

Chapter Title: Table of Contents

Book Title: Modeling Infectious Diseases in Humans and Animals Book Author(s): Matt J. Keeling and Pejman Rohani Published by: Princeton University Press Stable URL: http://www.jstor.com/stable/j.ctvcm4gk0.2

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms $\ensuremath{\mathsf{V}}$

 $Princeton\ University\ Press\ is\ collaborating\ with\ JSTOR\ to\ digitize,\ preserve\ and\ extend\ access\ to\ Modeling\ Infectious\ Diseases\ in\ Humans\ and\ Animals$

Contents

Acknowledgments	
Chapter 1 Introduction	1
1.1 Types of Disease	1
1.2 Characterization of Diseases	3
1.3 Control of Infectious Diseases	5
1.4 What Are Mathematical Models?	7
1.5 What Models Can Do	8
1.6 What Models Cannot Do	10
1.7 What Is a Good Model?	10
1.8 Layout of This Book	10
1.9 What Else Should You Know?	13
1.9 What Lise Should Tou Know!	15
Chapter 2 Introduction to Simple Epidemic Models	15
2.1 Formulating the Deterministic SIR Model	16
2.1.1 The SIR Model Without Demography	19
2.1.1.1 The Threshold Phenomenon	19
2.1.1.2 Epidemic Burnout	21
2.1.1.3 Worked Example: Influenza in a Boarding School	26
2.1.2 The SIR Model With Demography	26
2.1.2.1 The Equilibrium State	28
2.1.2.2 Stability Properties	29
2.1.2.3 Oscillatory Dynamics	30
2.1.2.4 Mean Age at Infection	31
2.2 Infection-Induced Mortality and SI Models	34
2.2.1 Mortality Throughout Infection	34
2.2.1.1 Density-Dependent Transmission	35
2.2.1.2 Frequency Dependent Transmission	36
2.2.2 Mortality Late in Infection	37
2.2.3 Fatal Infections	38
2.3 Without Immunity: The SIS Model	39
2.4 Waning Immunity: The SIRS Model	40
2.5 Adding a Latent Period: The SEIR Model	41
2.6 Infections with a Carrier State	44
2.7 Discrete-Time Models	46
2.8 Parameterization	48
2.8.1 Estimating R_0 from Reported Cases	50
2.8.2 Estimating R_0 from Seroprevalence Data	51
2.8.3 Estimating Parameters in General	52
2.9 Summary	52

CON	VTE	ΞN	ΓS

viii	CONTENTS			
Chapter 3 Host Heterogeneities				
3.1 Risk-Structure: Sexually Transmitted Infections	55			
3.1.1 Modeling Risk Structure	57			
3.1.1.1 High-Risk and Low-Risk Groups	57			
3.1.1.2 Initial Dynamics	59			
3.1.1.3 Equilibrium Prevalence	62			
3.1.1.4 Targeted Control	63			
3.1.1.5 Generalizing the Model	64			
3.1.1.6 Parameterization	64			
3.1.2 Two Applications of Risk Structure	69			
3.1.2.1 Early Dynamics of HIV	71			
3.1.2.2 Chlamydia Infections in Koalas	74			
3.1.3 Other Types of Risk Structure	76			
3.2 Age-Structure: Childhood Infections	77			
3.2.1 Basic Methodology	78			
3.2.1.1 Initial Dynamics	80			
3.2.1.2 Equilibrium Prevalence	80			
3.2.1.3 Control by Vaccination	81			
3.2.1.3 Parameterization	82			
3.2.2 Applications of Age Structure	84			
3.2.2.1 Dynamics of Measles	84			
3.2.2.2 Spread and Control of BSE	89			
3.3 Dependence on Time Since Infection	93			
3.3.1 SEIR and Multi-Compartment Models	94			
3.3.2 Models with Memory	98			
3.3.3 Application: SARS	100			
3.4 Future Directions	102			
3.5 Summary	103			
Chapter 4 Multi-Pathogen/Multi-Host Models	105			
4.1 Multiple Pathogens	106			
4.1.1 Complete Cross-Immunity	107			
4.1.1.1 Evolutionary Implications	109			
4.1.2 No Cross-Immunity	112			
4.1.2.1 Application: The Interaction of Measles and	110			
Whooping Cough	112			
4.1.2.2 Application: Multiple Malaria Strains	115			
4.1.3 Enhanced Susceptibility	116			
4.1.4 Partial Cross-Immunity	118			
4.1.4.1 Evolutionary Implications	120			
4.1.4.2 Oscillations Driven by Cross-Immunity	122			
4.1.5 A General Framework	125			
4.2 Multiple Hosts	128			
4.2.1 Shared Hosts	130			
4.2.1.1 Application: Transmission of Foot-and-Mouth Disease	131			
4.2.1.2 Application: Parapoxvirus and the Decline of the	133			
Red Squirrel	155			

CONTENTS	ix
4.2.2 Vectored Transmission	135
4.2.2.1 Mosquito Vectors	135
4.2.2.2 Sessile Vectors	141
4.2.3 Zoonoses	143
4.2.3.1 Directly Transmitted Zoonoses	145
4.2.3.2 Vector-Borne Zoonoses: West Nile Virus	144
4.3 Future Directions	140
4.4 Summary	151
T.T. Summary	155
Chapter 5 Temporally Forced Models	155
5.1 Historical Background	155
5.1.1 Seasonality in Other Systems	158
5.2 Modeling Forcing in Childhood Infectious Diseases: Measles	159
5.2.1 Dynamical Consequences of Seasonality: Harmonic and	
Subharmonic Resonance	160
5.2.2 Mechanisms of Multi-Annual Cycles	163
5.2.3 Bifurcation Diagrams	164
5.2.4 Multiple Attractors and Their Basins	167
5.2.5 Which Forcing Function?	171
5.2.6 Dynamical Trasitions in Seasonally Forced Systems	178
5.3 Seasonality in Other Diseases	181
5.3.1 Other Childhood Infections	181
5.3.2 Seasonality in Wildlife Populations	183
5.3.2.1 Seasonal Births	183
5.3.2.2 Application: Rabbit Hemorrhagic Disease	185
5.4 Summary	187
	100
Chapter 6 Stochastic Dynamics	190
6.1 Observational Noise	193
6.2 Process Noise	193
6.2.1 Constant Noise	195
6.2.2 Scaled Noise	197
6.2.3 Random Parameters	198
6.2.4 Summary	199
6.2.4.1 Contrasting Types of Noise	199
6.2.4.2 Advantages and Disadvantages	200
6.3 Event-Driven Approaches	200
6.3.1 Basic Methodology	201
6.3.1.1 The SIS Model	202
6.3.2 The General Approach	203
6.3.2.1 Simulation Time	203
6.3.3 Stochastic Extinctions and The Critical Community Size	205
6.3.3.1 The Importance of Imports	209
6.3.3.2 Measures of Persistence	212
6.3.3.3 Vaccination in a Stochastic Environment	213
6.3.4 Application: Porcine Reproductive and Respiratory Syndrome	214
6.3.5 Individual-Based Models	217

х		CONTENTS
	6.4 Parameterization of Stochastic Models	219
	6.5 Interaction of Noise with Heterogeneities	219
	6.5.1 Temporal Forcing	219
	6.5.2 Risk Structure	220
	6.5.3 Spatial Structure	221
	6.6 Analytical Methods	222
	6.6.1 Fokker-Plank Equations	222
	6.6.2 Master Equations	223
	6.6.3 Moment Equations	227
	6.7 Future Directions	230
	6.8 Summary	230
Cł	napter 7 Spatial Models	232
	7.1 Concepts	233
	7.1.1 Heterogeneity	233
	7.1.2 Interaction	235
	7.1.3 Isolation	236
	7.1.4 Localized Extinction	236
	7.1.5 Scale	236
	7.2 Metapopulations	237
	7.2.1 Types of Interaction	240
	7.2.1.1 Plants	240
	7.2.1.2 Animals	241
	7.2.1.3 Humans	242
	7.2.1.4 Commuter Approximations	243
	7.2.2 Coupling and Synchrony	245
	7.2.3 Extinction and Rescue Effects	246
	7.2.4 Levins-Type Metapopulations	250
	7.2.5 Application to the Spread of Wildlife Infections	251
	7.2.5.1 Phocine Distemper Virus	252
	7.2.5.2 Rabies in Raccoons	252
	7.3 Lattice-Based Models	255
	7.3.1 Coupled Lattice Models	255
	7.3.2 Cellular Automata	257
	7.3.2.1 The Contact Process	258
	7.3.2.2 The Forest-Fire Model	259
	7.3.2.3 Application: Power laws in Childhood Epider	
	7.4 Continuous-Space Continuous-Population Models	262
	7.4.1 Reaction-Diffusion Equations	262
	7.4.2 Integro-Differential Equations	265
	7.5 Individual-Based Models	268
	7.5.1 Application: Spatial Spread of Citrus Tristeza Virus	269
	7.5.2 Application: Spread of Foot-and-mouth Disease in th	
	United Kingdom	274
	7.6 Networks	276
	7.6.1 Network Types	277
	7.6.1.1 Random Networks	277
	7.6.1.2 Lattices	277

CONTENTS	xi
7.6.1.3 Small World Networks	279
7.6.1.4 Spatial Networks	279
7.6.1.5 Scale-Free Networks	279
7.6.2 Simulation of Epidemics on Networks	280
7.7 Which Model to Use?	282
7.8 Approximations	283
7.8.1 Pair-Wise Models for Networks	283
7.8.2 Pair-Wise Models for Spatial Processes	286
7.9 Future Directions	287
7.10 Summary	288
Chapter 8 Controlling Infectious Diseases	291
8.1 Vaccination	292
8.1.1 Pediatric Vaccination	292
8.1.2 Wildlife Vaccination	296
8.1.3 Random Mass Vaccination	297
8.1.4 Imperfect Vaccines and Boosting	298
8.1.5 Pulse Vaccination	301
8.1.6 Age-Structured Vaccination	303
8.1.6.1 Application: Rubella Vaccination	304
8.1.7 Targeted Vaccination	306
8.2 Contact Tracing and Isolation	308
8.2.1 Simple Isolation	309
8.2.2 Contact Tracing to Find Infection	312
8.3 Case Study: Smallpox, Contact Tracing, and Isolation	313
8.4 Case Study: Foot-and-Mouth Disease, Spatial Spread, and Local Control	321
8.5 Case Study: Swine Fever Virus, Seasonal Dynamics, and Pulsed Control	327
8.5.1 Equilibrium Properties	329
8.5.2 Dynamical Properties	331
8.6 Future Directions	333
8.7 Summary	334
References	337
Index	361
Parameter Glossary	367

This page intentionally left blank