendrick 1927; Metz 1978; Keeling and Grenfell 1997b).
Conversely, during the latter stages of the epidemic when n = 1, the decrease in prevalence
cannot be faster than the rate at which individuals recover, so I (t) ∼ exp(−γ t). In contrast,
when n is large, individuals infected at the peak of the epidemic always recover quickly,
rapidly decreasing the prevalence of infection. Such changes to the dynamics may require
a different parameterization (in terms of R0 and average infectious period) for different n

values to fit the same epidemic profile (Keeling and Grenfell 2002; Wearing et al. 2005),
in particular a longer average infectious period may be required as n increases.

A greater subdividing of the infected population leads to more rapid growth rate and
a shorter epidemic, necessitating different parameters for different models.

To demonstrate this point more fully, the growth rate of an outbreak in a totally
susceptible population can be explored by determining the dominant eigenvalue of
the (unstable) disease-free equilibrium for equations (3.13). This is the same basic
methodology that was used to determine the growth rate in Box 3.1. As shown by Anderson
and Palmer (1980), one can find an exact expression for the characteristic equation (see
Chapter 2), where λ specifies the growth rate:

λ(λ + γ n)n

[

λ(λ + σm)m − R0γ (σm)m

(

1 −
(

λ

γ n
+ 1

)−n
)]

= 0.

This content downloaded from 
             73.8.248.103 on Thu, 14 May 2020 00:10:31 UTC               

All use subject to https://about.jstor.org/terms



HOST HETEROGENEITIES 97

5
101520 5

10
15

20

6

8

10

12

14

16

18

20

Classes in I, nClasses in E, m

E
st

im
at

ed
R

0

Figure 3.16. Estimates of R0 from data on the initial growth rate, of an epidemic. The figure shows
the effects of changing the distributions of the exposed and infectious periods on the value of R0 esti-
mated, with λ assumed to be 100 per year, 1/σ = 1/γ = 1 week. The precise shape of each surface
is independent of the exact value of λ.

During the early phase of an epidemic, the exponential growth rate, λ, satisfies the above
equation.

Solution of this equation for a given set of epidemiological parameters (R0, γ , σ , n,
and m) is complex. We therefore look at the reverse problem—given we have data on an
exponentially increasing epidemic, how does the subdivision of the exposed and infectious
classes modify our estimation of R0? Such an exercise reveals that for any empirically
determined λ, the precise value of R0 estimated depends on the fundamental assumptions
made concerning the distributions of incubation and infectious periods. Specifically, the
following equation determines the relationship between R0 and the epidemic growth
rate, λ:

R0 =
λ

(
λ

σm
+ 1

)m

γ

(

1 −
(

λ

γ n
+ 1

)−n
) , (3.14)

where m and n represent the number of subclasses in the exposed and infectious categories,
respectively. The mean exposed and infectious periods are represented by 1/σ and 1/γ ,
respectively, and are assumed to be known or estimated from independent data. This
equation establishes how the value of R0 estimated from data is influenced by a priori
assumptions concerning the distributions of latent and infectious periods. This relationship
is demonstrated in Figure 3.16 (Wearing et al. 2005). It reveals a very startling result: For
a fixed epidemic growth rate, the value of R0 estimated may vary from 6 to almost 20 as
the number of subclasses changes.
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In general, as the infectious period becomes more tightly distributed (increasing n),
lower values of R0 are estimated for any given growth rate, λ. On the other hand, as
the variance in the exposed period is reduced (increasing m), higher values of R0 are
estimated. Indeed, we may use the relationship given by equation (3.14) to arrive at
the following general principle: If we ignore the exposed period, then models with an
exponentially distributed infectious period will always overestimate the basic reproductive
ratio. When the latent period is included, however, this finding is reversed whenever
the growth rate is large (Wearing et al. 2005). By closely examining equation (3.14),
we note that the basic reproductive ratio estimated from a model without an exposed
class (σ → ∞) is always smaller than the estimate from the corresponding model
when an exposed period is included (1/σ > 0). Therefore, when faced with a rapidly
spreading infection, either entirely ignoring the exposed period or assuming exponential
distributions will lead to an underestimate of R0 and therefore will underestimate the
level of global-control measures (such as mass vaccination) that will be needed to control
the epidemic.

The distribution of infectious periods can have a profound impact on the epidemic
behavior when the models are stochastic and individual-based (Keeling and Grenfell
1997a; Chapter 6). When n = 1, and the infectious period is exponentially distributed,
transmission relies on the few individuals with longer than average periods—this increases
the variability in transmission. In contrast, when n is large all individuals contribute
equally to transmission, thus lowering the amount of variation. Such effects are most
pronounced when the number of infectious individuals is low, such as at the start of an
epidemic.

When births and deaths are included into this formalism, the equilibrium levels are
independent of n (Hethcote and Tudor 1980):

S∗ = 1
R0

I ∗ = B

γ + µ
− µ

β
,

and therefore the standard vaccination thresholds apply. However, the stability of this
fixed point is reduced as n increases (Grossman 1980; Lloyd 2001); conceptually, this
is because the fixed duration of infection adds a natural period of oscillation to the
dynamics.

3.3.2. Models with Memory

The above models have achieved different infectious period distributions by modifying
the number of compartmental subdivisions used to partition the infectious class;
however, a similar but more flexible distribution of periods can be achieved by explicitly
accounting for the time since infection. Hence, these models need to keep track of
the history of infection—they are models with memory. Frequently we may wish to
specify the probability distribution of both the exposed (latent) and infectious periods
that have been derived from data, and are labeled PE(t) and PI (t) respectively. The
probability that an individual infected at time 0 is still in the exposed class at time t is
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given by:

Prob(exposed at t) = PE(t) =
∫ ∞

t

PE(s)ds,

that is, the probability that the exposed period is longer than t . The probability it is
infectious is calculated as:

Prob(infectious at t) = PI (t) =
∫ t

0
PE(s)

∫ ∞

t−s

PI (τ )dτds,

which is the probability that the individual is in the exposed class for less that t , but is still
in the infectious class.

We now let C(t) be the rate at which individuals are infected at time t , so that
∫ b

a
C(t)dt

is the fraction of new cases (relative to the population size) between times a and b. This
variable C, together with the distributions PE and PI , allows us to calculate the number of
exposed and infectious individuals at any time. Ignoring the exposed class for the moment,
the basic SIR equations now become:

dS

dt
= ν − C(t) − µS,

C(t) = βS
∫ ∞

0 C(t − s)PI (s)ds,

(3.15)

where the integral gives the proportion of individuals who are currently infectious, and
so plays a similar role to I in the standard transmission term. Although one differential
equation and one integral equation (3.15) may not look much more complex than the
standard two differential equations needed to solve the SIR model (Chapter 2), the
need to keep track of the historical values of C means that this technique is far more
computationally challenging to implement.

A similar technique can be adapted for when we have data on the transmission rate as
a function of the time since infection. For deterministic models, this produces a similar
formulation of equations to those given above:

dS

dt
= ν − C(t) − µS,

C(t) = S
∫ ∞

0 β(s) exp(−µs)C(t − s)ds,

(3.16)

where the integral is over the time since infection, s, with β(s) defining the transmission
rate during the infectious period. For this formulation we do not need to explicitly model
an exposed and infectious period; we simply allow the parameter β(s) to capture to the
known infection profile. This model also includes a term exp(−µs) that accounts for the
death of individuals since infection.

This type of distributed infection model has been fit to several recent epidemics
including SARS (Donnelly et al. 2003; Riley et al. 2003), foot-and-mouth (Ferguson
et al. 2001a,b) and BSE (Ferguson et al. 1997b). These detailed analyses all confirm that,
in general, the infectious period is rarely exponentially distributed, which has profound
implications for the timing of control strategies. In particular, consider a control measure
that isolates an individual some time after he or she has become infectious; although late
control would still remove the tail of an exponential distribution, it may not do so for
constant periods. Chapter 8 discusses this point in detail.
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3.3.3. Application: SARS

Taken from the work of Donnelly et al. (2003) and Riley et al. (2003), we consider the
dynamics and parameter estimates for the SARS epidemic in Hong Kong. The host-level
lifecycle of the virus is as follows. After the initial infection, it takes about 6 days before
individuals start to show clinical symptoms and become infectious. In the early part of
the epidemic, in then took a further 4 days before the individual was hospitalized—
although this delay dropped once more strict control measures were in place. Finally,
individuals remained in hospitals for about 23 days if they recovered, or 36 days if the
disease proved fatal. For modeling purposes, the population can therefore be partitioned
into five distinct classes with respect to their infection or disease status: Susceptible, S;
Exposed, E; Infectious, I ; Hospitalized, H , and Recovered, R. The time spent in the
exposed, infectious, and hospitalized classes can all be captured with a gamma distribution
(Donnelly et al. 2003), and therefore are comparable with further subdividing each of
these classes.

As shown above, if we wish to correctly estimate R0, and therefore the level of control
needed, it is important to correctly capture the distribution of the exposed and infectious
periods. For the SARS epidemic, there was fortunately sufficiently detailed information on
individual patients for the distributions to be estimated with some degree of confidence.
When dealing with such public health issues as the control of SARS, it is generally
important that models are as accurate as possible—reflecting the known pathogen and
host behavior. Here we contrast the dynamics of standard models with distributed period
models, assuming either equal R0 or parameterized to fit to the same initial exponential
growth. Although the qualitative dynamics are comparable, the quantitative differences
could be very important to public health planning.

Given that the periods are all approximately gamma distributed, two equivalent formu-
lations of the model are possible—one using memory and the other using multiple classes.
Both models are given below to contrast the two mechanisms.

If C(t) is the rate of infection at time t , then the proportions of the population in each of
the classes are given by:

E(t) =
∫ ∞

0 C(t − s)
∫ ∞

s
PE(τ )dτds,

I (t) =
∫ ∞

0 C(t − s)
∫ s

0 PE(τ )
∫ ∞

s−τ
PI (T )dT dτds,

H (t) =
∫ ∞

0 C(t − s)
∫ s

0 PE(τ )
∫ s−τ

0 PI (T )
∫ ∞

s−τ−T
PH (W )dWdT dτds.

(3.17)

So the proportion of the population that are hospitalized is all those who have been
infected, have left the exposed class, have left the infectious class, but have not yet left
hospitals. Throughout we will ignore births and deaths due to the rapid time-scale of the
epidemic. The dynamics of the SARS infection are then governed by similar equations
to before:

dS

dt
= −C(t),

C(t) = S(βI I + βH H ),

(3.18)
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where the transmission rate within hospitals (βH ) is allowed to be different from that in the
community (βI ).

Alternatively, we may wish to formulate the model by subdividing the exposed,
infectious, and hospitalized classes as illustrated in Section 3.1:

dS

dt
= −S(βI I + βH H ),

dE1

dt
= S(βI I + βH H ) − σmE1,

dEi

dt
= σmEi−1 − σmEi i = 2, . . . , m,

dI1

dt
= σmEm − γI nI1,

dIi

dt
= γI nIi−1 − γI nIi i = 2, . . . , n,

dH1

dt
= γI nEn − γH qH1,

dHi

dt
= γH qHi−1 − γH qHi, i = 2, . . . , q

(3.19)

where m, n, and q are the number of subdivisions for the exposed, infectious, and
hospitalized classes, respectively.

Figure 3.17 compares the predicted dynamics of the SARS epidemic (without control)
under two different modeling assumptions. The dashed lines give the results when the
periods are exponentially distributed, which is equivalent to there being just one exposed,
one infectious, and one hospitalized compartment. The solid lines correspond to using the
distribution of periods taken from clinical observations; the periods were fit with a gamma
distribution so the model is equivalent to having three exposed, three infectious, and ten
hospitalized compartments. Following Riley et al. (2003), we assume that individuals in
the hospitalized class transmit infection at a fifth of the rate of those in the infectious class
(βH = 1

5 βI ).
As seen in the generic model (Figure 3.15), the assumption of tighter distributions

for the periods within the SARS model leads to a faster increase of the epidemic and a
more pronounced epidemic peak for the same value of R0. The differences between the
results assuming either exponential and gamma-distributed periods are substantial, with
significant public health implications associated with the discrepancies—even when both
models are parameterized to match the same initial growth rate. The more accurate gamma-
distributed periods consistently predict a larger peak number of hospitalized cases, which
could place more strain on health services. In addition, the gamma-distributed periods are
associated with a far more rapid decline in the epidemic, and a more rapid eradication
of infection.

This work on SARS illustrates a crucial issue in modeling. Although the standard
compartmental models, with their associated exponential distributions, are a useful tool
for understanding the dynamics of infection, when very precise predictions are required
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Figure 3.17. The predicted dynamics of SARS infection under two modeling assumptions: The
dashed lines and dot-dashed lines correspond to a model with no memory and just one compartment
for each of exposed, infectious, and hospitalized; the solid lines correspond to a model with a
gamma-distributed period for the time spent in each class parameterized from the data. For the
dashed line the model has equal R0 to the distributed periods, for the dot-dashed line the model has
the same initial growth rate as the distributed period model. (Exposed period distribution 1/σ = 6
days, m = 3. Infectious period distribution 1/γI = 4 days, n = 3. Hospitalized period distribution
1/γH = 30 days, q = 10. Solid and dashed lines R0 = 2.8 ⇒ βI = 0.28 per day, βH = 0.056 per day.
Dot-dashed line R0 = 3.03 with βI and βH similarly scaled.) Initialized with S(0) = 1, E(0) = 10−6,
I (0) = H (0) = R(0) = 0.

it becomes necessary to include much more of the available information; details often
matter.

3.4. FUTURE DIRECTIONS

Although we have concentrated on the risk structure in sexually transmitted infections,
almost all populations and associated infections have some form of risk structure.
Thus even though infections such an influenza appear to spread randomly through the
population, some individuals (super spreaders) have much more contact with the general
public and therefore are more likely to catch and transmit infection. In the coming years, it
is likely that more public-health motivated predictive modeling will incorporate this level
of heterogeneity.

A second cause of risk structure may be due to genetics or the general health of the host,
so that some individuals are much more susceptible to infection or more much infectious
than others. This form of modeling has already been attempted, by considering a separate
hospitalized, highly susceptible core group in addition to the general population (Austin
and Anderson 1999b; Lloyd-Smith 2003). Such heterogeneities will be difficult to observe
in practice, but again can play a determining role in the dynamics of infection and the
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ability to control or eradicate the disease. Therefore, although determining this form of risk
structure may be difficult, incorporating some generic form of heterogeneity may provide
a better match between models and data.

An important future development may be the direct measurement of the general
contact matrix (β) for airborne infections as has been attempted for sexually transmission
infections (Potterat et al. 2002). One method of ascertaining the network of potential
transmission routes is through a diary-based approach (Edmunds et al. 1997), where
contacts are recorded over a short period by volunteers. However, with the increased
used of mobile phones and GPS technology, it will soon be possible to directly track
the movement of a large proportion of the population and determine their position to
within a few meters; this provides the opportunity to remotely gather vast quantities of
information on the potential mixing patterns of the population. Dealing with this volume
of data and using it to parameterize suitable models clearly has many potential public
health applications, from estimating the likely spread of influenza to the real-time control
of a deliberate or accidental release of an infectious agent.

Finally, as we have seen with the example of the SARS infection, the detailed natural
history of infection at an individual level can be very important in determining the
population-level dynamics. In particular, without capturing the correct distribution of
exposed and infectious periods, it may be impossible to match to both the initial and long-
term epidemic behavior. The inclusion of more patient-level information derived from
detailed medical observations is ever more important as models are increasingly being
expected to provide accurate quantitative predictions.

3.5. SUMMARY

➤ When structuring the population into different classes, the single transmission param-
eter in the unstructured models is replaced by a matrix of values.

➤ Because the transmission matrix generally has more terms than the structured data,
simplifications are needed to overcome this deficit.

➤ The basic reproductive ratio, R0, for structured populations is found using an eigenvalue
approach. In general, this is greater than if the structure were ignored, and bounded by the
basic reproductive ratios for each class.

➤ Assortative mixing is common, such that high-risk individuals mix more frequently
with other high-risk individuals. Increased assortative mixing tends to increase R0.

➤ The initial growth of a structure model depends on the initial conditions, not necessarily
the basic reproductive ratio.

➤ It is no longer true that S(∞) = 1/R0; in many structured models that have high
associativity, the equilibrium level of susceptibles is much higher and density-dependent
saturation effects occur earlier. Hence, although the equilibrium prevalence is low, the
infection may be difficult to eradicate because R0 is still large.

➤ Targeting vaccination or other control measures is more efficient than random control.
It is generally better to over-target rather than under-target.
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➤ Although age is a continuous parameter, age-structured models usually group individ-
uals into a limited number of classes—often representing school years.

➤ Age-structured models differ from the risk-structured models due to the regular
progression of individuals into increasingly older age classes.

➤ At equilibrium, seroprevalence of SIR-type infections must increase with age. This
allows the force of infection within an age class to be calculated.

➤ Subdividing the infected period allows some control over the distribution of this period,
scaling from exponential (when there is just one class) to constant (when there are many
classes).

➤ A greater subdividing of the infected population leads to more rapid growth rate and a
shorter epidemic, necessitating different parameters for different models.
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