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Preface

There is the general principle to consider a classical invariant of a closed
Riemannian manifold M and to define its analog for the universal covering
M̃ taking the action of the fundamental group π = π1(M) on M̃ into ac-
count. Prominent examples are the Euler characteristic and the signature of
M , which lead to Wall’s finiteness obstruction and to all kinds of surgery
obstructions such as the symmetric signature or higher signatures. The p-
th L2-Betti number b

(2)
p (M̃) arises from this principle applied to the p-th

Betti number bp(M). Some effort is necessary to define L2-Betti numbers in
the case where π is infinite. Typical problems for infinite π are that M̃ is
not compact and that the complex group ring Cπ is a complicated ring, in
general not Noetherian. Therefore some new technical input is needed from
operator theory, namely, the group von Neumann algebra and its trace. An-
alytically Atiyah defined L2-Betti numbers in terms of the heat kernel on
M̃ . There also is an equivalent combinatorial approach based on the cellular
Cπ-chain complex of M̃ . It is one of the main important and useful features
of L2-invariants that they can be defined both analytically and combinato-
rially. There are two further types of L2-invariants. L2-torsion generalizes
the classical notion of Reidemeister torsion from finite to infinite π, whereas
Novikov-Shubin invariants do not have a classical counterpart.

A very intriguing and important property of L2-invariants is that they
have relations to many other fields. From their construction it is clear that
they have connections to operator theory, in particular to von Neumann
algebras, and to the spectral theory of the Laplacian on M̃ . For instance
Atiyah’s motivation to consider L2-Betti numbers was to establish his L2-
index theorem.

More suprising is the appearance of algebraic K-theory. In all examples
where L2-Betti numbers have been computed explicitly, the values turn out
to be rational numbers whose denominators are linked to the orders of finite
subgroups of π. This is very suprising in view of the actual definition of
L2-Betti numbers. This phenomenon is linked to questions in algebraic K-
theory such as whether any finitely generated projective Cπ-module M is
obtained by induction from a finitely generated projective CH-module for
a finite subgroup H ⊂ π. This leads to the version of the so called Atiyah
Conjecture that the L2-Betti numbers are always integers if π is torsionfree.
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It turns out that this conjecture implies the Kaplansky Conjecture that Cπ
contains no non-trivial zero-divisors if π is torsionfree. For many groups π
the Kaplansky Conjecture was not known until the Atiyah Conjecture was
proved. We will investigate interactions between L2-invariants and K-theory
and applications of them in both directions throughout this book.

Next we explain a connection to geometry. Provided that M is aspherical,
all computations lead to the result that b

(2)
p (M̃) = 0 holds for 2p 6= dim(M)

and that b
(2)
n (M̃) = (−1)n · χ(M) is true for the Euler characteristic χ(M)

if dim(M) = 2n is even. In particular (−1)n · χ(M) ≥ 0 in the case
dim(M) = 2n, since each L2-Betti number is larger or equal to zero by
definition. This phenomenon seems to be typical and will be investigated
in this book. Recall that M is aspherical if it carries a Riemannian met-
ric with non-positive sectional curvature, but that the converse is not true.
If dim(M) = 2n and M carries a Riemannian metric with negative sec-
tional curvature, then all computations yield b

(2)
n (M̃) = (−1)n · χ(M) > 0.

Hence L2-Betti numbers are linked to the Hopf Conjecture which predicts
(−1)n ·χ(M) ≥ 0 if the 2n-dimensional closed manifold M carries a Rieman-
nian metric with non-positive sectional curvature, and (−1)n · χ(M) > 0 if
M carries a Riemannian metric with negative sectional curvature. Further
connections between L2-invariants and geometry and group theory will be
presented in this book.

Why Study L2-Invariants?

From the author’s point of view there are certain criteria which decide
whether a topic or an area in modern mathematics is worth studying or worth
further development. Among them are the following:

• The topic has relations to other fields. There is a fruitful exchange of results
and techniques with other areas which leads to solutions of problems and
to innovations in both the topic of focus and other topics;

• There are some hard open problems which are challenging and promising.
They create interesting activity and partial solutions and techniques for
their proof already have applications to other problems;

• The topic is accessible with a reasonable amount of effort. In particular
talented students are able to learn the basics of the topic within an ap-
propriate period of time and while doing so get a broad basic education in
mathematics.

The purpose of this book is to convince the reader that L2-invariants do
satisfy these criteria and to give a comprehensible and detailed approach to
them which includes the most recent developments.
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A User’s Guide

We have tried to write this book in a way which enables the reader to pick
out his favourite topic and to find the result she or he is interested in quickly
and without being forced to go through other material. The various chapters
are kept as independent of one another as possible. In the introduction of each
chapter we state what input is needed from the previous chapters, which is
in most cases not much, and how to browse through the chapter itself. It
may also be worthwhile to go through the last section “Miscellaneous” in
each chapter which contains some additional information. In general a first
impression can be gained by just reading through the definitions and theorems
themselves. Of course one can also read the book linearly.

Each chapter includes exercises. Some of them are easy, but some of them
are rather difficult. Hints to their solutions can be found in Chapter 16. The
exercises contain interesting additional material which could not be presented
in detail in the text. The text contains some (mini) surveys about input from
related material such as amenable groups, the Bass Conjecture, deficiency of
groups, Isomorphism Conjectures in K-theory, 3-manifolds, Ore localization,
residually finite groups, simplicial volume and bounded cohomology, sym-
metric spaces, unbounded operators, and von Neumann regular rings, which
may be useful by themselves. (They are listed in the index under “survey”.
One can also find a list of all conjectures, questions and main theorems in
the index.)

If one wants to run a seminar on the book, one should begin with Sec-
tions 1.1 and 1.2. Then one can continue depending on the own interest. For
instance if one is algebraically oriented and not interested in the analysis,
one may directly pass to Chapter 6, whereas an analyst may be interested
in the rest of Chapter 1 and then pass to Chapter 2. Chapters 9, 10, 11, 12,
13 and 14 are independent of one another. One may directly approach these
chapters and come back to the previous material when it is cited there.

We require that the reader is familiar with basic notions in topology
(CW -complexes, chain complexes, homology, manifolds, differential forms,
coverings), functional analysis (Hilbert spaces, bounded operators), differen-
tial geometry (Riemannian metric, sectional curvature) and algebra (groups,
modules, elementary homological algebra).
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0. Introduction

0.1 What are L2-Invariants?

There is the classical notion of the p-th Betti number bp(X) of a finite CW -
complex X, for instance a closed manifold, which is the dimension of the
complex vector space Hp(X;C). Consider a G-covering p : X → X. If G
is infinite, the p-th Betti number of X may be infinite and hence useless.
Using some input from functional analysis involving Hilbert spaces, group
von Neumann algebras and traces one can define the p-th L2-Betti number
b
(2)
p (X;N (G)) of the total space X as the non-negative real number given by

the von Neumann dimension of the (reduced) L2-homology of X. (Often we
briefly write b

(2)
p (X) if G is clear from the context.) If G is finite, b

(2)
p (X) =

|G|−1 · bp(X) and we get nothing new. But L2-Betti numbers carry new
information and have interesting applications in the case where G is infinite.
In general b

(2)
p (X) of the total space X and bp(X) of the base space X have

no relations except for the Euler-Poincaré formula, namely,

χ(X) =
∑

p≥0(−1)p · bp(X) =
∑

p≥0(−1)p · b(2)
p (X), (0.1)

where χ(X) is the Euler characteristic of X (see Section 0.6).
The notion of the classical Reidemeister torsion of X for finite groups G

will be generalized to the notion of L2-torsion ρ(2)(X) ∈ R in the case that
G is infinite.

There is a third class of L2-invariants, the Novikov-Shubin invariants
αp(X), which carry no information if G is finite.

All these types of L2-invariants on the one hand have analytic definitions
in terms of the heat kernel on X, but on the other hand can be defined
combinatorially in terms of the cellular CG-chain complex of X. These two
approaches are equivalent. In the analytic context X must be a compact
Riemannian manifold. For the combinatorial definition of L2-Betti numbers
and Novikov-Shubin invariants it suffices to require that the base space X is of
finite type, i.e. each skeleton of X is finite, but X may be infinite-dimensional.
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0.2 Some Applications of L2-Invariants

In order to convince the reader about the potential of L2-invariants we state
some results which seem to have nothing to do with L2-invariants but whose
proofs — as we will see — use L2-methods. The selection below consists of
some easy to formulate examples and is not meant to represent the most
important results about L2-invariants. There are plenty of other very inter-
esting and important theorems about L2-invariants, a lot of which will be
presented in this book. For simplicity we often will not state the most gen-
eral formulations in this introduction. All notions appearing in the list of
theorems below will be explained in the relevant chapters. The results be-
low are due to Chang-Weinberger, Cheeger-Gromov, Cochran-Orr-Teichner,
Dodziuk, Gaboriau, Gromov and Lück.

Theorem 0.2 (see Theorem 1.35 (2) and Corollary 6.75). Let G be a
group which contains a normal infinite amenable subgroup. Suppose that there
is a finite CW -model for its classifying space BG. Then its Euler character-
istic vanishes, i.e.

χ(G) := χ(BG) = 0.

Theorem 0.3 (see Theorem 1.62 and Theorem 11.6). Let M be a closed
manifold of even dimension 2m. Suppose that M is hyperbolic, or more gen-
erally, that its sectional curvature satisfies −1 ≤ sec(M) < −(1− 1

m )2 .Then

(−1)m · χ(M) > 0.

Theorem 0.4 (see Theorem 11.14 and Theorem 11.15). Let M be a
closed Kähler manifold of (real) dimension 2m. Suppose that M is homotopy
equivalent to a closed Riemannian manifold with negative sectional curvature.
Then

(−1)m · χ(M) > 0.

Moreover, M is a projective algebraic variety and is Moishezon and Hodge.

Theorem 0.5 (see Theorem 7.25). Let 1 → H → G → K → 1 be an
extension of infinite groups such that H is finitely generated and G is finitely
presented. Then

(1) The deficiency of G satisfies def(G) ≤ 1;
(2) If M is a closed connected oriented 4-manifold with π1(M) ∼= G, then we

get for its signature sign(M) and its Euler characteristic χ(M)

| sign(M)| ≤ χ(M).
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Theorem 0.6 (see Theorem 9.38). Let i : H → G be the inclusion of a
normal finite subgroup H into an arbitrary group G. Then the maps coming
from i and the conjugation action of G on H

Z⊗ZG Wh(H) → Wh(G);
Wh(H)G → Wh(G)

have finite kernel, where Wh denotes the Whitehead group.

Theorem 0.7 (see Theorem 9.66). Let G be a group and CG be its com-
plex group ring. Let G0(CG) be the Grothendieck group of finitely generated
(not necessarily projective) CG-modules. Then

(1) If G is amenable, the class [CG] ∈ G0(CG) is an element of infinite
order;

(2) If G contains the free group Z∗Z of rank two, then [CG] = 0 in G0(CG).

Theorem 0.8 (see Section 15.4). There are non-slice knots in 3-space
whose Casson-Gordon invariants are all trivial.

Theorem 0.9 (see Section 7.5). There are finitely generated groups which
are quasi-isometric but not measurably equivalent.

Theorem 0.10 (see Section 15.1). Let M4k+3 be a closed oriented smooth
manifold for k ≥ 1 whose fundamental group has torsion. Then there are in-
finitely many smooth manifolds which are homotopy equivalent to M (and
even simply and tangentially homotopy equivalent to M) but not homeomor-
phic to M.

0.3 Some Open Problems Concerning L2-Invariants

The following conjectures will be treated in detail in Section 2.5 and Chapters
10, 11, 12, 13 and 14. They have created a lot of activity. This book contains
proofs of these conjectures in special cases which rely on general methods
and give some structural insight or consist of explicit computations. Recall
that a free G-CW -complex X is the same as the total space of a G-covering
X → G\X with a CW -complex G\X as base space, and that X is called
finite or of finite type if the CW -complex G\X is finite or of finite type.

Conjecture 0.11 (Strong Atiyah Conjecture). Let X be a free G-CW -
complex of finite type. Denote by 1

|FIN (G)|Z the additive subgroup of R gen-
erated by the set of rational numbers |H|−1, where H runs through the finite
subgroups of G. Then we get for the L2-Betti numbers of X

b(2)
p (X) ∈ 1

|FIN (G)|Z.
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In Subsection 10.1.4 we will explain that there are counterexamples to the
strong Atiyah Conjecture 0.11 due to Grigorchuk and Żuk, but no counterex-
ample is known to the author at the time of writing if one replaces 1

|FIN (G)|Z
by Q or if one assumes that there is an upper bound for the orders of finite
subgroups of G. The author is not aware of a counterexample to the following
conjectures at the time of writing.

Conjecture 0.12. (Positivity and rationality of Novikov-Shubin in-
variants). Let X be a free G-CW -complex of finite type. Then its Novikov-
Shubin invariants αp(X) are positive rational numbers unless they are ∞ or
∞+.

Conjecture 0.13 (Singer Conjecture). Let M be an aspherical closed
manifold. Then the L2-Betti numbers of the universal covering M̃ satisfy

b(2)
p (M̃) = 0 if 2p 6= dim(M)

and (−1)m · χ(M) ≥ 0 if dim(M) = 2m is even.
Let M be a closed connected Riemannian manifold with negative sectional

curvature. Then

b(2)
p (M̃)

{
= 0 if 2p 6= dim(M);
> 0 if 2p = dim(M),

and (−1)m · χ(M) > 0 if dim(M) = 2m is even.

Conjecture 0.14 (L2-torsion for aspherical manifolds). If M is an as-
pherical closed manifold of odd dimension 2m + 1, then the L2-torsion of its
universal covering satisfies

(−1)m · ρ(2)(M̃) ≥ 0.

If M is a closed connected Riemannian manifold of odd dimension 2m + 1
with negative sectional curvature, then

(−1)m · ρ(2)(M̃) > 0.

If M is an aspherical closed manifold whose fundamental group contains an
amenable infinite normal subgroup, then

ρ(2)(M̃) = 0.

Conjecture 0.15 (Zero-in-the-spectrum Conjecture). Let M̃ be the uni-
versal covering of an aspherical closed Riemannian manifold M . Then for
some p ≥ 0 zero is in the spectrum of the minimal closure

(∆p)min : dom ((∆p)min) ⊂ L2Ωp(M̃) → L2Ωp(M̃)

of the Laplacian acting on smooth p-forms on M̃ .



0.4 L2-Invariants and Heat Kernels 5

Conjecture 0.16 (Approximation Conjecture). Let G be a group. Let
{Gi | i ∈ I} be an inverse system of normal subgroups of G directed by
inclusion over the directed set I. Suppose that ∩i∈IGi = {1}. Let X be a
free G-CW -complex of finite type. Then Gi\X is a free G/Gi-CW -complex
of finite type and

b(2)
p (X;N (G)) = lim

i∈I
b(2)
p (Gi\X;N (G/Gi)).

Conjecture 0.17 (Simplicial volume and L2-invariants). Let M be an
aspherical closed orientable manifold of dimension ≥ 1. Suppose that its sim-
plicial volume ||M || vanishes. Then all the L2-Betti numbers and the L2-
torsion of the universal covering M̃ vanish, i.e.

b(2)
p (M̃) = 0 for p ≥ 0;

ρ(2)(M̃) = 0.

0.4 L2-Invariants and Heat Kernels

The p-th L2-Betti number b
(2)
p (M) of a G-covering p : M → M of a closed

Riemannian manifold M was first defined by Atiyah [9, page 71] in connec-
tion with his L2-index theorem. By means of a Laplace transform, Atiyah’s
original definition agrees with the one given by the non-negative real number

b(2)
p (M) = lim

t→∞

∫

F
trC(e−t∆p(x, x)) dvol . (0.18)

Here F is a fundamental domain for the G-action on M and e−t∆p(x, y) is the
heat kernel on p-forms on M . The p-th L2-Betti number b

(2)
p (M) measures

the size of the kernel of the Laplacian acting on smooth p-forms on M . If G is
trivial, then b

(2)
p (M) is the same as the ordinary Betti number bp(M) which

is the real dimension of the p-th singular cohomology with real coefficients of
M . One important consequence of the L2-index theorem is the Euler-Poincaré
formula (0.1) (see Theorem 1.35 (2)).

The p-th Novikov-Shubin invariant α∆
p (M) measures how fast the ex-

pression
∫
F trC(e−t∆p(x, x)) dvol approaches its limit b

(2)
p (M) for t →∞ (see

(0.18)). The larger α∆
p (M) is, the “thinner” is the spectrum of the p-th Lapla-

cian on M at zero.
Notice that the L2-Betti numbers and the Novikov-Shubin invariants are

invariants of the large time asymptotics of the heat kernel and hence in-
variants of the global geometry, in contrast to invariants of the small time
asymptotics, such as indices of operators, which are of local nature. For in-
stance the Novikov-Shubin invariant associated to the Laplacian acting on
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0-forms of the universal covering of a closed Riemannian manifold M is de-
termined by group theoretic properties of the fundamental group π1(M) such
as its growth rate or the question whether it is amenable (see Theorem 2.55
(5)).

In view of the definitions of the L2-Betti numbers and Novikov-Shubin
invariants, the strong Atiyah Conjecture 0.11 and the Conjecture 0.12 about
the positivity and rationality of Novikov-Shubin invariants are very surpris-
ing. Some explanation for the strong Atiyah Conjecture 0.11 comes from
connections with algebraic K-theory, whereas the only evidence for the Con-
jecture 0.12 about the positivity and rationality of Novikov-Shubin invariants
is based on computations, and no conceptual reasons are known.

The third important L2-invariant is the L2-torsion ρ(2)(M) which was
introduced by Carey-Mathai, Lott, Lück-Rothenberg, Mathai and Novikov-
Shubin. It is only defined under a certain technical assumption, namely, that
M is of determinant class. This condition is conjecturally always satisfied and
we will suppress it in this discussion. If all L2-Betti numbers of M vanish,
the L2-torsion ρ(2)(M) is independent of the Riemannian metric and depends
only on the simple homotopy type. Actually, there is the conjecture that
it depends only on the homotopy type (see Conjecture 3.94). Its analytic
definition is complicated.

This analytic approach via the heat kernel is important in the following
situations. One can compute the L2-Betti numbers of the universal covering
M̃ of a closed Riemannian manifold M if M is hyperbolic (see Theorem
1.62), or, more generally, satisfies certain pinching conditions (see Theorem
11.4, Theorem 11.5 and Theorem 11.6). There are explicit computations of
the L2-Betti numbers, the Novikov-Shubin invariants and the L2-torsion of
the universal covering of a closed manifold M if M is a locally symmetric
space (see Theorem 5.12 and Section 5.4). The proof of the Proportionality
Principle 3.183 relies on the analytic description. The proofs of these facts
do not have combinatorial counterparts.

0.5 L2-Invariants and Cellular Chain Complexes

One important feature of all these L2-invariants is that they can also be
defined for a G-covering p : X → X of a finite CW -complex X in terms of
the cellular ZG-chain complex C∗(X). For L2-Betti numbers and Novikov-
Shubin invariants it suffices to require that X is of finite type. The associated
L2-chain complex C

(2)
∗ (X) is defined by l2(G)⊗ZGC∗(X). Each chain module

C
(2)
∗ (X) is a Hilbert space with isometric G-action of the special form l2(G)n,

where l2(G)n is the n-fold sum of the Hilbert space l2(G). Each differential
c
(2)
p is a bounded G-equivariant operator. The p-th L2-homology H

(2)
p (X) is

defined to be the quotient of the kernel of c
(2)
p by the closure of the image of

c
(2)
p+1. Dividing out the closure of the image has the effect that H

(2)
p (X) is again
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a Hilbert space with isometric G-action. It actually comes with the structure
of a finitely generated Hilbert N (G)-module, where N (G) denotes the von
Neumann algebra of the group G. This additional structure allows to define
the von Neumann dimension of H

(2)
p (X). Dodziuk has shown that this non-

negative real number agrees with b
(2)
p (X) as defined in (0.18) (see Theorem

1.59 and (1.60)). One can also read off the Novikov-Shubin invariants and
the L2-torsion from C

(2)
∗ (X) by results of Efremov (see Theorem 2.68) and

Burghelea-Friedlander-Kappeler-McDonald (see Theorem 3.149). The p-th
Novikov-Shubin invariant αp(X) measures the difference between the image
of c

(2)
p and the closure of the image of c

(2)
p .

The point of this cellular description is that it is much easier to han-
dle and calculate than the analytic counterpart. For instance one can show
homotopy invariance of L2-Betti numbers, Novikov-Shubin invariants and
L2-torsion and prove some very useful formulas like sum formulas, product
formulas, fibration formulas and so on using the combinatorial approach (see
Theorem 1.35, Theorem 2.55, Theorem 3.93, Theorem 3.96 and Theorem
3.100). The combinatorial approach allows to show for an aspherical closed
manifold M that all L2-Betti numbers and the L2-torsion of its universal cov-
ering vanish provided M carries a non-trivial S1-action (see Theorem 3.105).
There exists a combinatorial proof that all L2-Betti numbers of the universal
covering of a mapping torus of a self map of a CW -complex of finite type
vanish (see Theorem 1.39). No analytic proofs or no simpler analytic proofs
of these results are known to the author. The combination of the analytic
and combinatorial methods yields a computation of the L2-invariants of the
universal covering of a compact 3-manifold provided Thurston’s Geometriza-
tion Conjecture holds for the pieces appearing in the prime decomposition of
M (see Theorem 4.1, Theorem 4.2 and Theorem 4.3).

For a kind of algorithmic computation of L2-invariants based on the com-
binatorial approach we refer to Theorem 3.172.

The possibility to take both an analytic and a combinatorial point of view
is one of the main reasons why L2-invariants are so powerful.

0.6 L2-Betti Numbers and Betti Numbers

Let X̃ → X be the universal covering of a connected CW -complex X of fi-
nite type. Then the L2-Betti numbers b

(2)
p (X̃) of X̃ and the (classical) Betti

numbers bp(X) share some basic properties such as homotopy invariance, the
Euler-Poincaré formula, Poincaré duality, Morse inequalities, Künneth for-
mulas and so on, just replace in the corresponding statement for the classical
Betti numbers bp(X) by b

(2)
p (X̃) everywhere (see Theorem 1.35). There is

also an L2-Hodge de Rham Theorem 1.59 which is one important input in
the proof of Theorem 0.3.
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But there are also differences. One important extra feature of the L2-Betti
numbers is that they are multiplicative under finite coverings in the following
sense. If p : Y → X is a finite d-sheeted covering, then b

(2)
p (Ỹ ) = d · b(2)

p (X̃)
(see Theorem 1.35 (9)). This implies for instance b

(2)
p (S̃1) = 0 for all p ≥ 0

since there is a d-sheeted covering S1 → S1 for d ≥ 2. The corresponding
statement is not true for the Betti numbers. This is one reason why L2-Betti
numbers more often tend to be zero than the classical Betti numbers. Often
this is the key phenomenon for applications. Another reason for it is the fact
that b

(2)
0 (X̃) is 0 if π1(X) is infinite and is |π1(X)|−1 if π1(X) is finite (see

Theorem 1.35 (8)), whereas b0(X) is always 1.
If π1(X) is finite, then b

(2)
p (X̃) = |π1(X)|−1 · bp(X̃). If π1(X) is infinite,

the only general relation between the L2-Betti numbers of X̃ and the Betti
numbers of X is the Euler-Poincaré formula (0.1). Given an integer l ≥ 1 and
a sequence r1, r2, . . ., rl of non-negative rational numbers, we construct in
Example 1.38 a group G such that BG is of finite type and

b
(2)
p (G) := b

(2)
p (EG) =

{
rp for 1 ≤ p ≤ l;
0 for l + 1 ≤ p;

bp(G) := bp(BG) = 0 for p ≥ 1.

On the other hand we can construct for any sequence n1, n2, . . . of non-
negative integers a CW -complex X of finite type such that bp(X) = np and
b
(2)
p (X̃) = 0 hold for p ≥ 1.

However, there is an asymptotic relation between the L2-Betti numbers
of X̃ and the Betti numbers of X. Recall that the Betti numbers are not
multiplicative. One may try to force multiplicativity of the Betti numbers by
stabilizing under finite coverings as follows. Suppose that π1(X) possesses a
nested sequence of normal subgroups of finite index

π1(X) = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ . . .

with ∩∞i=0Gi = {1}. Then Gi\X̃ is a CW -complex of finite type and there is

a [G : Gi]-sheeted covering Gi\X̃ → X. One may consider limi→∞
bp(Gi\X̃)

[G:Gi]
.

This expression is automatically multiplicative if the limit exists and is inde-
pendent of the nested sequence. Actually it turns out that this is true and

lim
i→∞

bp(Gi\X̃)
[G : Gi]

= b(2)
p (X̃).

This result is a special case of the Approximation Conjecture 0.16 which will
be investigated in Chapter 13.

0.7 L2-Invariants and Ring-Theory

A more algebraic approach will be presented in Chapter 6. It will enable us to
define L2-Betti numbers for arbitrary G-spaces and in particular for groups
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without any restrictions on BG. This allows to apply standard techniques
of algebraic topology and homological algebra directly to L2-Betti numbers.
The idea is to view the group von Neumann algebra N (G) just as a ring
forgetting the functional analysis and the topology. The von Neumann al-
gebra N (G) has zero-divisors and is not Noetherian unless G is finite. This
makes N (G) complicated as a ring. But it has one very nice property, it is
semihereditary, i.e. any finitely generated submodule of a projective module
is itself projective (see Theorem 6.5 and Theorem 6.7 (1)). This justifies the
slogan that N (G) behaves like the ring Z if one ignores the facts that Z has
no zero-divisors and is Noetherian. The main input for the ring-theoretic ap-
proach is the construction of a dimension function for arbitrary modules over
the group von Neumann algebra N (G) (Theorem 6.7). It is uniquely charac-
terized by the condition that it satisfies Additivity, Continuity and Cofinality
and extends the classical dimension function for finitely generated projective
modules which is defined in terms of the von Neumann trace of idempotents
in Mn(N (G)). One applies it to the N (G)-modules Hp(N (G)⊗ZG Csing

∗ (X))
for a G-space X and gets an extension of the notion of L2-Betti numbers to
arbitrary G-spaces if one allows the value ∞. The second key result is that
for amenable G the von Neumann algebra N (G) looks like a flat CG-module
from the point of view of dimension theory (see Theorem 6.37).

In Chapter 8 we introduce the algebra U(G) of operators affiliated to the
group von Neumann algebra. From an algebraic point of view U(G) can be
described as the Ore localization of N (G) with respect to the multiplicative
set of non-zero divisors. The main ring theoretic property of U(G) is that it
is von Neumann regular (see Theorem 8.22 (3)) which is a stronger property
than to be semihereditary. The dimension theory of N (G) extends to U(G)
(see Theorem 8.29). The relation of U(G) toN (G) is analogous to the relation
of Q to Z.

From the point of view of representation theory of finite groups the pas-
sage from CG to N (G) is the natural one for infinite groups. Namely, two
finitely generated projective N (G)-modules P and Q are N (G)-isomorphic
if and only if their center valued von Neumann dimensions dimu

N (G)(P ) and
dimu

N (G)(Q) agree (see Theorem 9.13). If G is finite, this reduces to the well-
known theorem that two complex finite-dimensional G-representations are
isomorphic if and only if they have the same character.

This algebraic approach may be preferred by algebraists who do not have
much background in (functional) analysis.

Linnell’s Theorem 10.19 says that the strong Atiyah Conjecture 0.11 is
true for a class of groups C which contains all extensions of free groups with
elementary amenable groups as quotients, provided that there is an upper
bound on the orders of finite subgroups. Its proof is based on techniques from
ring theory, in particular localization techniques, and from K-theory. The
following square of inclusions of rings plays an important role as explained
below
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CG −−−−→ N (G)
y

y
D(G) −−−−→ U(G)

(0.19)

where D(G) denotes the division closure of CG in U(G).

0.8 L2-Invariants and K-Theory

The strong Atiyah Conjecture 0.11 is related to K-theory in the following
way. It is equivalent to the statement that for any finitely presented CG-
module M the generalized dimension dimN (G)(N (G)⊗CG M) (see Theorem
6.5 and Theorem 6.7 (1)) of the N (G)-module N (G) ⊗CG M takes values
in 1

|FIN (G)|Z (see Lemma 10.7). Notice that any non-negative real number
occurs as dimN (G)(P ) for a finitely generated projective N (G)-module P , if
G contains Z as subgroup (see Example 1.11, Theorem 6.24 (4) and Theorem
6.29 (2)). So the point is to understand the passage from CG to N (G), not
only to investigate modules over N (G).

One may first consider the weaker statement that for any finitely gener-
ated projective CG-module M the generalized dimension dimN (G)(N (G)⊗CG

M) takes values in 1
|FIN (G)|Z. This is equivalent to the statement that

the composition K0(CG) i−→ K0(N (G))
dimN(G)−−−−−→ R must have its image in

1
|FIN (G)|Z, where i is the change of rings map. This is certainly true for the
composition

⊕

H⊂G
|H|<∞

K0(CH) a−→ K0(CG) i−→ K0(N (G))
dimN(G)−−−−−→ R

where a is the sum of the various change of rings maps. The Isomorphism
Conjecture 9.40 for K0(CG) implies that a is surjective and hence that the

image of K0(CG) i−→ K0(N (G))
dimN(G)−−−−−→ R is contained in 1

|FIN (G)|Z.
The proof of Linnell’s Theorem 10.19 can be split into two parts, a ring-

theoretic one and a K-theoretic one. Namely, one proves that any finitely
presented CG-module becomes finitely generated projective over the ring
D(G) (see (0.19)) and that the composition

⊕

H⊂G
|H|<∞

K0(CH) a−→ K0(CG)
j−→ K0(D(G))

for j the change of rings map is surjective (see Section 10.2). Then the claim
follows from (0.19) and the facts that the change of rings homomorphism
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K0(N (G)) → K0(U(G)) is bijective (see Theorem 9.20 (1)) and that the di-
mension function dimN (G) for N (G) extends to a dimension function dimU(G)

for U(G) satisfying dimU(G)(U(G) ⊗N (G) M) = dimN (G)(M) for any N (G)-
module M (see Theorem 8.29).

The extension of the dimension function to arbitrary modules has some
applications to G-theory of CG as already mentioned in Theorem 0.7 (see
Subsection 9.5.3). Computations of the middle K-theory and of the L-theory
of von Neumann algebras and the associated algebras of affiliated opera-
tors are presented in Chapter 9. L2-methods also lead to results about the
Whitehead group Wh(G) (see Theorem 0.6) and some information about the
Bass Conjecture (see Subsection 9.5.2). The question whether the L2-torsion
in the L2-acyclic case is a homotopy invariant is equivalent to the question
whether the map induced by the Fuglede-Kadison determinant Wh(G) → R
is trivial (see Conjecture 3.94). This question is related to the Approximation
Conjecture 0.16 by the Determinant Conjecture 13.2 (see Lemma 13.6 and
Theorem 13.3 (1)). The Approximation Conjecture 0.16 also plays a role in
proving that the class of groups for which the strong Atiyah Conjecture 0.11
is true is closed under direct and inverse limits (see Theorem 10.20).

0.9 L2-Invariants and Aspherical Manifolds

Let M be an aspherical closed manifold, for instance a closed Riemannian
manifold with non-positive sectional curvature. Then the Singer Conjecture
0.13, Conjecture 0.14 about L2-torsion for aspherical manifolds and the zero-
in-the-spectrum Conjecture 0.15 put some restrictions on the L2-invariants of
its universal covering. There are special cases where these conjectures have
been proved by computations. For instance if M is a compact 3-manifold
(see Chapter 4), a locally symmetric space (see Corollary 5.16) or carries a
Riemannian metric whose sectional curvature satisfies certain pinching con-
ditions (see Theorem 11.4, Theorem 11.5 and Theorem 11.6). They also have
been proved under additional assumptions like the existence of a non-trivial
S1-action (see Theorem 3.105), the existence of the structure of a Kähler
hyperbolic manifold (see Theorem 11.14) or the existence of a normal in-
finite (elementary) amenable subgroup of π1(X) (see Theorem 3.113 and
Theorem 7.2). But it is still very mysterious why Poincaré duality together
with asphericity may have such implications, or what kind of mechanism is
responsible for these phenomenons. The status of Conjecture 0.17 about sim-
plicial volume and L2-invariants is similar. Conjectures 0.13, 0.14, 0.15 and
0.17 become false if one drops the condition that M is aspherical. Without
this assumption it is easy to construct counterexamples to all but the zero-in-
the-spectrum Conjecture 0.15. Counterexamples in the non-aspherical case to
the zero-in-the-spectrum Conjecture 0.15 are presented by Farber-Weinberger
[187] (see also [258]). We will deal with them in Section 12.3.
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0.10 L2-Invariants and Groups

L2-Betti numbers b
(2)
p (G) (and also Novikov-Shubin invariants αp(G)) can be

defined for arbitrary (discrete) groups if one allows the value ∞. In Chapter
7 the L2-Betti numbers of groups are investigated and in particular the ques-
tion when they vanish is studied. The vanishing of all L2-Betti numbers of G
implies the vanishing of the L2-Euler characteristic χ(2)(G) of G. The notion
of L2-Euler characteristic agrees with the classical notion of Euler character-
istic χ(BG) (or more generally the virtual Euler characteristic) if the latter
is defined. Actually Theorem 0.2 is proved by showing that all L2-Betti num-
bers of a group G vanish if G contains a normal infinite amenable subgroup.
This example shows that it is important to extend the definition of L2-Betti
numbers from those groups for which BG is finite to arbitrary groups even
if one may only be interested in groups with finite BG. Namely, if G has a
finite model for BG, this does not mean that a normal subgroup H ⊂ G has
a model of finite type for BH. The vanishing of the first L2-Betti number
b
(2)
1 (G) has consequences for the deficiency of the group. The hard part of

the proof of Theorem 0.5 is to show the vanishing of b
(2)
1 (G), then the claim

follows by elementary considerations.
We show in Theorem 7.10 that all L2-Betti numbers of Thompson’s group

F vanish. This is a necessary condition for F to be amenable. The group F
cannot be elementary amenable and does not contain Z ∗ Z as subgroup but
(at the time of writing) it is not known whether F is amenable or not.

In Section 7.4 a number ρ(2)(f) ∈ R is associated to an automorphism
f : G → G of a group G provided that BG has a finite model. One also needs
the technical assumption of det ≥ 1-class which is conjecturally always true
and proved for a large class of groups and will be suppressed in the follow-
ing discussion. This invariant has nice properties such as the trace property
ρ(2)(g◦f) = ρ(2)(f ◦g) and multiplicativity ρ(2)(fn) = n ·ρ(2)(f) and satisfies
a sum formula ρ(2)(f1 ∗f0 f2) = ρ(2)(f1) + ρ(2)(f2) − ρ(2)(f0) (see Theorem
7.27). If f = π1(g) for an automorphism g : F → F of a compact orientable
2-dimensional manifold F different from S2, D2 and T 2, then ρ(2)(f) is, up
to a constant, the sum of the volumes of the hyperbolic pieces appearing in
the Jaco-Shalen-Johannson-Thurston decomposition of the mapping torus of
g along tori into Seifert pieces and hyperbolic pieces (see Theorem 7.28). If
F is closed and g is irreducible, then ρ(2)(g) = 0 if and only if g is periodic,
and ρ(2)(g) 6= 0 if and only if g is pseudo-Anosov.

In Section 7.5 the question is discussed whether or not the L2-Betti num-
bers, Novikov-Shubin invariants and the L2-torsion are quasi-isometry invari-
ants or invariants of the measure equivalence class of a countable group G.
Theorem 0.9 is one of the main applications of L2-Betti numbers to measur-
able equivalence.



1. L2-Betti Numbers

Introduction

In this chapter we introduce and study L2-(co-)homology and L2-Betti num-
bers for Hilbert chain complexes and for regular coverings of CW -complexes
of finite type or of compact manifolds.

We follow the general strategy that a good invariant for a finite CW -
complex X often has a refined version which is defined in terms of the uni-
versal covering X̃ and the action of the fundamental group π = π1(X). For
instance the Euler characteristic yields Wall’s finiteness obstruction, and the
signature yields all kinds of surgery obstructions under this passage from X
to the π-space X̃. The L2-Betti numbers are derived from the Betti num-
bers in this way. Recall that the p-th Betti number bp(X) is defined by
dimC(Hp(X;C)). In a naive approach one might try to define improved Betti
numbers for a reasonable notion of dimCπ by dimCπ(Hp(X̃;C)), for instance
for dimCπ(Hp(X̃;C)) := dimC(C ⊗Cπ Hp(X̃;C)). The problem is that Cπ is
in general not Noetherian and hence this number is not necessarily finite.
The basic idea is to pass to the group von Neumann algebra N (π) and use
its standard trace to define the notion of von Neumann dimension which is
better behaved than dimCπ. Since one needs a Hilbert space setting, one com-
pletes the cellular Cπ-chain complex of X̃ to the cellular L2-chain complex
C

(2)
∗ (X̃) and defines the L2-homology H

(2)
p (X̃) by the quotient of the kernel

of the p-th differential by the closure of the image of the (p+1)-th differential.
Then the p-th L2-Betti number b

(2)
p (X̃) of the π-space X̃ is the von Neumann

dimension of H
(2)
p (X̃).

We will introduce the necessary input about von Neumann algebras and
Hilbert modules in Section 1.1. The precise definitions of C

(2)
∗ (X̃), H

(2)
p (X̃)

and b
(2)
p (X̃) and their main properties are given in Section 1.2. The standard

properties of Betti numbers such as homotopy invariance, the expression of
the Euler characteristic as alternating sum of Betti numbers, Poincaré duality,
Künneth formula, and Morse inequalities carry over to L2-Betti numbers. L2-
Betti numbers have additional interesting new properties which Betti num-
bers do not have. For instance they are multiplicative under finite coverings.
In general the values of bp(X) and b

(2)
p (X̃) are not related. A priori L2-Betti
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numbers can take any non-negative real number as value, but possibly they
are always rational. L2-Betti numbers tend to vanish more often than Betti
numbers. For instance b

(2)
p (X̃) vanishes for p ≥ 0 if X is a mapping torus

of a selfmap of a CW -complex of finite type, if X is an aspherical closed
manifold with a non-trivial S1-action or if X is a hyperbolic closed manifold
of dimension n and 2p 6= n.

In Section 1.3 we extend the classical relation of Betti numbers and the
dimension of the space of harmonic forms given by the Hodge-de Rham de-
composition and the de Rham isomorphism to the L2-setting. Actually the
original definition of L2-Betti numbers of Atiyah in the context of his L2-
Index Theorem is analytic, namely, by an expression in the Schwartz kernels
of the projections appearing in the spectral family of the Laplacian on the
universal covering of a closed Riemannian manifold. The fact, proved in Sec-
tion 1.4, that the analytic and the cellular version of the L2-Betti numbers
agree is one of the important features. It is also interesting to notice that some
of the properties of the L2-Betti numbers are proved analytically or topolog-
ically respectively, and often there are no topological or analytic respectively
proofs available.

If one wants to get a quick impression of L2-Betti numbers, one may
ignore their definition and pass directly to Subsections 1.2.3 and 1.3.2.

For the remainder of this chapter G is a discrete group with the exception
of Subsection 1.2.1. Manifolds are always smooth.

1.1 Group von Neumann Algebras and Hilbert Modules

In this section we deal with group von Neumann algebras and Hilbert mod-
ules. We defer the treatment of the more general notion of a finite von Neu-
mann algebra to Section 9.1 since for the next chapters we will only need
the concept of a group von Neumann algebra. We introduce the notions of
von Neumann trace and von Neumann dimension and use them to define and
study L2-Betti numbers for Hilbert chain complexes.

1.1.1 Group von Neumann Algebras

Let G be a discrete group. Denote by l2(G) the Hilbert space of square-
summable formal sums over G with complex coefficients. This is the same
as the Hilbert space completion of the complex group ring CG with respect
to the pre-Hilbert space structure for which G is an orthonormal basis. An
element in l2(G) is represented by a formal sum

∑
g∈G λg · g for complex

numbers λg such that
∑

g∈G |λg|2 < ∞. The scalar product is defined by

〈
∑

g∈G

λg · g,
∑

g∈G

µg · g〉 :=
∑

g∈G

λg · µg.
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Notice that left multiplication with elements in G induces an isometric G-
action on l2(G). Given a Hilbert space H, denote by B(H) the C∗-algebra of
bounded (linear) operators from H to itself, where the norm is the operator
norm.

Definition 1.1 (Group von Neumann algebra). The group von Neu-
mann algebra N (G) of the group G is defined as the algebra of G-equivariant
bounded operators from l2(G) to l2(G)

N (G) := B(l2(G))G.

An important feature of the group von Neumann algebra is its standard
trace.

Definition 1.2 (Von Neumann trace). The von Neumann trace on N (G)
is defined by

trN (G) : N (G) → C, f 7→ 〈f(e), e〉l2(G),

where e ∈ G ⊂ l2(G) is the unit element.

Example 1.3. If G is finite, then CG = l2(G) = N (G). The trace trN (G)

assigns to
∑

g∈G λg · g the coefficient λe of the unit element e ∈ G.

The next example is a key example. We recommend the reader to consider
and check all the results for group von Neumann algebras in the following
special case to get the right intuition.

Example 1.4. If G is Zn, there is the following model for the group von
Neumann algebra N (Zn). Let L2(Tn) be the Hilbert space of equivalence
classes of L2-integrable complex-valued functions on the n-dimensional torus
Tn, where two such functions are called equivalent if they differ only on
a subset of measure zero. Define the Banach space L∞(Tn) by equivalence
classes of essentially bounded measurable functions f : Tn → C

∐{∞}, where
essentially bounded means that there is a constant C > 0 such that the set
{x ∈ Tn | |f(x)| ≥ C} has measure zero. An element (k1, . . . , kn) in Zn

acts isometrically on L2(Tn) by pointwise multiplication with the function
Tn → C which maps (z1, z2, . . . , zn) to zk1

1 · . . . · zkn
n . Fourier transform yields

an isometric Zn-equivariant isomorphism l2(Zn)
∼=−→ L2(Tn). Hence N (Zn) =

B(L2(Tn))Z
n

. We obtain an isomorphism

L∞(Tn)
∼=−→ N (Zn)

by sending f ∈ L∞(Tn) to the Zn-equivariant operator Mf : L2(Tn) →
L2(Tn), g 7→ g · f where g · f(x) is defined by g(x) · f(x). Under this
identification the trace becomes

trN (Zn) : L∞(Tn) → C, f 7→
∫

T n

fdµ.
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1.1.2 Hilbert Modules

Definition 1.5 (Hilbert module). A Hilbert N (G)-module V is a Hilbert
space V together with a linear isometric G-action such that there exists a
Hilbert space H and an isometric linear G-embedding of V into the tensor
product of Hilbert spaces H ⊗ l2(G) with the obvious G-action. A map of
Hilbert N (G)-modules f : V → W is a bounded G-equivariant operator. We
call a Hilbert N (G)-module V finitely generated if there is a non-negative
integer n and a surjective map

⊕n
i=1 l2(G) → V of Hilbert N (G)-modules.

The embedding of V into H ⊗ l2(G) is not part of the structure, only its
existence is required. We emphasize that a map of Hilbert N (G)-modules is
not required to be isometric. A Hilbert N (G)-module V is finitely generated
if and only if there is an isometric linear G-embedding of V into

⊕n
i=1 l2(G)

for some non-negative integer n. If G is finite a finitely generated Hilbert
N (G)-module is the same as a finite dimensional unitary representation of
G.

Definition 1.6 (Weak exactness). We call a sequence of Hilbert N (G)-
modules U

i−→ V
p−→ W weakly exact at V if the kernel ker(p) of p and the

closure clos(im(i)) of the image im(i) of i agree. A map of Hilbert N (G)-
modules f : V → W is a weak isomorphism if it is injective and has dense
image.

The following assertions are equivalent for a map f : V → W of Hilbert
N (G)-modules: (1) f is a weak isomorphism; (2) 0 → V

f−→ W → 0 is weakly
exact; (3) f and f∗ have dense image. An example of a weak isomorphism
of N (G)-modules which is not an isomorphism is Mz−1 : L2(S1) → L2(S1)
given by multiplication with (z−1) ∈ L∞(S1) = N (Z), where (z−1) denotes
the function S1 → C, z 7→ (z − 1) (see Example 1.4). A map f : U → V of
Hilbert N (G)-modules is an isomorphism if and only if it is bijective. This
follows from the Inverse Mapping Theorem [434, Theorem III.11 on page
83] which ensures that f−1 is continuous for a bijective bounded operator of
Hilbert spaces. If two HilbertN (G)-modules V and W are weakly isomorphic,
then they are even isometrically isomorphic by Polar Decomposition [434,
Theorem VI.10 on page 197]. Namely, if f : V → W is a weak isomorphism,
the unitary part of its polar decomposition is an isometric isomorphism of
Hilbert N (G)-modules V → W . More generally, if 0 → U → V → W → 0 is
a weakly exact sequence of Hilbert N (G)-modules, then there is an isometric
isomorphism of Hilbert N (G)-modules U⊕W → V . Notice that a short exact
sequence of Hilbert N (G)-modules splits, but a weakly exact sequence does
not split in general.

1.1.3 Dimension Theory

A bounded operator f : H → H of Hilbert spaces is called positive if 〈f(v), v〉
is a real number and ≥ 0 for all v ∈ H. This is equivalent to the condition
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that there is a bounded operator g : H → H with f = g∗g since any positive
operator f has a square root f1/2, i.e. a positive operator with f = f1/2 ◦
f1/2 [434, Theorem VI.9 on page 196]. In particular a positive operator is
selfadjoint. Given two bounded operators f1, f2 : H → H, we write

f1 ≤ f2 ⇔ f2 − f1 is positive. (1.7)

Definition 1.8. Let f : V → V be a positive endomorphism of a Hilbert
N (G)-module. Choose a Hilbert space H, a Hilbert basis {bi | i ∈ I} for
H (sometimes also called complete orthonormal system, see [434, II.3]), a
G-equivariant projection pr: H ⊗ l2(G) → H ⊗ l2(G) and an isometric G-
isomorphism u : im(pr)

∼=−→ V . Let f : H ⊗ l2(G) → H ⊗ l2(G) be the positive
operator given by the composition

f : H ⊗ l2(G)
pr−→ im(pr) u−→ V

f−→ V
u−1

−−→ im(pr) ↪→ H ⊗ l2(G).

Define the von Neumann trace of f : V → V by

trN (G)(f) :=
∑

i∈I

〈f(bi ⊗ e), bi ⊗ e〉 ∈ [0,∞],

where e ∈ G ⊂ l2(G) is the unit element.

This definition is independent of the choices of H, {bi | i ∈ I}, pr and u. At
least we give the proof for the independence of the Hilbert basis. If {cj | j ∈ J}
is a second Hilbert basis, it follows from the following calculation where all
terms in the sums are non-negative and hence interchanging is allowed.

∑

i∈I

〈f(bi ⊗ e), bi ⊗ e〉 =
∑

i∈I

||f1/2
(bi ⊗ e)||2

=
∑

i∈I

∑

j∈J

∑

g∈G

|〈f1/2
(bi ⊗ e), cj ⊗ g〉|2

=
∑

i∈I

∑

j∈J

∑

g∈G

|〈bi ⊗ g−1, f
1/2

(cj ⊗ e)〉|2

=
∑

j∈J

∑

i∈I

∑

g∈G

|〈f1/2
(cj ⊗ e), bi ⊗ g〉|2

=
∑

j∈J

||f1/2
(cj ⊗ e)||2

=
∑

j∈J

〈f(cj ⊗ e), cj ⊗ e〉.

A directed set I is a non-empty set with a partial ordering ≤ such that for
two elements i0 and i1 there exists an element i with i0 ≤ i and i1 ≤ i. A net
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(xi)i∈I in a topological space is a map from a directed set to the topological
space. The net (xi)i∈I converges to x if for any neighborhood U of x there is
an index i(U) ∈ I such that xi ∈ U for each i ∈ I with i(U) ≤ i. A net (fi)i∈I

in B(H) converges strongly to f ∈ B(H) if for any v ∈ H the net (fi(v))i∈I

converges to f(v) in H. A net (fi)i∈I in B(H) converges weakly to f ∈ B(H)
if for any v, w ∈ H the net (〈fi(v), w〉)i∈I converges to 〈f(v), w〉 in C. A
net (fi)i∈I in B(H) converges ultra-weakly if for any two sequences (xn)n≥0

and (yn)n≥0 of elements in H with
∑

n≥0 ||xn||2 < ∞ and
∑

n≥0 ||yn||2 < ∞
the net

∑
n≥0 |〈fi(xn), yn〉| converges to

∑
n≥0 |〈f(xn), yn〉|. Obviously norm-

convergence implies both ultra-weak convergence and strong convergence,
ultra-weak convergence implies weak convergence, strong convergence implies
weak convergence. In general these implications cannot be reversed and there
is no relation between ultra-weak convergence and strong convergence [144,
I.3.1 and I.3.2].

Theorem 1.9 (Von Neumann trace). Let U , V and W be Hilbert N (G)-
modules.

(1) If f, g : V → V are positive endomorphisms, then

f ≤ g ⇒ trN (G)(f) ≤ trN (G)(g);

(2) If (fi)i∈I is a directed system of positive endomorphisms fi : V → V , di-
rected by the order relation ≤ for positive operators, and the net converges
weakly to the endomorphism f : V → V , then f is positive and

trN (G)(f) = sup{trN (G)(fi) | i ∈ I};
(3) We have for a positive endomorphism f : V → V

trN (G)(f) = 0 ⇔ f = 0;

(4) We have for positive endomorphisms f, g : V → V and a real number
λ ≥ 0

trN (G)(f + λ · g) = trN (G)(f) + λ · trN (G)(g);

(5) If the following diagram of endomorphisms of Hilbert N (G)-modules com-
mutes, has exact rows and positive operators as vertical maps

0 −−−−→ U
i−−−−→ V

p−−−−→ W −−−−→ 0

f

y g

y h

y
0 −−−−→ U

i−−−−→ V
p−−−−→ W −−−−→ 0

then

trN (G)(g) = trN (G)(f) + trN (G)(h);
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(6) We get for a map f : V → W

trN (G)(f∗f) = trN (G)(ff∗);

(7) Let U1 be a Hilbert N (G)-module and let U2 be a Hilbert N (H)-module.
Let fi : Ui → Ui be a positive endomorphism for i = 1, 2. Then the Hilbert
tensor product f1 ⊗ f2 : U1 ⊗ U2 → U1 ⊗ U2 is a positive endomorphism
of Hilbert N (G×H)-modules and

trN (G×H)(f1 ⊗ f2) = trN (G)(f1) · trN (H)(f2),

where we use the convention that 0 ·∞ = 0 and r ·∞ = ∞ for r ∈ (0,∞];
(8) Let H ⊂ G be a subgroup of finite index [G : H]. Let f : V → V be

a positive endomorphism of a Hilbert N (G)-module. Let res(V ) be the
restriction of V to N (H) which is a Hilbert N (H)-module. If V is finitely
generated, then res V is finitely generated. We have

trN (H)(res(f)) = [G : H] · trN (G)(f),

where we use the convention [G : H] · ∞ = ∞.

Proof. (1) follows directly from the definitions.
(2) Since each fi is selfadjoint the same is true for f . We first show fi ≤ f for
all i ∈ I. Fix v ∈ V and i ∈ I. Given ε > 0 there is an index i(ε) with i ≤ i(ε)
and 〈fi(ε)(v), v〉−ε ≤ 〈f(v), v〉. Since fi ≤ fi(ε), we get 〈fi(v), v〉−ε ≤ 〈f(v), v〉
for all ε > 0. This implies 〈fi(v), v〉 ≤ 〈f(v), v〉 and hence fi ≤ f . We conclude
that f is positive and from (1)

trN (G)(f) ≥ sup{trN (G)(fi) | i ∈ I}.

It remains to prove the reverse inequality. In the notation of Definition 1.8
the net (fi)i∈I converges weakly to f . Hence we can assume without loss of
generality V = H ⊗ l2(G).

Let {bλ | λ ∈ Λ} be a Hilbert basis for H. Fix ε > 0. Choose a finite
subset Λ(ε) ⊂ Λ such that

trN (G)(f) ≤ ε/2 +
∑

λ∈Λ(ε)

〈f(bλ ⊗ e), bλ ⊗ e〉.

Since the net (fi)i∈I converges weakly to f and Λ(ε) is finite and I is directed,
there is an index i(ε) ∈ I such that for all λ ∈ Λ(ε)

〈f(bλ ⊗ e), bλ ⊗ e〉 ≤ ε

2 · |Λ(ε)| + 〈fi(ε)(bλ ⊗ e), bλ ⊗ e〉

holds. We conclude
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trN (G)(f) ≤ ε/2 +
∑

λ∈Λ(ε)

〈f(bλ ⊗ e), bλ ⊗ e〉

≤ ε/2 + ε/2 +
∑

λ∈Λ(ε)

〈fi(ε)(bλ ⊗ e), bλ ⊗ e〉

≤ ε + trN (G)(fi(ε))
≤ ε + sup{trN (G)(fi) | i ∈ I}.

Since this holds for all ε > 0, the claim follows.
(3) Suppose trN (G)(f) = 0 for f : V → V . Then we get for f : H ⊗ l2(G) →
H ⊗ l2(G) (using the notation of Definition 1.8)

0 =
∑

i∈I

〈f(bi ⊗ e), bi ⊗ e〉 =
∑

i∈I

||f1/2
(bi ⊗ e)||2.

This implies f
1/2

(bi ⊗ e) = 0 for all i ∈ I. Since f
1/2

is G-equivariant, we
get f

1/2
(bi ⊗ g) = 0 for all i ∈ I and g ∈ G. This implies f

1/2
= 0 and hence

f = 0 and f = 0.
(4) follows directly from the definitions.
(5) By the Polar Decomposition and the Inverse Mapping Theorem we obtain
a unitary isomorphism U⊕W

∼=−→ V which induces together with the identity
on U and W an isomorphism of the given exact sequence with the standard
exact sequence 0 → U → U ⊕W → W → 0. One easily checks for a positive
operator (

f u
0 g

)
: U ⊕W → U ⊕W

that

trN (G)

(
f u
0 g

)
= trN (G)(f) + trN (G)(g)

holds. Hence it remains to show for a positive G-operator h : V → V and
a unitary G-operator v : V → W that trN (G)(vhv−1) = trN (G)(h) holds.
This follows from the proof that Definition 1.8 is independent of the various
choices.
(6) Let f = u|f | be the Polar Decomposition of f . We conclude

trN (G)(ff∗) = trN (G)(u|f |2u−1) = trN (G)(|f |2) = trN (G)(f∗f).

(7) Obviously l2(G)⊗ l2(H) is isometrically G×H-isomorphic to l2(G×H).
Hence U1 ⊗ U2 is a Hilbert N (G × H)-module and f1 ⊗ f2 is a positive
endomorphism. Because of assertion (5) it suffices to treat the case where
U1 = H1⊗ l2(G) and U2 = H2⊗ l2(H) for appropriate Hilbert spaces H1 and
H2. Then the claim follows from the obvious formula
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〈f1 ⊗ f2(u1 ⊗ u2), v1 ⊗ v2〉U1⊗U2 = 〈f1(u1), v1〉U1 · 〈f2(u2), v2〉U2

for u1, v1 ∈ U1 and u2, v2 ∈ U2.
(8) It suffices to treat the case V = l2(G). If s : G/H → G is a set-theoretic
section of the projection G → G/H, we obtain an isometric H-isomorphism

⊕

gH∈G/H

l2(H)
∼=−→ res l2(G), {ugH | gH ∈ G/H} 7→

∑

gH∈G/H

ugH · s(gH).

This finishes the proof of Theorem 1.9. ut
Definition 1.10 (Von Neumann dimension). Define the von Neumann
dimension of a Hilbert N (G)-module V

dimN (G)(V ) := trN (G)(id : V → V ) ∈ [0,∞].

If G is finite, then dimN (G)(V ) is 1
|G| -times the complex dimension

of the underlying complex vector space V . The next example shows that
dimN (G)(V ) can take any non-negative real number or ∞ as value.

Example 1.11. Let X ⊂ Tn be any measurable set and χX ∈ L∞(Tn)
be its characteristic function. Denote by MχX

: L2(Tn) → L2(Tn) the Zn-
equivariant unitary projection given by multiplication with χX . Its image V
is a Hilbert N (Zn)-module with dimN (Zn)(V ) = vol(X) (see Example 1.4).

Theorem 1.12 (von Neumann dimension). (1) We have for a Hilbert
N (G)-module V

V = 0 ⇔ dimN (G)(V ) = 0;

(2) If 0 → U → V → W → 0 is a weakly exact sequence of Hilbert N (G)-
modules, then

dimN (G)(U) + dimN (G)(W ) = dimN (G)(V );

(3) Let {Vi | i ∈ I} be a directed system of Hilbert N (G)- submodules of V ,
directed by ⊂. Then

dimN (G)

(
clos

(⋃

i∈I

Vi

))
= sup{dimN (G)(Vi) | i ∈ I};

(4) Let V be an N (G)-Hilbert module with dimN (G)(V ) < ∞ and {Vi | i ∈ I}
be a directed system of Hilbert N (G)-submodules, directed by ⊃. Then

dimN (G)

(⋂

i∈I

Vi

)
= inf{dimN (G)(Vi) | i ∈ I};
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(5) Let U1 be a Hilbert N (G)-module and let U2 be a Hilbert N (H)-module.
Then the Hilbert tensor product U1 ⊗ U2 is a Hilbert N (G ×H)-module
and

dimN (G×H)(U1 ⊗ U2) = dimN (G)(U1) · dimN (H)(U2),

where we use the convention that 0 ·∞ = 0 and r ·∞ = ∞ for r ∈ (0,∞];
(6) Let H ⊂ G be a subgroup of finite index [G : H]. Let V be Hilbert N (G)-

module. Let res(V ) be the restriction of V to N (H) which is a Hilbert
N (H)-module. If V is finitely generated, then resV is finitely generated.
We have

dimN (H)(res(V )) = [G : H] · dimN (G)(V ),

where we use the convention [G : H] · ∞ = ∞.

Proof. (1) This follows from Theorem 1.9 (3).
(2) We conclude from the weak exactness and the Polar Decomposition that
U ⊕W is isometrically G-isomorphic to V . Now apply Theorem 1.9 (5).
(3) Let pr : V → V and pri : V → V be the projections onto clos

(⋃
i∈I Vi

)
and Vi. Next we show that the net (pri)i∈I , directed by the order relation for
positive operators, converges strongly (and hence in particular weakly) to pr.
Given v ∈ V and ε > 0, there is an index i(ε) ∈ I and vi(ε) ∈ Vi(ε) with

| pr(v)− vi(ε)| ≤ ε/2.

We conclude for i ≥ i(ε)

|pr(v)− pri(v)| ≤ | pr(v)− vi(ε)|+ |vi(ε) − pri(v)|
= | pr(v)− vi(ε)|+ |pri(vi(ε) − pr(v))|
≤ | pr(v)− vi(ε)|+ ||pri || · | pr(v)− vi(ε)|
≤ ε/2 + 1 · ε/2
= ε.

We conclude from Theorem 1.9 (2)

trN (G)(pr) = sup{trN (G)(pri) | i ∈ I}.
Since dimN (G)

(
clos

(⋃
i∈I Vi

))
= trN (G)(pr) and dimN (G)(Vi) = trN (G)(pri),

the claim follows.
(4) We obtain a directed system (V ⊥

i )i∈I , directed by ⊂. We have

clos

(⋃

i∈I

V ⊥
i

)⊥

=
⋂

i∈I

Vi;

dimN (G)(V ⊥
i ) = dimN (G)(V )− dimN (G)(Vi);

dimN (G)


clos

(⋃

i∈I

V ⊥
i

)⊥
 = dimN (G)(V )− dimN (G)

(
clos

(⋃

i∈I

V ⊥
i

))
.
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Now the claim follows from (3).
(5) This follows from Theorem 1.9 (7).
(6) This follows from Theorem 1.9 (8). ut

We conclude from Theorem 1.12 (1) and (2)

Lemma 1.13. Let f : U → V be a morphism of Hilbert N (G)-modules whose
von Neumann dimension is finite. Then the following statements are equiva-
lent:

(1) f is a weak isomorphism;
(2) The unitary part of the polar decomposition of f is an isomorphism;
(3) f∗ is a weak isomorphism;
(4) f is injective and dimN (G)(U) = dimN (G)(V );
(5) f has dense image and dimN (G)(U) = dimN (G)(V ).

Example 1.14. In this example we present a Hilbert N (Z)-module U which
is not finitely generated but has finite von Neumann dimension. In the sequel
we use the identification of Example 1.4. For an interval I ⊂ [0, 1] let χI ∈
N (Z) = L∞(S1) be the characteristic function of the subset {exp(2πit) | t ∈
I}. Define two Hilbert N (Z)-modules by the orthogonal Hilbert sums

U =
∞⊕

n=1

im(χ[0,2−n]);

V =
∞⊕

n=1

im(χ[1/(n+1),1/n]),

where im(χI) is the direct summand in l2(Z) = L2(S1) given by the projec-
tion χI ∈ N (Z). Theorem 1.12 and Example 1.11 imply

dimN (Z)(U) = dimN (Z)(V ) = 1.

We want to show that U is not finitely generated. This is not obvious, for
instance, V is isomorphic to the Hilbert N (Z)-module l2(Z) and in particular
finitely generated, although it is defined as an infinite Hilbert sum of non-
trivial Hilbert N (Z)-modules.

To show that U is not finitely generated, we use the center valued dimen-
sion function which assigns to a finitely generated Hilbert N (Z)-module P
an element

dimc
N (G)(P ) ∈ L∞(S1) = N (Z).

Its definition is the same as the definition of dimN (G)(P ) with the excep-
tion that one replaces the standard trace trN (Z) : N (Z) → C by the identity
id: N (Z) → N (Z). (More details will be given in Subsection 9.1.3 and 9.2.1.)
Suppose that U is finitely generated. Then U is a direct summand in l2(Z)k
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for some k ≥ 0. Since
⊕k+1

n=1 im(χ[0,2−n]) is a direct summand in U and hence
in l2(Z)k, we conclude

k+1∑
n=1

χ[0,2−n] = dimc
N (Z)

(
k+1⊕
n=1

im(χ[0,2−n])

)
≤ dimc

N (Z)(l
2(Z)k) = ck,

where ck : S1 → C is the constant function with value k. But this is a contra-
diction, since

∑k+1
n=1 χ[0,2−n] is equal to k + 1 on the subset {exp(2πit) | t ∈

[0, 2−k−1]} whose measure is different from zero.

1.1.4 Hilbert Chain Complexes

Definition 1.15 (Hilbert chain complex). A Hilbert N (G)-chain com-
plex C∗ is a sequence indexed by p ∈ Z of maps of Hilbert N (G)-modules

. . .
cp+2−−−→ Cp+1

cp+1−−−→ Cp
cp−→ Cp−1

cp−1−−−→ . . .

such that cp ◦ cp+1 = 0 for all p ∈ Z. We call C∗ positive if Cp vanishes for
p < 0. We say it is finitely generated if each Cp is a finitely generated Hilbert
N (G)-module.

It is d-dimensional if Cp vanishes for |p| > d. It is finite dimensional if it
is d-dimensional for some d ∈ N. We call C∗ finite if C∗ is finitely generated
and finite dimensional.

There are obvious notions of chain maps and chain homotopies.

Definition 1.16 (L2-homology and L2-Betti numbers). Define the (re-
duced) p-th L2-homology and the p-th L2-Betti number of a Hilbert N (G)-
chain complex C∗ by

H(2)
p (C∗) := ker(cp)/ clos(im(cp+1));

b(2)
p (C∗) := dimN (G)(H(2)

p (C∗)).

Notice that we divide by the closure of the image and not by the im-
age of cp+1. This has the effect that H

(2)
p (C∗) inherits the structure of a

Hilbert space and a G-action from Cp. This is indeed a Hilbert N (G)-
structure on H

(2)
p (C∗). Namely, H

(2)
p (C∗) is isometrically G-isomorphic to

ker(cp) ∩ im(cp+1)⊥. The Laplace operator is defined by

∆p = cp+1c
∗
p+1 + c∗pcp : Cp → Cp. (1.17)

We have the following “baby”-version of the L2-Hodge-de Rham Theorem
1.57.
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Lemma 1.18. Let C∗ be a Hilbert chain complex. Then we get the orthogonal
decomposition of Hilbert N (G)-modules

Cp = ker(∆p)⊕ clos(im(cp+1))⊕ clos(im(c∗p))

and the natural map

i : ker(cp) ∩ ker(c∗p+1) = ker(∆p) → H(2)
p (C∗)

is an isometric G-isomorphism.

Proof. We have the obvious orthogonal decomposition

Cp = (ker(cp) ∩ im(cp+1)⊥)⊕ clos(im(cp+1))⊕ ker(cp)⊥.

Since ker(cp)⊥ = clos(im(c∗p)) and im(cp+1)⊥ = ker(c∗p+1), it remains to show

ker(∆p) = ker(cp) ∩ ker(c∗p+1).

This follows from the calculation

〈∆p(v), v〉 = |cp(v)|2 + |c∗p+1(v)|2. ut

One important tool in the theory of chain complexes is the long exact
homology sequence. This does not go through directly, but in a weak sense
under certain finiteness conditions. Let 0 → C∗

i∗−→ D∗
p∗−→ E∗ → 0 be an

exact sequence of Hilbert N (G)-chain complexes. The maps i∗ and p∗ induce
maps on the homology groups denoted by H

(2)
n (i∗) and H

(2)
n (p∗). Next we

want to define a natural boundary operator

∂n : H(2)
n (E∗) → H

(2)
n−1(C∗).

As a linear G-equivariant map it is defined in the usual way. Namely, let z ∈
ker(en) be a representative of [z] ∈ H

(2)
n (E∗). Choose y ∈ Dn and x ∈ Cn−1

with the properties that pn(y) = z and in−1(x) = dn(y). We can find such y
since pn is surjective and such x since pn−1 ◦ dn(y) = en ◦ pn(y) = en(z) = 0.
We have x ∈ ker(cn−1) since in−2 is injective and

in−2 ◦ cn−1(x) = dn−1 ◦ in−1(x) = dn−1 ◦ dn(y) = 0.

We define
∂n([z]) := [x].

It is easy to check that this is independent of the choice of the representative
z for [z] and that this map is linear and G-equivariant. In order to prove that
it is a bounded operator, we give a different description. Notice for the sequel
that a bijective bounded operator of Hilbert spaces has a bounded inverse by



26 1. L2-Betti Numbers

the Inverse Mapping Theorem. Consider the following composition of maps
of Hilbert N (G)-modules.

ker(en) → En

(pn|ker(pn)⊥ )−1

−−−−−−−−−−→ ker(pn)⊥
dn|ker(pn)⊥−−−−−−−→ Dn−1

One easily checks that its image lies in ker(pn−1). Hence we can compose
it with the isomorphism of Hilbert N (G)-modules i−1

n−1 : ker(pn−1) → Cn−1.
Again one easily checks that the image of this map lies in ker(cn−1) so that
we have defined a map of Hilbert N (G)-modules

∂′n : ker(en) → ker(cn−1).

Since it maps im(en+1) to im(cn), it induces a map on L2-homology which is
the desired map ∂n.

Although the boundary operator can always be defined and one gets a
long homology sequence, this long homology sequence does not have to be
weakly exact as the following example shows.

Example 1.19. Let G be the trivial group. Then a Hilbert N (G)-module is
just a Hilbert space and a map of Hilbert N (G)-modules is just a bounded
operator. Denote by H the Hilbert space {(an ∈ C)n∈N |

∑ |an|2 < ∞} with
the inner product 〈(an), (bn)〉 =

∑
an · bn. Define a linear bounded operator

f : H → H by sending (an) to (1/n · an). Obviously f is injective and has
dense image. But f is not surjective because u := (1/n)n ∈ H cannot have a
preimage. Let pr : H → spanC(u)⊥ be the projection where spanC(u) is the
one-dimensional subspace generated by u. Then pr ◦f is injective with dense
image. Hence f and pr ◦f are weak isomorphisms of Hilbert spaces but pr is
not. View the following diagram as a short exact sequence of Hilbert chain
complexes which are concentrated in dimensions 0 and 1

0 −−−−→ 0 −−−−→ H
id−−−−→ H −−−−→ 0

y f

y pr ◦f
y

0 −−−−→ spanC(u) −−−−→ H
pr−−−−→ spanC(u)⊥ −−−−→ 0

All the L2-homology groups are trivial except the zero-th L2-homology group
of the left Hilbert chain complex 0 → spanC(u). Hence there cannot be a long
weakly exact homology sequence.

Notice that in the example above the dimension of the Hilbert space H
is infinite.

Definition 1.20. A morphism f : U → V of Hilbert N (G)-modules is called
Fredholm if for some λ > 0 we have dimN (G)(im(Ef∗f

λ )) < ∞, where {Ef∗f
λ |

λ ∈ R} is the (right continuous) spectral family associated to the positive
operator f∗f (see Definition 1.68). A Hilbert N (G)-chain complex C∗ is called
Fredholm at p if the induced morphism cp : Cp/ clos(im(cp+1)) → Cp−1 is
Fredholm. We call C∗ Fredholm if it is Fredholm at p for all p ∈ Z.
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For this chapter it suffices to know that a Hilbert N (G)-chain complex
C∗, for which Cp is finitely generated or satisfies dimN (G)(Cp) < ∞, is au-
tomatically Fredholm at p. The next result is due to Cheeger and Gromov
[105, Theorem 2.1].

Theorem 1.21 (Weakly exact long L2-homology sequence). Let 0 →
C∗

i∗−→ D∗
p∗−→ E∗ → 0 be an exact sequence of Hilbert N (G)-chain complexes

which are Fredholm. Then the long homology sequence

. . .
H

(2)
n+1(p∗)−−−−−−→ H

(2)
n+1(E∗)

∂n+1−−−→ H(2)
n (C∗)

H(2)
n (i∗)−−−−−→ H(2)

n (D∗)

H(2)
n (p∗)−−−−−→ H(2)

n (E∗)
∂n−→ . . .

is weakly exact.

Proof. We only prove weak exactness at H
(2)
n (D∗), the other cases are similar.

Since p∗ ◦ i∗ = 0, we get clos(im(H(2)
n (i∗))) ⊂ ker(H(2)

n (p∗)). It remains to
prove equality. Let U be the orthogonal complement of clos(im(H(2)

n (i∗))) in
ker(H(2)

n (p∗)). Let V ⊂ ker(d∗n+1)∩ker(dn) be the subspace corresponding to
U under the isomorphism of Lemma 1.18

ker(d∗n+1) ∩ ker(dn) → H(2)
n (D∗).

In view of Theorem 1.12 (1) it remains to show

dimN (G)(V ) = 0.

We have
pn(V ) ⊂ clos(im(en+1))

since H
(2)
n (p∗)(U) is zero. The operator en+1 ◦ e∗n+1 : En → En is positive.

Let {Eλ | λ ∈ R} be its (right continuous) spectral family (see Definition
1.68) of projections Eλ : En → En. Since Eλ commutes with en+1 ◦ e∗n+1, it
sends clos(im(en+1 ◦ e∗n+1)) to itself. We have

clos(im(en+1◦e∗n+1)) = ker(en+1◦e∗n+1)
⊥ = ker(e∗n+1)

⊥ = clos(im(en+1)),

where the second equality follows from 〈en+1 ◦ e∗n+1(v), v〉 = |e∗n+1(v)|2. This
implies

Eλ ◦ pn(V ) ⊂ clos(im(en+1)).

Next we show that Eλ ◦ pn is injective on V for λ > 0. Consider an element
v ∈ V with Eλ ◦ pn(v) = 0. We get pn(v) ∈ im(Eλ)⊥. Notice that en+1 ◦ e∗n+1

induces an invertible operator from im(Eλ)⊥ to itself for λ > 0, the inverse
is given by ∫ ∞

λ

1
µ

dEµ.
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Hence we can find w ∈ En+1 satisfying

pn(v) = en+1(w).

Since pn+1 is surjective and ker(pn) = im(in), we can find x ∈ Dn+1 and
y ∈ Cn satisfying

in(y) = dn+1(x) + v.

This implies that cn(y) = 0. Hence we get [y] ∈ H
(2)
n (C) whose image under

H
(2)
n (i) is the element in U which corresponds to v ∈ V . Since U is orthogonal

to im(H(2)
n (i)), we conclude v = 0. We have shown that Eλ ◦ pn is injective

on V for λ > 0. Now we conclude from Theorem 1.12 and the facts that Eλ

is right continuous in λ and E∗ is Fredholm by assumption

dimN (G)(V ) = dimN (G) (clos(Eλ ◦ pn(V )))
= dimN (G) (clos(Eλ ◦ pn(V )) ∩ clos(im(en+1)))
= lim

λ→0+
dimN (G) (clos(Eλ ◦ pn(V )) ∩ clos(im(en+1)))

= dimN (G)

( ⋂

λ>0

clos(Eλ ◦ pn(V )) ∩ clos(im(en+1))

)

≤ dimN (G)

( ⋂

λ>0

im(Eλ) ∩ clos(im(en+1))

)

= dimN (G) (im(E0) ∩ clos(im(en+1)))

= dimN (G)

(
ker(en+1 ◦ e∗n+1) ∩ clos(im(en+1))

)

= dimN (G)

(
ker(e∗n+1) ∩ clos(im(en+1))

)

= dimN (G)(0)
= 0.

This finishes the proof of Theorem 1.21. ut
Let G and H be groups. Let U be a Hilbert N (G)-module and V be

a Hilbert N (H)-module. The Hilbert space tensor product U ⊗ V with the
obvious G × H-operation is a Hilbert N (G × H)-module because l2(G) ⊗
l2(H) is isometrically G ×H-isomorphic to l2(G ×H). Let C∗ be a Hilbert
N (G)-chain complex and D∗ be a Hilbert N (H)-chain complex. Their tensor
product is the Hilbert N (G×H)-chain complex C∗⊗D∗ with n-th differential
en which is given by

(C∗ ⊗D∗)n :=
n⊕

i=0

Ci ⊗Dn−i;

en|Ci⊗Dn−i := ci ⊗ id+(−1)i · id⊗dn−i.
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Lemma 1.22. Let C∗ be a Hilbert N (G)-chain complex and let D∗ be a
Hilbert N (H)-chain complex. Then there is a natural isomorphism of Hilbert
N (G×H)-modules for n ≥ 0

Kn :
⊕

p+q=n

H(2)
p (C∗)⊗H(2)

q (D∗)
∼=−→ H(2)

n (C∗ ⊗D∗).

Proof. Given an element u ∈ ker(cp) and v ∈ ker(dq), define Kn([u] ⊗ [v])
by the class of up ⊗ vq ∈ ker ((c∗ ⊗ d∗)n). Notice that the Laplacian ∆n on
(C∗ ⊗D∗)n =

⊕
p+q=n Cp ⊗Dq is given by

⊕
p+q=n ∆C

p ⊗ idDq
+ idCp

⊗∆D
q ,

where ∆C
∗ and ∆D

∗ denote the Laplacians on C∗ and D∗. To show that Kn is
an isomorphism, it suffices to prove because of Lemma 1.18 that the kernel
of ∆C

p ⊗ idDq
+ idCp

⊗∆D
q is ker(∆C

p ) ⊗ ker(∆D
q ). Because of the orthogonal

decompositions Cp = ker(∆C
p ) ⊕ ker(∆C

p )⊥ and Dq = ker(∆D
q ) ⊕ ker(∆D

q )⊥

it remains to show that the three induced positive endomorphisms

(∆C
p )⊥ ⊗ id : ker(∆C

p )⊥ ⊗ ker(∆D
q ) → ker(∆C

p )⊥ ⊗ ker(∆D
q );

id⊗(∆D
q )⊥ : ker(∆C

p )⊗ ker(∆D
q )⊥ → ker(∆C

p )⊗ ker(∆D
q )⊥;

(∆C
p )⊥ ⊗ id+ id⊗(∆D

q )⊥ : ker(∆C
p )⊥ ⊗ ker(∆D

q )⊥ → ker(∆C
p )⊥ ⊗ ker(∆D

q )⊥

are injective. But this follows from the facts that a selfadjoint endomorphism
is injective if and only if it has dense image, the sum of two injective positive
operators is injective again and from the injectivity of (∆C

p )⊥ and (∆D
q )⊥. ut

Of course everything in this section has an obvious analog for Hilbert
N (G)-cochain complexes.

1.1.5 Induction for Group von Neumann Algebras

Next we investigate how group von Neumann algebras and Hilbert modules
behave under induction.

Let i : H → G be an injective group homomorphism. Let M be a Hilbert
N (H)-module. There is an obvious pre-Hilbert structure on CG⊗CH M for
which G acts by isometries since CG⊗CH M as a complex vector space can
be identified with

⊕
G/H M . Its Hilbert space completion is a Hilbert N (G)-

module and denoted by i∗M . A map of Hilbert N (H)-modules f : M → N
induces a map of Hilbert N (G)-modules i∗f : i∗M → i∗N . Thus we obtain a
covariant functor from the category of Hilbert N (H)-modules to the category
of Hilbert N (G)-modules. Obviously i∗l2(H) = l2(G) and i∗ is compatible
with direct sums. If M is finitely generated, i∗M is finitely generated.

Definition 1.23 (Induction). Let i : H −→ G be an injective group homo-
morphism. The Hilbert N (G)-module i∗M is called the induction with i of
M . In particular i induces a ring homomorphism

i : N (H) → N (G).



30 1. L2-Betti Numbers

Lemma 1.24. Let i : H → G be an injective group homomorphism. Then

(1) We have trN (H) = trN (G) ◦i : N (H) → C;
(2) We get for a Hilbert N (H)-module M

dimN (G)(i∗M) = dimN (H)(M);

(3) If 0 → U → V → W → 0 is a sequence of Hilbert N (H)-modules
which is exact or weakly exact respectively, then the induced sequence
0 → i∗U → i∗V → i∗W → 0 is a sequence of Hilbert N (G)-modules
which is exact or weakly exact respectively;

(4) Let C∗ be a Hilbert N (H)-chain complex. Then i∗C∗ is a Hilbert N (G)-
chain complex and for all p ∈ Z

i∗H(2)
p (C∗) = H(2)

p (i∗C∗);

dimN (H)(H(2)
p (C∗)) = dimN (G)(H(2)

p (i∗C∗)).

Proof. (1) follows directly from the definitions.
(2) Let pr : V ⊗ l2(H) → V ⊗ l2(H) be an H-equivariant unitary projection
describing M for some Hilbert space V . Then i∗(pr) describes i∗M .
(3) Since any exact sequence splits and i∗ is compatible with direct sums,
the claim follows for exact sequences. In order to treat the weakly exact case
it suffices to show that for a weak isomorphism f : U → V of Hilbert N (H)-
modules the induced map i∗f : i∗U → i∗V is a weak isomorphism. By the
Polar Decomposition we can assume without loss of generality that U = V
and f is positive. Since the kernel of a positive operator is the orthogonal
complement of its image and i∗f is positive it remains to show that the image
of i∗f is dense if the image of f is dense. This follows from the definition of
i∗f since CG is dense in l2(G).
(4) This follows from (2) and (3). ut

1.2 Cellular L2-Betti Numbers

In this section we apply the material of Section 1.1 to regular coverings of
CW -complexes of finite type (i.e. all skeleta are finite) and thus define and
study cellular L2-Betti numbers for them.

Since regular coverings of CW -complexes are special cases of G-CW -
complexes and we will need the notion of a G-CW -complex in its full gener-
ality later, we collect some basic facts about G-CW -complexes. However, in
order to read this and the next chapters one may skip subsection 1.2.1 and
just keep in mind the following two facts: (1) A free finite G-CW -complex
X or free G-CW -complex X of finite type respectively is the same as a G-
space X such that the projection X → G\X is a regular covering and G\X
is a finite CW -complex or CW -complex of finite type respectively. (2) The
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cellular ZG-chain complex of a free G-CW -complex is free and has a cellular
ZG-basis which is unique up to permutation and multiplication with trivial
units ±g ∈ ZG for g ∈ G.

1.2.1 Survey on G-CW -Complexes

In this subsection G can be any topological Hausdorff group. We recall some
basic facts about G-CW -complexes. More informations and proofs can be
found for instance in [495, Sections II.1 and II.2], [326, Sections 1 and 2],
[365]. Throughout this book we will always work in the category of compactly
generated spaces (see [482], [521, I.4]).

Definition 1.25 (G-CW -complex). A G-CW -complex X is a G-space to-
gether with a G-invariant filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn ⊂ . . .
⋃

n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration (i.e. a
set C ⊂ X is closed if and only if C∩Xn is closed in Xn for all n ≥ 0) and Xn

is obtained from Xn−1 for each n ≥ 0 by attaching equivariant n-dimensional
cells, i.e. there exists a G-pushout

∐
i∈In

G/Hi × Sn−1

∐
i∈In

qi−−−−−−→ Xn−1y
y

∐
i∈In

G/Hi ×Dn

∐
i∈In

Qi−−−−−−→ Xn

Provided that G is discrete, a G-CW -complex X is the same as a CW -
complex X with G-action such that for any open cell e ⊂ X and g ∈ G with
ge ∩ e 6= ∅ left multiplication with g induces the identity on e.

The space Xn is called the n-skeleton of X. Notice that only the filtration
by skeleta belongs to the G-CW -structure but not the G-pushouts, only
their existence is required. An equivariant open n-dimensional cell is a G-
component of Xn−Xn−1, i.e. the preimage of a path component of G\(Xn−
Xn−1). The closure of an equivariant open n-dimensional cell is called an
equivariant closed n-dimensional cell . If one has chosen the G-pushouts in
Definition 1.25, then the equivariant closed n-dimensional cells are just the
G-subspaces Qi(G/Hi ×Dn).

If X is a G-CW -complex, then G\X is a CW -complex. If G is discrete
or if G is a Lie group and H ⊂ G is compact, then the H-fixed point set XH

inherits a WH-CW -complex structure. Here and in the sequel NH = {g ∈ G |
gHg−1 = H} is the normalizer of H in G and WH denotes the Weyl group
NH/H of H in G. A G-space X is called proper if for each pair of points x
and y in X there are open neighborhoods Vx of x and Wy of y in X such that
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the closure of the subset {g ∈ G | gVx ∩Wy 6= ∅} of G is compact. There are
various slightly different definitions of proper G-space in the literature but
for all these notions of properness a G-CW -complex X is proper if and only
if all its isotropy groups are compact. In particular a free G-CW -complex
is always proper. However, not every free G-space is proper. A G-space is
called cocompact if G\X is compact. A G-CW -complex X is finite if X has
only finitely many equivariant cells. A G-CW -complex is finite if and only
if it is cocompact. A G-CW -complex X is of finite type if each n-skeleton is
finite. It is called of dimension ≤ n if X = Xn and finite dimensional if it is
of dimension ≤ n for some integer n. A free G-CW -complex X is the same
as a regular covering X → Y of a CW -complex Y with G as group of deck
transformations.

A G-map f : X → Y of G-CW -complexes is a G-homotopy equivalence
if and only if for any subgroup H ⊂ G which occurs as isotropy group of X
or Y the induced map fH : XH → Y H is a weak homotopy equivalence, i.e.
induces a bijection on πn for all base points and n ≥ 0. A G-map of G-CW -
complexes f : X → Y is cellular if f(Xn) ⊂ Yn holds for all n ≥ 0. There is
an equivariant version of the Cellular Approximation Theorem, namely, each
G-map of G-CW -complexes is G-homotopic to a cellular one. If X is a G-CW -
complex and Y is an H-CW -complex, then X ×Y is a G×H-CW -complex.
Notice that one of the advantages of working in the category of compactly
generated spaces is that this is true without any further assumptions on the
topology of X or Y such as being locally compact.

Now suppose that G is discrete. The cellular ZG-chain complex C∗(X) of a
G-CW -complex has as n-th chain group the singular homology Hn(Xn, Xn−1)
and its n-th differential is the boundary homomorphism associated to the
triple (Xn, Xn−1, Xn−2). If one has chosen a G-pushout as in Definition 1.25,
then there is a preferred ZG-isomorphism

⊕

i∈In

Z[G/Hi]
∼=−→ Cn(X). (1.26)

If we choose a different G-pushout, we obtain another isomorphism, but the
two differ only by the composition of an automorphism which permutes the
summands appearing in the direct sum and an automorphism of the shape

⊕

i∈In

Z[G/Hi]
⊕

i∈In
εi·rgi−−−−−−−−→

⊕

i∈In

Z[G/Hi] (1.27)

where gi ∈ G, εi ∈ {±1} and εi · rgi sends gHi to εi · ggiHi. In particular we
obtain for a free G-CW -complex X a cellular ZG-basis Bn for Cn(X) which
is unique up to permutation and multiplication with trivial units in ZG, i.e.
elements of the shape ±g ∈ ZG for g ∈ G.

If G is a Lie group and M is a (smooth) proper G-manifold, then an equiv-
ariant smooth triangulation induces a G-CW -structure on M . For equivariant
smooth triangulations we refer to [271], [272], [273]. There are obvious notions
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of pairs of G-CW -complexes (X, A) and of a relative G-CW -complex (X,A).
In the latter case replace X−1 = ∅ by X−1 = A for an arbitrary (compactly
generated) G-space A.

There are some special G-CW -complexes. A family of subgroups F is
a non-empty set of subgroups of G which is closed under conjugation and
taking finite intersections. Examples are the trivial family T R consisting of
the trivial subgroup and the family FIN of finite subgroups.

Definition 1.28. A classifying space E(G,F) for F is a G-CW -complex
such that E(G,F)H is contractible for H ∈ F and all isotropy groups of
E(G,F) belong to F .

If F is the family T R or FIN , we abbreviate

EG = E(G, T R);
BG = G\EG;
EG = E(G,FIN ).

The existence of E(G,F) and proofs of their main property, namely, that
for any G-CW -complex X whose isotropy groups belong to F there is up to
G-homotopy precisely one G-map from X to E(G,F) and thus that two such
classifying spaces are G-homotopy equivalent, are presented in [493],[495,
I.6]. A functorial “bar-type” construction is given in [128, section 7]. Notice
that G → EG → BG is a model for the universal G-principal bundle. If
L is a Lie group with finitely many components and K ⊂ L is a maximal
compact subgroup, then for any discrete subgroup G ⊂ L we get a model for
E(G;FIN ) by L/K (see [1, Corollary 4.14]). The Rips complex of a word-
hyperbolic group G is also a model for E(G;FIN ) (see [370]). The space
E(G;FIN ) for a discrete group G is also called the classifying space for
proper G-spaces since for any numerably proper G-space X there is up to G-
homotopy precisely one G-map from X to E(G,FIN ). For more information
about E(G,FIN ) we refer for instance to [27], [128, section 7], [495, section
I.6], [336] and [342].

1.2.2 The Cellular L2-Chain Complex

Definition 1.29. Let X be a free G-CW -complex of finite type. Define its
cellular L2-chain complex and its cellular L2-cochain complex by

C
(2)
∗ (X) := l2(G)⊗ZG C∗(X);

C∗(2)(X) := homZG(C∗(X), l2(G)),

where C∗(X) is the cellular ZG-chain complex.

If we fix a cellular basis for Cn(X) we obtain explicit isomorphisms
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C(2)
n (X) ∼= Cn

(2)(X) ∼=
k⊕

i=1

l2(G)

for some non-negative integer k and this induces the structure of a finitely
generated Hilbert N (G)-module on C

(2)
n (X) and Cn

(2)(X). One easily checks
that the choice of cellular basis does not affect this structure. Hence the
cellular L2-chain complex and the cellular L2-cochain complex come with
preferred structures of finitely generated Hilbert N (G)-chain complexes, pro-
vided that X is a free G-CW -complex of finite type.

Definition 1.30 (L2-homology and L2-Betti numbers). Let X be a free
G-CW -complex of finite type. Define its (reduced) p-th L2-homology, (re-
duced) p-th L2-cohomology and p-th L2-Betti number by the corresponding
notions of the cellular L2-(co)chain complexes (see Definition 1.16)

H(2)
p (X;N (G)) := H(2)

p (C(2)
∗ (X));

Hp
(2)(X;N (G)) := Hp

(2)(C
∗
(2)(X));

b(2)
p (X;N (G)) := b(2)

p (C(2)
∗ (X)).

If the group G and its action are clear from the context, we omit N (G) in the
notation above. For instance for a connected CW -complex Y of finite type
we denote by Ỹ its universal covering, G is understood to be π1(Y ) and we
abbreviate b

(2)
p (Ỹ ) = b

(2)
p (Ỹ ;N (π1(Y ))).

If M is a cocompact free proper G-manifold, define its p-th L2-Betti num-
ber by the corresponding notion for any equivariant smooth triangulation.

Remark 1.31. The Hilbert N (G)-modules H
(2)
p (X) and Hp

(2)(X) are iso-
metrically G-isomorphic because of Lemma 1.18 since the p-th Laplace oper-
ator of the chain complex and the cochain complex are the same. In particular
the cohomological and homological L2-Betti numbers are the same.

Since we will prove in Theorem 1.35 (1) that b
(2)
p (X) depends only on the

G-homotopy type of X and two equivariant smooth triangulations of a co-
compact free proper G-manifold M are G-homotopy equivalent, the definition
of the p-th L2-Betti number for M makes sense.

All these notions extend in the obvious way to pairs or more generally to
relative free G-CW -complexes of finite type (X,A).

Example 1.32. If G is finite and X is a free G-CW -complex of finite type,
then b

(2)
p (X) is the classical p-th Betti number of X multiplied with 1

|G| .

Let f∗ : C∗ → D∗ be a chain map of Hilbert chain complexes or chain
complexes of modules over a ring. Define cyl∗(f∗) to be the chain complex
with n-th differential
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Cn−1 ⊕ Cn ⊕Dn



−cn−1 0 0
− id cn 0
fn−1 0 dn




−−−−−−−−−−−−−→ Cn−2 ⊕ Cn−1 ⊕Dn−1.

Define cone∗(f∗) to be the quotient of cyl∗(f∗) by the obvious copy of C∗.
Hence the n-th differential of cone∗(f∗) is

Cn−1 ⊕Dn


−cn−1 0

fn−1 dn




−−−−−−−−−−→ Cn−2 ⊕Dn−1.

Given a chain complex C∗, define ΣC∗ to be the quotient of cone∗(idC∗) by
the obvious copy of D∗, i.e. the chain complex with n-th differential

Cn−1
−cn−1−−−−→ Cn−2.

Definition 1.33. We call cyl∗(f∗) the mapping cylinder, cone∗(f∗) the
mapping cone of the chain map f∗ and ΣC∗ the suspension of the chain
complex C∗.

Notice that with these definitions the cellular chain complex of a map-
ping cylinder of a cellular map f : X → Y of G-CW -complexes is the mapping
cylinder of the induced chain map C∗(f) : C∗(X) → C∗(Y ). Analogous state-
ments holds for the mapping cone and the suspension (relative to the cone
and suspension points). For the next lemma see also [115, section 5], [152],
[169] and [331, Example 4.3].

Lemma 1.34. (1) Let C∗ be a free C[Zn]-chain complex of finite type with
some basis. Denote by C[Zn](0) the quotient field of the integral domain
C[Zn]. Then

b(2)
p

(
l2(Zn)⊗C[Zn] C∗

)
= dimC[Zn](0)

(
C[Zn](0) ⊗C[Zn] Hp(C∗)

)
.

(2) Let X be a free Zn-CW -complex of finite type. Then

b(2)
p (X) = dimC[Zn](0)

(
C[Zn](0) ⊗Z[Zn] Hp(X)

)
.

Proof. (1) We abbreviate

C
(0)
∗ := C[Zn](0) ⊗C[Zn] C∗;

C
(2)
∗ := l2(Zn)⊗C[Zn] C∗.

We have to show

dimC[Zn](0)

(
C[Zn](0) ⊗C[Zn] Hp(C∗)

)
= dimN (Zn)

(
H(2)

p (C(2)
∗ )

)
.
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In the sequel we can assume without loss of generality that C∗ is finite
dimensional. We first treat the case where C

(0)
∗ has trivial homology. Then

we can find a C[Zn](0)-chain contraction γ′∗ for C
(0)
∗ . Choose an element

u ∈ C[Zn] and C[Zn]-homomorphisms γp : Cp → Cp+1 such that u 6= 0 and
lu ◦ γ′p = (γp)(0) holds for all p where lu is multiplication with u. Then γ∗
is a chain homotopy of C[Zn]-chain maps lu ' 0: C∗ → C∗. This induces
a chain homotopy of chain maps of finite Hilbert N (Zn)-chain complexes
lu ' 0: C

(2)
∗ → C

(2)
∗ . Hence multiplication with u induces the zero map on the

L2-homology of C
(2)
∗ . This is only possible if the L2-homology is trivial and

hence all L2-Betti numbers of C
(2)
∗ vanish because lu : l2(Zn)k → l2(Zn)k is

injective for any non-negative integer k (use the Fourier transform in Example
1.4).

Next we treat the general case. Put

bp = dimC[Zn](0)

(
C[Zn](0) ⊗C[Zn] Hp(C∗)

)
.

Notice that C[Zn](0) is flat over C[Zn]. There is a C[Zn](0)-isomorphism

bp⊕

i=1

C[Zn](0) → Hp(C
(0)
∗ ) = C[Zn](0) ⊗C[Zn] Hp(C∗).

By composing it with a map given by multiplication with a suitable element
in C[Zn] one can construct a C[Zn]-map

ip :
bp⊕

i=1

C[Zn] → Hp(C∗)

such that (ip)(0) is a C[Zn](0)-isomorphism. Let D∗ be the finite free C[Zn]-
chain complex whose p-th chain module is Dp =

⊕bp

i=1 C[Zn] and whose
differentials are all trivial. Choose a C[Zn]-chain map j∗ : D∗ → C∗ which
induces on the p-th homology the map ip. Let cone∗(j∗) be its mapping
cone. There is a canonical exact sequence of C[Zn]-chain complexes 0 →
C∗ → cone∗(j∗) → ΣD∗ → 0. Since it is split-exact in each dimension,
it remains exact under the passage from C∗ to C

(0)
∗ or C

(2)
∗ . We conclude

from the long exact homology sequence that cone∗(j∗)(0) is acyclic since the
boundary operator can be identified with the map induced by j

(0)
∗ . Hence the

L2-homology of cone∗(j∗)(2) is trivial by the first step. We conclude from the
long weakly exact L2-homology sequence (see Theorem 1.21) and additivity
of the von Neumann dimension (see Theorem 1.12 (2))

b(2)
p (C(2)

∗ ) = b(2)
p (D(2)

∗ ) = bp = dimC[Zn](0)

(
C[Zn](0) ⊗C[Zn] Hp(C∗)

)
.

(2) This follows from (1) applied to C∗(X)⊗Z C. ut
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Notice that Example 1.32 and Lemma 1.34 (2) imply that the L2-Betti
numbers of a free G-complex of finite type are always rational if G is finite
and integral if G is Zn. We will investigate the question, what values these
can take for general G, in detail in Chapter 10.

1.2.3 Basic Properties of Cellular L2-Betti Numbers

Theorem 1.35 (L2-Betti numbers). (1) Homotopy invariance
Let f : X → Y be a G-map of free G-CW -complexes of finite type. If the
map induced on homology with complex coefficients Hp(f ;C) : Hp(X;C) →
Hp(Y ;C) is bijective for p ≤ d− 1 and surjective for p = d, then

b(2)
p (X) = b(2)

p (Y ) for p < d;

b
(2)
d (X) ≥ b

(2)
d (Y ).

In particular we get for all p ≥ 0 if f is a weak homotopy equivalence

b(2)
p (X) = b(2)

p (Y );

(2) Euler-Poincaré formula
Let X be a free finite G-CW -complex. Let χ(G\X) be the Euler charac-
teristic of the finite CW -complex G\X, i.e.

χ(G\X) :=
∑

p≥0

(−1)p · βp(G\X) ∈ Z,

where βp(G\X) is the number of p-cells of G\X. Then

χ(G\X) =
∑

p≥0

(−1)p · b(2)
p (X);

(3) Poincaré duality
Let M be a cocompact free proper G-manifold of dimension n which is
orientable. Then

b(2)
p (M) = b

(2)
n−p(M,∂M);

(4) Künneth formula
Let X be a free G-CW -complex of finite type and Y be a free H-CW -
complex of finite type. Then X×Y is a free G×H-CW -complex of finite
type and we get for all n ≥ 0

b(2)
n (X × Y ) =

∑
p+q=n

b(2)
p (X) · b(2)

q (Y );
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(5) Wedges
Let X1, X2, . . . , Xr be connected (pointed) CW -complexes of finite type
and X =

∨r
i=1 Xi be their wedge. Then

b
(2)
1 (X̃)− b

(2)
0 (X̃) = r − 1 +

r∑

j=1

(
b
(2)
1 (X̃j)− b

(2)
0 (X̃j)

)
;

b(2)
p (X̃) =

r∑

j=1

b(2)
p (X̃j) for 2 ≤ p;

(6) Connected sums
Let M1, M2, . . . , Mr be compact connected m-dimensional manifolds
with m ≥ 3. Let M be their connected sum M1# . . . #Mr. Then

b
(2)
1 (M̃)− b

(2)
0 (M̃) = r − 1 +

r∑

j=1

(
b
(2)
1 (M̃j)− b

(2)
0 (M̃j)

)
;

b(2)
p (M̃) =

r∑

j=1

b(2)
p (M̃j) for 2 ≤ p ≤ m− 2;

(7) Morse inequalities
Let X be a free G-CW -complex of finite type. Let βp(G\X) be the number
of p-cells in G\X. Then we get for n ≥ 0

n∑
p=0

(−1)n−p · b(2)
p (X) ≤

n∑
p=0

(−1)n−p · βp(G\X);

(8) Zero-th L2-Betti number
Let X be a connected free G-CW -complex of finite type. Then

b
(2)
0 (X) =

1
|G| ,

where 1
|G| is to be understood to be zero if the order |G| of G is infinite;

(9) Restriction
Let X be a free G-CW -complex of finite type and let H ⊂ G be a subgroup
of finite index [G : H]. Let resH

G X be the H-space obtained from X by
restricting the G-action to an H-action. This is a free H-CW -complex
of finite type. Then we get for p ≥ 0

[G : H] · b(2)
p (X;N (G)) = b(2)

p (resH
G X;N (H));

(10) Induction
Let H be a subgroup of G and let X be a free H-CW -complex of finite
type. Then G×H X is a G-CW -complex of finite type and

b(2)
p (G×H X;N (G)) = b(2)

p (X;N (H)).
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Proof. (1) We can assume that f is cellular. Let C∗(f ;C) be the map induced
on the cellular CG-chain complexes. The homology Hp(cone∗(C∗(f ;C))) is
trivial for p ≤ d. Since cone∗(C∗(f ;C)) is a finitely generated free CG-chain
complex, it is CG-chain homotopy equivalent to a finitely generated free CG-
chain complex which is trivial in dimensions ≤ d. Hence cone∗(C

(2)
∗ (f) :

C
(2)
∗ (X) → C

(2)
∗ (Y )) is chain homotopy equivalent to a Hilbert N (G)-chain

complex which is trivial in dimensions ≤ d and in particular its L2-homology
is trivial in dimensions ≤ d. Now the claim follows from the long weakly
exact L2-homology sequence associated to C

(2)
∗ (f) (see Theorem 1.21) and

additivity of the von Neumann dimension (see Theorem 1.12 (2)).
(2) Analogous to the classical situation where χ(X) is expressed in terms of
(ordinary) Betti numbers the claim follows from the fact that the von Neu-
mann dimension is additive (see Theorem 1.12 (2)).
(3) There is a subgroup G0 ⊂ G of finite index which acts orientation preserv-
ing on M . Since b

(2)
p (resG0

G (M);N (G0)) = [G : G0] · b(2)
p (M ;N (G)) follows

from assertion (9) and similarly for (M, ∂M), we can assume without loss of
generality that G = G0, i.e. G\M is orientable. Then the Poincaré ZG-chain
homotopy equivalence [510, Theorem 2.1 on page 23]

∩[G\M ] : Cn−∗(M, ∂M) → C∗(M)

induces a homotopy equivalence of finitely generated Hilbert N (G)-chain
complexes Cn−∗

(2) (M, ∂M) → C
(2)
∗ (M). Now the assertion follows because

dim(Hp(Cn−∗
(2) (M,∂M))) = b

(2)
n−p(M ; ∂M) holds by Lemma 1.18.

(4) The obvious isomorphism of Z[G×H]-chain complexes C∗(X)⊗ZC∗(Y ) →
C∗(X × Y ) induces an isomorphism of Hilbert N (G × H)-chain complexes
C

(2)
∗ (X)⊗C

(2)
∗ (Y ) → C

(2)
∗ (X×Y ). Now apply Theorem 1.12 (5) and Lemma

1.22. (see also [530, Corollary 2.36 on page 181]).
(5) We may assume without loss of generality that r = 2. We obtain an
exact sequence of Hilbert N (π)-chain complexes for π = π1(X1 ∨ X2) =
π1(X1) ∗ π1(X2) and ik : π1(Xk) → π and i0 : {1} → π the obvious inclusions

0 → (i0)∗C
(2)
∗ ({∗}) → (i1)∗C

(2)
∗ (X̃1)⊕ (i2)∗C

(2)
∗ (X̃2) → C

(2)
∗ (X̃1 ∨X2) → 0.

Notice that (i0)∗C
(2)
∗ ({∗}) is concentrated in dimension zero. Now the claim

follows from Theorem 1.12 (2), Theorem 1.21 and Lemma 1.24 (2).
(6) We may assume without loss of generality that r = 2. The connected
sum M1#M2 is obtained by glueing M1\ int(Dm) and M2\ int(Dm) together
along ∂Dm. Since ∂Dm → Dm is (m− 1)-connected the inclusion

M1\ int(Dm) ∪∂Dm M2\ int(Dm) → M1 ∪Dm M2

is d-connected for d = m−1, i.e. induces an isomorphism on πn for n ≤ d−1
and an epimorphism on πd for all base points. Obviously M1 ∪Dm M2 is ho-
motopy equivalent to the wedge M1 ∨M2. Because of assertion (1) it suffices
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to prove the claims for M1 ∨M2 which has already been done.
(7) analogous to (2).
(8) If G is finite, the claim follows from Example 1.32. It remains to show
b
(2)
0 (X) = 0 if G is infinite. Since X → G\X is a covering with a path-

connected total space, there is a group epimorphism π1(G\X) → G. Since
G\X is of finite type, G is finitely generated. Let S be a finite set of genera-
tors. Let D∗ be the ZG-chain complex which is concentrated in dimension 0
and 1 and has as first differential

⊕

s∈S

ZG

⊕
s∈S rs−1−−−−−−−→ ZG,

where rs−1 is right multiplication with s − 1. There is a ZG-chain map
f∗ : D∗ → C∗(X) which is 0-connected. Hence it suffices because of the ar-
gument in the proof of (1) to show b

(2)
0 (l2(G)⊗ZG D∗) = 0. We have already

seen that this is the same as the zero-th L2-Betti number of the associated
Hilbert N (G)-cochain complex homZG(D∗, l2(G)) which is the dimension of
l2(G)G. Since l2(G)G = 0 for infinite G, the claim follows.
(9) This follows from Lemma 1.9 (8).

(10) This follows from Lemma 1.24 (4) and i∗(C
(2)
∗ (X)) = C

(2)
∗ (G×H X) for

the inclusion i : H → G. ut
Example 1.36. We give the values of the L2-Betti numbers for the universal
coverings of all compact connected 1- and 2-manifolds.

In dimension 1 there are only S1 and the unit interval I. We get from
Theorem 1.35 (9) or Lemma 1.34 (2) that b

(2)
p (S̃1) = 0 for all p ≥ 0. As I is

contractible, we have b
(2)
0 (Ĩ) = b0(I) = 1 and b

(2)
p (Ĩ) = 0 for p ≥ 1.

A manifold is called closed if it is compact and has no boundary. Let F d
g

be the orientable closed surface of genus g with d embedded 2-disks removed.
(As any nonorientable compact surface is finitely-covered by an orientable
surface, Theorem 1.35 (9) shows that it is enough to handle the orientable
case.) From Theorem 1.35 (2), (3) and (8) and the fact that a compact surface
with boundary is homotopy equivalent to a bouquet of circles, we conclude

b
(2)
0 (F̃ d

g ) =
{

1 if g = 0, d = 0, 1
0 otherwise ;

b
(2)
1 (F̃ d

g ) =
{

0 if g = 0, d = 0, 1
d + 2 · (g − 1) otherwise ;

b
(2)
2 (F̃ d

g ) =
{

1 if g = 0, d = 0
0 otherwise .

Of course b
(2)
p (F̃ d

g ) = 0 for p ≥ 3.
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Example 1.37. Let X → Y be a finite covering with d sheets of connected
CW -complexes of finite type. Then Theorem 1.35 (9) implies

b(2)
p (X̃) = d · b(2)

p (Ỹ ).

In particular we get for a connected CW -complex X of finite type for which
there is a selfcovering X → X with d sheets for some integer d ≥ 2 that
b
(2)
p (X̃) = 0 for all p ≥ 0.

Example 1.38. The following examples show that in general there are
hardly any relations between the ordinary Betti numbers bp(X) and the L2-
Betti numbers b

(2)
p (X̃) for a connected CW -complex X of finite type.

Given a group G such that BG is of finite type, define its p-th L2-Betti
number and its p-th Betti number by

b(2)
p (G) := b(2)

p (EG;N (G));
bp(G) := bp(BG).

We get from Theorem 1.35 (4), (5) and (9) for r ≥ 2 and non-trivial groups
G1, G2, . . ., Gr whose classifying spaces BGi are of finite type

b
(2)
1 (∗r

i=1Gi) = r − 1 +
r∑

i=1

(
b
(2)
1 (Gi)− 1

|Gi|
)

;

b
(2)
0 (∗r

i=1Gi) = 0;

b(2)
p (∗r

i=1Gi) =
r∑

i=1

b(2)
p (Gi) for p ≥ 2;

bp(∗r
i=1Gi) =

r∑

i=1

bp(Gi) for p ≥ 1;

b(2)
p (G1 ×G2) =

p∑

i=0

b
(2)
i (G1) · b(2)

p−i(G2);

bp(G1 ×G2) =
p∑

i=0

bi(G1) · bp−i(G2);

b
(2)
0 (Z/n) =

1
n

;

b(2)
p (Z/n) = 0 for p ≥ 1;
bp(Z/n) = 0 for p ≥ 1.

From this one easily verifies for any integers m ≥ 0, n ≥ 1 and i ≥ 1 that for
the group

Gi(m,n) = Z/n× (∗2m+2
k=1 Z/2

)×



i−1∏

j=1

∗4l=1Z/2
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its classifying space BGi(m,n) is of finite type and

b
(2)
i (Gi(m,n)) =

m

n
;

b(2)
p (Gi(m,n)) = 0 for p 6= i;
bp(Gi(m,n)) = 0 for p ≥ 1.

Given an integer l ≥ 1 and a sequence r1, r2, . . ., rl of non-negative rational
numbers, we can construct a group G such that BG is of finite type and

b(2)
p (G) =

{
rp for 1 ≤ p ≤ l;
0 for l + 1 ≤ p;

bp(G) = 0 for p ≥ 1

holds as follows. For l = 1 we have already done this, so assume l ≥ 2 in the
sequel. Choose integers n ≥ 1 and k ≥ l with r1 = k−2

n . Fix for i = 2, 3 . . . , k
integers mi ≥ 0 and ni ≥ 1 such that mi

n·ni
= ri holds for 1 ≤ i ≤ l and

mi = 0 holds for i > l. Put

G = Z/n× ∗k
i=2Gi(mi, ni).

On the other hand we can construct for any sequence n1, n2, . . . of non-
negative integers a CW -complex X of finite type such that bp(X) = np and
b
(2)
p (X̃) = 0 holds for p ≥ 1, namely take

X = B(Z/2 ∗ Z/2)×
∞∨

p=1

(
np∨

i=1

Sp

)
.

Let f : X → X be a selfmap. Its mapping torus Tf is obtained from the
cylinder X × [0, 1] by glueing the bottom of the cylinder X × [0, 1] to the top
by the identification (x, 1) = (f(x), 0). There is a canonical map p : Tf → S1

which sends (x, t) to exp(2πit). It induces a canonical epimorphism π1(Tf ) →
Z = π1(S1) if X is path-connected.

The next theorem will be generalized in Theorem 6.63 and will play a
key role in the proof of the vanishing of all L2-Betti numbers of Thompson’s
group F in Subsection 7.1.2 (see also [329, Theorem 2.1], [331, Theorem 0.8]).
It has been conjectured in [237, page 229] for an aspherical closed manifold
M which fibers over the circle S1.

Theorem 1.39 (Vanishing of L2-Betti numbers of mapping tori).
Let f : X → X be a cellular selfmap of a connected CW -complex X of finite
type and π1(Tf )

φ−→ G
ψ−→ Z be a factorization of the canonical epimorphism

into epimorphisms φ and ψ. Let Tf be the covering of Tf associated to φ
which is a free G-CW -complex of finite type. Then we get for all p ≥ 0

b(2)
p (Tf ) = 0.
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Proof. Fix integers p ≥ 0 and n ≥ 1. Let Gn ⊂ G be the preimage of the
subgroup n · Z ⊂ Z under ψ : G → Z. This is a subgroup of index n. We get
from Theorem 1.35 (9)

b(2)
p (Tf ) =

1
n
· b(2)

p (resGn

G Tf ).

There is a homotopy equivalence h : Tfn → Gn\Tf , where fn is the n-
fold composition of f . Let Tfn be the Gn-space obtained by the pull-
back of Tf → Gn\Tf with h. Then h induces a Gn-homotopy equivalence
h : Tfn → resGn

G Tf . From homotopy invariance of the L2-Betti numbers of
Theorem 1.35 (1) we conclude

b(2)
p (resGn

G Tf ) = b(2)
p (Tfn).

Let βp be the number of p-cells in X. Then Tfn has a CW -structure with
βp + βp−1 cells of dimension p. Hence the von Neumann dimension of the
cellular Hilbert N (Gn)-chain module Cp(Tfn) is βp + βp−1. This implies
by the additivity of the von Neumann dimension of Theorem 1.12 (2) that
b
(2)
p (Tfn) ≤ βp + βp−1. We have shown

0 ≤ b(2)
p (Tf ) ≤ βp + βp−1

n
.

Since βp + βp−1 is independent of n, the claim follows by taking the limit for
n →∞. ut

A map f : E → B is called a fibration if it has the homotopy lifting
property, i.e. for any homotopy h : X × [0, 1] → B and map f : X → E with
p◦f = h0 there is a homotopy H : X× [0, 1] → E with H0 = f and p◦H = h
(see [488, Definition 4.2 on page 53]). This is a weaker notion than the notion
of a (locally trivial) fiber bundle with typical fiber F [269, chapter 4, section
5]. For instance the fiber F of a fibration is only well-defined up to homotopy
equivalence, the one of a fiber bundle up to homeomorphism. The notion of
a fibration is more general and more flexible than that of a fiber bundle. For
example a group extension 1 → ∆ → Γ → π → 1 such that Bπ and B∆
are finite CW -complexes yields a fibration BΓ → Bπ with fiber B∆ such
that BΓ has the homotopy type of a finite CW -complex but in general one
cannot expect the existence of a fiber bundle B∆ → BΓ → Bπ of finite
CW -complexes.

If f : F → F is a homotopy equivalence, Tf is homotopy equivalent to
the total space of a fibration over S1 with fiber F . Conversely, the total
space of such a fibration is homotopy equivalent to the mapping torus of the
selfhomotopy equivalence of F given by the fiber transport with a generator
of π1(S1). Therefore L2-Betti numbers are obstructions for a closed manifold
to fiber over the circle S1. This problem has been treated by Farrell [189].
The same idea of proof as in Theorem 1.39 yields Novikov-type inequalities
for Morse 1-forms [185].



44 1. L2-Betti Numbers

Theorem 1.40 (L2-Betti numbers and S1-actions). Let X be a con-
nected S1-CW -complex of finite type, for instance a connected compact man-
ifold with smooth S1-action. Suppose that for one orbit S1/H (and hence for
all orbits) the inclusion into X induces a map on π1 with infinite image. (In
particular the S1-action has no fixed points.) Let X̃ be the universal covering
of X with the canonical π1(X)-action. Then we get for all p ≥ 0

b(2)
p (X̃) = 0.

Proof. We show for any S1-CW -complex Y of finite type together with an
S1-map f : Y → X that all the L2-Betti numbers b

(2)
p (f∗X̃;N (π)) are trivial

where f∗X̃ is the pullback of the universal covering of X and π = π1(X).
Since the p-th L2-Betti number only depends on the (p + 1)-skeleton, we can
assume without loss of generality that Y is a finite S1-CW -complex. We use
induction over the dimension n of Y . The beginning n = −1 is trivial, the
induction step from n− 1 to n ≥ 0 is done as follows.

Choose an equivariant S1-pushout with dim(Z) = n− 1.

∐
i∈I S1/Hi × Sn−1

∐
i∈I qi−−−−−→ Zy j

y
∐

i∈I S1/Hi ×Dn

∐
i∈I Qi−−−−−→ Y

This induces a π-equivariant pushout
∐

i∈I q∗i j∗f∗X̃ −−−−→ j∗f∗X̃y
y

∐
i∈I Q∗i f

∗X̃ −−−−→ f∗X̃

It induces a short exact sequence of finitely generated Hilbert N (π)-chain
complexes

0 → C
(2)
∗ (j∗f∗X̃) → C

(2)
∗ (f∗X̃) →

⊕

i∈I

C
(2)
∗ (Q∗

i f
∗X̃, q∗i j∗f∗X̃) → 0.

Because of Theorem 1.21 and Theorem 1.12 (2) it suffices to prove

dimN (π)

(
H(2)

p (j∗f∗X̃;N (π))
)

= 0;

dimN (π)

(
H(2)

p (C∗(Q∗i f
∗X̃, q∗i j∗f∗X̃))

)
= 0.

This follows for the first equation by the induction hypothesis. The pair
(Q∗i f

∗X̃, q∗i j∗f∗X̃) is π-homeomorphic to π ×Z S̃1 × (Dn, Sn−1) for an ap-
propriate subgroup Z ⊂ π since S1/Hi is homeomorphic to S1 and the in-
clusion of an orbit into X induces an injection on the fundamental groups
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by assumption. Hence C∗(Q∗i f
∗X̃, q∗i j∗f∗X̃) is Zπ-isomorphic to the n-fold

suspension of C∗(π×Z S̃1) for a subgroup Z ⊂ π. We conclude from Theorem
1.35 (10)

dimN (π)

(
H(2)

p (C∗(Q∗i f
∗X̃, q∗i j∗f∗X̃))

)
= b

(2)
p−n(S̃1).

We conclude b
(2)
p (S̃1) = 0 for p ≥ 0 from Theorem 1.35 (9) or Lemma 1.34

(2). ut
Theorem 1.40 will be generalized in Theorem 6.65 and a more general

version of Lemma 1.41 below will be proved in Lemma 6.66.

Lemma 1.41. Let F → E → B be a fibration of connected CW -complexes
of finite type such that the inclusion induces an injection π1(F ) → π1(E).
Suppose that the L2-Betti numbers b

(2)
p (F̃ ) of the universal covering F̃ (with

the canonical π1(F )-action) vanish for all p ≥ 0. Then the same is true for
the universal covering Ẽ (with the canonical π1(E)-action) of E.

1.2.4 L2-Betti Numbers and Aspherical Spaces

A CW -complex X is aspherical if it is connected and its universal cover-
ing is contractible. This is equivalent to the condition that πn(X,x) is triv-
ial for n 6= 1 and x ∈ X. The universal covering X̃ → X of an aspheri-
cal CW -complex X with fundamental group π is a model for the universal
principal π-bundle Eπ → Bπ. Given a group π, an aspherical CW -complex
X with base point x ∈ X together with an isomorphism π1(X, x)

∼=−→ π
is called an Eilenberg-MacLane space of type (π, 1). Examples for aspheri-
cal CW -complexes are closed Riemannian manifolds with non-positive sec-
tional curvature since their universal coverings are diffeomorphic to Rn by
the Hadamard-Cartan Theorem [218, Theorem 3.87 on page 134].

Assertion (1) of the next Lemma 1.42 is a variation of [124, Lemma 5.1
on page 242] and assertion (2) appears in [232, page 95], where the result is
attributed to unpublished work of Sullivan.

Lemma 1.42. (1) Let X be a connected finite dimensional S1-CW -complex
with empty fixed point set XS1

. Suppose that the universal covering X̃ of
X satisfies H∗(X̃;Q) = H∗({∗};Q). Then the inclusion of any orbit into
X induces an injection on the fundamental group.

(2) Let M be a connected closed oriented n-dimensional manifold with funda-
mental group π and fundamental class [M ] ∈ Hn(M ;Z). Let f : M → Bπ

be the classifying map of the universal covering M̃ → M . Suppose that M
carries a non-trivial (smooth) S1-action with MS1 6= ∅. Then the image
of the fundamental class in the homology of Bπ with rational coefficients
f∗[M ] ∈ Hn(Bπ;Q) is trivial.
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Proof. (1) We first show for any fixed point free S1-CW -complex Z that
the canonical projection p : ES1 ×S1 Z → S1\Z is a rational cohomology
equivalence where S1 → ES1 → BS1 is a model for the universal prin-
cipal S1-bundle. Recall that ES1 is a free S1-CW -complex which is (non-
equivariantly) contractible. It suffices to prove the claim for each k-skeleton
of Z because of the Five-Lemma and the short exact sequence due to Milnor
[521, Theorem XIII.1.3 on page 605] for Z

0 → lim1
k→∞Hn−1(Zk;Q) → Hn(Z;Q) → limk→∞Hn(Zk;Q) → 0

and the corresponding one for ES1 ×S1 Z. We use induction over k. The
beginning k = −1 is trivial, the induction step from k− 1 to k ≥ 0 is done as
follows. Suppose that the k-skeleton Zk is obtained from the (k− 1)-skeleton
Zk−1 by attaching equivariant cells

∐
i∈I S1/Hi × Sk−1 −−−−→ Zk−1y

y
∐

i∈I S1/Hi ×Dk −−−−→ Zk

where Hi ⊂ S1 is a finite subgroup for each i ∈ I. Then ES1 ×S1 Zk is the
pushout

∐
i∈I ES1 ×S1 (S1/Hi × Sk−1) −−−−→ ES1 ×S1 Zk−1y

y
∐

i∈I ES1 ×S1 (S1/Hi ×Dk) −−−−→ ES1 ×S1 Zk

and S1\Zk is the pushout:
∐

i∈I Sk−1 −−−−→ S1\Zk−1y
y

∐
i∈I Dk −−−−→ S1\Zk

The projections ES1 ×S1 Y → S1\Y for Y = Zk−1,
∐

i∈I S1/Hi × Sk−1

and
∐

i∈I S1/Hi×Dk are rational cohomology equivalences by the induction
hypothesis and because BHi → {∗} is one for each i ∈ I. By a Mayer-
Vietoris argument the projection for Y = Zk is also a rational cohomology
equivalence.

Let X̃ be the universal covering of X and π = π1(X). There is an extension
of Lie groups 1 → π → L → S1 → 1 and an action of L on X̃ such that the
L-action extends the π-action on X̃ and covers the S1-action on X. Moreover,
there is an L-CW -structure on X̃ such that the induced S1-CW -structure
on X = π\X̃ is the given one [326, Theorem 8.1 on page 138, Lemma 8.9 on
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page 140]. The basic idea of this construction is to define L as the group of
pairs (f, g), where g is an element in S1 and f : X̃ → X̃ is map which covers
the map lg : X → X given by multiplication with g.

The map ∂ in the exact sequence of homotopy groups associated to the
regular π-covering L → S1

{1} → π1(L) → π1(S1) ∂→ π → π0(L) → {1}
agrees with ev∗ : π1(S1) → π1(X) induced by evaluating the S1-action at the
base point. We want to show that this map is injective. Suppose it is not true.
Then π1(L) is an infinite cyclic group. As L is a 1-dimensional Lie group, its
component of the identity is just S1. Obviously each isotropy group under
the L-action on X̃ is finite as the S1-action on X has only finite isotropy
groups. Hence X̃ carries a fixed point free S1-action. The Gysin sequence
[521, Theorem VII.5.12 on page 356] of S1 → ES1 × X̃ → ES1 ×S1 X̃ looks
like:

. . . → Hp(ES1 ×S1 X̃;Q) → Hp+2(ES1 ×S1 X̃;Q) →
Hp+2(ES1 × X̃;Q) → Hp+1(ES1 ×S1 X̃;Q) → . . .

We have Hp(ES1 × X̃;Q) = Hp(X̃;Q) = 0 for p 6= 0 by assumption.
Hence we get H2p(ES1 ×S1 X̃;Q) 6= {0} for p ≥ 0. As the projection
ES1 ×S1 X̃ → S1\X̃ induces an isomorphism on rational cohomology, S1\X̃
has non-trivial rational cohomology in all even dimensions. Since X has a
finite dimensional S1-CW -structure, S1\X̃ has a finite dimensional CW -
structure, a contradiction. This proves assertion (1).

(2) Let ρ : S1 ×M → M be the given S1-operation and let p : M̃ → M be
the universal covering. Choose x ∈ MS1

with a lift x̃ ∈ M̃ . Notice that the
map induced by evaluation π1(S1, e) → π = π1(M,x) is trivial. Hence there
is precisely one map ρ̃ : S1 × M̃ → M̃ which satisfies p ◦ ρ̃ = ρ ◦ (idS1 ×p)
and ρ̃(e, x̃) = x̃. One easily checks that ρ̃ defines an S1-action on M̃ which
commutes with the canonical π = π1(M,x)-action on M̃ with respect to x̃

and covers the S1-action on M . In particular S1\M̃ inherits a π-action and
the projection p̃r : M̃ → S1\M̃ is π-equivariant.

Next we want to show for ỹ ∈ M̃ that the isotropy group under the π-
action of S1ỹ ∈ S1\M̃ is finite. Let u be the projection to M of any path ũ

joining x̃ and ỹ in M̃ . Then w · ỹ for w ∈ π is by definition ˜u− ∗ w ∗ u(1) for
any path ˜u− ∗ w ∗ u with initial point ỹ whose projection under p is the loop
u− ∗w ∗ u in M . Suppose that w · S1ỹ = S1ỹ. Then we can find z ∈ S1 with
z · ỹ = w · ỹ. Let v be any path in S1 from e to z. Put y = p(ỹ). Let vỹ and vy

be the paths obtained from v and the S1-actions. The paths ˜u− ∗ w ∗ u and
vỹ are homotopic relative endpoints. This implies z ∈ S1

y for S1
y the isotropy

group of y ∈ M under the S1-action and that vy and u−∗w∗u are homotopic
relative endpoints. Hence the isotropy group of S1ỹ under the π = π1(M, x)
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action can be identified with the image of π1(S1/S1
y , eS1

y) → π1(M,y) cu−→
π = π1(M, x) where cu is given by conjugation with u. The composition of
this map with the obvious map π1(S1, e) → π1(S1/S1

y , eS1
y) is trivial since

the obvious map π1(S1, e) → π1(M, x) is trivial because of x ∈ MS1
. Hence

all isotropy subgroups of the π-action on S1\M̃ are finite.
We have introduced Eπ = E(π;FIN ) in Definition 1.28. Choose π-maps

f̃ : M̃ → Eπ, g̃ : Eπ → Eπ and h̃ : S1\M̃ → Eπ. Then g̃ ◦ f̃ and h̃ ◦ p̃r are
π-homotopy equivalent. By passing to the quotients under the π-action we
obtain an up to homotopy commutative diagram

M
pr−−−−→ S1\M

f

y h

y
Bπ

g−−−−→ π\Eπ

where f : M → Bπ is a classifying map. Hence it suffices to show that
Hn(S1\M ;Z) = 0 holds and that g∗ : Hp(Bπ;Q) → Hp(π\Eπ;Q) is an iso-
morphism for each p ≥ 0.

Since M is connected and closed and M 6= MS1
by assumption and

each component C of MS1
is a connected closed submanifold [64, Corollary

VI.2.4 on page 308], the dimension of each component C is ≤ n − 1. Since
M is obtained from MS1

by attaching cells of the type S1/H ×Dk for finite
H ⊂ S1 and k ≤ n− 1, the dimension of the CW -complex S1\M is ≤ n− 1
and hence Hn(S1\M ;Z) = 0.

Hence it remains to prove that H∗(g;Q) : H∗(Bπ;Q) → Hp(π\Eπ;Q) is
bijective for all p ≥ 0. Notice that Cp(EG)⊗ZQ is projective over QG for each
p ≥ 0 since it is a direct sum of QG-modules of the shape Q[G/H] for finite
H ⊂ G. The canonical map EG → EG induces a homology equivalence of
projective QG-chain complexes C∗(EG)⊗ZQ→ C∗(EG)⊗ZQ. We conclude
that this chain map is a QG-chain homotopy equivalence. Hence it induces a
chain homotopy equivalence C∗(EG)⊗ZGQ→ C∗(EG)⊗ZGQ which induces
on homology H∗(g;Q). ut
Corollary 1.43. Let M be an aspherical closed manifold with non-trivial
S1-action. Then the action has no fixed points and the inclusion of any orbit
into X induces an injection on the fundamental groups. All L2-Betti numbers
b
(2)
p (M̃) are trivial and χ(M) = 0.

Proof. This follows from Theorem 1.35 (2), Theorem 1.40 and Lemma 1.42
provided M is orientable. Recall that the orientation covering is the double
covering M = SΛdim(M)TM → M and has the property that its total space
M is orientable and it is trivial if and only if M is orientable. The non-
orientable case then follows from Theorem 1.35 (9) since M is orientable and
satisfies the same hypothesis as M . ut
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We will show in Corollary 3.111 that under the conditions of Corollary
1.43 all Novikov-Shubin invariants of M̃ are less or equal to 1 and that the
L2-torsion of M̃ is trivial.

The next result will be a special case of a more general result, namely
Theorem 7.2 (1) and (2)

Theorem 1.44 (L2-Betti numbers and aspherical CW -complexes).
Let X be an aspherical CW -complex of finite type. Suppose that π1(X) con-
tains an amenable infinite normal subgroup. Then b

(2)
p (X̃) = 0 for all p ≥ 0.

1.3 Analytic L2-Betti Numbers

In this section we state the L2-Hodge-de Rham Theorem 1.59 and give an
analytic interpretation of the L2-Betti numbers.

1.3.1 The Classical Hodge-de Rham Theorem

In this subsection we recall the classical Hodge-de Rham Theorem since we
need it and the necessary notations later and it motivates the L2-version.

Let M be a manifold without boundary (which is not necessarily com-
pact). Denote by Ωp(M) the space of smooth p-forms on M , i.e. the space
of smooth sections of the bundle Altp(C ⊗R TM) of alternating p-linear
C-forms associated to the complexification C ⊗R TM of the tangent bun-
dle TM . Hence a p-form ω assigns to each x ∈ M an alternating p-linear
C-form ωx : C ⊗R TxM × . . . × C ⊗R TxM → C on the complexified tan-
gent space C ⊗R TxM . This is the same as an alternating p-linear R-form
ωx : TxM × . . .×TxM → resRCC. Notice that Ωp(M) inherits the structure of
a complex vector space. One can identify Ωp(M) with the space of alternat-
ing p-forms on the C∞(M)-module C∞(C⊗RTM), where C∞(M) = Ω0(M)
is the C-algebra of smooth C-valued functions on M and C∞(C ⊗R TM) is
the C∞(M)-module of smooth sections of the complexified tangent bundle
C⊗R TM . Denote by

∧ : Ωp(M)⊗Ωq(M) → Ωp+q(M) (1.45)

the ∧-product of smooth forms. Recall that the ∧-product is defined by the
corresponding notion for finite dimensional vector spaces applied fiberwise.
Denote by

dp : Ωp(M) → Ωp+1(M) (1.46)

the p-exterior differential. Recall that the exterior differentials are uniquely
determined by the following properties:

(1) dp is C-linear;
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(2) (d0f)(X) = Xf for f ∈ Ω0(M) = C∞(M), X a vector field on M and
Xf the derivative of f along X;

(3) dp+q(ω∧η) = (dpω)∧η +(−1)pω∧dqη for ω ∈ Ωp(M) and η ∈ Ωq(M);
(4) dp+1 ◦ dp = 0.

The cohomology of the de Rham cochain complex

. . .
dp−2

−−−→ Ωp−1(M) dp−1

−−−→ Ωp(M) dp

−→ Ωp+1(M) dp+1

−−−→ . . .

is the de Rham cohomology of M and denoted by Hp
dR(M).

Let Csing
∗ (M) be the Z-chain complex given by singular simplices ∆p → M

which are continuous. Let Csing,C∞
∗ (M) be the Z-chain complex given by

singular simplices ∆p → M which are smooth. (Here ∆p is the standard
p-simplex and not the Laplace operator). We denote by C∗sing(M ;C) and
C∗sing,C∞(M ;C) the corresponding cochain complexes homZ(C

sing
∗ (M),C)

and homZ(C
sing,C∞
∗ (M),C). Let H∗

sing(M ;C) := H∗(C∗sing(M ;C)) be the sin-
gular cohomology of M . The obvious inclusion induces a cochain map

i∗ : C∗sing(M ;C) → C∗sing,C∞(M ;C).

There is a well-defined cochain map

I∗ : Ω∗(M) → C∗sing,C∞(M ;C)

which sends ω ∈ Ωp(M) to the cochain Ip(ω) : Csing,C∞
∗ (M) → C which

maps σ : ∆p → M to
∫

∆p
σ∗ω. The proof of the de Rham Theorem 1.47 can

be found for instance in [63, Section V.9.], [134], [156, Theorem 1.5 on page
11 and Theorem 2.4 on page 20], [357, Theorem A.31 on page 413].

Theorem 1.47 (De Rham Isomorphism Theorem). Let M be a mani-
fold. Then the cochain maps i∗ and I∗ above induce a natural isomorphisms
for p ≥ 0

Ap : Hp
dR(M) → Hp

sing(M ;C).

They are compatible with the multiplicative structures given by the ∧-product
and the ∪-product.

Now suppose that M comes with a Riemannian metric and an orientation.
Let n be the dimension of M . Denote by

∗p : Ωp(M) → Ωn−p(M) (1.48)

the Hodge star-operator which is defined by the corresponding notion for
oriented finite dimensional Hermitian vector spaces applied fiberwise. It is
uniquely characterized by the property
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∫

M

ω ∧ ∗pη =
∫

M

〈ωx, ηx〉Altp(TxM) dvol, (1.49)

where ω and η are p-forms and 〈ωx, ηx〉Altp(TxM) is the inner product on
Altp(TxM) which is induced by the inner product on TxM given by the
Riemannian metric.

Define the adjoint of the exterior differential

δp = (−1)np+n+1 ∗n−p+1 ◦dn−p ◦ ∗p : Ωp(M) → Ωp−1(M). (1.50)

Notice that in the definition of δp the Hodge star-operator appears twice and
the definition is local. Hence we can define δp without using an orientation of
M , only the Riemannian metric is needed. This is also true for the Laplace
operator which is defined by

∆p = dp−1 ◦ δp + δp+1 ◦ dp : Ωp(M) → Ωp(M). (1.51)

Let Ωp
c (M) ⊂ Ωp(M) be the space of smooth p-forms with compact sup-

port . There is the following inner product and norm on it

〈ω, η〉L2 :=
∫

M

ω ∧ ∗pη =
∫

M

〈ωx, ηx〉Altp(TxM) dvol; (1.52)

||ω||L2 :=
√
〈ω, ω〉L2 . (1.53)

Notice that dp and δp are formally adjoint in the sense that we have for
ω ∈ Ωp

c (M) and η ∈ Ωp+1
c (M)

〈dp(ω), η〉L2 = 〈ω, δp+1(η)〉L2 . (1.54)

Let L2Ωp(M) be the Hilbert space completion of Ωp
c (M). Define the space

of L2-integrable harmonic smooth p-forms

Hp
(2)(M) := {ω ∈ Ωp(M) | ∆p(ω) = 0,

∫

M

ω ∧ ∗ω < ∞}. (1.55)

Recall that a Riemannian manifold M is complete if each path compo-
nent of M equipped with the metric induced by the Riemannian metric is a
complete metric space. By the Hopf-Rinow Theorem the following statements
are equivalent provided that M has no boundary: (1) M is complete, (2) the
exponential map is defined for any point x ∈ M everywhere on TxM , (3) any
geodesic of M can be extended to a geodesic defined on R (see [218, page
94 and 95]). Completeness enters in a crucial way, namely, it will allow us to
integrate by parts [217].

Lemma 1.56. Let M be a complete Riemannian manifold. Let ω ∈ Ωp(M)
and η ∈ Ωp+1(M) be smooth forms such that ω, dpω, η and δp+1η are square-
integrable. Then

〈dpω, η〉L2 = 〈ω, δp+1η〉L2 .
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Proof. Completeness ensures the existence of a sequence fn : M → [0, 1] of
smooth functions with compact support such that M is the union of the
compact sets {x ∈ M | fn(x) = 1} and ||dfn||∞ := sup{||(dfn)x||x | x ∈
M} < 1

n holds. With the help of the sequence (fn)n≥1 one can reduce the
claim to the easy case, where ω and η have compact support. ut
Theorem 1.57 (Hodge-de Rham Theorem). Let M be a complete Rie-
mannian manifold without boundary. Then we obtain an orthogonal decom-
position, the so called Hodge-de Rham decomposition

L2Ωp(M) = Hp
(2)(M)⊕ clos(dp−1(Ωp−1

c (M)))⊕ clos(δp+1(Ωp+1
c (M))).

1.3.2 Analytic Definition of L2-Betti Numbers

Suppose for a moment that M is a Riemannian manifold which is closed and
that we require no group action. Then in view of Theorem 1.57 the space
Hp(M) = {ω ∈ Ωp(M) | ∆p(ω) = 0} is isomorphic to the singular cohomol-
ogy Hp

sing(M ;C). In particular Hp(M) is a finite dimensional C-vector space
and we can define the analytic p-th Betti number by its dimension. Of course
the analytic p-th Betti number agrees with the classical p-th Betti number
which is defined by the dimension of Hp

sing(M ;C). The analytic p-th Betti
number can be interpreted in terms of the heat kernel e−t∆p(x, y), namely
by the following expression [220, 1.6.52 on page 56]

bp(M) = lim
t→∞

∫

M

trC(e−t∆p(x, x)) dvol . (1.58)

Here (and elsewhere) e−t∆p(x, y) denotes the heat kernel. This is a smooth
section of the bundle hom(p∗1 Altp(TM), p∗2 Altp(TM)) over M × M for
pk : M × M → M the projection to the k-th factor. It is uniquely char-
acterized by the property that for ω ∈ L2Ωp(M) and e−t∆p the operator
obtained from ∆p by spectral calculus (see (1.64))

e−t∆p(ω)(x) =
∫

M

e−t∆p(x, y)(ωy) dvoly

holds. The real number trC(e−t∆p(x, x)) is the trace of the endomorphism of
finite dimensional vector spaces e−t∆p(x, x) : Altp(TxM) → Altp(TxM).

We want to generalize these results and notions to the L2-setting. From
now on M is a cocompact free proper G-manifold without boundary and with
G-invariant Riemannian metric. Recall that an equivariant smooth triangu-
lation K of M consists of a simplicial complex K with simplicial G-action
such that for each open simplex σ and g ∈ G with gσ ∩ σ 6= ∅ left multipli-
cation with g induces the identity on σ, together with a G-homeomorphism
f : |K| ∼=−→ M such that f restricted to each closed simplex is a smooth
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immersion of the simplex into M . This is the same as a lift of a smooth trian-
gulation of G\M to M . Notice that K is a free cocompact G-CW -complex.
In the sequel we will not distinguish between K and its realization |K|.

The key result, which is due to Dodziuk [145] and whose proof we will
present in Section 1.4, is

Theorem 1.59 (L2-Hodge-de Rham Theorem). Let M be a cocompact
free proper G-manifold with G-invariant Riemannian metric and let K be
an equivariant smooth triangulation of M . Suppose that M has no bound-
ary. Let Hp

(2)(M) be the space of L2-integrable harmonic smooth p-forms on
M introduced in (1.55). Then integration defines an isomorphism of finitely
generated Hilbert N (G)-modules

Hp
(2)(M)

∼=−→ Hp
(2)(K).

This allows us to define the analytic p-th L2-Betti number by the von
Neumann dimension of the finitely generated Hilbert N (G)-module Hp

(2)(M).
Obviously this is the same as the cellular p-th L2-Betti number. Moreover,
this can be interpreted in terms of the heat kernel by the following expression
[9, Proposition 4.16 on page 63] (or Theorem 3.136 (1))

b(2)
p (M) = lim

t→∞

∫

F
trC(e−t∆p(x, x)) dvol . (1.60)

Here F is a fundamental domain for the G-action, i.e. an open subset F ⊂ M
such that M is the union

⋃
g∈G g · clos(F) and gF ∩F 6= ∅ ⇒ g = 1 and the

topological boundary of F is a set of measure zero. If one fixes a triangulation
of G\M and fixes for each open simplex σ of dimension n = dim(M) a lift
σ ⊂ M , then the union of the lifts σ for all n-simplices σ in G\M is a
fundamental domain.

Recall that a manifold is called hyperbolic if it is equipped with a Rie-
mannian metric whose sectional curvature is constant −1. This is equivalent
to the statement that M comes with a Riemannian metric such that the
universal covering M̃ with the induced Riemannian metric is isometrically
diffeomorphic to the (real) hyperbolic space Hn for n = dim(M) [218, The-
orem 3.82 on page 131]. Recall that the Poincaré model for Hn is the open
unit disk {x ∈ Rn | |x| < 1} with the Riemannian metric which is given at a
point x ∈ Rn, |x| < 1 by

TxM × TxM → R, (v, w) 7→ 4
(1− |x|2)2 · 〈v, w〉Eucl, (1.61)

where 〈v, w〉Eucl is the standard Euclidean metric on TxRn = Rn.

Theorem 1.62. Let M be a hyperbolic closed Riemannian manifold of di-
mension n. Then
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b(2)
p (M̃)

{
= 0 if 2p 6= n
> 0 if 2p = n

.

If n is even, then

(−1)n/2 · χ(M) > 0.

Proof. The statement about the Euler characteristic for M follows from the
statement about the L2-Betti numbers from Theorem 1.35 (2). Since the
von Neumann dimension is faithful by Theorem 1.12 (1) it suffices to show,
because of Theorem 1.59, that

Hp
(2)(H

n)
{

= 0 if 2p 6= n
6= 0 if 2p = n

.

This is done in [146] (even for all rotationally symmetric Riemannian mani-
folds). The idea of the proof is summarized as follows.

An element ω ∈ Hp
(2)(H

n) is written (outside 0) in polar coordinates

ω = a(r, θ) ∧ dr + b(r, θ) ∧ dθ

for (p − 1)-forms a(r, θ) and b(r, θ) on Sn−1 in the variable θ which depend
on a parameter r ∈ (0,∞). Then the conditions dpω = 0, δp(ω) = 0 and∫
Hn ω ∧ ∗ω < ∞ are explicitly rewritten in terms of a and b and the function

f(r) for which the Riemannian metric with respect to the polar coordinates
looks like ds2 = dr2 + f(r)2dθ2. The function f satisfies f(0) = 0, f ′(0) = 1,
f(r) > 0 for r > 0, and

∫∞
1

f(r)−1dr < ∞. Then a further calculation shows
that Hp

(2)(H
n) 6= 0 implies

∫ ∞

1

fn−2p−1(r) dr < ∞.

Since the Hodge star operator yields an isomorphism Hn−p
(2) (Hn) = Hp

(2)(H
n),

Hp
(2)(H

n) 6= 0 implies that both
∫∞
1

fn−2p−1(r)dr and
∫∞
1

f−n+2p−1(r)dr are
finite. If 2p = n, these two integrals are equal and finite. However, if 2p 6= n,
then the exponents (n− 2p− 1) and (−n + 2p− 1) have different signs and
one of the integrals has to diverge. This shows Hp

(2)(H
n) = 0 for 2p 6= n. One

can show explicitly that Hp
(2)(H

n) is an infinite dimensional vector space if
2p = n. ut

We will extend Theorem 1.62 in Theorem 5.12 (1), where the computation
of the L2-Betti numbers of the universal covering M̃ of a closed Riemannian
manifold M is given provided that M̃ is a symmetric space of non-compact
type.

1.4 Comparison of Analytic and Cellular L2-Betti
Numbers

In this section we give the proof of the L2-Hodge-de Rham Theorem 1.59.
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1.4.1 Survey on Unbounded Operators and Spectral Families

We have to explain some facts about unbounded densely defined operators
on Hilbert spaces and their domains, about spectral families and about the
Spectral Theorem. For a general discussion we refer for instance to [434,
Section VIII.1 - 3], [421, Chapter 5].

Let H be a Hilbert space and T : dom(T ) → H be a (not necessarily
bounded) linear operator defined on a dense linear subspace dom(T ) which
is called (initial) domain. We call T closed if its graph gr(T ) := {(u, T (u)) |
u ∈ dom(T )} ⊂ H × H is closed. We say that S : dom(S) → H is an
extension of T and write T ⊂ S if dom(T ) ⊂ dom(S) and S(u) = T (u)
holds for all u ∈ dom(T ). We write T = S if dom(T ) = dom(S) and S(u) =
T (u) holds for all u ∈ dom(T ). We call T closable if and only if T has a
closed extension. Since the intersection of an arbitrary family of closed sets is
closed again, a closable unbounded densely defined operator T has a unique
minimal closure, also called minimal closed extension , i.e. a closed operator
Tmin : dom(Tmin) → H with T ⊂ Tmin such that Tmin ⊂ S holds for any closed
extension S of T . Explicitly dom(Tmin) consists of elements u ∈ H for which
there exists a sequence (un)n≥0 in dom(T ) and an element v in H satisfying
limn→∞ un = u and limn→∞ T (un) = v. Then v is uniquely determined by
this property and we put Tmin(u) = v. Equivalently, dom(Tmin) is the Hilbert
space completion of dom(T ) with respect to the inner product

〈u, v〉gr := 〈u, v〉H + 〈T (u), T (v)〉H . (1.63)

If not stated otherwise we always use the minimal closed extension as the
closed extension of a closable unbounded densely defined linear operator.

The adjoint of T is the operator T ∗ : dom(T ∗) → H whose domain con-
sists of elements v ∈ H for which there is an element u in H such that
〈u′, u〉 = 〈T (u′), v〉 holds for all u′ ∈ dom(T ). Then u is uniquely determined
by this property and we put T ∗(v) = u. Notice that T ∗ may not have a dense
domain in general. Its domain is dense if and only if T is closable. If T is
closable, then T ∗min = T ∗ and Tmin = (T ∗)∗. We call T symmetric if T ⊂ T ∗

and selfadjoint if T = T ∗. Any selfadjoint operator is necessarily closed and
symmetric. A bounded operator T : H → H is always closed and is selfad-
joint if and only if it is symmetric. We call T essentially selfadjoint if Tmin is
selfadjoint.

A densely defined unbounded operator T : dom(f) ⊂ H → H for a Hilbert
space H is called positive if T is selfadjoint and the real number 〈T (v), v〉
is ≥ 0 for all v ∈ dom(T ). Notice that the Polar Decomposition T = US
also exists for densely defined unbounded operators T : dom(T ) ⊂ H1 → H2

[434, Theorem VIII.32 on page 297]. Here U and S are uniquely determined
by the properties that U is a partial isometry, i.e. U∗U is a projection, S is
a positive selfadjoint operator and ker(U) = ker(T ) = ker(S). The operator
S is constructed by

√
S∗S in the sense of functional calculus as explained

below. We have U∗US = S, U∗T = S and U∗UT = T .
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Let H be a Hilbert space and T : dom(T ) ⊂ H → H be a densely defined
closed operator with domain dom(T ). Define its resolvent set resolv(T ) as
the set of complex numbers λ ∈ C for which there is a bounded operator
S : H → H whose image is dom(T ) and which satisfies (T−λ·id)◦S = idH and
S ◦(T −λ · id) = iddom(T ). Define the spectrum spec(T ) to be the complement
of resolv(T ) ⊂ C. The spectrum of T is always a closed subset of C. If T is
selfadjoint, then spec(T ) ⊂ R. If T is positive, then spec(T ) ⊂ [0,∞). Notice
the elementary facts that 0 /∈ spec(T ) implies injectivity of T , but that there
are everywhere defined bounded closed injective positive operators T with
0 ∈ spec(T ).

We call a family {Eλ | λ ∈ R} of orthogonal projections Eλ : H → H a
spectral family if it satisfies for x ∈ H and λ, µ ∈ R

lim
λ→−∞

Eλ(x) = 0;

lim
λ→∞

Eλ(x) = x;

lim
λ→µ+

Eλ(x) = Eµ(x);

EλEµ = EµEλ = Emin{λ,µ}.

Denote by d〈u,Eλ(u)〉 the Borel measure on R which assigns to the half open
interval (λ, µ] the measure 〈u,Eµ(u)〉 − 〈u,Eλ(u)〉. If g : R → R is a Borel
function, we obtain a selfadjoint operator on H

∫∞
−∞ g(λ) dEλ (1.64)

with dense domain

dom
(∫ ∞

−∞
g(λ)dEλ

)
:=

{
u ∈ H

∣∣∣∣
∫ ∞

−∞
g(λ)2 d〈u,Eλ(u)〉 < ∞

}
.

It is uniquely determined by the property that for all u ∈ dom
(∫∞
−∞ g(λ)dEλ

)

〈
u ,

(∫ ∞

−∞
g(λ)dEλ

)
(u)

〉
=

∫ ∞

−∞
g(λ)d〈u,Eλ(u)〉. (1.65)

If g is a complex valued Borel function on R, one defines
∫∞
−∞ g(λ)dEλ using

the Polar Decomposition g = <(g) + i · =(g).
Any selfadjoint operator T : dom(T ) → H determines a spectral family

{ET
λ | λ ∈ R}. It is uniquely determined by the property

T =
∫ ∞

−∞
λ dET

λ . (1.66)

We often abbreviate for a Borel function g : R→ R

g(T ) :=
∫ ∞

−∞
g(λ) dET

λ . (1.67)
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We have ET
λ = χ(−∞,λ](T ) =

∫∞
−∞ χ(−∞,λ]dET

λ for χ(−∞,λ] the character-
istic function of (−∞, λ].

Definition 1.68 (Spectral family). We call the spectral family associated
to a selfadjoint operator T by (1.66) the spectral family associated to T .
The spectral family associated to an essentially selfadjoint operator T is the
spectral family associated to Tmin.

Notation 1.69. Given two unbounded operators S, T : H1 → H2 with do-
mains dom(S) and dom(T ) and complex numbers λ, µ, define the unbounded
operator λ · S + µ · T : H1 → H2 with domain dom(λ · S + µ · T ) = dom(S) ∩
dom(T ) by (λ · S + µ · T )(x) = λ · S(x) + µ · T (x) for x ∈ dom(S) ∩ dom(T ).

Given two unbounded operators S : dom(S) ⊂ H1 → H2 and T : dom(T ) ⊂
H2 → H3, define the unbounded operator T ◦ S with domain dom(T ◦ S) =
S−1(dom(T )) by T ◦ S(x) := T (S(x)) for x ∈ S−1(dom(T )).

Given a selfadjoint operator T the functional calculus g 7→ g(T ) is an
essential homomorphism of C-algebras in the following sense. Given Borel
functions g1 and g2 and complex numbers λ1 and λ2, the minimal closure
of λ1 · g1(T ) + λ2 · g2(T ) is (λ1 · g1 + λ2 · g2)(T ) and the minimal closure of
g2(T ) ◦ g1(T ) is (g1 · g2)(T ), where (λ1 · g1 + λ2 · g2) and (g1 · g2) are the
obvious Borel functions given by pointwise addition and multiplication.

Let E and F be Hermitian vector bundles over a complete Riemannian
manifold without boundary. Let D : C∞c (E) → C∞c (F ) be an elliptic differ-
ential operator where C∞c (E) is the space of smooth sections with compact
support. Our main examples are dp : Ωp

c (M) → Ωp+1
c (M), δp : Ωp

c (M) →
Ωp−1

c (M) and ∆p : Ωp
c (M) → Ωp

c (M). Notice that there is a formally ad-
joint operator Dt : C∞c (F ) → C∞c (E) which is uniquely determined by the
property that 〈D(u), v〉L2 = 〈u, Dt(v)〉L2 holds for all u, v ∈ C∞c (E). It is
again an elliptic differential operator. For instance, δp+1 is the formal adjoint
of dp. The minimal closure Dmin of D : C∞c (E) → L2C∞(F ) has been de-
fined above where L2C∞(F ) is the Hilbert space completion of C∞c (F ). The
maximal closure Dmax of D is defined by the adjoint of (Dt)min. Indeed, for
any closure D of D : C∞c (E) → L2C∞(F ) we have Dmin ⊂ D ⊂ Dmax. One
can also describe dom(Dmax) as the space of u ∈ L2C∞(E) for which the
distribution D(u) actually lies in L2C∞(F ).

Lemma 1.70. (1) Let M be a complete Riemannian manifold without bound-
ary. Then the Laplacian ∆p : Ωp

c (M) → L2Ωp(M) is essentially selfad-
joint. The minimal and maximal closures of dp : Ωp

c (M) → L2Ωp+1(M),
δp : Ωp

c (M) → L2Ωp−1
c (M) and ∆p : Ωp

c (M) → L2Ωp
c (M) agree;

(2) Let M be a cocompact G-manifold without boundary and with G-invariant
Riemannian metric and let E and F be G-vector bundles with G-invariant
Hermitian metrics. Let D : C∞c (E) → C∞c (F ) be a G-equivariant el-
liptic operator. Then the minimal closure and the maximal closure of
D : C∞c (E) → L2C∞(F ) agree.
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Proof. (1) The Laplacian is essentially selfadjoint by [109, Section 3],[216].
The claims about the equality of the minimal and maximal domains follow
then from [73, Lemma 3.8 on page 113]
(2) is proved in [9, Proposition 3.1 on page 53]. ut

Notice that Lemma 1.70 (1) allows us to talk about the spectral family
associated to the Laplace operator ∆p : Ωp

c (M) → L2Ωp(M) on a complete
Riemannian manifold without boundary.

1.4.2 L2-Hodge-de Rham Theorem

In this subsection we explain parts of the proof of the L2-Hodge-de Rham-
Theorem which we have already stated in Theorem 1.59. For more details we
refer to the original proof in [145] (see also [147]).

Definition 1.71 (L2-de Rham cohomology). Let M be a complete Rie-
mannian manifold without boundary. Put

Zp(M) := ker
((

dp : Ωp
c (M) → L2Ωp+1(M)

)
min

)
;

Bp(M) := im
((

dp−1 : Ωp−1
c (M) → L2Ωp(M)

)
min

)
.

Define the unreduced L2-de Rham cohomology by

Hp
(2),unr(M) := Zp(M)/Bp(M)

and the (reduced) L2-de Rham cohomology by the Hilbert space

Hp
(2)(M) := Zp(M)/ clos(Bp(M)).

Notice that this definition makes sense since Zp(M) ⊂ L2Ωp(M) is closed
and Bp(M) lies in Zp(M). Because of Lemma 1.70 (1) we get the same if
we use the minimal closures instead of the maximal closures. The difference
of the unreduced and reduced L2-cohomology is measured by the Novikov-
Shubin invariants which we will introduce in Chapter 2.

Lemma 1.72. Let M be a complete Riemannian manifold without boundary.
The inclusion of Hp

(2)(M) into L2Ωp(M) induces an isometric isomorphism

Hp
(2)(M)

∼=−→ Hp
(2)(M).

Proof. The following inequalities can easily be derived from Lemma 1.56

clos(Bp(M)) = clos(dp−1(Ωp−1
c (M)));

Zp(M) = clos(δp+1(Ωp+1
c (M)))⊥.

Now apply Theorem 1.57. ut
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Let M be a cocompact free proper G-manifold with G-invariant Rieman-
nian metric. Suppose that M has no boundary. Let HkΩp(M) for a non-
negative integer k be the k-th Sobolev space of p-forms on M , i.e. the Hilbert
space completion of Ωp

c (M) with respect to the inner product or norm

〈ω, η〉k = 〈(1 + ∆p)k/2ω, (1 + ∆p)k/2η〉L2 = 〈ω, (1 + ∆p)kη〉L2 ,

||ω||k =
√
||(1 + ∆p)k/2ω||L2 =

√
〈ω, (1 + ∆p)kω〉L2

using the L2-inner product (1.52) or L2-norm of (1.53). In particular we get
H0Ωp(M) = L2Ωp(M). One can identify H2kΩp(M) with {ω ∈ L2Ωp(M) |
(1 + ∆p)kω ∈ L2Ωp(M)}, where (1 + ∆p)kω is to be understood in the sense
of distributions by Lemma 1.70 (2). The operator (1 + ∆p)k/2 : Ωp

c (M) →
Ωp

c (M) induces for k ≤ l a G-equivariant isometric isomorphism

(1 + ∆p)k/2 : H lΩp(M)
∼=−→ H l−kΩp(M) (1.73)

by the following argument. Obviously (1+∆p)k/2 is well-defined and isomet-
ric. In particular its image is closed. It remains to show that it is surjective.
For this purpose it suffices to show that the orthogonal complement of the
image of (1 + ∆p)k : H2kΩp(M) → L2Ωp(M) is trivial. Since this is the sub-
space of those elements ω ∈ L2Ωp(M) for which 〈ω, (1 + ∆p)k(η)〉L2 = 0
holds for all η ∈ Ωp

c (M), ω lies in the kernel of ((1 + ∆p)k)max. From
Lemma 1.70 (2) we get ((1 + ∆p)k)max = ((1 + ∆p)k)min. Hence there is
a sequence (ωn)n≥0 of elements in Ωp

c (M) which converges in L2Ωp(M)
to ω and for which (1 + ∆p)k(ωn) converges in L2Ωp(M) to zero. Since
||ωn||L2 ≤ ||(1 + ∆p)k(ωn)||L2 holds, we get ω = 0.

The definition of HkΩp(Rn) corresponds to the usual definition of Sobolev
space in the literature (see for instance [473, §7 in Chapter I]). In [145], only
Sobolev spaces H2kΩp(M) are considered and denoted by Hk.

Notice that using a fundamental domain of the G-action one obtains a
G-equivariant isometric isomorphism from L2Ωp(M) to the tensor product
of Hilbert spaces l2(G) ⊗ L2Ωp(G\M) where G acts on l2(G) by left multi-
plication and on L2Ωp(G\M) trivially [9, 4.1 on page 57 and page 65]. This
implies that HkΩp(M) is a Hilbert N (G)-module in the sense of Definition
1.5 for all k, p ≥ 0. The exterior differential induces a G-equivariant bounded
operator, denoted in the same way, dp : Hk+1Ωp(M) → HkΩp+1(M) for all
k, p ≥ 0. (To get bounded operators as differentials is the main reasons why
we have introduced the Sobolev spaces.) Thus we obtain for l ≥ n with
n = dim(M) a Hilbert N (G)-cochain complex H l−∗Ω∗(M) in the sense of
Definition 1.15

. . . → 0 → H lΩ0(M) d0

−→ H l−1Ω1(M) d1

−→ H l−2Ω2(M) d2

−→ . . .

dn−1

−−−→ H l−nΩn(M) → 0 → . . . (1.74)

We have introduced its (reduced) L2-cohomology Hp
(2)(H

l−∗Ω∗(M)) in Defi-
nition 1.16. The next lemma will show that it is independent of l ≥ dim(M).
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Lemma 1.75. Let l ≥ dim(M). Then the obvious inclusion of Hp
(2)(M) with

the L2-norm into H l−pΩp(M) is a G-equivariant isometric embedding and
induces a G-equivariant isometric isomorphism

Hp
(2)(M)

∼=−→ Hp
(2)(H

l−∗Ω∗(M)).

Proof. Consider ω ∈ Hp
(2)(M). Obviously ||ω||k = ||ω||0 < ∞ for all k ≥ 0.

This implies that dω, δdω, δω and dδω are square-integrable. We conclude
from Lemma 1.56

〈ω, ω〉0 = 〈(1 + ∆p)ω, ω〉0 = 〈ω, ω〉0 + 〈dpω, dpω〉0 + 〈δpω, δpω〉0.
This implies dω = δω = 0. For η ∈ H l−p+1Ωp−1(M) we get from Lemma
1.56

〈ω, dp−1η〉l−p = 〈ω, (1 + ∆p)l−pdp−1η〉0 = 〈δpω, (1 + ∆p−1)l−pη〉0 = 0.

This shows thatHp
(2)(M) lies in ker(dp) and is orthogonal to clos(im(dp−1)) in

H l−pΩp(M). It remains to show that the orthogonal complement of Hp
(2)(M)

in ker(dp) is contained in clos(im(dp−1)).
Given µ ∈ ker(dp), we can decompose it orthogonally as µ = ω + η for

ω ∈ Hp
(2)(M) and η in the orthogonal complement of Hp

(2)(M) in ker(dp) ⊂
H l−pΩp(M). Put η′ = (1 + ∆p)(l−p)/2(η). Then dp

minη′ = 0 and for every
ν ∈ Hp

(2)(M) we get

〈η′, ν〉0 = 〈(1 + ∆p)(l−p)/2η, ν〉0
= 〈(1 + ∆p)(l−p)/2η, (1 + ∆p)(l−p)/2ν〉0
= 〈η, ν〉l−p

= 0.

From Theorem 1.57, we obtain a sequence of elements ηn ∈ Ωp−1
c (M) such

that η′ = limn→∞ dp−1ηn with respect to the L2-norm. Now we derive from
1.73 in H l−pΩp(M)

η =
(
(1 + ∆p)(l−p)/2

)−1

η′ = lim
n→∞

dp−1
(
(1 + ∆p−1)(l−p)/2

)−1

ηn,

where we think of ηn as an element in H1Ωp−1(M). Hence η belongs to
clos(im(dp−1)) in H l−pΩp(M). ut

Fix an equivariant smooth triangulation K of M . In particular K is a free
cocompact G-CW -complex and we have introduced its cellular L2-cochain
complex C∗(2)(K) in Definition 1.29. Next we give a different model for it
in terms of the cellular cochain complex C∗(K) = homZ(C∗(K),C). Fix for
any simplex in K some (arbitrary) orientation. Then we obtain a basis for
Cp(K) for each p ≥ 0 and an element in Cp(K) is the same as a function f
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from the set Sp(K) of p-dimensional simplices of K to C. We call f square-
summable if

∑
σ∈Sn(K) |f(σ)|2 < ∞. Let l2Cp(K) ⊂ Cp(K) be the subspace

of square-summable cochains. One easily checks that we obtain a subcomplex
l2C∗(K) ⊂ C∗(K), the cochain complex of square-summable cochains. It be-
comes a finite Hilbert N (G)-chain complex with respect to the inner product
〈f, g〉L2 :=

∑
σ∈Sn(K) f(σ)g(σ).

Lemma 1.76. There is a natural isometric G-chain isomorphism

f∗ : C∗(2)(K)
∼=−→ l2C∗(K).

Proof. The map fp sends u ∈ homZG(Cp(K), l2(G)) to the element fp(u) ∈
map(Sp(K),C) which assigns to a simplex σ the coefficient λe of the unit
element e ∈ G in u(σ) =

∑
g∈G λg · g. ut

If ω ∈ HkΩp(M) for k > dim(M)/2 + 1, then ω is a C1-form by the
Sobolev inequality. In particular we can integrate ω over any oriented p-
simplex of K and thus obtain an element in Cp(K). It turns out that this
element actually lies in l2Cp(K). By this construction and the isomorphism
appearing in Lemma 1.76 we obtain for large enough l > 0 a cochain map of
Hilbert N (G)-cochain complexes, the L2-de Rham cochain map

A∗ : H l−∗Ω∗(M) → C∗(2)(K). (1.77)

Notice that C∗(2)(K), l2Cp(K), f∗ and A∗ are independent of the choices
of orientations of the simplices. A change of the orientation of a simplex σ
affects

∫
σ

ω and the basis for Cp(K) in a way which cancels out.
Next we define a right inverse of A∗ as follows. The construction is due

to Whitney [522, VII.11 on page 226]. Let {Uσ}σ∈S0(K) be the open covering
given by the open stars of the 0-simplices. Recall that the closed star st(σ) of a
simplex σ consists of all simplices τ which are faces of some simplex τ ′ which
has σ as face. The open star is the interior of the closed star. Obviously
gUσ = Ugσ for σ ∈ S0(K) and g ∈ G. Choose a G-invariant subordinate
smooth partition {eσ}σ∈S0(K) of unity, i.e. smooth function eσ : M → [0, 1]
with support in Uσ such that egσ ◦ lg = eσ for lg : M → M left multiplication
with g holds for all σ ∈ S0(K) and g ∈ G and that the (locally finite) sum∑

σ∈S0(K) eσ is constant 1. Given a p-simplex τ with vertices σ0, σ1, . . ., σp,
let cτ ∈ l2Cp(M) be the characteristic function associated to τ and define a
smooth p-form W (cτ ) with support in the star of τ by

W (cτ ) := p!
p∑

i=0

(−1)ieσid
0eσ0 ∧ . . . ∧ d0eσi−1 ∧ d0eσi+1 ∧ . . . ∧ d0eσp

if p > 0 and by W (cτ ) = eσ0 if p = 0. Using the isomorphism appearing in
Lemma 1.76 we obtain a well-defined cochain map of Hilbert N (G)-cochain
complexes, the so called Whitney map.
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W ∗ : C∗(2)(K) → H l−∗Ω∗(M). (1.78)

Again W ∗ does not depend on the choice of orientations of the simplices. It
satisfies

A∗ ◦W ∗ = id . (1.79)

In particular we see that the map induced by A∗ on L2-cohomology

H∗
(2)(A

∗) : H∗
(2)(H

l−∗Ω∗(M)) → H∗
(2)(C

∗
(2)(K)) (1.80)

is surjective. Next we explain why it is injective. This is not done by con-
structing a homotopy between W ∗ ◦ A∗ and id as it can be done for G\K
and G\M since the construction on the quotients is not local and cannot be
lifted to K and M . Instead one modifies the definition of W , namely one
uses the partition given by barycentric coordinate functions eσ for a ver-
tex σ instead of the smooth partition before. Then the image of this new
Whitney map consists of L2-integrable forms and yields a bounded operator
W p : Cp

(2)(K) → L2Ωp(M) (see Lemma 2.79), but the image does not lie in
H lΩp(M) for all l ≥ 0 anymore, since the barycentric coordinate functions
are not smooth and hence W (cτ ) is not smooth for a p-simplex τ . (We will see
in the proof of Lemma 2.79 that W (cτ ) is at least continuous.) The advantage
of this modified Whitney map lies in the following result [145, Lemma 3.9 on
page 164].

Lemma 1.81. Let ω ∈ HkΩp(M) be a fixed element and k > dim(M)/2+1.
For every ε > 0 we can find an equivariant smooth triangulation K(ε) which
is a subdivision of K such that

||ω −W p
K(ε) ◦Ap

K(ε)(ω)||L2 < ε

holds for the L2-de Rham map Ap
K(ε) and the modified Whitney map W p

K(ε)

associated to K(ε). ut
This Lemma 1.81 is the key ingredient in the proof of injectivity of the

map (1.80) as we explain next. Because of Lemma 1.72 and Lemma 1.75 it
suffices to show for an element ω ∈ Hp

(2)(M) with H∗
(2)(A

∗)([ω]) = 0 that its
class [ω] ∈ Hp

(2)(M) vanishes.
Fix ε > 0. Lemma 1.81 implies for an appropriate subdivision K(ε)

||ω −W p
K(ε) ◦Ap

K(ε)(ω)||L2 < ε/2.

There is a cochain map l2C∗(K) → l2C∗(K(ε)) which induces an isomor-
phism on L2-cohomology and is compatible with the de Rham cochain maps
for K and K(ε). We conclude H∗

(2)(A
∗
K(ε))([ω]) = 0. Hence we can find a

cochain u ∈ l2Cp−1(K(ε)) with
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||Ap
K(ε)(ω)− cp−1

K(ε)(u)||L2 <
ε

2 · ||W p
K(ε)||

.

This implies

||ω −W p
K(ε) ◦ cp−1

K(ε)(u)||L2

≤ ||ω −W p
K(ε) ◦Ap

K(ε)(ω)||L2 + ||W p
K(ε) ◦Ap

K(ε)(ω)−W p
K(ε) ◦ cp−1

K(ε)(u)||L2

≤ ||ω −W p
K(ε) ◦Ap

K(ε)(ω)||L2 + ||W p
K(ε)|| · ||Ap

K(ε)(ω)− cp−1
K(ε)(u)||L2

≤ ε/2 + ||W p
K(ε)|| ·

ε

2 · ||W p
K(ε)||

= ε.

Now one checks that the image of W p
K(ε) is contained in the domain of(

dp : Ωp
c (M) → L2Ωp+1(M)

)
max

and that dp−1
max◦W p−1

K(ε) = W p
K(ε)◦cp−1

K(ε). Hence
for ε > 0 there is v in the domain of

(
dp : Ωp

c (M) → L2Ωp+1(M)
)
max

such
that ||ω − dp−1

max(v)||L2 < ε holds. Hence the class represented by ω in the re-
duced L2-de Rham cohomology Hp

(2)(M) is trivial. This shows that the map
appearing in (1.80) is bijective. Now the map appearing in Theorem 1.59 is
bijective since it is the composition of the bijective maps appearing in Lemma
1.75 and (1.80). This finishes the proof of Theorem 1.59. ut

1.5 L2-Betti Numbers of Manifolds with Boundary

We briefly discuss the case of a manifold with boundary. A useful discussion
what smooth means for a function or a section of a bundle on a manifold with
boundary is given in [467]. Lemma 1.56 says that for a complete Riemannian
manifold with boundary and for smooth forms ω ∈ Ωp(M) and η ∈ Ωp+1(M)
such that ω, dpω, η and δp+1η are square-integrable, we get

〈dpω, η〉L2 − 〈ω, δp+1η〉L2 =
∫

∂M

(ω ∧ ∗p+1η)|∂M . (1.82)

The classical de Rham isomorphism is an isomorphism for any manifold re-
gardless whether it has a boundary or not (see Theorem 1.47).

Suppose that the boundary ∂M of the complete Riemannian manifold M
is the disjoint union of ∂0M and ∂1M where we allow that ∂0M , ∂1M or
both are empty. A form ω ∈ Ωp(M) satisfies Dirichlet boundary conditions
on ∂0M if ω|∂0M = 0 holds. It satisfies Neumann boundary conditions on
∂1M if ∗pω|∂1M = 0 holds. Define

Ωp
2(M, ∂0M) := {ω ∈ Ωp

c (M) | ω|∂0M = 0, (δpω)|∂0M = 0,

(∗pω)|∂1M = 0, (∗p+1dpω)|∂1M = 0}; (1.83)
Ωp

1(M, ∂0M) := {ω ∈ Ωp
c (M) | ω|∂0M = 0, (∗pω)|∂1M = 0}; (1.84)

Ωp
d(M, ∂0M) := {ω ∈ Ωp

c (M) | ω|∂0M = 0}; (1.85)
Ωp

δ (M, ∂0M) := {ω ∈ Ωp
c (M) | (∗pω)|∂1M = 0}. (1.86)
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Define the space of L2-integrable harmonic smooth p-forms satisfying bound-
ary conditions

Hp
(2)(M, ∂0M) := {ω ∈ Ωp

2(M, ∂0M) | ∆p(ω) = 0,

∫

M

ω ∧ ∗ω < ∞}. (1.87)

We have the following version of the Hodge-de Rham Theorem 1.57.

Theorem 1.88. (Hodge-de Rham Theorem for manifolds with
boundary). Let M be a complete Riemannian manifold whose boundary ∂M
is the disjoint union ∂0M and ∂1M . Then we have the so called Hodge-de
Rham decomposition

L2Ωp(M) = Hp
(2)(M, ∂0M)⊕ clos(dp−1(Ωp−1

d (M, ∂0M)))⊕
clos(δp+1(Ωp+1

δ (M,∂0M))).

We have the following version of the L2-Hodge-de Rham Theorem 1.59.

Theorem 1.89. (L2-Hodge-de Rham Theorem for manifolds with
boundary.) Let M be a cocompact free proper G-manifold with G-invariant
Riemannian metric whose boundary ∂M is the disjoint union of G-spaces
∂0M and ∂1M . Let (K; ∂0K, ∂1K) be an equivariant smooth triangulation of
the triad (M ; ∂0M, ∂1M). Then integration defines an isomorphism of finitely
generated Hilbert N (G)-modules

Hp
(2)(M, ∂0M)

∼=−→ Hp
(2)(K, ∂0K).

The detailed proof of Theorem 1.88 and of Theorem 1.89 in the more
general context of Riemannian manifolds with bounded geometry can be
found in [459, Theorem 5.10, Theorem 8.2 and Corollary 8.15] (see also [322,
Theorem 5.13]). Theorem 1.88 remains true if one replaces Ωp−1

d (M, ∂0M)
by Ωp−1

1 (M, ∂0M) and Ωp+1
δ (M, ∂0M) by Ωp+1

1 (M, ∂0M).
The expression (1.60) in terms of the heat kernel on M for the analytic

L2-Betti numbers which are defined by

b(2)
p (M, ∂0M) := dimN (G)(Hp

(2)(M, ∂0M)) (1.90)

carries over to the situation studied in Theorem 1.89 if one uses Ω2(M, ∂0M)
as initial domain for ∆p.

There is also the following version of Lemma 1.72 proved in [459, Theorem
6.2]. Define the (reduced) L2-cohomology Hp

(2)(M, ∂0M) as in Definition 1.71
but now using dp : Ωp

d(M, ∂0M) → L2Ωp+1(M) instead of dp : Ωp
c (M) →

L2Ωp+1(M).

Lemma 1.91. Let M be a complete Riemannian manifold whose bound-
ary ∂M is the disjoint union of ∂0M and ∂1M . Then the inclusion of
Hp

(2)(M, ∂0M) into L2Ωp(M) induces an isomorphism

Hp
(2)(M,∂0M)

∼=−→ Hp
(2)(M, ∂0M).
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Notice that we do not require here (nor later in the context of Novikov-
Shubin invariants) that the metric is a product near the boundary. However,
this will be crucial when we deal with torsion and L2-torsion in Remark 3.162.

1.6 Miscellaneous

The following result is sometimes useful since it gives a criterion for the
reduced L2-cohomology to be non-trivial.

Lemma 1.92. Let M be a complete Riemannian manifold without boundary.
Denote by i : Hp

c (M ;C) → Hp(M ;C) the natural map from the cohomology
with compact support to the cohomology of M . Then im(i) injects into the
reduced L2-cohomology Hp

(2)(M).

Proof. Let k : Hp
c (M ;C) → Hp

(2)(M) be the canonical map. Choose any linear
map s : im(i) → Hp

c (M ;C) with i ◦ s = id. We want to show that k ◦ s is
injective. It suffices to prove for a smooth closed p-form ω with compact
support satisfying k([ω]) = 0 that i([ω]) = 0 holds.

Since k([ω]) = 0, there is a sequence (ηn)n≥0 in Ωp−1
c (M) such that

ω = limn→∞ dp−1(ηn) with respect to the L2-norm holds. Suppose i([ω]) 6= 0.
Let p : M → M be the orientation covering of M . This is a double covering
with orientable total space and the induced map p∗ : Hp(M ;C) → Hp(M ;C)
is injective. Hence p∗ω represents a non-zero element in Hp(M ;C). Put m =
dim(M). By Poincaré duality [57, (5.4) on page 44 and Remark I.5.7 on page
46] there is a smooth (m− p)-form µ with compact support on M such that
dm−pµ = 0 and

∫
M

p∗ω∧µ is different from zero. This yields the contradiction
∫

M

p∗ω ∧ µ = lim
n→∞

∫

M

dp−1p∗ηn ∧ µ = lim
n→∞

∫

M

dm−1(p∗ηn ∧ µ) = 0.ut

Cellular L2-Betti numbers and L2-(co-)homology can also be defined for
a cocompact proper G-CW -complex X. Recall that the isotropy group of
each point of a free G-CW -complex is trivial, whereas it is finite for a proper
G-CW -complex. The point is that the cellular L2-chain complex C

(2)
∗ (X) =

l2(G)⊗ZG C∗(X) is still defined as Hilbert N (G)-chain complex for a proper
G-CW -complex. After a choice of a characteristic map (Qn

i , qn
i ) : G/Hi ×

(Dn, Sn−1) → (Xn, Xn−1) for each element of the set In of equivariant n-
dimensional cells we obtain explicit isomorphisms

Cn(X) ∼=
⊕

i∈In

Z[G/Hi];

C(2)
n (X) ∼=

⊕

i∈In

l2(G/Hi),
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and we put on C
(2)
n (X) the induced Hilbert N (G)-module structure. This is

independent of the choice of characteristic maps since for a different choice
the two identifications of Cn(X) differ by a direct sum of automorphisms of
the shape εi · lgi

: Z[G/Hi] → Z[G/Hi] for some εi ∈ {±1} and gi ∈ G.
Theorem 1.35 (1), (3), (4), (8), (9) and (10) remain true if one replaces

free by proper. The basic observation is that C
(2)
∗ (X) can be written as

l2(G) ⊗CG (C⊗Z C∗(X)) and C ⊗Z Cn(X) is a finitely generated projective
C[G]-module for all n. Theorem 1.35 (2) becomes

∑

p≥0

(−1)p · b(2)
p (X) =

∑

p≥0

(−1)p ·
∑

i∈Ip

|Hi|−1 (1.93)

since dimN (G)(l2(G/Hi)) = |Hi|−1. The spaceHp
(2)(M) of harmonic L2-forms

of a cocompact proper G-manifold M with G-invariant Riemannian metric
inherits the structure of a Hilbert N (G)-module and Theorem 1.59 remains
true without the assumption that M is free.

We will give a combinatorial approach to the L2-Betti numbers in Section
3.7 which is useful for concrete calculations.

We will explain a proportionality principle for L2-Betti numbers in The-
orem 3.183, Theorem 7.34 and Corollary 7.37.

We will compute the values of L2-Betti numbers of the universal coverings
of compact 3-manifolds in Theorem 4.1 and of locally symmetric spaces in
Theorem 5.12 and (5.15).

A more algebraic treatment of Hilbert modules, dimension functions and
L2-Betti numbers and a definition of L2-Betti numbers for arbitrary topolog-
ical spaces with an arbitrary G-action will be given in Chapter 6. This will
apply in particular to EG for any (discrete) group G.

We will discuss the behaviour of L2-Betti numbers of groups under quasi-
isometry and measure equivalence in Section 7.5.

Lemma 1.94. Let B be the set of real numbers r, for which there exists a
CW -complex X of finite type and an integer p ≥ 0 with b

(2)
p (X̃) = r. Then

B is countable and contains {r | r ∈ Q, r ≥ 0}.
Proof. We get {r | r ∈ Q, r ≥ 0} ⊂ B from Example 1.38. Let B′ be the
set of real numbers r, for which there exists a finitely presented group G,
positive integers m and n and a matrix A ∈ M(m,n,ZG) satisfying

r = dimN (G)

(
ker

(
r
(2)
A : l2(G)m → l2(G)n

))
,

where r
(2)
A is given by right multiplication with A. The fundamental group π

of a CW -complex of finite type X is finitely presented and

b(2)
p (X̃) = dimN (π)(ker(c(2)

p )) + dimN (π)(ker(c(2)
p+1))− np+1
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follows from Additivity (see Theorem 1.12 (2)), where np+1 is the number of
(p + 1)-cells of X. Hence it suffices to show that B′ is countable. Since there
are only countably many finite presentations and ZG is countable for any
finitely presented and hence countable group G, Lemma 1.94 follows. ut

In Chapter 10 we deal with the question how large the set B is. At the
time of writing no counterexample to the statement B = {q ∈ Q | q ≥ 0} is
known to the author.

We will deal with the Singer Conjecture 11.1 that the L2-Betti numbers
of the universal covering of an aspherical closed manifold vanish outside the
middle dimension in Chapter 11.

We will relate the L2-Betti numbers of the universal covering of an aspher-
ical closed manifold to its simplicial and its minimal volume (see Conjecture
14.1 and Subsection 14.2.6).

Question 1.95. (Vanishing of L2-Betti numbers of the base and the
total space of a fibration).
Let F → E

p−→ B be a fibration of connected finite CW -complexes. Suppose
that all L2-Betti numbers of B̃ are trivial. Does this imply that all the L2-Betti
numbers of Ẽ are trivial?

The answer is yes if B = S1 by Theorem 1.39. The answer is also known
to be affirmative if one of the following conditions is satisfied [61]: i.) B is
an S1-CW -complex such that the inclusion of one (and hence all) orbits
induces a map on the fundamental groups with infinite image. ii.) The map
π1(p) : π1(E) → π1(B) is bijective and π1(B) is virtually poly-cyclic. iii.)
The map π1(p) : π1(E) → π1(B) is bijective and π1(B) operates trivially on
H∗(F ). If B is aspherical, more information will be given in Theorem 7.4.

Using the center-valued trace (see Theorem 9.5) one can define a center-
valued von Neumann dimension and thus elements bu

p(X;N (G)), which take
values in the center Z(N (G)) of the von Neumann algebra N (G). Essen-
tially we get for any conjugacy class (g), which contains only finitely many
elements, a number. The value at (1) is the L2-Betti number. Lott [321] de-
fines analytically delocalized L2-Betti numbers for the universal covering M̃
of a closed Riemannian manifold M , which assigns to any conjugacy class a
number. The invariant is presently only defined under certain technical as-
sumptions. For example, the p-th delocalized Betti number is well-defined if
G is virtually abelian, or if G is virtually nilpotent or Gromov hyperbolic and
there is a gap away from zero in the spectrum of ∆p [321, Proposition 6].

Elek [171] defines an invariant bp
E(X̃) for a finite CW -complex X replacing

C∗(2)(X̃) by homZ(C∗(X̃);F2) for F2 the field of two elements and replacing
the von Neumann dimension by the topological entropy of linear subshifts,
provided that G is amenable. It has properties similar to the L2-Betti num-
bers.

Finally we give some further references. Survey articles on L2-cohomology
and L2-Betti numbers are [164], [168], [237, section 8], [332], [338], [341], [360]
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and [411]. More information about Morse inequalities in the L2-context can
be found for instance in [182], [363], [364], [401], [400], [475].

Exercises

1.1. Let H ⊂ G be a subgroup. Show that the Hilbert space l2(G/H) with
the obvious G-action is a Hilbert N (G)-module if and only if H is finite, and
that in this case its von Neumann dimension is |H|−1.

1.2. Show that Lemma 1.9 (5) remains true if one only requires that the rows
are weakly exact instead of exact, provided that all Hilbert N (G)-modules
have finite dimension.

1.3. Show by an example that Theorem 1.12 (4) becomes false if one drops
the condition dimN (G)(V ) < ∞.

1.4. Consider the following diagram of Hilbert N (G)-modules of finite di-
mension with weakly exact rows

U1
u1−−−−→ U2

u2−−−−→ U3
u3−−−−→ U4

u4−−−−→ U5

f1

y f2

y f3

y f4

y f5

y
V1

v1−−−−→ V2
v2−−−−→ V3

v3−−−−→ V4
v4−−−−→ V5

Suppose that f1 has dense image, f2 and f4 are weak isomorphisms and f5

is injective. Show that then f3 is a weak isomorphism.

1.5. The group von Neumann algebra N (G) carries an involution of rings
given by taking adjoints of bounded G-equivariant operators l2(G) → l2(G).
Show that the ring homomorphism i : N (H) → N (G) given by induction (see
Definition 1.23) is compatible with these involutions.

1.6. Find as many different proofs as possible for the fact that all the L2-
Betti numbers of the universal covering of the n-dimensional torus Tn for
n ≥ 1 vanish.

1.7. Let X be an aspherical CW -complex of finite type. Suppose that its
fundamental group contains a normal infinite cyclic subgroup. Show that
then all L2-Betti numbers of X̃ vanish.

1.8. Show that a symmetric densely defined linear operator T : dom(T ) → H
is selfadjoint if and only if the range of T ± i · id is H and that it is essentially
selfadjoint if and only if the range of T ± i · id in H is dense.

1.9. Let f : H → H be a linear map of finite dimensional Hilbert spaces
which is symmetric. Show that the projection Ef

λ of the associated spectral
family is the sum

⊕
µ≤λ prµ, where prµ is the projection onto the eigenspace
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of µ ∈ R. Let u : H → Cn be a unitary operator such that ufu−1 : Cn → Cn

is given by a diagonal matrix D with real entries. Given a Borel function
g : R → C, let g(D) be the diagonal matrix obtained from D by applying
g to the diagonal entries. Show that

∫∞
−∞ g(λ)dEλ in the sense of (1.64) is

u−1g(D)u.

1.10. Let M be a complete Riemannian manifold without boundary. Show
that we obtain a Hilbert cochain complex (in the sense of Definition 1.15 for
G = 1) by

. . .
dp−2
min−−−→ dom(dp−1

min )
dp−1
min−−−→ dom(dp

min)
dp
min−−−→ . . .

if we equip dom(dp
min) with the Hilbert structure given by (1.63). Show that

its unreduced and reduced L2-cohomology in the sense of Definition 1.16
agrees with the notions of Definition 1.71.

1.11. Show by giving an example that Lemma 1.56 does not hold without
the hypothesis that M is complete.

1.12. Show for any free Z-CW -complex X of finite type that b
(2)
p (X) ≤

bp(Z\X) holds.

1.13. Let M be an orientable closed 4-manifold with π1(M) = Z/2 ∗ Z/2.
Show

b
(2)
2 (M̃) = χ(M) = 2 + b2(M).

1.14. Fix an integer n ≥ 1. Show that for a sequence r
(2)
1 , r

(2)
2 , . . . , r

(2)
n of

non-negative rational numbers and a sequence r1, r2, . . . , rn of non-negative
integers there is a finite (n + 1)-dimensional CW -complex X with infinite
fundamental group satisfying b

(2)
p (X̃) = r

(2)
p and bp(X) = rp for p = 1, . . . , n.





2. Novikov-Shubin Invariants

Introduction

In this chapter we introduce and study Novikov-Shubin invariants for Hilbert
chain complexes and for regular coverings of CW -complexes of finite type or
of compact manifolds.

We will associate to the Laplacian ∆p of a cocompact free proper G-
manifold M with G-invariant Riemannian metric its spectral density function
F∆

p (M) : [0,∞) → [0,∞) which assigns to λ the von Neumann dimension of
the image of Eλ, where {Eλ | λ ≥ 0} is the spectral family of ∆p. We
rediscover the p-th L2-Betti number b

(2)
p (M) by F∆

p (M)(0). If G is finite
F∆

p (M) measures how many eigenvalues ≤ λ, counted with multiplicity, ∆p

has, and this is the right intuition also for infinite G. F∆
p (M) contains a lot

of information about the spectrum of ∆p.
The spectral density function is an example of a so called density function

F : [0,∞) → [0,∞], i.e. F is monotone non-decreasing and right-continuous.
Two density functions F and G are called dilatationally equivalent if there
are C > 0 and ε > 0 such that G(C−1 · λ) ≤ F (λ) ≤ G(C · λ) holds for all
λ ∈ [0, ε]. The spectral density function itself depends on the Riemannian
structure. However, it turns out that its dilatational equivalence class only
depends on the G-homotopy type of M . Hence it becomes a very interesting
object because it is defined in terms of analytic data but is also a topological
invariant. The Novikov-Shubin invariant of a density function is defined by

α(F ) = lim inf
λ→0+

ln(F (λ)− F (0))
ln(λ)

∈ [0,∞],

provided that F (λ) > F (0) holds for all λ > 0. Otherwise, one puts formally
α(F ) = ∞+. It measures how fast F (λ) approaches F (0) for λ → 0+ and
takes the value ∞+ if and only if there is a gap in the spectrum at zero. It
only depends on the dilatational equivalence class of F . Define the Novikov-
Shubin invariant α∆

p (M) of M by the one of F∆
p (M). Novikov-Shubin in-

variants were originally defined in [400],[401]. In some sense Novikov-Shubin
invariants measure how “thin” the spectrum of ∆p at zero is. We will also in-
troduce αp(M) which is defined in terms of the differential dp−1. It measures
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the difference between the unreduced and the reduced L2-de Rham cohomol-
ogy, the unreduced and the reduced one agree in dimension p if and only if
αp(M) = ∞+. We have α∆

p (M) = 1/2 ·min{αp(M), αp+1(M)}.
Via the Laplace transform the dilatational equivalence class of the spec-

tral density function and the Novikov-Shubin invariants are invariants of the
asymptotic behaviour of the heat kernel for large times. Such invariants reflect
the global geometry but are in general very hard to study and to compute.
Notice that index theory yields invariants of the asymptotic behaviour of the
heat kernel for small times and hence local invariants in contrast to invariants
of the large time asymptotics which cannot be expressed locally.

We will introduce and study spectral density functions and Novikov-
Shubin invariants for Hilbert chain complexes and possibly unbounded op-
erators in Section 2.1. In particular we will show that the spectral density
function is a homotopy invariant and satisfies a subadditivity-relation for
short exact sequences. In Section 2.2 we apply this to the cellular L2-chain
complex and thus obtain the cellular spectral density function and Novikov-
Shubin invariants of a free G-CW -complex of finite type. We prove their main
properties such as homotopy invariance, Poincaré duality, product formula
and express the first Novikov-Shubin invariant in terms of the growth rate
of the fundamental group. We give an explicit formula in the case G = Z. In
Section 2.3 we introduce their analytic counterparts and show in Section 2.4
that the analytic and the cellular spectral density functions are dilatation-
ally equivalent and hence the analytic and cellular Novikov-Shubin invariants
agree [167], [240]. In Section 2.5 we discuss the conjecture that the Novikov-
Shubin invariants are either rational positive numbers, ∞ or ∞+. We briefly
treat the case of a manifold with boundary in Section 2.6.

To get a quick overview about Novikov-Shubin invariants one should read
through Sections 2.2, 2.3 and 2.5. The material of this chapter is rather
independent of the following chapters which can be read without studying
this chapter beforehand.

2.1 Spectral Density Functions

In this section we introduce and study the spectral density function associated
to morphisms of Hilbert modules and to Hilbert chain complexes.

2.1.1 Spectral Density Functions of Morphisms

We next deal with the spectral density function of a map of Hilbert modules.
We treat the more general case of an unbounded densely defined operator
since this setting will be needed when we deal with the analytic case. If one
only wants to investigate the cellular version it suffices to treat bounded
operators.
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Definition 2.1 (Spectral density function). Let U and V be Hilbert N (G)-
modules. Let f : dom(f) ⊂ U → V be a G-equivariant closed densely defined
operator. For λ ≥ 0 we define L(f, λ) as the set of Hilbert N (G)-submodules
L ⊂ U such that L ⊂ dom(f) and ||f(x)|| ≤ λ · ||x|| holds for all x ∈ L.
Define the spectral density function of f

F (f) : [0,∞) → [0,∞], λ 7→ sup{dimN (G)(L) | L ∈ L(f, λ)}.
Define the L2-Betti number of f by

b(2)(f) := dimN (G)(ker(f)) = F (f)(0).

We call f Fredholm if there is ε > 0 such that F (f)(ε) < ∞.

We will conclude from Lemma 2.3 that the definition of Fredholm for
a morphism of Hilbert N (G)-modules of Definition 1.20 and Definition 2.1
agree.

Notice that ker(f) ⊂ U is closed and hence a Hilbert N (G)-module and
its von Neumann dimension is defined. The meaning of the spectral density
function becomes more evident if one expresses it in terms of the spectrum
of f∗f , as we explain next.

Lemma 2.2. Let f : dom(f) ⊂ H1 → H2 be a closed densely defined opera-
tor of Hilbert spaces H1 and H2. Define

dom(f∗f) := {x ∈ H1 | x ∈ dom(f), f(x) ∈ dom(f∗)}
and thus an operator f∗f : dom(f∗f) ⊂ H1 → H1. Then

(1) The subspace dom(f∗f) is dense and f∗f is a selfadjoint operator. More-
over, dom(f∗f) is a core for dom(f), i.e. dom(f∗f) ⊂ dom(f) and
for any x ∈ dom(f) there is a sequence xn ∈ dom(f∗f) such that
limn→∞ xn = x and limn→∞ f(xn) = f(x) holds;

(2) Let λ ≥ 0 and x ∈ dom(f). Then

||f(x)|| > λ · ||x|| if Ef∗f
λ2 (x) = 0, x 6= 0;

||f(x)|| ≤ λ · ||x|| if Ef∗f
λ2 (x) = x,

where {Ef∗f
λ | λ ∈ R} denotes the spectral family of the selfadjoint operator

f∗f .

Proof. (1) see [287, Theorem V.3.24 on page 275].

(2) Suppose that Ef∗f
λ2 (x) = 0 and x 6= 0. Choose a sequence xn ∈ dom(f∗f)

such that limn→∞ xn = x and limn→∞ f(xn) = f(x) holds. Since x 6= 0, and
0 = Ef∗f

λ2 (x) = limµ→λ2+ Ef∗f
µ (x) holds, we can find ε > 0 with the property

〈Ef∗f
λ2+ε(x), x〉 <

1
2
〈x, x〉.
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We get from the definition of the spectral family

||f(xn)||2 = 〈f∗f(xn), xn〉
=

∫ ∞

0

µ d〈Ef∗f
µ (xn), xn〉

≥
∫

(λ2,∞)

µ d〈Ef∗f
µ (xn), xn〉

=
∫

(λ2,λ2+ε]

µ d〈Ef∗f
µ (xn), xn〉+

∫

(λ2+ε,∞)

µ d〈Ef∗f
µ (xn), xn〉

≥ λ2 · (〈Ef∗f
λ2+ε(xn), xn〉 − 〈Ef∗f

λ2 (xn), xn〉)
+(λ2 + ε) · (〈xn, xn〉 − 〈Ef∗f

λ2+ε(xn), xn〉)
= (λ2 + ε) · 〈xn, xn〉 − ε · 〈Ef∗f

λ2+ε(xn), xn〉 − λ2 · 〈Ef∗f
λ2 (xn), xn〉.

Taking the limit n →∞ yields

||f(x)||2 ≥ (λ2 + ε) · 〈x, x〉 − ε · 〈Ef∗f
λ2+ε(x), x〉 − λ2 · 〈Ef∗f

λ2 (x), x〉
≥ (λ2 + ε) · ||x||2 − ε

2
· ||x||2 − 0

= (λ2 +
ε

2
) · ||x||2

> λ2 · ||x||2

and hence the desired inequality ||f(x)|| > λ·||x||. The easier analogous proof
of ||f(x)|| ≤ λ · ||x|| for Ef∗f

λ2 (x) = x is left to the reader. ut
Lemma 2.3. Let U and V be Hilbert N (G)-modules. Let f : dom(f) ⊂ U →
V be a G-equivariant closed densely defined operator. Then for λ ∈ R the
spectral projection Ef∗f

λ2 is G-equivariant and

F (f)(λ) = dimN (G)(im(Ef∗f
λ2 )).

Proof. As f∗f commutes with the unitary G-action, the same is true for its
spectral projections. Since im(Ef∗f

λ2 ) ∈ L(f, λ) for λ ≥ 0 holds by Lemma
2.2 (2), we have dimN (G)(im(Ef∗f

λ2 )) ≤ F (f)(λ). From Lemma 2.2 (2) and
Theorem 1.12 (2) we conclude that Ef∗f

λ2 |L : L → im(Ef∗f
λ2 ) is injective and

hence dimN (G)(L) ≤ dimN (G)(im(Ef∗f
λ2 )) for L ∈ L(f, λ). ut

Lemma 2.4. Let U and V be Hilbert N (G)-modules. Let f : dom(f) ⊂ U →
V be a G-equivariant closed densely defined operator. Let f = u|f | be its
polar decomposition into a partial isometry u and a positive operator |f | with
dom(f) = dom(|f |). Suppose that f is Fredholm and b(2)(f∗) is finite. Then
|f | and f∗ are Fredholm,

b(2)(f) = b(2)(|f |)
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and

F (f)(λ)− b(2)(f) = F (|f |)(λ)− b(2)(|f |) = F (f∗)(λ)− b(2)(f∗).

Proof. We can assume without loss of generality that f and f∗ are injec-
tive, otherwise pass to the induced operator ker(f)⊥ → clos(im(f)). Obvi-
ously F (u|f |)(λ) = F (|f |)(λ) = F (|f |u−1)(λ) and f∗ = |f |u−1 where
dom(u|f |) = dom(|f |) and dom(|f |u−1) = u(dom(f)). ut

The intuitive meaning of the spectral density function becomes clear from
the next example, namely, F (f)(λ) counts with multiplicity the eigenvalues
µ of |f | satisfying µ ≤ λ.

Example 2.5. Let G be finite and f : U → V be a map of finitely generated
Hilbert N (G)-modules, i.e. of finite dimensional unitary G-representations.
Then F (f) is the right-continuous step function whose value at λ is the sum
of the complex dimensions of the eigenspaces of f∗f for eigenvalues µ ≤ λ2

divided by the order of G, or, equivalently, the sum of the complex dimensions
of the eigenspaces of |f | for eigenvalues µ ≤ λ divided by the order of G.

Example 2.6. Let G = Zn. In the sequel we use the notation and the iden-
tification N (Zn) = L∞(Tn) of Example 1.4. For f ∈ L∞(Tn) the spectral
density function F (Mf ) of Mf : L2(Tn) → L2(Tn) sends λ to the volume of
the set {z ∈ Tn | |f(z)| ≤ λ} (see Example 1.11).

Definition 2.7. We say that a function F : [0,∞) → [0,∞] is a density
function if F is monotone non-decreasing and right-continuous. If F and G
are two density functions, we write F ¹ G if there are C > 0 and ε > 0
such that F (λ) ≤ G(C · λ) holds for all λ ∈ [0, ε]. We say that F and G are
dilatationally equivalent (in signs F ' G) if F ¹ G and G ¹ F . We say that
F is Fredholm if there exists λ > 0 such that F (λ) < ∞.

Of course, the spectral density function F (f) is a density function, and f
is Fredholm if and only if the density function F (f) is Fredholm. Recall that
for a function h : (0,∞) → [0,∞) its limit inferior for λ → 0+ is defined by

lim inf
λ→0+

h(λ) := sup {inf{h(λ) | 0 < λ ≤ µ} | 0 < µ} ∈ [0,∞].

Definition 2.8 (Novikov-Shubin invariants). Let F be a Fredholm den-
sity function. The L2-Betti number of F is

b(2)(F ) := F (0).

Its Novikov-Shubin invariant is

α(F ) := lim inf
λ→0+

ln(F (λ)− F (0))
ln(λ)

∈ [0,∞],
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provided that F (λ) > b(2)(F ) holds for all λ > 0. Otherwise, we put
α(F ) := ∞+. If f is a Fredholm morphism of Hilbert N (G)-modules, we
write

α(f) = α(F (f)).

Here ∞+ is a new formal symbol which should not be confused with
∞. We have α(F ) = ∞+ if and only if there is an ε > 0 such that F (ε) =
b(2)(F ). Notice that b(2)(f) = b(2)(F (f)) in the notation of Definition 2.1 and
Definition 2.8. The Novikov-Shubin invariant of a spectral density function
F measures how fast F (λ) approaches F (0) for λ → 0+. It is independent
of the actual value F (0) and depends only on the germ of F (λ) at zero. The
Novikov-Shubin invariant of a Fredholm map f : U → V of Hilbert N (G)-
modules measures how “thick” the spectrum of |f | (or f∗f) is at zero. It is
∞+ if and only if the spectrum of |f | (or f∗f) has a gap at zero. In particular
α(f) = ∞+ always holds if G is finite. This shows that the Novikov-Shubin
invariants are only interesting for infinite G.

Example 2.9. In this example we show that any possible value can occur as
Novikov-Shubin invariant of a map of HilbertN (G)-modules and in particular
of a spectral density function. Define spectral density functions Ft for t ∈
[0,∞]

∐{∞+} by Ft(0) = 0 and for λ > 0 by

F0(λ) =





0 λ = 0;
−1

ln(λ) 0 < λ < e−1;
1 e−1 < λ;

Ft(λ) = λt t ∈ (0,∞);
F∞(λ) = exp(−λ−1);

F∞+(λ) = 0.

Then one easily checks for t ∈ [0,∞]
∐{∞+}

α(Ft) = t.

Using Example 2.6 it is not hard to construct for t ∈ [0,∞]
∐{∞+} maps

ft : l2(Z) → l2(Z) of Hilbert N (Z)-modules such that F (ft)(λ) = Ft(λ) for
small λ and hence α(ft) = t holds.

Notation 2.10. Define an ordering on [0,∞]
∐{∞+} by the standard order-

ing on R along with r < ∞ < ∞+ for all r ∈ R. For all α, β ∈ [0,∞]
∐{∞+}

we define
1
α
≤ 1

β
⇔ α ≥ β.

Given α, β ∈ [0,∞]
∐{∞+}, we give meaning to γ in the expression

1
α

+
1
β

=
1
γ
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as follows: If α, β ∈ (0,∞), let γ be the real number for which this arithmetic
expression of real numbers is true. If α = 0 or β = 0, put γ = 0. If α ∈ (0,∞)
and β ∈ {∞,∞+}, put γ to be α. If β ∈ (0,∞) and α ∈ {∞,∞+}, put γ to
be β. If α and β belong to {∞,∞+} and are not both ∞+, put γ = ∞. If
both α and β are ∞+, put γ = ∞+. For r, α ∈ [0,∞]

∐{∞+} we define

r · α ∈ [0,∞]
∐
{∞+}

as follows. Given r ∈ [0,∞) and α ∈ [0,∞), we define r ·α ∈ [0,∞) to be the
ordinary product of real numbers. For r ∈ (0,∞) we put r · ∞ = ∞ · r = ∞.
Put 0 ·∞ = ∞·0 = 0. Define ∞+ ·α = α ·∞+ = ∞+ for α ∈ [0,∞]

∐{∞+}.
For example,

1
∞ +

1
π

=
1
π

,
1
∞+

+
1
π

=
1
π

,
1
∞ +

1
∞+

=
1
∞ ,

1
∞+

+
1
∞+

=
1
∞+

,

1
α
≤ 1
∞ +

1
4

+
1
2
⇔ α ≥ 4/3,

1
α
≤ 1
∞ +

1
∞+

+
1
∞ ⇔ α ≥ ∞ and 5 ·∞ = ∞.

Lemma 2.11. Let F and F ′ be density functions and f : U → V be a mor-
phism of N (G)-Hilbert modules. Assume that F ′ is Fredholm. Then

(1) If F ¹ F ′, then F is Fredholm and b(2)(F ) ≤ b(2)(F ′);
(2) If F ¹ F ′ and b(2)(F ) = b(2)(F ′), then α(F ) ≥ α(F ′);
(3) If F ' F ′, then b(2)(F ) = b(2)(F ′) and α(F ) = α(F ′);
(4) α(F (λr)) = r · α(F (λ)) for r ∈ (0,∞);
(5) α(F ) = α(F − b(2)(F ));
(6) b(2)(f) = dimN (G)(ker(f∗f)) = dimN (G)(ker(f));
(7) If f is zero and dimN (G)(U) < ∞, then f is Fredholm and α(f) = ∞+;
(8) Suppose that dimN (G)(U) = dimN (G)(V ) < ∞ or that U = V and f

is selfadjoint. Then f : U → V is an isomorphism if and only if f is
Fredholm, b(2)(f) = 0 and α(f) = ∞+;

(9) Assume that i : V → V ′ is injective with closed image and p : U ′ → U is
surjective with dimN (G)(ker(p)) < ∞. Then f is Fredholm if and only if
i ◦ f ◦ p is Fredholm, and in this case α(i ◦ f ◦ p) = α(f);

(10) If F and F ′ are Fredholm then α(F + F ′) = min {α(F ), α(F ′)} ;
(11) F (f∗f)(λ2) = F (f)(λ), b(2)(f∗f) = b(2)(f) and α(f∗f) = 1/2 · α(f);
(12) If F (0) = F ′(0), then α(max{F, F ′}) = min{α(F ), α(F ′)}. ut
Proof. (1) to (7) are easy and left to the reader.
(8) The map f∗f of Hilbert N (G)-modules is invertible if and only if there
is ε > 0 such that Ef∗f

λ is zero for λ < ε. If such ε > 0 exists, the inverse
is given by

∫
[ε,||f∗f ||] λ

−1dEf∗f
λ (see (1.64)). Provided that f is selfadjoint,

f∗f = f2 and f∗f is invertible if and only if f is invertible. Provided that
dimN (G)(U) = dimN (G)(V ) < ∞, Theorem 1.12 (1) and (2) imply that f is
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invertible if and only if f∗f is invertible.
(9) The Inverse Mapping Theorem implies F (i ◦ f ◦ p)(λ) ' F (f)(λ) −
dimN (G)(ker(p)).

(10) Since b(2)(F + F ′) = b(2)(F ) + b(2)(F ′), we may assume without loss of
generality by assertion (5) that b(2)(F ) = b(2)(F ′) = b(2)(F + F ′) = 0. As
F, F ′ ≤ F + F ′, assertion (2) implies that α(F + F ′) ≤ min{α(F ), α(F ′)}.
To verify the reverse inequality, we may assume without loss of generality
that α(F ) ≤ α(F ′). The cases α(F ) = 0 and α(F ) = ∞+ are trivial, and
so we assume that 0 < α(F ) ≤ ∞. Consider any real number α satisfying
0 < α < α(F ). Then there exists a constant K > 0 such that for small posi-
tive λ we have F (λ), F ′(λ) ≤ Kλα, and so F (λ) + F ′(λ) ≤ 2K ·λα, implying
that α ≤ α(F + F ′). The assertion follows.

The elementary proof of the other assertions is left to the reader. ut
In the rest of this Subsection 2.1.1 we state and prove some basic proper-

ties of spectral density functions and Novikov-Shubin invariants for compo-
sitions and exact sequences which will be needed for the proofs of the main
results in Subsection 2.1.2.

Lemma 2.12. Let f : U → V be a map of Hilbert N (G)-modules which is
Fredholm and a weak isomorphism. Let L ⊂ V be a Hilbert N (G)-submodule.
Then f restricts to a weak isomorphism from f−1(L) to L and

dimN (G)(L) = dimN (G)(f−1(L)).

Proof. From the Polar Decomposition of f , we can assume without loss of
generality that U = V and f is positive. Obviously the restriction of f to
f−1(L) is injective. It remains to show that f(f−1(L)) is dense in L because
then f induces a weak isomorphism from f−1(L) to L and the claim about
the dimension follows from Theorem 1.12 (2).

Fix an orthogonal decomposition L = clos(f(f−1(L))) ⊕ M , where M
is an Hilbert N (G)-submodule of L. It remains to prove dimN (G)(M) = 0
because then M = 0 follows from Theorem 1.12 (1). As f(f−1(M)) ⊂ M
and f(f−1(M)) ⊂ f(f−1(L)), we get f(f−1(M)) = 0 and therefore M ∩
im(f) = 0. For λ > 0 restriction defines a map Ef

λ |M : M → Ef
λ(U). If m ∈

ker(Ef
λ |M ) then the Spectral Theorem shows that m ∈ im(f), a preimage is

given by
(∫ ||f ||

λ
µ−1dEf

µ

)
(m). Thus ker(Ef

λ |M ) = 0. Theorem 1.12 (2) shows

dimN (G)(M) ≤ dimN (G)(E
f
λ(U)). As f is injective and Fredholm and Eλ is

right-continuous in λ, Theorem 1.12 (4) implies limλ→0+ dimN (G)(E
f
λ(U)) =

dimN (G)(E
f
0 (U)) = 0. Thus dimN (G)(M) = 0. ut

Lemma 2.13. Let f : U → V and g : V → W be morphisms of Hilbert
N (G)-modules. Then

(1) F (f)(λ) ≤ F (gf)(||g|| · λ);
(2) F (g)(λ) ≤ F (gf)(||f || · λ) if f is Fredholm and has dense image;
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(3) F (gf)(λ) ≤ F (g)(λ1−r) + F (f)(λr) for all r ∈ (0, 1).

Proof. (1) Consider L ∈ L(f, λ). For all x ∈ L, |gf(x)| ≤ ||g|| · |f(x)| ≤
||g|| · λ · |x|. This implies that L ∈ L(gf, ||g|| · λ), and the claim follows.
(2) Consider L ∈ L(g, λ). For all x ∈ f−1(L), we have |gf(x)| ≤ λ · |f(x)| ≤
λ · ||f || · |x|, implying f−1(L) ∈ L(gf, ||f || · λ). Hence it remains to show
dimN (G)(L) ≤ dimN (G)(f−1(L)). Let p : U → U/ ker f be the projection
and let f : U/ ker(f) → V be the map induced by f . Clearly f is also Fred-
holm. Since p is surjective and f is a weak isomorphism, Theorem 1.12 (2)
and Lemma 2.12 imply that dimN (G)

(
f−1(L)

) ≥ dimN (G)

(
p(f−1(L))

)
=

dimN (G)

(
f
−1

(L)
)

= dimN (G)(L).

(3) Consider L ∈ L(gf, λ). Let L0 be the kernel of Ef∗f
λ2r |L. We have a

weakly exact sequence 0 → L0 → L → clos(Ef∗f
λ2r (L)) → 0. From Lemma

2.2 (2) we get that |f(x)| > λr · |x| for all nonzero x ∈ L0. In particu-
lar, f |L0 : L0 → clos(f(L0)) is a weak isomorphism, and so Theorem 1.12 (2)
implies that dimN (G)(L0) = dimN (G) (clos(f(L0))). For x ∈ L0 we have

|gf(x)| ≤ λ · |x| ≤ λ

λr
· |f(x)| = λ1−r · |f(x)|.

Hence clos(f(L0)) ∈ L(g, λ1−r). This shows that dimN (G)(L0) ≤ F (g)(λ1−r).
From Theorem 1.12 and Lemma 2.3 we conclude

dimN (G)

(
clos(Ef∗f

λ2r (L))
)
≤ dimN (G)

(
im(Ef∗f

λ2r )
)

= F (f)(λr);

dimN (G)(L) = dimN (G)(L0) + dimN (G)

(
clos(Ef∗f

λr (L))
)

.

This implies that dimN (G)(L) ≤ F (g)(λ1−r) + F (f)(λr). ut
Lemma 2.14. Let f : U → V and g : V → W be morphisms of Hilbert
N (G)-modules.

(1) If f and g are Fredholm, then the composition gf is Fredholm. If f and
g are Fredholm and ker(g) ⊂ clos(im(f)) then

1
α(gf)

≤ 1
α(f)

+
1

α(g)
;

(2) If gf is Fredholm, then f is Fredholm. If gf is Fredholm and ker(g) ∩
im(f) = 0, then

α(f) ≥ α(gf).

If gf is Fredholm and f has dense image, then g is Fredholm and

α(g) ≥ α(gf).
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Proof. We can assume without loss of generality that f is injective by Lemma
2.11 (9), otherwise replace f by the induced map U/ ker(f) → V .
(1) We conclude from Lemma 2.13 (3) that gf is Fredholm. Now assume
ker(g) ⊂ clos(im(f)). As f : U → clos(im(f)) is a weak isomorphism, Lemma
2.12 implies that b(2)(gf) = b(2)(g) = b(2)(f) + b(2)(g). From Lemma 2.13 (3)
we conclude for 0 < r < 1

F (gf, λ)− b(2)(gf) ≤ F (f, λr)− b(2)(f) + F (g, λ1−r)− b(2)(g).

Assertions (2), (4), (5) and (10) of Lemma 2.11 show

α(gf) ≥ min {r · α(f), (1− r) · α(g)} .

We only need to consider the case α(f), α(g) ∈ (0,∞), the other cases being
now obvious. Taking inverses gives

1
α(gf)

≤ max
{

1
r · α(f)

,
1

(1− r) · α(g)

}
.

Since 1
r·α(f) (resp. 1

(1−r)·α(g) ) is a strictly monotone decreasing (resp. increas-
ing) function in r, the maximum on the right side, viewed as a function of
r, obtains its minimum precisely when the two functions of r have the same
value. One easily checks that this is the case if and only if r = α(g)

α(f)+α(g) , and
the claim follows.
(2) This follows from Lemma 2.13 (1) and (2) and Lemma 2.11 (2), (5) and
(9) since ker(g)∩ im(f) = 0 ⇒ b(2)(gf) = b(2)(f) and b(2)(gf) ≤ b(2)(g) if f
is injective. ut
Lemma 2.15. Let u : U → U ′ and v : V → V ′ be morphisms of Hilbert
N (G)-modules and let

0 −−−−→ U1 −−−−→ U0 −−−−→ U2 −−−−→ 0

f1

y f0

y f2

y
0 −−−−→ V1 −−−−→ V0 −−−−→ V2 −−−−→ 0

be a commutative diagram of maps of Hilbert N (G)-modules whose rows are
exact. Then

(1) u⊕ v is Fredholm if and only if both u and v are Fredholm. In this case,

α(u⊕ v) = min {α(u), α(v)} ;

(2) If f1 and f2 are Fredholm, then f0 is Fredholm. If f1 and f2 are Fredholm
and f1 has dense image or f2 is injective, then

1
α(f0)

≤ 1
α(f1)

+
1

α(f2)
;
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(3) If f0 is Fredholm, then f1 is Fredholm. If f0 is Fredholm and f2 is injec-
tive, then α(f1) ≥ α(f0). If f0 is Fredholm and f1 has dense image, then
f2 is Fredholm and α(f2) ≥ α(f0).

Proof. (1) This follows from Lemma 2.11 (10) using F (u⊕ v, λ) = F (u, λ) +
F (v, λ).
(2) Since an exact sequence of Hilbert N (G)-modules always splits by the
Open Mapping Theorem we can assume without loss of generality by Lemma
2.11 (9) that U0 = U1 ⊕ U2 and V0 = V1 ⊕ V2 and f0 has the shape

f0 =
(

f1 f3

0 f2

)

for a morphism f3 : U2 → V1. We have f0 = gf , where g =
(

1 f3

0 f2

)
and

f =
(

f1 0
0 1

)
. Since f1 is Fredholm, f is Fredholm and α(f1) = α(f) by

assertion (1). Since we can write

g =
(

1 0
0 f2

)
·
(

1 f3

0 1

)

we conclude from Lemma 2.11 (9) and assertion (1) that g is Fredholm and
α(g) = α(f2). If f2 is injective then g is injective, and if f1 has dense image
then f has dense image. In both cases we have ker(g) ⊂ clos(im(f)). Now
apply Lemma 2.14 (1).
(3) follows analogously using Lemma 2.14 (2). ut

2.1.2 Spectral Density Functions of Hilbert Chain Complexes

Definition 2.16 (Spectral density function). Let C∗ be a Hilbert N (G)-
chain complex. Define its p-th spectral density function to be the spectral
density function (see Definition 2.1) of its p-th differential cp restricted to
im(cp+1)⊥

Fp(C∗) := F
(
cp|im(cp+1)⊥ : im(cp+1)⊥ → Cp−1

)
.

Suppose that C∗ is Fredholm, i.e. for p ∈ Z there exists λp > 0 with Fp(λp) <
∞ (see Definition 1.20 and Lemma 2.3). Define its p-th Novikov-Shubin
invariant be the Novikov-Shubin invariant (see Definition 2.8) of Fp(C∗),

αp(C∗) := α(Fp(C∗)).

Recall that ∆p : Cp → Cp is the Laplacian of C∗ (see (1.17)). Put

F∆
p (C∗) := F (∆p);

α∆
p (C∗) := α(∆p).
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Define for a Hilbert N (G)-cochain complex C∗ which is Fredholm

Fp(C∗) := F
(
cp|im(cp−1)⊥ : im(cp−1)⊥ → Cp+1

)
;

αp(C∗) := α(Fp(C∗)).

The dual (C∗)∗ of a Hilbert chain complex C∗ is the Hilbert cochain
complex whose p-th cochain module is Cp and whose p-th codifferential cp :=
c∗p+1 : Cp → Cp+1 is the adjoint of cp+1.

Lemma 2.17. Let C∗ and D∗ be Hilbert chain complexes. Then

(1) If C∗ is Fredholm, then ∆p is Fredholm and

α∆
p (C∗) = 1/2 ·min{αp(C∗), αp+1(C∗)};

(2) Suppose that C∗ is Fredholm. Then (C∗)∗ is Fredholm and

Fp+1(C∗) = Fp((C∗)∗);

b(2)
p (C∗) = b(2)

p ((C∗)∗);
αp+1(C∗) = αp((C∗)∗);

(3) C∗⊕D∗ is Fredholm if and only if both C∗ and D∗ are Fredholm. In this
case

Fp(C∗ ⊕D∗) = Fp(C∗) + Fp(D∗);
αp(C∗ ⊕D∗) = min{αp(C∗), αp(D∗)}.

Proof. (1) Lemma 1.18 and Lemma 2.15 (1) imply

F (∆p)− b(2)(∆p) = F (c∗pcp : ker(cp)⊥ → ker(cp)⊥)

+F (cp+1c
∗
p+1 : ker(c∗p+1)

⊥ → ker(c∗p+1)
⊥);

α(∆p) = min{α(c∗pcp : ker(cp)⊥ → ker(cp)⊥),

α(cp+1c
∗
p+1 : ker(c∗p+1)

⊥ → ker(c∗p+1)
⊥)}.

We conclude from Lemma 2.11 (5), (9) and (11)

1/2 · αp(C∗) = α(c∗pcp : ker(cp)⊥ → ker(cp)⊥);

1/2 · αp+1(C∗) = α(cp+1c
∗
p+1 : ker(c∗p+1)

⊥ → ker(c∗p+1)
⊥).

(2) This follows from Lemma 1.18 and Lemma 2.4.
(3) This follows from Lemma 2.15 (1). ut

We recall that a Hilbert N (G)-chain complex C∗ is said to be contractible
if there exists a chain contraction γ∗, i.e. a collection of morphisms γp : Cp →
Cp+1 for p ∈ Z such that γp−1cp + cp+1γp = id for all p.
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Lemma 2.18. The following assertions are equivalent for a Hilbert N (G)-
chain complex C∗:

(1) C∗ is contractible;
(2) ∆p is invertible for all p;
(3) C∗ is Fredholm, b

(2)
p (C∗) = 0 and αp(C∗) = ∞+ for all p.

Proof. (1) ⇒ (3) We can construct morphisms cp : Cp/ clos(im(cp+1)) →
Cp−1 and γp−1 : Cp−1 → Cp/ clos(im(cp+1)), using cp and γp−1, such that
γp−1 ◦ cp = id. Hence cp induces an invertible operator onto its image.

Lemma 2.11 (8) and (9) imply that cp is Fredholm and hence C∗ is Fred-
holm at p, b

(2)
p (C∗) = b(2)(cp) = 0 and αp(C∗) = α(cp) = ∞+.

(3) ⇒ (2) From Lemma 1.18 and Lemma 2.17 (1) we conclude that ∆p is
Fredholm, b(2)(∆p) = 0 and α(∆p) = ∞+ for all p. Now apply Lemma 2.11
(8).
(2) ⇒ (1) Suppose that ∆p is invertible for all p. Then γ∗ with γp :=
∆−1

p+1 ◦ c∗p+1 is a chain contraction of C∗. ut
Next we reprove the homotopy invariance of the Novikov-Shubin invari-

ants [240, Proposition 4.1].

Theorem 2.19. If f∗ : C∗ → D∗ is a chain homotopy equivalence of Hilbert
N (G)-chain complexes, then for all p ∈ Z we have

Fp(C∗) ' Fp(D∗).

In particular C∗ is Fredholm at p if and only if D∗ is Fredholm at p. In this
case

αp(C∗) = αp(D∗).

Proof. There are exact sequences of chain complexes 0 → C∗ → cyl∗(f∗) →
cone∗(f∗) → 0 and 0 → D∗ → cyl∗(f∗) → cone∗(C∗) → 0 with cone∗(f∗)
and cone∗(C∗) being contractible. We obtain chain isomorphisms C∗ ⊕
cone∗(f∗)

∼=−→ cyl∗(f∗) and D∗ ⊕ cone∗(C∗)
∼=−→ cyl∗(f∗) by the following

general construction for an exact sequence 0 → C∗
j∗−→ D∗

q∗−→ E∗ → 0
with contractible E∗: Choose a chain contraction ε∗ for E∗ and for each p a
morphism tp : Ep → Dp such that qp ◦ tp = id . Put

sp = dp+1 ◦ tp+1 ◦ εp + tp ◦ εp−1 ◦ ep.

This defines a chain map s∗ : E∗ → D∗ such that q∗ ◦ s∗ = id. Define a chain
map u∗ : D∗ → C∗ by requiring that for x ∈ Dp its image up(x) is the unique
y ∈ Cp such that x = spqp(x) + jp(y). Then j∗ + s∗ is a chain isomorphism
C∗⊕E∗ → D∗ with inverse u∗⊕q∗. Since C∗⊕cone∗(f∗) and D∗⊕cone∗(C∗)
are isomorphic and cone∗(f∗) and cone∗(C∗) are contractible, Lemma 2.11
(9), Lemma 2.17 (3) and Lemma 2.18 imply Fp(C∗) ' Fp(D∗). Now the other
statements follow from Lemma 2.11 (3). ut

The next result is taken from [322, Theorem 2.3 on page 27].
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Theorem 2.20. Let 0 → C∗
j∗−→ D∗

q∗−→ E∗ → 0 be an exact sequence of
Hilbert N (G)-chain complexes. Suppose that two of the chain complexes are
Fredholm. Then all three chain complexes are Fredholm and we have

1
αp(D∗)

≤ 1
αp(C∗)

+
1

αp(E∗)
+

1
α(δp)

;

1
αp(E∗)

≤ 1
αp−1(C∗)

+
1

αp(D∗)
+

1
α(Hp−1(j∗))

;

1
αp(C∗)

≤ 1
αp(D∗)

+
1

αp+1(E∗)
+

1
α(Hp(q∗))

,

where δp : H
(2)
p (E∗) → H

(2)
p−1(C∗) is the boundary operator in the long weakly

exact homology sequence (see Theorem 1.21).

Proof. We first treat the case where C∗ and E∗ are Fredholm. Then D∗ is
Fredholm by Lemma 2.15 (2). We now show that

1
αp(D∗)

≤ 1
αp(C∗)

+
1

αp(E∗)
+

1
α(δp)

. (2.21)

The given exact sequence 0 → C∗
j∗−→ D∗

q∗−→ E∗ → 0 induces the fol-
lowing commutative diagram with exact rows, where qp, dp and ep are the
canonical homomorphisms induced by qp, dp and ep, and i is the inclusion

0 −−−−→ ker qp
i−−−−→ Dp/ clos(im(dp+1))

qp−−−−→ Ep/ ker(ep) −−−−→ 0

∂p

y dp

y ep

y
0 −−−−→ Cp−1 −−−−→

jp−1
Dp−1 −−−−→

qp−1
Ep−1 −−−−→ 0

(2.22)

We define ∂p in the above diagram as follows. Let x ∈ ker(epqp) represent
[x] ∈ ker(qp). Then dp(x) = jp−1(y) for a unique y ∈ Cp−1. We put ∂p([x]) =
y. (In fact, y ∈ ker(cp−1).)

Next we construct a sequence which we will show to be weakly exact

Cp
jp−→ ker(qp)

q̂p−→ H(2)
p (E∗) → 0 (2.23)

The map jp is induced by jp in the obvious way. To define q̂p, consider an
x ∈ Dp whose class [x] ∈ Dp/ clos(im(dp+1)) lies in ker(qp). Then qp(x) is in
the kernel of ep and determines a class [qp(x)] in H

(2)
p (E∗). Define q̂p([x]) to

be [qp(x)]. One easily checks that q̂p ◦ jp is zero and q̂p is surjective. We will
show that ker(q̂p) is contained in clos(im(jp)). Consider [x] ∈ ker(q̂p) with
representative x ∈ Dp. Since [qp(x)] ∈ H

(2)
p (E∗) is zero, there is a sequence

(yn)n≥1 in Ep+1 such that in Ep
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lim
n→∞

(qp(x)− ep+1(yn)) = 0.

As qp+1 is surjective, there is a sequence {un}n≥1 in Dp+1 such that
yn = qp+1(un). Thus

lim
n→∞

qp (x− dp+1(un)) = 0.

We write x− dp+1(un) = jp(wn) + rn, where wn ∈ Cp and rn ∈ im(jp)⊥.
Then we obtain limn→∞ qp(rn) = 0. As the restriction of qp to im(jp)⊥ is
an isomorphism, we conclude limn→∞ rn = 0. Thus

x = lim
n→∞

(jp(wn) + dp+1(un)) ,

and hence in Dp/ clos(im(dp+1))

[x] = lim
n→∞

jp(wn).

This finishes the proof of weak exactness of (2.23).
Next, we construct a commutative diagram with exact rows

0 −−−−→ ker(q̂p)
l1−−−−→ ker(qp)

q̂p−−−−→ H
(2)
p (E∗) −−−−→ 0

∂p

y ∂p

y δp

y
0 −−−−→ clos(im(cp)) −−−−→

l2
ker(cp−1) −−−−→

pr
H

(2)
p−1(C∗) −−−−→ 0

(2.24)

The maps l1 and l2 are the canonical inclusions and the map pr is the canon-
ical projection. The map ∂p is induced by ∂p. One easily verifies that the
diagram commutes and has exact rows.

Let j̃p : Cp → ker(q̂p) be the morphism induced by jp whose image is

dense by the weak exactness of (2.23). One easily checks that ∂p ◦ j̃p = cp. As
cp is Fredholm by assumption, Lemma 2.14 (2) implies that ∂p is Fredholm
and

α(∂p) ≥ αp(C∗). (2.25)

As E∗ is Fredholm and hence H
(2)
p (E∗) is finite dimensional, δp is Fredholm.

As ∂p has dense image, Lemma 2.15 (2) applied to (2.24) shows that ∂p is
Fredholm and

1
α(∂p)

≤ 1
α(∂p)

+
1

α(δp)
. (2.26)

From Lemma 2.11 (9) ep is Fredholm and

α(ep) = αp(E). (2.27)
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As ep is injective, Lemma 2.15 (2) applied to (2.22) shows

1
αp(D∗)

≤ 1
α(∂p)

+
1

α(ep)
. (2.28)

Now (2.21) follows from (2.25), (2.26), (2.27) and (2.28).
Next we show under the assumption that D∗ and C∗ are Fredholm that

E∗ is Fredholm and that

1
αp(E∗)

≤ 1
αp−1(C∗)

+
1

αp(D∗)
+

1

α(H(2)
p−1(j∗))

. (2.29)

There are an exact sequence 0 → D∗ → cyl∗(q∗) → cone∗(q∗) → 0
and chain homotopy equivalences E∗ → cyl∗(q∗) and ΣC∗ → cone∗(q∗).
We conclude from Theorem 2.19 and (2.21) that E∗ is Fredholm and (2.29)
is true since the connecting map from H

(2)
p (cone∗(q∗)) → H

(2)
p−1(D∗) agrees

under the identification H
(2)
p (cone∗(q∗)) = H

(2)
p (ΣC∗) = H

(2)
p−1(C∗) with the

map H
(2)
p−1(j∗) : H

(2)
p−1(C∗) → H

(2)
p−1(D∗).

Analogously one shows under the assumption that D∗ and E∗ are Fred-
holm that C∗ is Fredholm and

1
αp(C∗)

≤ 1
αp(D∗)

+
1

αp+1(E∗)
+

1

α(H(2)
p (q∗))

. (2.30)

This finishes the proof of Theorem 2.20. ut

2.1.3 Product Formula for Novikov-Shubin Invariants

In this subsection we deal with the Novikov-Shubin invariants of a tensor
product of Hilbert chain complexes. We will only consider positive chain
complexes C∗, i.e. Cn = 0 for n < 0.

Lemma 2.31. Let G and H be discrete groups. Let f : U → U and g : V → V
be positive maps of Hilbert N (G)-modules and N (H)-modules. Then f ⊗
id+ id⊗g : U ⊗ V → U ⊗ V is a positive map of Hilbert N (G×H)-modules
and

F (f ⊗ id+ id⊗g) ' F (f) · F (g),

where F ·G is defined in terms of Notation 2.10.

Proof. Notice for the sequel that dimN (G×H)(U ⊗ V ) = dimN (G)(U) ·
dimN (H)(V ) (see Theorem 1.12 (5)). For x ∈ im(Ef

λ/2) and y ∈ im(Eg
λ/2)

we compute using Lemma 2.2 (2)
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||(f ⊗ id+ id⊗g)(x⊗ y)|| ≤ ||(f ⊗ id)(x⊗ y)||+ ||(id⊗g)(x⊗ y)||
= ||f(x)|| · ||y||+ ||x|| · ||g(y)||
≤ λ/2 · ||x|| · ||y||+ λ/2 · ||x|| · ||y||
= λ · ||x⊗ y||.

This shows im(Ef
λ/2)⊗ im(Eg

λ/2) ∈ L(f ⊗ id+ id⊗g, λ). Lemma 2.3 implies

F (f)(λ/2) · F (g)(λ/2) ≤ F (f ⊗ id+ id⊗g)(λ). (2.32)

Since 0 ≤ f ⊗ id ≤ f ⊗ id+ id⊗g and f ⊗ id and f ⊗ id+ id⊗g commute, we
have Ef⊗id + id⊗g

λ ≤ Ef⊗id
λ . Analogously we get Ef⊗id + id⊗g

λ ≤ Eid⊗g
λ . This

implies

im(Ef⊗id + id⊗g
λ ) ⊂ im(Ef⊗id

λ ) ∩ im(Eid⊗g
λ ) = im(Ef

λ)⊗ im(Eg
λ).

Hence we get from Theorem 1.12 (5)

F (f)(λ) · F (g)(λ) ≥ F (f ⊗ id+ id⊗g)(λ). (2.33)

Now Lemma 2.31 follows from (2.32) and (2.33). ut
Notation 2.34. Given a spectral density function F : [0,∞) → [0,∞], define

F⊥ : [0,∞) → [0,∞]

by F⊥(λ) = F (λ)− F (0).
Define δr for r ∈ [0,∞] by δ0 := ∞+ and by δr := 1 for r 6= 0.

Notice that α(F ) = α(F⊥) by definition. Recall Notation 2.10.

Lemma 2.35. Let G and H be groups. Let C∗ be a Hilbert N (G)-chain com-
plex and D∗ be a Hilbert N (H)-chain complex. Suppose that both C∗ and D∗
are Fredholm and positive. Then the tensor product of Hilbert chain complexes
C∗ ⊗D∗ is a Fredholm Hilbert N (G×H)-chain complex and

(1) We have

F∆
n (C∗ ⊗D∗) '

n∑

i=0

F∆
i (C∗) · F∆

n−i(D∗)

and

α∆
n (C∗ ⊗D∗) = min

i=0,1,...,n
{α (

F∆
i (C∗)⊥ · F∆

n−i(D∗)⊥
)
,

δ
b
(2)
i (C∗)

· α∆
n−i(D∗), α∆

i (C∗) · δb
(2)
n−i(D∗)

};
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(2) We have

Fn(C∗ ⊗D∗)⊥ º
n∑

i=0

Fi(C∗)⊥ · Fn−i(D∗)⊥ + b
(2)
i (C∗) · Fn−i(D∗)⊥

+Fi(C∗)⊥ · b(2)
n−i(D∗); (2.36)

Fn(C∗ ⊗D∗)⊥ º
n∑

i=0

Fi+1(C∗)⊥ · Fn−i(D∗)⊥ + b
(2)
i (C∗) · Fn−i(D∗)⊥

+Fi+1(C∗)⊥ · b(2)
n−1−i(D∗); (2.37)

Fn(C∗ ⊗D∗)⊥ ¹
n∑

i=0

Fi+1(C∗)⊥ · Fn−i(D∗)⊥ + Fi(C∗)⊥ · Fn+1−i(D∗)⊥

+Fi(C∗)⊥ · Fn−i(D∗)⊥ + b
(2)
i (C∗) · Fn−i(D∗)⊥

+Fi(C∗)⊥ · b(2)
n−i(D∗) (2.38)

and

αn(C∗ ⊗D∗) = min
i=0,1,...,n

{α (
Fi+1(C∗)⊥ · Fn−i(D∗)⊥

)
,

α
(
Fi(C∗)⊥ · Fn−i(D∗)⊥

)
, δ

b
(2)
i (C∗)

· αn−i(D∗),

αi(C∗) · δb
(2)
n−i(D∗)

}. (2.39)

Proof. (1) The Laplace operator ∆C∗⊗D∗
n : (C∗ ⊗D∗)n → (C∗ ⊗D∗)n is the

orthogonal sum
n⊕

i=0

∆C∗
i ⊗ id + id⊗∆D∗

n−i :
n⊕

i=0

Ci ⊗Dn−i →
n⊕

i=0

Ci ⊗Dn−i.

Now apply Lemma 2.11 (10) and Lemma 2.31.

(2) Let en : (C∗⊗D∗)n → (C∗⊗D∗)n−1 be the n-th differential of the N (G×
H)-chain complex C∗ ⊗D∗. Consider the maps of Hilbert modules

en⊥ := en|ker(e∗n+1)
: ker(e∗n+1) → (C∗ ⊗D∗)n−1;

ci⊥ := ci|ker(c∗i+1)
: ker(c∗i+1) → Ci−1;

dn−i⊥ := dn−i|ker(d∗n−i+1)
: ker(d∗n−i+1) → Dn−1−i.

The following diagram commutes

ker(e∗n+1)
(en⊥)∗en⊥−−−−−−−→ ker(e∗n+1)x

x
⊕n

i=0 ker(c∗i+1)⊗ ker(d∗n−i+1) −−−−→
u

⊕n
i=0 ker(c∗i+1)⊗ ker(d∗n−i+1)
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where u is
⊕n

i=0(ci⊥)∗ci⊥ ⊗ id + id⊗(dn−i⊥)∗dn−i⊥ and the vertical maps
are the canonical inclusions. Since (en⊥)∗en⊥ is selfadjoint, it splits as the
orthogonal sum of

⊕n
i=0(ci⊥)∗ci⊥ ⊗ id + id⊗(dn−i⊥)∗dn−i⊥ and some endo-

morphism of the orthogonal complement of
⊕n

i=0 ker(c∗i+1)⊗ ker(d∗n−i+1) in
ker(e∗n+1). Now Lemma 2.11 (11), Lemma 2.15 (1) and Lemma 2.31 imply

Fn(C∗ ⊗D∗)(λ) = Fn(en⊥)(λ)

= Fn((en⊥)∗en⊥)(
√

λ)

≥
n∑

i=0

F ((ci⊥)∗ci⊥ ⊗ id+ id⊗(dn−i⊥)∗dn−i⊥) (
√

λ)

'
n∑

i=0

F ((ci⊥)∗ci⊥)(
√

λ) · F ((dn−i⊥)∗dn−i⊥)(
√

λ)

=
n∑

i=0

F (ci⊥)(λ) · F (dn−i⊥)(λ)

=
n∑

i=0

Fi(C∗)(λ) · Fn−i(D∗)(λ).

Now equation (2.36) follows since b
(2)
i (C∗) = Fi(C∗)(0) and analogously for

D∗.
Analogously we prove (2.37). We define maps of Hilbert modules

e∗n⊥ := e∗n|ker(en−1) : ker(en−1) → (C ⊗D)n;
c∗i+1⊥ := c∗i+1|ker(ci) : ker(ci) → Ci+1;

d∗n−i⊥ := d∗n−i|ker(dn−i−1) : ker(dn−i−1) → Dn−i.

We obtain a commutative diagram with inclusions as vertical arrows

ker(en−1)
(e∗n⊥)∗e∗n⊥−−−−−−−→ ker(en−1)x

x
⊕n

i=0 ker(ci)⊗ ker(dn−i−1) −−−−→
v

⊕n
i=0 ker(ci)⊗ ker(dn−i−1)

where v is given by
⊕n

i=0(c
∗
i+1⊥)∗c∗i+1⊥ ⊗ id + id⊗(d∗n−i⊥)∗d∗n−i⊥. We con-

clude (2.37), where we use additionally the conclusion of Lemma 1.18

b(2)(c∗i+1⊥) = b
(2)
i (C∗);

b(2)(d∗n−i⊥) = b
(2)
n−1−i(D∗);

b(2)(e∗n⊥) = b
(2)
n−1(E∗)

and the conclusion of Lemma 2.4
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F (c∗i+1⊥)⊥ = F (ci+1⊥)⊥;

F (d∗n−i⊥)⊥ = F (dn−i⊥)⊥;

F (e∗n⊥)⊥ = F (en⊥)⊥.

Next we prove (2.38). We have the orthogonal decomposition

Ci = ker(ci)⊕ ker(ci)⊥;
Dn−i = ker(dn−i)⊕ ker(dn−i)⊥;

Ci ⊗Dn−i = ker(ci)⊗ ker(dn−i)⊕ ker(ci)⊗ ker(dn−i)⊥ ⊕
ker(ci)⊥ ⊗ ker(dn−i)⊕ ker(ci)⊥ ⊗ ker(dn−i)⊥.

The summand ker(ci) ⊗ ker(dn−i) lies in the kernel of the n-th-differential
en of C∗ ⊗ D∗. Hence ker(en)⊥ lies in the direct sum of the other three
summands. Define maps by restricting the obvious maps

c∗i+1⊥ : ker(ci) → Ci+1;

dn−i⊥ : ker(dn−i)⊥ → Dn−1−i;
d∗n+1−i⊥ : ker(dn−i) → Dn+1−i;

ci⊥ : ker(ci)⊥ → Ci−1.

Consider the following three maps

(c∗i+1⊥)∗c∗i+1⊥ ⊗ id+ id⊗(dn−i⊥)∗dn−i⊥ : ker(ci)⊗ ker(dn−i)⊥ →
ker(ci)⊗ ker(dn−i)⊥;

(ci⊥)∗ci⊥ ⊗ id+ id⊗(d∗n+1−i⊥)∗d∗n+1−i⊥ : ker(ci)⊥ ⊗ ker(dn−i) →
ker(ci)⊥ ⊗ ker(dn−i);

(ci⊥)∗ci⊥ ⊗ id+ id⊗(dn−i⊥)∗dn−i⊥ : ker(ci)⊥ ⊗ ker(dn−i)⊥ →
ker(ci)⊥ ⊗ ker(dn−i)⊥.

The orthogonal sum of these three selfadjoint maps is the orthogonal sum of
the map

(en⊥)∗en⊥ : ker(en)⊥ → ker(en)⊥

and of an endomorphism of the orthogonal complement of ker(en)⊥ in(
ker(ci)⊗ ker(dn−i)⊥

) ⊕ (
ker(ci)⊥ ⊗ ker(dn−i)

) ⊕ (
ker(ci)⊥ ⊗ ker(dn−i)⊥

)
.

Now Lemma 2.4, Lemma 2.11 (11), Lemma 2.15 (1) and Lemma 2.31 im-
ply (2.38) by the following calculation:
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Fn(C∗ ⊗D∗)⊥(λ) = F (en⊥)(λ)

= F ((en⊥)∗en⊥)(
√

λ)

≤
n∑

i=0

F ((c∗i+1⊥)∗c∗i+1⊥ ⊗ id+ id⊗(dn−i⊥)∗dn−i⊥)(
√

λ)

+F ((ci⊥)∗ci⊥ ⊗ id + id⊗(d∗n+1−i⊥)∗d∗n+1−i⊥)(
√

λ)

+F ((ci⊥)∗ci⊥ ⊗ id + id⊗(dn−i⊥)∗dn−i⊥)(
√

λ)

'
n∑

i=0

F (c∗i+1⊥)∗c∗i+1⊥)(
√

λ) · F ((dn−i⊥)∗dn−i⊥)(
√

λ)

+F ((ci⊥)∗ci⊥)(
√

λ) · F ((d∗n+1−i⊥)∗d∗n+1−i⊥)(
√

λ)

+F ((ci⊥)∗ci⊥)(
√

λ) · F ((dn−i⊥)∗dn−i⊥)(
√

λ)

=
n∑

i=0

F (c∗i+1⊥)(λ) · F (dn−i⊥)(λ)

+F (ci⊥)(λ) · F (d∗n+1−i⊥)(λ) + F (ci⊥)(λ) · F (dn−i⊥)(λ)

=
n∑

i=0

(Fi+1(C∗)⊥(λ) + b
(2)
i (C∗)) · Fn−i(D∗)⊥(λ)

+Fi(C∗)⊥(λ) · (Fn+1−i(D∗)⊥(λ) + b
(2)
n−i(D∗))

+Fi(C∗)⊥(λ) · Fn−i(D∗)⊥(λ).

Finally (2.39) follows from (2.36), (2.37), and (2.38) using Lemma 2.11
(2) and (10). ut
Example 2.40. Let F and G be spectral density functions with F (0) =
G(0) = 0. It is not hard to check that then

α(F ) + α(G) ≤ α(F ·G)

is true with respect to Notation 2.10. However, the other inequality is not
true in general as the following example shows. Define (continuous) density
functions F,G : [0,∞) → [0,∞] by

F (λ) = 222n+1
λ3 λ ∈ [2−22n+1

, 2−22n

];
G(λ) = 2−22n+1

λ ∈ [2−22n+1
, 2−22n

];
F (λ) = 2−22(n+1)

λ ∈ [2−22(n+1)
, 2−22n+1

];
G(λ) = 222(n+1)

λ3 λ ∈ [2−22(n+1)
, 2−22n+1

];
F (0) = 0;
G(0) = 0;
F (λ) = 1/2 λ ≥ 1/2;
G(λ) = 1/4 λ ≥ 1/2.

One easily checks F (λ) ≤ λ and G(λ) ≤ λ for λ ≥ 0. Since
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F (2−22(n+1)
) = 2−22(n+1)

;

lim
n→∞

2−22(n+1)
= 0;

G(2−22n+1
) = 2−22n+1

;

lim
n→∞

2−22n+1
= 0,

we get α(F ) = α(G) = 1 and α(F ) + α(G) = 2. On the other hand F (λ) ·
G(λ) = λ3 and hence α(F ·G) = 3.

Definition 2.41. A Fredholm spectral density function has the limit prop-
erty if either F (λ) = F (0) for some λ > 0 or if F (λ) > F (0) for λ > 0 and
the limit

lim
λ→0+

ln(F (λ)− F (0))
ln(λ)

exists. A Fredholm Hilbert chain complex C∗ has the limit property if Fp(C∗)
has the limit property for all p ∈ Z. A G-CW -complex X of finite type has
the limit property if its cellular L2-chain complex has the limit property.

Remark 2.42. To the author’s knowledge there is no example of a G-CW -
complex X of finite type which does not have the limit property. See also the
discussion in [240, page 381].

Lemma 2.43. Let F, G : [0,∞) → [0,∞] be density functions which are
Fredholm and have the limit property. Then F ·G is a density function which
is Fredholm and has the limit property and

α(F ·G) = min{α(F ) + α(G), δb(2)(F ) · α(G), α(F ) · δb(2)(G)}.

Proof. Since F (λ) = F⊥(λ) + b(2)(F ), it suffices to treat the case F (0) =
G(0) = 0 because of Lemma 2.11 (10). Since ln(F (λ) · G(λ)) = ln(F (λ)) +
ln(G(λ)) holds and limλ→0+ is compatible with + (in contrast to lim infλ→0+),
Lemma 2.43 follows. ut

We conclude from Lemma 2.35 and Lemma 2.43

Corollary 2.44. Let G and H be groups. Let C∗ be a Hilbert N (G)-chain
complex and D∗ be a Hilbert N (H)-chain complex. Suppose that both C∗
and D∗ are positive, Fredholm and have the limit property. Then the tensor
product of Hilbert chain complexes C∗⊗D∗ is a Fredholm Hilbert N (G×H)-
chain complex which has the limit property and we get

α∆
n (C∗ ⊗D∗) = min

i=0,1,...,n
{α∆

i (C∗) + α∆
n−i(D∗),

δ
b
(2)
i (C∗)

· α∆
n−i(D∗), α∆

i (C∗) · δb
(2)
n−i(D∗

}.



2.1 Spectral Density Functions 93

and

αn(C∗ ⊗D∗) = min
i=0,1,...,n

{αi+1(C∗) + αn−i(D∗), αi(C∗) + αn−i(D∗),

δ
b
(2)
i (C∗)

· αn−i(D∗), αi(C∗) · δb
(2)
n−i(D∗)

}.

2.1.4 The Laplacian in Dimension Zero

In this subsection G is a finitely generated group and S denotes a finite set of
generators. We want to study the Novikov-Shubin invariant of the following
operator

cS :
⊕

s∈S

l2(G)
⊕

s∈S rs−1−−−−−−−→ l2(G),

where rs−1 is right multiplication with s − 1 ∈ Z[G]. This is motivated by
the following result.

Lemma 2.45. Let G be a finitely generated group and let X be a connected
free G-CW -complex of finite type. Then for any finite set S of generators of
G we have

α1(X) = α(cS).

Proof. The Cayley graph of G is the following connected one-dimensional free
G-CW -complex. Its 0-skeleton is G. For each element s ∈ S we attach a free
equivariant G-cell G × D1 by the attaching map G × S0 → G which sends
(g,−1) to g and (g, 1) to gs. Since X and the Cayley graph C are connected
we an choose a G-map f : X1 → C, where X1 is 1-skeleton of X. Theorem
2.55 (1) implies that α1(X) = α1(X1) agrees with α1(C) = α(cS). ut

If S is a finite set of generators for the group G, let bS(n) be the number
of elements in G which can be written as a word in n letters of S∪S−1∪{1}.
The group G has polynomial growth of degree not greater than d if there is
C with bS(n) ≤ Cnd for all n ≥ 1. This property is a property of G and
independent of the choice of the finite set S of generators. We say that G
has polynomial growth if it has polynomial growth of degree not greater than
d for some d > 0. A finitely generated group G is nilpotent if G possesses a
finite lower central series

G = G1 ⊃ G2 ⊃ . . . ⊃ Gs = {1} Gk+1 = [G,Gk].

If (P ) is a property of groups, a group G is called virtually (P) if G contains
a subgroup H ⊂ G of finite index such that H has property (P). Hence
the notions of virtually finitely generated abelian, virtually free and virtually
nilpotent are clear. In particular a group is virtually trivial if and only if it is
finite. Let G be virtually nilpotent. Let G ⊂ G be a subgroup of finite index
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which is nilpotent and has the lower central series G = G1 ⊃ G2 ⊃ . . . ⊃
Gs = {1}. Let di be the rank of the finitely generated abelian group Gi/Gi+1

and let d be the integer
∑

i≥1 idi. Then for any finite set S of generators
of G there is a constant C > 0 such that C−1nd ≤ bS(n) ≤ Cnd holds for
any n ≥ 1 and in particular G has polynomial growth precisely of degree d
[22, page 607 and Theorem 2 on page 608]. A famous result of Gromov [231]
says that a finitely generated group has polynomial growth if and only if it
is virtually nilpotent. The notion of an amenable group will be reviewed in
Subsection 6.4.1.

Lemma 2.46. (1) α(cS) = ∞+ if and only if G is non-amenable or finite;
(2) α(cS) < ∞ if and only if G is infinite virtually nilpotent. If G is virtually

nilpotent, α(cS) is precisely the degree of the growth rate of G;
(3) α(cS) = ∞ if and only if G is amenable and not virtually nilpotent.

Proof. Because of Lemma 2.45 α(cS) is independent of the choice of the finite
set S of generators. If G is finite, then obviously α(cS) = ∞+. Hence we can
assume in the sequel that G is infinite and that S is symmetric, i.e. s ∈ S
implies s−1 ∈ S. Define

P : l2(G)
∑

s∈S
1
|S| ·rs−−−−−−−−→ l2(G).

Then id−P = 1
2·|S|cS◦c∗S . As G is infinite, dimN (G)(l2(G)/ clos(im(cS))) = 0.

This has been shown in the proof of Theorem 1.35 (8). Hence the kernel of
c∗S is trivial. The spectrum of the selfadjoint operator P is contained in [-1,1]
and we conclude from Lemma 2.3 and Lemma 2.4

trN (G)(χ[1−λ,1](P )) = F (cS)(
√

2|S|λ)− b(2)(cS), (2.47)

where χ[1−λ,1] is the characteristic function of [1− λ, 1].
(1) From (2.47) α(cS) has the value ∞+ if and only if the spectrum of the
operator P does not contain 1. Since this operator is convolution with a
probability distribution whose support contains S, namely

G → [0, 1], γ 7→
{ |S|−1, γ ∈ S

0, γ /∈ S
,

the spectrum of P contains 1 if and only if G is amenable by a result of
Kesten [290, page 150], [524, Theorem 3.2 on page 7].
(2) The recurrency probability of the natural random walk on G is defined
by

p(n) = trN (G)(Pn).

We will use the following result due to Varopoulos [502], which is also ex-
plained in [524, Theorem 6.5 and Theorem 6.6 on page 24]. (The assumption
below that n even is needed since the period of the natural random walk on
the Cayley graph with respect to symmetric set S of generators is 1 or 2.)
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Theorem 2.48. The finitely generated group G has polynomial growth pre-
cisely of degree 2a if and only if there is a constant C > 0 such that
C−1n−a ≤ p(n) ≤ Cn−a holds for all even positive integers n. If the finitely
generated group G does not have polynomial growth, then there is for each
a > 0 a constant C(a) > 0 such that p(n) ≤ C(a)n−a holds for all n ≥ 1.

In the sequel let n be an even positive integer. Notice that then Pn is positive.
We have

(1− λ)nχ[1−λ,1](P ) ≤ Pn ≤ (1− λ)nχ[0,1−λ](P ) + χ[1−λ,1](P ).

This implies because of ||χ[0,1−λ](P )|| ≤ 1

(1− λ)n trN (G)(χ[1−λ,1](P )) ≤ p(n) ≤ (1− λ)n + trN (G)(χ[1−λ,1](P )).

In the sequel we consider λ ∈ (0, 1/4) only. We conclude from (2.47)

ln(F (cS)(
√

2|S|λ)− b(2)(cS))
ln(λ)

≥ ln(p(n))
ln(λ)

− n · ln(1− λ)
ln(λ)

; (2.49)

ln(F (cS)(
√

2|S|λ)− b(2)(cS))
ln(λ)

≤ ln(p(n)− (1− λ)n)
ln(λ)

. (2.50)

Next we show for a > 0

α(cs) ≥ 2a if p(n) ≤ Cn−a for n ≥ 1, n even; (2.51)
α(cs) ≤ 2a if p(n) ≥ Cn−a for n ≥ 1, n even, (2.52)

where C > 0 is some constant independent of n. Suppose p(n) ≤ Cn−a for
all even positive integers n. Let n be the largest even integer which satisfies
n ≤ λ−1. Then n ≥ 2 since λ ∈ (0, 1/4). We estimate using (2.49)

ln(F (cS)(
√

2|S|λ)− b(2)(cS))
ln(λ)

≥ ln(Cn−a)
ln(λ)

− n · ln(1− λ)
ln(λ)

= a +
ln(C)− a ln(λ · n)

ln(λ)
− n · ln(1− λ)

ln(λ)

≥ a +
ln(C)− a ln(λ · n)

ln(λ)
− ln(1− λ)

λ ln(λ)
.

Since | ln(C)−a ln(λ ·n)| is bounded by | ln(C)|+a ln(2) and l’Hospital’s rule
implies limλ→0+

ln(1−λ)
λ ln(λ) = 0, we conclude (2.51) from Lemma 2.11 (4).

Suppose p(n) ≥ Cn−a for all even positive integers n. Fix ε > 0. Put
µ = 3−a−1. Let [λ−(1+ε)] be the largest integer which is less or equal to
λ−(1+ε). Then we get for all λ ∈ (0, 1) and k ∈ {1, 2}

2µ ≤ (([λ−(1+ε)] + k)λ1+ε)−a (2.53)



96 2. Novikov-Shubin Invariants

since 1 ≤ ([λ−(1+ε)] + k)λ1+ε ≤ 3 holds for λ ∈ (0, 1) and k ∈ {1, 2}. From
l’Hospital’s rule we get

lim
λ→0+

(ln(Cµ) + a(1 + ε) ln(λ)) · λ1+ε

ln(1− λ)
= 0.

Hence we can choose λ0 ∈ (0, 1) such that for 0 < λ < λ0

(ln(Cµ) + a(1 + ε) ln(λ)) · λ1+ε

ln(1− λ)
≤ 1

2
.

Put n = [λ−(1+ε)] + k, where we choose k ∈ {1, 2} such that n is even. Since
(1− λ) ≤ 1 and λ−(1+ε)/2 ≤ [λ−(1+ε)] we get for 0 < λ < λ0

(1− λ)n ≤ (1− λ)[λ
−(1+ε)] ≤ Cµ · λa(1+ε).

Equation (2.53) implies 0 < Cµ ≤ C(([λ−(1+ε)] + k)λ1+ε)−a − Cµ. We con-
clude from (2.50) for λ ∈ (0, λ0)

ln(F (cS)(
√

2|S|λ)− b(2)(cS))
ln(λ)

≤ ln(C · n−a − Cµ · λa(1+ε))
ln(λ)

= a(1 + ε) +
ln(C(([λ−(1+ε)] + k)λ1+ε)−a − Cµ)

ln(λ)

≤ a(1 + ε) +
ln(Cµ)
ln(λ)

.

Lemma 2.11 (4) implies α(cS) ≤ 2a(1 + ε). Since this is true for all ε > 0,
(2.52) follows. Now assertion (2) follows from (2.51), (2.52) and Theorem
2.48.
(3) This follows from (1) and (2). This finishes the proof of Lemma 2.46. ut

2.2 Cellular Novikov-Shubin Invariants

In this section we apply the invariants of Subsection 2.1.2 to the cellular
L2-chain complex and thus define Novikov-Shubin invariants for free G-CW -
complexes of finite type. We will describe and prove their main properties.

Definition 2.54 (Novikov-Shubin invariants). Let X be a free G-CW -
complex of finite type. Define its cellular p-th spectral density function and
its cellular p-th Novikov-Shubin invariant by the corresponding notions (see
Definition 2.16) of the cellular L2-chain complex C

(2)
∗ (X) of X (see Definition

1.29).
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Fp(X;N (G)) := Fp(C
(2)
∗ (X));

αp(X;N (G)) := αp(C
(2)
∗ (X));

α∆
p (X;N (G)) := α∆

p (C(2)
∗ (X)).

If the group G and its action are clear from the context, we omit N (G) in
the notation above.

If M is a cocompact free proper G-manifold, define its p-th cellular spec-
tral density function and its cellular p-th Novikov-Shubin invariant by the
corresponding notion for some equivariant smooth triangulation.

Since the Novikov-Shubin invariant will turn out to be homotopy invari-
ant, the definition of the p-th Novikov-Shubin invariant for a cocompact free
proper G-manifold is independent of the choice of equivariant smooth trian-
gulation. This is also true for the dilatational equivalence class of the spectral
density function. All these definitions extend in the obvious way to pairs.

Theorem 2.55 (Novikov-Shubin invariants).

(1) Homotopy invariance
Let f : X → Y be a G-map of free G-CW -complexes of finite type.
Suppose that the map induced on homology with complex coefficients
Hp(f ;C) : Hp(X;C) → Hp(Y ;C) is an isomorphism for p ≤ d− 1. Then

Fp(X) ' Fp(Y ) for p ≤ d;
αp(X) = αp(Y ) for p ≤ d.

In particular, if f is a weak homotopy equivalence, we get for all p ≥ 0

Fp(X) ' Fp(Y );
αp(X) = αp(Y );

(2) Poincaré duality
Let M be a cocompact free proper G-manifold of dimension n which is
orientable. Then

Fp(M) ' Fn+1−p(M,∂M);
αp(M) = αn+1−p(M, ∂M);

(3) Product formula
Let X be a free G-CW -complex of finite type and let Y be a free H-CW -
complex of finite type. Suppose that both X and Y have the limit property
(see Definition 2.41). Then X ×Y has the limit property and αp(X ×Y )
is the minimum in [0,∞]

∐{∞+} of the union of the following four sets
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{αi+1(X) + αp−i(Y ) | i = 0, 1, . . . , (p− 1)};
{αi(X) + αp−i(Y ) | i = 1, . . . , (p− 1)};
{αp−i(Y ) | i = 0, 1, . . . , (p− 1), b(2)

i (X) 6= 0};
{αi(X) | i = 1, 2, . . . , p, b

(2)
p−i(Y ) 6= 0};

(4) Connected sums
Let M1, M2, . . . , Mr be compact connected m-dimensional manifolds,
with m ≥ 3. Let M be their connected sum M1# . . . #Mr. Then

αp(M̃) = min
{

αp(M̃j) | 1 ≤ j ≤ r
}

for 2 ≤ p ≤ m− 1.

If π1(Mi) is trivial for all i except for i = i0, then α1(M̃) = α1(M̃i0). If
π1(Mi) is trivial for all i except for i ∈ {i0, i1}, i0 6= i1 and π1(Mi0) =
π1(Mi1) = Z/2, then α1(M̃) = 1. In all other cases α1(M̃) = ∞+;

(5) First Novikov-Shubin invariant
Let X be a connected free G-CW -complex of finite type. Then G is finitely
generated and
(a) α1(X) is finite if and only if G is infinite and virtually nilpotent. In

this case α1(X) is the growth rate of G;
(b) α1(X) is ∞+ if and only if G is finite or non-amenable;
(c) α1(X) is ∞ if and only if G is amenable and not virtually nilpotent;

(6) Restriction
Let X be a free G-CW -complex of finite type and let H ⊂ G be a subgroup
of finite index [G : H]. Let resH

G X be the H-space obtained from X
by restricting the G-action to an H-action. Then this is a free H-CW -
complex of finite type and we get for p ≥ 0

Fp(X;N (G)) =
1

[G : H]
· Fp(resH

G X;N (H));

αp(X;N (G)) = αp(resH
G X;N (H));

(7) Induction
Let H be a subgroup of G and let X be a free H-CW -complex of finite
type. Then G×H X is a free G-CW -complex of finite type and

Fp(G×H X;N (G)) = Fp(X;N (H));
αp(G×H X;N (G)) = αp(X;N (H)).

Proof. (1) We can assume without loss of generality that f is cellular. We
have the canonical exact sequence of finitely generated free CG-chain com-
plexes 0 → C∗(X) → cyl(C∗(f)) → cone(C∗(f)) → 0, where C∗(f) is the
CG-chain map induced by f on the cellular CG-chain complexes. Let C∗, D∗
and E∗ be the d-dimensional finitely generated CG-chain complexes which are
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obtained from C∗(X), cyl(C∗(f)) and cone(C∗(f)) by truncating everything
in dimension d+1 and higher. We get an exact sequence of finitely generated
free CG-chain complexes 0 → C∗

i∗−→ D∗
p∗−→ E∗ → 0. Since the canonical in-

clusion C∗(Y ) → cyl(C∗(f)) is a CG-chain homotopy equivalence, it induces
a chain homotopy equivalence of finitely generated Hilbert N (G)-chain com-
plexes C

(2)
∗ (Y ) → l2(G) ⊗CG cyl(C∗(f)). We conclude from Theorem 2.19

that Fp(l2(G) ⊗CG C∗) ' Fp(X) and Fp(l2(G) ⊗CG D∗) ' Fp(Y ) holds for
p ≤ d. Hence it remains to show

Fp(l2(G)⊗CG C∗) ' Fp(l2(G)⊗CG D∗) for p ≤ d.

The map Hp(i∗) : Hp(C∗) → Hp(D∗) is bijective for p ≤ d− 1 since Hp(f ;C)
is bijective for p ≤ d−1. This implies that Hp(E∗) = 0 for p ≤ d−1. Let P be
the kernel of ed : Ed → Ed−1. Since 0 → P → Ed → Ed−1 → Ed−2 → . . . →
E0 → 0 is an exact CG-sequence and each Ei is finitely generated free, there
is a finitely generated free CG-module F ′ such that F := P ⊕ F ′ is finitely
generated free and P is a direct summand in Ed. For a CG-module W let
d[W ]∗ be the CG-chain complex concentrated in dimension d with W as d-th
chain module. Let D′

∗ be the preimage of d[F ]∗ = d[P ]∗⊕d[F ′]∗ ⊂ E∗⊕d[F ′]∗
under p∗ ⊕ idd[F ′]∗ : D∗ ⊕ d[F ′]∗ → E∗ ⊕ d[F ′]∗. We obtain a commutative
diagram of CG-chain complexes with exact rows

0 −−−−→ C∗
i∗−−−−→ D∗ ⊕ d[F ′]∗

p∗⊕idd[F ′]∗−−−−−−−→ E∗ ⊕ d[F ′]∗ −−−−→ 0

id

x j∗

x k∗

x

0 −−−−→ C∗
i′∗−−−−→ D′

∗
p′∗−−−−→ d[F ]∗ −−−−→ 0

where j∗ and k∗ are the inclusions. Since idC∗ and k∗ are CG-homotopy
equivalences, j∗ : D′

∗ → D∗ ⊕ d[F ′]∗ is a CG-chain homotopy equivalence.
Theorem 2.19 and Lemma 2.11 (9) imply for p ≤ d

Fp(l2(G)⊗CG D′
∗) ' Fp(l2(G)⊗CG (D∗ ⊕ d[F ′]∗)) ' Fp(l2(G)⊗CG D∗).

Hence it remains to show

Fp(l2(G)⊗CG C∗) ' Fp(l2(G)⊗CG D′
∗) for p ≤ d.

There is a CG-chain complex C ′∗ such that C ′p = Cp and c′p = cp for p 6= d,
C ′d = Cd⊕F , c′d = cd⊕u : Cd⊕F → Cd−1 for some CG-map u : F → Cd−1 and
a chain isomorphism g∗ : C ′∗

∼=−→ D′
∗ such that g∗ composed with the obvious

inclusion l∗ : C∗ → C ′∗ is i′∗. Hence Fp(l2(G)⊗CG C ′∗) ' Fp(l2(G)⊗CG D′
∗) for

p ≤ d and Hd−1(l∗) : Hd−1(C∗) → Hd−1(C ′∗) is bijective. It remains to show

F
(
idl2(G)⊗CG(cd ⊕ u) : l2(G)⊗CG (Cd ⊕ F ) → l2(G)⊗CG Cd−1

)

' F
(
idl2(G)⊗CGcd : l2(G)⊗CG Cd → l2(G)⊗CG Cd−1

)
. (2.56)
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Since Hd−1(l∗) is bijective, im(cd) = im(c′d). This shows im(u) ⊂ im(cd). As
F is finitely generated free, we can find a CG-map v : F → Cd with u = cd◦v.
The map idCd

⊕v : Cd ⊕ F → Cd is split surjective. Hence the map

idl2(G)⊗CG(idCd
⊕v) : l2(G)⊗CG (Cd ⊕ F ) → l2(G)⊗CG Cd

is a surjective map of finitely generated Hilbert N (G)-modules whose compo-
sition with idl2(G)⊗CGcd : l2(G)⊗CGCd → l2(G)⊗CGCd−1 is idl2(G)⊗CG(cd⊕
u) : l2(G) ⊗CG (Cd ⊕ F ) → l2(G) ⊗CG Cd−1. Now (2.56) and thus assertion
(1) follow from Lemma 2.11 (9).
(2) is proved analogously to Theorem 1.35 (3) using Lemma 2.17 (2) and
Theorem 2.19.
(3) This follows from Corollary 2.44 since the cellular chain complex of X×Y
is the tensor product of the one of X and the one of Y .
(4) This is proved analogously to Theorem 1.35 (6) for 2 ≤ p ≤ m − 1. The
claim for α1 follows from assertion (5) and assertion (6) since a free product
G1 ∗G2 of non-trivial groups is amenable if and only if G1 = G2 = Z/2, the
group Z/2 ∗ Z/2 contains Z as a subgroup of finite index and α1(S̃1) = 1 by
Lemma 2.58.
(5) Since X is connected and X → G\X is a regular covering, there is a short
exact sequence 1 → π1(X) → π1(G\X) → G → 1. Since G\X has finite 1-
skeleton by assumption, π1(G\X) and hence G are finitely generated. Now
we can apply Lemma 2.45 and Lemma 2.46.
(6) This follows from Theorem 1.12 (6).
(7) This follows from Lemma 1.24 (2), since for each morphism f : U → V of
Hilbert N (H)-modules i∗E

f∗f
λ = E

(i∗f)∗i∗f
λ and hence

FN (H)(f) = FN (G)(i∗f) (2.57)

holds. ut
A more conceptual proof for Theorem 2.55 (1) can be given after we

have developed some theory in Section 6.7. We will see that Fp(X) ' Fp(Y )
for p ≤ d holds if HG

p (f ;N (G)) : HG
p (X;N (G)) → HG

p (Y ;N (G)) is bi-
jective for p ≤ d − 1. This will only use that the Novikov-Shubin invari-
ants of homotopy equivalent N (G)-Hilbert chain complexes agree (see The-
orem 2.19). Here HG

p (X;N (G)) is the homology of the chain complex of
modules over the ring N (G) given by N (G) ⊗CG C∗(X), where only the
ring structure of N (G) enters. The bijectivity of HG

p (f ;N (G)) for p ≤
d− 1 follows from the universal coefficients spectral sequence [518, Theorem
5.6.4 on page 143] which converges to HG

p+q(X;N (G)) and has as E2-term
E2

p,q = TorCG
p (N (G),Hq(X;C)) since by assumption Hp(f ;C) : Hp(X;C) →

Hp(Y ;C) is bijective for p ≤ d− 1.
We will see in Example 3.110 that the condition “orientable” in Theorem

2.55 (2) is necessary.
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Lemma 2.58. Let C∗ be a free C[Z]-chain complex of finite type. Since C[Z]
is a principal ideal domain [15, Proposition V.5.8 on page 151 and Corollary
V.8.7 on page 162], we can write

Hp(C∗) = C[Z]np ⊕



sp⊕

ip=1

C[Z]/((z − ap,ip)rp,ip )




for ap,ip
∈ C and np, sp, rp,ip

∈ Z with np, sp ≥ 0 and rp,ip
≥ 1, where z is a

fixed generator of Z.
Then l2(Z)⊗C[Z] C∗ has the limit property and

b(2)
p (l2(Z)⊗C[Z] C∗) = np.

If sp ≥ 1 and {ip = 1, 2 . . . , sp, |ap,ip
| = 1} 6= ∅, then

αp+1(l2(Z)⊗C[Z] C∗) = min{ 1
rp,ip

| ip = 1, 2 . . . , sp, |ap,ip
| = 1},

otherwise

αp+1(l2(Z)⊗C[Z] C∗) = ∞+.

Proof. The statement about the L2-Betti numbers has already been proved
in Lemma 1.34.

Let P (np)∗ be the chain complex concentrated in dimension 0 whose 0-th
module is C[Z]np . Let Q(ap,ip , rp,ip)∗ be the C[Z]-chain complex concentrated
in dimensions 0 and 1 whose first differential M(z−ap,ip )

rp,ip : C[Z] → C[Z] is
multiplication with (z− ap,ip)rp,ip . Notice that its homology is trivial except
in dimension 0 where it is given by C[Z]/((z−ai)rp,ip ). One easily constructs
a C[Z]-chain map

f∗ :
⊕

p≥0

Σp


P (np)∗ ⊕

sp⊕

ip=1

Q(ap,ip , rp,ip)∗


 → C∗

which induces an isomorphism on homology and is therefore a C[Z]-chain
equivalence. Because of Lemma 2.17 (3) and Theorem 2.19 it suffices to show
for a ∈ C, r ∈ Z, r ≥ 1

α1(Q(a, r)∗) =
{

1
r if |a| = 1
∞+ if |a| 6= 1 .

Because of Example 2.6 we get

F1(Q(a, r)∗)(λ) = vol{z ∈ S1 | |(z − a)r| ≤ λ}.
If |a| 6= 1, then F1(Q(a, r)∗)(λ) = 0 for 0 ≤ λ < |1 − |a||r and hence
α1(Q(a, r)∗) = ∞+. If |a| = 1 we conclude α1(Q(a, r)∗) = 1

r from
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vol{z ∈ S1 | |(z − a)r| ≤ λ} = vol{cos(φ) + i sin(φ) | |2− 2 cos(φ)|r/2 ≤ λ};
lim
φ→0

2− 2 cos(φ)
φ2

= 1.

This finishes the proof of Lemma 2.58. ut

Example 2.59. For G = Z we conclude from Lemma 2.58 that α1(S̃1) = 1
and αp(S̃1) = ∞+ for p ≥ 2 and that S̃1 has the limit property. We get for
the n-torus Tn from Theorem 2.55 (3) that T̃n has the limit property and

αp(T̃n) =
{

n 1 ≤ p ≤ n
∞+ otherwise .

Example 2.60. Let t1 and t2 be the generators of Z2 and let f : l2(Z2) →
l2(Z2) be given by right multiplication with (t1 − 1)(t2 − 1). Then we get
from Example 2.6 for small λ > 0

F (f)(λ) = vol{(z1, z2) ∈ T 2 | |z1 − 1| · |z2 − 1| ≤ λ}
= vol{(u1, u2) ∈ [−π, π]× [−π, π] |

|2− 2 cos(u1)|1/2 · |2− 2 cos(u1)|1/2 ≤ λ}
' vol{(u1, u2) ∈ [−π, π]× [−π, π] | |u1||u2| ≤ λ}

= 4 ·
(∫ π

λ/π

λ

u
du +

λ

π
π

)

= 4 · (λ ln(π)− λ ln(λ/π) + λ)
= 4λ · (− ln(λ) + 2 ln(π) + 1)
' − ln(λ) · λ.

This shows that α(f) = 1 and that F (f) is not dilatationally equivalent to
λ.

Theorem 2.61 (Novikov-Shubin invariants and S1-actions). Let X
be a connected S1-CW -complex of finite type. Suppose that for one orbit
S1/H (and hence for all orbits) the inclusion into X induces a map on π1

with infinite image. (In particular the S1-action has no fixed points.) Let X̃
be the universal covering of X with the canonical π1(X)-action. Then we get
for all p ≥ 0

b(2)
p (X̃) = 0;

αp(X̃) ≥ 1.

Proof. We show for any S1-CW -complex Y of finite type together with a
S1-map f : Y → X that b

(2)
p (f∗X̃;N (π)) = 0 and αp(f∗X̃;N (π)) ≥ 1 for
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all p ≥ 0, where f∗X̃ is the pullback of the universal covering of X and
π = π1(X). The statement about the L2-Betti numbers has already been
proved in Theorem 1.40. The proof of the statement about the Novikov-
Shubin invariants is analogous using Theorem 2.20, Theorem 2.55 (7) and
the conclusion from Lemma 2.58 that

αp(S̃1) =
{

1 if p = 1;
∞+ otherwise. ut

The notion of elementary amenable group will be explained in Definition
6.34. The next result is taken from [260, Corollary 2 on page 240]. Notice
that a group H, which has a finite-dimensional model for BH, is torsionfree.

Lemma 2.62. Let 1 → H → G → Q → 1 be an extension of groups such
that H is elementary amenable and BG has a finite-dimensional model. Then
G contains a normal torsionfree abelian subgroup.

Theorem 2.63. (Novikov Shubin invariants and aspherical CW -
complexes). Let X be an aspherical finite CW -complex. Suppose that its
fundamental group contains an elementary amenable infinite normal subgroup
H. Then

b(2)
p (X̃) = 0 for p ≥ 0;

αp(X̃) ≥ 1 for p ≥ 1.

Proof. The claim for the L2-Betti numbers is a special case of Theorem 1.44.
Since X is a finite-dimensional model for Bπ1(X), we can assume without
loss of generality by Lemma 2.62 that H is torsionfree abelian. In the case
H = Zn, the claim follows from [343, Theorem 3.9 (6) on page 174]. In the
general case, one has to notice that any finitely generated subgroup of H is
isomorphic to Zn for some n ≤ dim(X). Now the claim follows from [343,
Theorem 3.7 on page 172]. More details can also be found in [515, section
4.5]. ut

Theorem 2.63 still makes sense and still is true (by the same proof) if one
replaces finite by finite-dimensional and uses the extension of the definition
of Novikov-Shubin invariant to arbitrary spaces in [343].

2.3 Analytic Novikov-Shubin Invariants

In this section we introduce the analytic version of spectral density functions
and Novikov-Shubin invariants.

Definition 2.64 (Analytic spectral density function). Let M be a co-
compact free proper G-manifold without boundary and with G-invariant Rie-
mannian metric. Let dp

min and (∆p)min be the minimal closures of the densely
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defined operators dp : Ωp
c (M) → L2Ωp+1(M) and ∆p : Ωp

c (M) → L2Ωp(M).
Let dp⊥

min : dom(dp
min) ∩ im(dp−1

min )⊥ → im(δp+2
min )⊥ be the operator induced by

dp
min. Define the analytic p-th spectral density function of M by

Fp(M) := F (dp⊥
min) : [0,∞) → [0,∞)

and define

F∆
p (M) := F ((∆p)min) : [0,∞) → [0,∞).

Define the analytic p-th Novikov-Shubin invariant of M by

αp(M) := α(Fp−1(M)).

Put

α∆
p (M) := α(F∆

p (M)).

Notice that here we define αp(M) to be α(Fp−1(M)) and not to be
α(Fp(M)) as in Definition 2.16 and Definition 2.54 because here we are deal-
ing with cochain complexes whereas in the cellular context we use chain
complexes and we want to show later that both definitions agree (see Lemma
2.17 (2)).

Notation 2.65. Denote by (δp+1dp)⊥min and (dp−1δp)⊥min the minimal closure
of the operators

δp+1dp : Ωp
c (M) ∩ im(dp−1

min )⊥ → im(dp−1
min )⊥;

dp−1δp : Ωp
c (M) ∩ im(δp+1

min )⊥ → im(δp+1
min )⊥.

Let dp⊥
min : dom(dp

min) ∩ im(dp−1
min )⊥ → im(δp+2

min )⊥ and δp⊥
min : dom(δp

min) ∩
im(δp+1

min )⊥ → im(dp−2
min )⊥ be the closed densely defined operators induced by

dp
min and δp

min. Denote by E
∆p

λ (x, y) the smooth Schwartz kernel for the projec-
tion E

∆p

λ appearing in the spectral family of the selfadjoint operator (∆p)min.

The existence of the smooth Schwartz kernel E
∆p

λ (x, y) is for instance
proved in [9, Proposition 2.4]. It is a smooth section of the vector bundle
hom(p∗1 Altp(TM), p∗2 Altp(TM)) over M × M for pk : M × M → M the
projection to the k-th factor. It is uniquely characterized by the property
that for ω ∈ L2Ωp(M)

E
∆p

λ (ω)(x) =
∫

M

E
∆p

λ (x, y)(ωy) dvoly

holds.

Lemma 2.66. Let M be a cocompact free proper G-manifold without bound-
ary and with G-invariant Riemannian metric. Then
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(1) The values of the functions Fp(M)(λ) and F∆
p (M)(λ) are finite for all

λ ∈ R. In particular Fp(M) and F∆
p (M) are Fredholm;

(2) We have

F∆
p (M)(λ2)− b(2)

p (M) = (Fp−1(M)(λ)− b
(2)
p−1(M))

+(Fp(M)(λ)− b(2)
p (M));

α∆
p (M) = 1/2 ·min{αp(M), αp+1(M)};

(3) We have

F∆
p (M)(λ) =

∫

F
tr(E∆p

λ (x, x)) dvolx,

where F is a fundamental domain of the G-action;
(4) If Fp(H l−∗Ω∗(M))(λ) is the p-th spectral density function of the Hilbert

N (G)-cochain complex H l−∗Ω∗(M) (see (1.74)), then

Fp(M) ' Fp(H l−∗Ω∗(M)).

Proof. We get from [9, Proposition 4.16 on page 63]

trN (G)(E
∆p

λ ) =
∫

F
tr(E∆p

λ (x, x)) dvolx .

This and F∆
p (M)(λ)) = trN (G)(E

∆p

λ ) imply that F∆
p (M)(λ)) is finite for all

λ ∈ R and satisfies

F∆
p (M)(λ) =

∫

F
tr(E∆p

λ (x, x)) dvolx . (2.67)

One easily checks the following equalities of densely defined operators
using Lemma 1.70 (1)

(∆p)min|im(dp−1
min )⊥ = (δp+1dp)⊥min;

(∆p)min|im(δp+1
min )⊥ = (dp−1δp)⊥min;

δp⊥
min = (d(p−1)⊥

min )∗;

(δp+1dp)⊥min = (dp⊥
min)∗dp⊥

min;

(dp−1δp)⊥min = (δp⊥
min)∗δp⊥

min.

We conclude from Theorem 1.57

ker((∆p)min) = ker(dp⊥
min) = ker((δp+1dp)⊥min) = ker((dp−1δp)⊥min)

= ker(δp⊥
min) = Hp

(2)(M).
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We conclude from Theorem 1.57, Lemma 2.3 and Lemma 2.4

F∆
p (M)(λ) + dimN (G)(Hp

(2)(M)) = F ((δp+1dp)⊥min)(λ) + F ((dp−1δp)⊥min)(λ);

F ((δp+1dp)⊥min)(λ2) = Fp(M)(λ);

F ((dp−1δp)⊥min)(λ2)− b(2)
p (M) = Fp−1(M)(λ)− b

(2)
p−1(M).

This together with (2.67) proves assertions (1), (2) and (3). We will prove
(4) in the next Section 2.4. ut

The following result is due to Efremov [167]. We will prove it in the next
Section 2.4.

Theorem 2.68. (Analytic and combinatorial Novikov-Shubin in-
variants). Let M be a cocompact free proper G-manifold without boundary
and with G-invariant Riemannian metric. Then the cellular and the ana-
lytic spectral density functions (see Definition 2.54 and Definition 2.64) are
dilatationally equivalent and the cellular and analytic Novikov-Shubin invari-
ants agree in each dimension p.

Example 2.69. The Novikov-Shubin invariants of the universal covering M̃
of a closed hyperbolic manifold of dimension n have been computed [316,
Proposition 46 on page 499] using the analytic approach, namely

αp(M̃) =
{

1 if n is odd and 2p = n± 1
∞+ otherwise .

Moreover, the spectral density function has the limit property.

Example 2.70. In the notation of Example 1.36 we get

αp(F̃ d
g ) =





2 if g = 1, d = 0, p = 1, 2
1 if g = 0, d = 2, p = 1
∞+ otherwise

.

This follows from Theorem 2.55 (1) and (5), Example 2.59, Example 2.69
and the facts that F d

g is homotopy equivalent to
∨2g+d−1

i=1 S1 for d ≥ 1, F 0
g is

hyperbolic for g ≥ 2, F 0
1 = T 2, π1(F 0

0 ) = 1 and a free group of rank ≥ 2 is
not amenable.

2.4 Comparison of Analytic and Cellular
Novikov-Shubin Invariants

In this section we give the proofs of Lemma 2.66 (4) and of Theorem 2.68.
They will follow from Lemma 2.71, Lemma 2.72 and Lemma 2.80.
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Lemma 2.71. For any equivariant smooth triangulation K we have

Fp(K) ¹ Fp(H l−∗Ω∗(M)).

Proof. We have constructed cochain maps of Hilbert N (G)-modules in (1.77)
and (1.78)

A∗ : H l−∗Ω∗(M) → C∗(2)(K);

W ∗ : C∗(2)(K) → H l−∗Ω∗(M)

such that A∗ ◦W ∗ = id holds (see (1.79)). Now apply Lemma 2.17 (3). ut
Lemma 2.72. We have

Fp(H l−∗Ω∗(M))) ¹ Fp(M).

Proof. The following diagram commutes and the vertical maps are given by
the isometric isomorphisms of Hilbert N (G)-modules of (1.73)

H l−pΩp(M)
dp

Hl−p−−−−→ H l−p−1Ωp+1(M)

(1+∆p)(l−p−1)/2

y (1+∆p)(l−p−1)/2

y

H1Ωp(M)
dp

H1−−−−→ L2Ωp+1(M)

where dp
Hl−p : H l−pΩp(M) → H l−p−1Ωp+1(M) is the bounded operator

which is induced by dp : Ωp
c (M) → Ωp+1

c (M). Hence it remains to show

F (dp⊥
H1) ¹ F (dp⊥

min), (2.73)

where dp⊥
H1 : im(dp−1

H2 )⊥ → L2Ωp+1(M) is the operator which is induced by
dp

H1 : H1Ωp(M) → L2Ωp+1(M).
For ω ∈ Ωp−1

c (M) and η ∈ im(dp−1
H2 )⊥ we conclude using the isomorphism

(1.73) and partial integration (see Lemma 1.56)

〈dp−1(ω), η〉L2 = 〈(1 + ∆p) ◦ dp−1
H2 ◦ (1 + ∆p)−1(ω), η〉L2

= 〈(1 + ∆p)1/2 ◦ dp−1
H2 ◦ (1 + ∆p)−1(ω), (1 + ∆p)1/2(η)〉L2

= 〈dp−1
H2 ((1 + ∆p)−1(ω)), η〉H1

= 0. (2.74)

One easily checks that for ω ∈ Ωp
c (M) and hence for all ω ∈ H1Ωp(M)

||ω||21 = ||ω||2L2 + ||dpω||2L2 + ||δpω||2L2 (2.75)

holds. Now (2.74) and (2.75) imply that we obtain a well-defined injective
morphism of Hilbert N (G)-modules induced by the inclusion H1Ωp(M) →
L2Ωp(M)
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j : im(dp−1
H2 )⊥ → im(dp−1

min )⊥.

Consider 0 ≤ λ < 1 and L ∈ L(dp⊥
H1 , λ). For ω ∈ L we have j(w) ∈ im(dp−1

min )⊥

and hence δp(ω) = 0 and we get from (2.75)

||dp(ω)||2L2 ≤ λ2 · ||ω||21 = λ2 · ||ω||2L2 + λ2 · ||dp(ω)||2L2 .

This implies

||dp(ω)||L2 ≤ λ√
1− λ2

· ||ω||2L2 .

We conclude from Lemma 2.2 (2) that the composition

E
(dp⊥

min)∗dp⊥
min

λ2/(1−λ2) ◦ j : im(dp−1
H2 )⊥ → im(E(dp⊥

min)∗dp⊥
min

λ2/(1−λ2) )

is injective on L. This implies using Lemma 2.3

dimN (G)(L) ≤ dimN (G)(im(E(dp⊥
min)∗dp⊥

min
λ2/(1−λ2) )) = Fp(M)(λ/

√
1− λ2)

and hence
Fp(H l−∗Ω∗(M))(λ) ≤ Fp(M)(λ/

√
1− λ2).

This finishes the proof of Lemma 2.72. ut
The mesh of a triangulation is defined by

mesh(K) := sup{d(p, q) | p, q vertices of a 1-simplex},

where d(p, q) is the metric on M induced by the Riemannian metric. The
fullness of a triangulation is defined by

full(K) := inf
{

vol(σ)
dim(M)mesh(K)

∣∣∣∣ σ ∈ Sdim(M)(K)
}

.

The next result is taken from [145, page 165]. Its proof is based on [150,
Proposition 2.4 on page 8]. Notice that from now on W ∗ is given in terms of
barycentric coordinate functions.

Lemma 2.76. Let M be a cocompact free proper G-manifold without bound-
ary and with G-invariant Riemannian metric. Fix θ > 0, k > dim(M)/2 + 1
and an equivariant smooth triangulation K. Then there is a constant C > 0
such that for any equivariant barycentric subdivision K ′ of M with fullness
full(K ′) ≥ θ and any p-form ω ∈ HkΩp(M)

||ω −W p
K′ ◦Ap

K′(ω)||L2 ≤ C ·mesh(K ′) · ||ω||k
holds.
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Fix ε > 0. Lemma 2.2 (2) implies for ω ∈ im(E(dp⊥
min)∗dp⊥

min
ε2 )

||ω||2k = 〈ω, (1 + ∆p)k(ω)〉L2

= 〈ω, (1 + (dp⊥
min)∗dp⊥

min)k(ω)〉L2

≤ (1 + ε2k) · ||ω||2L2 .

Hence the inclusion of im(E(dp⊥
min)∗dp⊥

min
ε2 ) into L2Ωp(M) induces a bounded

G-equivariant operator

iε : im(E(dp⊥
min)∗dp⊥

min
ε2 ) → H l−pΩp(M). (2.77)

Lemma 2.78. Fix k > dim(M)/2 + 1 and ε > 0. Then there is an equiv-
ariant smooth triangulation K and a constant C1 > 0 such that for all

ω ∈ im(E(dp⊥
min)∗dp⊥

min
ε2 )

||ω||L2 ≤ C1 · || pr ◦Ap ◦ iε(ω)||L2

holds, where pr: l2Cp(K) → l2Cp(K) is the orthogonal projection onto
im

(
cp−1 : l2Cp−1(K) → l2Cp(K)

)⊥.

Proof. Given θ > 0 and an equivariant smooth triangulation of M , we can
find an equivariant subdivision whose fullness is bounded from below by θ
and whose mesh is arbitrary small [522]. Hence we can find by Lemma 2.76
an equivariant smooth triangulation K and a constant 0 < C0 < 1 such that
for any p-form η ∈ HkΩp(M)

||η −W p ◦Ap(η)||L2 ≤ C0 · ||η||L2

holds. Let pr′ : L2Ωp(M) → L2Ωp(M) be the orthogonal projection onto
im(dp−1

min )⊥. Recall that W p sends im(cp−1) to im(dp−1
min ) and hence pr′ ◦W p ◦

pr = pr′ ◦W p. Now we estimate for ω ∈ im(E(dp⊥
min)∗dp⊥

min
ε2 ) using pr′(ω) = ω

||ω||L2 ≤ || pr′ ◦W p ◦Ap ◦ iε(ω)||L2 + ||ω − pr′ ◦W p ◦Ap ◦ iε(ω)||L2

= ||pr′ ◦W p ◦ pr ◦Ap ◦ iε(ω)||L2 + ||ω − pr′ ◦W p ◦Ap ◦ iε(ω)||L2

≤ ||W p ◦ pr ◦Ap ◦ iε(ω)||L2 + ||pr′(ω −W p ◦Ap ◦ iε(ω))||L2

≤ ||W p|| · || pr ◦Ap ◦ iε(ω)||L2 + ||ω −W p ◦Ap ◦ iε(ω)||L2

≤ ||W p|| · || pr ◦Ap ◦ iε(ω)||L2 + C0 · ||ω||L2 .

If we put C1 = max{ ||W p||
1−C0

| p = 0, 1, . . . , dim(M)}, the claim follows. ut
Lemma 2.79. Given an equivariant smooth triangulation K, there is a con-
stant C2 such that for all u ∈ l2Cp(M)

||u||L2 ≤ C2 · ||W p
K(u)||L2 .
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Proof. For an element u ∈ l2Cp(M) the element W p(u) ∈ L2Ωp(M) is
smooth outside the (dim(M) − 1)-skeleton. The p-form W p(u), which is a
priori defined in the sense of distributions, restricted to the interior of a
dim(M)-simplex σ is smooth and has a unique smooth extension to σ itself
which we denote in the sequel by W (u)|σ. If τ is a p-dimensional face of
both the dim(M)-simplices σ0 and σ1, then i∗0W (u)|σ0 = i∗1W (u)|σ1 for the
inclusions ik : τ → σk for k = 0, 1. Hence we can define for any p-simplex
τ a smooth p-form W (u)|τ by i∗W (u)|σ for any dim(M)-simplex σ which
contains τ as face and i : τ → σ the inclusion. In particular W (cτ ) which
is a priori given in a distributional sense is a continuous (not necessarily
smooth) p-form. Since G acts cocompactly, there is a constant K > 0 such
that ||W (cτ )||L2 ≤ K holds for all p-simplices τ and hence W (u) ∈ L2Ωp(M)
for all u ∈ l2Cp(M). If τ and σ are p-simplices, then we get for the charac-
teristic functions cτ , cσ ∈ l2Cp(K) of σ and τ

W (cτ )|σ = 0 if τ 6= σ;∫

σ

W (cσ) = 1.

Recall that G acts freely and cocompactly. Hence there are numbers D > 0
and S > 0 such that for any p-simplex σ

∫

σ

||W (cσ)||2x dvolσx ≥ 2 ·D;

|{τ | τ ∈ st(σ}| ≤ S;
|{τ | σ ∈ st(τ}| ≤ S,

where τ runs through all simplices.
Recall that the support of W (cτ ) lies in the star st(τ) of τ . For any p-

simplex σ we can choose an open neighborhood U(σ) of the interior int(σ)
which is obtained by thickening the interior of σ into the dim(M)-simplices
having σ as faces such that

||W (cτ )||2x ≤
D

2 · (4S − 2)S vol(σ)
if τ 6= σ, x ∈ U(σ);

g · U(σ) = U(g · σ);
U(σ) ∩ U(τ) = ∅ for σ 6= τ ;

W (cτ )(x) = 0 if x ∈ U(σ) and σ /∈ st(τ).

holds. There is a number δ > 0 such that possibly by shrinking U(σ) to some-
thing which is up to small error a product neighbourhood int(σ)×(− δ

2D , δ
2D )

we can additionally achieve that for all g ∈ G and p-simplices σ and τ
∫

U(σ)

||W p(cτ ))||2x dvolx

{≥ δ τ = σ
≤ δ

(4S−2)S τ 6= σ
.
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holds. Then we get for u =
∑

σ uσ · cσ in l2Cp(M) using the inequality
||∑r

i=1 ai||2 ≤ (2r − 1) ·∑r
i=1 ||ai||2.

||u||2L2 =
∑

σ

|uσ|2

≤ 1
δ
·
∑

σ

|uσ|2 ·
∫

U(σ)

||W (cσ)||2x dvolx

≤ 1
δ
·
∑

σ

∫

U(σ)

||uσ ·W (cσ)||2x dvolx

≤ 1
δ
·
∑

σ

∫

U(σ)


||

∑
τ

uτ ·W (cτ )||2x + ||
∑

τ 6=σ

uτ ·W (cτ )||2x


 dvolx

≤ 1
δ
·
∫

∐
σ U(σ)

||
∑

τ

uτ ·W (cτ )||2x dvolx +

1
δ
·
∑

σ

∫

U(σ)

||
∑

τ 6=σ,σ∈st(τ)

uτ ·W (cτ )||2x dvolx

≤ 1
δ
·
∫

M

||
∑

τ

uτ ·W (cτ )||2x dvolx +

1
δ
·
∑

σ

∫

U(σ)

(2S − 1) ·
∑

τ 6=σ,σ∈st(τ)

||uτ ·W (cτ )||2x dvolx

≤ 1
δ
· ||W (u)||L2 +

2S − 1
δ

·
∑

σ

∑

τ 6=σ,σ∈st(τ)

|uτ |2 ·
∫

U(σ)

||W (cτ )||2x dvolx

≤ 1
δ
· ||W (u)||L2 +

2S − 1
δ

·
∑

σ

∑

τ 6=σ,σ∈st(τ)

|uτ |2 · δ

(4S − 2)S

≤ 1
δ
· ||W (u)||L2 +

2S − 1
δ

· S ·
∑

τ

|uτ |2 · δ

(4S − 2)S

≤ 1
δ
· ||W (u)||L2 +

1
2
·
∑

τ

|uτ |2

≤ 1
δ
· ||W (u)||L2 +

1
2
· ||u||2L2 .

This implies

||u||L2 ≤ 2
δ
· ||W (u)||L2

and hence Lemma 2.79 is proved. ut
Lemma 2.80. For any equivariant smooth triangulation K we have

Fp(M) ¹ Fp(K).
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Proof. Because of Theorem 2.55 (1) it suffices to show the claim for one
equivariant smooth triangulation. Let K be the equivariant smooth triangu-
lation and C1 > 0 be the constant appearing in Lemma 2.78. Recall that
pr : l2Cp(K) → l2Cp(K) is the orthogonal projection onto im(cp−1)⊥ and
pr′ : L2Ωp(M) → L2Ωp(M) is the orthogonal projection onto im(dp−1

min )⊥.
Fix ε > 0. Next we show that there is a constant C3 > 0 such that for all
λ ≤ ε and ω ∈ im(E(dp⊥

min)∗dp⊥
min

λ2 )

||cp ◦ pr ◦Ap ◦ iε(ω)||L2 ≤ C3 · λ · ||pr ◦Ap ◦ iε(ω)||L2 (2.81)

holds. We estimate using Lemma 2.2 (2), Lemma 2.78 and Lemma 2.79

||cp ◦ pr ◦Ap ◦ iε(ω)||L2

= ||cp ◦Ap ◦ iε(ω)||L2

≤ C2 · ||W p+1 ◦ cp ◦Ap ◦ iε(ω)||L2

= C2 · ||W p+1 ◦Ap+1 ◦ dp ◦ iε(ω)||L2

= C2 · ||W p+1 ◦Ap+1 ◦ iε ◦ dp⊥
min(ω)||L2

≤ C2 · ||W p+1 ◦Ap+1 ◦ iε|| · ||dp⊥
min(ω)||L2

≤ C2 · ||W p+1 ◦Ap+1 ◦ iε|| · λ · ||ω||L2

≤ C2 · ||W p+1 ◦Ap+1 ◦ iε|| · λ · C1 · || pr ◦Ap ◦ iε(ω)||L2 .

If we put C3 := C1 · C2 · ||W p+1 ◦Ap+1 ◦ iε||, then (2.81) follows.

We conclude from (2.81) that clos(pr ◦Ap◦iε(im(E(dp⊥
min)∗dp⊥

min
λ2 ))) belongs to

L(cp, C3λ). Since pr ◦Ap ◦ iε is injective by Lemma 2.78 we get from Theorem
1.12 (2) and Lemma 2.2 (2) for λ ≤ ε

Fp(M)(λ) = dimN (G)

(
im(E(dp⊥

min)∗dp⊥
min

λ2 )
)

= dimN (G)

(
clos(pr ◦Ap ◦ iε(im(E(dp⊥

min)∗dp⊥
min

λ2 )))
)

≤ Fp(K)(C3λ).

This finishes the proof of Lemma 2.80. ut

2.5 On the Positivity and Rationality of the
Novikov-Shubin Invariants

The following conjecture is taken from [322, Conjecture 7.1 on page 56].

Conjecture 2.82. (Positivity and rationality of Novikov-Shubin in-
variants). Let G be a group. Then for any free G-CW -complex X of finite
type its Novikov-Shubin invariants αp(X) are positive rational numbers unless
they are ∞ or ∞+.
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This conjecture is equivalent to the statement that for any matrix
A ∈ M(m,n,ZG) the Novikov-Shubin invariant of the induced morphism
of finitely generated Hilbert N (G)-modules l2(G)m → l2(G)n is a positive
rational number, ∞ or ∞+. It is also equivalent to the version where X is any
cocompact free proper G-manifold without boundary and with G-invariant
Riemannian metric. The proof of these equivalent formulations is analogous
to the proof of Lemma 10.5.

Here is some evidence for Conjecture 2.82. Unfortunately, all the evidence
comes from computations, no convincing conceptual reason is known. Con-
jecture 2.82 has been proved for G = Z in Lemma 2.58. Conjecture 2.82 is
true for virtually abelian G by [316, Proposition 39 on page 494]. (The author
of [316] informs us that his proof of this statement is correct when G = Z
but has a gap when G = Zk for k > 1. The nature of the gap is described
in [321, page 16]. The proof in this case can be completed by the same basic
method used in [316]. Moreover, the value ∞ does not occur for G = Zk.)
D. Voiculescu informs us that Conjecture 2.82 is also true for a free group
G. Details of the proof will appear in the Ph. D.thesis of Roman Sauer [456].
If Conjecture 2.82 is true for the free G-CW -complex X of finite type and
for the cocompact free H-CW -complex Y of finite type and both X and Y
have the limit property (see Definition 2.41), then Conjecture 2.82 holds for
the G×H-CW -complex X ×Y by Theorem 2.55 (3). In all examples, where
Novikov-Shubin invariants can be computed explicitly, the result confirms
Conjecture 2.82. For any finitely generated group G it is true for α1(X) by
Theorem 2.55 (5). For 3-manifolds we refer to Theorem 4.2, for Heisenberg
groups to Theorem 2.85 and for symmetric spaces to Theorem 5.12 (2).

Here is further evidence if one replaces positive rational number by posi-
tive number in Conjecture 2.82. If X is a finite aspherical CW -complex such
that its fundamental group contains an elementary amenable infinite nor-
mal subgroup, then αp(X̃) ≥ 1 holds for p ≥ 1 (see Theorem 2.63). We get
αp(X̃) ≥ 1 for all p ≥ 1 if X is a connected S1-CW -complex of finite type
such that for one orbit S1/H the inclusion into X induces a map on π1 with
infinite image by Theorem 2.61. Let p : E → B be a fibration such that B
is a connected finite CW -complex and the fiber F has the homotopy type
of a connected finite CW -complex. Suppose that the inclusion of F into E

induces an injection on the fundamental groups and that b
(2)
p (F̃ ) = 0 for all

p ≥ 0. Then αp(Ẽ) > 0 for all p ≥ 1 if αp(F̃ ) > 0 for all p ≥ 1 (see Theo-
rem 3.100 and Remark 3.184). A similar statement for pushouts follows from
Theorem 3.96 (2) and Remark 3.184.

Conjecture 2.82 is related to the question whether a cocompact free G-
CW -complex is of determinant class (see Theorem 3.14 (4)) and to Theorem
3.28. The question about determinant class arises in the construction of L2-
torsion in Subsection 3.3.1 and has a positive answer for the groups appearing
in the class G as explained in Chapter 13. Some evidence for Conjecture 2.82
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comes from Theorem 13.7, where an estimate of the shape Fp(λ) ≤ C
− ln(λ) is

proved for small λ.
We do not know of an example of an aspherical closed manifold M such

that αp(M̃) < 1 holds for some p ≥ 0.

2.6 Novikov-Shubin Invariants of Manifolds with
Boundary

In this section we briefly discuss the case of a manifold with boundary. Let M
be a cocompact free proper G-manifold with G-invariant Riemannian metric.
Suppose that the boundary ∂M of the complete Riemannian manifold M is
the disjoint union ∂0M and ∂1M where we allow that ∂0M , ∂1M or both
are empty. Denote by dp

min : L2Ωp(M) → L2Ωp+1(M) the minimal closure
of the operator dp : Ωp

c (M, ∂0M) → L2Ωp+1(M), where Ωp
c (M,∂0M) is the

subspace of Ωp
c (M) consisting of those p-forms ω with compact support whose

restriction to ∂0M vanishes. Then im(dp−1
min ) is contained in the domain of

dp
min and we obtain a closed densely defined operator dp⊥

min : im(dp−1
min )⊥ →

L2Ωp(M). Define the p-th analytic spectral density function and the p-th
Novikov-Shubin invariant of (M,∂0M) by

Fp(M,∂0M) := F (dp⊥
min);

αp(M,∂0M) := α(Fp−1(∂0M)).

This is consistent with [240, Definition 3.1 on page 387]. Let (K, ∂0K, ∂1K) →
(M, ∂0M,∂1M) be any equivariant smooth triangulation. Then we have the
following version of Theorem 2.68

Fp(M, ∂0M) ' Fp(K, ∂0K); (2.83)
αp(M, ∂0M) = αp(K, ∂0K). (2.84)

Analogously the notions and results for the Laplacian carry over to (M, ∂0M)
if we use as initial domain the space Ωp

2(M, ∂0M) (see (1.83)).
We briefly explain the idea of the proof of Fp(M, ∂0M) ' Fp(K, ∂0K).

Let g0 and g1 be two G-invariant Riemannian metrics on M . Since M is
cocompact the L2-norms on Ωp

c (M) with respect to g0 and g1 are equivalent.
This implies that we obtain a commutative square with invertible bounded
G-equivariant operators induced by the identity on Ωp

c (M) as vertical arrows

L2
g0

Ωp(M)
dp
min−−−−→ L2

g0
Ωp+1(M)

∼=
y ∼=

y

L2
g1

Ωp(M)
dp
min−−−−→ L2

g1
Ωp+1(M)
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This implies that the spectral density functions of (M, ∂0M) with respect to
g0 and g1 are dilatationally equivalent. Hence we can assume without loss
of generality that the G-invariant Riemannian metric on M is a product
near the boundary and hence induces a G-invariant Riemannian metric on
M∪∂1M M . Let τ : M∪∂1M M → M∪∂1M M be the isometric involution given
by flipping the two copies of M inside M ∪∂1M M . It induces an isometric
involution on all spaces L2Ωp(M) and the operators dp

min commute with this
involution. Hence the whole picture decomposes orthogonally into a +-part
where this involution is the identity and a −-part where this involution is
− id. So we can define (dp

min)± : L2Ωp(M ∪∂1M M)± → L2Ωp+1(M ∪∂1M

M)± and Fp(M ∪∂1M M)± and analogously Fp(K ∪∂1K K)±. One checks
that (dp

min)+ : L2Ωp(M ∪∂1M M)+ → L2Ωp+1(M ∪∂1M M)+ is the same as
dp
min : L2Ωp(M) → L2Ωp+1(M) for the pair (M, ∂0M) and for − instead of

+ one gets it for the pair (M, ∂1M). In particular

Fp(M ∪∂1M M)+ = Fp(M,∂0M);
Fp(M ∪∂1M M)− = Fp(M,∂1M).

Similarly one gets

Fp(K ∪∂1K K)+ = Fp(K, ∂0K);
Fp(K ∪∂1K K)− = Fp(K, ∂1K).

Put ∂1M = ∂M . Then M ∪∂M M has no boundary. The proof of Theorem
2.68 that Fp(M ∪∂M M) = Fp(K ∪∂K K) can be easily modified to show

Fp(M ∪∂M M)+ = Fp(K ∪∂K K)+;
Fp(M ∪∂M M)− = Fp(K ∪∂K K)−,

because everything is compatible with the involution and ||ω||2k = ||ω+||2k +
||ω−||2k holds for all ω ∈ HkΩp(M). Hence the claim is true in the case
∂1M = ∂M . Now repeating this doubling trick allows to conclude the general
case by inspecting M ∪∂1M M .

2.7 Miscellaneous

Let M be a closed Riemannian manifold. The analytic Laplace operator
∆p : L2Ωp(M̃) → L2Ωp(M̃) on the universal covering of M has zero in its
spectrum if and only if b

(2)
p (M̃) 6= 0 or α∆

p (M̃) 6= ∞+. In Chapter 12 we will
deal with the conjecture that for an aspherical closed Riemannian manifold
M there is at least one p ≥ 0 such that ∆p has zero in the spectrum. We
conclude from Theorem 1.35 (8), Theorem 2.55 (5b) and Theorem 2.68 the
result of Brooks [68] that for a closed Riemannian manifold M the Laplacian
∆0 : L2Ω0(M̃) → L2Ω0(M̃) acting on functions on the universal covering has
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zero in its spectrum if and only if π1(M) is amenable. Moreover, the result of
Brooks extends to the case where M is compact and has a boundary if one
uses Neumann boundary conditions on M̃ .

We have interpreted the L2-Betti numbers in terms of the heat kernel
(see (1.60)). We will do this also for the Novikov-Shubin invariants α∆

p (M)
in Theorem 3.136 (3) and (4).

The notions of spectral density function and Novikov-Shubin invariants
make also sense for proper G-CW -complexes of finite type because in this
setting the cellular L2-chain complex is still defined as a Hilbert N (G)-chain
complex as explained in Section 1.6. Theorem 2.55 (1), (2), (3), (5), (6) and
(7) remain true word by word for proper G-CW -complexes of finite type.
The L2-de Rham complex is also defined for a cocompact proper G-manifold
with G-invariant Riemannian metric. Hence the analytic versions of spectral
density function and Novikov-Shubin invariants are still well-defined in this
context and Theorem 2.68 remains true if one drops the condition free.

We will explain a proportionality principle for Novikov-Shubin invariants
in Theorem 3.183.

A combinatorial approach to the Novikov-Shubin invariants which is use-
ful for concrete calculations will be given in Section 3.7.

We will give further computations of Novikov-Shubin invariants for uni-
versal coverings of compact 3-manifolds in Theorem 4.2 and for universal
coverings of closed locally symmetric spaces in Theorem 5.12 (2).

We will discuss the behaviour of L2-Betti numbers and Novikov-Shubin
invariants of groups under quasi-isometry and measure equivalence in Section
7.5).

Finally we mention the following computation due to Rumin [450, Corol-
lary 7.15 on page 449]. Notice that the invariants computed there corresponds
in our notation to α∆

p (M̃) and one can easily deduce the values of αp(M̃)
from the relation 2 · α∆

p (M̃) = min{αp(M̃), αp+1(M̃)}.
Theorem 2.85. Let M be a closed Riemannian manifold whose universal
covering M̃ is the Heisenberg group H2n+1. Then M is a non-trivial S1-
bundle over a torus and

αp(M̃) =





n + 1 if p = n + 1;
2 · (n + 1) if 1 ≤ p ≤ dim(M), p 6= n + 1;
∞+ otherwise.

In [343] the notion of Novikov-Shubin invariants for free G-CW -complexes
of finite type is extended to arbitrary G-spaces. In particular αp(G) can be
defined by αp(EG) for any group G.
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Exercises

2.1. Let f : U → V and g : V → W be morphisms of Hilbert N (G)-modules.
Show: i.) if f and g are weak isomorphisms, then g ◦ f is a weak isomor-
phism and ii.) if two of the morphisms f , g and g ◦ f are weak isomorphisms
and Fredholm, then all three are weak isomorphisms and Fredholm. Find
a counterexample to assertion ii.) if one replaces “weak isomorphisms and
Fredholm” by “weak isomorphisms”.

2.2. Let G be a group which contains an element of infinite order. Then for
any integer n ≥ 1 there is an element u ∈ CG such that α(ru) = 1/n and
b(2)(ru) = 0 holds for the map ru : l2(G) → l2(G) given by right multiplication
with u. Moreover, if we additionally assume that G is finitely presented we
can find for any sequence α3, α4, . . . of elements αp ∈ {1/n | n ∈ Z, n ≥
1}∐{∞+} a connected CW -complex X of finite type with π1(X) = G such
that b

(2)
p (X̃) = 0 and αp(X̃) = αp holds for p ≥ 3.

2.3. Let G be locally finite, i.e. any finitely generated subgroup is finite.
Let A ∈ M(m,n,CG) be any matrix. It induces a map of Hilbert N (G)-
modules rA :

⊕m
i=1 l2(G) → ⊕n

i=1 l2(G). Then α(rA) = ∞+. If X is any free
G-CW -complex of finite type, then αp(X) = ∞+ for all p ≥ 1.

2.4. Show that there is no connected CW -complex X of finite type with
α1(X̃) = 1 and α2(X̃) 6= ∞+.

2.5. Show for two connected closed 4-dimensional manifolds M and N with
isomorphic fundamental groups that αp(M̃) = αp(Ñ) holds for all p ≥ 1.
Show the analogous statement if M and N are connected compact 3-manifolds
possibly with boundary.

2.6. Let S1 → E → B be a principal S1-bundle of CW -complexes of
finite type such that B is simply connected. Show that either αp(Ẽ) = 1 or
αp(Ẽ) = ∞+ for p ≥ 1 holds.

2.7. Show that l2(Zn) viewed as C[Zn]-module is flat if and only if n ≤ 1.

2.8. Let M be a closed hyperbolic manifold. Compute the L2-Betti numbers
and the Novikov-Shubin invariants of the universal covering of Tn ×M .

2.9. Let M and N be two compact manifolds (possibly with boundary)
whose dimension is less or equal to 2. Compute the L2-Betti numbers and
Novikov-Shubin invariants of M̃ ×N .

2.10. Let X and Z be connected CW -complexes of finite type. Suppose that
π1(Z) is finite and X̃ has the limit property. Show

αp(X̃ × Z) = min{αi(X̃) | i = 1, . . . , p,Hp−i(Z̃;C) 6= 0};

αp(X̃ × Tn) =





min{n + αi(X̃) | i = p− n, . . . , p} if b
(2)
i (X̃) = 0 for
p− n ≤ i ≤ p− 1;

n otherwise.
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2.11. Let F → E → B be a fibration of connected CW -complexes such that
the inclusion induces an injection π1(F ) → π1(E). Suppose that b

(2)
p (F̃ ) = 0

and αp(F̃ ) > 0 holds for all p ≥ 0. Show that then the same is true for Ẽ.

2.12. Let A be the set of real numbers r, for which there exists a CW -
complex X of finite type and an integer p ≥ 0 with αp(X̃) = r. Then A is
countable and contains {r | r ∈ Q, r ≥ 0}.



3. L2-Torsion

Introduction

In this chapter we introduce and study L2-torsion for Hilbert chain complexes
and for regular coverings of finite CW -complexes or of compact manifolds.

There are various notions of torsion invariants, such as Reidemeister tor-
sion, Whitehead torsion and analytic Ray-Singer torsion, which have been
intensively studied since the twenties and have remained in the focus of at-
tention. They will be reviewed in Section 3.1. L2-torsion is the L2-analog of
Reidemeister torsion as L2-Betti numbers are the L2-analogs of the classical
Betti numbers. The situation for the classical Reidemeister torsion is best if
the homology vanishes, and the same is true in the L2-context. Therefore we
will consider in this introduction only the case of the universal covering X̃ of
a finite CW -complex X for which all L2-Betti numbers are trivial. In many
interesting geometric situations this assumption will be satisfied.

For the construction of Reidemeister torsion the notion of a determinant is
crucial and we will define and investigate its L2-version, the Fuglede-Kadison
determinant, in Section 3.2. In the classical context of Reidemeister torsion
the vanishing of the homology implies that the chain complexes under con-
sideration are contractible. In the L2-context the vanishing of the L2-Betti
numbers does not imply that the Hilbert chain complex under considera-
tion is contractible, the Novikov-Shubin invariants of Chapter 2 measure the
difference. Notice that the zero-in-the-spectrum Conjecture 12.1 says in the
aspherical case that the cellular Hilbert N (π1(X))-chain complex of X̃ is
never contractible so that it is too restrictive to demand contractibility. This
forces us to deal with Fuglede-Kadison determinants for weak automorphisms
and with the problem whether X̃ is of determinant class, which means that
the Fuglede-Kadison determinant of each differential is different from zero
and hence the L2-torsion is defined as a real number. The universal covering
X̃ is of determinant class, provided that all its Novikov-Shubin invariants are
positive or that π1(X) belongs to the class G, which will be investigated in
Subsection 13.1.3. There is the Conjecture 3.94 that X̃ is always of determi-
nant class. We will deal with it in Chapter 13.

In Section 3.3 we introduce L2-torsion for finite Hilbert N (G)-chain com-
plexes and define ρ(2)(X̃) in terms of these invariants applied to the cellular
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L2-chain complex in Section 3.4. It turns out that the L2-torsion ρ(2)(X̃)
has the same formal properties as the classical Euler characteristic χ(X) if
one ensures that relevant maps induce injections on the fundamental groups.
For instance, ρ(2)(X̃) depends only on the simple homotopy type of X and,
provided that a certain map in K-theory is always trivial, it depends on the
homotopy type of X only. There are sum formulas, product formulas and
fibration formulas and Poincaré duality holds. For a self map f : X → X
inducing an isomorphism on π1(X) one can compute ρ(2)(T̃f ) of the mapping
torus Tf in terms of the map induced on the L2-homology of X̃ by f . If
X is an aspherical finite CW -complex such that π1(X) contains an elemen-
tary amenable infinite normal subgroup and is of det ≥ 1-class, then ρ(2)(X̃)
vanishes. There are explicit formulas in terms of Hp(X̃;C) if π1(X) = Z.

In Section 3.5 we introduce the analytic version of ρ(2)(M̃) for a closed
Riemannian manifold M in terms of the Laplace operator on differential
forms on M̃ following Lott and Mathai. The analytic and topological version
agree by a deep result of Burghelea, Friedlander, Kappeler and McDonald.
The L2-torsion ρ(2)(M̃) of an odd-dimensional closed hyperbolic manifold is
up to a dimension constant, which is computable and different from zero, the
volume of M . Manifolds with boundary are briefly discussed in Section 3.6.

In Section 3.7 we give a combinatorial approach for the computation of
L2-Betti numbers and L2-torsion. Namely, we give an algorithm to produce
monotone decreasing sequences of rational numbers which converge to the
L2-Betti numbers and the Fuglede-Kadison determinants respectively. It is
easier to compute than for instance the analytic versions which are defined in
terms of the heat kernel (and meromorphic extensions). In practice this yields
numerical upper bounds for the L2-Betti numbers and the Fuglede-Kadison
determinants. The speed of convergence is ≈ n−α, where α is the relevant
Novikov-Shubin invariant.

In order to get a quick overview one should read through Sections 3.1,
(only if the reader is not familiar with the classical concept of torsion invari-
ants) 3.4 and 3.5 and skip the very technical Sections 3.2 and 3.3.

3.1 Survey on Torsion Invariants

In this section we give a brief review of torsion invariants in order to motivate
the definition of L2-torsion.

3.1.1 Whitehead Groups

Let R be an associative ring with unit. Denote by GL(n,R) the group of
invertible (n, n)-matrices with entries in R. Define the group GL(R) by the
colimit of the system indexed by the natural numbers . . . ⊂ GL(n,R) ⊂
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GL(n+1, R) ⊂ . . . where the inclusion GL(n,R) to GL(n+1, R) is given by
stabilization

A 7→
(

A 0
0 1

)
.

Define K1(R) by the abelianization GL(R)/[GL(R), GL(R)] of GL(R). De-
fine the Whitehead group Wh(G) of a group G to be the cokernel of the map
G×{±1} → K1(ZG) which sends (g,±1) to the class of the invertible (1, 1)-
matrix (±g). This will be the group where Whitehead torsion will take its
values in.

The Whitehead group Wh(G) is known to be trivial if G is the free abelian
group Zn of rank n [25] or the free group ∗n

i=1Z of rank n [481]. There is the
conjecture that it vanishes for any torsionfree group. This has been proved
by Farrell and Jones [190], [191], [193], [194], [196] for a large class of groups.
This class contains any subgroup G ⊂ G′ where G′ is a discrete cocompact
subgroup of a Lie group with finitely many path components and any group G
which is the fundamental group of a non-positively curved closed Riemannian
manifold or of a complete pinched negatively curved Riemannian manifold.
The Whitehead group satisfies Wh(G ∗H) = Wh(G)⊕Wh(H) [481].

If G is finite, then Wh(G) is very well understood (see [406]). Namely,
Wh(G) is finitely generated, its rank as abelian group is the number of con-
jugacy classes of unordered pairs {g, g−1} in G minus the number of conjugacy
classes of cyclic subgroups and its torsion subgroup is isomorphic to the ker-
nel SK1(G) of the change of coefficient homomorphism K1(ZG) → K1(QG).
For a finite cyclic group G the Whitehead group Wh(G) is torsionfree. For
instance the Whitehead group Wh(Z/p) of a cyclic group of order p for an
odd prime p is the free abelian group of rank (p − 3)/2 and Wh(Z/2) = 0.
The Whitehead group of the symmetric group Sn is trivial. The Whitehead
group of Z2 × Z/4 is not finitely generated as abelian group.

3.1.2 Whitehead Torsion

Let R be an associative ring with unit. Let C∗ be a based free finite R-chain
complex, where based free means that each chain module Cp is equipped with
an (ordered) basis. Suppose that C∗ is acyclic. Choose a chain contraction
γ∗ : C∗ → C∗+1. In the sequel we write :

Codd :=
⊕

n∈Z
C2n+1;

Cev :=
⊕

n∈Z
C2n.

Then we obtain an isomorphism (c + γ)odd : Codd → Cev. Since we have a
basis for the source and target of this isomorphism, it determines an invertible
matrix and hence an element
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ρ(C∗) ∈ K1(R). (3.1)

Let f : X → Y be a G-homotopy equivalence of finite free G-CW -
complexes. It induces a chain homotopy equivalence C∗(f) : C∗(X) → C∗(Y )
of the cellular ZG-chain complexes. Let cone∗(C∗(f)) be its mapping cone
which is a contractible finite free ZG-chain complex. The G-CW -complex-
structure determines a cellular ZG-basis which is not quite unique, one may
permute the basis elements or multiply a basis element with an element of
the form ±g ∈ ZG. Hence we can define the Whitehead torsion

τ(f) ∈ Wh(G) (3.2)

by the image of the element ρ(cone∗(C∗(f))) defined in (3.1) under the canon-
ical projection K1(ZG) → Wh(G). The Whitehead torsion τ(f) depends
only on the G-homotopy class of f and satisfies τ(g ◦ f) = τ(f) + τ(g) for
G-homotopy equivalences f : X → Y and g : Y → Z of finite free G-CW -
complexes [116, (22.4)]. There are sum and product formulas for Whitehead
torsion [116, (23.1) and (23.2)].

Given a homotopy equivalence f : X → Y of connected finite CW -
complexes, we can pick a lift f̃ : X̃ → Ỹ to the universal coverings and
obtain an element τ(f̃) ∈ Wh(π1(Y )). The vanishing of this element has
a specific meaning, namely it is zero if and only if f is a simple homotopy
equivalence, i.e. up to homotopy f can be written as a finite sequence of
combinatorial moves, so called elementary collapses and elementary expan-
sions [116, (22.2)]. If f is a homeomorphism, then it is a simple homotopy
equivalence, or equivalently τ(f̃) = 0, by a result of Chapman [99], [100].
A map between finite polyhedra is a simple homotopy equivalence if and
only if there are regular neighbourhoods iX : X → NX and iY : Y → NY

in high dimensional Euclidean space and a homeomorphism g : NX → NY

such that g ◦ iX and iY ◦ f are homotopic [445, Chapter 3]. If Y is not
connected, we define Wh(π1(Y )) :=

⊕
C∈π0(Y ) Wh(π1(C)) and τ(f) by

{τ(f |f−1(C) : f−1(C) → C) | C ∈ π0(Y )}.
The main importance of Whitehead torsion lies in the s-Cobordism The-

orem we will explain next. A (n + 1)-dimensional h-cobordism is a com-
pact (n + 1)-dimensional manifold W whose boundary is the disjoint union
∂W = ∂0W

∐
∂1W such that the inclusions ik : ∂kW → W for k = 0, 1

are homotopy equivalences. Given a closed n-dimensional manifold M , an
h-cobordism over M is a (n + 1)-dimensional h-cobordism W together with
a diffeomorphism f : M → ∂0W . Two such h-cobordisms (W, f) and (W ′, f ′)
over M are diffeomorphic if there is a diffeomorphism F : W → W ′ with
F ◦ f = f ′. The next result is due to Barden, Mazur, Stallings (for its proof
see for instance [288], [337, Section 1]), its topological version was proved by
Kirby and Siebenmann [292, Essay II].

Theorem 3.3 (S-Cobordism Theorem). Let M be a closed smooth n-
dimensional manifold. Suppose n ≥ 5. Then the map from the set of
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diffeomorphism classes of h-cobordisms (W, f) over M to the Whitehead
group Wh(π1(M)) which sends the class of (W, f) to the image of the
Whitehead torsion τ(ĩ0 : ∂̃0W → W̃ ) under the inverse of the isomorphism
Wh(π1(M)) → Wh(π1(W )) induced by i0 ◦ f , is a bijection. In particular
an h-cobordism (W, f) over M is trivial, i.e. diffeomorphic to the trivial h-
cobordism (M × [0, 1], i0), if and only if τ (̃i : ∂̃0W → W̃ ) = 0.

Notice that the Whitehead group of the trivial group vanishes. Hence
any h-cobordism over M is trivial if M is simply connected. This implies
the Poincaré Conjecture in dimensions ≥ 5 which says that a closed n-
dimensional manifold is homeomorphic to Sn if it is homotopy equivalent
to Sn. The s-Cobordism Theorem is known to be false in dimension n = 4
[151] but it is still true for “good” fundamental groups in the topological
category by results of Freedman [202], [203]. This implies that the Poincaré
Conjecture is true also in dimension 4. Counterexamples to the s-Cobordism
Theorem in dimension n = 3 are constructed by Cappell and Shaneson [90].
The Poincaré Conjecture in dimension 3 is open at the time of writing.

The s-Cobordism Theorem is one key ingredient in surgery theory which is
designed to classify manifolds up to diffeomorphism. For instance, in order to
show that two closed manifolds M and N are diffeomorphic, the strategy is to
construct a cobordism W ′ (with appropriate bundle data) between M and N ,
then to modify W ′ to an h-cobordism W over M via surgery on the interior
of W ′ such that the Whitehead torsion is trivial, and finally to apply the s-
Cobordism Theorem to conclude that W is diffeomorphic to M× [0, 1] and in
particular its two ends M and N are diffeomorphic. More information about
Whitehead torsion can be found for instance in [116], [375]. Generalizations
like bounded, controlled, equivariant or stratified versions can be found for
instance in [4], [270], [326], [424], [425], [426], [483], [519].

3.1.3 Reidemeister Torsion

Let X be a finite free G-CW -complex. Let V be an orthogonal finite di-
mensional G-representation. Suppose that HG

p (X;V ) := Hp(V ⊗ZG C∗(X))
vanishes for all p ≥ 0. After a choice of a cellular ZG-basis, we obtain an
isomorphism

⊕lp
i=1 V

∼=−→ V ⊗ZG Cp(X). Now choose any orthonormal basis
of V and equip V ⊗ZG C∗(X) with the induced basis. With these choices we
obtain a well-defined element ρ(V ⊗ZG C∗(X)) ∈ K1(R) (see (3.1)). The de-
terminant induces an isomorphism detR : K1(R)

∼=−→ Rinv. The Reidemeister
torsion of X with coefficients in V is defined to be the real number

ρ(X; V ) := ln (|detR(ρ(V ⊗ZG C∗(X)))|) . (3.4)

It is independent of the choices of a cellular basis for X and an orthonormal
basis for V . If f : X ′ → X is a G-homeomorphism, then ρ(X ′; V ) = ρ(X; V ).
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Let V and W be two orthogonal Z/n-representations for some n ≥ 3
such that Z/n acts freely on the unit spheres SV and SW . If U is any
orthogonal representation with trivial fixed point set, then one computes
H
Z/n
p (SV ; U) = H

Z/n
p (SW ; U) = 0 for all p ≥ 0 and hence ρ(SV ;U) and

ρ(SW ; U) are defined. Suppose that SV and SW are Z/n-homeomorphic.
Since then ρ(SV ;U) = ρ(SW ;U) holds for any such U , one can compute
using Franz’ Lemma [201] that V and W are isomorphic as orthogonal
Z/n-representations. Reidemeister torsion was the first invariant in algebraic
topology which is not a homotopy invariant. Namely, for suitable choices of V
and W , the associated lens spaces L(V ) := (Z/n)\SV and L(W ) are homo-
topy equivalent but not homeomorphic [436], [116, chapter V]. The difference
of the diffeomorphism type is detected by ρ(SV ; U) for suitable U . On the
other hand Reidemeister torsion can be used to prove rigidity. Namely, one
can show using Reidemeister torsion that L(V ) and L(W ) are homeomorphic
if and only if they are isometrically diffeomorphic with respect to the Rieman-
nian metric induced by the orthogonal structure on V and W . Lens spaces
with this Riemannian metric have constant positive sectional curvature. A
closed Riemannian manifold with constant positive sectional curvature and
cyclic fundamental group is isometrically diffeomorphic to a lens space after
possibly rescaling the Riemannian metric with a constant [525]. The result
above for free representations is generalized by De Rham’s Theorem [133]
(see also [323, Proposition 3.2 on page 478], [327, page 317], [443, section 4])
as follows. It says for a finite group G and two orthogonal G-representations
V and W whose unit spheres SV and SW are G-diffeomorphic that V and
W are isomorphic as orthogonal G-representations. This remains true if one
replaces G-diffeomorphic by G-homeomorphic provided that G has odd or-
der (see [265], [353]), but not for any finite group G (see [89], [91], [244] and
[245]).

The Alexander polynomial of a knot can be interpreted as a kind of Rei-
demeister torsion of the canonical infinite cyclic covering of the knot com-
plement (see [374], [497]). Reidemeister torsion appears naturally in surgery
theory [352]. Counterexamples to the (polyhedral) Hauptvermutung that two
homeomorphic simplicial complexes are already PL-homeomorphic are given
by Milnor [373] (see also [431]) and detected by Reidemeister torsion. Seiberg-
Witten invariants for 3-manifolds are essentially given by torsion invariants
[498].

Definition (3.4) can be extended to the case where HG
p (X;V ) is not trivial,

provided a Hilbert space structure is specified on each HG
p (X;V ). Namely,

there is up to chain homotopy precisely one chain map i∗ : HG
∗ (X;V ) →

V ⊗ZG C∗(X) which induces the identity on homology where we consider
HG
∗ (X; V ) as a chain complex with trivial differentials. Its mapping cone

cone∗(i∗) is an acyclic R-chain complex whose chain modules are Hilbert
spaces. As above choose for each chain module an orthonormal basis and
define using (3.4)
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ρ(X; V ) := ln (|detR (ρ(cone∗(i∗)))|) . (3.5)

The real number ρ(X; V ) is independent of the choice of i∗ and orthonormal
basis (see also [375, page 365]). There is one preferred Hilbert structure on
HG
∗ (X; V ) which is induced by the one on V ⊗ZG C∗(X). However, with this

choice ρ(X; V ) is not invariant under barycentric subdivision if X is a free
cocompact simplicial G-complex with non-trivial HG

∗ (X; V ) so that we do
not get a useful invariant for manifolds (see [345, Example 5.1 on page 240]).

The situation is better in the presence of a G-invariant Riemannian metric
on the cocompact free proper G-manifold M . Let f : X → M be any equiv-
ariant smooth triangulation of M . Then we can use a variant of the Hodge-
de Rham isomorphism Hp(M ; V )

∼=−→ Hp
G(X; f∗V ) (see Theorem 1.57), the

natural isomorphism Hp
G(X; f∗V )∗

∼=−→ HG
p (X; f∗V ) and the Hilbert space

structure on Hp(M ; V ) coming from the Riemannian metric to put a pre-
ferred Hilbert space structure on HG

p (X; f∗V ). With respect to this preferred
Hilbert space structure on HG

p (X; f∗V ) we define the topological Reidemeis-
ter torsion

ρtop(M ; V ) := ρ(X; f∗V ), (3.6)

where ρ(X; f∗V ) was defined in (3.5). The topological Reidemeister torsion
is independent of the choice of (X, f) and is invariant under isometric G-
diffeomorphisms. If Hp(M ;V ) is trivial for all p ≥ 0, then we are back in
the situation of (3.4) and ρtop(M ; V ) depends only on the G-diffeomorphism
type of M but not any more on the G-invariant Riemannian metric.

Ray-Singer [432] defined the analytic counterpart of topological Reide-
meister torsion using a regularization of the zeta-function as follows. The first
observation is that one can compute ρ(X; V ), which was introduced in (3.5)
with respect to the Hilbert structure on HG

∗ (X; V ) induced by the one on
V ⊗ZG C∗(X), in terms of the cellular Laplace operator ∆p : V ⊗ZG Cp(X) →
V ⊗ZG Cp(X) by

ρ(C∗) = −1
2
·
∑

p∈Z
(−1)p · p · ln(detR(∆⊥

p )), (3.7)

where ∆⊥
p : ker(∆p)⊥ → ker(∆p)⊥ is the positive automorphism of finite

dimensional Hilbert spaces induced by ∆p (cf. Lemma 3.30). Let M be
a cocompact free proper G-manifold with G-invariant Riemannian metric.
Let ∆p : Ωp(M ;V ) → Ωp(M ; V ) be the Laplace operator acting on smooth
p-forms on M with coefficients in the orthogonal (finite dimensional) G-
representation V . The Laplacian above on M is an essentially selfadjoint
operator with discrete spectrum since M is cocompact. One wants to use the
expression (3.7) also for the analytic Laplace operator and has to take into ac-
count that it is defined on infinite-dimensional spaces and hence ln(detR(∆⊥

p ))
does not make sense a priori. This is done as follows. The zeta-function is
defined by
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ζp(s) :=
∑

λ>0

λ−s, (3.8)

where λ runs through the positive eigenvalues of ∆p listed with multiplicity.
Since the eigenvalues grow fast enough, the zeta-function is holomorphic for
<(s) > dim(M)/2. Moreover it has a meromorphic extension to C with no
pole in 0 [468]. So its derivative for s = 0 is defined. The analytic Reidemeister
torsion or Ray-Singer torsion of M is defined by [432, Definition 1.6 on page
149]

ρan(M ;V ) :=
1
2
·
∑

p≥0

(−1)p · p · d

ds
ζp(s)|s=0 . (3.9)

The basic idea is that d
dsζp(s)|s=0 is a generalization of the (logarithm of)

the ordinary determinant detR. Namely, if f : V → V is a positive linear
automorphism of the finite-dimensional real vector space V and the positive
real numbers λ1, λ2, . . ., λr are the eigenvalues of f listed with multiplicity,
then we get

d

ds
ζp(s)|s=0 =

d

ds

r∑

i=1

λ−s
i

∣∣∣∣∣
s=0

=
r∑

i=1

(− ln(λi) · λ−s
i

)∣∣
s=0

= − ln

(
r∏

i=1

λi

)

= − ln (detR(f)) .

Ray and Singer conjectured that the analytic and topological Reidemeis-
ter torsion agree. This conjecture was proved independently by Cheeger [103]
and Müller [390]. Manifolds with boundary and manifolds with symmetries,
sum (= glueing) formulas and fibration formulas are treated in [74], [82],
[126], [127], [323], [327], [348], [503], [504], [505]. Non-orthogonal coefficient
systems are studied in [49], [50], [80], [393]. Further references are [42], [44],
[43], [45], [46], [47], [48], [62], [83], [136], [181], [198], [206], [207], [221], [295],
[296], [317], [387], [423], [433], [506].

3.2 Fuglede-Kadison Determinant

In this section we extend the notion of the Fuglede-Kadison determinant for
invertible morphisms of finite dimensional Hilbert N (G)-modules [208] to ar-
bitrary morphisms and study its main properties. It is not enough to consider
only invertible morphisms because then we could construct L2-torsion only
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for finite free G-CW -complexes whose L2-Betti numbers are all trivial and
whose Novikov-Shubin invariants are all ∞+. But this condition is in view of
the zero-in-the-spectrum Conjecture 12.1 much too restrictive.

Let f : U → V be a morphism of finite dimensional Hilbert N (G)-
modules, i.e. dimN (G)(U), dimN (G)(V ) < ∞. Recall that {Ef∗f

λ | λ ∈ R}
is the spectral family of the positive operator f∗f and that the spectral den-
sity function F = F (f) : [0,∞) → [0,∞) sends λ to dimN (G)(im(Ef∗f

λ2 )) (see
Lemma 2.3). Recall that F is a monotone non-decreasing right-continuous
function. Denote by dF the measure on the Borel σ-algebra on R which is
uniquely determined by its values on the half open intervals (a, b] for a < b

dF ((a, b]) = F (b)− F (a). (3.10)

Notice that the measure of the one point set {a} is limx→0+ F (a)−F (a− x)
and is zero if and only if F is left-continuous in a. We will use here and
in the sequel the convention that

∫ b

a
,

∫ b

a+
,

∫∞
a

and
∫∞

a+
respectively means

integration over the interval [a, b], (a, b], [a,∞) and (a,∞) respectively.

Definition 3.11 (Fuglede-Kadison determinant). Let f : U → V be a
morphism of finite dimensional Hilbert N (G)-modules with spectral density
function F = F (f). Define its (generalized) Fuglede-Kadison determinant

detN (G)(f) ∈ [0,∞)

by detN (G)(f) := exp
(∫∞

0+
ln(λ) dF

)
if

∫∞
0+

ln(λ) dF > −∞ and by

detN (G)(f) := 0 if
∫∞
0+

ln(λ) dF = −∞. We call f of determinant class if
and only if

∫∞
0+

ln(λ) dF > −∞. Often we omit N (G) from the notation.

Notice that for
∫∞
0+

ln(λ) dF there is only a problem of convergence at zero
where ln(λ) goes to −∞ but not at ∞ because we have F (λ) = F (||f ||∞) for
all λ ≥ ||f ||∞ and hence

∫ ∞

0+

ln(λ) dF =
∫ a

0+

ln(λ) dF for a ≥ ||f ||∞.

The notion of determinant class and the first investigations of its basic prop-
erties are due to Burghelea-Friedlander-Kappeler-McDonald [84, Definition
4.1 on page 800, Definition 5.7 on page 817].

If 0 : U → V is the zero homomorphism for finite-dimensional Hilbert
N (G)-modules U and V , then det(0 : U → V ) = 1 by definition.

Example 3.12. Let G be finite and f : U → V be a morphism of finite
dimensional Hilbert N (G)-modules, i.e. a linear G-equivariant map of finite-
dimensional unitary G-representations. Let λ1, λ2, . . ., λr be the positive
eigenvalues of the positive map f∗f . Then we conclude from Example 2.5
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det(f) =

(
r∏

i=1

λi

) 1
2·|G|

.

If f is an isomorphism det(f) is the |G|-th root of the classical determinant
of the positive automorphism of complex vector spaces |f | : U → U .

Example 3.13. Let G = Zn. In the sequel we use the notation and the
identification N (Zn) = L∞(Tn) of Example 1.4. We conclude from Example
2.6 for f ∈ L∞(Tn)

det
(
Mf : L2(Tn) → L2(Tn)

)
= exp

(∫

T n

ln(|f(z)|) · χ{u∈S1|f(u)6=0} dvolz

)

using the convention exp(−∞) = 0.

The next result says that the main important properties of the classical
determinant of endomorphisms of finite-dimensional complex vector spaces
carry over to the (generalized) Fuglede-Kadison determinant. But the proof
in our context is of course more complicated than the one in the classical
case.

Theorem 3.14 (Kadison-Fuglede determinant). (1) Let f : U → V and
g : V → W be morphisms of finite dimensional Hilbert N (G)-modules
such that f has dense image and g is injective. Then

det(g ◦ f) = det(f) · det(g);

(2) Let f1 : U1 → V1, f2 : U2 → V2 and f3 : U2 → V1 be morphisms of finite
dimensional Hilbert N (G)-modules such that f1 has dense image and f2

is injective. Then

det
(

f1 f3

0 f2

)
= det(f1) · det(f2);

(3) Let f : U → V be a morphism of finite dimensional Hilbert N (G)-
modules. Then

det(f) = det(f∗);

(4) If the Novikov-Shubin invariant of the morphism f : U → V of finite
dimensional Hilbert N (G)-modules satisfies α(f) > 0, then f is of deter-
minant class;

(5) Let H ⊂ G be a subgroup of finite index [G : H]. Let res f : res U → res V
be the morphism of finite dimensional Hilbert N (H)-modules obtained
from f by restriction. Then

detN (H)(res f) = detN (G)(f)[G:H];
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(6) Let i : H → G be an injective group homomorphism and let f : U → V be
a morphism of finite dimensional Hilbert N (H)-modules. Then

detN (G)(i∗f) = detN (H)(f).

Before we can give the proof of Theorem 3.14, we need

Lemma 3.15. Let f : U → V be a morphism of finite dimensional Hilbert
N (G)-modules and let F : [0,∞) → [0,∞) be a density function. Then

(1) We have for 0 < ε < a

∫ a

ε+

ln(λ) dF = −
∫ a

ε

1
λ
· (F (λ)− F (0)) dλ

+ ln(a) · (F (a)− F (0))− ln(ε) · (F (ε)− F (0));∫ a

0+

ln(λ) dF = lim
ε→0+

∫ a

ε+

ln(λ) dF ;
∫ a

0+

1
λ
· (F (λ)− F (0)) dλ = lim

ε→0+

∫ a

ε

1
λ
· (F (λ)− F (0)) dλ.

We have
∫ a

0+
ln(λ) dF > −∞ if and only if

∫ a

0+
1
λ ·(F (λ)−F (0)) dλ < ∞,

and in this case

lim
λ→0+

ln(λ) · (F (λ)− F (0)) = 0;
∫ a

0+

ln(λ) dF = −
∫ a

0+

1
λ
· (F (λ)− F (0)) dλ

+ ln(a) · (F (a)− F (0));

(2) If f is invertible, we get

det(f) = exp
(

1
2
· tr(ln(f∗f))

)
;

(3) If f⊥ : ker(f)⊥ → clos(im(f)) is the weak isomorphism induced by f we
get

det(f) = det(f⊥);

(4) det(f) = det(f∗) =
√

det(f∗f) =
√

det(ff∗);
(5) If f : U → U is an injective positive operator, then

lim
ε→0+

det(f + ε · idU ) = det(f);

(6) If f ≤ g for injective positive morphisms f, g : U → U , then

det(f) ≤ det(g);
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(7) If f and g are morphisms of finite dimensional Hilbert N (G)-modules,
then

det(f ⊕ g) = det(f) · det(g).

Proof. (1) The first equation follows from partial integration for a continu-
ously differentiable function g on (0,∞) for ε < a (see for instance [330, page
95])

∫ a

ε+

g(λ) dF = −
∫ a

ε

g′(λ) · F (λ) · dλ + g(a) · F (a)− g(ε) · F (ε) (3.16)

and the second and third from Levi’s Theorem of monotone convergence. We
conclude from the first three equations that

−
∫ 1

0+

1
λ
· (F (λ)− F (0)) dλ ≤

∫ 1

0+

ln(λ) dF,

and that it remains to show
∫ 1

0+

ln(λ) dF > −∞ ⇒ lim
λ→0+

ln(λ) · (F (λ)− F (0)) = 0. (3.17)

Suppose that limλ→0+ ln(λ) · (F (λ)−F (0)) = 0 is not true. Then we can find
a number C < 0 and a monotone decreasing sequence 1 > λ1 > λ2 > λ3 > . . .
of positive real numbers converging to zero such that ln(λi) ·(F (λi)−F (0)) ≤
C holds for all i ≥ 0. Since limi→∞ F (λi) = F (0) holds we can assume
without loss of generality 2 · (F (λi+1)−F (0)) ≤ F (λi)−F (0), otherwise pass
to an appropriate subsequence of (λi)i. We have for each natural number
n and each λ ∈ (0, 1) that ln(λ) ≤ ∑n

i=1 ln(λi) · χ(λi+1,λi](λ) holds, where
χ(λi+1,λi](λ) is the characteristic function of (λi+1, λi]. This implies for all
n ≥ 1

∫ 1

0+

ln(λ) dF ≤
∫ 1

0+

n∑

i=1

ln(λi) · χ(λi+1,λi](λ) dF

=
n∑

i=1

ln(λi) · (F (λi)− F (λi+1))

≤
n∑

i=1

ln(λi) · F (λi)− F (0)
2

≤ n · C

2
.

We conclude
∫ 1

0+
ln(λ) dF = −∞. Hence (3.17) and therefore assertion (1)

are proved.
(2) We conclude from (1.65) or the more general fact that the trace is linear
and ultra-weakly continuous
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tr(ln(f∗f)) = tr
(∫ ∞

0+

ln(λ) dEf∗f
λ

)

=
∫ ∞

0+

ln(λ) d
(
tr(Ef∗f

λ )
)

=
∫ ∞

0+

ln(λ2) d
(
tr(Ef∗f

λ2 )
)

= 2 ·
∫ ∞

0+

ln(λ) dF (f).

(3) If F⊥ is the spectral density function of f⊥, then F (λ) = F⊥(λ) + F (0).
(4) This follows from assertion (1) and the conclusion from Lemma 2.4

F (f)(λ)− F (f)(0) = F (f∗)(λ)− F (f∗)(0)

= F (f∗f)(λ2)− F (f∗f)(0) = F (ff∗)(λ2)− F (ff∗)(0).

(5) We have F (f + ε · idU )(λ) = F (f)(λ− ε). Since F (f)(0) = 0, we get
∫ ∞

0+

ln(λ) dF (f + ε · idU ) =
∫ ∞

(−ε)+

ln(λ + ε) dF (f)

=
∫ 0

(−ε)+

ln(λ + ε) dF (f) +
∫ ∞

0+

ln(λ + ε) dF (f)

= ln(ε) · F (f)(0) +
∫ ∞

0+

ln(λ + ε) dF (f)

=
∫ ∞

0+

ln(λ + ε) dF (f).

We conclude from Levi’s Theorem of monotone convergence

lim
ε→0+

∫ ∞

0+

ln(λ + ε) dF (f) =
∫ ∞

0+

ln(λ) dF (f).

This shows
lim

ε→0+
det(f + ε · idU ) = det(f).

(6) For u ∈ U we get

||f1/2(u)|| = 〈f1/2(u), f1/2(u)〉1/2

= 〈f(u), u〉1/2

≤ 〈g(u), u〉1/2

= 〈g1/2(u), g1/2(u)〉1/2

= ||g1/2(u)||.
This implies for the spectral density functions
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F (g1/2)(λ) ≤ F (f1/2)(λ).

Next we give the proof of the claim under the additional hypothesis that
f and g are invertible. Then we can choose ε > 0 such that F (f)(λ) =
F (g)(λ) = 0 for λ ≤ ε. Fix a ≥ ||g|| ≥ ||f ||. Since F (f1/2)(λ) = F (g1/2)(λ) =
dimN (G)(U) for λ ≥ √

a, we conclude from assertion (1)
∫ ∞

0

ln(λ) dF (g1/2) ≥
∫ ∞

0

ln(λ) dF (f1/2).

This implies det(f1/2) ≤ det(g1/2). Now the claim for invertible f and g
follows from assertion (4). The general case follows now from assertion (5)
since f + ε · idU and g + ε · idU are invertible and f + ε · idU ≤ g + ε · idU

holds for all ε > 0.
(7) Obviously F (f ⊕ g) = F (f) + F (g). Now apply assertion (1). ut

For the proof of Theorem 3.14 we will need the next lemma where we will
use holomorphic calculus [282, Theorem 3.3.5 on page 206].

Lemma 3.18. Let f : D → C be a holomorphic function defined on a domain
D in C whose boundary is a smooth closed curve γ : S1 → C. Let X(t) for
0 ≤ t ≤ 1 be a differentiable family of morphisms X(t) : U → U for a finite
dimensional Hilbert N (G)-module U , where differentiable is to be understood
with respect to the operator norm. Suppose that the spectrum spec(X(t)) :=
{z ∈ C | z − X(t) is not invertible} of each X(t) lies in the interior of D.
We define (motivated by the Cauchy integral formula)

f(X(t)) :=
1

2πi

∫

γ

f(z) · (z −X(t))−1 dz.

Then f(X(t)) is differentiable with respect to t and

tr
(

d

dt
f(X(t))

)
= tr(f ′(X(t)) ◦X ′(t)),

where f ′(z) = d
dz f(z) and X ′(t) = d

dtX(t).

Proof. From

f(X(t + h))− f(X(t))
h

=
1

2πi

∫

γ

f(z) · (z −X(t + h))−1 − (z −X(t))−1

h
dz

=
1

2πi

∫

γ

f(z) · (z −X(t + h))−1 ◦ X(t + h)−X(t)
h

◦ (z −X(t))−1 dz

we conclude
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d

dt
f(X(t)) =

1
2πi

∫

γ

f(z) · (z −X(t))−1 ◦X ′(t) ◦ (z −X(t))−1 dz.

Since

d

dz
(f(z) · (z −X(t))−1) = f ′(z) · (z −X(t))−1 − f(z) · (z −X(t))−2

and γ is closed, partial integration gives

f ′(X(t)) =
1

2πi

∫

γ

f(z) · (z −X(t))−2 dz.

Since

tr
(
f(z) · (z −X(t))−1 ◦X ′(t) ◦ (z −X(t))−1

)

= tr
(
f(z) · (z −X(t))−2 ◦X ′(t)

)

holds and tr commutes with integration, Lemma 3.18 follows. ut
Now we are ready to give the proof of Theorem 3.14.

Proof. (1) Next we show for positive invertible morphisms f, g : U → U

tr(ln(gf2g)) = 2 · (tr(ln(g)) + tr(ln(f))). (3.19)

Consider the families g(t · f2 + (1 − t) · id)g and t · f2 + (1 − t) · id. There
are real numbers 0 < a < b such that the spectrum of each member of these
families lies in [a, b]. Choose a domain D in the half plane of complex numbers
with positive real part which is bounded by a smooth curve and contains
[a, b]. Let ln be a holomorphic extension of the logarithm (0,∞) → R to a
holomorphic function on C with the negative real numbers removed. Notice
that D lies in the domain of ln. Since the definition of ln(h) of 1.64 and the
one by holomorphic calculus in Lemma 3.18 for invertible h agree, Lemma
3.18 implies

d

dt
tr

(
ln(g(t · f2 + (1− t) · id)g)

)

= tr
(

d

dt
ln(g(t · f2 + (1− t) · id)g)

)

= tr
(
(g(t · f2 + (1− t) · id)g)−1 ◦ (g(f2 − id)g)

)

= tr
(
(t · f2 + (1− t) · id)−1 ◦ (f2 − id)

)

=
d

dt
tr

(
ln(t · f2 + (1− t) · id)

)
.

Now (3.19) follows since ln(h2) = 2·ln(h) for invertible positive h and ln(id) =
0.

Next we show for injective positive morphisms f, g : U → U
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det(gf2g) = det(f)2 · det(g)2. (3.20)

Notice that (3.20) holds under the additional assumption that f and g are
invertible because of Lemma 3.15 (2), the equation ln(h2) = 2 · ln(h) for
invertible positive h and (3.19). The general case is reduced to this special
case as follows.

Choose a constant C such that for all 0 < ε ≤ 1

gf2g ≤ g(f + ε · idU )2g ≤ gf2g + Cε · idU

holds. We conclude from Lemma 3.15 (4), (5) and (6)

det(gf2g) = lim
ε→0+

det(g(f + ε · idU )2g);

det(f) = lim
ε→0+

det(f + ε · idU );

det(gf2g) = det(fg2f).

Since g + ε and f + ε for ε > 0 are invertible, we get

det(gf2g) = lim
ε→0+

det(g(f + ε · idU )2g)

= lim
ε→0+

det((f + ε · idU )g2(f + ε · idU ))

= lim
ε→0+

lim
δ→0+

det((f + ε · idU )(g + δ · idU )2(f + ε · idU ))

= lim
ε→0+

lim
δ→0+

det(f + ε · idU )2 · det(g + δ · idU )2

= det(f)2 · det(g)2.

Hence (3.20) holds for all injective positive morphisms f and g.
Given morphisms f : U → V and g : V → W of finite dimensional Hilbert

N (G)-modules such that f has dense image and g is injective, it remains to
show

det(g ◦ f) = det(f) · det(g).

We can assume without loss of generality that both f and g are injective.
Otherwise replace f by the injective map f⊥ : ker(f)⊥ → V induced by f
and use the conclusion from Lemma 3.15 (7) that det(f⊥) = det(f) and
det(g ◦ f⊥) = det(g ◦ f) holds.

If u is a unitary and v some morphism, then u−1vu and v have the same
spectral density function and hence

det(u−1vu) = det(v). (3.21)

In order to prove assertion (1) we use the polar decomposition f = au
and g = vb where u and v are unitary isomorphisms and a and b are positive.
Notice that g is injective, f has dense image and hence f∗ is injective. There-
fore both a and b are injective. We compute using Lemma 3.15 (4), (3.20)
and (3.21)
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det(gf) = det(vbau) =
√

det((vbau)∗(vbau)) =
√

det(u−1ab2au)

=
√

det(ab2a) =
√

det(a)2 · det(b)2 =
√

det(ff∗) · det(g∗g) = det(f)·det(g).

(2) The claim is already proved in Lemma 3.15 (7) if f3 is trivial. Because of
the equation (

f1 f3

0 f2

)
=

(
1 0
0 f2

)
·
(

1 f3

0 1

)
·
(

f1 0
0 1

)

assertion (1) implies that it suffices to prove

det




1 f3 0
0 1 0
0 0 1


 = 1.

Since this matrix can be written as a commutator,



1 f3 0
0 1 0
0 0 1


 =




1 0 0
0 1 0
0 −f3 1


 ·




1 0 1
0 1 0
0 0 1


 ·




1 0 0
0 1 0
0 −f3 1



−1

·



1 0 1
0 1 0
0 0 1



−1

the claim follows from assertion (1).
(3) has already been proved in Lemma 3.15 (4).
(4) Because of Lemma 3.15 (1) it suffices to show:

lim
ε→0+

∫ a

ε

1
λ
· (F (λ)− F (0)) · dλ < ∞.

Since α(f) is assumed to be positive, there is 0 < δ and 0 < α < α(f) such
that

F (λ)− F (0) ≤ λα

holds for 0 ≤ λ ≤ δ. Now assertion (4) follows from

lim
ε→0+

∫ a

ε

λα−1 dλ = lim
ε→0+

1
α
· (aα − εα) =

1
α
· aα.

(5) This follows from Theorem 1.12 (6).
(6) This follows from (2.57). This finishes the proof of Theorem 3.14. ut
Example 3.22. Consider a non-trivial element p ∈ C[Z]. We want to com-
pute the Fuglede-Kadison determinant of the morphism Rp : l2(Z) → l2(Z)
given by multiplication with p ∈ C[Z]. We can write

p(z) = C · zn ·
l∏

k=1

(z − ak)

for complex numbers C, a0, a1, . . . , al and integers n, l with C 6= 0 and l ≥ 0.
We want to show
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ln(det(Rp)) = ln(|C|) +
∑

1≤k≤l,|ak|>1

ln(|ak|). (3.23)

We get from Theorem 3.14 (1)

det(Rp) = det(RC) · det(Rz)n ·
l∏

k=1

det(R(z−ai)).

Hence it remains to show

det(R(z−a)) =
{ |a| for |a| ≥ 1

1 for |a| ≤ 1 (3.24)

Because of Example 3.13 it suffices to show
∫

S1
ln((z − a)(z − a)) dvol =

{
2 · ln(|a|) for |a| ≥ 1
0 for |a| ≤ 1 (3.25)

for a ∈ C, where we equip S1 with the obvious measure satisfying vol(S1) = 1.
Because

∫
S1 ln((z−a)(z − a)) dvol =

∫
S1 ln((z−|a|)(z−1−|a|)) dvol we may

suppose a ∈ R≥0 in the sequel.
We compute for a 6= 1 and the path γ : [0, 1] → S1, t 7→ exp(2πit) using

the Residue Theorem
∫

S1

d

da
ln((z − a)(z−1 − a)) dvol

=
∫

S1

1
a− z

+
1

a− z−1
dvol

= 2 ·
∫

S1

1
a− z

dvol

= 2 ·
∫

S1

1
(a− z) · 2πiz

· 2πiz · dvol

=
2

2πi
·
∫

γ

1
(a− z) · z dz

=
{

2
a for a > 1
0 for a < 1 .

This implies for a ∈ R≥0, a 6= 1

d

da

∫

S1
ln((z − a)(z−1 − a)) dvol =

{
2
a for a > 1
0 for a < 1 .

We conclude for an appropriate number C

∫
S1 ln((z − a)(z−1 − a)) dvol = 2 · ln(a) + C for a > 1∫
S1 ln((z − a)(z−1 − a)) dvol = 0 for a < 1 .
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We get from Levi’s Theorem of monotone convergence
∫

S1
ln((z − 1)(z−1 − 1)) dvol = C.

We get from Lebesgue’s Theorem of majorized convergence
∫

S1
ln((z − 1)(z−1 − 1)) dvol = 0.

This proves (3.25) and hence (3.24) and (3.23).

Example 3.26. The following examples show that the conditions appearing
in Theorem 3.14 (1) and (2) are necessary. We will use the same notation as
in Example 3.13. Let u ∈ L∞(Tn) be a given function such that {z ∈ Tn |
u(z) = 0} has measure zero. Put

g : L2(Tn)2 → L2(Tn)2, (a, b) 7→ (a, 0);
f : L2(Tn)2 → L2(Tn)2, (a, b) 7→ (u · a + b, b);

f1 : L2(Tn) → L2(Tn), a 7→ u · a;
f2 : L2(Tn) → L2(Tn), a 7→ 0;
f3 : L2(Tn) → L2(Tn), a 7→ a.

Then one easily checks using Lemma 3.15, Theorem 3.14 (2) and Example
3.13.

det(g ◦ f) = det
(

u 1
0 0

)
=

(
det

(
u 1
0 0

)(
u 1
0 0

)∗)1/2

=
(

det
(

uu∗ + 1 0
0 0

))1/2

= exp
(

1
2
·
∫

T n

ln(1 + |u(z)|2) dvolz

)
;

det(f) = det
(

u 1
0 1

)
= det(u) = exp

(∫

T n

ln(|u(z)|) dvolz

)
;

det
(

f1 f3

0 f2

)
= det

(
u 1
0 0

)
= exp

(
1
2
·
∫

T n

ln(1 + |u(z)|2) dvolz

)
;

det(g) = 1;

det(f1) = exp
(∫

T n

ln(|u(z)|) dvolz

)
;

det(f2) = 1.

If we put for instance n = 1 and u(exp(2πit)) = exp(−1
t ) for t ∈ (0, 1], then

we get
∫

T n ln(|u(z)|) dvolz = −∞ and
∫

T n ln(1+ |u(z)|2) dvolz ≥ 0 and hence
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det(g ◦ f) ≥ 1;
det(f) = 0;
det(g) = 1;

det
(

f1 f3

0 f2

)
≥ 1;

det(f1) = 0;
det(f2) = 1.

Notice that f has dense image and g is not injective and det(g ◦ f) 6= det(f) ·
det(g). Moreover, f∗ is injective and g∗ has not dense image and det(f∗◦g∗) 6=
det(f∗) · det(g∗) because of Lemma 3.15 (4). A similar statement holds for(

f1 f3

0 f2

)
.

We have shown in Theorem 3.14 (4) for a morphisms f : U → V of finite
dimensional Hilbert N (G)-modules that α(f) > 0 implies det(f) > 0. The
converse is not true in general as the following example shows.

Example 3.27. We give an example of a morphism of finitely generated
Hilbert N (Z)-modules such that f is of determinant class but its Novikov
Shubin invariant is zero (cf Lemma 3.14 (4)). Fix ε > 0. Define a monotone
non-decreasing continuous function F : [0,∞) → [0,∞) by F (0) = 0, F (λ) =
| ln(λ/(1 + ε))|−1−ε for 0 < λ ≤ 1 and F (λ) = | ln(1/(1 + ε))|−1−ε for 1 ≤ λ.
Since limλ→0+

λα

F (λ) = 0 holds for any α > 0, we get α(F ) = 0. We conclude
from Levi’s Theorem of monotone convergence

∫ 1

0+

F (λ)− F (0)
λ

dλ =
∫ 1

0+

1
λ · | ln(λ/(1 + ε))|1+ε

dλ

= lim
δ→0+

∫ 1

δ

1
λ · | ln(λ/(1 + ε))|1+ε

dλ

= lim
δ→0+

− 1
ε · | ln(1/(1 + ε)| +

1
ε · ln(δ/(1 + ε))

= − 1
ε · ln(1 + ε)

< ∞.

Define f : S1 → R by sending exp(2πit) to F (t) for 0 ≤ t < 1. Then F is the
spectral density function of the morphism Mf : L2(S1) → L2(S1) of finitely
generated Hilbert N (Z)-modules (see Example 2.6). Lemma 3.15 (1) implies

det(f) > 0;
α(f) = 0.

Hence det(f) > 0 does not imply α(f) > 0. But we can get from det(f) > 0
the following related conclusion for the asymptotic behaviour of the spectral
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density function of f at zero which of course is weaker than the condition
α(f) > 0

Theorem 3.28. Let f : U → V be a morphism of finite dimensional Hilbert
N (G)-modules. Let F be its spectral density function. Put K = max{1, ||f ||∞}.
Suppose that det(f) > 0. Then we get for all λ ∈ (0, 1]

F (λ)− F (0) ≤ (ln(K) · (dim(U)− dim(ker(f)))− ln(det(f))) · 1
− ln(λ)

.

Proof. We conclude from Lemma 3.15 (1) that
∫ K

0+
F (ξ)−F (0)

ξ dξ < ∞ and

ln(det(f)) = ln(K) · (dim(U)− dim(ker(f)))−
∫ K

0+

F (ξ)− F (0)
ξ

dξ.

We estimate for λ ∈ (0, 1]

(F (λ)− F (0)) · (ln(K)− ln(λ))

=
∫ K

λ

F (λ)− F (0)
ξ

dξ

≤
∫ K

λ

F (ξ)− F (0)
ξ

dξ

≤
∫ K

0+

F (ξ)− F (0)
ξ

dξ

= ln(K) · (dim(U)− dim(ker(f)))− ln(det(f)).

This implies

F (λ)− F (0) ≤ ln(K) · (dim(U)− dim(ker(f)))− ln(det(f))
ln(K)− ln(λ)

≤ (ln(K) · (dim(U)− dim(ker(f)))− ln(det(f))) · 1
− ln(λ)

.ut

The obvious version of Theorem 3.28 for analytic spectral density func-
tions is stated in Theorem 13.7.

3.3 L2-Torsion of Hilbert Chain Complexes

In this section we introduce and study the L2-torsion of finite Hilbert N (G)-
chain complexes.
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3.3.1 Basic Definitions and Properties of L2-Torsion

Definition 3.29 (L2-torsion). We call a Hilbert N (G)-chain complex C∗
dim-finite if dim(Cp) < ∞ for all p and Cp = 0 for |p| ≥ N for some
integer N . A dim-finite Hilbert N (G)-chain complex C∗ is of determinant
class if the differential cp : Cp → Cp−1 is of determinant class in the sense of
Definition 3.11 for each p ∈ Z. A Hilbert N (G)-chain complex C∗ is called
weakly acyclic or equivalently L2-acyclic if its L2-homology is trivial. It is
called det-L2-acyclic if C∗ is of determinant class and weakly acyclic.

If C∗ is of determinant class, define its L2-torsion by

ρ(2)(C∗) := −
∑

p∈Z
(−1)p · ln(det(cp)) ∈ R .

Notice that we prefer to take the logarithm of the determinant in order to
get later additive instead of multiplicative formulas and because this will fit
better with the analytic version. The next lemma expresses the L2-torsion in
terms of the Laplace operator ∆p : Cp → Cp (see (1.17)) which will motivate
the analytic definition later.

Lemma 3.30. A dim-finite Hilbert N (G)-chain complex C∗ is of determi-
nant class if and only if ∆p is of determinant class for all p ∈ Z. In this
case

ρ(2)(C∗) = − 1
2
·
∑

p∈Z
(−1)p · p · ln(det(∆p)).

Proof. From Lemma 1.18 we obtain an orthogonal decomposition

Cp = ker(cp)⊥ ⊕ clos(im(cp+1))⊕ ker(∆p);
∆p = ((c⊥p )∗ ◦ c⊥p )⊕ (c⊥p+1 ◦ (c⊥p+1)

∗)⊕ 0,

where c⊥j : ker(cj)⊥ → clos(im(cj)) is the weak isomorphism induced by cj .
Lemma 3.15 (4) and (7) imply that C∗ is of determinant class if and only ∆p

is of determinant class for all p ∈ Z and that in this case

−1
2
·
∑

p∈Z
(−1)p · p · ln(det(∆p))

= −1
2
·
∑

p∈Z
(−1)p · p · ln (

det
(
((c⊥p )∗ ◦ c⊥p )⊕ (c⊥p+1 ◦ (c⊥p+1)

∗)⊕ 0
))

= −1
2
·
∑

p∈Z
(−1)p · p · (ln (

det
(
(c⊥p )∗ ◦ c⊥p

))

+ ln
(
det

(
c⊥p+1 ◦ (c⊥p+1)

∗)) + ln(det(0))
)

= −1
2
·
∑

p∈Z
(−1)p · p · (2 · ln (det (cp)) + 2 · ln (det (cp+1)))

= −
∑

p∈Z
(−1)p · ln (det (cp)) . ut
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Definition 3.31. Let f∗ : C∗ → D∗ be a chain map of dim-finite Hilbert
N (G)-chain complexes. We call it of determinant class if its mapping cone
cone∗(f∗) is of determinant class. In this case we define the L2-torsion of f∗
by

t(2)(f∗) := ρ(2)(cone∗(f∗)).

Before we can state the main properties of these invariants ρ(2)(C∗) and
t(2)(f∗), we need some preparations. Let 0 → U

i−→ V
p−→ W → 0 be a weakly

exact sequence of finite dimensional Hilbert N (G)-modules. We call it of
determinant class if the 2-dimensional weakly acyclic chain complex which it
defines with W in dimension 0 is of determinant class, and we define in this
case

ρ(2)(U, V,W ) ∈ R (3.32)

by the L2-torsion of this chain complex in the sense of Definition 3.29. If the
sequence is of determinant class we will later see in Lemma 3.41 or directly
from Theorem 3.14 that for any choice of map s : W → V for which p ◦ s is
a weak isomorphism of determinant class also i ⊕ s : U ⊕W → V is a weak
isomorphism of determinant class and

ρ(2)(U, V, W ) = − ln(det(i)) + ln(det(p))
= − ln(det(i⊕ s)) + ln(det(p ◦ s)). (3.33)

If 0 → U
i−→ V

p−→ W → 0 is exact, then it is of determinant class. If
i is isometric and p induces an isometric isomorphism ker(p)⊥ → W , then
ρ(2)(U, V, W ) = 0. This applies to the canonical exact sequence 0 → U →
U ⊕W → W → 0.

If 0 → C∗ → D∗ → E∗ → 0 is a weakly exact sequence of dim-finite
Hilbert N (G)-chain complexes, we call it of determinant class if each exact
sequence 0 → Cp → Dp → Ep → 0 is of determinant class and define in this
case

ρ(2)(C∗, D∗, E∗) =
∑

p∈Z
(−1)p · ρ(2)(Cp, Dp, Ep). (3.34)

Let LHS∗(C∗, D∗, E∗) be the weakly acyclic dim-finite Hilbert N (G)-chain
complex given by the weakly exact long homology sequence associated to an
exact sequence 0 → C∗ → D∗ → E∗ → 0 of dim-finite Hilbert N (G)-chain
complexes (see Theorem 1.21), where we use the convention that H

(2)
0 (E∗)

sits in dimension zero. A chain map f∗ : C∗ → D∗ is called a weak homology
equivalence if H

(2)
p (f∗) is a weak isomorphism for all p ∈ Z.

The next result reflects the main properties of the torsion invariants de-
fined above. These properties are very similar to the one for the classical
notions for finite based free acyclic chain complexes over a field. However,
the proof, which will be given in Subsection 3.3.3 after some preliminaries
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in Subsection 3.3.2, is more complicated in our context. To understand the
basic properties of L2-torsion it suffices to study the next theorem, and the
reader may skip its proof and pass directly to Section 3.4. The main ideas of
its proof come from [345, Section 6]. A proof of Theorem 3.35 (1) can also be
found in [82, Theorem 2.7 on page 40].

Theorem 3.35 (L2-torsion of Hilbert chain complexes). (1) Let 0 →
C∗

i∗−→ D∗
q∗−→ E∗ → 0 be an exact sequence of dim-finite Hilbert N (G)-

chain complexes. Suppose that three of the Hilbert N (G)-chain complexes
C∗, D∗, E∗ and LHS∗ are of determinant class.
Then all four are of determinant class and

ρ(2)(C∗)− ρ(2)(D∗) + ρ(2)(E∗)
= ρ(2)(C∗, D∗, E∗)− ρ(2)(LHS∗(C∗, D∗, E∗));

(2) Let
0 −−−−→ C∗

i∗−−−−→ D∗
p∗−−−−→ E∗ −−−−→ 0

f∗

y g∗

y h∗

y

0 −−−−→ C ′∗
i′∗−−−−→ D′

∗
p′∗−−−−→ E′

∗ −−−−→ 0

be a commutative diagram of dim-finite Hilbert N (G)-chain complexes
which are of determinant class. Suppose that two of the chain maps f∗,
g∗ and h∗ are weak homology equivalences of determinant class and that
the rows are weakly exact and of determinant class.
Then all three chain maps f∗, g∗ and h∗ are weak homology equivalences
of determinant class and

t(2)(f∗)− t(2)(g∗) + t(2)(h∗) = ρ(2)(C ′∗, D
′
∗, E

′
∗)− ρ(2)(C∗, D∗, E∗);

(3) Let f∗, g∗ : C∗ → D∗ be weak homology equivalences of dim-finite N (G)-
chain complexes such that f∗ or g∗ is of determinant class. Suppose that
f∗ and g∗ are homotopic. Then both are of determinant class and

t(2)(f∗) = t(2)(g∗);

(4) Let C∗, D∗ and E∗ be dim-finite Hilbert N (G)-chain complexes and let
f∗ : C∗ → D∗ and g∗ : D∗ → E∗ be chain maps. Suppose that two of the
chain maps f∗, g∗ and g∗ ◦f∗ are weak homology equivalences of determi-
nant class. Then all three are weak homology equivalences of determinant
class and

t(2)(g ◦ f) = t(2)(f) + t(2)(g);

(5) Let C∗ and D∗ be dim-finite Hilbert N (G)-chain complexes of determi-
nant class and f∗ : C∗ → D∗ be a weak homology equivalence. Then f∗ is
of determinant class if and only if H

(2)
p (f∗) is of determinant class for

all p ∈ Z and in this case
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t(2)(f∗) = ρ(2)(D∗)− ρ(2)(C∗) +
∑

p∈Z
(−1)p · ln

(
det

(
H(2)

p (f∗)
))

;

(6) Let f∗ : C∗ → C ′∗ and g∗ : D∗ → D′
∗ be chain maps of dim-finite Hilbert

N (G)-chain complexes and N (H)-chain complexes. Denote by χ(2)(C∗) ∈
R the L2-Euler characteristic

∑
p∈Z(−1)p · b(2)

p (C∗). Then
(a) If D∗ is det-L2-acyclic, then the dim-finite Hilbert N (G×H)-chain

complex C∗ ⊗D∗ is det-L2-acyclic and

ρ(2)(C∗ ⊗D∗) = χ(2)(C∗) · ρ(2)(D∗);

(b) If C∗ and D∗ are of determinant class, then the dim-finite Hilbert
N (G×H)-chain complex C∗ ⊗D∗ is of determinant class and

ρ(2)(C∗ ⊗D∗) = χ(2)(C∗) · ρ(2)(D∗) + χ(2)(D∗) · ρ(2)(C∗);

(c) If f∗ and g∗ are weak homology equivalences of determinant class,
then the chain map f∗ ⊗ g∗ of Hilbert N (G×H)-chain complexes is
a weak homology equivalence of determinant class and

t(2)(f∗ ⊗ g∗) = χ(2)(C∗) · t(2)(g∗) + χ(2)(D∗) · t(2)(f∗);
(7) Let H ⊂ G be a subgroup of finite index [G : H] and let C∗ be a dim-

finite Hilbert N (G)-chain complex. Then C∗ is det-L2-acyclic if and only
if the dim-finite Hilbert N (H)-chain complex res C∗ obtained from C∗ by
restriction is det-L2-acyclic, and in this case

ρ(2)(res C∗) = [G : H] · ρ(2)(C∗);

(8) Let i : H → G be an inclusion of groups and let C∗ be a dim-finite Hilbert
N (H)-chain complex. Then C∗ is det-L2-acyclic if and only if the dim-
finite Hilbert N (G)-chain complex i∗C∗ obtained by induction with i (see
Definition 1.23) is det-L2-acyclic, and in this case

ρ(2)(C∗) = ρ(2)(i∗C∗).

Example 3.36. We give an example that in Theorem 3.35 (3) the condition
that f∗ and g∗ are weak homology equivalences is necessary. The same is
true for Theorem 3.35 (4) and (5). Let C∗ and D∗ respectively be the Hilbert
N (G)-chain complexes concentrated in dimensions 0 and 1 whose first dif-
ferentials are id : N (G) → N (G) and 0: N (G) → N (G) respectively. For
any morphism γ : N (G) → N (G) we obtain a chain map f(γ)∗ : C∗ → D∗
by putting f(γ)1 = γ and f(γ)0 = 0. The chain map f(γ)∗ is homotopic
to 0 : C∗ → D∗, a chain homotopy is given by γ itself. However, one easily
computes that t(2)(f(γ)∗) is not independent of γ, namely

t(2)(f(γ)∗) = − 1
2
· ln (det (id+γ∗γ)) .
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3.3.2 L2-Torsion and Chain Contractions

Before we give the proof of Theorem 3.35 in Subsection 3.3.3, we reformu-
late the definition of L2-torsion in terms of weak chain contractions. This
formulation will be useful for the proofs since it is more flexible. Moreover, it
applies to more general situations and is closer to standard notions such as
Whitehead torsion.

Lemma 3.37. (1) Let f : U → V and g : V → W be morphisms of finite
dimensional Hilbert N (G)-modules. If two of the maps f , g and g ◦ f are
weak isomorphisms (of determinant class), then also the third;

(2) Let
0 −−−−→ U1

i−−−−→ U0
p−−−−→ U2 −−−−→ 0

f1

y f0

y f2

y
0 −−−−→ V1

j−−−−→ V0
q−−−−→ V2 −−−−→ 0

be a commutative diagram of maps of finite dimensional Hilbert N (G)-
modules whose rows are weakly exact (and of determinant class). If two
of the three maps f1, f0 and f2 are weak isomorphisms (of determinant
class), then also the third;

(3) Let f∗ : C∗ → D∗ be a chain map of Hilbert N (G)-chain complexes such
that Cp and Dp have finite dimension for all p ∈ Z. Then f∗ is a weak
homology equivalence if and only if cone(f∗) is weakly acyclic.

Proof. (1) This follows from Lemma 1.13 and Theorem 3.14 (1).
(2) The given diagram induces the following commutative diagram with exact
rows

0 −−−−→ ker(p) −−−−→ U0 −−−−→ ker(p)⊥ −−−−→ 0

f ′1

y f0

y f ′2

y
0 −−−−→ ker(q) −−−−→ V0 −−−−→ ker(q)⊥ −−−−→ 0 .

The induced maps i : U1 → ker(p), p⊥ : ker(p)⊥ → U2, j : V1 → ker(q), and
q⊥ : ker(q)⊥ → V2 are weak isomorphisms (of determinant class) by assump-
tion. Because of assertion (1) f ′1 and f ′2 respectively are weak isomorphisms
(of determinant class) if and only if f1 and f2 respectively are weak isomor-
phisms (of determinant class.) We conclude from Theorem 1.21 and Theorem
3.14 (2) that already all three maps f ′1, f0 and f ′2 are weak isomorphisms (of
determinant class) if two of them are weak isomorphisms (of determinant
class).
(3) follows from the long weakly exact homology equivalence (see Theorem
1.21) associated to the exact sequence 0 → D∗ → cone(f∗) → ΣC∗ → 0 since
the boundary map is H

(2)
∗ (f∗). ut

A chain map f∗ : C∗ → D∗ of Hilbert N (G)-chain complexes is called
weak chain isomorphism if fp : Cp → Dp is a weak isomorphism for all p.
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Definition 3.38. A weak chain contraction for a Hilbert N (G)-chain com-
plex C∗ is a pair (γ∗, u∗) which consists of a weak chain isomorphism
u∗ : C∗ → C∗ and a chain homotopy γ∗ : u∗ ' 0 satisfying γ∗ ◦ u∗ = u∗ ◦ γ∗.

A chain contraction in the ordinary sense is just a weak chain contraction
(γ∗, u∗) with u∗ = id.

Lemma 3.39. The following statements are equivalent for a dim-finite Hilbert
N (G)-chain complex.

(1) C∗ is weakly acyclic (and of determinant class);
(2) ∆p : Cp → Cp is a weak isomorphism (of determinant class) for all p ∈ Z;
(3) There is a weak chain contraction (γ∗, u∗) with γ∗ ◦ γ∗ = 0 (such that u∗

is of determinant class);
(4) There is a weak chain contraction (γ∗, u∗) (such that u∗ is of determinant

class).

Proof. (1) ⇒ (2) This follows from Lemma 1.18 and Lemma 3.30 since a
selfadjoint endomorphism of a Hilbert N (G)-module (such as ∆p) is a weak
isomorphism if and only if it is injective.
(2) ⇒ (3) Put γp = c∗p. Then (γ∗,∆∗) is the desired weak chain contraction.
(3) ⇒ (4) is trivial.

(4) ⇒ (1) Since γ∗ is a chain homotopy between u∗ and 0∗, we get H
(2)
p (u∗) =

0 for p ∈ Z. Since u∗ is a weak isomorphism, H
(2)
p (u∗) is a weak isomorphism

for all p ∈ Z by Lemma 3.44 which we will prove later. Hence C∗ is weakly
acyclic. We split

up =
(

u0
p u1

p

0 u⊥p

)
: Cp = ker(cp)⊕ ker(cp)⊥ → Cp = ker(cp)⊕ ker(cp)⊥;

cp =
(

0 c⊥p
0 0

)
: Cp = ker(cp)⊕ ker(cp)⊥ → Cp−1 = ker(cp−1)⊕ ker(cp−1)⊥;

γp =
(

γ0
p γ1

p

γ2
p γ3

p

)
: Cp = ker(cp)⊕ ker(cp)⊥ → Cp+1 = ker(cp+1)⊕ ker(cp+1)⊥.

Since u⊥p is an endomorphism of a finite dimensional Hilbert N (G)-module
with dense image, we conclude from Lemma 1.13 that u⊥p is a weak isomor-
phism. From cp+1 ◦ γp + γp−1 ◦ cp = up we conclude γ2

p−1 ◦ c⊥p = u⊥p . Since
c⊥p and u⊥p are weak isomorphisms, γ2

p−1 is a weak isomorphism by Lemma
3.37 (1). If up is of determinant class, cp is of determinant class by Theorem
3.14 (1) and Lemma 3.15 (3). Hence C∗ is of determinant class if u∗ is of
determinant class for all p ∈ Z. ut

The proof of the next lemma is a direct calculation.

Lemma 3.40. Let (γ∗, u∗) and (δ∗, v∗) be weak chain contractions for the
dim-finite Hilbert N (G)-chain complex C∗. Define Θ : Cev → Cev by
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Θ := (v∗ ◦ u∗ + δ∗ ◦ γ∗) =




. . .
...

...
...

. . .
. . . vu 0 0 . . .
. . . δγ vu 0 . . .
. . . 0 δγ vu . . .
. . .

...
...

...
. . .




.

Then the composition

Θ′ : Codd
(uc+γ)odd−−−−−−→ Cev

Θ−→ Cev
(vc+δ)ev−−−−−→ Codd

is given by the lower triangle matrix



. . .
...

...
...

. . .
. . . (v2u2)2n−1 0 0 . . .
. . . ∗ (v2u2)2n+1 0 . . .
. . . ∗ ∗ (v2u2)2n+3 . . .
. . .

...
...

...
. . .




.

Lemma 3.41. Let C∗ be a weakly acyclic dim-finite Hilbert N (G)-chain
complex of determinant class. Let (γ∗, u∗) and (δ∗, v∗) be weak chain con-
tractions such that up and vp are of determinant class for p ∈ Z.

Then the maps (uc + γ)odd : Codd → Cev, (uc + γ)ev : Cev → Codd, uodd

and uev are weak isomorphisms and of determinant class and we get

ln (det((uc + γ)odd))− ln (det(uodd)) = − ln (det((vc + δ)ev)) + ln (det(vev)) ;
ln (det(uodd)) = ln (det(uev)) ;

ρ(2)(C∗) = ln (det((uc + γ)odd))− ln (det(uodd)) .

Proof. Since up and vp are weak isomorphisms and of determinant class, we
conclude from Lemma 1.13, Theorem 3.14 (1) and (2), Lemma 3.37 (1) and
(2) and Lemma 3.40 that the maps (uc + γ)odd, (vc + δ)ev, uodd, vodd, uev

and vev are weak isomorphisms and of determinant class and that

2 · (ln (det(vodd)) + ln (det(uodd))) = ln (det((vc + δ)ev)) + ln (det(vev))
+ ln (det(uev)) + ln (det((uc + γ)odd)) .

We conclude ln (det(uodd)) = ln (det(uev)) from Theorem 3.14 (1) applied
to (uc + γ)odd ◦ uodd = uev ◦ (uc + γ)odd and analogously ln (det(vodd)) =
ln (det(vev)). This proves the first two equations.

The first equation shows that ln (det((uc + γ)odd))− ln (det(uodd)) is in-
dependent of the choice of the weak chain contraction (γ∗, u∗) with up a weak
isomorphism of determinant class for all p ∈ Z. Hence it suffices to prove the
third equation for the special choice (γ∗, u∗) = ((c∗)∗,∆∗).
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Let fp : Cp → Cp be the p-fold composition (∆p)p = ∆p ◦ . . . ◦∆p. Then
the following square commutes

Codd
(∆c+c∗)odd−−−−−−−→ Cev

fodd

y fev

y

Codd
(∆c∗+c)odd−−−−−−−→ Cev

We conclude from Theorem 3.14, Lemma 3.15 (4) and Lemma 3.30

2 · ln (det ((∆c + c∗)odd))
= ln (det ((∆c + c∗)∗odd ◦ (∆c + c∗)odd))
= ln (det ((∆c + c∗)∗odd ◦ fev ◦ (∆c + c∗)odd))− ln (det (fev))
= ln (det ((∆c + c∗)∗odd ◦ (∆c∗ + c)odd ◦ fodd))− ln (det (fev))
= ln (det ((∆c∗ + c)ev ◦ (∆c∗ + c)odd)) + ln (det (fodd))− ln (det (fev))

and

2 · (ln (det ((∆c + c∗)odd))− ln (det (∆odd)))
= ln (det (fodd))− ln (det (fev)) + ln (det ((∆c∗ + c)ev ◦ (∆c∗ + c)odd))

−2 · ln (det (∆odd))

= −
∑

p

(−1)p · p · ln (det (∆p)) + ln (det ((∆c∗ + c)ev ◦ (∆c∗ + c)odd))

−2 · ln (det (∆odd))
= 2 · ρ(2)(C∗) + ln (det ((∆c∗ + c)ev)) + ln (det ((∆c∗ + c)odd))

−2 · ln (det (∆odd)) .

Hence it remains to show

ln (det ((∆c∗ + c)ev)) + ln (det ((∆c∗ + c)odd)) = 2 · ln (det (∆odd)) .

The dual chain complex (C∗)∗ has the chain contraction (c∗,∆∗). If we
apply to it the first and second equation, which we have already proved, we
obtain

ln (det ((∆c∗ + c)odd))− ln (det (∆odd)) = − ln (det ((∆c∗ + c)ev))
+ ln (det (∆ev)) ;

ln (det (∆odd)) = ln (det (∆ev)) .

This finishes the proof of Lemma 3.41. ut
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3.3.3 Proofs of the Basic Properties of L2-Torsion

This subsection is devoted to the proof of Theorem 3.35. We will need the
following lemmas.

Lemma 3.42. Let 0 → C∗
i∗−→ D∗

q∗−→ E∗ → 0 be an exact sequence of
dim-finite N (G)-chain complexes. Suppose that (ε∗, w∗) is a weak chain con-
traction for E∗ (such that wp is of determinant class for p ∈ Z). Then there
is a chain map s∗ : E∗ → D∗ such that q∗ ◦ s∗ = w∗ : E∗ → E∗ and that
ip ⊕ sp : Cp ⊕ Ep → Dp is a weak isomorphism (of determinant class) for
p ∈ Z.

Proof. For each p ∈ Z choose a morphism σp : Ep → Dp with qp ◦ σp = id.
Now define

sp := dp+1 ◦ σp+1 ◦ εp + σp ◦ εp−1 ◦ ep : Ep → Dp.

Then s∗ : D∗ → E∗ is a chain map with p∗ ◦ s∗ = w∗ and the following
diagram commutes

0 −−−−→ C∗ −−−−→ C∗ ⊕ E∗ −−−−→ E∗ −−−−→ 0

id

y i∗⊕s∗

y w∗

y
0 −−−−→ C∗

i∗−−−−→ D∗
q∗−−−−→ E∗ −−−−→ 0

where the upper horizontal row is the canonical one. Now the claim follows
from Lemma 3.37 (2). ut
Lemma 3.43. Let C∗ be a Hilbert N (G)-chain complex with trivial differen-
tials. Let u∗, v∗ : C∗ → D∗ be chain maps to a dim-finite Hilbert N (G)-chain
complex D∗ of determinant class with H

(2)
∗ (u∗) = H

(2)
∗ (v∗). Then there is a

weak chain isomorphism g∗ : D∗ → D∗ such that each gp : Dp → Dp is of de-
terminant class, H

(2)
p (g∗) = id and there is a chain homotopy g∗◦u∗ ' g∗◦v∗.

Proof. Since d⊥p : ker(dp)⊥ → clos(im(dp)) is a weak isomorphism, we can

choose an isomorphism ψp−1 : clos(im(dp))
∼=−→ ker(dp)⊥ by the Polar De-

composition Theorem. Define gp : Dp → Dp by the orthogonal sum of

dp+1|ker(dp+1)⊥ ◦ ψp : clos(im(dp+1)) → clos(im(dp+1));

id : ker(dp) ∩ clos(im(dp+1))⊥ → ker(dp) ∩ clos(im(dp+1))⊥;
ψp−1 ◦ d⊥p : ker(dp)⊥ → ker(dp)⊥.

Since D∗ is of determinant class, gp is a weak isomorphism of determinant
class by Lemma 3.15 (3) and (7) and Lemma 3.37 (1). Define γp : Cp → Dp+1

by the composition of up−vp : Cp → clos(im(dp+1)) and ψp : clos(im(dp+1)) →
ker(dp+1)⊥ ⊂ Dp+1. Now one easily checks using Lemma 1.18 that we obtain
a chain map g∗ : D∗ → D∗ with H

(2)
∗ (g∗) = id and γ∗ defines a chain homo-

topy between g∗ ◦ u∗ and g∗ ◦ v∗. ut
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Lemma 3.44. Let C∗ and D∗ be dim-finite Hilbert N (G)-chain complexes.
If f∗ : C∗ → D∗ is a weak chain isomorphism (such that fp is of determinant
class for all p ∈ Z), then H

(2)
p (f∗) is a weak isomorphism (of determinant

class) for all p ∈ Z. If f∗ : C∗ → D∗ is a weak chain isomorphism (such that
fp is of determinant class for all p ∈ Z) and C∗ or D∗ is of determinant
class, then both C∗ and D∗ are of determinant class and

ρ(2)(D∗)−ρ(2)(C∗) =
∑

p∈Z
(−1)p·ln (det(fp))−

∑

p∈Z
(−1)p·ln

(
det

(
H(2)

p (f∗)
))

.

Proof. Fix n0 ∈ Z such that Cp = Dp = 0 for p < n0. We use induction over
n for which Cp = Dp = 0 for p > n. The induction beginning n ≤ n0 is trivial
since then C∗ and D∗ are concentrated in dimension n0. The induction step
from n to n + 1 is done as follows.

Define C ′∗ as the subchain complex of C∗ with C ′p = Cp for p ≥ n + 1,
Cn = clos(im(cn+1)) and C ′p = 0 for p ≤ n − 1. Define C ′′∗ as the quotient
chain complex of C∗ with C ′′p = 0 for p ≥ n+1, C ′′n = im(cn+1)⊥ and C ′′p = Cp

for p ≤ n− 1. There is an obvious exact sequence 0 → C ′∗ → C∗ → C ′′∗ → 0.
Lemma 3.15 (3) implies that both C ′∗ and C ′′∗ are of determinant class if and
only if C∗ is of determinant class and in this case

ρ(2)(C∗) = ρ(2)(C ′∗) + ρ(2)(C ′′∗ ). (3.45)

We obtain a commutative diagram with exact rows

0 −−−−→ C ′n −−−−→ Cn −−−−→ C ′′n −−−−→ 0

f ′n

y fn

y f ′′n

y
0 −−−−→ D′

n −−−−→ Dn −−−−→ D′′
n −−−−→ 0

(3.46)

The map f ′n : C ′n → D′
n has dense image as its composition with c′n+1 : C ′n+1 →

C ′n is the composition of the maps which both have dense image fn+1 : Cn+1 →
Dn+1 and dn+1 : Dn+1 → clos(im(dn+1)). Since the middle vertical arrow in
diagram (3.46) is a weak isomorphism and the left vertical arrow in diagram
(3.46) has dense image and hence is a weak isomorphism, all three vertical
arrows in diagram (3.46) are weak isomorphisms by Lemma 3.37 (2). Theo-
rem 3.14 (2) applied to diagram (3.46) shows that for all p ∈ Z the maps f ′p
and f ′′p are weak isomorphisms of determinant class and

ln(det(fp)) = ln(det(f ′p)) + ln(det(f ′′p )), (3.47)

provided that fp is of determinant class for all p ∈ Z.
Next we prove Lemma 3.44 for f ′∗ : C ′∗ → D′

∗. Suppose that f ′∗ : C ′∗ → D′
∗

is a weak chain isomorphism. Since C ′p = 0 for p ≥ n + 2, we obtain a
commutative diagram with exact rows
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0 −−−−→ H
(2)
n+1(C

′
∗) −−−−→ C ′n+1

pr−−−−→ ker(c′n+1)
⊥ −−−−→ 0

H
(2)
n+1(f

′
∗)

y f ′n+1

y f ′⊥n+1

y
0 −−−−→ H

(2)
n+1(D

′
∗) −−−−→ D′

n+1
pr−−−−→ ker(d′n+1)

⊥ −−−−→ 0

(3.48)

and the commutative diagram

ker(c′n+1)
⊥ c′⊥n+1−−−−→ C ′n

f ′⊥n+1

y f ′n

y

ker(d′n+1)
⊥ d′⊥n+1−−−−→ D′

n

(3.49)

Since the horizontal arrows and the right vertical arrow in diagram (3.49)
are weak isomorphisms, f ′⊥n+1 is a weak isomorphism by Lemma 3.37 (1).
Lemma 3.37 (2) applied to diagram (3.48) shows that H

(2)
n+1(f

′
∗) is a weak

isomorphism.
Now suppose that f ′p : C ′p → D′

p is a weak isomorphism of determinant
class for all p ∈ Z. Theorem 3.14 (2) applied to diagram (3.48) shows that
H

(2)
n+1(f

′
∗) and f⊥n+1 are of determinant class and satisfy

ln(det(f ′n+1)) = ln
(
det

(
H

(2)
n+1(f

′
∗)

))
+ ln

(
det

(
f⊥n+1

))
. (3.50)

If C ′∗ or D′
∗ is of determinant class, we conclude from Lemma 3.15 (3) and

Lemma 3.37 (1) applied to diagram (3.49) that both C ′∗ and D′
∗ are of deter-

minant class. In this case Theorem 3.14 (1) and Lemma 3.15 (3) applied to
(3.49) imply

(−1)n · ln(det(f ′n)) + ρ(2)(C ′∗) = (−1)n · ln(det(f ′⊥n+1)) + ρ(2)(D′
∗). (3.51)

We conclude from (3.50) and (3.51) that Hn+1(f ′∗) is a weak isomorphism of
determinant class and that both C ′∗ and D′

∗ are of determinant class and

ρ(2)(D′
∗)− ρ(2)(C ′∗) =

∑

p∈Z
(−1)p · ln (

det(f ′p)
)

−
∑

p∈Z
(−1)p+1 · ln

(
det

(
H

(2)
p+1(f

′
∗)

))
. (3.52)

Notice that the induction hypothesis applies to f ′′∗ : C ′′∗ → D′′
∗ . We con-

clude that C ′′∗ and D′′
∗ are of determinant class and H

(2)
p (f ′′∗ ) is a weak iso-

morphism of determinant class for all p ∈ Z and

ρ(2)(D′′
∗ )− ρ(2)(C ′′∗ ) =

∑

p∈Z
(−1)p · ln (

det(f ′′p )
)

−
∑

p∈Z
(−1)p · ln

(
det

(
H(2)

p (f ′′∗ )
))

. (3.53)
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Now Lemma 3.44 follows from (3.45), (3.47), (3.52) and (3.53). ut
The next lemma contains a kind of rotation principle.

Lemma 3.54. Let 0 → C∗
i∗−→ D∗

q∗−→ E∗ → 0 be an exact sequence of
dim-finite Hilbert N (G)-chain complexes. Then there is an exact sequence of
dim-finite Hilbert N (G)-chain complexes 0 → D∗ → Ẽ∗ → C̃∗ → 0 with the
following properties

(1) C∗, E∗ and LHS∗(C∗, D∗, E∗) (defined in Theorem 3.35 (1)) respectively
are of determinant class if and only if C̃∗, Ẽ∗ and LHS∗(D∗, Ẽ∗, C̃∗)
respectively are of determinant class;

(2) There is a chain isomorphism

LHS∗(C∗, D∗, E∗)
∼=−→ Σ

(
LHS∗(D∗, Ẽ∗, C̃∗)

)
;

(3) If C∗, D∗, E∗ and LHS∗(C∗, D∗, E∗) are of determinant class, then D∗,
Ẽ∗, C̃∗ and LHS∗(D∗, Ẽ∗, C̃∗) are of determinant class and

ρ(2)(C∗)− ρ(2)(D∗) + ρ(2)(E∗)
−ρ(2)(C∗, D∗, E∗) + ρ(2)(LHS∗(C∗, D∗, E∗))

= −ρ(2)(D∗) + ρ(2)(Ẽ∗)− ρ(2)(C̃∗)

+ρ(2)(D∗, Ẽ∗, C̃∗)− ρ(2)(LHS∗(D∗, Ẽ∗, C̃∗)).

Proof. The desired exact sequence is the canonical exact sequence 0 → D∗ →
cyl∗(q∗) → cone∗(q∗) → 0. It remains to show the various claims.

Notice for any dim-finite HilbertN (G)-chain complex F∗, that cone∗(F∗) =
cone∗(id : F∗ → F∗) is contractible and satisfies

ρ(2)(cone∗(F∗)) = 0. (3.55)

This follows from the fact that
(

0 1
0 0

)
: Fp−1 ⊕ Fp → Fp ⊕ Fp+1

is an explicit chain contraction for cone∗(F∗). We have the canonical short

exact sequences 0 → ΣC∗
j∗−→ cone∗(q∗) → cone∗(E∗) → 0 and 0 → E∗

k∗−→
cyl∗(q∗) → cone(D∗) → 0. From Lemma 3.42 we obtain chain isomorphisms
u∗ : ΣC∗ ⊕ cone∗(E∗)

∼=−→ cone∗(q∗) and v∗ : E∗ ⊕ cone(D∗)
∼=−→ cyl∗(q∗) such

that under the obvious identifications H
(2)
p (ΣC∗ ⊕ cone∗(E∗)) = Hp(ΣC∗)

and H
(2)
p (E∗ ⊕ cone(D∗)) = H

(2)
p (E∗)

H(2)
p (u∗) = H(2)

p (j∗); (3.56)

H(2)
p (v∗) = H(2)

p (k∗). (3.57)
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Moreover, we conclude from (3.33)

ρ(ΣC∗, cone∗(q∗), cone∗(E∗)) = −
∑

p∈Z
(−1)p · ln(det(up)); (3.58)

ρ(E∗, cyl∗(q∗), cone(D∗)) = −
∑

p∈Z
(−1)p · ln(det(vp)). (3.59)

One easily checks using Theorem 3.14 (2)

ρ(ΣC∗, cone∗(q∗), cone∗(E∗)) = −ρ(C∗, D∗, E∗); (3.60)
ρ(E∗, cyl∗(q∗), cone(D∗)) = 0; (3.61)

ρ(2)(D∗, cyl∗(q∗), cone∗(q∗)) = 0. (3.62)

We conclude from (3.58), (3.59), (3.60) and (3.61)
∑

p∈Z
(−1)p · ln(det(up)) = ρ(C∗, D∗, E∗); (3.63)

∑

p∈Z
(−1)p · ln(det(vp)) = 0. (3.64)

From Lemma 3.44 and equations (3.55), (3.56) and (3.57) we conclude that
cone∗(q∗) and cyl∗(q∗) respectively are of determinant class if and only if C∗
and E∗ respectively are of determinant class and in this case

ρ(2)(cone∗(q∗))− ρ(2)(ΣC∗)

=
∑

p∈Z
(−1)p · ln (det(up))−

∑

p∈Z
(−1)p · ln

(
det

(
H(2)

p (j∗)
))

; (3.65)

ρ(2)(cyl∗(q∗))− ρ(2)(E∗)

=
∑

p∈Z
(−1)p · ln (det(vp))−

∑

p∈Z
(−1)p · ln

(
det

(
H(2)

p (k∗)
))

. (3.66)

Recall that j∗ and k∗ induce isomorphisms H
(2)
p (ΣC∗)

∼=−→ H
(2)
p (cone∗(q∗))

and H
(2)
p (E∗)

∼=−→ H
(2)
p (cyl∗(q∗)) and we have the obvious isomorphisms

id: H
(2)
p (D∗)

∼=−→ H
(2)
p (D∗). They induce a chain isomorphism

LHS∗(C∗, D∗, E∗)
∼=−→ Σ (LHS∗(D∗, cyl∗(q∗), cone∗(q∗)))

and Lemma 3.44 shows

−ρ(2)(LHS∗(D∗, cyl∗(q∗), cone∗(q∗)))− ρ(2)(LHS∗(C∗, D∗, E∗))

= −
∑

p∈Z
(−1)p · ln

(
det

(
H(2)

p (j∗)
))

+
∑

p∈Z
(−1)p · ln

(
det

(
H(2)

p (k∗)
))

. (3.67)
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Now Lemma 3.54 follows from (3.62), (3.63), (3.64), (3.65), (3.66) and (3.67).
ut

The next lemma is the decisive step in the proof of Theorem 3.35 (1). It
proves additivity and all other properties are consequences.

Lemma 3.68. Let C∗, D∗ and E∗ be dim-finite Hilbert N (G)-chain com-
plexes. Let 0 → C∗

i∗−→ D∗
q∗−→ E∗ → 0 be a weakly exact sequence of deter-

minant class. Suppose that two of the chain complexes C∗, D∗ and E∗ are
weakly acyclic and of determinant class. Then all three are weakly acyclic and
of determinant class and

ρ(2)(C∗)− ρ(2)(D∗) + ρ(2)(E∗) = ρ(2)(C∗, D∗, E∗).

Proof. The given exact sequence induces weak isomorphisms i∗ : C∗ →
ker(q∗) and q∗ : ker(q∗)⊥ → E∗ such that ip and qp are of determinant class
for all p ∈ Z and

ρ(2)(C∗, D∗, E∗) =
∑

p∈Z
(−1)p · (− ln(det(ip)) + ln(det(qp))

)
. (3.69)

From Lemma 3.44 we conclude that ker(q∗) and ker(q∗)⊥ respectively are
weakly acyclic of determinant class if and only if C∗ and E∗ respectively are
weakly acyclic of determinant class and in this case we get

ρ(2)(ker(q∗))− ρ(2)(C∗) =
∑

p∈Z
(−1)p · ln(det(ip)); (3.70)

ρ(2)(E∗)− ρ(2)(ker(q∗)⊥) =
∑

p∈Z
(−1)p · ln(det(qp)) (3.71)

respectively. Because of (3.69), (3.70) and (3.71) it remains to show the claim
for 0 → ker(q∗) → D∗ → ker(q∗)⊥ → 0. Because of Lemma 3.54 it suffices to
show under the assumption that ker(q∗) and ker(q∗)⊥ are weakly acyclic and
of determinant class that D∗ is weakly acyclic and of determinant class and

ρ(2)(ker(q∗))− ρ(2)(D∗) + ρ(2)(ker(q∗)⊥) = 0 (3.72)

holds.
We can write the differential dp of D∗ by

dp =
(

d′p dp

0 d′′p

)
: Dp = ker(qp)⊕ ker(qp)⊥ → Dp−1 = ker(qp−1)⊕ ker(qp−1)⊥,

where d′p and d′′p are the differentials of ker(q∗) and ker(q∗)⊥. By Lemma 3.39
we can choose weak chain contractions (γ′∗, u′∗) and (γ′′∗ , u′′∗) for ker(q∗) and
ker(q∗)⊥ such that u′p and u′′p are weak isomorphism of determinant class for
p ∈ Z. Define a chain homotopy γ∗ : u∗ ' 0 for D∗ by
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γp :=
(

γ′p 0
0 γ′′p

)
: Dp → Dp+1;

up :=
(

u′p dp+1 ◦ γ′′p + γ′p−1 ◦ dp

0 u′′p

)
: Dp → Dp

with respect to the orthogonal decomposition Dp = ker(qp) ⊕ ker(qp)⊥. We
conclude from Theorem 3.14 (2), Lemma 3.37 (2) and Lemma 3.41 that
(γ∗, u∗) is a weak chain contraction such that up is of determinant class for
all p ∈ Z and that (3.72) holds. This finishes the proof of Lemma 3.68. ut

Now we are ready to give the proof of Theorem 3.35.

Proof. (1) Step 1: If E∗ is weakly acyclic and of determinant class, then LHS∗
is of determinant class and assertion (1) is true.

We get from Lemma 3.39 and Lemma 3.42 a chain map s∗ : E∗ → D∗ such
that qp ◦ sp : Ep → Ep and ip ⊕ sp : Cp ⊕ Ep → Dp are weak isomorphisms
of determinant class for p ∈ Z. Because of Lemma 3.44 the induced map
H

(2)
p (i∗ ⊕ s∗) is a weak isomorphism of determinant class for p ∈ Z. Hence

the long weakly exact homology sequence LHS∗ is of determinant class since
H

(2)
p (E∗) = 0 for p ∈ Z by assumption and in particular H

(2)
p (i∗ ⊕ s∗) =

H
(2)
p (i∗). Provided that C∗ or D∗ is of determinant class, we conclude from

Lemma 3.15 (7) and Lemma 3.44 that both C∗ and D∗ are of determinant
class and

ρ(2)(D∗)− ρ(2)(C∗)− ρ(2)(E∗) =
∑

p∈Z
(−1)p · ln(det(ip ⊕ sp))

+ρ(2)(LHS∗(C∗, D∗, E∗)). (3.73)

Since E∗ is weakly acyclic and of determinant class by assumption and q∗ ◦
s∗ : E∗ → E∗ is a weak chain isomorphism such that each qp ◦ sp is a weak
isomorphism of determinant class, Lemma 3.44 applied to q∗ ◦ s∗ shows

∑

p∈Z
(−1)p · ln(det(qp ◦ sp)) = 0.

Hence (3.33) shows

ρ(2)(C∗, D∗, E∗) = −
∑

p∈Z
(−1)p · ln(det(ip ⊕ sp)). (3.74)

Now Step 1 follows from (3.73) and (3.74).
Step 2: If one of the chain complexes C∗, D∗ and E∗ is weakly acyclic and of
determinant class, then LHS∗(C∗, D∗, E∗) is of determinant class and asser-
tion (1) is true.

This follows from Lemma 3.54 and Step 1.
Step 3: Assertion (1) is true provided that the differentials of C∗ and E∗ are
trivial.
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Since i∗ and q∗ induce isomorphisms C∗ → ker(q∗) and ker(q∗) → E∗,
(3.33) and Lemma 3.44 shows that we can assume without loss of generality
that Dp = Cp ⊕Ep and ip and qp are the obvious inclusions and projections
for all p ∈ Z. Obviously C∗ and E∗ are of determinant class and satisfy

ρ(2)(C∗) = ρ(2)(E∗) = 0. (3.75)

If we write

dp =
(

0 xp

0 0

)
: Dp = Cp ⊕ Ep → Dp−1 = Cp−1 ⊕ Ep−1,

then one easily checks that the associated long weakly exact homology se-
quence looks like

. . .
xp+1−−−→ Cp

j−→ Cp ⊕ ker(xp)
pr−→ Ep

xp−→ Cp−1
j−→ . . . ,

where j is the canonical inclusion onto the first factor and pr is induced by the
projection onto the second factor. Hence LHS∗(C∗, D∗, E∗) is of determinant
class if and only if xp is of determinant class for all p ∈ Z and in this case

ρ(2)(LHS∗(C∗, D∗, E∗)) = −
∑

p∈Z
(−1)p · ln(det(xp)). (3.76)

Lemma 3.15 (3) implies that D∗ is of determinant class if and only if xp is of
determinant class for all p ∈ Z and in this case

ρ(2)(D∗) = −
∑

p∈Z
(−1)p · ln(det(xp)). (3.77)

Now the claim follows from (3.75), (3.76) and (3.77).
Step 4: Assertion (1) is true provided that C∗ is of determinant class and the
differentials of E∗ are trivial.

In the sequel we write Cp = ker(∆p) and Cp = ker(∆p)⊥. Denote by
k∗ : C∗ → C∗ the canonical inclusion and by pr∗ : C∗ → C∗ the canonical
projection. We conclude from Lemma 1.18 that we have an orthogonal de-
composition of Hilbert N (G)-chain complexes C∗ = C∗⊕C∗, the differentials
of C∗ are all trivial and C∗ is weakly acyclic. From Lemma 3.15 (7) we con-
clude that C∗ is of determinant class and

ρ(2)(C∗) = ρ(2)(C∗). (3.78)

Notice that the chain map pr∗⊕i∗ : C∗ → C∗⊕D∗ is injective and has closed
image since this is true for i∗. Define a dim-finite HilbertN (G)-chain complex
D̂∗ by the orthogonal complement in C∗⊕D∗ of the image of pr∗⊕i∗ : C∗ →
C∗⊕D∗. We obtain a commutative diagram of dim-finite Hilbert N (G)-chain
complexes with exact rows and columns
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0 0 0
y

y
y

0 −−−−→ C∗
id−−−−→ C∗ −−−−→ 0 −−−−→ 0

k∗

y i∗◦k∗
y

y
0 −−−−→ C∗

i∗−−−−→ D∗
q∗−−−−→ E∗ −−−−→ 0

pr∗

y p̂r∗

y id

y

0 −−−−→ C∗
î∗−−−−→ D̂∗

q̂∗−−−−→ E∗ −−−−→ 0
y

y
y

0 0 0

Since C∗ is weakly acyclic and of determinant class, Step 2 applied to the
middle column shows that the induced map H

(2)
p (p̂r∗) : H

(2)
p (D∗) → H

(2)
p (D̂∗)

is a weak isomorphism of determinant class for all p ∈ Z. Moreover, D∗ is of
determinant class if and only if D̂∗ is of determinant class, and in this case

ρ(2)(C∗)− ρ(2)(D∗) + ρ(2)(D̂∗)

= ρ(2)(C∗, D∗, D̂∗)−
∑

p∈Z
(−1)p · ln

(
det

(
H(2)

p (p̂r∗)
))

. (3.79)

The map from the middle row to the lower row induces a weak chain iso-
morphism from LHS∗(C∗, D∗, E∗) to LHS∗(C∗, D̂∗, E∗) which is in each di-
mension of determinant class. Lemma 3.44 implies that LHS∗(C∗, D∗, E∗) is
of determinant class if and only if LHS∗(C∗, D̂∗, E∗) is of determinant class,
and in this case

ρ(2)(LHS∗(C∗, D̂∗, E∗))− ρ(2)(LHS∗(C∗, D∗, E∗))

= −
∑

p∈Z
(−1)p · ln

(
det

(
H(2)

p (p̂r∗)
))

. (3.80)

Step 3 applied to the lower row shows that D̂∗ is of determinant class if and
only if LHS∗(C∗, D̂∗, E∗) is of determinant class, and in this case

− ρ(2)(D̂∗) = ρ(2)(C∗, D̂∗, E∗)− ρ(2)(LHS∗(C∗, D̂∗, E∗)). (3.81)

One easily checks using Lemma 3.68

ρ(2)(C∗, D̂∗, E∗) = ρ(2)(C∗, D∗, E∗); (3.82)

ρ(2)(C∗, D∗, D̂∗) = 0. (3.83)

Now the claim follows from (3.78), (3.79), (3.80), (3.81), (3.82) and (3.83).
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Step 5: Assertion (1) is true provided that C∗ and E∗ are of determinant
class.

Define D̂∗ as the kernel of the chain map q∗ ⊕ k∗ : D∗ ⊕ E∗ → E∗. Then
we obtain a commutative diagram with exact rows and columns

0 0 0y
y

y

0 −−−−→ C∗
î∗◦pr∗−−−−→ D̂∗ −−−−→ E∗ −−−−→ 0

id

y k̂∗

y k∗

y
0 −−−−→ C∗

i∗−−−−→ D∗
q∗−−−−→ E∗ −−−−→ 0y pr∗ ◦q∗

y pr∗

y
0 −−−−→ 0 −−−−→ E∗

id−−−−→ E∗ −−−−→ 0
y

y
y

0 0 0

Now we proceed analogously to Step 4 by applying Step 1 to the middle
column and Step 4 to the upper row.
Step 6: Assertion (1) is true.

This follows from Lemma 3.54 and Step 5. This finishes the proof of
assertion (1) of Theorem 3.35.
(2) follows from Lemma 3.37 (3) and Lemma 3.68 applied to the induced
exact sequence 0 → cone∗(f∗) → cone∗(g∗) → cone∗(h∗) → 0.
(3) Let γ∗ : f∗ ' g∗ be a chain homotopy. Consider the isomorphism of dim-
finite N (G)-chain complexes u∗ : cone∗(f∗) → cone∗(g∗) given by

up =
(

id 0
γp−1 id

)
: Cp−1 ⊕Dp → Cp−1 ⊕Dp.

We get from Lemma 3.37 (3) and Lemma 3.44 that both cone∗(f∗) and
cone∗(g∗) are weakly acyclic and of determinant class and

t(2)(g∗)− t(2)(f∗) = ρ(2)(cone∗(g∗))− ρ(2)(cone∗(f∗))

=
∑

p∈Z
(−1)p · ln(det(up))

= 0.

(4) Consider the chain map h∗ : Σ−1 cone∗(g∗) → cone∗(f∗) given by

hp =
(

0 0
− id 0

)
: Dp ⊕ Ep+1 → Cp−1 ⊕Dp.
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There are obvious exact sequences 0 → cone∗(f∗) → cone∗(h∗) → cone∗(g∗) →
0 and 0 → cone∗(g∗ ◦ f∗)

i∗−→ cone∗(h∗) → cone∗(D∗) → 0, where i∗ is given
by

ip :=




fp−1 0
0 1
1 0
0 0


 : Cp−1 ⊕Dp → Dp−1 ⊕ Ep ⊕ Cp−1 ⊕Dp

and the other maps are the canonical ones. Because of Lemma 3.68 f∗, h∗, g∗
and g∗ ◦ f∗ are weak homology equivalences of determinant class. One easily
checks

ρ(2)(cone∗(f∗), cone∗(h∗), cone∗(g∗)) = 0;
ρ(2)(cone∗(g∗ ◦ f∗), cone∗(h∗), cone∗(D∗)) = 0.

Hence we get from Lemma 3.68

ρ(2)(cone∗(f∗))− ρ(2)(cone∗(h∗)) + ρ(2)(cone∗(g∗)) = 0; (3.84)
ρ(2)(cone∗(g∗ ◦ f∗))− ρ(2)(cone∗(h∗)) + ρ(2)(cone∗(D∗)) = 0. (3.85)

Now assertion (4) follows from (3.55), (3.84) and (3.85).

(5) Consider H
(2)
∗ (C∗) and H

(2)
∗ (D∗) as chain complexes with the trivial

differential. We get from Lemma 1.18 chain maps i∗ : H
(2)
∗ (C∗) → C∗ and

j∗ : H
(2)
∗ (D∗) → D∗ such that ip and jp are isometric inclusions for p ∈ Z

and in particular both i∗ and j∗ are of determinant class, H
(2)
∗ (i∗) = id and

H
(2)
∗ (j∗) = id. Moreover, we get from the definitions and Lemma 3.15 (3)

and (7)

ρ(2)(C∗) = t(2)(i∗); (3.86)
ρ(2)(D∗) = t(2)(j∗). (3.87)

We obtain from Lemma 3.43 applied to u∗ = f∗ ◦ i∗ and v∗ = j∗ ◦H
(2)
∗ (f∗) a

chain map g∗ : D∗ → D∗ such that H
(2)
p (g∗) = id, each gp is a weak isomor-

phism of determinant class and g∗ ◦ f∗ ◦ i∗ and g∗ ◦ j∗ ◦ H
(2)
∗ (f∗) are chain

homotopic. Because of assertion (3) and (4) f∗ is of determinant class if and
only if H

(2)
∗ (f∗) is of determinant class and in this case

t(2)(f∗) + t(2)(i∗) = t(2)(H(2)
∗ (f∗)) + t(2)(j∗). (3.88)

Since t(2)(H(2)
∗ (f∗)) =

∑
p∈Z(−1)p · ln

(
det

(
H

(2)
p (f∗)

))
holds by assertion

(2), assertion (5) follows from (3.86), (3.87) and (3.88).
(6a) Fix n0 with Cp = 0 for p < n0. We use induction over n with Cp = 0
for p > n. For the induction beginning n = n0 we have to show for a finite
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dimensional Hilbert N (G)-module U and a weak isomorphism of determi-
nant class f : V → W for finite dimensional N (H)-modules V and W that
id⊗f : U ⊗ V → U ⊗W is a weak isomorphism of determinant class and

ln(detN (G×H)(id⊗f)) = dim(U) · ln(detN (H)(f)).

This follows from the equation of spectral density functions

FN (G×H)(id⊗f) = dim(U) · FN (H)(f),

which is a consequence of the equality id⊗Ef∗f
λ = E

(id⊗f)∗(id⊗f)
λ . Next we

explain the induction step from n to n + 1. Notice that Theorem 1.12 (2)
implies

χ(2)(C∗) =
∑

p∈Z
(−1)p · dim(Cp). (3.89)

Let C∗|n be obtained from C∗ by truncating in dimensions > n and let
(n+1)[C∗] be the chain complex whose (n+1)-th chain module is Cn+1 and
whose other chain modules are all trivial. Then the induction step follows
from Lemma 3.68 applied to the short exact sequence 0 → C∗|n ⊗ D∗ →
C∗ ⊗ D∗ → (n + 1)[C∗] ⊗ D∗ → 0 and the induction beginning applied to
(n + 1)[C∗] ⊗ D∗ and the induction hypothesis applied to C∗|n ⊗ D∗. This
finishes the proof of assertion (6a).

(6b) Recall that we have introduced C∗ and C∗ before (see (3.78)). We con-
clude from (3.78) and assertion (6a)

ρ(2)(C∗ ⊗D∗) = ρ(2)(C∗ ⊗D∗) + ρ(2)(C∗ ⊗D∗) + ρ(2)(C∗ ⊗D∗)

+ρ(2)(C∗ ⊗D∗)
= 0 + χ(2)(C∗) · ρ(2)(D∗) + χ(2)(D∗) · ρ(2)(C∗) + 0.

(6c) Since f∗ ⊗ g∗ = f∗ ⊗ id ◦ id⊗g∗ holds, it suffices because of assertion (4)
to show

t(2)(id⊗g∗) = χ(2)(C∗) · t(2)(g∗).
This is done as above by induction over the dimension of C∗.
(7) This follows from Theorem 3.14 (5).
(8) This follows from Theorem 3.14 (6). This finishes the proof of Theorem
3.35. ut
Remark 3.90. Theorem 3.35 remains true if one replaces “of determinant
class” everywhere by “with positive Novikov-Shubin invariant”. In view of
Theorem 3.14 (4) it remains to check that the property “with positive
Novikov-Shubin invariant” is inherited as claimed in all the lemmas and the-
orems. Notice that the proof of inheritance of the property “of determinant
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class” is a formal consequence of the following two facts: i.) given two weak
isomorphisms f : U → V and g : V → W of finite dimensional Hilbert N (G)-
modules, both f and g are of determinant class if and only if g ◦ f is of
determinant class (see Theorem 3.14 (1)) and ii.) given a commutative di-
agram of maps of finite dimensional Hilbert N (G)-modules whose rows are
weakly exact and of determinant class and whose vertical arrows are weak
isomorphisms

0 −−−−→ U1
i−−−−→ U0

p−−−−→ U2 −−−−→ 0

f1

y f0

y f2

y
0 −−−−→ V1

j−−−−→ V0
q−−−−→ V2 −−−−→ 0

then f0 is of determinant class if and only if both f1 and f2 are of deter-
minant class (see Theorem 3.14 (2)). The corresponding statements i.) and
ii.) remain true if one replaces “of determinant class” everywhere by “with
positive Novikov-Shubin invariant” because of Lemma 2.14 and Lemma 2.15.

3.4 Cellular L2-Torsion

In this section we introduce and study cellular L2-torsion. Essentially we
apply the material of Section 3.3 to the cellular L2-chain complex of a finite
free G-CW -complex. There are two interesting cases, the case where the L2-
homology vanishes and the case where the underlying space is a cocompact
free proper G-manifold with a G-invariant Riemannian metric. Cellular L2-
torsion has been introduced in [93] and [345]. The definition of determinant
class is taken from [84, Definition 4.1 on page 800].

3.4.1 Cellular L2-Torsion in the Weakly-Acyclic Case

Definition 3.91 (L2-torsion). Let X be a finite free G-CW -complex. We
call it det-L2-acyclic if its cellular L2-chain complex C

(2)
∗ (X) is det-L2-

acyclic (see Definition 3.29). In this case we define its cellularL2-torsion

ρ(2)(X;N (G)) := ρ(2)(C(2)
∗ (X))

by the L2-torsion of C
(2)
∗ (X) (see Definition 3.29). Often we omit N (G) from

the notation. ut
Since for two equivariant smooth triangulations f : K → M and g : L →

M of a cocompact free proper G-manifold M the Whitehead torsion of g−1 ◦
f : K → L in Wh(G) is trivial, K is det-L2-acyclic if and only if L is det-L2-
acyclic and in this case ρ(2)(K) = ρ(2)(L) by Theorem 3.93 (1). Hence we can
define M to be det-L2-acyclic if K is det-L2-acyclic for some (and hence each)
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equivariant smooth triangulation and put in this case ρ(2)(M) = ρ(2)(K). The
notions above extend in the obvious way to pairs.

We obtain a homomorphism

Φ = ΦG : Wh(G) → R (3.92)

by sending the class of an invertible (n, n) matrix A over ZG to the loga-
rithm of the Fuglede-Kadison determinant det(RA) (see Definition 3.11) of
the morphism RA : l2(G)n → l2(G)n induced by A. This is well-defined by
Theorem 3.14. The next theorem presents the basic properties of L2-torsion.

Theorem 3.93 (Cellular L2-torsion). (1) Homotopy invariance
Let f : X → Y be a G-homotopy equivalence of finite free G-CW -
complexes. Let τ(f) ∈ Wh(G) be its Whitehead torsion (see (3.2)). Sup-
pose that X or Y is det-L2-acyclic. Then both X and Y are det-L2-acyclic
and

ρ(2)(Y )− ρ(2)(X) = ΦG(τ(f));

(2) Sum formula
Consider the G-pushout of finite free G-CW -complexes such that j1 is an
inclusion of G-CW -complexes, j2 is cellular and X inherits its G-CW -
complex structure from X0, X1 and X2

X0
j1−−−−→ X1

j2

y i1

y
X2

i2−−−−→ X

Assume that three of the G-CW -complexes X0, X1, X2 and X are det-
L2-acyclic. Then all four G-CW -complexes X0, X1, X2 and X are det-
L2-acyclic and

ρ(2)(X) = ρ(2)(X1) + ρ(2)(X2)− ρ(2)(X0);

(3) Poincaré duality
Let M be a cocompact free proper G-manifold without boundary of even
dimension which is orientable and det-L2-acyclic. Then

ρ(2)(M) = 0;

(4) Product formula
Let X be a finite free G-CW -complex and let Y be a finite free H-CW -
complex. Suppose that X is det-L2-acyclic. Then the finite free G ×H-
CW -complex X × Y is det-L2-acyclic and

ρ(2)(X × Y,N (G×H)) = χ(H\Y ) · ρ(2)(X,N (G));
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(5) Restriction
Let X be a finite free G-CW -complex and let H ⊂ G be a subgroup of
finite index [G : H]. Let resH

G X be the finite H-CW -complex obtained
from X by restricting the G-action to an H-action. Then X is det-L2-
acyclic if and only if resH

G X is det-L2-acyclic, and in this case

ρ(2)(X;N (G)) = [G : H] · ρ(2)(resH
G X;N (H));

(6) Induction
Let H be a subgroup of G and let X be a finite free H-CW -complex. Then
the finite free G-CW -complex G×H X is det-L2-acyclic if and only if X
is det-L2-acyclic, and in this case

ρ(2)(G×H X;N (G)) = ρ(2)(X;N (H));

(7) Positive Novikov-Shubin invariants and determinant class

If X is a finite free G-CW -complex with b
(2)
p (X) = 0 and αp(X) > 0 for

all p ≥ 0, then X is det-L2-acyclic.

Proof. (1) This follows from Theorem 3.35 (5) and Lemma 3.41.
(2) We obtain an exact sequence of Hilbert N (G)-chain complexes 0 →
C

(2)
∗ (X0) → C

(2)
∗ (X1) ⊕ C

(2)
∗ (X2) → C

(2)
∗ (X) → 0. Now apply Theorem

3.35 (1).
(3) There is a subgroup G0 ⊂ G of index 1 or 2 which acts orientation
preserving on M . Since ρ(2)(M ;N (G0)) = [G : G0] · ρ(2)(M ;N (G0)) by as-
sertion (5) we can assume without loss of generality that G = G0, i.e. G\M
is orientable. Fix an equivariant smooth triangulation f : K → M of M . Put
π = π1(K) and n = dim(M). Let [G\K] be the image of the fundamental
class of [G\M ] under the isomorphism Hn(G\M) → Hn(G\K) induced by
G\f−1. The Poincaré ZG-chain homotopy equivalence

∩[G\K] : Cn−∗(K) → C∗(K)

has trivial Whitehead torsion with respect to the cellular basis [510, Theorem
2.1 on page 23]. It induces a chain homotopy equivalence of finite Hilbert
N (G)-chain complexes f∗ : l2(G)⊗ZG Cn−∗(K) → C

(2)
∗ (K) with t(2)(f∗) = 0.

We get from Theorem 3.35 (5) and Lemma 3.41 that l2(G)⊗ZG Cn−∗(K) is
det-L2-acyclic and ρ(2)(l2(G) ⊗ZG Cn−∗(K)) = ρ(2)(C(2)

∗ (K)). We conclude
ρ(2)(M) = (−1)n+1 · ρ(2)(M) from Theorem 3.35 (5). Since n is even by
assumption, assertion (3) follows.
(4) This follows from Theorem 3.35 (6a).
(5) This follows from Theorem 3.35 (7).
(6) This follows from Theorem 3.35 (8).
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(7) This follows from Theorem 3.14 (4). This finishes the proof of Theorem
3.93. ut

Part (1) and (2) of the following conjecture is taken from [330, Conjecture
1.5]. We will later prove it for a large class of groups (see Lemma 13.6 and
Theorem 13.3).

Conjecture 3.94 (Homotopy invariance of L2-torsion). We have for
any group G:

(1) The homomorphism
Φ = ΦG : Wh(G) → R

sending the class [A] of an invertible matrix A ∈ GLn(ZG) to ln(det(r(2)
A ))

(which we have already defined in (3.92)) is trivial;
(2) If X and Y are det-L2-acyclic finite G-CW -complexes, which are G-

homotopy equivalent, then their L2-torsion agree

ρ(2)(X;N (G)) = ρ(2)(Y ;N (G));

(3) Let A ∈ Mn(ZG) be a (n, n)-matrix over ZG. Then r
(2)
A : l2(G)n →

l2(G)n is of determinant class (see Definition 3.11).

Conjecture 3.94 (1) is obviously true if Wh(G) vanishes. There is the
conjecture that the Whitehead group Wh(G) vanishes if G is torsionfree.

In most applications X will occur as the universal covering of a finite
CW -complex. Therefore we will discuss this special case here. Since we also
want to deal with non-connected CW -complexes, we introduce

Notation 3.95. Let X be a (not necessarily connected) finite CW -complex.
We say that X̃ is det-L2-acyclic, if the universal covering C̃ of each connected
component C of X is det-L2-acyclic in the sense of Definition 3.91. In this
case we write

ρ(2)(X̃) :=
∑

C∈π0(X)

ρ(2)(C̃),

where ρ(2)(C̃) is the L2-torsion of the finite free π1(C)-CW -complex C̃ of
Definition 3.91.

The next theorem presents the basic properties of ρ(2)(X̃). It is a consequence
of Theorem 3.93. Notice the formal analogy between the behaviour of ρ(2)(X̃)
and the ordinary Euler characteristic χ(X).

Theorem 3.96. (Cellular L2-torsion for universal coverings).

(1) Homotopy invariance
Let f : X → Y be a homotopy equivalence of finite CW -complexes. Let
τ(f) ∈ Wh(π1(Y )) be its Whitehead torsion. Suppose that X̃ or Ỹ is
det-L2-acyclic. Then both X̃ and Ỹ are det-L2-acyclic and
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ρ(2)(Ỹ )− ρ(2)(X̃) = Φπ1(Y )(τ(f)),

where Φπ1(Y ) : Wh(π1(Y )) =
⊕

C∈π0(Y ) Wh(π1(C)) → R is the sum of
the maps Φπ1(C) of (3.92);

(2) Sum formula
Consider the pushout of finite CW -complexes such that j1 is an inclusion
of CW -complexes, j2 is cellular and X inherits its CW -complex structure
from X0, X1 and X2

X0
j1−−−−→ X1

j2

y i1

y
X2

i2−−−−→ X

Assume X̃0, X̃1, and X̃2 are det-L2-acyclic and that for k = 0, 1, 2 the
map π1(ik) : π1(Xk) → π1(X) induced by the obvious map ik : Xk → X
is injective for all base points in Xk.
Then X̃ is det-L2-acyclic and we get

ρ(2)(X̃) = ρ(2)(X̃1) + ρ(2)(X̃2)− ρ(2)(X̃0);

(3) Poincaré duality

Let M be a closed manifold of even dimension such that M̃ is det-L2-
acyclic. Then

ρ(2)(M̃) = 0;

(4) Product formula

Let X and Y be finite CW -complexes. Suppose that X̃ is det-L2-acyclic.
Then X̃ × Y is det-L2-acyclic and

ρ(2)(X̃ × Y ) = χ(Y ) · ρ(2)(X̃);

(5) Multiplicativity
Let X → Y be a finite covering of finite CW -complexes with d sheets.
Then X̃ is det-L2-acyclic if and only if Ỹ is det-L2-acyclic and in this
case

ρ(2)(X̃) = d · ρ(2)(Ỹ );

(6) Positive Novikov-Shubin invariants and determinant class

If X is a finite CW -complex with b
(2)
p (X̃) = 0 and αp(X̃) > 0 for all

p ≥ 0, then X̃ is det-L2-acyclic.

Next we want to deal with the behaviour of the cellular L2-torsion un-
der a fibration p : E → B with fiber F . We begin with introducing simple
structures. A simple structure ξ = [(X, f)] on a topological space Z is an
equivalence class of pairs (X, f) consisting of a finite CW -complex X and a
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homotopy equivalence f : X → Z, where we call two such pairs (X, f) and
(Y, g) equivalent if the Whitehead torsion τ(g−1 ◦ f) vanishes, i.e. g−1 ◦ f is
a simple homotopy equivalence. If g : Z1 → Z2 is a homotopy equivalence of
topological spaces and we have specified simple structures ξi = [(Xi, fi)] on
Zi, we can still define the Whitehead torsion

τ(g) ∈ Wh(π1(Z2))

by the image of τ(f−1
2 ◦ g ◦ f1) under the isomorphism f2∗ : Wh(π1(X2)) →

Wh(π1(Z2)). If for some representative (X1, f1) of ξ1 and a given G-covering
Z1 → Z1 the total space of the pullback X1 → X1 with f1 is det-L2-acyclic
with respect to the action of the group of deck transformations, then this is
true for all representatives by Theorem 3.93 (1), and we say that (Z1, ξ1) is
det-L2-acyclic. In this case we can still define the cellular L2-torsion of Z1

with respect to ξ1 by

ρ(2)(Z1, ξ1) := ρ(2)(X1). (3.97)

This is independent of the choice of the representative (X1, f1) by Theorem
3.93 (1).

Let E
p−→ B be a fibration such that the fiber F has the homotopy type of

a finite CW -complex and B is a connected finite CW -complex. Recall that
F is only determined up to homotopy. We can associate to p an element

θ(p) ∈ H1(B;Wh(π1(E))) (3.98)

by specifying a homomorphism π1(B, b) → Wh(π1(E)) for a fixed base point
b ∈ B as follows. The fiber transport [488, 15.12 on page 343] of an ele-
ment w ∈ π1(B, b) determines a homotopy class of selfhomotopy equivalences
tw : Fb → Fb of Fb := p−1(b). If we choose a simple structure ξ(Fb) on Fb, we
can take the Whitehead torsion τ(tw) in Wh(π1(Fb)) and push it forward to
Wh(π1(E)) using the map induced by the inclusion kb : Fb → E. It turns out
that the class of θ(p) is independent of the base point b ∈ B and the simple
structure on Fb. We call p simple if θ(p) = 0.

Suppose that p is simple. If we fix a base point b ∈ B and a simple
structure ξ(Fb) on Fb, there is a preferred simple structure ξb,ξ(Fb)(E) on E.
If we choose another base point b′ and simple structure ξ(Fb′) on Fb′ , we
obtain another simple structure on ξb′,ξ(Fb′ )(E). If w is any path in B from
b′ to b, the fiber transport yields a homotopy class of homotopy equivalences
tw : Fb → Fb′ and we get

τ
(
id : (E, ξb,ξ(Fb)(E)) → (E, ξb′,ξ(Fb′ )(E))

)

= χ(B) · kb′∗ (τ (tw : (Fb, ξ(Fb)) → (Fb′ , ξ(Fb′)))) . (3.99)

Notice that the right side is independent of the choice of w because of the
assumption θ(p) = 0.
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Details of the construction of ξb,ξ(Fb)(E) and the claims above can be
found in [325, section 2] or in the more general context of equivariant CW -
complexes in [326, section 15]. It is based on the observation that over a
cell e in B there is an up to fiber homotopy unique (strong) fiber homo-
topy equivalence from the restriction of E to the cell e to the trivial fibra-
tion e × Fb → e, provided we have fixed a homotopy class of paths from
b to some point in e. The point is that after a choice of b ∈ B and sim-
ple structure ξ(Fb) on Fb we obtain uniquely a simple structure ξb,ξ(Fb)(E)
on E and ρ(2)(Ẽ, ξb,ξ(Fb)(E)) is defined, and we can ask for the relation of
ρ(2)(Ẽ, ξb,ξ(Fb)(E)) and ρ(2)(F̃b, ξ(Fb)).

Theorem 3.100 (L2-torsion and fibrations). Let p : E → B be a fibra-
tion with θ(p) = 0 such that B is a connected finite CW -complex and the
fiber has the homotopy type of a finite CW -complex. Suppose that the inclu-
sion of Fb into E induces an injection on the fundamental groups for all base
points in Fb. Fix b ∈ B and a simple structure ξ(Fb) on Fb. Suppose that F̃b

is det-L2-acyclic.
Then E is det-L2-acyclic and

ρ(2)(Ẽ, ξb,ξ(Fb)(E)) = χ(B) · ρ(2)(F̃b, ξ(Fb)).

Before we give the proof of Theorem 3.100, we discuss some interesting special
cases.

Example 3.101. If we make the additional assumption that χ(B) = 0, then
E has a preferred simple structure ξ(E) independent of the choices of b ∈ B

and ξ(Fb) because of (3.99) and Theorem 3.100 says ρ(Ẽ, ξ(E)) = 0.

Remark 3.102. Suppose for one (and hence) all base points b ∈ B that the

composition Wh(π1(Fb))
kb−→ Wh(π1(E)) Φπ1(E)

−−−−→ R is trivial (cf. Conjecture
3.94 (1)). Then ρ(2)(Ẽ, ξb,ξ(Fb)(E)) and χ(B) ·ρ(2)(F̃b, ξ(Fb)) are independent
of the choice of b ∈ B and ξ(Fb) by Theorem 3.96 (1).

Let F → E
p−→ B be a (locally trivial) fiber bundle of finite CW -complexes

with connected base space B. Then θ(p) = 0 and ρ(2)(F̃ ) and ρ(2)(Ẽ) are
independent of the choice of a finite CW -structure on F and E since the
Whitehead torsion of a homeomorphism of finite CW -complexes is always
trivial [99], [100] and Theorem 3.96 (1) holds. It turns out that ξb,ξ(Fb)(E) is
the simple structure on E given by any finite CW -structure if ξ(Fb) is the
simple structure on Fb given by any finite CW -structure. Hence Theorem
3.100 yields

Corollary 3.103. Suppose that F → E
p−→ B is a (locally trivial) fiber bun-

dle of finite CW -complexes with connected B. Suppose that for one (and
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hence all) b ∈ B the inclusion of Fb into E induces an injection on the fun-
damental groups for all base points in Fb and F̃b is det-L2-acyclic. Then Ẽ
is det-L2-acyclic and

ρ(2)(Ẽ) = χ(B) · ρ(2)(F̃ ).

Next we give the proof of Theorem 3.100. Theorem 3.93 (6) implies that
Ẽ|Fb

is det-L2-acyclic if and only if F̃b is det-L2-acyclic and in this case
ρ(2)(Ẽ|Fb

) = ρ(F̃b) since by assumption the inclusion of F into E induces an
injection on the fundamental groups for all base points in Fb. Hence Theorem
3.100 is the special case E = Ẽ of the following slightly stronger statement.

Lemma 3.104. Let p : E → B be a fibration with θ(p) = 0 such that B
is a connected finite CW -complex and the fiber has the homotopy type of a
finite CW -complex. Let q : E → E be a G-covering and let Fb → Fb be its
restriction to Fb for some fixed b ∈ B. Suppose that Fb is det-L2-acyclic.
Then E is det-L2-acyclic and

ρ(2)(E, ξb,ξ(Fb)(E)) = χ(B) · ρ(2)(Fb, ξ(Fb)).

Proof. We use induction over the number of cells of B. The induction begin-
ning B = ∅ is trivial. We have to deal with the situation that B is obtained
from B0 by attaching a cell, i.e. there is a pushout

Sn−1 q−−−−→ B0

i

y j

y
Dn Q−−−−→ B

The pullback construction applied to p ◦ q : E → B yields a G-pushout

ES
q−−−−→ E0

i

y j

y

ED
Q−−−−→ E

Let Y be a finite CW -complex and g : Y → Fb be a homotopy equivalence
representing the given simple structure ξ(Fb) on Fb. The pullback of q : E →
E with g yields a G-covering Y → Y . By inspecting the construction of the
simple structure ξb,ξ(Fb)(E) on E and applying the induction hypothesis to
E0|C → C for each component C of B0 taking (3.99) into account, one checks
that there is a commutative square of finite G-CW -complexes

Y × Sn−1 j1−−−−→ X0

j2

y i1

y
Y ×Dn i2−−−−→ X
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such that j1 is an inclusion of G-CW -complexes, j2 is cellular and X inherits
its G-CW -complex structure from Y × Sn−1, Y × Dn and X0, the finite
G-CW -complexes Y × Sn−1, Y ×Dn and X0 are det-L2-acyclic and

ρ(2)(X0) = χ(B0) · ρ(2)(Fb, ξ(Fb));
ρ(2)(E, ξb,ξ(Fb)(E)) = ρ(2)(X).

Theorem 3.93 (2) and (4) imply that X is det-L2-acyclic and

ρ(2)(E, ξb,ξ(Fb)(E)) = ρ(2)(X)

= ρ(2)(X0) + ρ(2)(Y ×Dn)− ρ(2)(Y × Sn−1)
= ρ(2)(X0) + χ(Dn) · ρ(2)(Y )− χ(Sn−1) · ρ(2)(Y )
= χ(B0) · ρ(2)(Fb, ξ(Fb)) + χ(Dn) · ρ(2)(Fb, ξ(Fb))

− χ(Sn−1) · ρ(2)(Fb, ξ(Fb))
= χ(B) · ρ(2)(Fb, ξ(Fb)). ut

Theorem 3.105 (L2-torsion and S1-actions). Let X be a connected S1-
CW -complex of finite type. Suppose that for one orbit S1/H (and hence for
all orbits) the inclusion into X induces a map on π1 with infinite image. (In
particular the S1-action has no fixed points.) Let X̃ be the universal covering
of X with the canonical π1(X)-action. Then X̃ is det-L2-acyclic and

αp(X̃) ≥ 1 for all p;

ρ(2)(X̃) = 0.

Proof. Theorem 2.61 shows that b
(2)
p (X̃) = 0 for p ≥ 0 and αp(X̃) ≥ 1 for

p ≥ 1. In particular X̃ is det-L2-acyclic by Theorem 3.96 (6). The proof of
ρ(2)(X̃) = 0 is analogous to the one of Theorem 1.40 using Theorem 3.93 (2)
and (4) and the conclusion ρ(2)(S̃1) = 0 from (3.24) appearing in Example
3.22. ut

Next we deal with the mapping torus Tf of a selfmap f : X → X of a
connected finite CW -complex. If p : Tf → S1 is the canonical projection,

let π1(Tf )
φ−→ G

ψ−→ Z be a factorization of the epimorphism π1(Tf )
π1(p)−−−→

π1(S1) = Z into epimorphisms φ and ψ. If i : X → Tf is the obvious inclusion,

let L ⊂ G be the image of the composition π1(X)
π1(i)−−−→ π1(Tf )

φ−→ G. Let Tf

be the covering of Tf associated to φ which is a free G-CW -complex. Denote
by X → X the L-covering of X associated to the epimorphism ι := φ ◦
π1(i) : π1(X) → L. There is an automorphism µ : L → L uniquely determined
by the property that ι◦π1(f) = µ◦ι. Then G is the semidirect product LoµZ.
Let f : X → X be a (µ : L → L)-equivariant lift of f . Then Tf is the mapping
telescope of f infinite to both sides, i.e., the identification space
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Tf =
∐

n∈Z
X × [n, n + 1]/ ∼,

where the identification ∼ is given by (x, n + 1) ∼ (f(x), n). The group of
deck transformations G is the semidirect product L oµ Z and acts in the
obvious way.

Let j : L → G be the inclusion. We obtain a ZG-chain map, a Hilbert
N (G)-chain map and a morphism of Hilbert N (G)-modules

C∗(f)∗ : ZG⊗ZL C∗(X) → ZG⊗ZL C∗(X);

C∗(f)
(2)

∗ : l2(G)⊗ZL C∗(X) → l2(G)⊗ZL C∗(X);

H
(2)
p (f) : j∗H(2)

p (X) = CG⊗CL H
(2)
p (X) → j∗H(2)

p (X) = CG⊗CL H
(2)
p (X)

by sending g ⊗ u to g ⊗ u − gt ⊗ C∗(f)(u) or g ⊗ u − gt ⊗ H
(2)
p (f)(u)

respectively. Then the cellular ZG-chain complex C∗(T̃f ) is the mapping
cone cone∗(C∗(f)∗). Under the obvious identification of j∗H

(2)
p (X) with

H
(2)
p (l2(G) ⊗ZL C∗(X)) the map H

(2)
p (f) becomes the endomorphism of

H
(2)
p (l2(G)⊗ZL C∗(X)) induced by C∗(f)

(2)

∗ .

Theorem 3.106 (L2-torsion of mapping tori). Let f : X → X and φ,
ψ be given as above. Suppose that the G-CW -complex Tf is of determinant
class. Then Tf is det-L2-acyclic, for any p ≥ 0 the endomorphism of finitely

generated Hilbert N (π1(Tf ))-modules H
(2)
p (f) : j∗H

(2)
p (X) → j∗H

(2)
p (X) is a

weak isomorphism of determinant class and

ρ(2)(T̃f ) =
∑

p≥0

(−1)p · ln
(
det

(
H

(2)
p (f)

))
.

Proof. We conclude from Theorem 1.39 that H
(2)
p (T̃f ) = H

(2)
p (C∗(f)

(2)

∗ ) van-
ishes for all p ≥ 0. Hence the long weakly exact homology sequences asso-
ciated to 0 → l2(G) ⊗ZL C∗(X) → cone∗(f

(2)

∗ ) → Σ l2(G) ⊗ZL C∗(X) → 0
looks like

. . . → 0 → H(2)
p (l2(G)⊗ZL C∗(X))

H(2)
p (C∗(f)

(2)

∗ )−−−−−−−−−→ H(2)
p (l2(G)⊗ZL C∗(X)) → 0 → . . .

Now Theorem 3.35 (1) implies that H
(2)
p (C∗(f)

(2)

∗ ) is a weak isomorphism of
determinant class and

ρ(2)(T̃f ) =
∑

p≥0

(−1)p · ln
(

det
(

H(2)
p (C∗(f)

(2)

∗ )
))

.
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Since H
(2)
p (C∗(f)

(2)

∗ ) and H
(2)
p (f) are conjugated by an isomorphism, the

claim follows from Theorem 3.14 (1). ut
The assumption in Theorem 3.106 that Tf is of determinant class is for

instance satisfied if φ : π1(Tf ) → G is bijective and π1(X) belongs to the
class G (see Definition 13.9, Lemma 13.6, Lemma 13.11 (4) and Theorem
13.3) because π1(Tf ) is the mapping torus group of the endomorphism of
π1(X) induced by f appearing in Lemma 13.11 (4).

Example 3.107. Let f : X → X be a selfmap of a connected finite CW -
complex. Let Tf → Tf be the canonical infinite cyclic covering of the mapping
torus. It is the covering associated to the canonical epimorphism π1(Tf ) → Z
or, equivalently, the pullback of the universal covering of S1 with respect to
the canonical map Tf → S1. Let Hp(f ;C) : Hp(X;C) → Hp(X;C) be the
endomorphism of a finite dimensional complex vector space induced by f .
By the Jordan Normal Form Theorem it is conjugated by an isomorphism
Hp(X;C) → Cn to an automorphism of Cn which is a direct sum of auto-
morphisms of the form

B(λip , nip) =




λip 1 0 . . . 0
0 λip 1 . . . 0
0 0 λip . . . 0
...

...
...

. . .
...

0 0 0 . . . λip




where the size of the block B(λip , nip) is nip , λip ∈ C and ip = 1, 2 . . . , rp.
One easily checks that then Hp(Tf ;C) =

⊕rp

ip=1 C[Z]/((t − λip)nip ). We
conclude from Lemma 2.58 that Tf is of determinant class and

b(2)
p (Tf ;N (G)) = 0; (3.108)

αp+1(Tf ;N (G)) = max
{

1
nip

∣∣∣∣ ip ∈ {1, 2 . . . , rp}, |λip | = 1
}

, (3.109)

where the maximum over the empty set is defined to be ∞+. In the nota-

tion of Theorem 3.106 we see that H
(2)
p (f) is conjugate to a direct sum of

automorphisms of the shape



1− λipt −t 0 . . . 0
0 1− λipt −t . . . 0
0 0 1− λipt . . . 0
...

...
...

. . .
...

0 0 0 . . . 1− λipt




: l2(Z)nip → l2(Z)nip .

We conclude from Theorem 3.14 (2), (3.24) appearing in Example 3.22 and
Theorem 3.106
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ρ(2)(Tf ;N (G)) =
∑

p≥0

(−1)p ·

 ∑

1≤ip≤rp,|λip |>1

nip
· ln(|λip

|)

 .

Example 3.110. We construct a 4-dimensional non-orientable cocompact
free proper Z-manifold M without boundary such that M is det-L2-acyclic,
α2(M ;N (Z)) 6= α3(M ;N (Z)) and ρ(2)(M ;N (Z)) 6= 0. This shows that the
condition that M is orientable is necessary in the statements about Poincaré
duality in Theorem 2.55 (2) and Theorem 3.93 (3).

Equip T 3 with the orientation reversing free Z/2-action which sends
(z1, z2, z3) ∈ S1 × S1 × S1 to (z1,−z2,−z3), where we think of S1 ⊂ C and
z1 is the complex conjugate. The map f : T 2

∼=−→ T 2, which sends (z2, z3) to

(z4
2z7

3 , z2z
2
3), is an automorphism, since the integral (2, 2)-matrix A =

(
4 7
1 2

)

has determinant 1. The automorphism id×f : T 3 → T 3 is Z/2-equivariant
and hence induces an automorphism g : (Z/2)\T 3

∼=−→ (Z/2)\T 3 of the non-
orientable closed 3-manifold (Z/2)\T 3. Let M be Tg for the infinite cyclic
covering Tg → Tg associated to the canonical epimorphism π1(Tf ) → Z. Obvi-
ously M is a 4-dimensional non-orientable cocompact free proper Z-manifold
without boundary. Let h : T 2 → M be the composition of the map T 2 → T 3

sending (z2, z3) to (1, z2, z3) and the projection T 3 → (Z/2)\T 3. Then the
following diagram commutes and has isomorphisms as vertical maps

Hp(T 2;C)
Hp(f ;C)−−−−−→ Hp(T 2;C)

Hp(h;C)

y Hp(h;C)

y

Hp((Z/2)\T 3;C)
Hp(g;C)−−−−−→ Hp((Z/2)\T 3;C)

The vertical maps are isomorphisms by the following argument. The triv-
ial C[Z/2]-module C is C[Z/2]-projective and hence Hp((Z/2)\T 3;C) =
Hp(T 3;C)⊗C[Z/2]C holds. The map S1 to S1 sending z to z or −z respectively
induces − id or id respectively on H1(S1;C) and id on H0(S1;C). Now apply
the Künneth formula. The endomorphism Hp(f ;C) is the identity on C for
p = 0, 2 and is the automorphism of C2 given by the matrix A for p = 1.
Since the complex eigenvalues of the matrix A are 3 − √8 and 3 +

√
8, we

conclude from Example 3.107

αp(M ;N (Z)) = 1 for p = 1, 3;
αp(M ;N (Z)) = ∞+ otherwise;

ρ(2)(M ;N (Z)) = − ln(3 +
√

8).
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3.4.2 Cellular L2-Torsion in the Weakly-Acyclic and Aspherical
Case

Theorem 3.111. Let M be an aspherical closed manifold with non-trivial
S1-action. Then the action has no fixed points and the inclusion of any orbit
into M induces an injection on the fundamental groups. Moreover, M̃ is
det-L2-acyclic and

αp(M̃) ≥ 1 for all p;

ρ(2)(M̃) = 0.

Proof. This follows from Corollary 1.43 and Theorem 3.105. ut
Definition 3.112 (det ≥ 1-class). A group G is of det ≥ 1-class if for any
A ∈ M(m, n,ZG) the Fuglede-Kadison determinant (see Definition 3.11) of
the induced morphism r

(2)
A : l2(G)m → l2(G)n satisfies

det(r(2)
A ) ≥ 1.

Schick [462] uses the phrase “has semi-integral determinant” instead of
the phrase “of det ≥ 1-class” which we prefer. There is no group G known
which is not of det ≥ 1-class. We will later present in Subsection 13.1.3 a class
of groups for which it is known that they are of det ≥ 1-class. It includes
amenable groups and countable residually finite groups. The assertion for
the L2-torsion in the theorem below is the main result of [515] (see also
[516]). Its proof is interesting as it preshadows a more ring theoretic approach
to L2-Betti numbers, which we will present in Chapter 6, and localization
techniques for non-commutative rings, which will play a role in Chapter 8
and Chapter 10.

Theorem 3.113 (L2-torsion and aspherical CW -complexes). Let X be
an aspherical finite CW -complex. Suppose that its fundamental group π1(X)
contains an elementary amenable infinite normal subgroup H and π1(X) is
of det ≥ 1-class. Then

b(2)
p (X̃) = 0 for p ≥ 0;

αp(X̃) ≥ 1 for p ≥ 1;

ρ(2)(X̃) = 0.

The claims for the L2-Betti numbers and Novikov-Shubin invariants have
already been proved in Theorem 2.63. We conclude from Theorem 3.93 (7)
that X̃ is det-L2-acyclic. The proof for the claim about the L2-torsion needs
some preparation.
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Lemma 3.114. Let G be a group which is of det ≥ 1-class. Let Y be a
finite free G-CW -complex which is det-L2-acyclic. Let S ⊂ ZG be a mul-
tiplicatively closed subset such that for any s ∈ S the induced morphism
r
(2)
s : l2(G) → l2(G) sending u to us is a weak isomorphism and its Fuglede-

Kadison determinant satisfies det(r(2)
s ) = 1. Assume that (ZG,S) satisfies

the Ore condition (see Definition 8.14). Suppose that the Ore localization
(see Definition 8.14) S−1Hp(X) vanishes for all p ≥ 0. Then

ρ(2)(Y ;N (G)) = 0.

Proof. Let f : N (G)m → N (G)n be an N (G)-homomorphism of (left) N (G)-
modules. Choose a (m, n)-matrix A ∈ M(m,n,N (G)) such that f sends x to
xA. Define

ν(f) : l2(G)m → l2(G)n, y 7→ (
A∗yt

)t

where yt is obtained from y by transposing and applying elementwise the
involution l2(G) → l2(G) which sends

∑
g∈G λg · g to

∑
g∈G λg · g, the matrix

A∗ is obtained from A by transposing and applying the involution ∗ : N (G) →
N (G) to each entry, and Ayt is understood in the sense of matrices and
plugging yj into an element a : l2(G) → l2(G) in N (G). Notice that ν(g◦f) =
ν(g) ◦ ν(f) and that ν is compatible with direct sums and, more generally,
with block decompositions of matrices. Moreover ν(λ ·f) = λ ·ν(f) for λ ∈ C
and ν(f + g) = ν(f) + ν(g). (This construction will be analysed further and
be extended to finitely generated projective N (G)-modules in Section 6.2).

Given a ZG-homomorphism f : ZGm → ZGn, define detZG(f) ∈ [0,∞) by
the Fuglede-Kadison determinant of ν(idN (G)⊗ZGf) : l2(G)m → l2(G)n. We
call f a weak isomorphism or of determinant class if ν(idN (G)⊗ZGf) has this
property. A based free finite ZG-chain complex C∗ is called det-L2-acyclic,
if ν(N (G) ⊗ZG C∗) is det-L2-acyclic, and in this case we define ρ(2)(C∗) by
ρ(2)(ν(N (G) ⊗ZG C∗)). The point is that these notions can be extended to
S−1ZG-modules and S−1ZG-chain complexes as follows.

Let f : S−1ZGm → S−1ZGn be a S−1ZG-homomorphism. Then there
exist elements s1, s2 ∈ S such that rs1 ◦ f ◦ rs2 maps ZGm ⊂ S−1ZGm to
ZGn ⊂ S−1ZGn, where rs1 and rs2 are given by right multiplication with
s1 and s2. (It is possible to choose s1 = 1 or s2 = 1.) This follows from
the fact that any element in S−1ZG can be written as us−1 or t−1v for
u, v ∈ ZG and s, t ∈ S. Fix such elements s1 and s2. We say that f is a
weak isomorphism resp. is of determinant class if the ZG-homomorphism
rs1 ◦ f ◦ rs2 : ZGm → ZGn has this property. If f is a weak isomorphism, we
define

detS−1ZG(f) := detZG(rs1 ◦ f ◦ rs2) ∈ [0,∞). (3.115)

We conclude from Theorem 3.14 (1) that this is independent of the choice of
s1 and s2 and assertions (1) and (2) of Theorem 3.14 for the Fuglede-Kadison
determinant carry over to both detZG and detS−1ZG. Moreover, we get
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detS−1ZG(f) ≥ 1 (3.116)

from the following argument. Choose s ∈ S such that rs ◦ f = S−1g holds for
an appropriate ZG-homomorphisms g : ZGm → ZGn. Since G is of det ≥ 1-
class by assumption, we conclude from the definition (3.115)

detS−1ZG(f) = detZG(g) ≥ 1.

We call a based free finite S−1ZG-chain complex D∗ det-L2-acyclic if there
is a weak chain contraction (δ∗, v∗) in the sense that δ∗ is a S−1ZG-chain
homotopy δ∗ : v∗ ' 0 satisfying δ∗ ◦ v∗ = v∗ ◦ δ∗ and vp : Dp → Dp is a weak
S−1ZG-isomorphism of determinant class for all p ∈ Z (cf. Definition 3.38).
In this case we define the L2-torsion of D∗

ρ(2)(D∗) := ln (detS−1ZG (vd + δ)odd))− ln (detS−1ZG (vodd)) ∈ R.

This is independent of the choice of (δ∗, v∗) by the same argument as in
Subsection 3.3.2 (cf. Definition 3.38, Lemma 3.40 and Lemma 3.41). If E∗ is
a det-L2-acyclic based free finite ZG-chain complex, then S−1E∗ is a det-L2-
acyclic based free finite S−1ZG-chain complex and ρ(2)(E∗) = ρ(2)(S−1E∗).

Now suppose that C∗ is a based free finite ZG-chain complex such that
S−1Hp(C∗) = 0 for p ∈ Z and C∗ is det-L2-acyclic. Lemma 8.15 (3) im-
plies that Hp(S−1C∗) = 0 for p ∈ Z. Hence we can find a chain con-
traction γ∗ : S−1C∗ → S−1C∗+1. Both compositions of the maps (S−1c +
γ)odd : S−1Codd → S−1Cev and (S−1c + γ)ev : S−1Cev → S−1Codd are given
by upper triangular automorphisms of S−1Codd or S−1Cev with identity maps
on the diagonal (cf. Lemma 3.40). Hence both maps are isomorphisms and
satisfy

detS−1ZG

(
(S−1c + γ)odd

) · detS−1ZG

(
(S−1c + γ)ev

)
= 1. (3.117)

Since detS−1ZG

(
(S−1c + γ)odd

) ≥ 1 and detS−1ZG

(
(S−1c + γ)ev

) ≥ 1 holds
by (3.116), we get detS−1ZG

(
(S−1c + γ)odd

)
= 1. Since γ∗ is a chain con-

traction (and not only a weak chain contraction), we conclude

ρ(2)(C∗) = ln
(
detS−1ZG

(
(S−1c + γ)odd

))
= 0.

Now apply this to C∗ = C∗(Y ) with a cellular ZG-basis and Lemma 3.114
follows. ut
Remark 3.118. The assumption in Lemma 3.114 that Y is det-L2-acyclic
is not necessary. With a little effort and some additional knowledge it fol-
lows from the other assumptions by the following argument. Obviously it
suffices to show that b

(2)
p (Y ) = 0 for all p ∈ Z since G is of det ≥ 1-class

by assumption. We will introduce the algebra U(G) of affiliated operators
in Chapter 8. We only have to know that U(G) is the Ore localization of
N (G) with respect to the set of non-zero-divisors of N (G) (see Theorem 8.22
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(1)). Hence we get an embedding S−1ZG ⊂ U(G). Since S−1C∗(Y ) is con-
tractible, U(G)⊗ZGC∗(Y ) is contractible and hence Hp(U(G)⊗ZGC∗(Y )) = 0
for p ≥ 0. We will later show for an appropriate notion of dimension that
b
(2)
p (Y ) = dimU(G) (Hp (U(G)⊗ZG C∗(Y ))) (see Theorem 8.31). This implies

b
(2)
p (Y ) = 0.

Lemma 3.119. Let G be a group and let A ⊂ G be a normal abelian infi-
nite torsionfree subgroup. Put S = {x ∈ ZA | x 6= 0, det(r(2)

x ) = 1}, where
r
(2)
x : l2(G) → l2(G) is given by right multiplication with x.

Then for each element x ∈ S the morphism r
(2)
x : l2(G) → l2(G) is a weak

isomorphism. The set S is multiplicatively closed. The pair (ZG,S) satisfies
the Ore condition (see Definition 8.14). The trivial ZG-module Z satisfies
S−1Z = 0.

Proof. Consider x ∈ ZA. There is a finitely generated subgroup B ⊂ A
with x ∈ ZB. Since B is a finitely generated torsionfree abelian group, it is
isomorphic to Zn for some n ∈ Z. We conclude from Lemma 1.34 (1) that
dimN (B)

(
ker

(
r
(2)
x : l2(B) → l2(B)

))
∈ {0, 1}. Since ker

(
r
(2)
x

)
is a proper

closed subspace of l2(B) because of x 6= 0, its von Neumann dimension cannot
be dimN (B)(l2(B)) = 1. This implies that its dimension is zero. We conclude

from Lemma 1.24 (2) and (3) that dimN (G)

(
ker

(
r
(2)
x : l2(G) → l2(G)

))
= 0.

Hence r
(2)
x : l2(G) → l2(G) is a weak isomorphism by Lemma 1.13.

We conclude from Theorem 3.14 (1) that S is multiplicatively closed.
Next we show that (ZG,S) satisfies the right Ore condition. (Notice ZG

is a ring with involution which leaves S invariant so that then also the left
Ore condition is satisfied.) Since S contains no non-trivial zero-divisors, it
suffices to show for (r, s) ∈ ZG × S that there exists (r′, s′) ∈ ZG × S
satisfying rs′ = sr′. Let {gi | i ∈ I} be a complete system of representatives
for the cosets Ag ∈ A\G. We can write r =

∑
i∈I figi for fi ∈ ZA, where

almost all fi are zero. Since A is normal in G, we get g−1sg ∈ ZA for each
g ∈ G. Obviously g−1sg 6= 0. We have

det
(
r
(2)
g−1sg

)
= det

(
r(2)
g ◦ r(2)

s ◦ r
(2)
g−1

)

= det
(
r(2)
g

)
· det

(
r(2)
s

)
· det

(
r
(2)
g−1

)

= det(r(2)
s ) = 1.

This shows g−1sg ∈ S for all g ∈ G. Since S is abelian, we can define
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s′ =
∏

{j∈I|fj 6=0}
g−1

j sgj ;

s′i =
∏

{j∈I|fj 6=0,j 6=i}
gig

−1
j sgjg

−1
i ;

r′ =
∑

i∈I

s′ifigi.

Since S is multiplicatively closed, we have s′, s′i ∈ S. Since ZA is abelian, we
conclude

rs′ =
∑

i∈I

figis
′ =

∑

{i∈I|fi 6=0}
figis

′g−1
i gi =

∑

{i∈I|fi 6=0}
gis

′g−1
i figi

=
∑

{i∈I|fi 6=0}
ss′ifigi = sr′.

Consider a subgroup Z ⊂ A. Fix a generator t ∈ Z. We conclude from Lemma
3.14 (6) and Example 3.13

det
(
r
(2)
1−t : l2(G) → l2(G)

)
= det

(
r
(2)
1−t : l2(Z) → l2(Z)

)
= 1.

Hence 1 − t ∈ S. If Z is the trivial ZG-module, then (1 − t) acts by multi-
plication with zero on Z. Hence S−1Z = 0. This finishes the proof of Lemma
3.119. ut

Now we are ready to finish the proof of Theorem 3.113. By Lemma 2.62 we
can assume without loss of generality that π1(X) contains a normal abelian
infinite torsionfree subgroup A ⊂ π1(X). Notice that Hp(X̃) is zero for p 6= 0
and is the trivial Z[π1(X)]-module Z for p = 0. Now Theorem 3.113 follows
from Lemma 3.114 and Lemma 3.119. ut

We refer to Conjecture 11.3, which deals with the L2-torsion of universal
coverings of aspherical closed manifolds.

3.4.3 Topological L2-Torsion for Riemannian Manifolds

In this subsection we introduce another variant of L2-torsion where we as-
sume that the underlying G-space is a cocompact free proper G-manifold
without boundary and with G-invariant Riemannian metric. The G-invariant
Riemannian metric together with the L2-Hodge-de Rham Theorem 1.59 will
allow us to drop the condition that all L2-Betti numbers vanish.

Definition 3.120 (Topological L2-torsion). Let M be a cocompact free
proper G-manifold without boundary and with G-invariant Riemannian met-
ric. Let f : K → M be an equivariant smooth triangulation. Assume that M

is of determinant class. Hence ρ(2)(K) := ρ(2)(C(2)
∗ (K)) ∈ R is defined (see

Definition 3.29). Let
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Ap
K : Hp

(2)(M)
∼=−→ Hp

(2)(K)

be the L2-Hodge-de Rham isomorphism of Theorem 1.59, where we use on
Hp

(2)(M) the Hilbert N (G)-structure coming from the Riemannian metric.
Define the topological L2-torsion

ρ
(2)
top(M) = ρ(2)(K)−

∑

p≥0

(−1)p · ln
(
det

(
Ap

K : Hp
(2)(M)

∼=−→ Hp
(2)(K)

))
.

We have to check that this is independent of the choice of equivariant
smooth triangulation. Let g : L → M be another choice. Then the composi-
tion of Hp

(2)(g
−1 ◦ f) : Hp

(2)(L) → Hp
(2)(K) with Ap

L is just Ap
K . Theorem 3.14

(1) implies

ln(det(Ap
K)) = ln(det(Ap

L)) + ln
(
det

(
Hp

(2)(g
−1 ◦ f)

))
. (3.121)

We conclude from Theorem 3.35 (5)

ρ(2)(L)− ρ(2)(K) = −
∑

p≥0

(−1)p · ln
(
det

(
H(2)

p (g−1 ◦ f)
))

. (3.122)

We obtain from Lemma 1.18 a commutative square of finitely generated
Hilbert N (G)-modules with isometric isomorphisms as vertical arrows

Hp
(2)(L)

Hp
(2)(g

−1◦f)
−−−−−−−−→ Hp

(2)(K)

∼=
y ∼=

y

H
(2)
p (L)

(H(2)
p (g−1◦f))∗−−−−−−−−−−→ H

(2)
p (K)

We conclude from Theorem 3.14 (1) and Lemma 3.15 (4)

ln
(
det

(
H(2)

p (g−1 ◦ f)
))

= ln
(
det

(
Hp

(2)(g
−1 ◦ f)

))
. (3.123)

We get from (3.121), (3.122) and (3.123)

ρ(2)(K)−
∑

p≥0

det
(
Ap

K : Hp
(2)(M)

∼=−→ Hp
(2)(K)

)

= ρ(2)(L)−∑
p≥0 det

(
Ap

L : Hp
(2)(M)

∼=−→ Hp
(2)(L)

)
. (3.124)

Hence Definition 3.120 makes sense since ρ
(2)
top(M) is independent of the choice

of equivariant smooth triangulation by (3.124). Notice that ρ(2)(M) does
depend on the choice of Riemannian metric. If M happens to be det-L2-
acyclic, then ρ(2)(M) of Definition 3.91 and ρ

(2)
top(M) of Definition 3.120 agree.
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There is an obvious analog of Theorem 3.93 for ρ
(2)
top(M). If f : M → N

is a G-homotopy equivalence of cocompact free proper G manifolds without
boundary and with G-invariant Riemannian metrics, then we get

ρ
(2)
top(N)− ρ

(2)
top(M) = φG(τ(f))−

∑

p≥0

(−1)p·

ln
(
det

(
Hp

(2)(f) : Hp
(2)(N) → Hp

(2)(M)
))

, (3.125)

where Hp
(2)(f) is obtained from Hp

(2)(f) by conjugating with the L2-Hodge-de

Rham isomorphism. We still have Poincaré duality, i.e. ρ
(2)
top(M) = 0 if M is

orientable and has even dimension. There is a product formula

ρ
(2)
top(M ×N) = χ(G\M) · ρ(2)

top(N) + χ(H\N) · ρ(2)
top(M), (3.126)

where M and N respectively are Riemannian manifolds without boundary
and with cocompact free proper actions by isometries of the group G and
H respectively. Restriction and induction also carry over in the obvious way.
Given a closed Riemannian manifold M , ρ

(2)
top(M̃) has the obvious meaning

and properties.

3.5 Analytic L2-Torsion

In this section we introduce the analytic version of L2-torsion and compute
it for universal coverings of closed hyperbolic manifolds.

3.5.1 Definition of Analytic L2-Torsion

The next definition of analytic L2-torsion is taken from Lott [316] and
Mathai [358]. The notion of analytic determinant class is due to Burghelea-
Friedlander-Kappeler-McDonald [84, Definition 4.1 on page 800]. Recall the
definition of the Γ -function as a holomorphic function

Γ (s) =
∫ ∞

0

ts−1e−t dt (3.127)

for <(s) > 0, where <(s) denotes the real part of the complex number s. It
has a meromorphic extension to C whose set of poles is {n|n ∈ Z, n ≤ 0}
and which satisfies Γ (s + 1) = s · Γ (s). All poles have order one. We have
Γ (z) 6= 0 for all z ∈ C− {0,−1,−2, . . .} and Γ (n + 1) = n! for n ∈ Z, n ≥ 0,
where we use the standard convention 0! = 1.

Definition 3.128 (Analytic L2-torsion). Let M be a cocompact free proper
G-manifold without boundary and with G-invariant Riemannian metric. De-
fine
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θp(M)(t) :=
∫

F
trC(e−t∆p(x, x)) dvol, (3.129)

where e−t∆p(x, y) denotes the heat kernel associated to the Laplacian acting
on p-forms and F is a fundamental domain for the G-action. We call M of
analytic determinant class if for any 0 ≤ p ≤ dim(M) and for some (and
hence all) ε > 0

∫ ∞

ε

t−1 ·
(
θp(M)(t)− b(2)

p (M)
)

dt < ∞.

In this case we define the analytic L2-torsion of M for any choice of ε > 0
by

ρ(2)
an (M) :=

1
2
·
∑

p≥0

(−1)p · p ·
(

d

ds

1
Γ (s)

∫ ε

0

ts−1 ·
(
θp(M)(t)− b(2)

p (M)
)

dt

∣∣∣∣
s=0

+
∫ ∞

ε

t−1 ·
(
θp(M)(t)− b(2)

p (M)
)

dt

)
.

Some comments are necessary in order to show that this definition makes
sense and how it is motivated.

The expression d
ds

1
Γ (s)

∫ ε

0
ts−1 ·

(
θp(M)(t)− b

(2)
p (M)

)
dt

∣∣∣
s=0

is to be un-

derstood in the sense that 1
Γ (s)

∫ ε

0
ts−1 ·

(
θp(M)(t)− b

(2)
p (M)

)
dt is holomor-

phic for <(s) > dim(M)/2 and has a meromorphic extension to C with no
pole in 0 [316, Section 3]. This fact is shown by comparing the heat kernel on
M with the heat kernel on G\M [316, Lemma 4] and using the corresponding
statement for G\M .

Definition 3.128 is independent of the choice of ε by the following calcu-
lation. In the sequel we abbreviate

θ⊥p (t) := θp(M)(t)− b(2)
p (M). (3.130)

We compute for 0 < ε ≤ δ

d

ds

1
Γ (s)

∫ δ

ε

ts−1 · θ⊥p (t) dt

∣∣∣∣∣
s=0

=
d

ds
s · 1

Γ (s + 1)
·
∫ δ

ε

ts−1 · θ⊥p (t) dt

∣∣∣∣∣
s=0

=
d

ds
s

∣∣∣∣
s=0

· 1
Γ (s + 1)

·
∫ δ

ε

ts−1 · θ⊥p (t) dt

∣∣∣∣∣
s=0

+0 · d

ds

1
Γ (s + 1)

·
∫ δ

ε

ts−1 · θ⊥p (t) dt

∣∣∣∣∣
s=0

=
∫ δ

ε

t−1 · θ⊥p (t) dt. (3.131)
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We first explain the relation of the definition above to the classical Ray-
Singer torsion (3.9) for a closed manifold M . We have for s ∈ C with <(s) > 0
and real number λ > 0

1
Γ (s)

·
∫ ∞

0

ts−1e−λt dt =
1

Γ (s)
·
∫ ∞

0

(λ−1u)s−1e−λ·(λ−1u)λ−1 du

=
1

Γ (s)
· λ−s ·

∫ ∞

0

us−1e−u du

= λ−s. (3.132)

From (3.132) we get in the setting of Ray-Singer torsion the following
equation, where λ runs over the eigenvalues of the Laplace operator in di-
mension p listed with multiplicity.

∑

λ>0

λ−s =
∑

λ>0

1
Γ (s)

·
∫ ∞

0

ts−1e−tλ dt

=
1

Γ (s)
·
∫ ∞

0

ts−1 ·
∑

λ>0

e−λt dt

=
1

Γ (s)
·
∫ ∞

0

ts−1 · (trC
(
e−t∆p

)− dimC(Hp(M ; V ))
)

dt. (3.133)

Hence we can rewrite the analytic Ray-Singer torsion (3.9), where θ⊥p is
trC

(
e−t∆p

)− dimC(Hp(M ; V ))

ρan(M ; V ) :=
1
2
·
∑

p≥0

(−1)p · p · d

ds

1
Γ (s)

·
∫ ∞

0

ts−1 · θ⊥p dt

∣∣∣∣
s=0

. (3.134)

Notice that in the setting of Ray-Singer torsion one has only to deal with
convergence problems connected with the asymptotics of the large eigenvalues
of the Laplacian, whereas in the L2-setting there is an additional convergence
problem connected with small eigenvalues and which causes us to require the
condition to be of determinant class. Therefore one cannot define the L2-
torsion directly using expression (3.134) because there is no guarantee that
θ⊥p decays fast enough in the L2-setting. In the Ray-Singer situation or, more
generally, under the assumption that the Laplacian ∆p has a gap in the
spectrum at zero, θ⊥p decays exponentially as we will see in Lemma 3.139 (5).
If θ⊥p decays exponentially, then (3.131) is also true for a real number ε > 0
and δ = ∞. Hence we can rewrite in the setting of Ray-Singer torsion

ρan(M ; V ) :=
1
2
·
∑

p≥0

(−1)p · p ·
(

d

ds

1
Γ (s)

∫ ε

0

ts−1 · θ⊥p (t) dt

∣∣∣∣
s=0

+
∫ ∞

ε

t−1 · θp(t)⊥ dt

)
. (3.135)
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This expression (3.135) for the analytic Ray-Singer torsion is the one which
can be extended to the L2-setting.

Next we want to show

Theorem 3.136. Let M be a cocompact free proper G-manifold without
boundary with invariant Riemannian metric. Then

(1) We have
b(2)
p (M) = F (0) = lim

t→∞
θp(M)(t);

(2) M is of analytic determinant class in the sense of Definition 3.128 if and
only if it is of determinant class in the sense of Definition 3.120;

(3) The following statements are equivalent:
(a) The Laplace operator ∆p has a gap in its spectrum at zero;
(b) α∆

p (M) = ∞+;
(c) There exists ε > 0 such that F∆

p (M)(λ) = F∆
p (M)(0) holds for 0 <

λ < ε;
(d) There exists ε > 0 and a constant C(ε) such that θp(M)(t) ≤ C(ε) ·

e−εt holds for t > 0;
(4) Suppose that α∆

p (M) 6= ∞+. Then

α∆
p (M) = lim inf

t→∞
− ln(θp(M)(t)− b

(2)
p (M))

ln(t)
.

We will prove Theorem 3.136 in Subsection 3.5.2 after we have dealt with
the Laplace transform of a density function. Theorem 3.136 (2) has already
been proved in [84, Proposition 5.6 on page 815].

3.5.2 The Laplace Transform of a Density Function

Let F : [0,∞) → [0,∞) be a density function (see Definition 2.7). Its Laplace
transform is defined by

θF (t) =
∫ ∞

0

e−tλ dF (λ). (3.137)

This definition is motivated by

Lemma 3.138. Let M be a cocompact free proper G-manifold without bound-
ary with invariant Riemannian metric. Then the Laplace transform in the
sense of (3.137) of the spectral density function F∆

p (M) (see Definition 2.64)
is θp(M) defined in (3.129).

Proof. We get from (1.65) and [9, Proposition 4.16 on page 63]
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θF ∆
p

(t) =
∫ ∞

0

e−tλ dF∆
p (λ)

= trN (G)

(
e−t(∆p)min

)

= θp(M). ut

The asymptotic behaviour of the Laplace transform θF (t) for t →∞ can
be read of from the asymptotic behaviour of F (λ) for λ → 0 and vice versa
as explained in the next lemma (cf. [240, Appendix])

Lemma 3.139. Let F : [0,∞) → [0,∞) be a density function with Laplace
transform θF (t). Then

(1) We have for λ > 0
F (λ) ≤ θF (t) · etλ;

(2) Suppose that for all t > 0 there is a constant C(t) such that F (λ) ≤
C(t) · etλ holds for all λ ≥ 0. Then we get for t > 0

θF (t) = t ·
∫ ∞

0

e−tλ · F (λ) dλ;

(3) The Laplace transform θF (t) is finite for all t > 0 if and only if for all
t > 0 there is a constant C(t) such that F (λ) ≤ C(t) · etλ holds for all
λ ≥ 0;

(4) Suppose that θF (t) < ∞ for all t > 0. Then

F (0) = lim
t→∞

θF (t).

(5) Suppose that θF (t) < ∞ for all t > 0. Let ε > 0 be a real number. Then
F (λ) = F (0) for all λ < ε if and only if there is a constant C(ε) such
that θF (t)− F (0) ≤ C(ε) · e−εt holds for t > 0;

(6) Suppose that F (λ) > F (0) for all λ > 0 and that θF (t) < ∞ for all t > 0.
Then

lim inf
λ→0

F (λ)− F (0)
ln(λ)

= lim inf
t→∞

− ln(θF (t)− F (0))
ln(t)

;

(7) Suppose that F and G are dilatationally equivalent density functions.
Then

∫ 1

0+
ln(λ) dF (λ) > −∞ if and only if

∫ 1

0+
ln(λ) dG(λ) > −∞;

(8) Suppose that θF (t) < ∞ for all t > 0. Then
∫ 1

0+
ln(λ) dF (λ) > −∞ if

and only if
∫∞
1

t−1 · (θF (t)− F (0)) dt < ∞;

Proof. (1) Integration by part (see (3.16)) yields for 0 < ε < K < ∞
∫ K

ε+

e−tλ dF (λ) = e−tK · F (K)− e−tε · F (ε) + t ·
∫ K

ε

e−tλ · F (λ) dλ.
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Since F is right continuous, Levi’s Theorem of Monotone Convergence implies
∫ K

0+

e−tλ dF (λ) = e−tK · F (K)− F (0) + t ·
∫ K

0

e−tλ · F (λ) dλ, (3.140)

and hence
∫ K

0

e−tλ dF (λ) = e−tK · F (K) + t ·
∫ K

0

e−tλ · F (λ) dλ. (3.141)

We conclude F (λ) ≤ θF (t) · etλ for all t, λ > 0 from (3.141).
(2) By assumption we have F (λ) ≤ C(t/2) · e−t/2·λ. This implies for t > 0

lim
λ→∞

e−tλ · F (λ) = 0. (3.142)

Now assertion (2) follows from (3.141), (3.142) and Levi’s Theorem of Mono-
tone Convergence.
(3) Suppose that F (λ) ≤ C(t/2) · e−t/2·λ. Then θF (t) < ∞ follows from the
following estimate based on assertion (2).

θF (t) = t ·
∫ ∞

0

e−tλ · F (λ) dλ

≤ t ·
∫ ∞

0

e−tλ · C(t/2) · et/2·λ dλ

= 2 · C(t/2) ·
∫ ∞

0

t/2 · e−t/2·λ dλ

= 2 · C(t/2).

The other implication follows from assertion (1).
(4) This follows from Lebesgue’s Theorem of Majorized Convergence.
(5) Suppose that F (ε) = F (0). Consider λ < ε. We conclude from assertions
(1) and (2) for t > 2

θF (t)− F (0) = t ·
∫ ∞

0

e−tλ · (F (λ)− F (0)) dλ

= t ·
∫ ∞

ε

e−tλ · (F (λ)− F (0)) dλ

≤ t ·
∫ ∞

ε

e−tλ · F (λ) dλ

≤ t ·
∫ ∞

ε

e−tλ · θF (1) · eλ dλ

= θF (1) · t ·
∫ ∞

ε

e(−t+1)λ dλ

= θF (1) · t

t− 1
· e(−t+1)ε

≤ θF (1) · 2 · eε · e−tε.
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This implies the existence of a constant C(ε) > 0 such that θF (t) − F (0) ≤
C(ε) · e−tε holds for all t > 0.

Now suppose that θF (t)−F (0) ≤ C(ε)·e−tε holds for t > 0. Fix µ ∈ (0, 1).
Then we get for t > 0

(F (µ · ε)− F (0)) ·
(
e(1−µ)εt − 1

)
· e−εt = (F (µ · ε)− F (0)) · (e−µεt − e−εt

)

= t ·
∫ ε

µε

(F (µ · ε)− F (0)) · e−λt dλ

≤ t ·
∫ ε

µε

(F (λ)− F (0)) · e−λt dλ

≤ t ·
∫ ∞

0

(F (λ)− F (0)) · e−λt dλ

=
(

t ·
∫ ∞

0

F (λ) · e−λt dλ

)
− F (0).

We conclude from assertion (2)

(F (µ · ε)− F (0)) ·
(
e(1−µ)εt − 1

)
· e−εt ≤ θF (t)− F (0)

≤ C(ε) · e−tε.

This implies for all t > 0

(F (µ · ε)− F (0)) ·
(
e(1−µ)εt − 1

)
≤ C(ε).

Hence F (µ · ε)− F (0) = 0 for all µ ∈ (0, 1) and assertion (5) is proved.
(6) We can assume without loss of generality that F (0) = 0, otherwise con-
sider the new density function F (λ)− F (0). We first show

lim inf
λ→0

ln(F (λ))
ln(λ)

≤ lim inf
t→∞

− ln(θF (t))
ln(t)

. (3.143)

Obviously it suffices to treat the case, where the left-hand side is different
from zero. Consider 0 < α such that α < lim infλ→0

ln(F (λ))
ln(λ) . Then there is

ε > 0 such that F (λ) ≤ λα for all λ ∈ (0, ε). We get from assertions (1) and
(2) and (3.132) for t > 1

θF (t) = t ·
∫ ε

0

e−λt · F (λ) dλ + t ·
∫ ∞

ε

e−λt · F (λ) dλ

≤ t ·
∫ ε

0

e−λt · λα dλ + t ·
∫ ∞

ε

e−λt · θF (1) · eλ dλ

≤ t ·
∫ ∞

0

e−λt · λα dλ + θF (1) · t ·
∫ ∞

ε

eλ·(−t+1) dλ

= Γ (α + 1) · t−α + θF (1) · t

t− 1
· eε·(−t+1).
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We conclude α ≤ lim inft→∞
− ln(θF (t))

ln(t) . This proves (3.143). It remains to
show

lim inf
λ→0

ln(F (λ))
ln(λ)

≥ lim inf
t→∞

− ln(θF (t))
ln(t)

. (3.144)

Obviously it suffices to treat the case, where the right-hand side is greater
than zero. Fix 0 < α satisfying α < lim inft→∞

− ln(θF (t))
ln(t) . Then we can find

K > 0 such that θF (t) ≤ t−α for t > K holds. We conclude from assertion
(1) for t > K

F (λ) ≤ etλ · θF (t) ≤ etλ · t−α.

If we take t = λ−1, we get F (λ) ≤ e · λα. This implies

α ≤ lim inf
λ→0

ln(F (λ))
ln(λ)

.

This finishes the proof of (3.144) and hence of assertion (6).
(7) We conclude from Lemma 3.15 (1) that

∫ 1

0+
ln(λ) dF (λ) > −∞ is equiv-

alent to
∫ 1

0+
F (λ)−F (0)

λ dλ < ∞ and analogous for G.
(8) Obviously the claim is true for F − F (0) if and only if it is true for F .
Hence we can assume without loss of generality that F (0) = 0 in the sequel.
Assertion (2) implies

∫ ∞

1

t−1 · θF (t) dt =
∫ ∞

1

(∫ ∞

0

e−tλ · F (λ) dλ

)
dt. (3.145)

We get
∫ ∞

1

(∫ ∞

1

e−tλ · F (λ) dλ

)
dt < ∞ (3.146)

from the inequality F (λ) ≤ C(1) · eλ of assertion (1). Using the inequality
F (λ) ≤ C(t) · et·λ of assertion (1) and the standard results about commuting
differentiation and integration we conclude

d

dt

∫ 1

0

e−tλ

−λ
· F (λ) dλ =

∫ 1

0

e−tλ · F (λ) dλ.

This implies using Lebesgue’s Theorem of Majorized Convergence and Levi’s
Theorem of Monotone Convergence
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∫ ∞

1

(∫ 1

0

e−tλ · F (λ) dλ

)
dt

= lim
K→∞

∫ K

1

(∫ 1

0

e−tλ · F (λ) dλ

)
dt

= lim
K→∞

∫ 1

0

e−Kλ

−λ
· F (λ) dλ−

∫ 1

0

e−1λ

−λ
· F (λ) dλ

=
∫ 1

0

lim
K→∞

e−Kλ

−λ
· F (λ) dλ−

∫ 1

0

e−λ

−λ
· F (λ) dλ

=
∫ 1

0

e−λ

λ
· F (λ) dλ. (3.147)

We have

e−1 · ∫ 1

0
F (λ)

λ dλ ≤ ∫ 1

0
e−λ

λ · F (λ) dλ ≤ ∫ 1

0
F (λ)

λ dλ. (3.148)

We conclude from Lemma 3.15 (1), (3.145), (3.146), (3.147) and (3.148) that∫∞
1

t−1 · θF (t) dt < ∞ is equivalent to
∫ 1

0+
ln(λ) dF (λ) > −∞. This finishes

the proof of Lemma 3.139. ut
Now Theorem 3.136 follows from Theorem 2.68, Lemma 3.138 and Lemma

3.139.

3.5.3 Comparison of Topological and Analytic L2-Torsion

Next we cite the deep result of Burghelea, Friedlander, Kappeler and McDon-
ald [84] that the topological and analytic L2-torsion ρ

(2)
top(M) (see Definition

3.120) and ρ
(2)
an (M) (see Definition 3.128) agree. The main idea is to perform

the Witten deformation of the Laplacian with a suitable Morse function and
investigate the splitting of the de Rham complex according to small and large
eigenvalues. We do not give the long and complicated proof here. The main
technical tools are asymptotic expansions and a Mayer-Vietoris type formula
for determinants (see [79], [80]). A survey is given in [81]. See also [83].

Theorem 3.149 (Analytic and topological L2-torsion). Let M be a co-
compact free proper G-manifold without boundary and with G-invariant Rie-
mannian metric. Suppose that M is of analytic determinant class in the sense
of Definition 3.128, or equivalently, of determinant class in the sense of Def-
inition 3.120 (see Theorem 3.136 (2)). Then

ρ
(2)
top(M) = ρ(2)

an (M).

3.5.4 Analytic L2-Torsion for Hyperbolic Manifolds

In general it is easier to work with topological L2-torsion because it has
nice properties as stated for instance in Theorem 3.96, Theorem 3.100 and
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Theorem 3.106 and it can be computed combinatorially without investigat-
ing the spectral density functions of certain operators (see Theorem 3.172).
However, there are some special cases where it is easier to deal with analytic
L2-torsion because the Riemannian metrics have special properties and there
is a proportionality principle (see Theorem 3.183). Examples are hyperbolic
manifolds which are treated in the next theorem due to Hess and Schick
[254], the special case of dimension 3 is proved in [316, Proposition 16] and
[358, Corollary 6.7]. Recall that the L2-torsion of the universal covering of a
closed even-dimensional Riemannian manifold is always trivial so that only
the odd-dimensional case is interesting.

Consider the polynomial with integer coefficients for j ∈ {0, 1, 2, . . . , n−1}

Pn
j (ν) :=

∏n
i=0(ν

2 + i2)
ν2 + (n− j)2

=
2n∑

k≥0

Kn
k,j · ν2k. (3.150)

Define

Cd :=
n−1∑

j=0

(−1)n+j+1 n!
(2n)! · πn

·
(

2n
j

)

·
n∑

k=0

Kn
k,j ·

(−1)k+1

2k + 1
· (n− j)2k+1. (3.151)

The first values of Cd are computed in [254, Theorem 2]

C3 = 1
6π ≈ 0.05305;

C5 = 31
45π2 ≈ 0.06980;

C7 = 221
70π3 ≈ 0.10182;

C39 ≈ 2.4026 · 107,

and the constants Cd are positive, strictly increasing and grow very fast,
namely they satisfy [254, Proposition 6]

C2n+1 ≥ n

2π
· C2n−1;

C2n+1 ≥ 2n!
3(2π)n

.

Theorem 3.152 (Analytic L2-torsion of hyperbolic manifolds).
Let M be a closed hyperbolic d-dimensional manifold for odd d = 2n + 1.
Let Cd > 0 be the constant introduced in (3.151). It can be written as Cd =
π−n · rd for a rational number rd > 0. Then

ρ(2)(M̃) = (−1)n · Cd · vol(M).
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Proof. In the sequel we abbreviate

D :=
(4π)−n−1/2

Γ (n + 1/2)
=

n!
2 · πn+1 · (2n)!

.

Notice that M̃ can be identified with the hyperbolic space Hd since M is
by assumption hyperbolic and that there are no harmonic L2-integrable
p-forms on Hd for p ≥ 0 by Theorem 1.62 Let ∆j | : dj−1(Ωj−1

c (Hd))⊥ →
dj−1(Ωj−1

c (Hd))⊥ be the operator induced by the Laplacian ∆j : L2Ωj(Hd) →
L2Ωj(Hd) (see Theorem 1.57) and et∆j |(x, x) be the kernel of the operator
et∆j |. Recall that Hd is homogeneous, i.e. for two points x and y in Hd there is
an isometry Hd → Hd mapping x to y. Hence trC(et∆j |(x, x)) is independent
of x ∈ Hd. Put

Lj =
d

ds

1
Γ (s)

∫ 1

0

ts−1 · trC(et∆j |(x, x)) dt

∣∣∣∣
s=0

+
∫ ∞

1

t−1 · trC(et∆j |(x, x)) dt,

where the first summand is to be understood as before, namely it is a holomor-
phic function for large <(s) and has a meromorphic extension to C without
pole in 0. Now a calculation analogous to the proof of Lemma 3.30 and using
the Hodge-de Rham decomposition (see Theorem 1.57) and the fact that the
Laplacian is compatible with the Hodge star-operator (1.48) shows

ρ
(2)
an (M)

vol(M)
=

n∑

j=0

(−1)j+1Lj . (3.153)

The following equality is taken from [316, Proposition 15] where it is derived
as a special case of [371]

trC(et∆j |(x, x)) = D ·
(

2n
j

)
·
∫ ∞

−∞
e−t(ν2+(n−j)2) · Pn

j (ν) dν,

where the polynomial Pn
j (ν) and its coefficients Kn

k,j are defined in (3.150).
We compute

trC(et∆j |(x, x)) = D ·
(

2n
j

)
·

n∑

k=0

Kn
k,je

−t(n−j)2 · t−k−1/2 · Γ (k + 1/2).

Hence we can write

Lj = D ·
(

2n
j

)
·

n∑

k=0

Kn
k,j · Γ (k + 1/2) ·

(
d

ds

1
Γ (s)

∫ 1

0

e−t(n−j)2 · ts−k−3/2 dt

∣∣∣∣
s=0

+
∫ ∞

1

e−t(n−j)2 · t−k−3/2 dt

)
. (3.154)
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A computation analogous to the one in (3.131) shows for (n− j) > 0

d

ds

1
Γ (s)

∫ ∞

1

e−t(n−j)2 · ts−k−3/2 dt

∣∣∣∣
s=0

=
∫ ∞

1

e−t(n−j)2 · t−k−3/2 dt. (3.155)

One easily checks for j < n

d

ds

1
Γ (s)

∫ ∞

0

e−t(n−j)2 · ts−k−3/2 dt

∣∣∣∣
s=0

=
d

ds

s

Γ (s + 1)
· (n− j)−2s+2k+1 · Γ (s− k − 1/2)

∣∣∣∣
s=0

= (n− j)2k+1 · Γ (−k − 1/2). (3.156)

We conclude from (3.154), (3.155) and (3.156) for j 6= n

Lj = D ·
(

2n
j

)
·

n∑

k=0

Kn
k,j · Γ (k + 1/2) · Γ (−k − 1/2) · (n− j)2k+1

= D ·
(

2n
j

)
·

n∑

k=0

Kn
k,j · (−1)k+1 · 2π

2k + 1
· (n− j)2k+1. (3.157)

We get

Ln = 0 (3.158)

from the following calculation for α > 0

d

ds

1
Γ (s)

∫ 1

0

ts−1−α dt

∣∣∣∣
s=0

+
∫ ∞

1

t−1−α dt

=
d

ds

s

Γ (s + 1)
· 1
s− α

∣∣∣∣
s=0

+
1
α

=
1
−α

+
1
α

= 0.

We get from (3.153), (3.157) and (3.158)

ρ(2)
an (M) = (−1)n · Cd · vol(M). (3.159)

This finishes the proof of Theorem 3.152. ut
Theorem 3.152 will be extended to closed Riemannian manifolds whose

universal coverings are symmetric spaces of non-compact type in Theorem
5.12.
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3.6 L2-Torsion of Manifolds with Boundary

In this section we discuss what happens for a cocompact free proper G-
manifold M with G-invariant Riemannian metric whose boundary ∂M is
the disjoint union of the (possibly empty) G-spaces ∂0M and ∂1M . Choose
an equivariant smooth triangulation (K;K0,K1) → (M ; ∂0M, ∂1M). We
have introduced the L2-Hodge-de Rham isomorphism Ap

K : Hp
(2)(M, ∂0M)

∼=−→
Hp

(2)(K,K0) in Theorem 1.89. We define analogously to the case where the
boundary is empty the notions of determinant class and of topological L2-
torsion

ρ
(2)
top(M,∂0M) = ρ(2)(K, K0)−

∑

p≥0

(−1)p ·

ln
(
det

(
Ap

K : Hp
(2)(M, ∂0M)

∼=−→ Hp
(2)(K, K0)

))
. (3.160)

We define the notions of analytic determinant class and of analytic L2-torsion
ρ
(2)
an (M, ∂0M) as in Definition 3.128 but now imposing Dirichlet boundary

conditions on ∂0M and Neumann boundary conditions on ∂1M , i.e. we use
the Laplacian ∆p : L2Ωp(M) → L2Ωp(M) which is the closure of the op-
erator ∆p : Ωp

2(M) → Ωp
c (M) where Ωp

2(M) ⊂ Ωp
c (M) was introduced in

1.83. Analogously we obtain the notions of topological Reidemeister torsion
ρtop(M, ∂0M ;V ) and of analytic Reidemeister torsion or Ray-Singer torsion
ρan(M,∂0M ; V ). We say that the G-invariant Riemannian metric is a product
near the boundary, if there are ε > 0 and a G-invariant neighborhood U of
∂M in M together with an isometric G-diffeomorphism ∂M × [0, ε) → U
inducing the identity on ∂M , where ∂M is equipped with the G-invariant
Riemannian metric induced from M , [0, ε) with the standard Riemannian
metric and ∂M × [0, ε) with the product Riemannian metric.

Theorem 3.161 (L2-torsion of manifolds with boundary). Let M be
a cocompact free proper G-manifold M with G-invariant Riemannian metric
whose boundary ∂M is the disjoint union of the (possibly empty) G-spaces
∂0M and ∂1M . Suppose that the G-invariant Riemannian metric is a prod-
uct near the boundary. Suppose that (M,∂0M), (M, ∂M) and ∂M are of
determinant class. Then

ρ(2)
an (M, ∂0M) = ρ

(2)
top(M, ∂0M) +

ln(2)
4

· χ(G\∂M);

ρan(G\M, G\∂0M ;V ) = ρtop(G\M,G\∂0M ; V )

+
ln(2)

4
· χ(G\∂M) · dimR(V ).

Proof. The first equation is proved by Burghelea, Friedlander and Kappeler
[82, Theorem 4.1 on page 34] and the second independently by Lück [327,
Theorem 4.5 on page 266] and Vishik [505]. ut
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In the case of the analytic Ray-Singer-torsion the general boundary cor-
rection term (without the condition that the metric is a product near the
boundary) is given in [126]. One would expect to get the same correction
term in the L2-case.

Remark 3.162. We have seen in the context of L2-Betti numbers (see The-
orem 1.89) and of Novikov-Shubin invariants (see (2.84)) that the combina-
torial and analytic versions also agree if M has a boundary. In the context
of L2-torsion there are two main differences, there is a correction term in-
volving the Euler characteristic of the boundary and the assumption that
the Riemannian metric is a product near the boundary. The additional Euler
characteristic term is related to the observation that the boundary ∂M is a
zero set in M and hence on the analytical side certain integration processes
on the double M ∪∂M M cannot feel the boundary ∂M . On the other hand
equivariant cells sitting in the boundary ∂M do contribute to the cellular
chain complex of M ∪∂M M and affect therefore the topological side. The
condition that the metric is a product near the boundary cannot be dropped
for both Reidemeister torsion and L2-torsion because otherwise examples of
Lück and Schick [346, Appendix A] based on [60] show that the formulas be-
come wrong. The condition that the metric is a product near the boundary
ensures that the double M ∪∂M M inherits a G-invariant Riemannian metric
and that one can rediscover the information about (M,∂M) by inspecting
the manifold without boundary M∪∂M M but now with the obvious G×Z/2-
action induced by the flip map (see also Section 2.6).

The necessity of the condition that the Riemannian metric is a product
near the boundary also shows that the next result is rather delicate since one
has to chop the manifold into compact pieces with boundary and the relevant
comparison formulas and glueing formulas are not a priori true any more since
this chopping cannot be done such that metrics are product metrics near the
boundaries.

The next result is proved in [346, Theorem 0.5].

Theorem 3.163. L2-torsion of hyperbolic manifolds with boundary.
Let M be a compact connected manifold with boundary of odd dimension

d = 2n+1 such that the interior M comes with a complete hyperbolic metric
of finite volume. Then M̃ is of determinant class and

ρ
(2)
top(M̃) = ρ(2)

an (M̃) = (−1)n · Cd · vol(M),

where ρ
(2)
an (M̃) is defined as in the cocompact case (which makes sense since M̃

is homogeneous and has some cocompact free proper action of some discrete
group by isometries and M has finite volume) and Cd > 0 is the dimension
constant of 3.151.

Poincaré duality still holds for manifolds with boundary provided that M
is orientable (cf. Theorem 3.93 (3)) i.e.
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ρ(2)
an (M,∂0M) = (−1)dim(M)+1 · ρ(2)

an (M,∂1M); (3.164)

ρ
(2)
top(M,∂0M) = (−1)dim(M)+1 · ρ(2)

top(M, ∂1M), (3.165)

and analogously for Reidemeister torsion. We mention the following glueing
formula. Define ρ(2)(C∗) of a finite Hilbert N (G)-cochain complex C∗ of
determinant class by

ρ(2)(C∗) := −1
2
·
∑

p∈Z
(−1)p · p · ln(det(∆p)

=
∑

p∈Z
(−1)p · ln(det(cp)). (3.166)

Theorem 3.167 (Glueing formula for L2-torsion). Let M and N be co-
compact free proper G-manifolds with G-invariant Riemannian metrics which
are products near the boundary. Their boundaries come with decompositions
∂M = ∂0M

∐
∂1M

∐
∂2M and ∂N = ∂0N

∐
∂1N

∐
∂2N . Let f : ∂2M →

∂2N be an isometric G-diffeomorphism. Let M ∪f N be the cocompact free
proper G-manifold with G-invariant Riemannian metric obtained by glueing
M and N together along f . Suppose that (M,∂0M), (M, ∂M), (N, ∂0N),
(N, ∂N), ∂M and ∂N are of determinant class. Then (M ∪f N, ∂0M

∐
∂0N)

is of determinant class. We obtain a long weakly exact sequence of finitely
generated Hilbert N (G)-modules

. . . → Hp−1
(2) (∂2M) → Hp

(2)(M ∪f N, ∂0M
∐

∂0N)

→ Hp
(2)(M, ∂0M)⊕Hp

(2)(N, ∂0N) → Hp
(2)(∂2M) → . . .

where we use the Hilbert structures coming from the Riemannian metrics
and the maps are given by comparing the corresponding weakly exact L2-
cohomology sequence associated to equivariant smooth triangulations with the
various L2-Hodge-de Rham isomorphisms. We view it as a weakly acyclic
Hilbert N (G)-cochain complex LHS∗ with H0

(2)(M ∪f N, ∂0M
∐

∂0N) in di-
mension zero. Then LHS∗ is weakly det-L2-acyclic and

ρ
(2)
top(M ∪f N, ∂0M

∐
∂0N) = ρ

(2)
top(M, ∂0M) + ρ

(2)
top(N, ∂0N)− ρ

(2)
top(∂2M)

−ρ(2)(LHS∗);

ρ(2)
an (M ∪f N, ∂0M

∐
∂0N) = ρ(2)

an (M,∂0M) + ρ(2)
an (N, ∂0N)− ρ(2)

an (∂2M)

−ρ(2)(LHS∗)− ln(2)
2

· χ(G\∂2M).

The analogous result is true for the topological Reidemeister torsion and an-
alytic Reidemeister torsion.
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Proof. The claim about the analytic L2-torsion is proved in [82, Theo-
rem 4.4 on page 67]. The claim for the topological L2-torsion can also be
derived from Theorem 3.35 (1) applied to the exact sequence of Hilbert
N (G)-chain complexes 0 → C∗(∂2M) → C∗(M, ∂0M) ⊕ C∗(N, ∂0N) →
C∗(M ∪f N, ∂0M

∐
∂0N) → 0 and the fact that the L2-torsion of the weakly

exact long homology sequence is the negative of the torsion of the weakly
exact long cohomology sequence because ρ(2)(C∗) = ρ(2)((C∗)∗) holds for a
finite Hilbert N (G)-chain complex C∗. The claim for the analytic L2-torsion
is then a consequence of Theorem 3.161.

The claim for the topological and analytical Reidemeister torsion is proved
in [327, Proposition 3.11 on page 290 and Proposition 5.9 on page 313]. ut

3.7 Combinatorial Computations of L2-Invariants

In this section we want to give a more combinatorial approach to the L2-
invariants such as L2-Betti numbers, Novikov-Shubin invariants and L2-
torsion. The point is that it is in general very hard to compute the spec-
tral density function of some morphism of finitely generated Hilbert N (G)-
modules. However in the geometric situation these morphisms are induced by
matrices over the integral group ring ZG. We want to exploit this informa-
tion to get an algorithm which produces a sequence of rational numbers which
converges to the L2-Betti number or the L2-torsion and whose members are
computable in an algorithmic way.

Let A ∈ M(n,m,CG) be a (n,m)-matrix over CG. It induces by right
multiplication a CG-homomorphism of left CG-modules

RA :
n⊕

i=1

CG →
m⊕

i=1

CG, x 7→ xA

and by completion a bounded G-equivariant operator

R
(2)
A :

n⊕

i=1

l2(G) →
m⊕

i=1

l2(G).

Notice for the sequel that RAB = RB ◦RA holds. We define an involution of
rings on CG by

∑

g∈G

λg · g :=
∑

g∈G

λg · g−1, (3.168)

where λg is the complex conjugate of λg. Denote by A∗ the (m,n)-matrix
obtained from A by transposing and applying the involution above to each
entry. As the notation suggests, the bounded G-equivariant operator R

(2)
A∗ is
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the adjoint (R(2)
A )∗ of the bounded G-equivariant operator R

(2)
A . Define the

CG-trace of an element u =
∑

g∈G λg · g ∈ CG by

trCG(u) := λe ∈ C (3.169)

for e the unit element in G. This extends to a square (n, n)-matrix A over
CG by

trCG(A) :=
n∑

i=1

trCG(ai,i). (3.170)

We get directly from the definitions that the CG-trace trCG(A) agrees with
the von Neumann trace trN (G)(R

(2)
A ) introduced in Definition 1.2.

Let A ∈ M(n,m,CG) be a (n,m)-matrix over CG. In the sequel let K be
any positive real number satisfying

K ≥ ||R(2)
A ||∞,

where ||R(2)
A ||∞ is the operator norm of the bounded G-equivariant operator

R
(2)
A . For u =

∑
g∈G λg · g ∈ CG define ||u||1 by

∑
g∈G |λg|. Then a possible

choice for K is given by:

K =
√

(2n− 1)m ·max {||ai,j ||1 | 1 ≤ i ≤ n, 1 ≤ j ≤ m} .

The bounded G-equivariant operator 1 −K−2 · (R(2)
A )∗R(2)

A :
⊕n

i=1 l2(G) →⊕n
i=1 l2(G) is positive. Let

(
1−K−2 ·AA∗

)p be the p-fold product of matri-

ces and let
(
1−K−2 · (R(2)

A )∗R(2)
A

)p

be the p-fold composition of operators.

Definition 3.171. The characteristic sequence of a matrix A ∈ M(n,m,CG)
and a non-negative real number K satisfying K ≥ ||R(2)

A ||∞ is the sequence
of real numbers

c(A,K)p := trCG

((
1−K−2 ·AA∗

)p
)

= trN (G)

((
1−K−2 · (R(2)

A )∗R(2)
A

)p)
.

We have defined b(2)(R(2)
A ) in Definition 2.1 and det(R(2)

A ) in Definition
3.11.

Theorem 3.172. (Combinatorial computation of L2-invariants).
Let A ∈ M(n,m,CG) be a (n,m)-matrix over CG. Denote by F the spectral
density function of R

(2)
A . Let K be a positive real number satisfying K ≥

||R(2)
A ||∞. Then

(1) The characteristic sequence c(A,K)p is a monotone decreasing sequence
of non-negative real numbers;
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(2) We have
b(2)(R(2)

A ) = lim
p→∞

c(A,K)p;

(3) Define β(A) ∈ [0,∞] by

β(A) := sup
{

β ∈ [0,∞) | lim
p→∞

pβ ·
(
c(A,K)p − b(2)(R(2)

A )
)

= 0
}

.

If α(R(2)
A ) < ∞, then α(R(2)

A ) ≤ β(A) and if α(R(2)
A ) ∈ {∞,∞+}, then

β(A) = ∞;
(4) The sum of positive real numbers

∞∑
p=1

1
p
·
(
c(A,K)p − b(2)(R(2)

A )
)

converges if and only if R
(2)
A is of determinant class and in this case

2·ln(det(R(2)
A )) = 2·(n−b(2)(R(2)

A ))·ln(K)−
∞∑

p=1

1
p
·
(
c(A,K)p − b(2)(R(2)

A )
)

;

(5) Suppose α(R(2)
A ) > 0. Then R

(2)
A is of determinant class. Given a real

number α satisfying 0 < α < α(R(2)
A ), there is a real number C such that

we have for all L ≥ 1

0 ≤ c(A,K)L − b(2)(R(2)
A ) ≤ C

Lα

and

0 ≤ −2 · ln(det(R(2)
A )) + 2 · (n− b(2)(R(2)

A )) · ln(K)

−
L∑

p=1

1
p
·
(
c(A,K)p − b(2)(R(2)

A )
)
≤ C

Lα
.

Remark 3.173. Before we give the proof of Theorem 3.172, we discuss its
meaning. Let X be a finite free G-CW -complex. Describe the p-th differ-
ential cp : Cp(X) → Cp−1(X) of its cellular ZG-chain complex with respect
to a cellular basis by the matrix Ap ∈ M(np, np−1,ZG). Then R

(2)
Ap

is just

the p-th differential c
(2)
p of the cellular Hilbert N (G)-chain complex C

(2)
∗ (X)

and for the p-th Laplace operator ∆p : C
(2)
p (X) → C

(2)
p (X) of (1.17) we get

R
(2)
ApA∗p+A∗p+1Ap+1

. This implies
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b(2)
p (X) = b(2)(R(2)

ApA∗p+A∗p+1Ap+1
); (3.174)

αp(X) = α(R(2)
Ap

); (3.175)

α∆
p (X) = α(R(2)

ApA∗p+A∗p+1Ap+1
); (3.176)

ρ(2)(C(2)
∗ (X)) = −

∑

p≥0

(−1)p · det(RAp) (3.177)

= −1
2
·
∑

p≥0

(−1)p · p · det(R(2)
ApA∗p+A∗p+1Ap+1

), (3.178)

where ρ(2)(C(2)
∗ (X)) is introduced in Definition 3.29 and agrees with ρ(2)(X)

if X is det-L2-acyclic (see Definition 3.91) and we have used Lemma 1.18 and
Lemma 3.30. Notice that in all cases the relevant L2-invariant is given by the
corresponding L2-invariant of a morphism of the shape R

(2)
B for some matrix

over ZG. Hence Theorem 3.172 applies to the geometric situation.
Each term of the characteristic sequences c(A,K)p can be computed by

an algorithm as long as the word problem for G has a solution. Because
of Theorem 3.172 (1) and (2) one can use the following strategy to show
the vanishing of b

(2)
p (X) provided one knows that there is an integer such

that n · b(2)
p (X) ∈ Z (see the Strong Atiyah Conjecture 10.2). One computes

c(A,K)p for p = 1, 2, 3, . . . and hopes that for some p its value becomes
smaller than 1/n. This would imply b

(2)
p (X) = 0.

Notice that the knowledge of the Novikov-Shubin invariants gives infor-
mation about the speed of convergence of the relevant sequences or sums
converging to the L2-Betti number or L2-torsion because of Theorem 3.172
(5).

We need the following lemma for the proof of Theorem 3.172.

Lemma 3.179. If F (λ) is the spectral density function of (R(2)
A )∗R(2)

A for

A ∈ M(n,m,CG) and K satisfies K ≥ ||R(2)
A ||∞ =

√
||(R(2)

A )∗R(2)
A ||∞, then

we get for all λ ∈ [0, 1]

(1− λ)p · (F (K2 · λ)− F (0)
) ≤ c(A,K)p − b(2)(R(2)

A )

≤ F (K2 · λ)− F (0) + (1− λ)p · (n− F (0)).

Proof. We have for µ ∈ [0, ||R(2)
A ||2∞]

(1− λ)p · χ[0,λ](K−2 · µ) ≤ (1− K−2 · µ)p ≤ χ[0,λ](K−2 · µ) + (1− λ)p.

Hence we get by integrating over µ
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∫ ||R(2)
A ||2∞

0+

(1− λ)p · χ[0,λ](K−2 · µ) dF

≤
∫ ||R(2)

A ||2∞

0+

(1−K−2 · µ)p dF

≤
∫ ||R(2)

A ||2∞

0+

χ[0,λ](K−2 · µ) + (1− λ)p dF.

We have

∫ ||R(2)
A ||2∞

0+

(1− λ)p · χ[0,λ](K−2 · µ) dF = (1− λ)p · (F (K2 · λ)− F (0)
)
;

∫ ||R(2)
A ||2∞

0+

(1−K−2 · µ)p dF = trN (G)

((
1−K−2 · (R(2)

A )∗R(2)
A

)p)

− dim(ker((R(2)
A )∗R(2)

A ));
∫ ||R(2)

A ||2∞

0+

χ[0,λ](K−2 · µ) + (1− λ)p dF = F (K2 · λ)− F (0)

+(1− λ)p · (F (||R(2)
A ||2∞)− F (0)).

This finishes the proof of Lemma 3.179. ut
Now we can give the proof of Theorem 3.172.

Proof. (1) The bounded G-equivariant operator

1−K−2 · (R(2)
A )∗R(2)

A :
n⊕

i=1

l2(G) →
n⊕

i=1

l2(G)

is positive and satisfies

0 ≤ 1−K−2 · (R(2)
A )∗R(2)

A ≤ 1.

This implies for 0 ≤ p ≤ q

0 ≤
(
1−K−2 · (R(2)

A )∗R(2)
A

)q

≤
(
1−K−2 · (R(2)

A )∗R(2)
A

)p

≤ 1

and the first assertion follows as the trace is monotone.
(2) If we apply Lemma 3.179 to the value λ = 1 − p

√
1
p we obtain for all

positive integers p

0 ≤ c(A,K)p − b(2)(R(2)
A ) ≤ F

(
K2 ·

(
1− p

√
1
p

))
− F (0) +

n− F (0)
p

.

We get limx→0+ x · ln(x) = 0 from l’Hospital’s rule. This implies
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lim
p→∞

1− p

√
1
p

= 0.

Since the spectral density function is right continuous, assertion (2) of The-
orem 3.172 follows.
(3) Let β and α be any real numbers satisfying

0 < β < α < α(R(2)
A ).

Choose a real number γ satisfying

β

α
< γ < 1.

We conclude from Lemma 3.179 for λ = p−γ

0 ≤ c(A,K)p − b(2)(R(2)
A ) ≤ F (K2 · p−γ)− F (0) + (1− p−γ)p · (n− F (0)).

By the definition of α(R(2)
A ) there is δ > 0 such that we have for 0 < λ < δ

F (λ)− F (0) ≤ λα.

The last two inequalities imply for p satisfying K2p−γ < δ

0 ≤ pβ · (c(A,K)p − b(2)(R(2)
A ))

≤ pβ · ((K2 · p−γ)α + (1− p−γ)p · (n− F (0))
)
. (3.180)

We get using l’Hospital’s rule

lim
x→∞

x · ln(1− x−γ) = −∞;

lim
x→∞

ln(x)
x ln(1− x−γ)

= 0;

lim
x→∞

(
β ln(x)

x ln(1− x−γ)
+ 1

)
= 1;

lim
x→∞

β ln(x) + x ln(1− x−γ) = −∞;

lim
x→∞

xβ(1− x−γ)x = 0.

Since β − γα < 0 holds we have limx→∞ xβ(K2 · x−γ)α = 0. Hence we get

lim
p→∞

pβ · ((K2 · p−γ)α + (1− p−γ)p · (n− F (0))
)

= 0.

This implies using the inequality (3.180)

lim
p→∞

pβ ·
(
c(A,K)p − b(2)(R(2)

A )
)

= 0.
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We have shown β ≤ β(A). Since β was an arbitrary number satisfying 0 <

β < α(R(2)
A ), assertion (3) follows.

(4) We get the chain of equations where a sum or integral is put to be −∞
if it does not converge, and {Eλ | λ} is the spectral family of (R(2)

A )∗R(2)
A

2 · (n− b(2)(R(2)
A )) · ln(K)−

∞∑
p=1

1
p
·
(
c(A,K)p − b(2)(R(2)

A )
)

= 2 · (n− b(2)(R(2)
A )) · ln(K)−

∞∑
p=1

1
p
·
(
trN (G)

((
1−K−2 · (R(2)

A )∗R(2)
A

)p)
− b(2)(R(2)

A )
)

= 2 · (n− b(2)(R(2)
A )) · ln(K)

−
∞∑

p=1

1
p
· trN (G)

(∫ ||R(2)
A ||2∞

0+

(
1−K−2 · λ)p

dEλ

)
.

The trace is linear, monotone and ultra-weakly continuous.

= 2 · (n− b(2)(R(2)
A )) · ln(K)−

∞∑
p=1

1
p
·
∫ ||R(2)

A ||2∞

0+

(
1−K−2 · λ)p

d trN (G)(Eλ)

= 2 · (n− b(2)(R(2)
A )) · ln(K)−

∞∑
p=1

1
p
·
∫ ||R(2)

A ||2∞

0+

(
1−K−2 · λ)p

dF

We can put the sum under the integral sign because of Levi’s Theorem of
Monotone Convergence since

(
1−K−2 · λ)p is non-negative for 0 < λ ≤

||R(2)
A ||2∞ ≤ K2.

= 2 · (n− b(2)(R(2)
A )) · ln(K)− ∫ ||R(2)

A ||2∞
0+

∑∞
p=1

1
p ·

(
1−K−2 · λ)p

dF

The Taylor series−∑∞
p=1

1
p ·(1− µ)p of ln(µ) about 1 converges for |1−µ| < 1.

= 2 · (n− b(2)(R(2)
A )) · ln(K) +

∫ ||R(2)
A ||2∞

0+

ln(K−2 · λ) dF

= 2 · (n− b(2)(R(2)
A )) · ln(K) +

∫ ||R(2)
A ||2∞

0+

ln(λ) dF −
∫ ||R(2)

A ||2∞

0+

ln(K2) dF

= 2 · (n− b(2)(R(2)
A )) · ln(K) +

∫ ||R(2)
A ||2∞

0+

ln(λ) dF − ln(K2) · (n− b(2)(R(2)
A ))

=
∫ ||R(2)

A ||2∞

0+

ln(λ) dF =
∫ ∞

0+

ln(λ) dF

= ln(det(R(2)
A )∗R(2)

A ) = 2 · ln(det(R(2)
A )),



200 3. L2-Torsion

where the last equation follows from Lemma 3.15 (4). This finishes the proof
of assertion (4).

(5) Let α be any number satisfying α < α(R(2)
A ). Then we conclude from

assertion (3) limp→∞ pα
(
c(A,K)p − b(2)(R(2)

A )
)

= 0. Let C be any positive

number such that pα
(
c(A,K)p − b(2)(R(2)

A )
)
≤ C holds for all p. We conclude

0 ≤ c(A,K)p − b(2)(R(2)
A ) ≤ C

pα
.

Next we estimate using assertion (4)

0 ≤ −2 · ln(det(R(2)
A )) + 2(n− b(2)(R(2)

A )) · ln(K)

−
L∑

p=1

1
p
·
(
c(A,K)p − b(2)(R(2)

A )
)

=
∞∑

p=L+1

1
p
·
(
c(A,K)p − b(2)(R(2)

A )
)

=
∞∑

p=L+1

p−1−α ·
(
pα ·

(
c(A,K)p − b(2)(R(2)

A )
))

≤ C ·
∞∑

p=L+1

p−1−α

≤ C ·
∫ ∞

L

x−1−αdx

=
C

α
· L−α.

This finishes the proof of Theorem 3.172. ut

Remark 3.181. We conjecture that the inequality α(R(2)
A ) ≤ β(A) of The-

orem 3.172.3 is an equality where we do not distinguish between ∞ and ∞+

as value for α(R(2)
A ). If the spectral density function F of R

(2)
A has the limit

property (see Definition 2.41), then this is true.

We will give more explicit calculations for 3-manifolds later which depend
only on a presentation of the fundamental group (see Theorem 4.9).

3.8 Miscellaneous

The following result is taken from [106, Proposition 6.4 on page 149].
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Lemma 3.182. Let M be a simply connected Riemannian manifold and
f : M → R be a function which is invariant under the isometries of M . Then
there is a constant C(f) with the property that for any cocompact free proper
action of a discrete group G by isometries and any fundamental domain F

∫

F
f dvolM = C(f) · vol(G\M)

holds.

Lemma 3.182 is obvious if M is homogeneous since then G acts transitively
on M and hence any function on M which is invariant under the isometries of
M is constant. Lemma 3.182 implies the following proportionality principle.

Theorem 3.183 (Proportionality Principle for L2-invariants). Let M

be a simply connected Riemannian manifold. Then there are constants B
(2)
p (M)

for p ≥ 0, A
(2)
p (M) for p ≥ 1 and T (2)(M) depending only on the Rieman-

nian manifold M with the following property: For any discrete group G with
a cocomapct free proper action on M by isometries the following holds

b(2)
p (M ;N (G)) = B(2)

p (M) · vol(G\M);

α(2)
p (M ;N (G)) = A(2)

p (M);

ρ(2)(M ;N (G)) = T (2)(M) · vol(G\M),

where for the third equality we assume that M with this G-action (and hence
for all cocompact free proper actions) is of determinant class.

Proof. Obviously the following function

M → R, x 7→ trR(E
(δp+1dp)⊥min
λ (x, x))

is invariant under isometries since dp and δp are compatible with isometries
and hence the endomorphisms E

(δp+1dp)⊥min
λ (x, x) and E

(δp+1dp)⊥min
λ (φ(x), φ(x))

are conjugate for any isometry φ : M → M and x ∈ X. Let Cp(M)(λ) be
the constants associated to this function for each λ ≥ 0 in Lemma 3.182. We
conclude from Lemma 3.182 and Lemma 2.66

Fp(M ;N (G))(λ) = Cp(M)(λ) · vol(G\M),

where F (M ;N (G)) is the analytic spectral density function associated to
the cocompact free proper G-manifold M with G-invariant Riemannian met-
ric. Notice that Cp(M)(λ) is independent of G. Now the claim for the L2-
Betti numbers and the Novikov-Shubin invariants follow. Analogously we con-
clude that there is also a function Θp(M)(t) depending only on M such that

∫

F
trR(e−t∆p(x, x)) dvolx = Θp(M)(t) · vol(G\M)

holds. Now the claim for the L2-torsion follows. ut
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Another proportionality principle for L2-Betti numbers will be given in
Theorem 7.34 and Corollary 7.37.

Remark 3.184. We call a finite free G-CW -complex X NS-L2-acyclic if
b
(2)
p (X) = 0 and αp(X) > 0 for all p ≥ 0. Notice that NS-L2-acyclic implies

det-L2-acyclic because of Theorem 3.14 (4). We conclude from Remark 3.90
that all the results of Section 3.4 remain true if one replaces det-L2-acyclic
by NS-L2-acyclic. The point is that the property NS-L2-acyclic is enherited
like the property det-L2-acyclic.

The next result is well-known.

Lemma 3.185. A closed hyperbolic manifold does not carry a non-trivial
S1-action.

Proof. Suppose that the closed hyperbolic manifold M carries a non-trivial
S1-action. Since the universal covering of M is the hyperbolic space and
hence contractible, M̃ is det-L2-acyclic and ρ(2)(M̃) = 0 by Corollary 3.111.
This contradicts Theorem 1.62 if dim(M) is even and Theorem 3.152 if n is
odd. ut

One may ask whether Theorem 3.111 extends from S1-actions to S1-
foliations, namely

Question 3.186. (S1-foliations and L2-torsion for closed aspherical
manifolds).
Let M be an aspherical closed manifold which admits an S1-foliation. Is then
M̃ of determinant class and

b(2)
p (M̃ = 0 for all p;

αp(M̃) ≥ 1 for all p;

ρ(2)(M̃) = 0 ?

If the answer is positive, one would get a negative answer to the (to the
author’s knowledge) open problem whether there is a S1-foliation on a closed
hyperbolic manifold.

The notion of spectral density function makes also sense for proper G-
CW -complexes of finite type because in this setting the cellular L2-chain
complex is still defined as a Hilbert N (G)-chain complex as explained in Sec-
tion 1.6. Hence the notion of det-L2-acyclic and of L2-torsion ρ(2)(X) for a
proper finite G-CW -complex in the sense of Definition 3.91 and the notion of
topological L2-torsion ρ

(2)
top(M) for a cocompact proper G-manifold M with

G-invariant Riemannian metric in the sense of Definition 3.120 are defined.
Theorem 3.93 (1) remains true if one replaces Wh(G) by K1(QG)/T (G),
where T (G) is the subgroup generated by elements represented by automor-
phisms of the shape ±Q[φ] : Q[G/H] → Q[G/H] for finite subgroups H ⊂ G
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and G-maps φ : G/H → G/H, and the Whitehead torsion τ(f) by the corre-
sponding element in K1(QG)/T (G) given by the QG-chain homotopy equiva-
lence Q⊗ZC∗(f) : Q⊗ZC∗(X) → Q⊗ZC∗(Y ). Notice that the map induced by
the logarithm of the Fuglede-Kadison determinant ΦG : K1(QG)/T (G) → R
is definitely non-trivial. But it may still be true that ΦG(τ(f)) is always trivial
for a G-homotopy equivalence f and hence that ρ(2)(X) is a G-homotopy in-
variant for det-L2-acyclic finite proper G-CW -complexes. This can be proved,
provided that G is of det ≥ 1-class or if G belongs to the class G (see Defini-
tion 13.9). Theorem 3.93 (2), (3), (4), (5) and (6) carry over word by word
for a det-L2-acyclic finite proper G-CW -complex. The proof of Poincaré du-
ality stated in Theorem 3.93 (3) is non-trivial because the Poincaré QG-
chain homotopy equivalence Q ⊗Z Cn−∗(M) → Q ⊗Z C∗(M) has in general
non-trivial Whitehead torsion in K1(QG)/T (G) [327, Definition 3.19 and
Example 3.25], but one can show that its image under the homomorphism
K1(QG)/T (G) → R given by the logarithm of the Fuglede-Kadison deter-
minant is trivial. The notion of analytic L2-torsion ρ

(2)
an (M) for a cocompact

proper G-manifold with G-invariant Riemannian metric introduced in Defi-
nition 3.128 still makes sense. Without having checked the details we claim
that Theorem 3.149 of Burghela, Friedlander, Kappeler and McDonald [84]
is still true if one drops the assumption free.

One can try to get an improved L2-torsion working in K-theory, instead
of applying the Fuglede-Kadison determinant from the very beginning. Fix a
set W of morphisms of Hilbert N (G)-modules f : l2(G)n → l2(G)n with the
following properties: (i) Any isomorphism l2(G)n → l2(G)n belongs to W,
(ii) any element in W is a weak isomorphism. (iii) If two of the morphisms
f , g and g ◦ f belong to W, then also the third. (iv) If both f ◦ g and
g ◦ f belong to W, then f and g belong to W. (v) If two of the morphisms

f1 : l2(G)m → l2(G)m, f2 : l2(G)n → l2(G)n and
(

f1 g
0 f2

)
belong to W, then

all three. Define KW
1 (N (G)) to be the abelian group whose generators are

classes [f ] of endomorphisms f : l2(G)n → l2(G)n belonging to W such that
the following relations are satisfied: (i) [id : l2(G) → l2(G)] = 0, (ii) [g ◦ f ] =

[f ]+ [g] for f, g : l2(G)n → l2(G)n in W and (iii)
[(

f1 g
0 f2

)]
= [f1]+ [f2] for

f1, f2 ∈ W. Let K̃W
1 (N (G)) be the quotient of KW

1 (N (G)) by the subgroup
generated by [− id : l2(G) → l2(G)].

We call a finite Hilbert N (G)-chain complex C∗ W-acyclic if there is a
weak chain contraction (γ∗, u∗) in the sense of Definition 3.38, where we
now require that up : Cp → Cp belongs to W. Then we can associate to a
finite W-acyclic Hilbert N (G)-chain complex C∗ analogously to the formulas
appearing in Lemma 3.41 an element

ρW(C∗) := [(uc + γ)odd]− [uodd] ∈ K̃W
1 (N (G)). (3.187)
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By the same arguments we used for the L2-torsion one shows that ρW(C∗)
is well-defined, i.e. independent of the choice of (γ∗, u∗) and that a lot of the
good properties remain true. For instance, if 0 → C∗ → D∗ → E∗ → 0 is an
exact sequence of finite Hilbert N (G)-chain complexes and two of them are
W-acyclic, then all three are W-acyclic and we get analogously to Lemma
3.68

ρW(C∗)− ρW(D∗) + ρW(E∗) = ρW(C∗, D∗, E∗). (3.188)

The problem is to find out how much information KW
1 (N (G)) contains

depending of the various choices of W.
If we take for instance W to be the class of isomorphisms, K̃W

1 (N (G)) is
just the ordinary K̃1(N (G)) of the ring N (G) which has been computed in
[344] (see also Subsection 9.2.2). However, W-acyclic means in this situation
that C∗ is contractible and this condition is extremely restrictive as we will
see in Chapter 12 on the Zero-in-the-Spectrum-conjecture. If we takeW to be
the class of weak isomorphisms of determinant class, then the logarithm of the
Fuglede-Kadison determinant gives a homomorphism det : K̃W

1 (N (G)) → R
which maps ρW(C∗) to ρ(2)(C∗). This homomorphism is split surjective but
we do not know whether it is bijective. Finally we discuss the case where W
consists of all weak isomorphisms. Then KW

1 (N (G)) can be identified with
K inj

1 (N (G)) (see Definition 9.16). If G contains Zn as subgroup of finite index,
KW

1 (N (G)) has been computed in [345] (see also Section 9.3) and there it is
shown that ρW(C∗) contains essentially the same information as the classical
Alexander polynomial. If G is finitely generated and does not contain Zn as
subgroup of finite index, then KW

1 (N (G)) = 0 [344] (see also Section 9.3)
and hence ρW(C∗) carries no information. This shows why a condition such
as of determinant class has to appear to get a meaningful invariant.

Lott [321] defines analytically delocalized L2-torsion for the universal cov-
ering M̃ of a closed Riemannian manifold M , which gives a number for each
conjugacy class of the fundamental group π1(M). The value of the conjugacy
class of the unit element is the L2-torsion. This invariant is presently only
defined under certain technical convergence assumptions. At least for univer-
sal coverings of closed hyperbolic manifolds of odd dimension the delocalized
L2-torsion is defined and the marked length spectrum can be recovered from
it.

Formulas for the variation of the L2-torsion under varying the Riemannian
metric are given for instance in [316, page 480] and [346, section 7].

We will give further computations of L2-torsion for universal coverings of
compact 3-manifolds in Theorem 4.3, of knot complements in Section 4.3 and
of closed locally symmetric spaces in Theorem 5.12 and in (5.13).

We will discuss the behaviour of L2-Betti numbers, Novikov-Shubin invari-
ants and L2-torsion of groups under quasi-isometry and measure equivalence
in Section 7.5.
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In Chapter 11 we will deal with the Conjecture 11.3 which makes a pre-
diction about the parity of the L2-torsion of the universal covering of a closed
manifold M , provided M is aspherical or carries a Riemannian metric with
negative sectional curvature.

We will relate the L2-torsion of the universal covering of an aspherical
closed orientable manifold to its simplicial volume in Chapter 14.

Further references about L2-torsion are [92], [93], [137], [138], [139], [360],
[362], [363].

Exercises

3.1. Let C∗ be a finite free Z-chain complex. Choose a Z-basis for Cp and for
Hp(C∗)/ tors(Hp(C∗)) for each p ∈ Z. They induce R-bases and thus Hilbert
space structures on Cp⊗ZR and on Hp(C∗⊗ZR) ∼= Hp(C∗)⊗ZR for all p ∈ Z.
Let ρZ(C∗) be the real number ρ(C∗ ⊗Z R) whose definition is the obvious
variation of (3.5). Prove

ρZ(C∗) =
∑

p∈Z
(−1)p · ln (|tors(Hp(C∗))|) .

3.2. Let X and Y be finite CW -complexes. Let ji : Xi → X and ki : Yi → Y
be inclusions of CW -subcomplexes for i = 0, 1, 2 such that X = X1 ∪ X2,
X0 = X1 ∩X2, Y = Y1 ∪Y2 and Y0 = Y1 ∩Y2 holds. Let f : X → Y be a map
which induces homotopy equivalences fi : Xi → Yi for i = 0, 1, 2. Show that
f is a homotopy equivalence and

τ(f̃) = k1∗(τ(f̃1)) + k2∗(τ(f̃2))− k0∗(τ(f̃0)).

3.3. Let f : X → Y and g : Y → Z be homotopy equivalences of finite
CW -complexes. Prove

τ(g̃ ◦ f) = τ(g̃) + g∗(τ(f̃)).

3.4. Let f : X ′ → X and g : Y ′ → Y be homotopy equivalences of connected
finite CW -complexes. Denote by kX : X → X × Y and kY : Y → X × Y the
canonical inclusions for some choice of base points in X and Y . Prove

τ(f̃ × g) = χ(X) · kY ∗(τ(g̃)) + χ(Y ) · kX∗(τ(f̃)).
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3.5. Show for Sn equipped with some Riemannian metric

ρtop(Sn;R) =
(1 + (−1)n+1)

2
· ln(vol(Sn)).

3.6. Equip R with the standard Riemannian metric and Z-operation. De-
note by V the trivial orthogonal 1-dimensional Z-representation whose un-
derlying vector space is R with the standard Hilbert space structure. Let
ζR(s) =

∑
n≥1 n−s be the Riemannian Zeta-function. Show for the Zeta-

function ζ1(R; V )(s) defined in (3.8)

ζ1(R;V )(s) = 2 · (2π)−2s · ζR(2s).

3.7. Define a function F : R → [0,∞) by F (λ) = 1
− ln(− ln(λ))·ln(λ) for 0 <

λ ≤ e−e, F (λ) = e−1 for λ ≥ e−e and F (λ) = 0 for λ ≤ 0. Show that F is a
density function with

lim
λ→0+

ln(λ) · F (λ) = 0;
∫ 1

0+

ln(λ) dF = −∞.

3.8. Let A be a (k, k)-matrix over C[Zn]. Denote its determinant over C[Zn]
by detC[Zn](A) ∈ C[Zn]. Let RA : l2(Zn)k → l2(Zn)k and RdetC[Zn](A) : l2(Zn) →
l2(Zn) be the morphism given by right multiplication with A and detC[Z](A).
Show that the following statements are equivalent: i.) RA is a weak isomor-
phism, ii.) RdetC[Zn](A) is a weak isomorphism and iii.) detC[Zn](A) 6= 0. Show
that in this case det(RA) = det(RdetC[Zn](A)).

3.9. Let X be a finite free Z-CW -complex. Since C[Z] is a principal ideal
domain [15, Proposition V.5.8 on page 151 and Corollary V.8.7 on page 162],
we can write

Hp(X;C) = C[Z]np ⊕



sp⊕

ip=1

C[Z]/((z − ap,ip)rp,ip )




for ap,ip ∈ C and np, sp, rp,ip ∈ Z with np, sp ≥ 0 and rp,ip ≥ 1 where z ∈ Z
is a fixed generator.

Prove for p ≥ 0

b(2)
p (X) = np;

αp+1(X) =





min{ 1
rp,ip

| ip = 1, 2 . . . , sp, |ap,ip | = 1}
if sp ≥ 1 and {ip = 1, 2 . . . , sp, |ap,ip | = 1} 6= ∅

∞+ otherwise
.
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Show that X is det-L2-acyclic if and only if np = 0 for all p ≥ 0.
Prove that ρ(2)(X) cannot be read off from the C[Z]-modules Hp(X;C)

for all p ∈ Z, but that ρ(2)(X) is determined by the Z[Z]-modules Hp(X;C)
for p ∈ Z and can be written as ln(|a|)− ln(|b|) for algebraic integers a, b ∈ C
with |a|, |b| ≥ 1.

3.10. Give an example of finite Hilbert N (G)-chain complexes C∗ and
D∗ which are both of determinant class and a weak homology equivalence
f∗ : C∗ → D∗ such that fp is of determinant class for all p ∈ Z, but neither
f∗ is of determinant class nor H

(2)
p (f∗) is of determinant class for all p ∈ Z.

(cf. Theorem 3.35 (5) and Lemma 3.44).

3.11. Let (C∗,∗, d∗,∗) be a bicomplex of finitely generated Hilbert N (G)-
chain modules such that Cp,q = 0 for |p|, |q| ≥ N holds for some number N .
Suppose for p ∈ Z that the chain complex Cp,∗ given by the p-th column and
the chain complex C∗,q given by the q-th row are det-L2-acyclic. Let T∗ be
the associated total chain complex with Tn =

⊕
p+q=n Cp,q. Show that T∗ is

det-L2-acyclic and
∑

p∈Z
(−1)p · ρ(2)(Cp,∗) = ρ(2)(T∗) =

∑

q∈Z
(−1)q · ρ(2)(C∗,q).

3.12. Show that the following statements are equivalent:

(1) The map ΦG : Wh(G) → R of (3.92) is trivial for all groups G;
(2) For all finitely generated groups G and G-homotopy equivalences f : X →

Y of det-L2-acyclic free finite G-CW -complexes ρ(2)(X) = ρ(2)(Y ) holds;
(3) For all finitely generated groups G and G-homotopy equivalences f : M →

N of det-L2-acyclic cocompact free proper G-manifolds with G-invariant
Riemannian metric and without boundary ρ

(2)
an (M) = ρ

(2)
an (N) holds.

3.13. Show that the composition of the obvious map given by induction⊕
H⊂G,|H|<∞Wh(H) → Wh(G) with φG : Wh(G) → R is trivial.

3.14. Let G be a countable group. Show that the following sets are countable

{b(2)
p (X;N (G)) | X connected free G-CW -complex of finite type, p ≥ 0};

{α(2)
p (X;N (G)) | X connected free G-CW -complex of finite type, p ≥ 1};

{ρ(2)(X;N (G)) | X det -L2-acyclic connected finite free G-CW -complex}.
Show that the first set is closed under addition in R≥0, and that the third
set is an additive subgroup of R provided that the third set is non-empty.

3.15. Show that the following sets are countable

{b(2)
p (X̃) | X connected CW -complex of finite type, p ≥ 0};
{αp(X̃) | X connected CW -complex of finite type, p ≥ 1};
{ρ(2)(X̃) | X det -L2-acyclic connected finite CW -complex}.
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3.16. Give an example of a fibration of connected finite CW -complexes which
is not simple, i.e. θ(p) 6= 0.

3.17. Let f : X → X be a selfmap of a connected finite CW -complex and let
Tf be its mapping torus. Let L be the colimit of the system

. . .
π1(f)−−−→ π1(X)

π1(f)−−−→ π1(X)
π1(f)−−−→ . . .

There is a canonical epimorphism ι : π1(X) → L and an automorphism µ :
L → L satisfying µ ◦ ι = ι ◦ π1(f). Show that π1(Tf ) is isomorphic to the
semidirect product LoµZ. Prove that ι is bijective and π1(Tf ) ∼= π1(X)oπ1(f)

Z, provided that π1(f) is bijective.

3.18. Let p : E → S1 be a fibration with fiber Sn ∨ Sn for n ≥ 2. Suppose
that π1(S1) = Z acts on Hn(Sn ∨ Sn;Z) by an automorphism H1(f) with
determinant 1. Let tr ∈ Z be the trace of H1(f). Show that all L2-Betti
numbers of T̃f vanish, α1(T̃f ) = 1, αp(T̃f ) = ∞+ for p 6= 1, n + 1 and that
precisely one of the following cases occurs

(1) H1(f) is periodic. Then tr ∈ {−1, 0,+1} or H1(f) = ± id and we have
αn+1(T̃f ) = 1 and ρ(2)(T̃f ) = 0;

(2) H1(f) is parabolic, i.e. H1(f) is not periodic and all complex eigenval-
ues have norm 1. Then we have tr ∈ {−2,+2}, αn+1(T̃f ) = 1/2 and
ρ(2)(T̃f ) = 0;

(3) H1(f) is hyperbolic, i.e. there is one (and hence two) complex eigenvalue
whose norm is not 1. Then | tr | > 2, αn+1(T̃f ) = ∞+ and ρ(2)(T̃f ) =

ln
(

tr
2 +

√
tr2

4 − 1
)

.

3.19. Give examples of two fibrations F → E0 → B and F → E1 → B of
connected finite CW -complexes with the same fiber and base space such that
the fiber is simply connected, Ẽ0 and Ẽ1 are of determinant class and have
trivial L2-Betti numbers, but Ẽ0 and Ẽ1 have both different Novikov-Shubin
invariants and different L2-torsion.

3.20. Let F : [0,∞) → [0,∞) be a density function with F (0) = 0 for which
there is K > 0 with F (λ) = F (K). Let θF be its Laplace transform. Fix
ε > 0. Show:

(1) We have
θF (t) =

∑

n≥0

antn

for a power series
∑

n≥0 antn which converges for all t ∈ R and satisfies
a0 = F (K);

(2) The function
1

Γ (s)
·
∫ ε

0

ts−1θF (t) dt
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is holomorphic for <(s) > 0 and has a meromorphic extension to C which
has poles at s = −1,−2,−3, . . ., all of order 1;

(3) Suppose 0 < α(F ). The function

1
Γ (s)

·
∫ ∞

ε

ts−1 · θF (t) dt

is holomorphic for <(s) < α(F ). We have

d

ds

1
Γ (s)

·
∫ ∞

ε

ts−1θF (t) dt

∣∣∣∣
s=0

=
∫ ∞

ε

t−1 · θF (t) dt < ∞;

(4) Suppose 0 < α(F ). Then the function
∫∞
0

λ−s dF (λ) is holomorphic for
<(s) < α(F ) and we get

d

ds

∫ ∞

0

λ−s dF (λ)
∣∣∣∣
s=0

=
∫ ∞

0

ln(λ) dF (λ) < ∞;

(5) We have for 0 < <(s) < α(F )

1
Γ (s)

·
∫ ∞

0

ts−1 · θF (t) dt =
∫ ∞

0

λ−s dF (λ);

(6) If 0 < α(F ), we get

d

Dr

1
Γ (s)

∫ ε

0

ts−1 · θF (t) du

∣∣∣∣
s=0

+
∫ ∞

ε

t−1 · θF (t) dt

=
d

ds

1
Γ (s)

∫ ∞

0

ts−1 · θF (t) dt

∣∣∣∣
s=0

=
∫ ∞

0

ln(λ) dF (λ) < ∞.

3.21. Show directly using Definition 3.128 that ρ
(2)
an (S̃1) = 0.

3.22. Compute ρan([0, 1]) = ln(2)
2 and ρtop([0, 1]) = 0 for [0, 1] equipped with

the standard Riemannian metric directly from the definitions without using
Theorem 3.161 but using the facts for the Riemannian Zeta-function ξR(s)
that ξR(0) = −1/2 and d

dsξR(0) = − ln(2)/2.

3.23. Let M be a cocompact proper free G-manifold of even dimension which
is orientable. Suppose that M is det-L2-acyclic. Show that ∂M is det-L2-
acyclic and

ρ(2)(M) =
ρ(2)(∂M)

2
.



210 3. L2-Torsion

3.24. Compute the characteristic sequence c(A,K)p of the (1, 1)-matrix (z−
λ) over C[Z] for z ∈ Z a fixed generator and real numbers λ ≥ 0 and K = λ+1
and conclude

∞∑
p=1

1
p
·

 (2 · λ)p

(1 + λ)2p
·
[p/2]∑

k=0

4−k · p!
(p− 2k)! · k! · k!




=
{

2 · ln(λ + 1)− 2 · ln(|λ|) if λ ≥ 1
2 · ln(λ + 1) if λ ≤ 1 .



4. L2-Invariants of 3-Manifolds

Introduction

In this section we compute all L2-Betti numbers and the L2-torsion and give
some values and estimates for the Novikov-Shubin invariants for the universal
covering of a compact connected orientable 3-manifold. This will use both
the general properties of these L2-invariants which we have developed in
the preceding chapters and the geometry of 3-manifolds. In particular our
computations will be based on Thurston’s Geometrization Conjecture. The
necessary input of the theory of 3-manifolds will be given in Section 4.1
and the actual computations and sketches of their proofs in Section 4.2. In
our opinion they combine analytic, geometric and topological methods in a
beautiful way. Moreover, these computations will give evidence for various
general conjectures about L2-invariants such as Conjecture 2.82 about the
positivity and rationality of Novikov-Shubin invariants, the Strong Atiyah
Conjecture 10.2, the Singer Conjecture 11.1, Conjecture 11.3 about the parity
of the L2-torsion of the universal covering of an aspherical closed manifold
and the zero-in-the-spectrum Conjecture 12.1.

4.1 Survey on 3-Manifolds

In this section we give a brief survey about connected compact orientable
3-manifolds. For more information we refer for instance to [252], [466], [491],
[492].

In the sequel 3-manifold means connected compact orientable 3-manifold
possibly with boundary. A 3-manifold M is prime if for any decomposition
of M as a connected sum M1#M2, M1 or M2 is homeomorphic to S3. It
is irreducible if every embedded 2-sphere bounds an embedded 3-disk. Any
prime 3-manifold is either irreducible or is homeomorphic to S1 × S2 [252,
Lemma 3.13]. A 3-manifold M has a prime decomposition, i.e. one can write
M as a connected sum

M = M1#M2# . . . #Mr,

where each Mj is prime, and this prime decomposition is unique up to renum-
bering and orientation preserving homeomorphism [252, Theorems 3.15, 3.21].
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By the Sphere Theorem [252, Theorem 4.3], an irreducible 3-manifold is as-
pherical if and only if it is a 3-disk or has infinite fundamental group.

Given a 3-manifold M , a compact connnected orientable surface F which
is properly embedded in M, i.e. ∂M ∩F = ∂F , or embedded in ∂M , is called
incompressible if it is not a 2-sphere and the inclusion F → M induces an
injection on the fundamental groups. One says that ∂M is incompressible in
M if and only if ∂M is empty or any component C of ∂M is incompress-
ible in the sense above. An irreducible 3-manifold is Haken if it contains an
embedded orientable incompressible surface. If H1(M) is infinite, which is
implied if ∂M contains a surface other than S2, and M is irreducible, then
M is Haken [252, Lemma 6.6 and 6.7].

The fundamental group plays a dominant role in the theory of 3-manifolds,
as explained by the next results. Let M be a 3-manifold with incompressible
boundary whose fundamental group admits a splitting α : π1(M) → Γ1 ∗ Γ2.
Kneser’s Conjecture, whose proof can be found in [252, chapter 7], says that
there are manifolds M1 and M2 with Γ1 and Γ2 as fundamental groups and
a homeomorphism M → M1#M2 inducing α on the fundamental groups.
Kneser’s conjecture fails even in the closed case in dimensions ≥ 5 by results
of Cappell [87], [88] and remains true in dimension 4 stably but not unstably
[298], [299].

Let (f, ∂f) : (M, ∂M) → (N, ∂N) is a map of (compact connected ori-
entable) Haken 3-manifolds such that π1(f, x) : π1(M,x) → π1(N, f(x)) and
π1(∂f, y) : π1(∂M, y) → π1(∂N, f(y)) are isomorphisms for any choice of base
points x ∈ M and y ∈ ∂M , then f is homotopic to a homeomorphism. This
is a result of Waldhausen [252, Corollary 13.7 on page 148], [507]. One can
read off from the fundamental group of a 3-manifold M whether M is the
total space of a fiber bundle [252, Chapter 11]. One knows which finite groups
or abelian groups occur as fundamental groups of 3-manifolds [252, Chapter
9]. Notice that for n ≥ 4 any finitely presented group is the fundamental
group of a closed connected orientable n-dimensional manifold but not any
finitely presented group occurs as the fundamental group of a compact con-
nected 3-manifold. For instance the fundamental group of a 3-manifold whose
prime factors are all non-exceptional is residually finite [253]. (The notion of
exceptional 3-manifold will be introduced in Section 4.2.)

Recall that a manifold (possible with boundary) is called hyperbolic if
its interior admits a complete Riemannian metric whose sectional curvature
is constant −1. We use the definition of Seifert fibered 3-manifold or briefly
Seifert manifold given in [466], which we recommend as a reference on Seifert
manifolds. If a 3-manifold M has infinite fundamental group and empty or
incompressible boundary, then it is Seifert if and only if it admits a finite
covering M which is the total space of a S1-principal bundle over a compact
orientable surface [466, page 436]. The work of Casson and Gabai shows that
an irreducible 3-manifold with infinite fundamental group π is Seifert if and
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only if π contains a normal infinite cyclic subgroup [213, Corollary 2 on page
395].

A geometry on a 3-manifold M is a complete locally homogeneous Rie-
mannian metric on its interior. The universal cover of the interior has a com-
plete homogeneous Riemannian metric, meaning that the isometry group acts
transitively [476]. Thurston has shown that there are precisely eight simply
connected 3-dimensional geometries having compact quotients, namely S3,
R3, S2×R, H2×R, Nil, S̃L2(R), Sol and H3. If a closed 3-manifold admits
a geometric structure modelled on one of these eight geometries then the ge-
ometry involved is unique. In terms of the Euler class e of the Seifert bundle
and the Euler characteristic χ of the base orbifold, the geometric structure
of a closed Seifert manifold M is determined as follows [466, Theorem 5.3]

χ > 0 χ = 0 χ < 0
e = 0 S2 × R R3 H2 × R
e 6= 0 S3 Nil S̃L2(R)

If M has a S3-structure then π1(M) is finite. In all other cases M is finitely
covered by the total space M of an S1-principal bundle over an orientable
closed surface F . Moreover, e(M) = 0 if and only if e(M) = 0, and the
Euler characteristic χ of the base orbifold of M is negative, zero or positive
according to the same condition for χ(M/S1) [466, page 426, 427 and 436].

Next we summarize what is known about Thurston’s Geometrization Con-
jecture for irreducible 3-manifolds with infinite fundamental groups. (Again,
our 3-manifolds are understood to be compact, connected and orientable.)
Johannson [278] and Jaco and Shalen [276] have shown that given an irre-
ducible 3-manifold M with incompressible boundary, there is a finite family of
disjoint, pairwise-nonisotopic incompressible tori in M which are not isotopic
to boundary components and which split M into pieces that are Seifert man-
ifolds or are geometrically atoroidal , meaning that they admit no embedded
incompressible torus (except possibly parallel to the boundary). A minimal
family of such tori is unique up to isotopy, and we will say that it gives a toral
splitting of M . We will say that the toral splitting is a geometric toral splitting
if the geometrically atoroidal pieces which do not admit a Seifert structure are
hyperbolic. Thurston’s Geometrization Conjecture for irreducible 3-manifolds
with infinite fundamental groups states that such manifolds have geometric
toral splittings.

For completeness we mention that Thurston’s Geometrization Conjecture
says for a closed 3-manifold with finite fundamental group that its universal
covering is homeomorphic to S3, the fundamental group of M is a subgroup
of SO(4) and the action of it on the universal covering is conjugated by a
homeomorphism to the restriction of the obvious SO(4)-action on S3. This
implies, in particular, the Poincaré Conjecture that any homotopy 3-sphere
is homeomorphic to S3.
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Suppose that M is Haken. The pieces in its toral splitting are certainly
Haken. Let N be a geometrically atoroidal piece. The Torus Theorem says
that N is a special Seifert manifold or is homotopically atoroidal, i.e. any sub-
group of π1(N) which is isomorphic to Z×Z is conjugate to the fundamental
group of a boundary component. McMullen following Thurston has shown
that a homotopically atoroidal Haken manifold is a twisted I-bundle over the
Klein bottle (which is Seifert), or is hyperbolic [368]. Thus the only case in
which Thurston’s Geometrization Conjecture for an irreducible 3-manifold M
with infinite fundamental group is still open is when M is a closed non-Haken
irreducible 3-manifold with infinite fundamental group which is not Seifert.
The conjecture states that such a manifold is hyperbolic.

4.2 L2-Invariants of 3-Manifolds

In this section we state the values of the various L2-invariants for univer-
sal coverings of compact connected orientable 3-manifolds. Notice that the
assumption orientable is not a serious restriction, since any non-orientable
3-manifold has a connected two-sheeted covering which is orientable and we
know how the L2-invariants behave under finite coverings (see Theorem 1.35
(9), Theorem 2.55 (6) and Theorem 3.96 (5)). Recall that we have already
computed the L2-invariants for the universal covering of a compact connected
orientable surface F (see Example 1.36, Example 2.70 and Theorem 3.105).
Notice in the context of L2-torsion that the universal covering of a compact
orientable surface F is L2-acyclic if and only if F is T 2 or S1 ×D1.

Let us say that a prime 3-manifold is exceptional if it is closed and no
finite covering of it is homotopy equivalent to a Haken, Seifert or hyperbolic
3-manifold. No exceptional prime 3-manifolds are known, and Thurston’s
Geometrization Conjecture and Waldhausen’s Conjecture that any 3-manifold
is finitely covered by a Haken manifold imply that there are none. Notice that
any exceptional manifold has infinite fundamental group.

Theorem 4.1 (L2-Betti numbers of 3-manifolds). Let M be the con-
nected sum M1# . . . #Mr of (compact connected orientable) prime 3-manifolds
Mj which are non-exceptional. Assume that π1(M) is infinite. Then the L2-
Betti numbers of the universal covering M̃ are given by

b
(2)
0 (M̃) = 0;

b
(2)
1 (M̃) = (r − 1)−

r∑

j=1

1
| π1(Mj) | +

∣∣{C ∈ π0(∂M) | C ∼= S2}∣∣− χ(M);

b
(2)
2 (M̃) = (r − 1)−

r∑

j=1

1
| π1(Mj) | +

∣∣{C ∈ π0(∂M) | C ∼= S2}
∣∣ ;

b
(2)
3 (M̃) = 0.
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In particular, M̃ has trivial L2-cohomology if and only if M is homotopy
equivalent to RP 3#RP 3 or a prime 3-manifold with infinite fundamental
group whose boundary is empty or a union of tori.

Proof. We give a sketch of the strategy of proof. Details can be found in [322,
Sections 5 and 6]. Since the fundamental group is infinite, we get b

(2)
0 (M̃) = 0

from Theorem 1.35 (8). If M is closed, we get b
(2)
3 (M̃) = 0 because of Poincaré

duality (see Theorem 1.35 (3)). If M has boundary, it is homotopy equivalent
to a 2-dimensional CW -complex and hence b

(2)
3 (M̃) = 0. It remains to com-

pute the second L2-Betti number, because the first one is then determined
by the Euler-Poincaré formula of Theorem 1.35 (2).

Using the formula for connected sums of Theorem 1.35 (6) we reduce the
claim to prime 3-manifolds. Since a prime 3-manifold is either irreducible or
S1×S2, it remains to treat the irreducible case. If the boundary is compress-
ible, we use the Loop Theorem [252, Theorem 4.2 on page 39] to reduce the
claim to the incompressible case. By doubling M we can reduce the claim fur-
ther to the case of an irreducible 3-manifold with infinite fundamental group
and incompressible torus boundary. Because of the toral splitting and the
assumptions about Thurston’s Geometrization Conjecture it suffices to show
that the L2-Betti numbers vanish if M is Seifert with infinite fundamental
group or is hyperbolic with incompressible torus boundary. All these steps
use the weakly exact Mayer-Vietoris sequence for L2-(co)homology (see The-
orem 1.21). In the Seifert case we can assume by the multiplicative property
(see Theorem 1.35 (9)) that M is a S1-principal bundle over a 2-dimensional
manifold. Then we can apply Theorem 1.40.

The hyperbolic case follows directly from Theorem 1.62 provided that the
manifold has no boundary. One of the hard parts in the proof is to reduce
the case of a hyperbolic 3-manifold with incompressible torus boundary to
the closed case by a careful analysis of the manifold near its boundary using
explicit models and the fact that the volume is finite. ut

Let χvirt(π1(M)) be the Q-valued virtual group Euler characteristic of
the group π1(M) in the sense of [69, IX.7], [509]. (This will be the same as
the L2-Euler characteristic of π1(M) as explained in Remark 6.81). Then the
conclusion in Theorem 4.1 is equivalent to

b
(2)
1 (M̃) = −χvirt(π1(M));

b
(2)
2 (M̃) = χ(M)− χvirt(π1(M)).

This is proved in [322, page 53 - 54].
Next we state what is known about the values of the Novikov-Shubin

invariants of 3-manifolds (see [322, Theorem 0.1]).

Theorem 4.2 (Novikov-Shubin invariants of 3-manifolds). Let M be
the connected sum M1# . . . #Mr of (compact connected orientable) prime
3-manifolds Mj which are non-exceptional. Assume that π1(M) is infinite.
Then
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(1) We have αp(M̃) > 0 for p ≥ 1;
(2) Let the Poincaré associate P (M) be the connected sum of the Mj’s which

are not 3-disks or homotopy 3-spheres. Then αp(P̃ (M)) = αp(M̃) for
p ≤ 2. We have α1(M̃) = ∞+ except for the following cases:

(a) α1(M̃) = 1 if P (M) is S1 ×D2, S1 × S2 or homotopy equivalent to
RP 3#RP 3;

(b) α1(M̃) = 2 if P (M) is T 2 × I or a twisted I-bundle over the Klein
bottle K;

(c) α1(M̃) = 3 if P (M) is a closed R3-manifold;
(d) α1(M̃) = 4 if P (M) is a closed Nil-manifold;
(e) α1(M̃) = ∞ if P (M) is a closed Sol-manifold;

(3) If M is a closed hyperbolic 3-manifold then α2(M) = 1. If M is a closed
Seifert 3-manifold then α2(M) is given in terms of the Euler class e of
the bundle and the Euler characteristic χ of the base orbifold by

χ > 0 χ = 0 χ < 0
e = 0 ∞+ 3 1
e 6= 0 ∞+ 2 1

If M is a Seifert 3-manifold with boundary then α2(M) = ∞+ if M =
S1 ×D2, α2(M) = 2 if M is T 2 × I or a twisted I-bundle over K, and
α2(M) = 1 otherwise. If M is a closed Sol-manifold then α2(M) ≥ 1.

(4) If ∂M contains an incompressible torus then α2(M̃) ≤ 2. If one of the
Mj’s is closed with infinite fundamental group and does not admit an R3,
S2 × R or Sol-structure, then α2(M̃) ≤ 2.

(5) If M is closed then α3(M̃) = α1(M̃). If M is not closed then α3(M̃) =
∞+.

Proof. The strategy of the proof is similar to the one of Theorem 4.1 using
now Theorem 2.20, Theorem 2.55, Theorem 2.61, Theorem 2.68 and Theo-
rem 3.183 together with explicit computations of heat kernels on the various
spaces occuring in Thurston’s list of eight geometries with compact quotients
in dimension 3. Details can be found in [322, Sections 5 and 6]. ut

Finally we state the values for the L2-torsion (see [346, Theorem 0.6]).

Theorem 4.3 (L2-torsion of 3-manifolds). Let M be a compact connected
orientable prime 3-manifold with infinite fundamental group such that the
boundary of M is empty or a disjoint union of incompressible tori. Suppose
that M satisfies Thurston’s Geometrization Conjecture, i.e. there is a geo-
metric toral splitting along disjoint incompressible 2-sided tori in M whose
pieces are Seifert manifolds or hyperbolic manifolds. Let M1, M2, . . ., Mr be
the hyperbolic pieces. They all have finite volume [385, Theorem B on page
52]. Then M̃ is det-L2-acyclic and
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ρ(2)(M̃) = − 1
6π

·
r∑

i=1

vol(Mi).

In particular, ρ(2)(M̃) is 0 if and and only if there are no hyperbolic pieces.

Proof. The strategy of the proof is similar to the one of Theorem 4.1 using
now Theorem 3.96, Theorem 3.105, Theorem 3.161 and Theorem 3.163. ut

4.3 L2-Invariants of Knot Complements

Let K ⊂ S3 be a knot, i.e. a smooth embedding of S1 into S3. Let N(K) be a
closed tubular neighboorhood. Notice that N(K) is diffeomorphic to S1×D2.
Define the knot complement M(K) to be the 3-manifold S3− int(N(K)). The
complement of the trivial knot is S1 ×D2.

Lemma 4.4. The knot complement M(K) of a non-trivial knot is an irre-
ducible compact connected oriented 3-manifold whose boundary is an incom-
pressible torus T 2.

Proof. Everything is obvious except for the fact that the boundary is incom-
pressible and M(K) is irreducible. Incompressibility is for instance proved
in [75, Proposition 3.17 on page 39]. Next we show irreducibility. Let S2 ⊂
M(K) be an embedded 2-sphere. In particular we can think of S2 as embed-
ded in S3. By the Alexander-Schönflies Theorem [75, Theorem 1.8 on page
5], [381] there are embbeded balls D3

1 and D3
2 in S3 such that S3 = D3

1 ∪D3
2

and ∂D3
1 = ∂D3

2 = D3
1 ∩D3

1 = S2. Since the knot is connected and does not
meet the embedded S2, it is contained in one of the balls, let us say D3

2. Then
D3

1 is a ball embedded in M(K) whose boundary is the given S2. ut
In particular M(K) is Haken and Theorem 4.3 applies to M(K) for a non-

trivial knot. If we choose a different tubular neighborhood, then the corre-
sponding knot complements are diffeomorphic. This implies that ρ(2)(M̃(K))
is defined for all knots and depends only on the ambient isotopy class of the
knot.

Definition 4.5 (L2-torsion of a knot). Define the L2-torsion of a knot
K ⊂ S3 to be the real number

ρ(2)(K) := ρ(2)(M̃(K)).

Notice that ρ(2)(M̃) = 0 for the trivial knot by Theorem 3.96 (5). We get
from Theorem 4.3.

Theorem 4.6. Let K be a non-trivial knot. Then the boundary of M(K) is
incompressible and there is a geometric toral splitting of M(K) along disjoint
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incompressible 2-sided tori in M whose pieces are Seifert manifolds or hyper-
bolic manifolds. Let M1, M2, . . ., Mr be the hyperbolic pieces. They all have
finite volume. We have

ρ(2)(K) = − 1
6π

·
r∑

i=1

vol(Mi);

The next result follows from [225, Corollary 4.2 on page 696], [395, Lemma
5.5 and Lemma 5.6 on page 102]. For the notions of connected sum (sometimes
also called product) of knots and cabling of knots were refer for instance to
[75, 2.7 on page 19 and 2.9 on page 20]. The Alexander polynomial ∆(K) of
a knot is explained for instance in [75, Definition 8.10 on page 109], [374],
[376], [497].

Theorem 4.7. (1) Let K be a knot. Then ρ(2)(K) = 0 if and only if K is
obtained from the trivial knot by applying a finite number of times the
operation “connected sum” and “cabling”;

(2) A knot is trivial if and only if both its L2-torsion ρ(2)(M̃) and its Alexan-
der polynomial ∆(K) are trivial.

This shows that invariants of Reidemeister torsion type, namely the L2-
torsion and the Alexander polynomial, detect whether a knot is trivial.

There is the following conjecture due to Kashaev [286] and H. and J.
Murakami [395, Conjecture 5.1 on page 102].

Conjecture 4.8 (Volume Conjecture). Let K be a knot and denote by
JN (K) the normalized colored Jones polynomial at the primitive N -th root of
unity as defined in (see [395]). Then

ρ(2)(K) =
−1
3
· lim

N→∞
ln(|JN (K)|)

N
.

Kashaev states his conjecture in terms of the sum of the volumes of the
hyperbolic pieces in the geometric toral splitting and H. and J. Murakami in
terms of the simplicial volume. These lead to equivalent conjectures by The-
orem 4.6 and Theorem 14.18 (3). Maybe there is a link between Conjecture
4.8 above and Question 13.73.

The Volume Conjecture 4.8 implies by Theorem 4.7 (2) the version of Vas-
siliev’s conjecture that a knot K is trivial if and only if every Vassiliev finite
type invariant of K agrees with the one of the trivial knot. The point is that
the colored Jones polynomials and the Alexander polynomial are determined
by the Vassiliev finite type invariants.

4.4 Miscellaneous

The combinatorial computations of Theorem 3.172 and Remark 3.173 enables
us to compute the L2-torsion of the universal covering of a 3-manifold (and
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hence in view of Theorem 4.3 the sum of the volumes of its hyperbolic pieces
in its geometric toral splitting) directly from a presentation of its fundamental
group. Namely, we have (see [330, Theorem 2.4 on page 84])

Theorem 4.9. Let M be a compact connected orientable irreducible 3-manifold
with infinite fundamental group G. Let

G = 〈s1, s2, . . . sg | R1, R2, . . . Rr〉
be a presentation of G. Let the (r, g)-matrix

F =




∂R1
∂s1

. . . ∂R1
∂sg

...
. . .

...
∂Rr

∂s1
. . . ∂Rr

∂sg




be the Fox matrix of the presentation (see [75, 9B on page 123], [200], [330,
page 84]). Now there are two cases:

(1) Suppose ∂M is non-empty. We make the assumption that ∂M is a union
of incompressible tori and that g = r + 1. Then M is det-L2-acyclic. De-
fine A to be the (g−1, g−1)-matrix with entries in ZG obtained from the
Fox matrix F by deleting one of the columns. Let α be any real number
satisfying 0 < α < 2·α2(M̃)

α2(M̃)+2
;

(2) Suppose ∂M is empty. We make the assumption that a finite covering of
M is homotopy equivalent to a hyperbolic, Seifert or Haken 3-manifold
and that the given presentation comes from a Heegaard decomposition.
Then M is det-L2-acyclic and g = r. Define A to be the (g − 1, g − 1)-
matrix with entries in ZG obtained from the Fox matrix F by deleting one
of the columns and one of the rows. Let α be any real number satisfying
0 < α < 2·α2(M̃)

α2(M̃)+1
.

Let K be any positive real number satisfying K ≥ ‖R(2)
A ‖. A possible choice

for K is the product of (g − 1)2 and the maximum over the word length of
those relations Ri whose Fox derivatives appear in A.

Then the sum of non-negative rational numbers

L∑
p=1

1
p
· trZG

((
1−K−2 ·AA∗

)p
)

converges for L →∞ to the real number 2 · ρ(2)(M̃) + 2(g − 1) · ln(K). More
precisely, there is a constant C > 0 such that we get for all L ≥ 1

0 ≤ 2 · ρ(2)(M̃) + 2(g− 1) · ln(K)−
L∑

p=1

1
p
· trZG

((
1−K−2 ·AA∗

)p
)
≤ C

Lα
.ut
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The case of an automorphism of a compact connected orientable surface,
which yields a 3-manifold by taking its mapping torus is discussed in Sub-
section 7.4.2

Exercises

4.1. Let M be a compact connected orientable 3-manifold. Show that it
is aspherical if and only its prime decompositions has precisely one factor
which is not a homotopy sphere and this factor is either D3 or an irreducible
3-manifold with infinite fundamental group.

4.2. Show that two connected closed 3-manifolds possessing the same geome-
try have the same L2-Betti numbers and Novikov-Shubin invariants, provided
their fundamental groups are infinite. Which of the eight geometries can be
distinguished from one another by the knowledge of all L2-Betti numbers and
Novikov-Shubin invariants of the universal coverings?

4.3. Let M be a closed connected orientable 3-manifold which possesses a
geometry. Show that the relevant geometry can be read off from the funda-
mental group π as follows:

(1) H3: π is not virtually cyclic and contains no subgroup isomorphic to
Z⊕ Z;

(2) S3: π is finite;
(3) S2 × R: π is virtually cyclic and infinite;
(4) R3: π is contains Z3 as subgroup of finite index;
(5) Nil: π contains a subgroup of finite index G which can be written as an

extension 1 → Z→ G → Z2 → 1 but π does not contain Z3 as subgroup
of finite index;

(6) H2×R: π contains a subgroup of finite index which is isomorphic to Z×G
for some group G and π is not solvable;

(7) S̃l2(R): π is not solvable, contains Z ⊕ Z as subgroup and contains no
subgroup of finite index which is isomorphic to Z×G for some group G;

(8) Sol: π is not virtually abelian and contains a subgroup G of finite index
which is an extension 0 → Z2 → G → Z→ 0.

4.4. Compute the L2-Betti numbers and the Novikov-Shubin invariants of
the universal covering of a compact connected 3-manifold whose fundamental
group is finite.

4.5. Let M be the connected sum M1# . . . #Mr of compact connected
orientable 3-manifolds Mj which are non-exceptional and prime. Show that
then for some p ≥ 0 the Laplace operator (∆p)min of Definition 2.64 acting
on smooth p-forms on the universal covering M̃ has zero in its spectrum.
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4.6. Give a proof of the conclusion which is stated in the last sentence of
Theorem 4.1.

4.7. Let f : F → F be a selfhomeomorphism of a closed orientable surface of
genus ≤ 1. Show that T̃f is det-L2-acyclic and ρ(2)(T̃f ) = 0.





5. L2-Invariants of Symmetric Spaces

Introduction

In this chapter we state the values of the L2-Betti numbers, the Novikov-
Shubin invariants and the L2-torsion for universal coverings of closed locally
symmetric spaces. We give a brief survey about locally symmetric and sym-
metric spaces in Section 5.1 and state the values in Section 5.2 and 5.3.
These computations will give evidence for various general conjectures about
L2-invariants such as Conjecture 2.82 about the positivity and rationality
of Novikov-Shubin invariants, the Strong Atiyah Conjecture 10.2, the Singer
Conjecture 11.1, Conjecture 11.3 about the parity of the L2-torsion of the uni-
versal covering of an aspherical closed manifold and the zero-in-the-spectrum
Conjecture 12.1.

5.1 Survey on Symmetric Spaces

In this section we collect some basic facts about symmetric spaces so that
the reader will be able to understand the results on the computations of L2-
invariants of Section 5.2 and 5.3. A reader who is familiar with symmetric
spaces should pass directly to Section 5.2.

Let M be a complete Riemannian manifold and let x ∈ M be a point. A
normal neighborhood of M at x is an open neighborhood V of x in M such
that there is an open neighborhood U of 0 in the tangent space TxM with
the properties that for any u ∈ U and t ∈ [−1, 1] also tu belongs to U and the
exponential map expx : TxM → M induces a diffeomorphism U → V . The
geodesic symmetry of a normal neighborhood V at x is the diffeomorphism
sp : V → V which sends expx(u) to expx(−u) for u ∈ U .

Definition 5.1 (Locally symmetric space). A complete Riemannian man-
ifold M is called a locally symmetry space if for any x ∈ M there exists a
normal neighborhood V of x such that the geodesic symmetry is an isometry.

A complete Riemannian manifold is a locally symmetric space if and only
if the sectional curvature is invariant under parallel transports with respect
to the Levi-Civita connection [251, Theorem 1.3 in IV.1 on page 201].
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Definition 5.2 (Symmetric space). A complete Riemannian manifold is
called (globally) symmetric space if for each x ∈ M there is an isometric
diffeomorphism tx : M → M which is an involution, i.e. tx ◦ tx = id, and has
x as isolated fixed point, i.e. tx(x) = x and there is a neighborhood W of x
in M such that y ∈ W, tx(y) = y implies x = y.

Examples of symmetric spaces are Sn, RPn, CPn, Rn, Hn.
A symmetric space is always locally symmetric [251, Lemma 3.1 in IV.3 on

page 205]. On the other hand any simply connected locally symmetric space
is a symmetric space [251, Theorem 5.6. in IV.5 on page 222]. In particular
the universal covering of a locally symmetric space is a symmetric space.

Let M be a symmetric space. Denote by Isom(M) the group of isometries
M → M . This group inherits the structure of a topological group by the
compact-open topology coming from the topology of M . Denote for a Lie
group L its identity component by L0. We get from [251, Lemma 3.2 in IV.3
on page 205, Theorem 3.3 in IV.3 on page 208]

Theorem 5.3. The group Isom(M) has the unique structure of an (ana-
lytic) Lie group. Given a point x ∈ M , let Isom(M)0x be the stabilizer of
Isom(M)0 at x, i.e. the subgroup of elements f ∈ Isom(M)0 with f(x) = x.
Then Isom(M)0 acts transitively on M , Isom(M)0x is compact and we get a
(analytic) diffeomorphism

evx : Isom(M)0/ Isom(M)0x
∼=−→ M, f · Isom(M)0x 7→ f(x).

The Killing form of a Lie algebra g is defined by

B : g× g → R, (a, b) 7→ trR(ad(a) ad(b)),

where ad(x) : g → g denotes the adjoint representation sending z to [x, z] and
trR is the trace of an endomorphism of a finite dimensional real vector space.
The Lie algebra g is semisimple if the Killing form is non-degenerate. This
is equivalent to the condition that g contains no non-trivial solvable ideals,
where solvable means that the commutators series ends at {0} [293, page
668]. A Lie algebra g is simple if it is non-abelian and contains no proper
ideals.

The Killing form on a semisimple Lie algebra g is strictly negative-definite
if and only if there is a connected compact Lie group G whose Lie algebra is
g [251, Corollary 6.7 in II.6 on page 133].

An involution of Lie algebras θ : g → g is a Cartan involution if for the
associated decomposition g = k⊕p with k = ker(θ−id) and p = ker(θ+id) the
Killing form B is strictly negative-definite on k and strictly positive-definite
on p. In this context g = k⊕p is called Cartan decomposition. Any semisimple
Lie algebra g has a Cartan decomposition and two Cartan decompositions are
conjugate [251, III.7]. Notice that k is a subalgebra and p a vector subspace.
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Example 5.4. A connected linear reductive Lie group G is a closed con-
nected subgroup of GL(n,R) or GL(n,C), which is stable under taking trans-
pose conjugate matrices. Examples are SL(n,C) ⊂ GL(n,C) and SO(n) ⊂
GL(n,R). Such a group G is a Lie group. It is semisimple if and only if its
center is finite. Taking inverse conjugate transpose matrices induces an invo-
lution of Lie groups Θ : G → G. The group K = {g ∈ G | Θ(g) = g} turns
out to be a maximal compact subgroup. Denote by g the Lie algebra of G and
by θ : g → g the differential of Θ at the identity matrix. Notice that gln(R)
is Mn(R) and gln(C) is Mn(C) and that g is a subalgebra. The involution of
Lie algebras θ sends a matrix to its negative conjugate transpose. The Lie
bracket of g is given by taking commutators. The involution θ is a Cartan
involution. In the Cartan decomposition g = k⊕ p the subalgebra k is the Lie
algebra of K ⊂ G.

Let M be a symmetric space. In the sequel we abbreviate G = Isom(M)0

and K = Isom(M)0x. Let σ : G → G be given by conjugation with the geodesic
symmetry sx ∈ K. Let g be the Lie algebra of G. Put

k = {a ∈ g | T1σ(a) = a};
p = {a ∈ g | T1σ(a) = −a}.

We get a decomposition of Lie algebras g = k⊕ p. Notice that k is the kernel
of the differential at 1 ∈ G of the evaluation map evx : G → M which sends
f to f(x).

Definition 5.5 (Type of a symmetric space). The symmetric space M =
G/K is of compact type if g is semisimple and has strictly negative-definite
Killing form. It is of non-compact type if g is semisimple and σ is a Cartan
involution. It is called of Euclidean type if p is an abelian ideal in g.

A symmetric space M is of compact type if and only Isom(M) is com-
pact and semisimple. A symmetric space M of compact type is a compact
manifold.

If M = G/K for G = Isom(M)0 and K = Isom(M)0x is a symmetric
space of non-compact type, then K is connected and is a maximal compact
subgroup in G and M is diffeomorphic to Rn [251, Theorem 1. in Chaper
VI on page 252]. A symmetric space M is of non-compact type if and only
if the Lie algebra of Isom(M) is semisimple and has no compact ideal [157,
Proposition 2.1.1 on page 69], [251, page 250]. On the other hand, given a
connected semisimple Lie group G with finite center such that its Lie algebra
has no compact ideal, the homogeneous space G/K for a maximal compact
subgroup K ⊂ G equipped with a G-invariant Riemannian metric is a sym-
metric space of non-compact type with G = Isom(M)0 and K = Isom(M)0x
[157, Section 2.2 on page 70].

A θ-stable Cartan subalgebra h ⊂ g of a semisimple Lie algebra g is a
maximal abelian θ-stable abelian subalgebra. All θ-stable Cartan subalgebras
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have the same dimension. Hence we can define the complex rank rkC(g) by
the dimension of a θ-stable Cartan subalgebra of g. [293, page 128f]. (This
should not be confused with the real rank which is the dimension of the term
a in the Iwasawa decomposition g = k⊕ a⊕ n.) Recall that a Lie group G is
semisimple if its Lie algebra is semisimple. The complex rank of a semisimple
Lie group rkC(G) is defined to be the complex rank of its Lie algebra g. The
complex rank of a connected compact Lie group is the same as the dimension
of a maximal torus.

Definition 5.6. Let M = G/K be a symmetric space such that G =
Isom(M)0 is semisimple. Define its fundamental rank

f-rk(M) := rkC(G)− rkC(K).

This is the notion of rank which will be relevant for our considerations.
It should not be confused with the following different notion.

A Riemannian submanifold N ⊂ M of a complete Riemannian manifold
M is totally geodesic if for any geodesic γ : R→ M , for which γ(0) ∈ N and
γ′(0) lies in the tangent space Tγ(0)N , the image of γ lies in N . Recall that a
Riemannian manifold M is flat if the sectional curvature is identically zero.

Definition 5.7. Let M be a symmetric space. Its rank is the maximal di-
mension of a flat totally geodesic complete submanifold of M .

The rank of M in the sense of Definition 5.7 is always greater or equal
to the fundamental rank. This follows from [56, Formula (3) in III.4 on page
99].

The next two results are taken from [251, Proposition 4.2 in V.4 on page
244, Theorem 3.1 in V.3 on page 241].

Theorem 5.8. Let M be a simply connected symmetric space. Then it can
be written as a product

M = Mcp ×MEucl ×Mncp,

where Mcp is of compact type, MEucl of Euclidean type and Mncp of non-
compact type.

Theorem 5.9. Let M be a symmetric space. Then

(1) If M is of compact type, then the sectional curvature of M is non-
negative: sec(M) ≥ 0;

(2) If M is of Euclidean type, then M is flat: sec(M) = 0;
(3) If M is of non-compact type, then the sectional curvature of M is non-

positive: sec(M) ≤ 0;
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Lemma 5.10. A simply connected symmetric space M is contractible if and
only if in the decomposition M = Mcp ×MEucl ×Mncp of Theorem 5.8 the
factor Mcp of compact type is trivial. In this case M is diffeomorphic to Rn.

Proof. The factor Mcp is a closed manifold and hence contractible if and only
if Mcp is a point. Since MEucl and Mncp carry Riemannian metrics of non-
positive sectional curvature, they are diffeomorphic to Rn for appropriate n
by Hadamard’s Theorem. ut

There is an important duality between symmetric spaces of non-compact
type and symmetric spaces of compact type [251, V.2]. Let M = G/K be a
symmetric space of non-compact type. Let g and k be the Lie algebras of G
and K and let g = k⊕ p be the Cartan decomposition. The complexification
GC of G is the simply connected Lie group with the complexification C⊗Rg of
g as Lie algebra. Obviously gd = k⊕ i ·p is a real subalgebra of C⊗R g. Let Gd

be the corresponding analytic subgroup of the complexification GC of G. Then
Gd is a compact group. Let K ′ ⊂ Gd be the subgroup corresponding to k ⊂ gd.
The dual symmetric space is defined to be Md = Gd/K ′ with respect to the
Gd-invariant Riemannian metric for which multiplication with i induces an
isometry T1KG/K → T1KGd/K ′. M. Olbricht pointed out to us that one can
assume without loss of generality that G is linear, i.e. G ⊂ GL(n,R). Put
Gd to be the analytic subgroup in GL(n,C) corresponding to gd. Then K is
also a subgroup of Gd and Md agrees with Gd/K. The symmetric space Md

is of compact type. Analogously one can associate to a symmetric space of
compact type M a symmetric space of non-compact type Md. In both cases
(Md)d = M . The following example is taken from [251, Example 1 in V.2 on
page 238].

Example 5.11. Denote by by SO(p, q) the group of real (p + q)-(p + q)-
matrices of determinant 1 which leave the quadratic form −x2

1 − . . . − x2
p +

x2
p+1 + . . . x2

p+q invariant. Denote by SO(p, q)0 the identity component of
SO(p, q). Let SO(n) be the Lie group {A ∈ GL(n,R) | AAt = I, det(A) =
1}. This agrees with SO(0, n). There are obvious embeddings of SO(p) ×
SO(q) into both SO(p, q)0 and SO(p + q). Equip SO(p, q)0/SO(p)× SO(q)
and SO(p + q)/SO(p) × SO(q) with a SO(p, q)0-invariant and SO(p + q)-
invariant Riemannian metric. These are uniquely determined up to scaling
with a constant. Then SO(p, q)0/SO(p)×SO(q) is a symmetric space of non-
compact type and SO(p+q)/SO(p)×SO(q) is a symmetric space of compact
type. They are dual to one another possibly after scaling the Riemannian
metric with a constant.

5.2 L2-Invariants of Symmetric Spaces of Non-Compact
Type

In this section we state the values of the L2-Betti numbers, the Novikov-
Shubin invariants and the L2-torsion of the universal covering M̃ of a closed
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Riemannian manifold M provided that M̃ is a symmetric space of non-
compact type. Notice that a symmetric space comes with a preferred Rie-
mannian metric so that its L2-torsion is defined without the assumption that
all L2-Betti numbers of M̃ vanish. Recall that it does not matter whether we
work with the topological version (see Definition 3.120) or with the analytic
version (see Definition 3.128) of L2-torsion because of Theorem 3.149.

Theorem 5.12 (L2-invariants of symmetric spaces). Let M be a closed
Riemannian manifold whose universal covering M̃ is a symmetric space of
non-compact type. Let f-rk(M̃) := rkC(G)− rkC(K) be the fundamental rank
of the universal covering M̃ for G = Isom(M̃)0 and K ⊂ G a maximal
compact subgroup. Then

(1) We have b
(2)
p (M̃) 6= 0 if and only if f-rk(M̃) = 0 and 2p = dim(M). Let

M̃d be the to M̃ dual symmetric space. If f-rk(M̃) = 0, then dim(M) is
even and for 2p = dim(M) we get

0 < b(2)
p (M̃) = (−1)p · χ(M) =

vol(M)

vol(M̃d)
· χ(M̃d);

(2) We have αp(M̃) 6= ∞+ if and only if f-rk(M̃) > 0 and p belongs to

[dim(M)−f-rk(M̃)
2 + 1, dim(M)+f-rk(M̃)

2 ]. If αp(M̃) 6= ∞+, then αp(M̃) =
f-rk(M̃).
The number dim(M)− f-rk(M̃) is even and positive if M is not the one-
point-space {∗};

(3) We have ρ(2)(M̃) 6= 0 if and only if f-rk(M̃) = 1;
(4) Suppose that f-rk(M̃) = 1. Then M̃ = X0 × X1, where X0 is a sym-

metric space of non-compact type with f-rk(X0) = 0 and X1 = Xp,q :=
SO(p, q)0/SO(p)×SO(q) for p, q odd or X1 = SL(3,R)/SO(3). We have

ρ(2)(M̃) = vol(M) · T (2)(M̃),

where the number T (2)(M̃) is given below.
(a) If Xd

0 is the symmetric space dual to X0, then dim(X0) is even,
χ(Xd

0 ) > 0 and we have

T (2)(M̃) := (−1)dim(X0)/2 · χ(Xd
0 )

vol(Xd
0 )
· T (2) (X1) ;

(b) Let Cn be the positive constant introduced in (3.151). Denote by
(Hn)d the symmetric space dual to the hyperbolic space Hn. (Then
(Hn)d is the sphere Sn with the Riemannian metric whose sectional
curvature is constant 1). We have
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T (2) (Xp,q) = (−1)
pq−1

2 ·χ
(
(Xp−1,q−1)

d
)
·
vol

((
Hp+q−1

)d
)

vol
(
(Xp,q)

d
) ·Cp+q−1

and

χ
(
(Xp−1,q−1)

d
)

=





2 ·
(

p+q−2
2

p−1
2

)
p, q > 1

1 p = 1, q > 1
;

(c) We have

T (2)(SL(3,R)/SO(3)) =
2π

3 vol ((SL(3,R)/SO(3))d)
.

Here are some explanations. Of course M̃ inherits its Riemannian metric
from the one on M . The symmetric spaces Xp,q = SO(p, q)0/SO(p)×SO(q)
and SL(3,R)/SO(3) are equipped with the Riemannian metrics coming
from M̃ = X0 × X1. These Riemannian metrics are SO(p, q)0-invariant
and SL(3,R)-invariant. Two such invariant Riemannian metrics on Xp,q =
SO(p, q)0/SO(p)× SO(q) and SL(3,R)/SO(3) differ only by scaling with a
constant. Notice that X1,q is isometric to Hq after possibly scaling the metric
with a constant. If we scale the Riemannian metric on M by a constant C,
then vol(M) is scaled by Cdim(M) and T (2)(M̃) by C− dim(M). Hence ρ(2)(M̃)
is unchanged.

The result for L2-Betti numbers has been proved in [54]. The computa-
tions for the Novikov-Shubin invariants have been carried out in [314, Section
11], [404, Theorem 1.1], partial results have already been obtained in [316,
VII.B]. (The reader should be aware of the fact that range of the finiteness
of αp(M̃) is misprinted in [314, Section 11] and correct in [316, VII.B] and
[404, Theorem 1.1].) Notice that there is a shift by one in the range where
αp(M̃) 6= ∞+ in Theorem 5.12 (2) in comparison with [404, Theorem 1.1],
since the definition of αp(M̃) here and in [404, Theorem 1.1] differ by 1 con-
cerning the index p. The result about L2-torsion is proved in [404, Theorem
1.1, Proposition 1.3 and Proposition 1.4]. The basic input is the Harish-
Chandra Plancherel Theorem (see [248], [293, Theorem 3.11 in Chapter XIII
on page 511]) and (g,K)-cohomology.

5.3 L2-Invariants of Symmetric Spaces

Let M be a simply connected symmetric space which is not necessarily of
noncompact type. We conclude from Theorem 3.183 that there are constants
B

(2)
p (M) for p ≥ 0, A

(2)
p (M) for p ≥ 1 and T (2)(M) depending only on the

Riemannian structure on M such that for any cocompact free proper action
of a group G by isometries
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b(2)
p (M ;N (G)) = B(2)

p (M) · vol(G\M);

α(2)
p (M ;N (G)) = A(2)

p (M);

ρ(2)(M ;N (G)) = T (2)(M) · vol(G\M).

We want to compute these numbers explicitly. Recall that M splits as
a product Mcp × MEucl × Mncp, where Mcp, MEucl and Mncp respectively
are symmetric spaces of compact type, Euclidean type and non-compact
type respectively (see Theorem 5.8). Notice that these numbers have al-
ready been computed for Mncp in Theorem 5.12 and that MEucl is isomet-
ric to Rn with the standard Euclidean Riemannian metric [218, Theorem
3.82 on page 131]. We want to extend these computations to M . Suppose
that G0 and G1 respectively are groups with a cocompact free proper ac-
tion by isometries on MEucl and Mncp respectively. We conclude from the
product formula for L2-torsion (see Theorem 3.93 (4) and (3.126)) that
ρ(2)(Mcp ×MEucl ×Mncp;N ({1} ×G0 ×G1)) is given by

χ(Mcp) · ρ(2)(Mncp;N (G1)) + χ(G1\Mncp) · ρ(2)(Mcp;N ({1})),

if MEucl = ∗ and by 0 if MEucl 6= ∗. Since by Hirzebruch’s proportionality

principle [262]. χ(G1\Mncp)
vol(G1\Mncp) = χ(Md

ncp)

vol(Md
ncp)

, we conclude

T (2)(M) =





χ(Md
ncp)

vol(Md
ncp)

· T (2)(Mcp) if MEucl = {∗}, f-rk(Mncp) = 0;
χ(Mcp)
vol(Mcp) · T (2)(Mncp) if MEucl = {∗}, f-rk(Mncp) = 1;
0 otherwise.

(5.13)

Notice that we have already given the value of T (2)(Mncp) in Theorem 5.12
(4). Similar one gets from the product formula for the Novikov-Shubin in-
variants (see Theorem 2.55 (3)), where the necessary assumption about the
limit property follows from the computations in [404]

Ap(M) =





a if bp−i(Mcp) 6= 0 for some integer i satisfying
dim(Mncp)−f-rk(Mncp)

2 + 1 ≤ i and
i ≤ dim(Mncp)+f-rk(Mncp)

2 + dim(MEucl);

∞+ otherwise.

(5.14)

where a = f-rk(Mncp) + dim(MEucl). We get from the product formula for
L2-Betti numbers (see Theorem 1.35 (4))

B(2)
p (M) =

{
b if f-rk(Mncp) = 0 and MEucl = {∗}
0 otherwise ; (5.15)

where b =
b(p−dim(Mncp)/2)(Mcp)

vol(Mcp) · (−1)dim(Mncp)/2 · χ(Md
ncp)

vol(Md
ncp)

.
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Suppose that the closed locally symmetric space M has negative sectional
curvature. Then its universal covering M̃ must be of non-compact type with
fundamental rank f-rk(M̃) ≤ 1 since its rank in the sense of Definition 5.7 is
always greater or equal to the fundamental rank [56, Formula (3) in III.4 on
page 99] and is equal to 1 for a Riemannian metric with negative sectional cur-
vature. We conclude from Lemma 5.10, Theorem 5.12 and equations (5.13),
(5.14) and (5.15)

Corollary 5.16. Let M be an aspherical closed Riemannian manifold whose
universal covering M̃ is a symmetric space. Then

(1) We have b
(2)
p (M̃) = 0 if 2p 6= dim(M). If M̃ has negative sectional

curvature and has even dimension, then b
(2)
dim(M)/2(M̃) > 0, f-rk(M̃) = 0;

(2) One of the L2-Betti numbers b
(2)
p (M̃) is different from zero or one of the

Novikov Shubin invariants αp(M̃) is different from ∞+;
(3) If ρ(2)(M̃) 6= 0, then M̃ is of non-compact type, dim(M) is odd and we

have
(−1)

dim(M)−1
2 · ρ(2)(M) > 0.

If M carries a metric of negative sectional curvature and has odd dimen-
sion, then

(−1)
dim(M)−1

2 · ρ(2)(M) > 0.

If M carries a metric of negative sectional curvature and has even di-
mension, then

αp(M̃) = ∞+ for p ≥ 1.

Corollary 5.16 implies that various conjectures for aspherical closed man-
ifolds (see Section 11.1.3 and Subsection 12.2.2) turn out to be true in the
case that the universal covering is a symmetric space.

5.4 Miscellaneous

Consider a closed Riemannian manifold M with non-positive sectional cur-
vature such that M̃ is det-L2-acyclic. Suppose that N is a closed manifold
which is homotopy equivalent to M . The Whitehead group of the funda-
mental group of a closed Riemannian manifold with non-positive sectional
curvature is known to be zero [192, page 61]. (Actually Farrell and Jones
prove the stronger statement that for any closed aspherical topological man-
ifold N with dim(N) 6= 3, 4 and π1(M) ∼= π1(N) any homotopy equivalence
M → N is homotopic to a homeomorphism [195, Theorem 0.1].) Hence also
Ñ is det-L2-acyclic and ρ(2)(M̃) = ρ(2)(Ñ) by Theorem 3.96 (1).
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Notice that this applies by Lemma 5.9, Lemma 5.10 and Theorem 5.12
(2) to the case, where M is an aspherical closed manifold which admits the
structure of a locally symmetric space and satisfies b

(2)
p (M̃) = 0 for p ≥ 0.

In particular we conclude from Lemma 5.10, from Theorem 5.12 (1) and (3)
and from (5.13) that for two aspherical closed locally symmetric Riemannian
manifolds M and N with isomorphic fundamental groups ρ(2)(M̃) = ρ(2)(Ñ)
holds.

Let M be a closed topological manifold with dim(M) 6= 3, 4. Then M
carries the structure of a locally symmetric Riemannian manifold whose uni-
versal covering is a symmetric space of non-compact type if and only if M is
aspherical and π1(M) is isomorphic to a cocompact discrete subgroup of a lin-
ear semisimple Lie group with finitely many path components [195, Theorem
0.2].

The famous rigidity result of Mostow [388] says that two closed locally
symmetric spaces M and N with non-positive sectional curvature are iso-
metrically diffeomorphic if and only if π1(M) ∼= π1(N) and vol(M) = vol(N)
hold, provided that Ñ is irreducible, i.e. not a product of two Riemannian
manifolds of positive dimension, and dim(N) ≥ 3. The following rigidity re-
sult is proved in [20, Theorem 1 on page i]. Let M be a closed locally symmet-
ric space such that its rank (in the sense of Definition 5.7) is greater or equal
to 2 and its universal covering is irreducible. Let N be a closed Riemannian
manifold with non-positive sectional curvature. Suppose that π1(M) ∼= π1(N)
and vol(M) = vol(N). Then M and N are isometrically diffeomorphic.

A classification of symmetric spaces is given in [251, Chapter X]. More
information about Lie groups, Lie algebras and symmetric spaces can be
found for instance in [17], [19], [20], [157], [158], [251], [268] and [293].

Exercises

5.1. Let M be a symmetric space and let x ∈ M . Let tx : M → M be an
isometric involution which has x as isolated fixed point. Show that there is a
normal neighborhood U of x such that t induces the geodesic symmetry on
U .

5.2. Show that the following groups are connected linear reductive Lie groups:

GL(n,C) = {A ∈ Mn(C) | A invertible};
SL(n,C) = {A ∈ GL(n,C) | det(A) = 1};

U(n) = {A ∈ GL(n,C) | AA
t
= 1};

SU(n) = {A ∈ GL(n,C) | AA
t
= 1,det(A) = 1};

SO(n,C) = {A ∈ GL(n,C) | AAt = 1,det(A) = 1};
SO(n) = {A ∈ GL(n,R) | AAt = 1}.
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Show that their Lie algebras are given by

gl(n,C) = Mn(C);
sl(n,C) = {A ∈ Mn(C) | tr(A) = 0};

u(n) = {A ∈ Mn(C) | A + A
t
= 0};

su(n) = {A ∈ Mn(C) | A + A
t
= 0 and tr(A) = 0};

so(n,C) = {A ∈ Mn(C) | A + At = 0};
so(n) = {A ∈ Mn(R) | A + At = 0}.

Show that GL(n,C) for n ≥ 1 and SO(2) are not semisimple. Show that
SL(n,C), SO(n,C) and SU(n) for n ≥ 2, and SO(n) for n ≥ 3 are semisim-
ple. Prove that U(n), SU(n) and SO(n) is the group K = {g ∈ G | Θ(g) = g}
for G = GL(n,C), SL(n,C) and SO(n,C) and is in particular a maximal
compact subgroup.

5.3. Let G be a connected linear reductive Lie group. Show that s : g×g → R
sending (A,B) to the real part <(tr(AB)) of tr(AB) is an inner product
on the real vector space g. Show for any a ∈ g that the adjoint ad(A)∗ of
ad(A) : g → g with respect to this inner product is − ad(A). Conclude for the
Killing form B that −B(A, θ(A)) = tr(ad(A) ad(A)∗) holds and that hence
the symmetric bilinear form B(A, θ(A)) on g is strictly negative-definite,
where θ is defined in Example 5.4. Conclude that θ is a Cartan involution.

5.4. Show that a connected linear reductive Lie group is semisimple if and
only if its center is finite.

5.5. Let G and H be connected linear reductive Lie groups. Show that
G×H is again a connected linear reductive Lie group. Prove that G×H is
semisimple if and only if both G and H are semisimple.

5.6. Show that Sn, RPn and CPn are symmetric spaces of compact type,
Rn is a symmetric space of Euclidean type and Hn is a symmetric space of
non-compact type.

5.7. Let Gp(Rp+q) be the topological space of oriented p-dimensional linear
subspaces of Rp+q. Show that it carries the structure of a symmetric space
of compact type. Determine its dual symmetric space.

5.8. Let M and N be closed Riemannian manifolds whose universal coverings
M̃ and Ñ are symmetric spaces of non-compact type. Suppose that π1(M) ∼=
π1(N). Show that then f-rk(M̃) = f-rk(Ñ).

5.9. Let M be a closed locally symmetric Riemannian manifold. Show that
π1(M) is amenable if and only if M̃ncp = {∗}.
5.10. Construct two closed Riemannian manifolds M and N whose universal
coverings are symmetric spaces of non-compact type such that π1(M) and
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π1(N) are not isomorphic but all L2-Betti numbers, all Novikov-Shubin in-
variants and the L2-torsion of M̃ and Ñ with respect to the π1(M)- and
π1(N)-action agree.

5.11. Let M be an aspherical closed locally symmetric Riemannian manifold
of even dimension dim(M) = 2p. Show that (−1)p · χ(M) ≥ 0. Prove that
(−1)p · χ(M) > 0 if and only if M̃Eucl = {∗} and f-rk(M̃ncp) = 0.

5.12. Let M be an aspherical closed locally symmetric Riemannian manifold.
Show that scaling the Riemannian metric by a constant does not change
ρ(2)(M̃) if and only if ρ(2)(M̃) = ρ(2)(Ñ) holds for any closed Riemannian
manifold N which is homotopy equivalent to M .



6. L2-Invariants for General Spaces with
Group Action

Introduction

In this chapter we will extend the definition of L2-Betti numbers for free
G-CW -complexes of finite type to arbitrary G-spaces. Of course then the
value may be infinite, but we will see that in surprisingly many interesting
situations the value will be finite or even zero. This will be applied to problems
in geometry, topology, group theory and K-theory.

The first elementary observation is that the C-category of finitely gener-
ated Hilbert N (G)-modules is isomorphic to the C-category of finitely gen-
erated projective N (G)-modules. Notice that the second category does not
involve any functional analytic structure of N (G), only the ring structure
comes in. The second observation is that the ring N (G) is semihereditary,
i.e. any finitely generated N (G)-submodule of a projective module is pro-
jective again. This implies that the C-category of finitely presented N (G)-
modules is abelian. Thus a finitely generated Hilbert N (G)-chain complex
C∗ defines a finitely generated projective N (G)-chain complex denoted by
ν−1(C∗) and the homology of ν−1(C∗) consists of finitely presented N (G)-
modules. Any finitely presented N (G)-module M splits as TM⊕PM , where
PM is finitely generated projective. Then the L2-homology of C∗ corresponds
to PH∗(ν−1(C∗)) = ν−1(H(2)(C∗)). These facts will be explained and proved
in Section 6.2 and we will compare them with the approach of Farber [182]
in Section 6.8.

Now the main technical result of Section 6.1 is that the von Neumann
dimension, which is a priori defined for finitely generated projective N (G)-
modules, has an extension to arbitrary N (G)-modules which takes values in
[0,∞] and is uniquely determined by three important and desired properties,
namely, Additivity, Cofinality and Continuity. This will allow us to define in
Section 6.5 L2-Betti numbers for an arbitrary G-space X by the extended
von Neumann dimension of the N (G)-module HG

p (X;N (G)), which is the
homology of the N (G)-chain complex N (G) ⊗ZG Csing

∗ (X). This is the L2-
Betti number defined in Section 1.2 if X happens to be a free G-CW -complex
of finite type. Thus we can define the L2-Betti number of an arbitrary group
G by applying this construction to the classifying space EG. Notice that after
we have established Assumption 6.2 for the von Neumann algebra and the
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von Neumann dimension, no more functional analysis will appear, the rest is
pure homological algebra and ring theory. We mention the slogan that the
von Neumann algebra N (G) is very similar to the ring Z of integers with two
exceptions, namely, N (G) is not Noetherian, unless G is finite, and N (G)
has non-trivial zero-divisors, unless G is finite. We recommend the reader to
test statements and results about modules and their dimensions over N (G)
by the corresponding ones for modules over Z.

This algebraic approach is very convenient because it is very flexible and
constructions like taking kernels, cokernels, quotients and homology are of
course available. One may also try to extend the notion of L2-Betti numbers
within the category of Hilbert N (G)-modules, the von Neumann dimension
is defined for any Hilbert N (G)-module. The problem is that one would
have to take the Hilbert completion of the cellular chain complex. To get
Hilbert N (G)-chain modules one would have to restrict to proper G-CW -
complexes. More serious problems occur with the differentials. Only under
very restrictive conditions the differentials become bounded operators in the
case of a proper G-CW -complex (not necessarily of finite type), which for
instance are not satisfied for the bar-model of EG. If the differentials are
not bounded one could take their minimal closures, but then it becomes
very difficult or impossible to do certain constructions and establish certain
proofs. The same problems arise with the chain maps induced by G-maps of
G-spaces.

We show in Section 6.3 for an injective group homomorphism i : H → G
that induction with the induced ring homomorphism i : N (H) → N (G) is
faithfully flat and compatible with von Neumann dimension. This will be used
all over the place when one wants to pass from the universal covering of a
space X to a regular covering associated to an injective group homomorphism
π1(X) → G. We will also prove that N (G)⊗CG C is non-trivial if and only if
G is amenable. This may be viewed as an extension of the result of Brooks
[68] that the Laplacian on functions on the universal covering of a closed
Riemannian manifold M has zero in its spectrum if and only if π1(M) is
amenable.

In Section 6.4 we investigate the von Neumann dimension for amenable
G. A survey of amenable groups is presented in Subsection 6.4.1. The von
Neumann algebra N (G) is known to be flat over CG only for virtually cyclic
groups (and conjecturally these are the only ones), but from a dimension
point of view it looks like a flat module over CG, more precisely, the von
Neumann dimension of TorCG

p (N (G),M) vanishes for all CG-modules and
p ≥ 1, provided that G is amenable. This implies that the p-th L2-Betti
number of a G-space X for amenable G can be read off from the CG-module
Hp(X;C), namely, it is the von Neumann dimension of N (G)⊗CG Hp(X;C).
Since Hp(EG;C) vanishes for p ≥ 1, one obtains the result of Cheeger and
Gromov [107] that all the L2-Betti numbers of an amenable group G van-
ish. The dimension-flatness of the von Neumann algebra N (G) over CG for
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amenable G will play also an important role in applications to G-theory in
Subsection 9.5.3.

In Section 6.5 we will prove the basic properties of the L2-Betti num-
bers for arbitrary G-spaces such as homotopy or more generally homology
invariance, Künneth formula and behaviour under induction and restriction.
We will investigate its behaviour under fibrations and S1-actions. In Section
6.6 we will introduce the L2-Euler characteristic and prove its basic prop-
erties like Euler-Poincaré formula, homology invariance, Künneth formula,
sum formula and behaviour under induction and restriction. We will com-
pare the various L2-Euler characteristics of the fixed point sets of a finite
proper G-CW -complex with the equivariant Euler characteristic which takes
value in the so called Burnside group. This will be applied in particular to
the classifying space E(G,FIN ). The definition of the Burnside group A(G)
of a group G, which should not be confused with the Burnside group B(m,n)
appearing in group theory, is analogous to the definition of the Burnside ring
of a finite group, but the Burnside group A(G) for infinite G does not inherit
an internal multiplication.

To get a quick overview one should read through Theorem 6.7, Theorem
6.24, Theorem 6.37 and then start immediately with Section 6.5. To under-
stand the basics of this Chapter 6 only some knowledge about Section 1.1
from the preceding chapters is necessary.

We briefly will mention in Section 6.8. that a similar approach can be
used to extend the notion of Novikov-Shubin invariants to arbitray G-spaces.

This chapter is based on the papers [333] and [334] which have been
motivated by the paper of Cheeger and Gromov [107].

6.1 Dimension Theory for Arbitrary Modules

In this section we show that the von Neumann dimension for finitely gener-
ated projective N (G)-modules has a unique extension to all N (G)-modules
which has nice properties like Additivity, Cofinality and Continuity. Ring
will always mean associative ring with unit and R-module will mean left
R-module unless explicitly stated differently.

Recall that the dual M∗ of a left or right respectively R-module M is the
right or left respectively R-module homR(M, R) where the R-multiplication
is given by (fr)(x) = f(x)r or (rf)(x) = rf(x) respectively for f ∈ M∗,
x ∈ M and r ∈ R.

Definition 6.1 (Closure of a submodule). Let M be an R-submodule of
N . Define the closure of M in N to be the R-submodule of N

M = {x ∈ N | f(x) = 0 for all f ∈ N∗ with M ⊂ ker(f)}.
For an R-module M define the R-submodule TM and the quotient R-module
PM by
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TM := {x ∈ M | f(x) = 0 for all f ∈ M∗};
PM := M/TM.

We call a sequence of R-modules L
i−→ M

q−→ N weakly exact if im(i) = ker(q).

Notice that TM is the closure of the trivial submodule in M . It can also
be described as the kernel of the canonical map i(M) : M → (M∗)∗ which
sends x ∈ M to the map M∗ → R, f 7→ f(x). Notice that TPM = 0,
PPM = PM , M∗ = (PM)∗ and that PM = 0 is equivalent to M∗ = 0.

Assumption 6.2. We assume that there is a dimension function dim which
assigns to any finitely generated projective R-module P a non-negative real
number

dim(P ) ∈ [0,∞)

with the following properties:

(1) If P and Q are finitely generated projective R-modules, then

P ∼=R Q ⇒ dim(P ) = dim(Q);
dim(P ⊕Q) = dim(P ) + dim(Q);

(2) Let K ⊂ Q be a submodule of the finitely generated projective R-module
Q. Then its closure K (see Definition 6.1) is a direct summand in Q and

dim(K) = sup{dim(P ) | P ⊂ K finitely generated projective submodule}.
Let N (G) be the group von Neumann algebra of the discrete group G

(see Definition 1.1). Let P be any finitely generated projective N (G)-module.
(Here we view N (G) just as a ring, there is no Hilbert structure involved in
P ). Choose any (n, n)-matrix A ∈ Mn(N (G)) such that A2 = A and the
image of the N (G)-linear map induced by right multiplication with A

rA : N (G)n → N (G)n, x 7→ xA

is isomorphic as an N (G)-module to P . (It is not necessary but possible to
require A = A∗.) Define the von Neumann dimension

dimN (G)(P ) := trN (G)(A), (6.3)

where trN (G) : Mn(N (G)) → C sends A to the sum of the von Neumann
traces (see Definition 1.2) of its diagonal entries. This is independent of the
choice of A by the following standard argument.

Suppose B ∈ Mp(N (G)) is a second square matrix with B2 = B and
im(rB) ∼= P . By possibly taking the direct sum with a zero square-matrix we
can achieve without changing trN (G)(A) and trN (G)(B) and the isomorphism
class of im(rA) and im(rB) that n = p and that im(r1−A) and im(r1−B) are
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isomorphic. Let C ∈ Mn(N (G)) be an invertible matrix such that rC maps
im(rA) to im(rB) and im(r1−A) to im(r1−B). Then rB ◦ rC = rB ◦ rC ◦ rA =
rC ◦ rA and hence CBC−1 = A. This implies

trN (G)(B) = trN (G)(C−1CB) = trN (G)(CBC−1) = trN (G)(A). (6.4)

We will explain in Theorem 6.24 that this notion is essentially the same as
the notion of the von Neumann dimension of a finitely generated Hilbert
N (G)-module of Definition 1.10.

The proof of the following Theorem 6.5 will be given in Section 6.2. Notice
that in the extension of the von Neumann dimension from finitely generated
projective N (G)-modules to arbitrary N (G)-modules the functional analytic
aspects only enter in the proof of Theorem 6.5 the rest is purely algebraic
ring and module theory.

Theorem 6.5. The pair (N (G), dimN (G)) satisfies Assumption 6.2.

Definition 6.6 (Extended dimension). If (R, dim) satisfies Assumption
6.2, we define for an R-module M its extended dimension

dim′(M) := sup{dim(P ) | P ⊂ M finitely generated projective submodule}
∈ [0,∞].

We will later drop the prime in dim′ (see Notation 6.11).

The next result is one of the basic results of this chapter.

Theorem 6.7. (Dimension function for arbitrary N (G)-modules).
Suppose that (R, dim) satisfies Assumption 6.2. Then

(1) R is semihereditary, i.e. any finitely generated submodule of a projective
module is projective;

(2) If K ⊂ M is a submodule of the finitely generated R-module M , then
M/K is finitely generated projective and K is a direct summand in M ;

(3) If M is a finitely generated R-module, then PM is finitely generated
projective and

M ∼= PM ⊕TM ;

(4) The dimension dim′ has the following properties:
(a) Extension Property

If M is a finitely generated projective R-module, then

dim′(M) = dim(M);

(b) Additivity
If 0 → M0

i−→ M1
p−→ M2 → 0 is an exact sequence of R-modules,

then
dim′(M1) = dim′(M0) + dim′(M2),

where for r, s ∈ [0,∞] we define r+s by the ordinary sum of two real
numbers if both r and s are not ∞, and by ∞ otherwise;
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(c) Cofinality
Let {Mi | i ∈ I} be a cofinal system of submodules of M , i.e. M =⋃

i∈I Mi and for two indices i and j there is an index k in I satisfying
Mi,Mj ⊂ Mk. Then

dim′(M) = sup{dim′(Mi) | i ∈ I};

(d) Continuity
If K ⊂ M is a submodule of the finitely generated R-module M , then

dim′(K) = dim′(K);

(e) If M is a finitely generated R-module, then

dim′(M) = dim(PM);
dim′(TM) = 0;

(f) The dimension dim′ is uniquely determined by the Extension Prop-
erty, Additivity, Cofinality and Continuity.

Proof. (1) Let M ⊂ P be a finitely generated R-submodule of the projective
R-module P . Choose a homomorphism q : Rn → P with im(q) = M . Then
ker(q) = ker(q). Hence ker(q) is by Assumption 6.2 a direct summand. This
shows that M is projective.
(2) Choose an epimorphism q : Rn → M . One easily checks that q−1(K) =
q−1(K) and that Rn/q−1(K) and M/K are R-isomorphic. By Assumption
6.2 Rn/q−1(K) and hence M/K are finitely generated projective.
(3) This follows from (2) by taking K = 0.
(4a) If P ⊂ M is a finitely generated projective R-submodule of the finitely
generated projective R-module M , we conclude

dim(P ) ≤ dim(M) (6.8)

from the following calculation based on Assumption 6.2

dim(P ) ≤ dim(P ) = dim(M)− dim(M/P ) ≤ dim(M).

This implies dim(M) = dim′(M).
(4b) Let P ⊂ M2 be a finitely generated projective submodule. We obtain an
exact sequence 0 → M0 → p−1(P ) → P → 0. Since p−1(P ) ∼= M0 ⊕ P , we
conclude

dim′(M0) + dim(P ) ≤ dim′(p−1(P )) ≤ dim′(M1).

Since this holds for all finitely generated projective submodules P ⊂ M2, we
get

dim′(M0) + dim′(M2) ≤ dim′(M1). (6.9)
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Let Q ⊂ M1 be finitely generated projective. Let i(M0) ∩Q be the closure of
i(M0) ∩Q in Q. We obtain exact sequences

0 → i(M0) ∩Q → Q → p(Q) → 0;
0 → i(M0) ∩Q → Q → Q/i(M0) ∩Q → 0.

By Assumption 6.2 i(M0) ∩Q is a direct summand in Q. We conclude

dim(Q) = dim(i(M0) ∩Q) + dim(Q/i(M0) ∩Q).

From Assumption 6.2 and the fact that there is an epimorphism from p(Q)
onto the finitely generated projective R-module Q/i(M0) ∩Q, we conclude

dim(i(M0) ∩Q) = dim′(i(M0) ∩Q);
dim(Q/i(M0) ∩Q) ≤ dim′(p(Q)).

Since obviously dim′(M) ≤ dim′(N) holds for R-modules M and N with
M ⊂ N , we get

dim(Q) = dim(i(M0) ∩Q) + dim(Q/i(M0) ∩Q)
≤ dim′(i(M0) ∩Q) + dim′(p(Q))
≤ dim′(M0) + dim′(M2).

Since this holds for all finitely generated projective submodules Q ⊂ M1, we
get

dim′(M1) ≤ dim′(M0) + dim′(M2). (6.10)

Now assertion (4b) follows from (6.9) and (6.10).
(4c) If P ⊂ M is a finitely generated projective submodule, then there is an
index i ∈ I with P ⊂ Mi by cofinality.
(4d) Choose an epimorphism q : Rn → M . Since q−1(K) = q−1(K), we get
from Assumption 6.2 and assertion (4a)

dim′(q−1(K)) = dim′(q−1(K)) = dim′(q−1(K)).

If L is the kernel of q, we conclude from assertions (4a) and (4b)

dim′(q−1(K)) = dim′(L) + dim′(K);
dim′(q−1(K)) = dim′(L) + dim′(K);
dim′(q−1(K)) ≤ dim(Rn) < ∞.

This proves assertion (4d).
(4e) This follows from (4d) applied to the special case K = 0 and assertions
(3), (4a) and (4b).
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(4f) Let dim′′ be another function satisfying Extension Property, Additivity,
Cofinality and Continuity. We want to show for an R-module M

dim′′(M) = dim′(M).

Since assertion (4e) is a consequence of assertions (3), (4a), (4b) and (4d),
it holds also for dim′′. Hence we get dim′(M) = dim′′(M) for any finitely
generated R-module. Since the system of finitely generated submodules of a
module is cofinal, the claim follows from Cofinality. This finishes the proof of
Theorem 6.7. ut
Notation 6.11. In view of Theorem 6.7 we will not distinguish between dim′

and dim in the sequel. ut

Example 6.12. Let R be a principal ideal domain. Then any finitely gener-
ated projective R-module P is isomorphic to Rn for a unique n ≥ 0 and we
consider the dimension dim(P ) := n. Notice that for a submodule M ⊂ Rn

we have

M = {x ∈ Rn | r · x ∈ M for appropriate r ∈ R, r 6= 0}.

One easily checks that Assumption 6.2 is satisfied. Let F be the quotient
field of R. Then we get for any R-module M for the dimension defined in
Definition 6.6

dim(M) = dimF (F ⊗R M),

where dimF (F ⊗R M) is the dimension of the F -vector space F ⊗R M .
Notice that dim(P ) is finite for a projective R-module P if and only if P is

finitely generated. This is the crucial difference to the case, where we consider
the von Neumann algebra N (G) and the extension dimN (G) of Definition 6.6
of the von Neumann dimension dimN (G) of (6.3). If for instance H1, H2, . . .
is a sequence of finite subgroups of G, then

⊕∞
i=1N (G)⊗CHiC is a projective

not finitely generated N (G)-module and

dimN (G)

( ∞⊕

i=1

N (G)⊗CHi C

)
=

∞∑

i=1

1
|Hi| ,

and this infinite sum may converge to a finite real number.

Recall that a directed set I is a set with a partial ordering ≤ such that
for two elements i0 and i1 there exists an element i with i0 ≤ i and i1 ≤ i.
We can consider I as a category with I as set of objects, where the set
of morphisms from i0 to i1 consists of precisely one element, if i0 ≤ i1,
and is empty otherwise. A directed system or an inverse system respectively
{Mi | i ∈ I} of R-modules indexed by I is a functor from I into the category
of R-modules which is covariant or contravariant respectively. We denote by
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colimi∈I Mi the colimit of the directed and by limi∈I Mi the limit of the
inverse system {Mi | i ∈ I} which is again an R-module. We mention that
colimit is sometimes also called inductive limit or direct limit and that limit
is sometimes also called inverse limit or projective limit in the literature. The
colimit is characterized by the following property. For any i ∈ I there is an R-
homomorphism ψi : Mi → colimi∈I Mi such that for any two elements i0 and
i1 in I with i0 ≤ i1 we have ψi1 ◦φi0,i1 = ψi0 , where φi0,i1 : Mi0 → Mi1 comes
from functoriality. For any R-module N together with R-homomorphisms
fi : Mi → N such that for any two elements i0 and i1 in I with i0 ≤ i1 we have
fi1◦φi0,i1 = fi0 , there is precisely one R-homomorphism f : colimi∈I Mi → N
satisfying f ◦ ψi = fi for all i ∈ I. The limit of an inverse system has an
analogous characterization, one has to reverse all arrows.

Next we investigate the behaviour of dimension under colimits indexed
by a directed set.

Theorem 6.13 (Dimension and colimits). Let {Mi | i ∈ I} be a directed
system of R-modules over the directed set I. For i ≤ j let φi,j : Mi → Mj be
the associated morphism of R-modules. For i ∈ I let ψi : Mi → colimi∈I Mi

be the canonical morphism of R-modules. Then

(1) We get for the dimension of the R-module given by the colimit colimi∈I Mi

dim (colimi∈I Mi) = sup {dim(im(ψi)) | i ∈ I} ;

(2) Suppose for each i ∈ I that there is i0 ∈ I with i ≤ i0 such that
dim(im(φi,i0)) < ∞ holds. Then

dim (colimi∈I Mi)
= sup {inf {dim(im(φi,j : Mi → Mj)) | j ∈ I, i ≤ j} | i ∈ I} .

Proof. (1) Recall that the colimit colimi∈I Mi is
∐

i∈I Mi/ ∼ for the equiv-
alence relation for which Mi 3 x ∼ y ∈ Mj holds precisely if there is
k ∈ I with i ≤ k and j ≤ k with the property φi,k(x) = φj,k(y). With this
description one easily checks

colimi∈I Mi =
⋃

i∈I

im(ψi : Mi → colimj∈I Mj).

Now apply Cofinality (see Theorem 6.7 (4c)).
(2) It remains to show for i ∈ I

dim(im(ψi)) = inf {dim(im(φi,j : Mi → Mj)) | j ∈ I, i ≤ j} . (6.14)

By assumption there is i0 ∈ I with i ≤ i0 such that dim(im(φi,i0)) is finite.
Let Ki0,j be the kernel of the map im(φi,i0) → im(φi,j) induced by φi0,j for
i0 ≤ j and Ki0 be the kernel of the map im(φi,i0) → im(ψi) induced by ψi0 .
Then Ki0 =

⋃
j∈I,i0≤j Ki0,j and hence by Cofinality (see Theorem 6.7 (4c))
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dim(Ki0) = sup{dim(Ki0,j) | j ∈ I, i0 ≤ j}.
Since dim(im(φi,i0)) is finite, we get from Additivity (see Theorem 6.7 (4b))

dim(im(ψi))

= dim
(
im

(
ψi0 |im(φi,i0 ) : im(φi,i0) → colimi∈I Mi

))

= dim(im(φi,i0))− dim(Ki0)
= dim(im(φi,i0))− sup{dim(Ki0,j) | j ∈ I, i0 ≤ j}
= inf {dim(im(φi,i0))− dim(Ki0,j) | j ∈ I, i0 ≤ j}
= inf

{
dim

(
im(φi0,j |im(φi,i0 ) : im(φi,i0) → im(φi,j))

)
| j ∈ I, i0 ≤ j

}

= inf {dim (im(φi,j)) | j ∈ I, i0 ≤ j} . (6.15)

Given j0 ∈ J with i ≤ j0, there is j ∈ I with i0 ≤ j and j0 ≤ j. We conclude
dim(im(φi,j0)) ≥ dim(im(φi,j)) from Additivity (see Theorem 6.7 (4b)). This
implies

inf{dim(im(φi,j)) | j ∈ J, i ≤ j}
= inf{dim(im(φi,j)) | j ∈ J, i0 ≤ j}. (6.16)

Now (6.14) follows from (6.15) and (6.16). This finishes the proof of Theorem
6.13. ut
Example 6.17. The condition in Theorem 6.13 (2) above that for each
i ∈ I there is i0 ∈ I with i ≤ i0 and dim(im(φi,i0)) < ∞ is necessary
as the following example shows. Take I = N. Define Mj =

⊕∞
n=j R and

φj,k :
⊕∞

m=j R → ⊕∞
m=k R to be the obvious projection for j ≤ k. Then

dim(im(φj,k)) = ∞ for all j ≤ k, but colimi∈I Mi is trivial and hence has
dimension zero.

Next we state the version of Theorem 6.13 about dimension and colimits
for limits over inverse systems. Since we do not need it elsewhere, we do not
give its proof which is, however, much harder than the one of Theorem 6.13.

Theorem 6.18 (Dimension and limits). Let {Mi | i ∈ I} be an inverse
system of N (G)-modules over the directed set I. For i ≤ j let φi,j : Mj → Mi

be the associated morphism of N (G)-modules. For i ∈ I let ψi : limi∈I Mi →
Mi be the canonical map. Suppose that there is a countable sequence i1 ≤
i2 ≤ . . . such that for each j ∈ I there is n ≥ 0 with j ≤ in. Let dimN (G)

be the extension of Definition 6.6 of the von Neumann dimension of (6.3).
Then

(1)

dimN (G)

(
lim
i∈I

Mi

)
= sup

{
dimN (G)(im(ψi : lim

i∈I
Mi → Mi))

∣∣∣∣ i ∈ I

}
;
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(2) Suppose that for each index i ∈ I there is an index i0 ∈ I with i ≤ i0 and
dimN (G)(im(φi,i0)) < ∞. Then

dimN (G)

(
lim
i∈I

Mi

)
= sup

{
inf{dimN (G)(im(φi,j))

∣∣ j ∈ I, i ≤ j} | i ∈ I
}

.

Example 6.19. In this example we want to show that the condition that
there is a countable sequence i1 ≤ i2 ≤ . . . such that for each j ∈ I there is
n ≥ 0 with j ≤ in appearing in Theorem 6.18 is necessary. (Compare this
with the claim in [107, page 210] that equation (A1) in [107, page 210] holds
for arbitrary (not necessarily countable) intersections of Γ -weakly closed sub-
modules.) Let G = Z. Then N (Z) = L∞(S1) by Example 1.4. For u ∈ S1 let
(z−u) be the N (Z)-ideal which is generated by the function S1 → C sending
z ∈ S1 ⊂ C to z − u. Next we prove

⋂

u∈S1

(z − u) = 0.

Consider f ∈ ∩u∈S1(z − u). Define s ∈ [0, 1] to be the supremum over all
r ∈ [0, 1] such that |f(exp(2πit))| ≤ 1 holds for almost all t ∈ [0, r]. For
almost all means for all elements with the exception of the elements of a
subset of Lebesgue measure zero. Notice that the definition of s makes sense,
its value does not change if we add to f a measurable function which van-
ishes outside a set of measure zero. We want to show s = 1 by contradiction.
Suppose s < 1. Put u = exp(2πis). Since f belongs to (z − u) there is
g ∈ L∞(S1) with f(z) = (z − u) · g(z). Choose ε > 0 with ||g||∞ ≤ ε−1

and s + ε ≤ 1. Then we have |f(z)| ≤ 1 for almost all elements z in
{exp(2πit) | s− ε ≤ t ≤ s + ε}. This implies that |f(z)| ≤ 1 holds for almost
all elements z in {exp(2πit) | 0 ≤ t ≤ s + ε}. We conclude s ≥ s + ε, a con-
tradiction. We get s = 1. Hence we have ||f ||∞ ≤ 1 for all f ∈ ⋂

u∈S1(z− u).
This implies that

⋂
u∈S1(z − u) is zero.

This shows that the obviousN (Z)-map L∞(S1) → ∏
u∈S1 L∞(S1)/(z−u)

is injective. From Additivity (see Theorem 6.7 (4b)) we conclude

dimN (Z)

( ∏

u∈S1

L∞(S1)/(z − u)

)
≥ 1.

Notice that
∏

u∈S1 L∞(S1)/(z−u) is the limit over the obvious inverse system
{∏u∈J L∞(S1)/(z − u)) | J ∈ I}, where I is the set of finite subsets of S1

ordered by inclusion, and that dimN (Z)
(∏

u∈J L∞(S1)/(z − u)
)

= 0 holds
for all J ∈ I.

Also the condition that for each index i ∈ I there is an index j ∈ I
with dimN (Z)(im(φi,j)) < ∞ appearing in Theorem 6.18 (2) is necessary as
the following example shows. Take I = N. Define Mj =

∏∞
n=j N (G) and

φj,k :
∏∞

m=kN (G) → ∏∞
m=j N (G) to be the canonical inclusion for j ≤ k.
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Then for all j ≤ k we get dimN (Z)(im(φj,k)) = ∞, but limi∈I Mi is trivial
and hence has dimension zero.

Theorem 6.18 (2) has only been stated for R = N (G) and the extended
von Neumann dimension dimN (G), in contrast to Theorem 6.13 about di-
mension and colimits. Indeed Theorem 6.18 fails for R = Z with the ordinary
rank of abelian groups as dimension. For instance the limit of the inverse
system

Z ⊃ 2 · Z ⊃ 22 · Z ⊃ 23 · Z ⊃ . . .

is zero and hence has dimension 0, but the image of any structure map 2j ·Z→
2i · Z has dimension 1.

Definition 6.20 (Extended von Neumann dimension). Let M be an
N (G)-module. Define its extended von Neumann dimension

dimN (G)(M) ∈ [0,∞]

by the extension of Definition 6.6 of the von Neumann dimension of (6.3).

We will extend in Theorem 8.29 the dimension function forN (G)-modules
to U(G)-modules, where U(G) is the algebra of affiliated operators, or, equiv-
alently, the Ore localization of N (G) with respect to all non-zero-divisors in
N (G).

6.2 Comparison of Modules and Hilbert Modules

In this section we want to show that the category of finitely generated projec-
tive N (G)-modules (with inner product) and the category of finitely gener-
ated Hilbert N (G)-modules are equivalent as C-categories (with involution)
and that this equivalence preserves weakly exact and exact sequences and
dimension (see Theorem 6.24). This will be the key step to come from the
operator theoretic approach to a purely algebraic approach to L2-Betti num-
bers. Recall that we use the convention that groups and rings act from the
left unless stated explicitly differently.

We need some notations to formulate the main result of this section. A
C-category C is a category such that for any two objects the set of morphisms
between them carries the structure of a complex vector space for which com-
position of morphisms is bilinear and C has a (strict) sum which is compatible
with the complex vector space structures above. A (strict) involution on a
C-category C is an assignment which associates to each morphism f : x → y
a morphism f∗ : y → x and has the following properties

(f∗)∗ = f ;
(λ · f + µ · g)∗ = λ · f∗ + µ · g∗;

(f ◦ g)∗ = g∗ ◦ f∗;
(f ⊕ g)∗ = f∗ ⊕ g∗,
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where f , g are morphisms, λ and µ complex numbers. There is a canonical
structure of a C-category with involution on the category of finitely gener-
ated Hilbert N (G)-modules {fin. gen. Hilb. N (G)-mod.} (see Definition 1.5),
where the involution is given by taking adjoint operators. We call an endo-
morphism f in C selfadjoint if f = f∗. We call an isomorphism f in C unitary
if f∗ = f−1. A functor of C-categories (with involution) is a functor com-
patible with the complex vector space structures on the set of morphisms
between two objects and the sums (and the involutions). A natural equiv-
alence T of functors of C-categories with involution is called unitary if the
evaluation of T at each object is a unitary isomorphism. An equivalence of
C-categories (with involution) is a functor of such categories such that there
is a functor of such categories in the other direction with the property that
both compositions are (unitarily) naturally equivalent to the identity. If a
functor F of C-categories (with involution) induces a bijection on the sets of
(unitary) isomorphism classes of objects and for any two objects x and y it
induces a bijection between the set of morphisms from x to y to the set of
morphisms from F (x) to F (y), then it is an equivalence of C-categories (with
involution) and vice versa. (cf [351, Theorem 1 in IV.9 on page 91]).

Given a finitely generated projective (left) N (G)-module P , an inner
product on P is a map µ : P × P → N (G) satisfying (cf. [514, Definition
15.1.1 on page 232])

(1) µ is N (G)-linear in the first variable;
(2) µ is symmetric in the sense µ(x, y) = µ(y, x)∗;
(3) µ is positive-definite in the sense that µ(p, p) is a positive element in

N (G), i.e. of the form a∗a for some a ∈ N (G), and µ(p, p) = 0 ⇔ p = 0;
(4) The induced map µ : P → P ∗ = homN (G)(P,N (G)), defined by µ(y)(x) =

µ(x, y), is bijective.

Notice that we have already introduced an N (G)-right module structure
on P ∗ given by (fr)(x) = f(x)r for r ∈ N (G). Using the involution on
N (G), we can define also a left N (G)-module structure by rf(x) = f(x)r∗.
Then µ is an isomorphism of left N (G)-modules. Moreover, µ agrees with

the composition P
i(P )−−−→ (P ∗)∗

µ∗−→ P ∗, where i(P ) : P → (P ∗)∗ is the
bijection which sends x ∈ P to the map P ∗ → N (G), f 7→ f(x)∗.
Let {fin. gen. proj. N (G)-mod. with 〈 〉} be the C-category with involution,
whose objects are finitely generated projective N (G)-modules with inner
product (P, µ) and whose morphisms are N (G)-linear maps. We get an in-
volution on it if we specify f∗ : (P1, µ1) → (P0, µ0) for f : (P0, µ0) → (P1, µ1)
by requiring µ1(f(x), y) = µ0(x, f∗(y)) for all x ∈ P0 and y ∈ P1. In other
words, we define f∗ := µ0

−1 ◦f∗ ◦µ1 where the second f∗ refers to the N (G)-
map f∗ = homN (G)(f, id) : P ∗1 → P ∗0 . In the sequel we will use the symbol
f∗ for both f∗ : P1 → P0 and f∗ : P ∗1 → P ∗0 .

Let {N (G)n} ⊂ {fin. gen. proj. N (G)-mod. with 〈 〉} be the full subcat-
egory whose objects are (N (G)n, µst), where the standard inner product is
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given by

µst : N (G)n ×N (G)n → N (G), (x, y) 7→ ∑n
i=1 xiy

∗
i . (6.21)

Denote by {l2(G)n} ⊂ {fin. gen. Hilb. N (G)-mod.} the full subcategory
whose objects are l2(G)n. We define an isomorphism of C-categories with
involution

ν : {N (G)n} → {l2(G)n} (6.22)

as follows. It sends an object N (G)n to the object l2(G)n. Let f : N (G)m →
N (G)n be an N (G)-homomorphism of (left) N (G)-modules. Choose an
(m,n)-matrix A ∈ M(m,n,N (G)) such that f sends x to xA. Define

ν(f) : l2(G)m → l2(G)n, y 7→ (
A∗yt

)t

where yt is obtained from y by transposing and applying elementwise the
involution l2(G) → l2(G) which sends

∑
g∈G λg · g to

∑
g∈G λg · g, the matrix

A∗ is obtained from A by transposing and applying the involution ∗ : N (G) →
N (G) to each entry, and Ayt is understood in the sense of matrices and
plugging yj into an element a : l2(G) → l2(G) in N (G). The involutions
appearing in the definition above come from the fact that we have decided to
consider always left group actions and left module structures and have defined
N (G) to be B(l2(G))G. We will extend ν to finitely generated N (G)-modules
with inner product by a completion process below.

Lemma 6.23. For any finitely generated projective N (G)-module P there is
an N (G)-map p : N (G)n → N (G)n with p◦p = p and p∗ = p such that im(p)
is N (G)-isomorphic to P . Any finitely generated projective N (G)-module P
has an inner product. Two finitely generated projective N (G)-modules with
inner product are unitarily N (G)-isomorphic if and only if the underlying
N (G)-modules are N (G)-isomorphic.

Proof. If P is finitely generated projective, we can find an N (G)-map
q : N (G)n → N (G)n with q◦q = q and anN (G)-isomorphism f : P

∼=−→ im(q).
Let p : N (G)n → N (G)n be the N (G)-map for which ν(p) is the orthogo-
nal projection onto the image of ν(q). Then p satisfies p ◦ p = p, p∗ = p
and im(p) = im(q). The standard inner product µst on N (G)n defined in
(6.21) restricts to an inner product on im(p), also denoted by µst, and this
restriction can be pulled back to an inner product on P by the isomorphism
f : P → im(p). It remains to show for an N (G)-map p : N (G)n → N (G)n

with p ◦ p = p and p∗ = p that for any inner product µ on im(p) there is a
unitary isomorphism g : (im(p), µ) → (im(p), µst).

Let f : P → P be the N (G)-isomorphism (µst)−1 ◦µ. It satisfies µ(x, y) =
µst(x, f(y)) for all x, y ∈ P . Since µst(x, f(x)) = µ(x, x) ≥ 0 holds, f is posi-
tive with respect to µst. Consider the composition i◦f ◦p : N (G)n → N (G)n
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where i : P → N (G)n is the inclusion, which is the adjoint of p : N (G)n → P
with respect to µst. This composition is positive with respect to µst onN (G)n.
Recall that we can consider CG as a dense subset of l2(G) in the obvi-
ous way and as a subset of N (G) if we identify g ∈ G with the element
Rg−1 : l2(G) → l2(G) in N (G) which is given by right multiplication with
g−1. Under this identification one easily checks for u, v ∈ CGn

trN (G)(µst(u, i ◦ f ◦ p(v))) = 〈u, ν(i ◦ f ◦ p)(v)〉l2(G)n .

Hence 〈u, ν(i ◦ f ◦ p)(u)〉l2(G)n ≥ 0 for all u ∈ CGn and therefore for all
u ∈ l2(G)n. So ν(i ◦ f ◦ p) is positive. Let g′ : N (G)n → N (G)n be defined
by the property that ν(g′) : l2(G)n → l2(G)n is positive and ν(g′) ◦ ν(g′) =
ν(i ◦ f ◦ p). Define g : P → P by p ◦ g′ ◦ i. Then g is invertible, is selfadjoint
with respect to µst and g2 = f . Now the claim follows from

µst(g(x), g(y)) = µst(x, g2(y)) = µst(x, f(y)) = µ(x, y).ut
Given a finitely generated projectiveN (G)-module (P, µ) with inner prod-

uct µ, we obtain a pre-Hilbert structure on P by trN (G) ◦µ : P × P → C for
trN (G) the standard trace (see Definition 1.2). Let ν(P, µ) be the associated
Hilbert space. The group G acts from the left by unitary operators on P and
hence on ν(P, µ) by putting g · x := Rg−1 · x for x ∈ P and Rg−1 : l2(G) →
l2(G) ∈ N (G) given by right multiplication with g−1. This is a finitely gener-
ated Hilbert N (G)-module since one can find another finitely generated pro-
jective N (G)-module with inner product (P0, µ0) and a unitary isomorphism
(P, µ)⊕(P0, µ0) → (N (G)n, µst) (see Lemma 6.23) which induces an isometric
G-isomorphism ν(P, µ)⊕ν(P0, µ0) → ν(N (G)n, µst) = l2(G)n. Let (P, µ) and
(P ′, µ′) be finitely generated projective N (G)-modules with inner product
and let f : P → P ′ be an N (G)-homomorphism. Then f extends to a mor-
phism of finitely generated Hilbert N (G)-modules ν(f) : ν(P, µ) → ν(P ′, µ′).

Theorem 6.24 (Modules over N (G) and Hilbert N (G)-modules).

(1) We obtain an equivalence of C-categories with involution

ν : {fin. gen. proj. N (G)-mod. with 〈 〉} → {fin. gen. Hilb. N (G)-mod.};
(2) The forgetful functor

F : {fin. gen. proj. N (G)-mod. with 〈 〉} → {fin. gen. proj. N (G)-mod.}
is an equivalence of C-categories. We obtain functors of C-categories

ν ◦ F−1 : {fin. gen. proj. N (G)-mod.} → {fin. gen. Hilb. N (G)-mod.}
F ◦ ν−1 : {fin. gen. Hilb. N (G)-mod.} → {fin. gen. proj. N (G)-mod.}

which are unique up to natural equivalence of functors of C-categories
and inverse to one another up to natural equivalence. We will denote
ν ◦ F−1 and F ◦ ν−1 by ν and ν−1 again;



250 6. L2-Invariants for General Spaces with Group Action

(3) The functors ν and ν−1 preserve exact sequences and weakly exact se-
quences;

(4) If P is a finitely generated projective N (G)-module, then

dimN (G)(P ) = dimN (G)(ν(P ))

for the two notions of dimN (G) defined in Definition 1.10 and in (6.3).

Proof. (1) The idempotent completion Idem(C) of a C-category C with invo-
lution has as objects (V, p) selfadjoint idempotents p : V → V . A morphism
from (V0, p0) to (V1, p1) is a morphism f : V0 → V1 satisfying p1 ◦ f ◦ p0 = f .
The identity on (V, p) is given by p : (V, p) → (V, p). The idempotent comple-
tion Idem(C) inherits from C the structure of a C-category with involution in
the obvious way. There are unitary equivalences of C-categories with involu-
tions

IM: Idem({N (G)n}) → {fin. gen. proj. N (G)-mod. with 〈 〉};
IM: Idem({l2(G)n}) → {fin. gen. Hilb. N (G)-mod.},

which sends (N (G)n, p) or (l2(G)n, p) to the image of p where the inner
product µst on im(p) is given by restricting the standard inner product µst

on N (G)n. The functor ν defined in (6.22) induces an isomorphism

Idem(ν) : Idem({N (G)n}) → Idem({l2(G)n}).
The following diagram commutes

Idem({N (G)n}) Idem(ν)−−−−−→ Idem({l2(G)n}
IM

y IM

y
{fin. gen. proj. N (G)-mod. with 〈 〉} ν−−−−→ {fin. gen. Hilb. N (G)-mod.}
up to unitary natural equivalence which is induced from the inclusion
N (G)n → l2(G)n sending (a1, . . . , an) to (a∗1(e), . . . , a∗n(e)), where for u =∑

g∈G λg · g ∈ l2(G) we put u :=
∑

g∈G λg · g. Now (1) follows.

(2) follows from Lemma 6.23 and assertion (1).

(3) A sequence U
f−→ V

g−→ W of finitely generated Hilbert N (G)-modules is
weakly exact at V if and only if the following holds: g ◦ f = 0 and for any
finitely generated Hilbert N (G)-modules P and Q and morphisms u : V → P
and v : Q → V with u ◦ f = 0 and g ◦ v = 0 we get u ◦ v = 0. It is exact at
V if and only if the following holds: g ◦ f = 0 and for any finitely generated
Hilbert N (G)-module P and morphism v : P → V with g ◦ v = 0 there is
a morphism u : P → U satisfying f ◦ u = v. The analogous statements are
true if one considers finitely generated projective N (G)-modules instead of
finitely generated Hilbert N (G)-modules. Now ν and ν−1 obviously preserve
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these criterions for weak exactness and exactness and the claim follows.

(4) This follows from the definitions. ut
Next we can give the proof of Theorem 6.5.

Proof. Part (1) of Assumption 6.2 is obvious, it remains to prove Part (2). In
the sequel we use Theorem 6.24 and the functors ν and ν−1 appearing there.

First we show that any finitely generated submodule M ⊂ P of a finitely
generated projective N (G)-module is finitely generated projective. Namely,
choose an N (G)-map f : N (G)n → P with im(f) = M . Let p : N (G)n →
N (G)n be the N (G)-map for which ν(p) : l2(G)n → l2(G)n is the orthogonal
projection onto the kernel of ν(f) : ν(N (G)n) = l2(G)n → ν(P ). Then p is
an idempotent with im(p) = ker(f) and hence M is projective.

Let P = {Pi | i ∈ I} be the directed system of finitely generated projec-
tive N (G)-submodules of K. Notice that P is indeed directed by inclusion
since the submodule of P generated by two finitely generated projective sub-
modules is again finitely generated and hence finitely generated projective.
Let ji : Pi → Q be the inclusion. Equip Q and each Pi with a fixed inner
product (Lemma 6.23). Let pri : ν(Q) → ν(Q) be the orthogonal projection
satisfying im(pri) = im(ν(ji)) and pr: ν(Q) → ν(Q) be the orthogonal pro-
jection satisfying im(pr) =

⋃
i∈I im(pri). Next we show

im(ν−1(pr)) = K. (6.25)

Let f : Q → N (G) be an N (G)-map with K ⊂ ker(f). Then f ◦ ji = 0 and
therefore ν(f) ◦ ν(ji) = 0 for all i ∈ I. We get im(pri) ⊂ ker(ν(f)) for all
i ∈ I. Since the kernel of ν(f) is closed we conclude im(pr) ⊂ ker(ν(f)).
This shows im(ν−1(pr)) ⊂ ker(f) and hence im(ν−1(pr)) ⊂ K. As K ⊂
ker(id−ν−1(pr)) = im(ν−1(pr)), we conclude K ⊂ im(ν−1(pr)). This finishes
the proof of (6.25). In particular K is a direct summand in Q.

Next we prove

dim′
N (G)(K) = dimN (G)(K). (6.26)

The inclusion ji induces a weak isomorphism ν(Pi) → im(pri) of finitely
generated Hilbert N (G)-modules. If we apply the Polar Decomposition The-
orem to it we obtain a unitary N (G)-isomorphism from ν(Pi) to im(pri).
This implies dimN (G)(Pi) = trN (G)(pri). Therefore it remains to prove

trN (G)(pr) = sup{trN (G)(pri) | i ∈ I}. (6.27)

Let ε > 0 and x ∈ ν(Q) be given. Choose i(ε) ∈ I and xi(ε) ∈ im(pri(ε)) with
||pr(x) − xi(ε)|| ≤ ε/2. Since im(pri(ε)) ⊂ im(pri) ⊂ im(pr) we get for all
i ≥ i(ε)
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||pr(x)− pri(x)|| ≤ ||pr(x)− pri(ε)(x)||
≤ || pr(x)− pri(ε)(xi(ε))||+ ||pri(ε)(xi(ε))− pri(ε)(x)||
= ||pr(x)− xi(ε)||+ || pri(ε)(xi(ε) − pr(x))||
≤ || pr(x)− xi(ε)||+ || pri(ε) || · ||xi(ε) − pr(x)||
≤ 2 · ||pr(x)− xi(ε)||
≤ ε.

Now (6.27) and hence (6.26) follow from Theorem 1.9 (2). This finishes the
proof of Theorem 6.5. ut

We will sometimes use

Lemma 6.28. (1) Let f : P → Q be an N (G)-map of finitely generated pro-
jective N (G)-modules. If f is a weak isomorphism, then P and Q are
N (G)-isomorphic;

(2) Let f : P → Q be an N (G)-map of finitely generated projective N (G)-
modules with dimN (G)(P ) = dimN (G)(Q). Then the following assertions
are equivalent:
(a) f is injective;
(b) f has dense image;
(c) f is a weak isomorphism;

(3) A projective N (G)-module P is trivial if and only if dimN (G)(P ) = 0;
(4) Let M be a finitely presented N (G)-module. Then dimN (G)(M) = 0 if

and only if there is an exact sequence 0 → N (G)n f−→ N (G)n → M → 0
for some N (G)-map f which is positive, i.e. f = h∗h for some N (G)-map
h : N (G)n → N (G)n.

Proof. (1) and (2) follow from Lemma 1.13 and Theorem 6.24.
(3) Since P is the colimit of its finitely generated submodules, it suffices to
prove the claim for a finitely generated projective N (G)-module by Theorem
6.7 (1) and (4c). Now apply Theorem 1.12 (1) and Theorem 6.24.
(4) Suppose that dimN (G)(M) = 0. Since N (G) is semihereditary (see
Theorem 6.7 (1)) and M is finitely presented, there is an exact sequence
0 → P

g−→ N (G)n q−→ M → 0 of N (G)-modules such that P is finitely
generated projective. We get from Additivity (see Theorem 6.7 (4b)) that
dimN (G)(P ) = dimN (G)(N (G)n). Since by assertion (2) g is a weak isomor-
phism, ν(g) is a weak isomorphism by Theorem 6.24 (3). Let f : N (G)n →
N (G)n be the N (G)-homomorphism for which ν(f) is the positive part in

the polar decomposition of ν(g). Now 0 → N (G)n f−→ N (G)n → M → 0 is
exact by Theorem 6.24 (3). The other implication follows from Additivity
(see Theorem 6.7 (4b)). ut
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6.3 Induction and the Extended von Neumann
Dimension

In this section we show that induction for the ring homomorphism N (H) →
N (G) induced by an inclusion of groups i : H → G is faithfully flat and com-
patible with the extended von Neumann dimension. This will be important
when we will compare L2-invariants of a regular covering with the ones of
the universal covering of a given space.

Recall from Theorem 6.5 and Theorem 6.7 that dimN (G) introduced in
Definition 6.20 satisfies Cofinality, Additivity and Continuity and that for
a finitely generated N (G)-module M we get a finitely generated projec-
tive N (G)-module PM such that M = PM ⊕ TM and dimN (G)(M) =
dimN (G)(PM).

We have associated to an injective group homomorphism i : H → G a ring
homomorphism i : N (H) → N (G) (see Definition 1.23). Given an N (H)-
module M , the induction with i is the N (G)-module i∗M = N (G)⊗N (H) M.
Obviously i∗ is a covariant functor from the category of N (H)-modules to the
category of N (G)-modules, preserves direct sums and the properties “finitely
generated” and “projective” and sends N (H) to N (G).

Theorem 6.29. Let i : H → G be an injective group homomorphism. Then

(1) Induction with i is a faithfully flat functor from the category of N (H)-
modules to the category of N (G)-modules, i.e. a sequence of N (H)-
modules M0 → M1 → M2 is exact at M1 if and only if the induced
sequence of N (G)-modules i∗M0 → i∗M1 → i∗M2 is exact at i∗M1;

(2) For any N (H)-module M we have:

dimN (H)(M) = dimN (G)(i∗M).

Proof. It is enough to show for any N (H)-module M

dimN (H)(M) = dimN (G)(i∗M); (6.30)

TorN (H)
p (N (G),M) = 0 for p ≥ 1; (6.31)

i∗M = 0 ⇒ M = 0. (6.32)

We begin with the case where M is finitely generated projective. Let A ∈
Mn(N (H)) be a matrix such that A = A∗, A2 = A and the image of the
N (H)-linear map RA : N (H)n → N (H)n induced by right multiplication
with A is N (H)-isomorphic to M . Let i∗A be the matrix in Mn(N (G))
obtained from A by applying i to each entry. Then i∗A = (i∗A)∗, (i∗A)2 =
i∗A and the image of the N (G)-linear map Ri∗A : N (G)n → N (G)n induced
by right multiplication with i∗A is N (G)-isomorphic to i∗M . Hence we get
from the definition (6.3)

dimN (H)(M) = trN (H)(A);
dimN (G)(i∗M) = trN (G)(i∗A).
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Since trN (G)(i(a)) = trN (H)(a) holds for a ∈ N (H) (see Lemma 1.24 (1)),
we get (6.30). Since for a finitely generated projective N (H)-module we have
M = 0 ⇔ dimN (H)(M) = 0 and i∗M is a finitely generated projective N (G)-
module, (6.32) follows from (6.30). If M is projective, (6.31) is obviously
true.

Next we treat the case where M is finitely presented. Then M splits
as M = TM ⊕ PM where PM is finitely generated projective and TM
is finitely presented (see Theorem 6.7 (3)). By Lemma 6.28 (4) we obtain

an exact sequence 0 → N (H)n f−→ N (H)n q−→ TM → 0 with f = f∗. If
we apply the right exact functor given by induction with i to it, we get an
exact sequence N (G)n i∗f−−→ N (G)n → i∗TM → 0 with (i∗f)∗ = i∗f . Since
we know (6.30) and (6.31) already for finitely generated projective N (H)-
modules, we conclude from Theorem 6.7 (4b) and (4e) and the definition of
Tor that (6.30) and (6.31) hold for the finitely presented N (H)-module M
provided that we can show that i∗f is injective.

We have i∗(ν(f)) = ν(i∗f), where i∗(ν(f)) was introduced in Definition
1.23. Because ν respects weak exactness (see Theorem 6.24 (3)), ν(f) has

dense image since N (H)n f−→ N (H)n → 0 is weakly exact. Then one easily
checks that ν(i∗f) = i∗(ν(f)) has dense image since CG ⊗CH l2(H) is a
dense subspace of l2(G). Since the kernel of a bounded operator of Hilbert
spaces is the orthogonal complement of the image of its adjoint and ν(i∗f)
is selfadjoint, ν(i∗f) is injective. Since ν−1 respects exactness (see Theorem
6.24 (3)) i∗f is injective.

Next we show (6.32) for finitely presented M . It suffices to show for an
N (H)-map N (H)m → N (H)n that g is surjective if i∗g is surjective. Since
the functors ν−1 and ν of Theorem 6.24 are exact we have to show for an
H-equivariant bounded operator h : l2(H)m → l2(H)n that h is surjective if
i∗h : l2(G)m → l2(G)n is surjective. Let {Eλ | λ ≥ 0} be the spectral family of
the positive operator h◦h∗. Then {i∗Eλ | λ ≥ 0} is the spectral family of the
positive operator i∗h◦ (i∗h)∗. Notice that h or i∗h respectively is surjective if
and only if Eλ = 0 or i∗Eλ = 0 respectively for some λ > 0. Because Eλ = 0
or i∗Eλ = 0 respectively is equivalent to trN (H)(Eλ) = 0 or trN (G)(i∗Eλ) = 0
respectively and trN (H)(Eλ) = trN (G)(i∗Eλ) holds by Lemma 1.24 (1), the
claim follows. This finishes the proof of (6.30), (6.31) and (6.32) in the case
where M is finitely presented.

Next we explain how we can derive the case of a finitely generated N (H)-
module M from the case of a finitely presented N (H)-module. Notice that
from now on the argument is purely algebraic, no more functional analysis
will enter. If f : N (H)n → M is an epimorphism with kernel K, then M is
the colimit over the directed system of N (H)-modules N (H)n/Kj indexed
by the set {Kj | j ∈ J} of finitely generated submodules of K. Now (6.30)
follows from Additivity and Cofinality (see Theorem 4 (4b) and (4c)) or
directly from Theorem 6.13 about dimension and colimits since i∗ commutes
with colimits. The functor Tor commutes in both variables with colimits
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over directed systems [94, Proposition VI.1.3. on page 107] and hence (6.31)
follows.

Next we prove (6.32) for finitely generated M . As above we write M =
colimj∈J N (H)n/Kj . Since each structure map N (H)n/Kj0 → N (H)n/Kj1

is an epimorphism of finitely generated N (H)-modules, we have M = 0
if and only if for each j0 ∈ J there is j1 ∈ J such that N (H)n/Kj1

vanishes. Recall that i∗ commutes with colimits and is right exact. Hence
i∗M = colimj∈J i∗(N (H)n/Kj) and i∗M = 0 if and only if for each j0 ∈ J
there is j1 ∈ J such that i∗(N (H)n/Kj1) vanishes. Since N (H)n/Kj1 is
finitely presented, we know already that N (H)n/Kj1 = 0 if and only if
i∗(N (H)n/Kj1) = 0. Hence i∗M = 0 if and only if M = 0.

The argument that (6.30), (6.31) and (6.32) are true for allN (H)-modules
if they are true for all finitely generated N (H)-modules is analogous to the
proof above that they are true for all finitely generated N (H)-modules if
they are true for all finitely presented N (H)-modules. Namely, repeat the
argument for the directed system of finitely generated submodules of a given
N (H)-module. This finishes the proof of Theorem 6.29. ut

The proof of Theorem 6.29 would be obvious if we knew thatN (G) viewed
as an N (H)-module were projective. Notice that this is a stronger statement
than the one proved in Theorem 6.29. One would have to show that the higher
Ext-groups instead of the Tor-groups vanish to get this stronger statement.
However, the proof for the Tor-groups does not go through directly since the
Ext-groups are not compatible with colimits.

The rather easy proof of the next lemma can be found in [333, Lemma
3.4 on page 149].

Lemma 6.33. Let H ⊂ G be a subgroup. Then

(1) dimN (G) (N (G)⊗CG C[G/H]) = |H|−1, where |H|−1 is defined to be zero
if H is infinite;

(2) If G is infinite and V is a CG-module which is finite dimensional over
C, then

dimN (G)(N (G)⊗CG V ) = 0.

6.4 The Extended Dimension Function and Amenable
Groups

In this section we deal with the special case of an amenable group G. The
main result (Theorem 6.37) will be that N (G) is flat over CG from the point
of view of the extended dimension function, although N (G) is flat over CG
in the strict sense only for very few groups, conjecturally exactly for virtually
cyclic groups (see Conjecture 6.49).
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6.4.1 Survey on Amenable Groups

In this subsection we give a brief survey about amenable and elementary
amenable groups. Let l∞(G,R) be the space of bounded functions from G to
R with the supremum norm. Denote by 1 the constant function with value
1.

Definition 6.34 (Amenable group). A group G is called amenable if
there is a (left) G-invariant linear operator µ : l∞(G,R) → R with µ(1) = 1
which satisfies for all f ∈ l∞(G,R)

inf{f(g) | g ∈ G} ≤ µ(f) ≤ sup{f(g) | g ∈ G}.
The latter condition is equivalent to the condition that µ is bounded and
µ(f) ≥ 0 if f(g) ≥ 0 for all g ∈ G. Let AM be the class of amenable groups.

The class EAM of elementary amenable groups is defined as the smallest
class of groups which has the following properties:

(1) It contains all finite and all abelian groups;
(2) It is closed under taking subgroups;
(3) It is closed under taking quotient groups;
(4) It is closed under extensions, i.e. if 1 → H → G → K → 1 is an exact

sequence of groups and H and K belong to EAM, then also G ∈ EAM;
(5) It is closed under directed unions, i.e. if {Gi | i ∈ I} is a directed system

of subgroups such that G =
⋃

i∈I Gi and each Gi belongs to EAM, then
G ∈ EAM. (Directed means that for two indices i and j there is a third
index k with Gi, Gj ⊂ Gk.)

We give an overview of some basic properties of these notions. A group
G is amenable if and only if each finitely generated subgroup is amenable
[419, Proposition 0.16 on page 14]. The class of amenable groups satisfies the
conditions appearing in the Definition 6.34 of elementary amenable groups,
namely, it contains all finite and all abelian groups, and is closed under tak-
ing subgroups, forming factor groups, group extensions, and directed unions
[419, Proposition 0.15 and 0.16 on page 14]. Hence any elementary amenable
group is amenable. Grigorchuk [228] has constructed a finitely presented
group which is amenable but not elementary amenable. A group which con-
tains the free group on two letters Z ∗ Z as a subgroup is not amenable
[419, Example 0.6 on page 6]. There exist examples of finitely presented
non-amenable groups which do not contain Z ∗ Z as a subgroup [407]. Any
countable amenable group is a-T-menable, i.e. it admits an affine, isometric
action on a real inner product space which is metrically proper in the sense
that limg→∞ ||gv|| = ∞ holds for every v ∈ V [33]. For a-T-menable groups
the Baum-Connes-Conjecture has been proved by Higson and Kasparov [257].
An infinite a-T-menable group and in particular an infinite amenable group
does not have Kazhdan’s property T.

A useful geometric characterization of amenable groups is given by the
Følner condition [35, Theorem F.6.8 on page 308].
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Lemma 6.35. A group G is amenable if and only if it satisfies the Følner
condition, i.e. for any finite set S ⊂ G with s ∈ S ⇒ s−1 ∈ S and ε > 0
there exists a finite non-empty subset A ⊂ G such that for its S-boundary
∂SA = {a ∈ A | there is s ∈ S with as /∈ A} we have

|∂SA| ≤ ε · |A|.
Another version of the Følner criterion is that a finitely presented group

G is amenable if and only if for any positive integer n, any connected closed
n-dimensional Riemannian manifold M with fundamental group π1(M) = G

and any ε > 0 there is a domain Ω ⊂ M̃ with (n− 1)-measurable boundary
such that the (n− 1)-measure of ∂Ω does not exceed ε times the measure of
Ω [35, Theorem F.6.8 on page 308]. Such a domain can be constructed by
an appropriate finite union of translations of a fundamental domain if G is
amenable.

The fundamental group of a closed connected manifold is not amenable
if M admits a Riemannian metric of non-positive curvature which is not
constant zero [16]. Any finitely generated group which is not amenable has
exponential growth [35, Proposition F.6.24 on page 318]. A group G is called
good in the sense of Freedmann if the so called π1-null disk lemma holds for G
which implies the topological s-Cobordism Theorem for 4-manifolds with G
as fundamental group. Any group with subexponential growth is good [204,
Theorem 0.1 on page 511] and amenable. No amenable group is known which
is not good and it may be true that the classes of good groups and amenable
groups coincide. The following conditions on a group G are equivalent:

(1) G is amenable;
(2) The canonical map from the full C∗-algebra of G to the reduced C∗-

algebra of G is an isomorphism [420, Theorem 7.3.9 on page 243];
(3) The reduced C∗-algebra of G is nuclear [303], provided that G is count-

able;
(4) G is finite or for any connected free G-CW -complex X the first Novikov-

Shubin invariant α1(X) is not ∞+ (see Theorem 2.55 (5b));
(5) For a closed connected Riemannian manifold M with G = π1(M) the

Laplacian ∆0 : L2Ω0(M̃) → L2Ω0(M̃) acting on functions on the univer-
sal covering has zero in its spectrum, provided that G is finitely presented
(see [68] or Section 2.7);

(6) H1(G, l2(G)) is not Hausdorff [242, Corollary III.2.4 on page 188];
(7) N (G)⊗CG C is not trivial (see Lemma 6.36).

Conjecture 6.48 implies another characterization of amenability in terms
of G0(CG), namely [CG] = 0 would hold in G0(CG) if and only if G is not
amenable (see Conjecture 9.67).

It is sometimes easier to deal with elementary amenable groups than with
amenable groups since elementary amenable groups have a useful description
in terms of transfinite induction (see Lemma 10.40).

For more information about amenable groups we refer to [419].
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6.4.2 Amenability and the Coinvariants of the Group von
Neumann Algebra

Lemma 6.36. N (G)⊗CGC[G/H] is trivial if and only if H is non-amenable

Proof. Since N (G) ⊗CG C[G/H] and N (G) ⊗N (H) N (H) ⊗CH C are N (G)-
isomorphic, we conclude from Theorem 6.29 (1) that its suffices to prove the
claim in the special case G = H.

Let S be a set of generators of G. Then
⊕

s∈S CG

⊕
s∈S rs−1−−−−−−−→ CG

ε−→ C→
0 is exact where ε(

∑
g∈G λg · g) =

∑
g∈G λg and ru denotes right multipli-

cation with u ∈ CG. We obtain an exact sequence
⊕

s∈S N (G)
⊕

s∈S rs−1−−−−−−−→
N (G) ε−→ N (G) ⊗CG C → 0 since the tensor product is right exact. Hence

N (G)⊗CG C is trivial if and only if
⊕

s∈S N (G)
⊕

s∈S rs−1−−−−−−−→ N (G) is surjec-
tive. This is equivalent to the existence of a finite subset T ⊂ S such that
⊕

s∈T N (G)
⊕

s∈T rs−1−−−−−−−→ N (G) is surjective. Let G0 ⊂ G be the subgroup gen-
erated by T . Then the map above is induction with the inclusion of G0 ⊂ G

applied to
⊕

t∈T N (G0)
⊕

t∈T rt−1−−−−−−−→ N (G0). Hence we conclude from Theo-
rem 6.29 (1) that N (G)⊗CGC is trivial if and only if N (G0)⊗CG0 C is trivial
for some finitely generated subgroup G0 ⊂ G. The group G is amenable if
and only if each of its finitely generated subgroups is amenable [419, Propo-
sition 0.16 on page 14]. Hence we can assume without loss of generality that
G is finitely generated and S is finite. Moreover, we can also assume that S
is symmetric, i.e. s ∈ S implies s−1 ∈ S.

Because the functor ν of Theorem 6.24 (3) is exact, N (G)⊗CGC is trivial

if and only if the operator f :
⊕

s∈S l2(G)
⊕

s∈S rs−1−−−−−−−→ l2(G) is surjective. This
is equivalent to the bijectivity of the operator

1
2 · |S|f ◦ f∗ : l2(G)

id−∑
s∈S

1
|S| ·rs−−−−−−−−−−−→ l2(G).

It is bijective if and only if the spectral radius of the operator l2(G)
∑

s∈S
1
|S| ·rs−−−−−−−−→

l2(G) is different from 1. Since this operator is convolution with a probability
distribution whose support contains S, namely

P : G → [0, 1], g 7→
{ |S|−1, g ∈ S

0, g /∈ S

the spectral radius is 1 precisely if G is amenable, by a result of Kesten [290].
ut

6.4.3 Amenability and Flatness Properties of the Group von
Neumann Algebra over the Group Ring

In this subsection we investigate the flatness properties of the group von
Neumann algebraN (G) over the complex group ring CG. The next statement
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says roughly that for an amenable group the group von Neumann algebra is
flat over the group ring from the point of view of dimension theory.

Theorem 6.37. (Dimension-flatness of N (G) over CG for amenable
G). Let G be amenable and M be a CG-module. Then

dimN (G)

(
TorCG

p (N (G),M)
)

= 0 for p ≥ 1,

where we consider N (G) as an N (G)-CG-bimodule.

Proof. In the first step we show for a finitely presented N (G)-module M

dimN (G)

(
TorCG

1 (N (G),M)
)

= 0. (6.38)

Choose a finite presentation CGm f−→ CGn p−→ M → 0. For an element
u =

∑
g λg ·g in l2(G) define its support by supp(u) := {g ∈ G | λg 6= 0} ⊂ G.

Let B = (bi,j) ∈ M(m,n,CG) be the matrix describing f , i.e. f is given by
right multiplication with B. Define the finite subset S of G by

S := {g ∈ G | g or g−1 ∈
⋃

i,j

supp(bi,j)}.

Let f (2) : l2(G)m → l2(G)n be the bounded G-equivariant operator induced
by f . Denote by K the G-invariant linear subspace of l2(G)m which is the
image of the kernel of f under the canonical inclusion k : CGm → l2(G)m.
Next we show for the closure K of K

K = ker(f (2)). (6.39)

Obviously K ⊂ ker(f (2)). Let pr : l2(G)m → l2(G)m be the orthogonal projec-
tion onto the closed G-invariant subspace K⊥ ∩ker(f (2)). The von Neumann
dimension of im(pr) is zero if and only if pr itself is zero (see Theorem 1.9
(3)). Hence (6.39) will follow if we can prove

trN (G)(pr) = 0. (6.40)

Let ε > 0 be given. We conclude from Lemma 6.35 that there is a finite
non-empty subset A ⊂ G satisfying

m · (|S|+ 1) · |∂SA|
|A| ≤ ε, (6.41)

where ∂SA is defined by {a ∈ A | there is s ∈ S with as /∈ A}. Define

∆ := {g ∈ G | g ∈ ∂SA or gt ∈ ∂SA for some t ∈ S}

= ∂SA
⋃ (⋃

t∈S

∂SA · t
)

.
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Let prA : l2(G) → l2(G) be the projection which sends
∑

g∈G λg · g to∑
g∈A λg · g. Define pr∆ : l2(G) → l2(G) analogously. Next we show for s ∈ S

and u ∈ l2(G)

prA ◦rs(u) = rs ◦ prA(u) if pr∆(u) = 0, (6.42)

where rs : l2(G) → l2(G) is right multiplication with s. Since t ∈ S implies
t−1 ∈ S, we get the following equality of subsets of G

{g ∈ G | gs ∈ A, g /∈ ∆} = {g ∈ A | g /∈ ∆}.
Now (6.42) follows from the following calculation for u =

∑
g∈G,g/∈∆ λg ·g ∈

l2(G)

prA ◦rs(u) = prA


 ∑

g∈G,g/∈∆

λg · gs


 =

∑

g∈G,gs∈A,g/∈∆

λg · gs

=
∑

g∈A,g/∈∆

λg · gs =


 ∑

g∈A,g/∈∆

λg · g

 · s = rs ◦ prA(u).

We have defined S such that each entry in the matrix B describing f is a
linear combination of elements in S. Hence (6.42) implies




n⊕

j=1

prA


 ◦ f (2)(u) = f (2) ◦

(
m⊕

i=1

prA

)
(u)

if pr∆(ui) = 0 for i = 1, 2 . . . , m.

Notice that the image of
⊕m

i=1 prA lies in CGm. We conclude

m⊕

i=1

prA(u) ∈ K if u ∈ ker(f (2)), pr∆(ui) = 0 for i = 1, 2 . . . ,m.

This shows
(

pr ◦
m⊕

i=1

prA

)(
ker(f (2)) ∩

m⊕

i=1

ker(pr∆)

)
= 0.

Since ker(pr∆) has complex codimension |∆| in l2(G) and |∆| ≤ (|S| + 1) ·
|∂SA|, we conclude for the complex dimension dimC of complex vector spaces

dimC

((
pr ◦

m⊕

i=1

prA

) (
ker(f (2))

))
≤ m · (|S|+ 1) · |∂SA|. (6.43)

Since pr ◦prA is an endomorphism of Hilbert spaces with finite dimensional
image, it is trace-class and its trace trC(pr ◦prA) is defined. We get
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trN (G)(pr) =
trC (pr ◦⊕m

i=1 prA)
|A| (6.44)

from the following computation for e ∈ G ⊂ l2(G) the unit element

trN (G)(pr) =
m∑

i=1

〈pri,i(e), e〉

=
1
|A|

m∑

i=1

|A| · 〈pri,i(e), e〉

=
1
|A|

m∑

i=1

∑

g∈A

〈pri,i(g), g〉

=
1
|A|

m∑

i=1

∑

g∈A

〈pri,i ◦prA(g), g〉

=
1
|A|

m∑

i=1

∑

g∈G

〈pri,i ◦prA(g), g〉

=
1
|A|

m∑

i=1

trC(pri,i ◦prA)

=
1
|A| trC

(
pr ◦(

m⊕

i=1

prA)

)
.

If H is a Hilbert space and f : H → H is a bounded operator with finite
dimensional image, then trC(f) ≤ ||f || · dimC (f(im(f))). Since the image of
pr is contained in ker(f (2)) and pr and prA have operator norm 1, we conclude

trC

(
pr ◦

m⊕

i=1

prA

)
≤ dimC

((
pr ◦

m⊕

i=1

prA

) (
ker(f (2))

))
. (6.45)

Equations (6.41), (6.43), (6.44) and (6.45) imply

trN (G)(pr) ≤ ε.

Since this holds for all ε > 0, we get (6.40) and hence (6.39) is true.
Let prK : l2(G)m → l2(G)m be the projection onto K. Let i : ker(f) →

CGm be the inclusion. It induces a map

idN (G)⊗CGi : N (G)⊗CG ker(f) → N (G)m,

where here and in the sequel we will identify N (G)⊗CG CGm = N (G)m by
the obvious isomorphism. Next we want to show

im(ν−1(prK)) = im(idN (G)⊗CGi). (6.46)
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Let x ∈ ker(f). Then

l ◦ (id−ν−1(prK)) ◦ (idN (G)⊗CGi)(1⊗ x) = (id−prK) ◦ k ◦ i(x),(6.47)

where k : CGm → l2(G)m and l : N (G)m → l2(G)m are the obvious inclu-
sions. Since (id−prK) is trivial on K we get (id−prK) ◦ k ◦ i = 0. Now we
conclude from (6.47) that im(idN (G)⊗CGi) ⊂ ker(id−ν−1(prK)) and hence
im(idN (G)⊗CGi) ⊂ im(ν−1(prK)) holds. This shows im(idN (G)⊗CGi) ⊂
im(ν−1(prK)). It remains to prove for any N (G)-map g : N (G)m → N (G)
with im(idN (G)⊗CGi) ⊂ ker(g) that g ◦ ν−1(prK) is trivial. Obviously
K ⊂ ker(ν(g)). Since ker(ν(g)) is a closed subspace, we get K ⊂ ker(ν(g)).
We conclude ν(g) ◦ prK = 0 and hence g ◦ ν−1(prK) = 0. This finishes the
proof of (6.46).

Since ν−1 preserves exactness by Theorem 6.24 (3) and idN (G)⊗CGf =
ν−1(f (2)), we conclude from (6.39) and (6.46) that the sequence

N (G)⊗CG ker(f)
idN(G)⊗CGi−−−−−−−−→ N (G)m idN(G)⊗CGf−−−−−−−−→ N (G)m

is weakly exact. Continuity of the dimension function (see Theorem 6.7 (4d))
implies

dimN (G)

(
ker(idN (G)⊗CGf)/ im(idN (G)⊗CGi)

)
= 0.

Since TorCG
1 (N (G),M) = ker(idN (G)⊗CGf)/ im(idN (G)⊗CGi) holds, we

have proved (6.38) provided that M is finitely presented.
Next we prove (6.38) for arbitrary CG-modules M . Obviously M is the

union of its finitely generated submodules. Any finitely generated module
N is a colimit over a directed system of finitely presented modules, namely,
choose an epimorphism from a finitely generated free module F to N with
kernel K. Since K is the union of its finitely generated submodules, N is the
colimit of the directed system F/L where L runs over the finitely generated
submodules of K. The functor Tor commutes in both variables with colimits
over directed systems [94, Proposition VI.1.3. on page 107]. Now (6.38) follows
from Additivity and Cofinality (see Theorem 6.7 (4c) and 4b)) or directly
from Theorem 6.13 about dimension and colimits.

Next we show for any CG-module, that dimN (G)

(
TorCG

p (N (G),M)
)

= 0
holds for all p ≥ 1 by induction over p. The induction step p = 1 has been
proved above. Choose an exact sequence 0 → N → F → M → 0 of N (G)-
modules such that F is free. Then we obtain form the associated long exact se-
quence of Tor-groups an isomorphism TorCG

p (N (G),M) ∼= TorCG
p−1(N (G), N)

and the induction step follows. This finishes the proof of Theorem 6.37. ut
Conjecture 6.48. (Amenability and dimension-flatness of N (G) over
CG). A group G is amenable if and only if for each CG-module M

dimN (G)

(
TorCG

p (N (G), M)
)

= 0 for p ≥ 1

holds.
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Theorem 6.37 gives the “only if”-statement. Evidence for the “if”-state-
ment comes from the following observation. Suppose that G contains a free
group Z ∗ Z of rank 2 as subgroup. Notice that S1 ∨ S1 is a model for B(Z ∗
Z). Its cellular C[Z ∗ Z]-chain complex yields an exact sequence 0 → C[Z ∗
Z]2 → C[Z ∗ Z] → C→ 0, where C is equipped with the trivial Z ∗ Z-action.
We conclude from Additivity (see Theorem 6.7 (4b)), Theorem 6.29 (1) and
Lemma 6.36

dimN (Z∗Z)
(
TorC[Z∗Z]

1 (N (Z ∗ Z),C)
)

= 1;

N (G)⊗N (Z∗Z) TorC[Z∗Z]
1 (N (Z ∗ Z),C)) = TorCG

1 (N (G),CG⊗C[Z∗Z] C).

We conclude from Theorem 6.29 (2)

dimN (G)

(
TorCG

1 (N (G),CG⊗C[Z∗Z] C)
)
6= 0.

One may ask for which groups the von Neumann algebra N (G) is flat as
a CG-module. This is true if G is virtually cyclic. There is some evidence for
the conjecture

Conjecture 6.49 (Flatness of N (G) over CG). The group von Neumann
algebra N (G) is flat over CG if and only if G is virtually cyclic, i.e. G is
finite or contains Z as normal subgroup of finite index.

6.5 L2-Betti Numbers for General Spaces with Group
Actions

In this section we extend the notion of L2-Betti numbers for free G-CW -
complexes of finite type introduced in Definition 1.30 to arbitrary G-spaces,
where we will use the extended dimension function dimN (G) of Definition
6.20. We prove the main properties of these notions.

Definition 6.50 (L2-Betti numbers). Let X be a (left) G-space. Equip
N (G) with the obvious N (G)-ZG-bimodule structure. The singular homology
HG

p (X;N (G)) of X with coefficients in N (G) is the homology of the N (G)-
chain complex N (G) ⊗ZG Csing

∗ (X), where Csing
∗ (X) is the singular chain

complex of X with the induced ZG-structure. Define the p-th L2-Betti number
of X by

b(2)
p (X;N (G)) := dimN (G)(HG

p (X;N (G))) ∈ [0,∞],

where dimN (G) is the extended dimension function of Definition 6.20.
If G and its action on X are clear from the context, we often omit N (G)

in the notation above.
Define for any (discrete) group G its p-th L2-Betti number by

b(2)
p (G) := b(2)

p (EG,N (G)).
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We first show that this new definition and the old one agree when both
apply. For that purpose we will need the following two lemmas. The proof of
the first one can be found for instance in [333, Lemma 4.2 on page 152].

Lemma 6.51. Let X be a G-CW -complex and C∗(X) be its cellular ZG-
chain complex. Then there exists a ZG-chain homotopy equivalence

f∗(X) : C∗(X) → Csing
∗ (X),

which is, up to ZG-homotopy, uniquely defined and natural in X. In particular
we get a natural isomorphism of N (G)-modules

Hp(N (G)⊗ZG C∗(X))
∼=−→ HG

p (X;N (G)) := Hp(N (G)⊗ZG Csing
∗ (X)).

Lemma 6.52. Let C∗ be a finitely generated Hilbert N (G)-chain complex.
Then there is an isomorphism, natural in C∗,

hp(C∗) : ν−1(H(2)
p (C∗))

∼=−→ PHp(ν−1(C∗)),

where ν−1 is the functor appearing in Theorem 6.24.

Proof. We define hp(C∗) by the following commutative diagram whose columns
are exact and whose middle and lower vertical arrows are isomorphisms by
Theorem 6.7 (2) and Theorem 6.24 (3)

0 0
x

x

ν−1(H(2)
p (C∗))

hp(C∗)−−−−→ PHp(ν−1(C∗))

ν−1(q)

x r

x

ν−1(ker(cp))
ν−1(i)−−−−→ ker(ν−1(cp))

ν−1(j)

x l

x

ν−1(im(cp+1))
ν−1(k)−−−−→ im(ν−1(cp+1))x

x
0 0

where i : ker(cp) → Cp, j : im(cp+1) → ker(cp), k : im(cp+1) → Cp and l are
the obvious inclusions and q and r the obvious projections. Then hp(C∗) is
an isomorphism by the five-lemma. ut
Lemma 6.53. Let X be a G-CW -complex of finite type. Then Definition
1.30 and Definition 6.50 of L2-Betti numbers b

(2)
p (X;N (G)) agree.
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Proof. We can identify N (G) ⊗ZG C∗(X) with ν−1(C(2)
∗ (X)). Now apply

Theorem 6.7 (4e), Theorem 6.24 (4), Lemma 6.51 and Lemma 6.52. ut
Next we collect some basic properties of L2-Betti numbers.

Theorem 6.54. L2-Betti numbers for arbitrary spaces).

(1) Homology invariance
We have for a G-map f : X → Y
(a) Suppose for n ≥ 1 that for each subgroup H ⊂ G the induced

map fH : XH −→ Y H is C-homologically n-connected, i.e. the map
Hsing

p (fH ;C) : Hsing
p (XH ;C) → Hsing

p (Y H ;C) induced by fH on sin-
gular homology with complex coefficients is bijective for p < n and
surjective for p = n. Then the induced map f∗ : HG

p (X;N (G)) −→
HG

p (Y ;N (G)) is bijective for p < n and surjective for p = n and we
get

b(2)
p (X) = b(2)

p (Y ) for p < n;

b(2)
p (X) ≥ b(2)

p (Y ) for p = n;

(b) Suppose that for each subgroup H ⊂ G the induced map fH : XH →
Y H is a C-homology equivalence, i.e. Hsing

p (fH ;C) is bijective for p ≥
0. Then for all p ≥ 0 the map f∗ : HG

p (X;N (G)) → HG
p (Y ;N (G))

induced by f is bijective and we get

b(2)
p (X) = b(2)

p (Y ) for p ≥ 0;

(2) Comparison with the Borel construction
Let X be a G-CW -complex. Suppose that for all x ∈ X the isotropy group
Gx is finite or satisfies b

(2)
p (Gx) = 0 for all p ≥ 0. Then

b(2)
p (X;N (G)) = b(2)

p (EG×X;N (G)) for p ≥ 0;

(3) Invariance under non-equivariant C-homology equivalences
Suppose that f : X → Y is a G-equivariant map of G-CW -complexes
such that the induced map Hsing

p (f ;C) on singular homology with complex
coefficients is bijective. Suppose that for all x ∈ X the isotropy group Gx

is finite or satisfies b
(2)
p (Gx) = 0 for all p ≥ 0, and analogously for all

y ∈ Y . Then we have for all p ≥ 0

b(2)
p (X;N (G)) = b(2)

p (Y ;N (G));

(4) Independence of equivariant cells with infinite isotropy
Let X be a G-CW -complex. Let X[∞] be the G-CW -subcomplex consist-
ing of those points whose isotropy subgroups are infinite. Then we get for
all p ≥ 0

b(2)
p (X;N (G)) = b(2)

p (X,X[∞];N (G));
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(5) Künneth formula
Let X be a G-space and Y be an H-space. Then X ×Y is a G×H-space
and we get for all n ≥ 0

b(2)
n (X × Y ) =

∑
p+q=n

b(2)
p (X) · b(2)

q (Y ),

where we use the convention that 0 · ∞ = 0, r · ∞ = ∞ for r ∈ (0,∞]
and r +∞ = ∞ for r ∈ [0,∞];

(6) Restriction
Let H ⊂ G be a subgroup of finite index [G : H]. Then
(a) Let M be an N (G)-module and resH

G M be the N (H)-module obtained
from M by restriction. Then

dimN (H)(resH
G M) = [G : H] · dimN (G)(M),

where [G : H] · ∞ is understood to be ∞;
(b) Let X be a G-space and let resH

G X be the H-space obtained from X
by restriction. Then

b(2)
p (resH

G X;N (H)) = [G : H] · b(2)
p (X;N (G));

(7) Induction
Let i : H → G be an inclusion of groups and let X be an H-space. Let
i : N (H) → N (G) be the induced ring homomorphism (see Definition
1.23). Then

HG
p (G×H X;N (G)) = i∗HH

p (X;N (H));

b(2)
p (G×H X;N (G)) = b(2)

p (X;N (H));

(8) Zero-th homology and L2-Betti number
Let X be a path-connected G-space. Then
(a) There is an N (G)-isomorphism HG

0 (X;N (G))
∼=−→ N (G)⊗CG C;

(b) b
(2)
0 (X;N (G)) = |G|−1, where |G|−1 is defined to be zero if the order
|G| of G is infinite;

(c) HG
0 (X;N (G)) is trivial if and only if G is non-amenable;

Proof. (1) The proof of assertion (1) which generalizes Theorem 1.35 (1) can
be found in [333, Lemma 4.8 on page 153].
(2) Because of Additivity (see Theorem 6.7 (4b)) it suffices to prove that the
dimension of the kernel and the cokernel of the map induced by the projection

pr∗ : HG
p (EG×X;N (G)) → HG

p (X;N (G))

are trivial. Notice that X is the directed colimit of its finite G-CW -sub-
complexes. Since HG

p (−,N (G)) is compatible with directed colimits and di-
rected colimits preserve exact sequences, we can assume by Theorem 6.13
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about dimension and colimits that X itself is finite. By induction over the
number of equivariant cells, the long exact homology sequence and Addi-
tivity (see Theorem 6.7 (4b)) the claim reduces to the case where X is of
the shape G/H. Because of assertion (7) it suffices to prove for the map
pr∗ : HH

p (EH;N (H)) → HH
p ({∗};N (H)) that its kernel and cokernel have

trivial dimension, provided that H is finite or b
(2)
p (H;N (H)) = 0 for p ≥ 0.

This follows from assertion (8a).
(3) Since EG×X and EG× Y are free G-CW -complexes and id×f : EG×
X → EG× Y induces an isomorphism on homology with C-coefficients, the
claim follows from assertions (1b) and (2).

(4) We get an exact sequence of cellular ZG-chain complexes 0 → C∗(X[∞]) →
C∗(X) → C∗(X,X[∞]) → 0 which is a split exact sequence of ZG-modules
in each dimension. Hence it stays exact after applying N (G)⊗ZG −, and we
get a long exact sequence of N (G)-homology modules

. . . → HG
p (X[∞];N (G)) → HG

p (X;N (G)) → HG
p (X, X[∞];N (G))

→ HG
p−1(X[∞];N (G)) → . . . .

Because of Additivity (see Theorem 6.7 (4b)) it suffices to prove that
dimN (G)(N (G) ⊗ Cp(X[∞])) = 0 for all p ≥ 0. This follows from Addi-
tivity (see Theorem 6.7 (4b)), Cofinality (see Theorem 6.7 (4c)) and Lemma
6.33 (1), since Cp(X[∞]) is a direct sum of ZG-modules of the shape Z[G/H]
for infinite subgroups H ⊂ G.
(5) This assertion is a generalization of Theorem 1.35 (4).

For any G-space Z there is a G-CW -complex Z ′ together with a G-map
f : Z → Z ′ such that fH is a weak homotopy equivalence and hence induces
an isomorphism on singular homology with complex coefficients for all H ⊂ G
[326, Proposition 2.3 iii) on page 35]. Hence we can assume without loss of
generality that X is a G-CW -complex and Y is a H-CW -complex by assertion
(1b).

The G-CW -complex X is the colimit of the directed system {Xi | i ∈ I}
of its finite G-CW -subcomplexes. Analogously Y is the colimit of the directed
system {Yj | j ∈ J} of its finite H-CW -subcomplexes. Since we are working
in the category of compactly generated spaces, the G×H-CW -complex X×Y
is the colimit of the directed system {Xi×Yj | (i, j) ∈ I×J}. Since homology
and tensor products are compatible with colimits over directed systems, we
conclude from Theorem 6.13 (2) about dimension and colimits
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b(2)
p (X;N (G))

= sup
{
inf

{
dimN (G)

(
im(φi0,i1 : HG

p (Xi0 ;N (G)) → HG
p (Xi1 ;N (G)))

)

| i1 ∈ I, i0 ≤ i1} | i0 ∈ I} ; (6.55)
b(2)
p (Y ;N (G))

= sup
{
inf

{
dimN (H)

(
im(ψj0,j1 : HH

p (Yj0 ;N (H)) → HH
p (Yj1 ;N (H)))

)

| j1 ∈ J, j0 ≤ j1} | j0 ∈ J} ; (6.56)
b(2)
p (X × Y ;N (G×H))

= sup
{
inf

{
dimN (G×H)

(
im(µ(i0,j0),(i1,j1) :

HG×H
p (Xi0 × Yj0 ;N (G×H)) → HG×H

p (Xi1 × Yj1 ;N (G×H)))
)

| (i1, j1) ∈ I × J, i0 ≤ i1, j0 ≤ j1} | (i0, j0) ∈ I × J} , (6.57)

where here and in the sequel φi0,i1 , ψj0,j1 and µ(i0,j0),(i1,j1) are the maps
induced by the obvious inclusions.

Next we show for n ≥ 0 and i0, i1 ∈ I with i0 ≤ i1 and j0, j1 ∈ J with
j0 ≤ j1

dimN (G×H)

(
im

(
µ(i0,j0),(i1,j1) : HG×H

n (Xi0 × Yj0 ;N (G×H))
→ Hn(Xi1 ×Xj1 ;N (G×H))))

=
∑

p+q=n

dimN (G)

(
im(φi0,i1 : HG

p (Xi0 ;N (G)) → HG
p (Xi1 ;N (G)))

)

· dimN (H)

(
im(ψj0,j1 : HH

q (Yj0 ;N (G)) → HH
q (Yj1 ;N (G)))

)
. (6.58)

For k = 0, 1 let C∗[k] be the cellular ZG-chain complex of the G-CW -pair
(Xik

, Xik
[∞]), where Xik

[∞] has been introduced in Theorem 6.54 (4). For
k = 0, 1 let D∗[k] be the cellular ZH-chain complex of the H-CW -pair
(Yjk

, Yjk
[∞]). Then C∗[k]⊗ZD∗[k] is the cellular Z[G×H]-chain complex of

the G×H-CW -pair (X × Y, (X × Y )[∞]). Notice that Cp[k] is a direct sum
of ZG-modules of the shape Z[G/H] for finite subgroups H ⊂ G. Hence the
G-CW -complex structure on (Xik

, Xik
[∞]) induces the structure of a Hilbert

N (G)-chain complex on C
(2)
∗ [k] := l2(G)⊗ZGC∗[k]. The analogous statements

are true for D
(2)
∗ [k] := l2(H)⊗ZGD∗[k] and l2(G×H)⊗Z[G×H](C∗[k]⊗ZD∗[k]).

Notice that the last Hilbert N (G × H)-chain complex is isomorphic to the
Hilbert tensor product C

(2)
∗ [k]⊗D

(2)
∗ [k]. We conclude from Theorem 6.7 (2)

and (4d), Theorem 6.24 and Theorem 6.54 (4)
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dimN (G)

(
im(φi0,i1 : HG

p (Xi0 ;N (G)) → HG
p (Xi1 ;N (G))

)

= dimN (G)

(
clos(im(φi0,i1 : H(2)

p (C(2)
∗ [0]) → H(2)

p (C(2)
∗ [1])))

)
; (6.59)

dimN (H)

(
im(ψj0,j1 : HH

p (Yj0 ;N (H)) → HH
p (Yj1 ;N (H)))

)

= dimN (H)

(
clos(im(ψj0,j1 : H(2)

p (D(2)
∗ [0]) → H(2)

p (D(2)
∗ [1])))

)
; (6.60)

dimN (G×H)

(
im(µ(i0,j0),(i1,j1) : HG×H

p (Xi0 × Yj0 ;N (G×H))

→ HG×H
p (Xi1 × Yj1 ;N (G×H)))

)

= dimN (G×H)

(
clos(im(µ(i0,j0),(i1,j1) : H(2)

p (C(2)
∗ [0]⊗D

(2)
∗ [0])

→ H(2)
p (C(2)

∗ [1]⊗D
(2)
∗ [1])))

)
. (6.61)

There is a commutative diagram of Hilbert N (G×H)-modules
⊕

p+q=n H
(2)
p (C(2)

∗ [0])⊗Hq((D
(2)
∗ [0])

∼=−−−−→ H
(2)
n (C(2)

∗ [0]⊗D
(2)
∗ [0])

⊕
p+q=n φi0,i1⊗ψj0,j1

y µ(i0,j0),(i1,j1)

y
⊕

p+q=n H
(2)
p (C(2)

∗ [1])⊗H
(2)
q ((D(2)

∗ [1])
∼=−−−−→ H

(2)
n (C(2)

∗ [1]⊗D
(2)
∗ [1])

where the horizontal isomorphisms are the ones appearing in Lemma 1.22.
Thus we obtain an isomorphism of closure of the images of the two vertical
maps. The closure of the image of a Hilbert tensor product of two morphisms
is the Hilbert tensor product of the closures of the individual images. Now
(6.58) follows from Theorem 1.12 (5), (6.59), (6.60) and (6.61). Finally as-
sertion (5) follows from (6.55), (6.56), (6.57) and (6.58).
(6) generalizes Theorem 1.35 (9).

We begin with the proof of assertion (6a) Notice for the sequel that
resH

G N (G) is N (H)-isomorphic to N (H)[G:H]. Since M is the colimit of
the directed system of its finitely generated N (G)-submodules, it suffices
to consider the case where M is finitely generated because of Cofinality
(see Theorem 6.7 (4c)). Since for a finitely generated N (G)-module we have
T(resH

G M) = resH
G (TM) and hence P(resH

G M) = resH
G (PM), we conclude

from Theorem 6.7 (3) and (4e) that it suffices to treat the case of a finitely
generated projective N (G)-module M . The functor ν appearing in Theorem
6.24 is compatible with restriction for N (G)-modules and restriction from G
to H for Hilbert modules. Using Theorem 6.24 (4) we reduce the claim to the
assertion that for any finitely generated Hilbert N (G)-module V we have

dimN (H)(resH
G V ) = [G : H] · dimN (G)(V ).

This has already been proved in Theorem 1.12 (6).
Next we prove assertion (6b). We obtain an isomorphism of N (H)-CG-

bimodules N (H) ⊗CH CG
∼=−→ N (G) by sending u ⊗ g to i∗(u) ◦ Rg−1 . It

induces an N (H)-isomorphism
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N (H)⊗CH C∗(resH
G X)

∼=−→ resH
G (N (G)⊗CG C∗(X)).

Now assertion (6b) follows from assertion (6a).
(7) is a generalization of Theorem 1.35 (10) and follows from Theorem 6.29.
(8) This follows from Lemma 6.33 and Lemma 6.36 and generalizes Theorem
1.35 (8). This finishes the proof of Theorem 6.54. ut

We will investigate the class B∞ of groups G, for which b
(2)
p (G) = 0 holds

for all p ≥ 0, in Section 7.1.

Remark 6.62. Let M be a closed Riemannian manifold. We have already
mentioned in Section 2.7 that the analytic Laplace operator ∆p : L2Ωp(M̃) →
L2Ωp(M̃) on the universal covering does not have zero in its spectrum if and
only if we get for its analytic p-th L2-Betti number b

(2)
p (M̃) = 0 and for its

analytic p-th Novikov-Shubin invariant α∆
p (M̃) = ∞+. In the case p = 0

this is equivalent to the condition that HG
0 (X;N (G)) = 0 by Theorem 1.59,

Lemma 2.11 (8) Theorem 2.68 and Theorem 6.24 (3). The latter condition is
by Theorem 6.54 (8c) equivalent to the condition that π1(M) is amenable.
Thus we rediscover (and in some sense generalize to arbitrary G-spaces) the
result of Brooks [68] that for a closed Riemannian manifold M the Laplacian
∆0 : L2Ω0(M̃) → L2Ω0(M̃) acting on functions on the universal covering
has zero in its spectrum if and only if π1(M) is amenable. Notice that both
Brook’s and our proof are based on Kesten [290].

The next result is a generalization of Theorem 1.39 and was conjectured
for a closed aspherical manifold fibering over the circle in [237, page 229].

Theorem 6.63 (Vanishing of L2-Betti numbers of mapping tori).
Let f : X → X be a cellular selfmap of a connected CW -complex X and

let π1(Tf )
φ−→ G

ψ−→ Z be a factorization of the canonical epimorphism into
epimorphisms φ and ψ. Suppose for given p ≥ 0 that b

(2)
p (G×φ◦i X̃;N (G)) <

∞ and b
(2)
p−1(G ×φ◦i X̃;N (G)) < ∞ holds, where i : π1(X) → π1(Tf ) is the

map induced by the obvious inclusion of X into Tf . Let Tf be the covering of
Tf associated to φ, which is a free G-CW -complex. Then we get

b(2)
p (Tf ;N (G)) = 0.

Proof. The proof is analogous to that of Theorem 1.39 except the following
changes. Instead of Theorem 1.35 (1) and Theorem 1.35 (9) one has to refer
to Theorem 6.54 (1b) and Theorem 6.54 (6b) and one has to give a different
argument for the existence of a constant C which is independent of n and
satisfies

b(2)
p (Tfn ;N (Gn)) ≤ C. (6.64)
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In the proof of Theorem 1.39 we have taken C = βp + βp−1, where βp is
the number of p-cells in X. Next we explain why we can take for (6.64) the
constant

C = b(2)
p (G×φ◦i X̃;N (G)) + b

(2)
p−1(G×φ◦i X̃;N (G)).

First one checks that the image of φ ◦ i : π1(X) → G is contained in ψ−1(0)
and hence in Gn. One constructs an exact sequence of ZGn-chain complexes

0 → C∗(Gn ×φ◦i X̃) → C∗(Tfn) → ΣC∗(Gn ×φ◦i X̃) → 0.

Tensoring with N (Gn) and taking the long homology sequence yields the
exact sequence of N (Gn)-modules

Hp(N (Gn)⊗ZGn C∗(Gn ×φ◦i X̃)) → Hp(N (Gn)⊗ZGn C∗(Tfn))

→ Hp−1(N (Gn)⊗ZGn C∗(Gn ×φ◦i X̃)).

Additivity (see Theorem 6.7 (4b)) and Theorem 6.54 (7) imply

b(2)
p (Tfn ;N (Gn)) ≤ b(2)

p (Gn ×φ◦i X̃;N (Gn))

+b
(2)
p−1(Gn ×φ◦i X̃;N (Gn));

b(2)
p (Gn ×φ◦i X̃;N (Gn)) = b(2)

p (G×φ◦i X̃;N (G));

b
(2)
p−1(Gn ×φ◦i X̃;N (Gn)) = b

(2)
p−1(G×φ◦i X̃;N (G)).

This finishes the proof of (6.64) and thus of Theorem 6.63. ut
The next result is a generalization of Theorem 1.40. Its proof is analogous

to that one of Theorem 1.40.

Theorem 6.65. (L2-Betti numbers and S1-actions). Let X be a con-
nected S1-CW -complex. Suppose that for one orbit S1/H (and hence for all
orbits) the inclusion into X induces a map on π1 with infinite image. (In
particular the S1-action has no fixed points.) Let X̃ be the universal covering
of X with the canonical π1(X)-action. Then we get for all p ≥ 0

b(2)
p (X̃) = 0.

The next Lemma 6.66 is a generalization of Lemma 1.41. Although it
is more general — we have dropped the finiteness conditions on the CW -
complexes F , E and B — its proof is now simpler because our algebraic
approach to dimension theory and L2-Betti numbers is so flexible that we can
use standard methods from algebra and topology such as the Serre spectral
sequence for fibrations and local coefficients.

Lemma 6.66. Let F
i−→ E → B be a fibration of connected CW -complexes.

Let φ : π1(E) → G be a group homomorphisms and let i∗ : π1(F ) → π1(E)
be the homomorphism induced by the inclusion i. Suppose that for a given
integer d ≥ 0 the L2-Betti number b

(2)
p (G ×φ◦i∗ F̃ ;N (G)) vanishes for all

p ≤ d. Then the L2-Betti number b
(2)
p (G×φ Ẽ;N (G)) vanishes for all p ≤ d.
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Proof. There is a spectral homology sequence of N (G)-modules which con-
verges to HG

p+q(G×φ Ẽ;N (G)) and whose E1-term is

E1
p,q = HG

q (G×φ◦i∗ F̃ ;N (G))⊗Zπ1(B) Cp(B̃),

where the right π1(B)-action on HG
q (G×φ◦i∗ F̃ ;N (G)) is induced by the fiber

transport. Since

b(2)
q (G×φ◦i∗ F̃ ;N (G)) = dimN (G)

(
HG

q (G×φ◦i∗ F̃ ;N (G))
)

= 0

holds for q ≤ d by assumption and Cp(B̃) is a free Zπ1(B)-module, we con-
clude from Additivity (see Theorem 6.7 (4b)) and Cofinality (see Theorem
6.7 (4c)) that dimN (G)(E1

p,q) = 0 holds for all p ≥ 0 and q ≤ d. Hence

b
(2)
p (G×φ Ẽ;N (G)) = 0 holds for all p ≤ d. ut

Theorem 6.67 (L2-Betti numbers and fibrations). Let F
i−→ E

p−→ B

be a fibration of connected CW -complexes. Let p∗ : π1(E)
φ−→ G

ψ−→ π1(B)
be a factorization of the map induced by p into epimorphisms φ and ψ. Let
i∗ : π1(F ) → π1(E) be the homomorphism induced by the inclusion i. Suppose
for a given integer d ≥ 1 that b

(2)
p (G ×φ◦i∗ F̃ ;N (G)) = 0 for p ≤ d − 1 and

b
(2)
d (G ×φ◦i∗ F̃ ;N (G)) < ∞ holds. Suppose that π1(B) contains an element

of infinite order or finite subgroups of arbitrarily large order. Then b
(2)
p (G×φ

Ẽ;N (G)) = 0 for p ≤ d.

Proof. Since b
(2)
q (G×φ◦i∗ F̃ ;N (G)) = 0 holds for q ≤ d−1 by assumption and

Cp(B̃) is a free Zπ1(B)-module, we conclude by the same spectral sequence
argument as in the proof of Lemma 6.66

b(2)
p (G×φ Ẽ;N (G)) = 0 0 ≤ p ≤ d− 1

and

b
(2)
d (G×φ Ẽ;N (G))

= dimN (G)

(
E2

0,d

)

= dimN (G)

(
H

π1(B)
0 (B̃; HG

d (G×φ◦i∗ F̃ ;N (G))
)

= dimN (G)

(
HG

d (G×φ◦i∗ F̃ ;N (G))⊗Zπ1(B) Z
)

, (6.68)

where the right π1(B)-action on HG
d (G×φ◦i∗ F̃ ;N (G)) is induced by the fiber

transport. It remains to prove

b
(2)
d (G×φ Ẽ;N (G)) = 0. (6.69)
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Let ∆ ⊂ π1(B) be a subgroup which is either Z or finite. Let X be S1 if
∆ = Z and a connected finite 2-dimensional CW -complex X with π1(X) = ∆
if ∆ is finite. In any case we can choose a map f : X → B which induces
on fundamental groups the inclusion of ∆ into π1(B). Let F

i0−→ E0
p0−→

X be the fibration obtained from F
i−→ E

p−→ B by applying the pullback
construction with respect to f . Let f : E0 → E be the canonical map. Since
there is an obvious N (G)-epimorphism from HG

d (G×φ◦i∗ F̃ ;N (G))⊗Z∆ Z to
HG

d (G ×φ◦i∗ F̃ ;N (G)) ⊗Zπ1(B) Z, we get from Additivity (see Theorem 6.7
(4b))

dimN (G)

(
HG

d (G×φ◦i∗ F̃ ;N (G))⊗Z∆ Z
)

≥ dimN (G)

(
HG

d (G×φ◦i∗ F̃ ;N (G))⊗Zπ1(B) Z
)

. (6.70)

Define G0 = ψ−1(∆). Then φ and ψ induce epimorphisms φ0 and ψ0 which
make the following diagram commute

π1(E0)
φ0−−−−→ G0

ψ0−−−−→ π1(X)

f∗

y
y f∗

y
π1(E)

φ−−−−→ G
ψ−−−−→ π1(B)

Notice that the fiber transport is compatible with pullbacks. From Theorem
6.29, from (6.68) applied to p and φ and applied to p0 and φ0 and from (6.70)
we conclude

b
(2)
d (G×φ Ẽ;N (G)) ≤ b

(2)
d (G0 ×φ0 Ẽ0;N (G0)). (6.71)

We firstly consider the case where ∆ = Z and X = S1. Then E0 is up to
homotopy the mapping torus of the selfhomotopy equivalence F → F given
by the fiber transport of p0 along a generator of π1(S1) and hence b

(2)
d (G0×φ

Ẽ0;N (G0)) = 0 by Theorem 6.63. Now (6.69) follows from (6.71). Next we
consider the case where ∆ is finite. Let F

i1−→ E1
p1−→ X̃ be the fibration

obtained from p0 : E0 → X by the pullback construction with respect to the
universal covering X̃ → X. Put G1 = ψ−1(1). This is a subgroup of G0 of
index |∆|. Let φ1 : π1(E1) → G1 be the epimorphism induced by φ0. Notice
that the canonical map E1 → E0 is a |∆|-sheeted covering. We conclude from
Theorem 6.54 (7) and (6b) and from applying (6.68) to p1 and φ1 : π1(E1) →
G1
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|∆| · b(2)
d (G0 ×φ Ẽ0;N (G0)) = b

(2)
d (resG1

G0
(G0 ×φ0 Ẽ0);N (G1))

= b
(2)
d (G1 ×φ1 Ẽ1;N (G1))

= dimN (G1)

(
HG1

d (G1 ×φ1◦(i1)∗ F̃ ;N (G1))
)

= b
(2)
d (G1 ×φ1◦(i1)∗ F̃ ;N (G));

= b
(2)
d (G×φ◦i∗ F̃ ;N (G)).

This implies together with (6.71)

b
(2)
d (G×φ Ẽ;N (G)) ≤ b

(2)
d (G×φ◦i∗ F̃ ;N (G))

|∆| .

Since by assumption π1(B) either contains Z as a subgroup or finite subgroups
∆ of arbitrarily large order, (6.69) follows. This finishes the proof of Theorem
6.67. ut

As far as the assumption about π1(B) in Theorem 6.67 is concerned, we
mention that there is for any prime number p > 1075 an infinite finitely
generated group all of whose proper subgroups are finite of order p [405]. To
the author’s knowledge it is not known whether there is an infinite finitely
presented group with finite exponent. For more information about this so
called Burnside problem we refer to [469]. Using Theorem 6.29 one obtains
the following special case of Theorem 6.67.

Corollary 6.72. Let F
i−→ E

p−→ B be a fibration of connected CW -complexes
such that i∗ : π1(F ) → π1(E) is injective, π1(F ) is infinite and b

(2)
1 (F̃ ) < ∞.

Suppose that π1(B) contains an element of infinite order or finite subgroups
of arbitrarily large order. Then

b0(Ẽ) = b1(Ẽ) = 0.

Corollary 6.72 has been conjectured in [237, page 235] for fibrations F →
E → B of connected aspherical CW -complexes of finite type with non-trivial
fundamental groups. It will play a role in applications of L2-Betti numbers
to deficiencies of finitely presented groups in Section 7.3.

The next Theorem shows that for amenable G the p-th L2-Betti number of
a G-space X depends only on the CG-modules given by the singular homology
of X with complex coefficients.The key ingredient will be Theorem 6.37 which
shows that the von Neumann algebra of an amenable group is not flat over
the complex group ring in the strict sense but is “dimension-flat”.

Theorem 6.73. Let G be an amenable group and X be a G-space. Then

b(2)
p (X;N (G)) = dimN (G)

(N (G)⊗CG Hsing
p (X;C)

)
,

where Hsing
p (X;C) is the CG-module given by the singular homology of X

with complex coefficients.
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Proof. We will show for an arbitrary CG-chain complex C∗ with Cp = 0 for
p < 0

dimN (G) (Hp(N (G)⊗CG C∗)) = dimN (G) (N (G)⊗CG Hp(C∗)) . (6.74)

We begin with the case where C∗ is projective. Then there is a universal co-
efficient spectral sequence converging to Hp+q(N (G)⊗CG C∗) [518, Theorem
5.6.4 on page 143] whose E2-term is E2

p,q = TorCG
p (N (G),Hq(C∗)). Now

Additivity (see Theorem 6.7 (4b)) together with Theorem 6.37 imply (6.74)
if C∗ is projective.

Next we prove (6.74) in the case where C∗ is acyclic. If C∗ is 2-dimensional,
we conclude dimN (G) (Hp(N (G)⊗CG C∗)) = 0 for p ≥ 0 using the long exact
Tor-sequences of the exact sequence 0 → C2 → C1 → C0 → 0, Additivity
(see Theorem 6.7 (4b)) and Theorem 6.37. Now the claim for any acyclic
CG-chain complexes C∗ with Cp = 0 for p < 0 follows from by inspecting the
various short exact sequences 0 → im(cp+1) → Cp

cp−→ im(cp) → 0.
In the general case one chooses a projective CG-chain complex P∗ to-

gether with a CG-chain map f∗ : P∗ → C∗ which induces an isomorphism
on homology. Notice that the mapping cylinder cyl(f∗) is CG-chain homo-
topy equivalent to C∗ and the mapping cone cone(f∗) of f∗ is acyclic. Hence
(6.74) is true for P∗ and cone(f∗). Thus we get (6.74) for C∗ from Additiv-
ity (see Theorem 6.7 (4b)) and the long exact homology sequences of the
short exact sequence of N (G)-chain complexes which we obtain by applying
N (G)⊗CG− to the short exact (in each dimension split exact) CG-sequence
0 → P∗ → cyl(f∗) → cone(f∗) → 0. This finishes the proof of Theorem 6.73.

ut
We conclude from Theorem 6.54 (8b) and Theorem 6.73

Corollary 6.75. If G is an infinite amenable group, then b
(2)
p (G) = 0 for all

p ≥ 0.

We will investigate the class B∞ of groups G, for which b
(2)
p (G) = 0 holds

for all p ≥ 0, in Section 7.1.

Remark 6.76. Next we compare our approach with the one of Cheeger and
Gromov [107, section 2], where Corollary 6.75 has already been proved in [107,
Theorem 0.2 on page 191]. We begin with the case of a countable simplicial
complex X with free simplicial G-action. Then for any exhaustion X0 ⊂ X1 ⊂
X2 ⊂ . . . ⊂ X by G-equivariant simplicial subcomplexes for which G\X is
compact, the p-th L2-Betti number in the sense and notation of [107, 2.8 on
page 198] is given by

b(2)
p (X : G) = lim

j→∞
lim

k→∞
dimN (G)

(
im

(
H

p

(2)(Xk : G)
i∗j,k−−→ H

p

(2)(Xj : G)
))

,

where ij,k : Xj → Xk is the inclusion for j ≤ k. We get an identification
H

p

(2)(Xj : G) = Hp
(2)(Xj ;N (G)) from Lemma 1.76. Notice that for a G-map
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f : Y → Z of G-CW -complexes of finite type H
(2)
p (Y ;N (G)) can be identi-

fied with Hp
(2)(Y ;N (G)) and analogously for Z and that under these iden-

tifications Hp
(2)(f) = (Hp

(2)(f))∗ (see Lemma 1.18). Moreover, we conclude

from Additivity (see Theorem 6.7 (4b)) that dimN (G)

(
im

(
Hp

(2)(f)
))

=

dimN (G)

(
im

(
H

(2)
p (f)

))
. Now we get from Lemma 6.52, Lemma 6.53 and

Theorem 6.7

dimN (G)

(
im

(
H

p

(2)(Xk : G)
i∗j,k−−→ H

p

(2)(Xj : G)
))

= dimN (G)

(
im

(
HG

p (Xj ;N (G))
(ij,k)∗−−−−→ HG

p (Xk;N (G))
))

.

Hence we conclude from Theorem 6.13 about dimension and colimits that
the definitions in [107, 2.8 on page 198] and in Definition 6.50 for a countable
free simplicial complex X with free simplicial G-action agree

b(2)
p (X : G) = b(2)

p (X;N (G)). (6.77)

If G is countable and X is a countable simplicial complex with simplicial (not
necessarily free) G-action, then by [107, Proposition 2.2 on page 198] and by
(6.77)

b
(2)
p (X : G) = b

(2)
p (EG×X : G) = b

(2)
p (EG×X;N (G)). (6.78)

Cheeger and Gromov [107, Section 2] define L2-cohomology and L2-Betti
numbers of a G-space X by considering the category whose objects are G-
maps f : Y −→ X for a simplicial complex Y with cocompact free simplicial
G-action and then using inverse limits to extend the classical notions for
finite free G-CW -complexes such as Y to X. Their approach is technically
more complicated for instance because they work with cohomology instead
of homology and therefore have to deal with inverse limits instead of directed
limits (see Theorem 6.13 and Theorem 6.18). Our approach is closer to stan-
dard notions, the only non-standard part is the verification of the properties
of the extended dimension function (Theorem 6.7). Moreover, the notion of
Cheeger and Gromov [107, Section 2] does only give b

(2)
p (EG × X;N (G)),

where we can and do also consider b
(2)
p (X;N (G)).

6.6 L2-Euler Characteristic

In this section we introduce the notion of L2-Euler characteristic and investi-
gate its relation to the equivariant Euler characteristic of a cocompact proper
G-CW -complex and the Burnside group.
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6.6.1 Definition and Basic Properties of L2-Euler Characteristic

If X is a G-CW -complex, denote by I(X) the set of its equivariant cells. For
a cell c ∈ I(X) let (Gc) be the conjugacy class of subgroups of G given by
its orbit type and let dim(c) be its dimension. Denote by |Gc|−1 the inverse
of the order of any representative of (Gc), where |Gc|−1 is to be understood
to be zero if the order is infinite.

Definition 6.79 (L2-Euler characteristic). Let G be a group and let X
be a G-space. Define

h(2)(X;N (G)) :=
∑

p≥0

b(2)
p (X;N (G)) ∈ [0,∞];

χ(2)(X;N (G)) :=
∑

p≥0

(−1)p · b(2)
p (X;N (G)) ∈ R if h(2)(X;N (G)) < ∞;

m(X; G) :=
∑

c∈I(X)

|Gc|−1 ∈ [0,∞] if X is a G-CW -complex;

h(2)(G) := h(2)(EG;N (G)) ∈ [0,∞];
χ(2)(G) := χ(2)(EG;N (G)) ∈ R if h(2)(G) < ∞.

We call χ(2)(X;N (G)) and χ(2)(G) the L2-Euler characteristic of X and G.

The condition h(2)(X;N (G)) < ∞ ensures that the sum which appears in
the definition of χ(2)(X;N (G)) converges absolutely and that the following
results are true. The reader should compare the next theorem with [107,
Theorem 0.3 on page 191]. We will investigate the class B∞ of groups whose
L2-Betti number all vanish in Section 7.1.

Theorem 6.80 (L2-Euler characteristic).

(1) Generalized Euler-Poincaré formula
Let X be a G-CW -complex with m(X;G) < ∞. Then

h(2)(X;N (G)) < ∞;∑

c∈I(X)

(−1)dim(c) · |Gc|−1 = χ(2)(X;N (G));

(2) Sum formula
Consider the following G-pushout

X0
i1−−−−→ X1

i2

y j1

y
X2

j2−−−−→ X
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such that i1 is a G-cofibration. Suppose that h(2)(Xi;N (G)) < ∞ for
i = 0, 1, 2. Then

h(2)(X;N (G)) < ∞;
χ(2)(X;N (G)) = χ(2)(X1;N (G)) + χ(2)(X2;N (G))− χ(2)(X0;N (G));

(3) Amenable groups
Suppose that G is amenable and that X is a G-CW -complex with
m(X; G) < ∞. Then

∑

c∈I(X)

(−1)dim(c) · |Gc|−1 =
∑

p≥0

(−1)p · dimN (G) (N (G)⊗CG Hp(X;C)) ,

where Hp(X;C) is the CG-module given by the cellular or the singular ho-
mology of X with complex coefficients. In particular

∑
c∈I(X)(−1)dim(c) ·

|Gc|−1 depends only the isomorphism class of the CG-modules Hn(X;C)
for all n ≥ 0;

(4) Comparison with the Borel construction
Let X be a G-CW -complex. If for all c ∈ I(X) the group Gc is finite or
b
(2)
p (Gc) = 0 for all p ≥ 0, then

b(2)
p (X;N (G)) = b(2)

p (EG×X;N (G)) for p ≥ 0;

h(2)(X;N (G)) = h(2)(EG×X;N (G));
χ(2)(X;N (G)) = χ(2)(EG×X;N (G)), if h(2)(X;N (G)) < ∞;∑

c∈I(X)

(−1)dim(c) · |Gc|−1 = χ(2)(EG×X;N (G)), if m(X; G) < ∞;

(5) Invariance under non-equivariant C-homology equivalences
Suppose that f : X → Y is a G-equivariant map of G-CW -complexes with
m(X; G) < ∞ and m(Y ; G) < ∞, such that the induced map Hp(f ;C)
on homology with complex coefficients is bijective. Suppose that for all
c ∈ I(X) the group Gc is finite or b

(2)
p (Gc) = 0 for all p ≥ 0, and

analogously for all d ∈ I(Y ). Then

χ(2)(X;N (G)) =
∑

c∈I(X)

(−1)dim(c) · |Gc|−1

=
∑

d∈I(Y )

(−1)dim(d) · |Gd|−1

= χ(2)(Y ;N (G));

(6) Künneth formula
Let X be a G-CW -complex and Y be an H-CW -complex. Then we get
for the G×H-CW -complex X × Y
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m(X × Y ;N (G×H)) = m(X; G) ·m(Y ;H);
h(2)(X × Y ;N (G×H)) = h(2)(X;N (G)) · h(2)(Y ;N (H));
χ(2)(X × Y ;N (G×H)) = χ(2)(X;N (G)) · χ(2)(Y ;N (H)),

if h(2)(X;N (G)), h(2)(Y ;N (H)) < ∞,

where we use the convention that 0 ·∞ = 0 and r ·∞ = ∞ for r ∈ (0,∞];
(7) Restriction

Let H ⊂ G be a subgroup of finite index [G : H]. Let X be a G-space and
let resH

G X be the H-space obtained from X by restriction. Then

m(resH
G X; H) = [G : H] ·m(X;G);

h(2)(resH
G X;N (H)) = [G : H] · h(2)(X;N (G));

χ(2)(resH
G X;N (H)) = [G : H] · χ(2)(X;N (G)), if h(2)(X;N (G)) < ∞,

where [G : H] · ∞ is understood to be ∞;
(8) Induction

Let H ⊂ G be a subgroup and let X be an H-space. Then

m(G×H X;N (G)) = m(X;H);
h(2)(G×H X;N (G)) = h(2)(X;N (H));
χ(2)(G×H X;N (G)) = χ(2)(X;N (H)), if h(2)(X;N (H)) < ∞.

Proof. (1) Additivity (see Theorem 6.7 (4b)) and Lemma 6.33 (1) imply

b(2)
p (X;N (G)) = dimN (G) (Hp (N (G)⊗ZG Cp(X)))

≤ dimN (G) (N (G)⊗ZG Cp(X))

=
∑

c∈I(X),dim(c)=p

|Gc|−1.

This shows h(2)(X;N (G)) ≤ m(X; G). Additivity (see Theorem 6.7 (4b))
implies

χ(2)(X;N (G)) =
∞∑

p=0

(−1)p · dimN (G) (N (G)⊗ZG Cp(X;N (G))) ,

and thus assertion (1) follows.
(2) Next we prove that the given square induces a long exact Mayer-Vietoris
sequence of N (G)-modules

. . . → HG
p+1(X;N (G)) → HG

p (X0;N (G)) → HG
p (X1;N (G))⊕HG

p (X2;N (G))

→ HG
p (X;N (G)) → . . . .

This is clear if the given pushout consists of G-CW -complexes with i1 an
inclusion of G-CW -complexes, i2 a cellular G-map and X equipped with the
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G-CW -complex structure induced by the ones on X0, X1 and X2, and we use
the cellular ZG-chain complexes. Namely, in this situation we obtain a short
exact sequence of ZG-chain complexes 0 → C∗(X0) → C∗(X1) ⊕ C∗(X2) →
C∗(X) → 0 which stays exact after applying N (G) ⊗ZG − and we can take
the associated long homology sequence. The general case follows from Lemma
6.51, Theorem 6.54 (1b) and the fact that one can construct such a G-pushout
of G-CW -complexes together with G-maps from the cellular G-pushout to
the given G-pushout such that the maps induce on each H-fixed point set a
weak homotopy equivalence (see [326, Proposition 2.3 on page 35 and Lemma
2.13 on page 38]).

Notice that the alternating sums defining the L2-Euler characteristics
converge absolutely so that one can reorder the summands without changing
the limit. Now assertion (2) follows from Additivity (see Theorem 6.7 (4b)).
(3) This follows from assertion (1) and Theorem 6.73.
(4) This follows from assertion (1) and Theorem 6.54 (2).
(5) This follows from assertion (1) and Theorem 6.54 (3).
(6) This follows from Theorem 6.54 (5).
(7) This follows from Theorem 6.54 (6).
(8) This follows from Theorem 6.54 (7). This finishes the proof of Theorem
6.80. ut
Remark 6.81. Let X be a CW -complex which is virtually homotopy finite,
i.e. there is a d-sheeted covering p : X → X for some positive integer d such
that X is homotopy equivalent to a finite CW -complex. Define the virtual
Euler characteristic following Wall [509]

χvirt(X) :=
χ(X)

d
.

One easily checks that this is independent of the choice of p : X → X since the
ordinary Euler characteristic is multiplicative under finite coverings. More-
over, we conclude from Theorem 6.80 (1) and (7) that for virtually homotopy
finite X

m(X̃;N (π1(X))) < ∞;

χ(2)(X̃;N (π1(X))) = χvirt(X).

6.6.2 L2-Euler Characteristic, Equivariant Euler Characteristic
and the Burnside Group

In this subsection we introduce the Burnside group and the equivariant Euler
characteristic and relate these notions to the L2-Euler characteristic. The
elementary proof of the following lemma is left to the reader.
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Lemma 6.82. Let H and K be subgroups of G. Let NK be the normalizer
of K in G and WK be its Weyl group NK/K. Then

(1) G/HK = {gH | g−1Kg ⊂ H};
(2) The map

φ : G/HK → consub(H), gH 7→ g−1Kg

induces an injection

WK\(G/HK) → consub(H),

where consub(H) is the set of conjugacy classes in H of subgroups of H;
(3) The WK-isotropy group of gH ∈ G/HK is (gHg−1∩NK)/K ⊂ NK/K =

WK;
(4) If H is finite, then G/HK is a finite union of WK-orbits of the shape

WK/L for finite subgroups L ⊂ WK. ut

Definition 6.83. Define the Burnside group A(G) of a group G to be the
Grothendieck group which is associated to the abelian monoid under disjoint
union of G-isomorphism classes of proper cocompact G-sets S, i.e. G-sets S
for which the isotropy group of each element in S and the quotient G\S are
finite. ut

Notice that A(G) is the free abelian group generated by G-isomorphism
classes of orbits G/H for finite subgroups H ⊂ G and that G/H and G/K are
G-isomorphic if and only if H and K are conjugate in G. If G is a finite group,
A(G) is the classical Burnside ring [494, section 5], [495, chapter IV]. If G is
infinite, then the cartesian product of two proper cocompact G-sets with the
diagonal action is not necessarily cocompact anymore so that the cartesian
product does not induce a ring structure on A(G). At least there is a bilinear
map induced by the cartesian product A(G1)⊗A(G2) → A(G1 ×G2).

Definition 6.84. Let X be a finite proper G-CW -complex. Define its equiv-
ariant Euler characteristic

χG(X) :=
∑

c∈I(X)

(−1)dim(c) · [G/Gc] ∈ A(G).

An additive invariant (A, a) for finite proper G-CW -complexes consists
of an abelian group A and a function a which assigns to any finite proper G-
CW -complex X an element a(X) ∈ A such that the following three conditions
hold, i.) if X and Y are G-homotopy equivalent, then a(X) = a(Y ), ii.)
if X0, X1 and X2 are G-CW -subcomplexes of X with X = X1 ∪ X2 and
X0 = X1 ∩X2, then a(X) = a(X1) + a(X2) − a(X0), and iii.) a(∅) = 0. We
call an additive invariant (U, u) universal, if for any additive invariant (A, a)
there is precisely one homomorphism ψ : U → A such that ψ(u(X)) = a(X)
holds for all finite proper G-CW -complexes. One easily checks using induction
over the number of equivariant cells



282 6. L2-Invariants for General Spaces with Group Action

Lemma 6.85. (A(G), χG) is the universal additive invariant for finite proper
G-CW -complexes and we get for a finite proper G-CW -complex X

χG(X) =
∑

(H),|H|<∞
χ(WH\(XH , X>H)) · [G/H],

where χ(WH\(XH , X>H)) is the ordinary Euler characteristic of the pair of
finite CW -complexes WH\(XH , X>H).

Definition 6.86. Define for a finite subgroup K ⊂ G the L2-character map

chG
K : A(G) → Q, [S] 7→

r∑

i=1

|Li|−1

if WK/L1, WK/L2,. . . , WK/Lr are the WK-orbits of SK . Define the global
L2-character map by

chG :=
∏

(K)

chG
K : A(G) →

∏

(K)

Q

where (K) runs over the conjugacy classes of finite subgroups of G. ut

Lemma 6.87. Let X be a finite proper G-CW -complex and K ⊂ G be a
finite subgroup. Then XK is a finite proper WK-CW -complex and

χ(2)(XK ;N (WK)) = chG
K(χG(X)).

Proof. The WK-space XK is a finite proper WK-CW -complex because for
finite H ⊂ G the WK-set G/HK is proper and cocompact by Lemma 6.82
(4). Since the assignment which associates to a finite proper G-CW -complex
X the element χ(2)(XK ;N (WK)) in Q is an additive invariant by Theorem
6.80 (2) and (5), it suffices by Lemma 6.85 to check the claim for X = G/H
for finite H ⊂ G. This follows from the conclusion of Lemma 6.33 (1) that
χ(2)(WK/L;N (WK)) = |L|−1 holds for finite L ⊂ WK. ut

Notice that one gets from Lemma 6.82 the following explicit formula for
the value of chG

K(G/H). Namely, define

LK(H) := {(L) ∈ consub(H) | L conjugate to K in G}.
For (L) ∈ LK(H) choose L ∈ (L) and g ∈ G with g−1Kg = L. Then

g(H ∩NL)g−1 = gHg−1 ∩NK;

|(gHg−1 ∩NK)/K|−1 =
|K|

|H ∩NL| .

This implies

chG
K(G/H) =

∑

(L)∈LK(H)

|K|
|H ∩NL| . (6.88)
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Lemma 6.89. The global L2-character map of Definition 6.86 induces a map
denoted by

chG⊗ZQ : A(G)⊗Z Q→
∏

(K)

Q.

It is injective. If G has only finitely many conjugacy classes of finite sub-
groups, then it is bijective.

Proof. Consider an element
∑n

i=1 ri · [G/Hi] in the kernel of chG⊗ZQ. We
show by induction on n that the element must be trivial. The induction
beginning n = 0 is trivial, the induction step is done as follows. We can
choose the numeration such that Hi subconjugated to Hj implies i ≥ j. We
get from (6.88)

chG
K(G/H) = 1 if H = K;

chG
K(G/H) = 0 if K is not subconjugated to H in G.

This implies

chG
H1

(
n∑

i=1

ri · [G/Hi]

)
= r1

and hence r1 = 0. Hence the global L2-character map is injective. If G has
only finitely many conjugacy classes of finite subgroups, then the source and
target of chG⊗ZQ are rational vector spaces of the same finite dimension and
hence chG⊗ZQ must be bijective. ut
Remark 6.90. Suppose that there are only finitely many conjugacy classes
(H1), (H2), . . ., (Hr) of finite subgroups in G. Without loss of generality we
can assume that Hi subconjugated to Hj implies i ≥ j. With respect to the
obvious ordered basis for the source and target, the map chG⊗ZQ is described
by an upper triangular matrix A with ones on the diagonal. One can get an
explicit inverse A−1 which again has ones on the diagonal. This leads to a
characterization of the image of A(G) under the global L2-character map
χG. Namely, an element in η ∈ ∏r

i=1Q lies in chG(A(G)) if and only if the
following Burnside integrality conditions are satisfied

A−1η ∈
r∏

i=1

Z. (6.91)

Now suppose that G is finite. Then the global L2-character map is related
to the classical character map by the factor |WK|−1, i.e. we have for each
subgroup K of G and any finite G-set S

chG
K(S) = |WK|−1 · |SK |. (6.92)

One easily checks that under the identification (6.92) the integrality condi-
tions (6.91) correspond to the classical Burnside ring congruences for finite
groups [494, section 5.8], [495, section IV.5]. ut
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Let E(G,FIN ) be the classifying G-space for the family FIN of finite
subgroups (see Definition 1.28).

Lemma 6.93. Suppose that there is a model for E(G,FIN ) which is a finite
G-CW -complex. Then there are only finitely many conjugacy classes of finite
subgroups and for a finite subgroup K ⊂ G

chG
K(χG(E(G,FIN ))) = χ(2)(WK).

If G is amenable, then we get for a finite subgroup K ⊂ G

chG
K(χG(E(G,FIN ))) = |WK|−1,

where |WK|−1 is to be understood as 0 for infinite WK.

Proof. We get from Theorem 6.80 (4) and Lemma 6.87 since E(G,FIN )K

is a model for E(WK,FIN ) and E(WK) × E(WK,FIN ) is a model for
E(WK)

chG
K(χG(E(G,FIN ))) = χ(2)(E(WK,FIN );N (WK)) = χ(2)(WK).

In the case where G is amenable apply Theorem 6.54 (8b) and Corollary
6.75. ut
Example 6.94. Let 1 → Zn → G → Z/p → 1 be an extension of groups
for n ≥ 1 and a prime number p. The conjugation action of G on the normal
subgroup Zn factorizes through the projection G → Z/p to an operation ρ of
Z/p onto Zn. There exists a finite G-CW -complex model for E(G,FIN ) by
the following argument. If G contains a finite subgroup, then G is a semidirect
product of Zn and Z/p and one can construct a finite G-CW -complex as
model for E(G,FIN ) with Rn as underlying space. Suppose that G contains
no finite subgroup. Then H1(G;Q) ∼=Q (Zn)Z/p ⊗Z Q 6= {0} and hence G
admits an epimorphism onto Z. Now one can show inductively over n that
there is a finite model for BG.

We want to compute χG(E(G,FIN )). If this operation has a non-trivial
fixed point, then WH is infinite for any finite subgroup H of G and we
conclude from Lemma 6.89 and Theorem 6.93 that

χG(E(G,FIN )) = 0.

Now suppose that this operation ρ has no non-trivial fixed points. Let H0 be
the trivial subgroup and H1, H2, . . ., Hr be a complete set of representatives
of the conjugacy classes of finite subgroups. Each Hi is isomorphic to Z/p.
One easily checks that there is a bijection

H1(Z/p;Zn
ρ ) → {(H) | H ⊂ G, 1 < |H| < ∞}

and in particular r ≥ 1, where Zn
ρ denotes the Z[Z/p]-module given by Zn

and ρ. We compute using (6.88)
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chG
H0

(G/H0) = 1;
chG

H0
(G/Hj) = 1

p j = 1, 2, . . . , r;
chG

Hi
(G/Hj) = 1 i = j, i, j = 1, 2, . . . , r;

chG
Hi

(G/Hj) = 0 i 6= j, i, j = 1, 2, . . . , r.

We conclude

χG(E(G,FIN )) = −r

p
· [G/H0] +

r∑

i=1

[G/Hi].

The integrality conditions of (6.91) become in this case

η0 − 1
p
·

r∑

i=1

ηi ∈ Z;

ηi ∈ Z i = 1, 2 ,. . . , r.

6.7 Finitely Presented Torsion Modules and
Novikov-Shubin Invariants

In this section we explain how the Novikov-Shubin invariants can be read off
from Hp(X;N (G)) for a free G-CW -complex X of finite type.

Let M be a finitely presented N (G)-module. Then we can choose an exact

sequence 0 → N (G)n f−→ N (G)n → TM → 0 for some positive morphism f
by Lemma 6.28. Now define the Novikov-Shubin invariant

α(M) := α(ν(f)) ∈ [0,∞]
∐
{∞+} (6.95)

by the Novikov-Shubin invariant of the morphism ν(f) : l2(G)n → l2(G)n

(see Definition 2.8), where ν has been introduced in (6.22). This is indepen-
dent of the choice of f because of homotopy invariance (see Theorem 2.19).
Moreover, for any finitely generated projective N (G)-resolution C∗ of M we
have α1(ν(C∗)) = α(ν(c1)) = α(M). Obviously α(M) = α(TM). Recall that
the Novikov-Shubin invariant of a morphism f : U → V of finitely generated
Hilbert N (G)-modules introduced in Definition 2.8 measures the deviation
of the image of f to be closed. Analogously, the Novikov-Shubin invariant
of the cokernel of an N (G)-map g : P → Q of finitely generated projective
N (G)-modules measures the difference between im(g) and im(g).

Let 0 → M0 → M1 → M2 → 0 be an exact sequence of N (G)-modules
such that two of them are finitely presented and have von Neumann dimension
zero. Then Mi is finitely presented and TMi = Mi for i = 0, 1, 2 by Theorem
6.5 and Theorem 6.7 and we conclude from Theorem 2.20

1
α(M1)

≤ 1
α(M0)

+
1

α(M2)
. (6.96)
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In particular we get 1
α(M) ≤ 1

α(N) , if M and N are finitely presented
N (G)-modules, dimN (G)(N) = 0 and M ⊂ N . Moreover, Lemma (2.11)
(8) and Theorem 6.24 (3) imply that α(M) = ∞+ ⇔ M = 0 holds for a
finitely presented N (G)-module M with dimN (G)(M) = 0. Hence we may
say that 1

α(M) measures the size of finitely presented N (G)-modules M with
dimN (G)(M) = 0.

Lemma 6.97. Let X be a free G-CW -complex of finite type. Then its
(p − 1)-th L2-Betti number b

(2)
p−1(X;N (G)) of Definition 1.30 and its p-th

Novikov-Shubin invariant αp(X;N (G)) of Definition 2.54 can be read off
from HG

p−1(X;N (G)) by

b
(2)
p−1(X;N (G)) = dimN (G)(HG

p−1(X;N (G)));

αp(X;N (G)) = α(HG
p−1(X;N (G))).

Proof. The statement about the L2-Betti numbers has already been proved
in Lemma 6.53. We conclude from Lemma 2.11 (9), Theorem 6.7 (3) and
Theorem 6.24

αp(X;N (G)) = α
(
c(2)
p : C(2)

p (X) → C
(2)
p−1(X)

)

= α
(
c(2)
p |

ker(c
(2)
p )⊥ : ker(c(2)

p )⊥ → clos(im(c(2)
p ))

)

= α
(
coker

(
ν−1

(
c(2)
p |

ker(c
(2)
p )⊥ : ker(c(2)

p )⊥ → clos(im(c(2)
p ))

)))

= α
(
im(ν−1(c(2)

p ))/ im(ν−1(c(2)
p ))

)

= α
(
im(N (G)⊗ZG cp)/ im(N (G)⊗ZG cp)

)

= α(THG
p−1(X;N (G)))

= α(HG
p−1(X;N (G))),

where coker denotes the cokernel. ut
Notice that Lemma 6.97 gives a good explanation for Theorem 2.55 (1).
The next lemma will be interesting in connection with the zero-in-the-

spectrum Conjecture 12.1 (see Lemma 12.3).

Lemma 6.98. Let X be a free G-CW -complex of finite type and let p ≥ 0
be an integer. Then HG

p (X;N (G)) = 0 if and only if b
(2)
p (X;N (G)) = 0 and

αp+1(X;N (G)) = ∞+.

Proof. Lemma 6.97 implies that b
(2)
p (X;N (G)) = 0 and αp+1(X;N (G)) =

∞+ if and only if dimN (G)(Hp(X;N (G))) = 0 and α(Hp(X;N (G))) = ∞+.
Hence Hp(X;N (G)) = 0 implies b

(2)
p (X;N (G)) = 0 and αp+1(X;N (G)) =

∞+. Now suppose that b
(2)
p (X;N (G)) = 0 and αp+1(X;N (G)) = ∞+. Be-

cause of Theorem 6.7 (3) and (4e) we conclude dimN (G)(PHp(X;N (G))) = 0
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and α(THp(X;N (G))) = ∞+ and therefore PHp(X;N (G)) = 0 and
THp(X;N (G)) = 0. This shows Hp(X;N (G)) = 0. ut

6.8 Miscellaneous

We will deal with the Atiyah Conjecture for a group G in Chapter 10. It says
for a finite free G-CW -complex that b

(2)
p (X;N (G)) ∈ Q. If furthermore there

is an integer d such that the order of any finite subgroup H ⊂ G divides d,
then the strong Atiyah Conjecture 10.2 predicts d · b(2)

p (X;N (G)) ∈ Z for a
finite free G-CW -complex X. The following result is proved in [334, Theorem
5.2 on page 233]

Theorem 6.99. (1) Suppose that there is no bound on the order of finite
subgroups of G. Then for any sequence β3, β4, . . . of elements in [0,∞],
there is a free simply connected G-CW -complex X satisfying

b(2)
p (X;N (G)) = βp for p ≥ 3.

If G is countable, one can arrange that X has countably many G-
equivariant cells;

(2) Suppose that there is an integer d such that the order of any finite sub-
group of G divides d and that the strong Atiyah Conjecture 10.2 holds for
G. Then we get for any G-space X and p ≥ 0

d · b(2)
p (X;N (G)) ∈ Z ∪ {∞}.

In [343] the notion of Novikov-Shubin invariants for free G-CW -complexes
of finite type is extended to arbitrary G-spaces. In particular one can talk of
the Novikov-Shubin invariants αp(G) := αp(EG;N (G)) of a group G. Recall
that a group is locally finite, if any finitely generated subgroup is finite. In
[343, Theorem 3.9 on page 174] it is proved that αp(G) ≥ 1 for p ≥ 1 if
G contains Zn as normal subgroup for some n ≥ 1, and that αp(G) ≥ 1
for p = 1, 2 if G contains a normal subgroup, which is infinite elementary-
amenable and which does not contain an infinite locally finite subgroup. This
implies in particular that αp(X;N (G)) ≥ 1 for p = 1, 2 holds for a G-CW -
complex X of finite type if G contains a normal subgroup, which is infinite
elementary-amenable and which does not contain an infinite locally finite
subgroup.

Farber [182] constructs a category E(N (G)) which contains the category
{fin. gen. Hilb. N (G)-mod.} as a subcategory. The point is that E(N (G)) is
an abelian category, it is an abelian extension of {fin. gen. Hilb. N (G)-mod.}
in the sense of [205]. An object in E(N (G)) is a map of finitely generated
Hilbert N (G)-modules (α : A′ → A). A morphism in E(N (G)) from (α : A′ →
A) to (β : B′ → B) is an equivalence class of maps f : A → B such that there
exists a map g : A′ → B′ with f ◦ α = β ◦ g. Here f and f ′ are called
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equivalent if and only if f − f ′ = β ◦ h for some morphism h : A → B′. Let
{fin. pres. N (G)-mod.} be the category of finitely presented N (G)-modules.
The two approaches are unified by the fact that there is an equivalence of
abelian categories

ν−1 : E(N (G)) → {fin. pres. N (G)-mod.}
which induces the equivalence appearing in Theorem 6.24

ν−1 : {fin. gen. Hilb. N (G)-mod.} → {fin. gen. proj. N (G)-mod.}.
The equivalence ν−1 sends an object (α : A′ → A) to the cokernel of ν−1(α).

Any von Neumann algebra is semihereditary (cf. Theorem 6.7 (1)). This
follows from the facts that any von Neumann algebra is a Baer ∗-ring and
hence in particular a Rickart C∗-algebra [36, Definition 1, Definition 2 and
Proposition 9 in Chapter 1.4] and that a C∗-algebra is semihereditary if and
only if it is Rickart [8, Corollary 3.7 on page 270].

The material of Subsection 6.6.2 can be extended from finite proper G-
CW -complexes to G-endomorphisms f : X → X of finite proper G-CW -
complexes by replacing Euler characteristics by Lefschetz invariants. Define
the equivariant Lefschetz invariant

LG(f) :=
∑

(H),|H|<∞

∑

p≥0

(−1)p · trZWH

(
Cp(fH , f>H) : Cp(XH , X>H)

→ Cp(XH , X>H)
) · [G/H] ∈ A(G), (6.100)

where trZWH if the trace defined for endomorphisms of finitely generated pro-
jective ZWH-modules which is essentially determined by trZWK(Ru : ZWH →
ZWH) = λe for u =

∑
w∈WH λw · w ∈ ZWH. One can also define an L2-

Lefschetz invariant

L(2)(fK ;N (WK))

:=
∑

p≥0

(−1)p · trN (WK)

(
id⊗ZWKCp(fK) : N (WK)⊗ZWK Cp(XK)

→ N (WK)⊗ZWK Cp(XK)
) ∈ C. (6.101)

Notice that LG(id : X → X) = χG(X) and L(2)(id : XK → XK ;N (WK)) =
χ(2)(XK ;N (WK)). We can extend Theorem 6.80 (1) and Lemma 6.87 to

chG
K(LG(f)) = L(2)(fK ;N (WK)) (6.102)

=
∑

p≥0

(−1)p · trN (WK)

(
PHp(fK ;N (WK)) :

PHWK
p (XK ;N (WK)) → PHWK

p (XK ;N (WK))
)
. (6.103)

For more sophisticated Lefschetz type invariants see for instance [301] and
[335].
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Dimension functions and the role of the torsion part TM for an N (G)-
module will be further explained in Chapter 8 when we extend the group
von Neumann algebra N (G) to the algebra U(G) of affiliated operators. This
corresponds for a principal ideal domain R to the passage to its quotient field.

The dimension-flatness of the von Neumann algebra N (G) over CG for
amenable G in the sense of Theorem 6.37 will play an important role in
computations about G0(CG) in Subsection 9.5.3.

We state without proof the next result which yields another proof of the
Künneth formula (see Theorem 6.54 (5)).

Theorem 6.104. Let G and H be two groups.

(1) Let 0 → M0 → M1 → M2 → 0 be an exact sequence of N (G)-modules
and let N be an N (H)-module. Then

dimN (G×H)

(
ker

(N (G×H)⊗N (G)⊗CN (H) M0 ⊗C N →
N (G×H)⊗N (G)⊗CN (H) M1 ⊗C N

))
= 0;

(2) Let M be an N (G) and N be an N (H)-module. Then

dimN (G×H)

(N (G×H)⊗N (G)⊗CN (H) M ⊗C N
)

= dimN (G)(M) · dimN (H)(N)

with the convention 0 · ∞ = ∞ · 0 = 0.

Elek [173] defines a dimension for finitely generated KG-modules for a
finitely generated amenable group G and a field K which satisfies additivity
and sends KG to 1.

Exercises

6.1. Let M be a submodule of a projective N (G)-module. Prove that
dimN (G)(M) = 0 holds if and only if M = 0.

6.2. Let M be a finitely generated N (G)-module and ε > 0. Then there is a
finitely generated projective N (G)-module Q together with an epimorphism
p : Q → M such that dimN (G)(ker(p)) ≤ ε.

6.3. Let M be a submodule of the finitely generated projective N (G)-module
P . Given ε > 0, there is a submodule P ′ ⊂ M which is a direct summand in
P and satisfies dimN (G)(M) ≤ dimN (G)(P ′) + ε.

6.4. Let M be a countably generated N (G)-module and M∗ be its dual
N (G)-module homN (G)(M,N (G)). Prove dimN (G)(M) = dimN (G)(M∗).

6.5. Let I be the set of finite subsets of S1 directed by inclusion. Define the
directed system {NJ | J ∈ I} by NJ = L∞(S1) with the associated maps
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φJ,K : L∞(S1) → L∞(S1) for J ⊂ K which are given by multiplication with∏
u∈K−J z − u for J ⊂ K, where z − u ∈ N (Z) is given by the function S1 →

C sending z ∈ S1 to the complex conjugate of z−u. Define the N (Z)-module
M = colimj∈I Nj . Let M∗ be the dual N (Z)-module homN (Z)(M,N (Z)).
Show

dimN (Z)(M) = 1;
M∗ = 0;

dimN (Z)(M∗) = 0.

6.6. Show thatN (Z) is not Noetherian. Deduce thatN (G) is not Noetherian
if G contains an element of infinite order.

6.7. Let G be a group and let A be a ring with Z ⊂ A ⊂ C. Let P be a
projective AG-module such that for some finitely generated AG-submodule
M ⊂ P we have dimN (G)(N (G) ⊗AG P/M) = 0. Show that P is finitely
generated.

6.8. Let M be an N (G)-module. Define TdimM to be the union of all N (G)-
submodules N ⊂ M with dimN (G)(N) = 0. Show that TdimM is the largest
N (G)-submodule of M with vanishing von Neumann dimension and that this
definition coincides with the Definition 6.1 of TM provided that M is finitely
generated, but not for arbitrary N (G)-modules M.

6.9. Let G be a group with the property that for any CG-module M

dimN (G)

(
TorCG

p (N (G),M)
)

= 0 holds for p ≥ 1. Show that then any sub-

group H ⊂ G inherits this property, i.e. dimN (H)

(
TorCH

p (N (H), N)
)

= 0
holds for any CH-module N and any p ≥ 1.

6.10. Show for a virtually cyclic group G that N (G) is flat over CG.

6.11. Let G be a group for which N (G) is flat over CG. Prove

(1) For any subgroup H ⊂ G the von Neumann algebra N (H) is flat over
CH;

(2) If the group K contains G as a subgroup of finite index, then N (K) is
flat over CK;

(3) HG
p (EG;N (G)) = 0 for p ≥ 1;

(4) b
(2)
p (G) = 0 for p ≥ 1;

(5) If there is a CW -model for BG of finite type, then αp(EG;N (G)) = ∞+

for p ≥ 1;
(6) G does not contain a subgroup which is Zn or ∗n

i=1Z for some n ≥ 2;
(7) G does not contain the fundamental group of an aspherical closed mani-

fold whose universal covering is a symmetric space;
(8) G does not contain the fundamental group of a connected sum M1# . . . #Mr

of (compact connected orientable) non-exceptional prime 3-manifolds
Mj .
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6.12. Let G be a group such that there is no bound on the order of its
finite subgroups. Construct for β ∈ [0,∞] a countably generated projective
ZG-module P satisfying dimN (G)(N (G) ⊗ZG P ) = β. Moreover, construct
for a sequence β3, β4, β5, . . . of elements in [0,∞] a free simply connected
G-CW -complex X with b

(2)
p (X;N (G)) = βp for p ≥ 3. If G happens to be

countable, find X with only countably many equivariant cells.

6.13. Given a sequence β1, β2, β3, . . . of elements in [0,∞], construct a group
G with b

(2)
p (G) = βp for p ≥ 1.

6.14. Let X be a G-CW -complex with m(X; G) < ∞. Show that then X
has at most countably many equivariant cells with finite isotropy groups.

6.15. Let F → E → B be a fibration of connected CW -complexes and
φ : π1(E) → G be a group homomorphism. Let F → F and E → E be the
coverings with G as deck transformation group associated to the homomor-
phisms π1(F ) i∗−→ π1(E)

φ−→ G and φ : π1(E) → G. Suppose that B is a finite
CW -complex and h(2)(F ;N (G)) < ∞. Show

h(2)(E,N (G)) < ∞;
χ(2)(E,N (G)) = χ(2)(F,N (G)) · χ(B),

where χ(B) is the ordinary Euler characteristic of the finite CW -complex B.

6.16. Show by constructing a counterexample that the condition b
(2)
p (G×φ◦i

X̃;N (G)) < ∞ and b
(2)
p−1(G ×φ◦i X̃;N (G)) < ∞ in Theorem 6.63 and the

condition b
(2)
1 (F̃ ) < ∞ in Corollary 6.72 are necessary.

6.17. Let M be the connected sum M1# . . . #Mr of (compact connected
orientable) non-exceptional prime 3-manifolds Mj . Assume that π1(M) is
infinite. Show

b
(2)
1 (M̃) = −χ(2)(π1(M));

b
(2)
2 (M̃) = χ(M)− χ(2)(π1(M));

b(2)
p (M̃) = 0 for p 6= 1, 2.

6.18. Let G be a group for which there is a d-dimensional G-CW -model for
E(G,FIN ). Show b

(2)
p (G) = 0 for p > d.

6.19. Let G be a group for which there is a finite G-CW -model for
E(G,FIN ). Show that then the CG-module C, which is given by C with
the trivial G-operation, has a finite projective CG-resolution P∗. The class∑

n≥0(−1)p · [Pn] ∈ K0(CG) is independent of the choice of P∗ and denoted
by [C]. Prove that it is the image of χG(E(G;FIN )) under the homomor-
phism A(G) → K0(CG), which sends a finite proper G-set S to the class
of the finitely generated projective CG-module C[S] given by the complex
vector space with S as basis.
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6.20. Let X be a G-CW -complex which is contractible (after forgetting
the group action). Suppose that each isotropy group Gx is finite or satisfies
b
(2)
p (Gx) = 0 for p ≥ 0. Prove b

(2)
p (X;N (G)) = b

(2)
p (G) for p ≥ 0.

6.21. Equip Z[Z/5]/(N) ∼= Z[exp(2πi/5)] with the obvious Z/5-action, where
N =

∑4
i=0 ti for t ∈ Z/5 a fixed generator and (N) is the Z[Z/5]-ideal

generated by N . Let G be the associated semidirect product. Compute A(G)
and χG(E(G,FIN )) explicitly.

6.22. Let Fg be the free group of rank g ≥ 1. Using the fact that C[Fg] is
a so called fir (= free ideal ring), i.e. any submodule of a free module is free
again (see [117, Corollary 3 on page 68]), show that for a Fg-CW -complex
X of a finite type each C[Fg]-module Hsing

p (X;C) has a 1-dimensional finite

free resolution. Then prove that b
(2)
p (X;N (Fg)) and αp+1(X;N (Fg)) depend

only on the C[Fg]-isomorphism class of Hsing
p (X;C).

6.23. Show for the group G =
∏∞

i=1 Z∗Z that HG
p (EG;N (G)) = 0 for p ≥ 0.

6.24. Give a counterexample to the following statement by inspecting the
special case G = H = Z and X = Y = S̃1: If X is a G-CW -complex of finite
type and Y an H-CW -complex of finite type, then there is an isomorphism

HG×H
n (X × Y ;N (G×H))
∼=

⊕
p+q=n

N (G×H)⊗N (G)⊗CN (H)

(
HG

p (X;N (G))⊗C HH
q (Y ;N (H))

)
.

6.25. Prove Theorem 6.104.

6.26. Show that Theorem 6.54 (5) follows from Theorem 6.104.



7. Applications to Groups

Introduction

In this chapter we apply the results of Chapter 6 to questions about group
theory, mainly about deficiency and Euler characteristic.

In Section 7.1 we investigate the class B1 and B∞ respectively of groups for
which b

(2)
p (G) vanishes for p = 0, 1 and for p ≥ 0 respectively. The classes B1

and B∞ turn out to be surprisingly large. For instance we prove that a group
containing a normal infinite amenable subgroup belongs to B∞. We also show
that a group G belongs to B1 if it is an extension 1 → H → G → K → 1
of an infinite finitely generated group H and a group K which is infinite
elementary amenable or which contains an element of infinite order or which
contains finite subgroups of arbitrary large order.

The motivation to investigate the class B1 is that a finitely presented
group which belongs to B1 has the following two properties. Its deficieny
satisfies def(G) ≤ 1, and for any closed oriented smooth 4-manifold M with
π1(M) = G we have | sign(M)| ≤ χ(M). This will be explained in Section
7.3. A survey on deficiency is presented in Subsection 7.3.1.

In Section 7.2 we discuss the L2-Euler characteristic of a group. It vanishes
if G belongs to B∞ and satisfies all the properties which are known for the
classical Euler characteristic χ(BG) of a group for which BG has a finite CW -
model. The classical Euler characteristic and the virtual Euler characteristic
due to Wall are special cases of the L2-Euler characteristic.

In Section 7.4 we define for a group automorphism f : G → G of a group
with finite model for BG a real number ρ(2)(f) using L2-torsion. It behaves
like the Euler characteristic of BG. Applied to π1(f) for a pseudo-Anosov
self-homeomorphism f : S → S of a closed hyperbolic oriented surface S it
detects the volume of the hyperbolic 3-manifold given by the mapping torus
of f .

7.1 Groups with Vanishing L2-Betti Numbers

In this section we investigate the following classes of groups. Recall that we
have introduced the L2-Betti numbers of a group G in Definition 6.50.
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Definition 7.1. Let d be a non-negative integer or d = ∞. Define the class
of groups

Bd := {G | b(2)
p (G) = 0 for 0 ≤ p ≤ d}.

Notice that B0 is the class of infinite groups by Theorem 6.54 (8b).

7.1.1 General Criterions for the Vanishing of the L2-Betti
Numbers of a Group

Theorem 7.2. Let d be a non-negative integer or d = ∞. Then

(1) The class B∞ contains all infinite amenable groups;
(2) If G contains a normal subgroup H with H ∈ Bd, then G ∈ Bd;
(3) If G is the union of a directed system of subgroups {Gi | i ∈ I} such that

each Gi belongs to Bd, then G ∈ Bd;
(4) Suppose that there are groups G1 and G2 and group homomorphisms

φi : G0 → Gi for i = 1, 2 such that φ1 and φ2 are injective, G0 belongs
to Bd−1, G1 and G2 belong to Bd and G is the amalgamated product
G1 ∗G0 G2 with respect to φ1 and φ2. Then G belongs to Bd;

(5) Let 1 → H
i−→ G

p−→ K → 1 be an exact sequence of groups such that
b
(2)
p (H) is finite for all p ≤ d. Suppose that K is infinite amenable or

suppose that BK has finite d-skeleton and there is an injective endomor-
phism j : K → K whose image has finite index, but is not equal to K.
Then G ∈ Bd;

(6) Let 1 → H
i−→ G

p−→ K → 1 be an exact sequence of groups such that
H ∈ Bd−1, b

(2)
d (H) < ∞ and K contains an element of infinite order or

finite subgroups of arbitrary large order. Then G ∈ Bd;
(7) Let 1 → H

i−→ G
p−→ K → 1 be an exact sequence of infinite countable

groups such that b
(2)
1 (H) < ∞. Then G ∈ B1.

Proof. (1) This has already been proved in Corollary 6.75.
(2) This follows from Theorem 6.54 (7) and Lemma 6.66 applied to the fibra-
tion BH → BG → B(G/H) and the obvious isomorphism φ : π1(BG) → G.
(3) Inspecting for instance the bar-resolution or the infinite join model
for EG, one sees that EG is the colimit of a directed system of G-CW -
subcomplexes of the form G×Gi EGi directed by I. Hence

HG
p (EG;N (G)) = colimi∈I HG

p (G×Gi EGi;N (G)).

Now the claim follows from Theorem 6.13 about dimension and colimits and
Theorem 6.54 (7) about compatibility of L2-Betti numbers with induction.
(4) Using the Seifert-van Kampen Theorem one easily checks that there is a
G-pushout
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G×G0 EG0 −−−−→ G×G1 EG1y
y

G×G2 EG2 −−−−→ EG

Now apply Theorem 6.54 (7) and Additivity (see Theorem 6.7 (4b)) to the
associated long exact homology sequence for HG

∗ (−,N (G)).
(5) This will be proved in Theorem 7.4 (5) and (7).
(6) This follows from Theorem 6.54 (7) and Theorem 6.67 applied to the
fibration BH → BG → BK and the obvious isomorphism φ : π1(BG) → G.
(7) This is proved by Gaboriau [214, Theorem 6.8]. ut

Next we prove a fibered version of Theorem 7.2.

Definition 7.3. Let d be a non-negative integer or d = ∞. Define BQd to
be the class of groups G such that for any extension of groups 1 → H →
K → G → 1 with b

(2)
p (H) < ∞ for p ≤ d the group K belongs to Bd. Define

BFd to be the class of groups G with the property that for any fibration
F → E → BG for which F is path-connected and b

(2)
p (F̃ ) < ∞ holds for

p ≤ d, we have b
(2)
p (Ẽ) = 0 for p ≤ d.

Theorem 7.4. Let d be a non-negative integer or d = ∞. Then

(1) BFd ⊂ BQd ⊂ Bd;
(2) If G contains a normal subgroup H which belongs to BQd or BFd respec-

tively , then G belongs to BQd or BFd respectively;
(3) If G is the union of a directed system of subgroups {Gi | i ∈ I} such that

each Gi belongs to BQd or BFd respectively, then G belongs BQd or BFd

respectively;
(4) Suppose that there are groups G1 and G2 and group homomorphisms

φi : G0 → Gi for i = 1, 2 such that φ1 and φ2 are injective, G0 belongs
to BQd−1 or BFd−1 respectively, G1 and G2 belong to BQd or BFd re-
spectively and G is the amalgamated product G1 ∗G0 G2 with respect to
φ1 and φ2. Then G belongs to BQd or BFd respectively;

(5) Suppose that BG has finite d-skeleton and that there is an injective en-
domorphism j : G → G whose image has finite index, but is not equal to
G. Then G belongs to BFd;

(6) The class BFd contains all infinite elementary amenable groups.
(7) The class BQd contains all infinite amenable groups.

Proof. (1) This is obvious.
(2) This follows for BQd from Theorem 7.2 (2) applied to p−1(H) ⊂ L for a
given extension 1 → K → L

p−→ G → 1 with b
(2)
p (K) < ∞ for p ≤ d. For BFd,

the pullback construction for BH → BG yields a fibration F → E0 → BH

and by hypothesis b
(2)
p (Ẽ0) = 0 for p ≤ d. Since F is path-connected, both E0
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and E are path-connected. We obtain an exact sequence 1 → π1(E0)
π1(i)−−−→

π1(E) → G/H → 1 for i : E0 → E the inclusion. The π1(E0)-space Ẽ0 is the
restriction of the π1(E) space Ẽ with π1(i) : π1(E0) → π1(E). Now we get
b
(2)
p (Ẽ) = 0 for p ≤ d from Theorem 6.54 (6b).

(3) This follows for BQd from Theorem 7.2 (3). For BFd, we can arrange that
BG is the directed union of CW -subcomplexes BGi. Let F → Ei → BGi

be the restriction of a given fibration F → E → BG with b
(2)
p (F̃ ) < ∞

for p ≤ d. By inspecting the maps between the long homotopy sequences
associated to these fibrations one shows that π1(Ei) → π1(E) is injective for
all i ∈ I. Obviously E is the union of the Ei. Since any compact subset of
BG is contained in a finite CW -subcomplex and hence in one of the BGi,
any compact subset of E is contained in one of the Ei. This implies

Hπ1(E)
p (Ẽ;N (π1(E)))

= colimi∈I Hπ1(E)
p (π1(E)×π1(Ei) Ẽi;N (π1(E))). (7.5)

Because of Theorem 6.13 (1) about dimension and colimits and Theorem 6.54
(7) it suffices to show b

(2)
p (Ẽi) = 0 for p ≤ d and i ∈ I. But this follows from

the assumption Gi ∈ BFd.
(4) This follows for BQd from Theorem 7.2 (4) since for an epimorphism
p : K → G we can write K as the amalgamated product p−1(G1) ∗p−1(G0)

p−1(G2). The proof for BFd is analogous (using [326, Lemma 1.26 on page
19]).
(5) Fix an integer n ≥ 1. Put Gn = im(jn). If k is the index of im(j) in
G, then kn is the index of Gn in G. Let F → E → BG be a fibration with
b
(2)
p (F̃ ) < ∞ for p ≤ d. We get a kn-sheeted covering BGn → BG. The

pullback construction yields a fibration F → En → BGn together with a
kn-sheeted covering En → E. We conclude from Theorem 6.54 (6b)

b(2)
p (Ẽ) =

b
(2)
p (Ẽn)

kn
. (7.6)

Let ip be the number of p-cells in BG. Since Gn is isomorphic to G, we get
from the Leray-Serre spectral sequence applied to En → BGn and Additivity
(see Theorem 6.7 (4b))

b(2)
p (Ẽn) ≤

p∑
q=0

b(2)
q (F̃ ) · ip−q. (7.7)

Equations (7.6) and (7.7) imply

b(2)
p (Ẽ) =

∑p
q=0 b

(2)
q (F̃ ) · ip−q

kn
. (7.8)
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Since k > 1 and (7.8) holds for all n ≥ 1 and
∑p

q=0 b
(2)
q (F̃ ) · ip−q is finite for

p ≤ d by assumption, assertion (5) follows.
(6) We first show G ∈ BF∞ provided that G is infinite and locally finite. Let
F → E → BG be a fibration with b

(2)
p (F̃ ) < ∞ for p ≤ d. We still have (7.5),

if we take {Gi | i ∈ I} as the system of finite subgroups of G. From Theorem
6.54 (7) and (6b) we conclude

b(2)
p (π1(E)×π1(Ei) Ẽi;N (π1(E)) = b(2)

p (Ẽi) =
b
(2)
p (F̃ )
|Gi| .

Since G is infinite and locally finite, |Gi| becomes arbitrary large for appro-
priate i ∈ I. Additivity (see Theorem 6.7 (4b)) and Theorem 6.13 (2) about
dimension and colimits implies together with (7.5) that b

(2)
p (Ẽ) = 0 for p ≤ d.

We want to show that the class of elementary amenable groups is con-
tained in FIN ∪ BFd, where FIN is the class of finite groups. By Lemma
10.40 it suffices to show the following two claims. i.) If all finitely generated
subgroups of G belong to FIN ∪ BFd, then G ∈ FIN ∪ BFd, and ii.) for
any extension 1 → H → G → K → 1, for which H ∈ FIN ∪ BFd and
K contains Zn as normal subgroup of finite index for some n ≥ 0, we have
G ∈ FIN ∪BFd. We begin with i.). We have already shown for locally finite
G that G belongs to FIN ∪BFd. It remains to treat the case where G is not
locally finite. Then G can be written as the union of the directed system of
its infinite finitely generated subgroups Gi. By induction hypothesis each Gi

belongs to BFd. Then G ∈ BFd by assertion (3). Finally we prove ii.) If H is
finite, G contains Zn for some n ≥ 0 as normal subgroup of finite index and
hence belongs to FIN ∪ BFd by assertions (2) and (5). It remains to treat
the case, where H is infinite and hence by induction hypothesis belongs to
BFd. If F0 is the fiber of the composition E → BG → BK, then we obtain
a fibration F → F0 → BH. Hence b

(2)
p (F̃0) = 0 for p ≤ d. From Lemma 6.66

we conclude b
(2)
p (Ẽ) = 0 for p ≤ d.

(7) Because of assertion (3) it suffices to treat the case of a finitely generated
(and hence countable) amenable group. This case follows from [214, Theorem
6.6]. This finishes the proof of Theorem 7.4. ut

The next question is related to Question 1.95 and arises from Theorem
7.4.

Question 7.9. (Vanishing of L2-Betti numbers of groups and epi-
morphism of groups).
Is Bd = BQd = BFd?

7.1.2 The Vanishing of the L2-Betti Numbers of Thompson’s
Group

Finally we explain the following observation about Thompson’s group F . It is
the group of orientation preserving dyadic PL-automorphisms of [0, 1] where
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dyadic means that all slopes are integral powers of 2 and the break points
are contained in Z[1/2]. It has the presentation

F = 〈x0, x1, x2, . . . | x−1
i xnxi = xn+1 for i < n〉.

This group has some very interesting properties. Its classifying space BF is
of finite type [70] but is not homotopy equivalent to a finite dimensional CW -
complex since F contains Zn as subgroup for all n ≥ 0 [70, Proposition 1.8].
It is not elementary amenable and does not contain a subgroup which is free
on two generators [66], [85]. Hence it is a very interesting question whether
F is amenable or not. We conclude from Theorem 7.2 (1) that a necessary
condition for F to be amenable is that b

(2)
p (F ) vanishes for all p ≥ 0. This

motivates the following result.

Theorem 7.10. (L2-Betti numbers of Thompson’s group).
All L2-Betti numbers b

(2)
p (F ) of Thompson’s group F vanish. ut

Proof. There is a subgroup F1 ⊂ F together with a monomorphism Φ : F1 →
F1 such that F1 is isomorphic to F and F is the HNN-extension of F1 with
respect to Φ with one stable letter [70, Proposition 1.7 on page 370]. From the
topological description of HNN-extensions [350, page 180] we conclude that F
is the fundamental group of the mapping torus TBΦ of the map BΦ : BF1 →
BF1 induced by Φ. The inclusion BF1 → TBΦ induces on the fundamental
groups the inclusion of F1 in F . One easily checks that the cellular ZF -chain
complex of the universal covering T̃BΦ of TBΦ is the mapping cone of a certain
ZF -chain map from ZF ⊗ZF1 C∗(EF1) to itself. Since ZF is free over ZF1,
we conclude for p ≥ 1

Hp(ZF ⊗ZF1 C∗(EF1)) = ZF ⊗ZF1 Hp(C∗(EF1)) = 0.

This implies Hp(T̃BΦ;Z) = 0 for p ≥ 2. Hence TBΦ is a model for BF . Now
the claim follows from Theorem 1.39. ut

7.2 Euler Characteristics of Groups

We have introduced the L2-Euler characteristic χ(2)(G) of a group already in
Definition 6.79. It encompasses the rational valued virtual Euler character-
istic of Wall (see Remark 6.81). We have related it to the equivariant Euler
characteristic of E(G,FIN ) provided that there is a finite G-CW -model for
E(G,FIN ). Namely, Lemma 6.93 implies

χ(2)(G) = chG
{1}(χG(E(G,FIN ))), (7.11)

where chG
{1} : A(G) → Q sends [G/H] to |H|−1.
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Lemma 7.12. If G belongs to B∞, then χ(2)(G) = 0.

Recall that we have given criterions for G ∈ B∞ in Theorem 7.2. Now
it becomes clear why it is worth while to extend the classical notion of the
Euler characteristic χ(G) := χ(BG) for groups G with finite BG to arbitrary
groups. For instance it may very well happen for a group G with finite BG
that G contains a normal group H which is not even finitely generated and has
in particular no finite model for BH and which belongs to B∞ (for instance,
H is amenable). Then the classical Euler characteristic is not defined any
more for H, but we can still conclude that the classical Euler characteristic
of G vanishes.

The standard product and amalgamation formulas for the classical Euler
characteristic carry over to the L2-Euler characteristic. Namely, let G0, G1

and G2 be groups with h(2)(Gi) < ∞ for i = 0, 1, 2 and φi : G0 → G1 be
injective group homomorphisms for i = 1, 2. Then the direct product G1×G2

and the amalgamated product G1∗G0 G2 with respect to the homomorphisms
φ1 and φ2 satisfy

h(2)(G1 ∗G0 G2) < ∞;
χ(2)(G1 ∗G0 G2) = χ(2)(G1) + χ(2)(G2)− χ(2)(G0); (7.13)

h(2)(G1 ×G2) < ∞;
χ(2)(G1 ×G2) = χ(2)(G1) · χ(2)(G1). (7.14)

This follows from Theorem 6.80 (2) and (6). More information about the
classical Euler characteristic and the virtual Euler characteristic of a group
can be found in [69, Chapter IX].

7.3 Deficiency of Groups

7.3.1 Survey on Deficiency of Groups

Definition 7.15 (Deficiency). Let G be a finitely presented group. Define
its deficiency def(G) to be the maximum g(P )− r(P ), where P runs over all
presentations P of G and g(P ) is the number of generators and r(P ) is the
number of relations of a presentation P .

Next we reprove the well-known fact that the maximum appearing in
Definition 7.15 does exist.

Lemma 7.16. Let G be a group with finite presentation

P = 〈s1, s2, . . . , sg | R1, R2, . . . , Rr〉

Let φ : G → K be any group homomorphism. Then
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g(P )− r(P ) ≤ 1− b
(2)
0 (K ×φ EG;N (K)) + b

(2)
1 (K ×φ EG;N (K))

− b
(2)
2 (K ×φ EG;N (K)).

Proof. Given a presentation P with g generators and r relations, let X be the
associated finite 2-dimensional CW -complex. It has one 0-cell, g 1-cells, one
for each generator, and r 2-cells, one for each relation. The attaching map of
the 2-cell associated to a relation is a map from S1 to the 1-skeleton, which
is a wedge of g 1-dimensional spheres, and given by the word defining the
relation. There is an obvious isomorphism from π1(X) to G so that we can
choose a map f : X → BG which induces an isomorphism on the fundamental
groups. It induces a 2-connected K-equivariant map f : K×φ X̃ → K×φ ẼG.
Theorem 6.54 (1a) implies

b(2)
p (K ×φ X̃;N (K)) = b(2)

p (K ×φ EG;N (K)) for p = 0, 1; (7.17)

b
(2)
2 (K ×φ X̃;N (K)) ≥ b

(2)
2 (K ×φ EG;N (K)). (7.18)

We conclude from the L2-Euler-Poincaré formula (see Theorem 6.80 (1)) and
from (7.17) and (7.18)

g − r = 1− χ(2)(K ×φ X̃;N (K))

= 1− b
(2)
0 (K ×φ X̃;N (K)) + b

(2)
1 (K ×φ X̃;N (K))

−b
(2)
2 (K ×φ X̃;N (K))

≤ 1− b
(2)
0 (K ×φ EG;N (K)) + b

(2)
1 (K ×φ EG;N (K))

−b
(2)
2 (K ×φ EG;N (K)).ut

Example 7.19. We give some examples of groups, where the deficiency is
realized by the “obvious” presentation.

The free group Fg of rank g has the obvious presentation 〈s1, s2, . . . , sg | ∅〉
and its deficiency is realized by this presentation, namely def(Fg) = g. This
follows from Lemma 7.16 because of b

(2)
0 (Fg) = 0 and b

(2)
1 (Fg) = g − 1. One

also can apply the analog of Lemma 7.16 for the classical Betti numbers
instead of the L2-Betti numbers since b0(Fg) = 1 and b1(Fg) = g.

If G is a finite group, def(G) ≤ 0 by Lemma 7.16 because we get for the
classical Betti numbers b0(G) = 1 and b1(G) = 0 or because we get for the
L2-Betti numbers b

(2)
0 (G) = |G|−1 and b

(2)
1 (G) = 0. The deficiency of a cyclic

group Z/n is 0, the obvious presentation 〈s | sn〉 realizes the deficiency. It
is not hard to check using homology with coefficients in the finite field Fp of
prime order p that the deficiency of Z/n×Z/n is−1. The obvious presentation
〈s, t | sn, tn, [s, t]〉 realizes the deficiency, where [s, t] denotes the commutator
sts−1t−1.

The inequality in Lemma 7.16 is actually an equality and in particular
def(G) = 1 − χ(BG) if BG is a finite 2-dimensional CW -complex. If G is
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a torsion-free one-relator group, the 2-dimensional CW -complex associated
with any presentation with one relation and g generators is aspherical and
hence BG is a finite 2-dimensional CW -complex [350, chapter III §§9 -11]
and G has deficiency g − 1.

We conjecture that for a torsion-free group having a presentation with
g ≥ 2 generators and one non-trivial relation

b
(2)
2 (G) = 0;

b
(2)
1 (G) = def(G)− 1 = g − 2

holds (compare [237, page 235]). This would follow from the strong Atiyah
Conjecture 10.2, which says that the L2-Betti numbers of the universal cover-
ing of a finite CW -complex with torsion-free fundamental group are integers,
by the following argument. Namely, the kernel of the second differential of the
L2-chain complex of BG is a proper HilbertN (G)-submodule of l2(G) so that
its dimension b

(2)
2 (G) is less than one and hence by the Atiyah Conjecture

zero. Since G must be infinite and hence b
(2)
0 (G) = 0 (see Theorem 6.54 (8b),

the Euler-Poincaré formula (see Theorem 6.80 (1)) implies b
(2)
1 (G) = g − 2.

The following result is a direct consequence of [177, Theorem 2.5]. It is
proved using homology with coefficients in Z/2.

Theorem 7.20. Let M be a connected compact orientable 3-manifold with
fundamental group π and prime decomposition

M = M1#M2# . . . #Mr.

Let s(M) be the number of prime factors Mi with non-empty boundary and
t(M) be the number of prime factors which are S2-bundles over S1. Denote
by χ(M) the Euler characteristic. Then

def(π1(M)) = dimZ/2(H1(π;Z/2))− dimZ/2(H2(π;Z/2))

= s(M) + t(M)− χ(M).ut

Example 7.21. One may expect that the deficiency is additive under free
products. This is not true as the following example, which is taken from
[264, Theorem 3 on page 162], shows. It plays an important role in the con-
struction of a counterexample up to homotopy of the Kneser Conjecture in
dimension four [298]. There, a closed connected orientable smooth 4-manifold
M is constructed whose fundamental group is the free product of two non-
trivial groups such that M is not homotopy equivalent to M0#M1 unless
M0 or M1 is homeomorphic to S4. We mention that a stable version of the
Kneser Conjecture remains true in dimension four [299], where stable means
that one has to allow connected sums with copies of S2 × S2.
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Suppose that mi, ri, ni and qi for i = 0, 1 are integers satisfying

ri > 1, rmi
i − 1 = niqi, ri ≡ 1 mod ni, (mi, ni) 6= 1, (q0, q1) = 1.

Then the group

G = (Z/m0 × Z/n0) ∗ (Z/m1 × Z/n1)

has the “obvious” presentation

G = 〈a0, b0, a1, b1 | am0
0 , bn0

0 , [a0, b0], am1
1 , bn1

1 , [a1, b1]〉.
But its deficiency is not realized by this presentation. Namely its deficiency
is −1 and is realized by the following presentation

G = 〈a0, b0, a1, b1 |
am0
0 = 1, [a0, b0] = br0−1

0 , am1
1 = 1, [a1, b1] = br1−1

1 , bn0
0 = bn1

1 〉.
To show that this is indeed a presentation of G, it suffices to show that
the relation bn0

0 = 1 follows from the other relations. We start by proving

inductively for k = 1, 2, . . . the relation ak
i bia

−k
i = b

−rk
1

i for i = 0, 1. The
induction step follows from the calculation

ak+1
i bia

−(k+1)
i = aia

k
i bia

−k
i a−1

i = aib
rk
1

i a−1 =
(
aibia

−1
i

)rk
i = (bri

i )rk
i = b

rk+1
i

i .

This implies for k = mi and i = 0, 1

(bni
i )qi = b

r
mi
i −1

i = 1.

Since bn0
0 = bn1

1 holds, we conclude

(bn0
0 )q0 = (bn0

0 )q1 = 1.

Since q0 and q1 are prime, we get bn0
0 = 1.

Notice that groups appearing in the Example 7.21 above contain torsion.
It may still be true that the deficiency is additive under free products of
torsionfree groups.

Finally we mention the following result [30, Theorem 2] which is in a
certain sense complementary to our results (see Lemma 7.22 and Theorem
7.25). If G is a finitely presented group with def(G) ≥ 2, then G can be
written as an amalgamated product G = A ∗C B, where A, B and C are
finitely generated, C is proper subgroup of both A and B and has index
greater than two in A or B. In particular G contains a free subgroup of
rank 2 and is not amenable. This implies that an amenable finitely presented
group has deficiency less or equal to one (see also [28], [160, Corollary 2.5’]).
This also follows from Theorem 7.25. We mention that not every group of
this particular shape A ∗C B has deficiency ≥ 2, take for example Z ∗3·Z Z =
〈s, t | t3 = s3〉 which has deficiency 1. This follows from Lemma 7.22 (1) and
Theorem 7.2 (4).

Another test for bounds on deficiencies is given in [349] using Fox ideals.
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7.3.2 Applications of L2-Betti Numbers to Deficiency and to
Signatures of 4-Manifolds

Lemma 7.22. Let G be a finitely presented group and φ : G → K a homo-
morphism such that b

(2)
1 (K ×φ EG;N (G)) = 0. Then

(1) def(G) ≤ 1;
(2) Let M be a closed oriented 4-manifold with G as fundamental group.

Then
| sign(M)| ≤ χ(M);

Proof. (1) Follows directly from Lemma 7.16.

(2) By the L2-Signature Theorem (see [9]) applied to the regular covering
M → M associated to φ, the signature σ(M) is the difference of the von
Neumann dimensions of two complementary subspaces of the space of L2-
integrable harmonic smooth 2-forms Hp

(2)(M) and hence

| sign(M)| ≤ dimN (K)(Hp
(2)(M)).

We conclude from the L2-Hodge-de Rham Theorem 1.59 and Lemma 6.53

| sign(M)| ≤ b
(2)
2 (M,N (K)). (7.23)

We get from the assumption and Poincaré duality (see Theorem 1.35 (3)
together with Lemma 6.53) that b

(2)
p (K ×φ EG;N (G)) = 0 for p = 1, 3. The

Euler-Poincaré formula (see Theorem 1.35 (2)) implies

χ(M) =
2∑

j=0

b
(2)
2j (M,N (K)). (7.24)

Now assertion (2) follows from (7.23) and (7.24). ut

Theorem 7.25. Let 1 → H
i−→ G

q−→ K → 1 be an exact sequence of in-
finite groups. Suppose that G is finitely presented and one of the following
conditions is satisfied.

(1) b
(2)
1 (H) < ∞;

(2) The ordinary first Betti number of H satisfies b1(H) < ∞ and K belongs
to B1;

Then

(i) def(G) ≤ 1;
(ii) Let M be a closed oriented 4-manifold with G as fundamental group.

Then
| sign(M)| ≤ χ(M).
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Proof. If condition (1) is satisfied, then b
(2)
p (G) = 0 for p = 0, 1 by Theorem

7.2 (7), and the claim follows from Lemma 7.22.
Suppose that condition (2) is satisfied. There is a spectral sequence con-

verging to HK
p+q(K ×q EG;N (K)) with E2-term

E2
p,q = TorCK

p (Hq(BH;C),N (K))

[518, Theorem 5.6.4 on page 143]. Since Hq(BH;C) is C with the trivial K-
action for q = 0 and finite dimensional as complex vector space by assumption
for q = 1, we conclude dimN (K)(E2

p,q) = 0 for p + q = 1 from the assumption

b
(2)
1 (K) = 0 and Lemma 6.33 (2). This implies b

(2)
1 (K×q EG;N (K)) = 0 and

the claim follows from Lemma 7.22. ut
Theorem 7.25 generalizes results in [162], [279], where also some other

information is given. See also [250], [297]. We mention the result of Hitchin
[263] that a connected closed oriented smooth 4-manifold which admits an
Einstein metric satisfies the stronger inequality | sign(M)| ≤ 2

3 · χ(M).

7.4 Group Automorphisms and L2-Torsion

In this section we explain that for a group automorphism f : G → G the L2-
torsion applied to the (Gof Z)-CW -complex E(Gof Z) gives an interesting
new invariant, provided that G is of det ≥ 1-class and satisfies certain finite-
ness assumptions, for instance, that there is a finite G-CW -model for EG or
more generally for E(G,FIN ). We will investigate the basic properties of
this invariant.

7.4.1 Automorphisms of Groups G with Finite Models for BG

Let G be a group. We assume that there is a finite CW -model for its clas-
sifying space BG and that G is of det ≥ 1-class (see Definition 3.112). By
Theorem 13.3 (2) G is of det ≥ 1-class if G belongs to the class G which will
be dealt with in Subsection 13.1.3. It contains all residually amenable groups
and in particular all residually finite groups.

Suppose that f : G → G is an automorphism. Let Gf := G of Z be the
semidirect product of G and Z with respect to the automorphism f . By as-
sumption BG has a finite CW -model. We pick one. Let Bf : BG → BG be
the map induced by f which is up to homotopy uniquely determined by the
property that π1(f) is conjugate to f under the identification G ∼= π1(BG).
The mapping torus TBf is a finite CW -model for B(G of Z), since there
is a fibration BG → TBf → S1. We conclude from Theorem 1.39 that

b
(2)
p ( ˜B(Gof Z)) = 0 for p ≥ 0. Since G is of det ≥ 1-class by assumption,

G of Z is of det ≥ 1-class by Theorem 13.3 (3). Notice that the construc-
tion of B(G of Z) is unique up to homotopy. We conclude from Lemma
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13.6 that ˜B(Gof Z) is a det-L2-acyclic finite free (G of Z)-CW -complex

and the L2-torsion ρ(2)( ˜B(Gof Z)) is well-defined and depends only on the
automorphism f : G → G.

Definition 7.26 (L2-torsion of group automorphisms). Let f : G → G
be a group automorphism. Suppose that there is a finite CW -model for BG
and G is of det ≥ 1-class. Define the L2-torsion of f by

ρ(2)(f : G → G) := ρ(2)( ˜B(Gof Z)) ∈ R.

Next we present the basic properties of this invariant. Notice that its
behaviour is similar to the Euler characteristic χ(G) := χ(BG).

Theorem 7.27. Suppose that all groups appearing below have finite CW -
models for their classifying spaces and are of det ≥ 1-class.

(1) Suppose that G is the amalgamated product G1∗G0 G2 for subgroups Gi ⊂
G and the automorphism f : G → G is the amalgamated product f1 ∗f0 f2

for automorphisms fi : Gi → Gi. Then

ρ(2)(f) = ρ(2)(f1) + ρ(2)(f2)− ρ(2)(f0);

(2) Let f : G → H and g : H → G be isomorphisms of groups. Then

ρ(2)(f ◦ g) = ρ(2)(g ◦ f).

In particular ρ(2)(f) is invariant under conjugation with automorphisms;
(3) Suppose that the following diagram of groups

1 −−−−→ G1 −−−−→ G2 −−−−→ G3 −−−−→ 1

f1

y f2

y id

y
1 −−−−→ G1 −−−−→ G2 −−−−→ G3 −−−−→ 1

commutes, has exact rows and its vertical arrows are automorphisms.
Then

ρ(2)(f2) = χ(BG3) · ρ(2)(f1);

(4) Let f : G → G be an automorphism of a group. Then for all integers
n ≥ 1

ρ(2)(fn) = n · ρ(2)(f);

(5) Suppose that G contains a subgroup G0 of finite index [G : G0]. Let
f : G → G be an automorphism with f(G0) = G0. Then

ρ(2)(f) =
1

[G : G0]
· ρ(2)(f |G0);
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(6) Let f : G → G be an automorphism of a group G. Then ρ(2)(f) depends
only on the map H

(2)
p (B̃f) : H

(2)
p (B̃G) → H

(2)
p (B̃G) induced by f on the

L2-homology of the universal covering of BG. More precisely,

ρ(2)(f) =
∑

p≥0

(−1)p · ln
(
detGofZ

(
H

(2)
p (B̃f)

))
,

where j∗H
(2)
p (B̃G) is the finitely generated Hilbert N (G of Z)-Hilbert

module, which is obtained from the N (G)-Hilbert module H
(2)
p (B̃G) by

induction with the canonical inclusion j : G → G of Z, and the mor-

phism H
(2)
p (B̃f) : j∗H

(2)
p (B̃G) → j∗H

(2)
p (B̃G) is the completion of the

map C[Gof Z]⊗CG H
(2)
p (B̃G) → C[Gof Z]⊗CG H

(2)
p (B̃G) which sends

γ⊗u to γ⊗u−γt⊗H
(2)
p (B̃f)(u) for t ∈ Z a fixed generator, γ ∈ C[GofZ]

and u ∈ H
(2)
p (B̃G);

(7) We have ρ(2)(f) = 0 if G satisfies one of the following conditions:
(a) All L2-Betti numbers of the universal covering of BG vanish;
(b) G contains an amenable infinite normal subgroup.

Proof. (1) One constructs finite CW -models BGi for i = 0, 1, 2 and BG
such that BGi ⊂ BG is a CW -subcomplex for i = 0, 1, 2 and BG = BG1 ∪
BG2 and BG0 = BG1 ∩ BG2 and the inclusion BGi → BG induces on
the fundamental groups the inclusions Gi → G for i = 0, 1, 2. Then one
constructs self-homotopy equivalences Bfi : BGi → BGi for i = 0, 1, 2 and
Bf : BG → BG such that Bf restricts to Bfi on BGi and Bf and Bfi

induce on the fundamental groups f and fi for i = 0, 1, 2. Then the mapping
torus TBf contains TBfi for i = 0, 1, 2 as subcomplex, TBf = TBf1 ∪TBf2 and
TBf0 = TBf1 ∩ TBf2 and the inclusion TBfi → TBf induces an injection on
the fundamental groups for i = 0, 1, 2. The sum formula (see Theorem 3.96)
(2) implies

ρ(2)(T̃Bf ) = ρ(2)(T̃Bf1) + ρ(2)(T̃Bf2)− ρ(2)(T̃Bf0).

(2) This follows from the fact that for maps u : X → Y and v : Y → X
of CW -complexes the mapping tori Tu◦v and Tv◦u are homotopy equivalent
[326, (7.31) on page 129].
(3) There is an induced fibration B(G1 of1 Z) → B(G2 of2 Z) → BG3

such that the inclusion of the fiber into the total space induces the obvious
injection on the fundamental groups. Now apply the fibration formula (see
Theorem 3.100 and Remark 3.102).
(4) Since there is a n-sheeted covering T(Bf)n → TBf , the claim follows from
multiplicativity of L2-torsion under finite coverings (see Theorem 3.96 (5)).
(5) There is a finite covering with [G : G0]-sheets TBf0 → TBf since there is
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a bijection from G/G0 to (Gof Z)/(G0 of |G0
Z). Now the assertion follows

from multiplicativity of L2-torsion under finite coverings (see Theorem 3.96
(5)).
(6) This follows from Theorem 3.106.
(7) This follows from assertion (6) and Theorem 7.2 (1) and (2). This finishes
the proof of Theorem 7.27. ut

7.4.2 Automorphisms of Surfaces

Let S be a compact connected orientable 2-dimensional manifold, possibly
with boundary. Let f : S → S be an orientation preserving homeomorphism.
The mapping torus Tf is a compact connected orientable 3-manifold whose
boundary is empty or a disjoint union of 2-dimensional tori. Then Tf is an
irreducible Haken manifold with infinite fundamental group and incompress-
ible boundary if S is different from S2 and D2. In this case Tf satisfies
Thurston’s Geometrization Conjecture, i.e. there is a maximal family of em-
bedded incompressible tori, which are pairwise not isotopic and not boundary
parallel, such that it decomposes Tf into pieces, which are Seifert or hyper-
bolic. Let M1, M2, . . ., Mr be the hyperbolic pieces. They all have finite
volume vol(Mi). (We have explained the notions and facts above in Section
4.1). Then Theorem 4.3 shows

Theorem 7.28. If S is S2, D2, or T 2, then ρ(2)(f) = 0. Otherwise we get

ρ(2)(π1(f) : π1(S) → π1(S)) =
−1
6π

·
r∑

i=1

vol(Mi).

Let S be a closed orientable hyperbolic surface and f : S → S be a self-
homeomorphism. It is called irreducible if f is not homotopic to an auto-
morphism which leaves some essential closed 1-dimensional submanifold in-
variant. Essential means that none of the components is nullhomotopic in S.
It is called periodic if it is homotopic (or, equivalently, isotopic) to a map
g : S → S for which there is a positive integer n with gn = id. The notion
pseudo-Anosov in terms of transverse singular foliations can be found for
instance in [96, page 95]. It is important to know that the following state-
ments for an irreducible selfhomeomorphism f : S → S are equivalent: i.) f is
pseudo-Anosov, ii.) f is not periodic and iii.) the mapping torus Tf is hyper-
bolic [96, Theorem 6.3], [369, Theorem 3.6 on page 47, Theorem 3.9 on page
50]. We know from Theorem 4.3 that ρ(2)(π1(f)) is − 1

6π · vol(Tf ) and hence
different from zero, provided that Tf is hyperbolic. If Tf is not hyperbolic, f

must be, up to homotopy, periodic and hence ρ(2)(T̃f ) = 0 by Theorem 7.27
(4). Hence f is pseudo-Anosov if and only if ρ(2)(f) < 0, and f is periodic if
and only if ρ(2)(f) = 0.

Recall that we can read off ρ(2)(f) := ρ(2)(T̃f ) from H
(2)
1 (f) by Theo-

rem 3.106 and thus, because of Theorem 4.9, from the map induced by f
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on the fundamental group π1(F ). So we have in principle a procedure to
decide whether f is pseudo-Anosov by inspecting the map induced on the
fundamental group.

7.4.3 A Combinatorial Approach for the L2-Torsion of an
Automorphism of a Finitely Generated Free Group

In this Subsection we discuss how the combinatorial approach to L2-torsion
of Subsection 3.7 specializes in the case of an automorphism f : F → F of
the free group F on r letters s1, s2, . . ., sr. Write G = F of Z for the semi-
direct product associated to f . Let t ∈ Z be a generator and denote the
corresponding element in G also by t. Define a (r, r)-matrix A over ZF by

A =
(

∂

∂sj
f(si)

)

1≤i,j≤r

,

where ∂
∂sj

denotes the Fox derivative. Choose a real number K > 0 which is
greater than or equal to the operator norm of the morphism

rI−tA :
r⊕

i=1

l2(G) →
r⊕

i=1

l2(G)

given by right multiplication with (I − tA). A possible choice for K is

K =
√

(2r − 1)r ·max{||1− tAi,j ||1 | 1 ≤ i, j ≤ r},

where ||∑g∈FofZ λg · g||1 is defined by
∑

g∈G |λg|. Denote by A∗ the matrix
obtained from A by transposing and applying the standard involution ZF →
ZF , which sends

∑
u∈F λu · u to

∑
u∈F λu · u−1, to each entry. Denote by

trZG : ZG → Z,
∑

g∈G

λg · g 7→ λe

the standard trace on ZG, where λe is the coefficient of the unit element e
in G. It extends to square matrices over ZG by taking the sum of the traces
of the diagonal entries. Define

c(A,K)p = trZG

((
1−K−2 · (1− tA)(1−A∗t−1)

)p
)

.

Theorem 7.29. In the setting above the sequence c(A,K)p is a monotone
decreasing sequence of non-negative real numbers, and the L2-torsion of f
satisfies

ρ(2)(f) = − r · ln(K) +
1
2
·
∞∑

p=1

1
p
· c(A,K)p ≤ 0.
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Proof. Choose
∨r

i=1 S1 with the obvious base point x as model for BF . Re-
alize f as an endomorphism Bf : BF → BF respecting the base point. Fix
a base point x̃ ∈ B̃F which is sent under the projection B̃F → BF to x.
Choose a lift B̃f : B̃F → B̃F uniquely determined by the property that it
sends x̃ to itself. In the sequel we identify F , π1(BF ) and the group of deck
transformations of B̃F with respect to the given base points x and x̃. Then
B̃f is (f : F → F )-equivariant. The cellular ZF -chain complex of B̃F looks
like

r⊕

i=1

ZF

∑r
i=1 rsi−1−−−−−−−→ ZF

where rsi−1 : ZF → ZF sends u to u(s1 − 1). The matrix A defines a
(Zf : ZF → ZF )-equivariant homomorphism

r̂A :
r⊕

i=1

ZF →
r⊕

i=1

ZF,

(∑

u∈F

λu,j · u
)

1≤j≤r

7→

∑

u∈F

∑

j

λu,j · f(u)Aj,k




1≤k≤r

and analogously for the unit (r, r)-matrix I. The (Zf : ZF → ZF )-equivariant
chain map C∗(B̃f) : C∗(B̃F ) → C∗(B̃F ) looks like

⊕r
i=1 ZF

∑r
i=1 rsi−1−−−−−−−→ ZF

r̂A

y r̂I

y
⊕r

i=1 ZF

∑r
i=1 rsi−1−−−−−−−→ ZF

Then the cellular ZG-chain complex of T̃Bf = B̃G is the mapping cone of
the following chain endomorphism of ZG⊗ZF C∗(B̃F )

⊕r
i=1 ZG

∑r
i=1 rsi−1−−−−−−−→ ZG

rI−tA

y r1−t

y
⊕r

i=1 ZG

∑r
i=1 rsi−1−−−−−−−→ ZG

where rI−tA and r1−t are given by right multiplication with the square matri-
ces I− tA and (1− t) over ZG. It is det-L2-acyclic after tensoring with l2(G)
since G belongs to the class G (see Definition 13.9) by Lemma 13.11, and
Theorem 1.39 and Theorem 13.3 (2) hold. The 1-dimensional ZG-chain com-
plex ZF

r1−t−−−→ ZF is det-L2-acyclic and has trivial L2-torsion after tensoring
with l2(G) (see (3.24) and Theorem 3.14 (6)). Moreover, it is a subcomplex of
the mapping cone of the chain endomorphism above. The weakly exact long
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L2-homology sequence (see Theorem 1.21) and the sum formula (see Theo-
rem 3.35 (1)) imply that the L2-torsion of f , which is the L2-torsion of this
mapping cone after tensoring with l2(G), is the L2-torsion of the quotient
ZG-chain complex concentrated in dimension 2 and 1 after tensoring with
l2(G)

. . . → 0 →
r⊕

i=1

ZG
rI−tA−−−−→

r⊕

i=1

ZG → 0.

This implies

ρ(2)(f) = − ln
(
detN (G)(idl2(G)⊗ZGrI−tA)

)
.

Since G belongs to the class G (see Definition 13.9) by Lemma 13.11, Theorem
13.3 (2) implies that ρ(2)(f) is non-positive. The other claims follow from
Theorem 3.172 (1) and (4). ut

Suppose that the second Novikov-Shubin invariant α2( ˜B(F of Z)) is pos-
itive, what is conjectured to be true for any group (see Conjecture 2.82) and
proved if f is induced by a surface homeomorphism (see Theorem 4.2 (1)).
If α is a number with 0 < α < α2(B(F of Z)), then there is a real number
C > 0 such that for all p

0 ≤ ρ(2)(f) + 2r · ln(K)−
L∑

p=1

1
p
· c(A,K)p ≤ C

αL

holds (see Theorem 3.172 (5)). In other words, the speed of convergence is
exponential.

7.4.4 Generalizations

So far we have assumed that there is a finite model for BG. This implies
that G is torsionfree. Similar to the notion of the virtual Euler characteristic
(see Remark 6.81) of a group G, which possesses a subgroup G′0 ⊂ G of
finite index with a finite CW -model for BG0, one can extend the definition
of ρ(2)(f) to automorphisms f : G → G of such a group G. Namely, choose
a subgroup G0 ⊂ G of finite index such that there is a finite CW -model for
BG0 and f(G0) = G0. Then define

ρ
(2)
virt(f : G → G) =

ρ(2)(f |G0 : G0 → G0)
[G : G0]

. (7.30)

Given a subgroup G′0 of finite index in G with a finite CW -model for
BG′0, one obtains the desired subgroup G0 by ∩n∈Zfn(G′0). We have to show
that this is independent of the choice of G0. Let G1 be another such choice.
Then we obtain from Theorem 7.27 (5) if we put G2 = G0 ∩G1
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ρ(2)(f |G0)
[G : G0]

=
ρ(2)(f |G2)

[G : G0] · [G0 : G2]
=

ρ(2)(f |G2)
[G : G1] · [G1 : G2]

=
ρ(2)(f |G1)
[G : G1]

.

Another more general possibility is to use the classifying space E(G of

Z,FIN ) of G of Z for the family FIN of finite subgroups. Then one can
define under the assumption that E(G,FIN ) has a finite G-CW -model and
G is of det ≥ 1-class

ρ(2)(f : G → G) = ρ(2)(E(Gof Z;FIN );N (Gof Z)). (7.31)

Here we use the fact that there is a finite Gof Z-model for E(Gof Z;FIN ),
provided that there is a finite G-CW -model for E(G,FIN ). Namely, the to
both ends infinite mapping telescope of the f : G → G-equivariant homotopy
equivalence E(G,FIN ) → E(G,FIN ) induced by f is a model for E(Gof

Z;FIN ). Moreover, one has to use the fact that the definition of L2-torsion
carries over to finite proper G-CW -complexes and depends only on the G-
homotopy type provided that G is of det ≥ 1-class (see Section 3.8).

Any discrete cocompact subgroup of a connected Lie group and any word-
hyperbolic group has a finite G-CW -model for E(G,FIN ) (see [1, Corollary
4.14], [370]). For more information about E(G,FIN ) we refer for instance
to [336].

If G is torsionfree, then these three notions ρ(2)(f), ρ
(2)
virt(f) and ρ(2)(f) are

all defined if and only if one of them is defined, and in this case they coincide.
Suppose that G possesses a torsionfree subgroup G0 of finite index. Then BG0

has a finite CW -model if there is a finite G-CW -model for E(G,FIN ). If
both ρ

(2)
virt(f) and ρ(2)(f) are defined, they coincide.

We mention without giving the proof that Theorem 7.27 carries directly
over to ρ(2)(f : G → G), provided we assume in assertion (3) that G3 is
torsionfree.

7.5 Miscellaneous

If one takes the third Novikov-Shubin invariant into account, one can improve
Lemma 7.22 (1). Namely, if BG has finite 3-skeleton, b

(2)
1 (K×φ EG;N (G)) =

0 and α3(K ×φ EG;N (G)) 6= ∞+, then

def(G) ≤ 0. (7.32)

This can be seen as follows. It suffices to improve the inequality in Lemma
7.16 to a strict inequality

g−r < 1−b
(2)
0 (K×φEG;N (K))+b

(2)
1 (K×φEG;N (K))−b

(2)
2 (K×φEG;N (K))

by the following modification of the proof of Lemma 7.16. Namely, since
α3(K ×φ EG;N (G)) 6= ∞+, we have THK

2 (K ×φ EG;N (K)) 6= 0. No-
tice that HK

2 (K ×φ X̃;N (K)) → HK
2 (K ×φ EG;N (K)) is surjective and
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HK
2 (K×φ X̃;N (K)) is a finitely generated projective N (K)-module since X

is 2-dimensional and N (K) semihereditary by Theorem 6.7 (1). We conclude
from Theorem 6.7 and Lemma 6.28 (3) that (7.18) becomes a strict inequality

b
(2)
2 (K ×φ X̃;N (K)) > b

(2)
2 (K ×φ EG;N (K))

and (7.32) follows.
We mention the following result of Lott [320, Theorem 2] which gener-

alizes a result of Lubotzky [324]. The statement we present here is a slight
improvement of Lott’s result due to Hillman [259].

Theorem 7.33. Let L be a connected Lie group. Let G be a lattice in L. If
def(G) > 0, then one of the following assertions holds

(1) G is a lattice in PSL2(C);
(2) def(G) = 1. Moreover, either G is isomorphic to a torsionfree non-

uniform lattice in R× PSL2(R) or PSL2(C), or G is Z or Z2.

More information about the class B1 can be found in [34]. For instance
the first L2-Betti number of a group having Kazhdan’s property (T) vanishes
[34, Corollary 6].

The following result is due to Gaboriau [214, Theorem 6.3]. (An alterna-
tive proof using the dimension theory of Chapter 6 can be found in the Ph.
D. thesis of Roman Sauer [456].) Two countable groups G0 and G1 are called
measure equivalent if there exist commuting measure-preserving free actions
of G0 and G1 on some infinite Lebesgue measure space (Ω, m) such that the
actions of both G0 and G1 admit finite measure fundamental domains (see
[237, 0.5E], [211] and [212]).

Theorem 7.34 (Measure equivalence and L2-Betti numbers). Let G0

and G1 be two countable groups which are measure equivalent. Then there is
a constant C > 0 such that for all p ≥ 0

b(2)
p (G0) = C · b(2)

p (G1).

Since any infinite amenable group is measure equivalent to Z [408], this
gives another proof of the fact that the L2-Betti numbers of infinite amenable
countable groups vanish. Notice that Zm and Zn have different Novikov-
Shubin invariants for m 6= n (see Example 2.59) so that Novikov-Shubin
invariants are not invariant under measure equivalence.

The notion of measure equivalence can be viewed as the measure theoretic
analog of the metric notion of quasi-isometric groups. Namely, two finitely
generated groups G0 and G1 are quasi-isometric if and only if there exist
commuting proper (continuous) actions of G0 and G1 on some locally com-
pact space such that each action has a compact fundamental domain [237,
0.2 C ′2 on page 6].
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If the finitely generated groups G0 and G1 are quasi-isometric and there
exist finite models for BG0 and BG1 then b

(2)
p (G0) = 0 ⇔ b

(2)
p (G1) = 0

holds (see [237, page 224], [410]). But in general it is not true that there is
a constant C > 0 such that b

(2)
p (G0) = C · b(2)

p (G1) holds for all p ≥ 0
(cf. [215, page 7], [237, page 233], [523]). If Fg denotes the free group on g
generators, then define Gn := (F3 × F3) ∗ Fn for n ≥ 2. The groups Gm and
Gn are quasi-isometric for m,n ≥ 2 (see [132, page 105 in IV-B.46], [523,
Theorem 1.5]) and have finite models for their classifying spaces. One easily
checks that b

(2)
1 (Gn) = n and b

(2)
2 (Gn) = 4 (see Example 1.38).

Gaboriau’s Theorem 7.34 implies that Gn and Gm are measure equivalent
if and only if m = n holds. Hence there are finitely presented groups which are
quasi-isometric but not measure equivalent. Another example is pointed out
in [215, page 7]. There exist quasi-isometric finitely generated groups G0 and
G1 such that G0 has Kazhdan’s property (T ) and G1 does not, and Kazhdan’s
property (T ) is an invariant under measure equivalence [211, Theorem 8.2].

The converse is also true. The groups Zn and Zm are infinite amenable and
hence measure equivalent. But they are not quasi-isometric for different m
and n since n is the growth rate of Zn and the growth rate is a quasi-isometry
invariant.

Notice that Theorem 7.34 implies that the sign of the Euler characteristic
of a group G is an invariant under measure equivalence, what is not true for
quasi-isometry by the example above.

We mention the following not yet published result of Monod and Shalom
that the non-vanishing of the second bounded cohomology H2

b (G; l2(G)) of a
countable group G with coefficients in l2(G) is an invariant of the measure
equivalence class of G.

The following questions arose in discussions with R. Sauer in view of
Theorem 3.113 and [343].

Question 7.35. (L2-torsion of groups and quasi-isometry and mea-
sure equivalence).
Let Gi for i = 0, 1 be a group such that there is a finite CW -model for
BGi and EGi is det-L2-acyclic. Suppose that G0 and G1 are measure equiv-
alent or that G0 and G1 are quasi-isometric. Does then ρ(2)(EG0;N (G0)) =
0 ⇔ ρ(2)(EG1;N (G1)) = 0 hold?

Question 7.36. (Novikov-Shubin invariants and quasi-isometry).
Let Gi for i = 0, 1 be a finitely generated group. Suppose that G0 and G1

are quasi-isometric. Does then αp(EG0;N (G0)) = αp(EG1;N (G1)) hold for
p ≥ 1?

A lattice G in a locally compact second countable topological group T is a
discrete subgroup such that the measure on T/G induced by a right invariant
Haar measure on T has finite volume. (This implies that T is unimodular.)
Since two lattices in the same locally compact second countable topological
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group T are measure equivalent [211, Example 1.2 on page 1059], Theorem
7.34 implies (see also Theorem 3.183)

Corollary 7.37. Let G1 and G2 be two lattices in the same locally compact
second countable topological group T . Then for all p ≥ 0

b
(2)
p (G1)

vol(T/G1)
=

b
(2)
p (G2)

vol(T/G2)
.

A survey article about orbit equivalent measure preserving actions and
L2-Betti numbers is written by Gaboriau [215].

For each Artin group A, Davis and Leary [129] compute the L2-cohomology
of the universal covering of its so called Salvetti complex. This is a finite CW-
complex which is conjectured to be a model for the classifying space BA.
In the many cases when this conjecture is known to hold their calculation
describes the reduced L2-cohomology of EA, or, equivalently, the L2-Betti
numbers b

(2)
p (A).

Exercises

7.1. Let d be a non-negative integer. Suppose that the group G has a de-
scending series of infinite subgroups G = G0 ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gd such
that BGn+1 has finite (d−n)-skeleton for each n = 0, 1, 2, . . . , d− 1, Gn+1 is
normal in Gn and the quotient Gn/Gn+1 contains an element of infinite order
or contains finite subgroups of arbitrary large order for n = 0, 1, . . . , d − 1.
Prove G ∈ Bd.

7.2. Suppose that the group G has a descending series of infinite subgroups
G = G0 ⊃ G1 ⊃ G2 ⊃ . . . such that BGn+1 is of finite type, Gn+1 is normal
in Gn and the quotient Gn/Gn+1 contains an element of infinite order or
contains finite subgroups of arbitrary large order for n = 0, 1, . . .. Prove
G ∈ B∞.

7.3. Let Gn for n = 0, 1, 2, . . . be a sequence of non-trivial groups. Prove

b(2)
p (∗∞n=0Gn) =

∞∑
n=0

b(2)
p (Gn).

for p ≥ 2 and
b
(2)
1 (∗∞n=0Gn) = ∞.

7.4. Let G1, G2, . . . , Gn be finitely many groups. Prove
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b(2)
p (

n∏

k=1

Gk) =
∑

0≤j1,j2,...,jn,∑n
k=1 jk=p

n∏

k=1

b
(2)
jk

(Gk),

where we use the convention that 0 · ∞ = 0, r · ∞ = ∞ for r ∈ (0,∞] and
r +∞ = ∞ for r ∈ [0,∞].

7.5. Let {Gi | i ∈ I} be a family of non-trivial groups for an infinite index
set I. Put G =

∏
i∈I Gi. Prove G ∈ B∞. Show by giving an example that it

is not necessarily true that H
(2)
p (EG;N (G)) = 0 for all p ≥ 0.

7.6. Let G be an infinite locally finite group. Show that HG
p (EG;N (G))

vanishes for p ≥ 1 and does not vanish for p = 0 and that b
(2)
p (G) = 0 holds

for all p ≥ 0.

7.7. Let 1 → H → G → K → 1 be an extension of groups such that H or K
respectively is finite. Show that K or H respectively belongs to Bd, BQd or
BFd if and only if G does.

7.8. Let d be a non-negative integer or d = ∞. Let F
i−→ E

p−→ B be a fibration
of connected CW -complexes such that b

(2)
p (π1(E) ×π1(i) F̃ ;N (π1(E))) < ∞

for p ≤ d. Suppose that Hp(B̃;C) is a finite dimensional complex vector space
for p ≤ d and that π1(B) ∈ BFd. Show that then b

(2)
p (Ẽ) = 0 for p ≤ d.

7.9. Let G and H be non-trivial groups. Show that b
(2)
1 (G ∗ H) = 0 if and

only if G = H = Z/2.

7.10. Suppose there is a finite G-CW -model for E(G;FIN ). Let d be the
least common multiple of the order of finite subgroups of G. Show

d · χ(2)(G) ∈ Z.

7.11. Prove χ(2)(SL(2,Z)) = − 1
12 .

7.12. Let G be a finitely presented group. Show

def(G) ≤ b1(G;Z/p)− b2(G;Z/p),

where bp(G;Z/p) is the p-th Betti number of EG with respect to singular
homology with coefficients in Z/p.

7.13. Let f : G → G be a (not necessarily bijective) endomorphism of a group
G which possesses a finite CW -model for BG and is of det ≥ 1-class. Let K

be the colimit of the directed system . . .
f−→ G

f−→ G
f−→ . . . indexed by Z. Let

Gf be the semidirect product K oZ with respect to the shift automorphism
of K. Show



316 7. Applications to Groups

(1) There is a finite CW -model for BGf , namely the mapping torus of
Bf : BG → BG;

(2) BGf is det-L2-acyclic and the L2-torsion ρ(2)(B̃Gf ) depends only on f .
Define

ρ(2)(f) := ρ(2)(B̃Gf );

(3) Show that this invariant reduces to the invariant ρ(2)(f) of Definition
7.26 in the case where f is an automorphism;

(4) Show that Theorem 7.27 does hold also for group endomorphisms if one
makes the following modifications or additional assumptions. Assertion
(1), (2), (3) and (4) remain true. For assertion (5) one needs the con-
dition that f induces a bijection G/G0

∼=−→ G/G0. In the formulation of
assertion (6) one must replace the universal covering of BG by the cov-
ering associated to the canonical projection G → K. In assertion (7) the
conditions must be required for K instead of G.



8. The Algebra of Affiliated Operators

Introduction

In this chapter we introduce and study the algebra U(G) of operators affiliated
to N (G) for a group G. A G-operator f : dom(f) ⊂ V → W of Hilbert
N (G)-modules is an operator whose domain dom(f) is a linear G-invariant
subspace and which satisfies f(gx) = gf(x) for all x ∈ dom(f) and g ∈ G.
The algebra U(G) consists of densely defined closed G-operators a : dom(a) ⊂
l2(G) → l2(G) and contains N (G) as a subalgebra. It is constructed in such
a way that an element f : l2(G) → l2(G) in N (G) is a weak isomorphism
if and only it is invertible in U(G). This is reflected algebraically by the
fact that U(G) is the Ore localization of N (G) with respect to the set of
non-zero divisors (see Theorem 8.22 (1)). It does not come with a natural
topology anymore but has nice ring theoretic properties. Namely, U(G) is von
Neumann regular, i.e. for any r ∈ U(G) there is s ∈ U(G) with rsr = r, or,
equivalently, any finitely generated submodule of a projective U(G)-module
is a direct summand (see Theorem 8.22 (3)). We have already mentioned in
Example 6.12 thatN (G) behaves in several ways like a principal ideal domain
except that N (G) is not Noetherian and has zero-divisors if G is infinite.
Any principal ideal domain R has a quotient field F , and in this analogy
U(G) should be thought of as F . Recall that the (extended) dimension of an
arbitrary R-module M is the same as the F -dimension of the F -vector space
F ⊗R M (see Example 6.12). In terms of this analogy it is not surprising that
the extended dimension function dimN (G) for arbitrary N (G)-modules comes
from an extended U(G)-dimension function dimU(G) over U(G) in the sense
that dimN (G)(M) = dimU(G)(U(G) ⊗N (G) M) holds for any N (G)-module
M (see Theorem 8.29). The algebra U(G) will play a role in the proof of the
Atiyah conjecture in Chapter 10. It will be the largest algebra attached to a
given group which we will consider in this book. All other algebras attached
to a given group will be contained in it.
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8.1 The Algebra of Affiliated Operators

In this section we introduce the algebra U(G) of operators affiliated to the
group von Neumann algebra N (G). It was originally introduced and studied
in [396, Chapter XVI].

We have already studied the C-category {fin. gen. Hilb. N (G)-mod.} with
involution of finitely generated Hilbert N (G)-modules with bounded G-
operators as morphisms (see Section 6.2). We have already seen that weak
isomorphisms play an important role. Recall that an operator is a weak iso-
morphism if its kernel is trivial and its image is dense and that a weak
isomorphism is in general not invertible. The basic idea for the following con-
struction is to enlarge the set of morphisms in {fin. gen. Hilb. N (G)-mod.} to
get a new C-category with involution {fin. gen. Hilb. N (G)-mod.}U with the
same objects such that weak isomorphisms become invertible. To motivate it,
let us consider a bounded G-operator f : V → W of finitely generated Hilbert
N (G)-modules, which is a weak isomorphism, and check what is needed to
find an “inverse”. The polar decomposition f = us consists of a unitary
invertible G-operator u and a positive G-operator s which is a weak isomor-
phism. So it suffices to “invert” s. Since s is a weak isomorphism, its kernel
is trivial and we obtain an unbounded densely defined closed G-operator∫

λ−1dEλ, if {Eλ | λ ∈ [0,∞)} is the spectral family of s (see Subsection
1.4.1). This should become the inverse of s. Hence we must enlarge the mor-
phisms to include unbounded densely defined G-operators like

∫
λ−1dEλ.

The difficulty will be that the composition and sum of unbounded densely
defined closed operators (see Notation 1.69) is in general not again densely
defined and closed. The main problem is that the intersection of two dense
subspaces is not necessarily dense again. It will turn out that in the specific
situation, which we are interested in, this problem can be solved. We need
some preparation to handle this.

Definition 8.1 (Affiliated operator). An unbounded operator f : dom(f)
⊂ V → W of finitely generated Hilbert N (G)-modules is called affiliated (to
N (G)) if f is densely defined with domain dom(f) ⊂ V , is closed and is a
G-operator, i.e. dom(f) is a linear G-invariant subspace and f(gx) = gf(x)
for all x ∈ dom(f) and g ∈ G.

Definition 8.2. Let V be a finitely generated Hilbert N (G)-module. A G-
invariant linear subspace L ⊂ V is called essentially dense if for any ε > 0
there is a finitely generated Hilbert N (G)-submodule P ⊂ V with P ⊂ L and
dimN (G)(V )− dimN (G)(P ) ≤ ε.

Notice that essentially dense implies dense.

Lemma 8.3. Let f, f ′ : V → W be affiliated operators of finitely generated
Hilbert N (G)-modules. Then
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(1) A countable intersection of essentially dense linear G-subspaces of V is
again essentially dense;

(2) If L ⊂ W is essentially dense, then f−1(L) ⊂ dom(f) is an essentially
dense subspace of V . In particular dom(f) is essentially dense;

(3) If f ′ ⊂ f , then f ′ = f . In particular f = f ′, if there is a G-invariant
subset S of dom(f) ∩ dom(f ′) which is dense in V and on which f and
f ′ agree;

(4) If f is bounded on its domain, i.e. there is C < 0 with |f(x)| ≤ C|x| for
all x ∈ dom(f), then dom(f) = V .

Proof. (1) Let {Ln | n ≥ 0} be a countable set of essentially dense linear G-
subspaces of V . Given ε > 0, choose a Hilbert N (G)-submodule Pn ⊂ V with
Pn ⊂ Ln and dimN (G)(V )−dimN (G)(Pn) ≤ 2−n−1ε. Put P =

⋂
n≥0 Pn. Then

P is a Hilbert N (G)-submodule of V with P ⊂ ⋂
n≥0 Ln and we conclude

from Theorem 1.12 (2) and (4)

dimN (G)(V )− dimN (G)(P )

= dimN (G)(V )− lim
m→∞

dimN (G)

(
m⋂

n=0

Pn

)

= lim
m→∞

(
dimN (G)(V )− dimN (G)

(
m⋂

n=0

Pn

))

≤ lim
m→∞

m∑
n=0

(
dimN (G)(V )− dimN (G)(Pn)

)

≤ lim
m→∞

(
m∑

n=0

2−n−1ε

)

= ε.

(2) We can write f using polar decomposition as the composition

f : V
pr−→ ker(f)⊥ u−→ im(f) s−→ im(f) i−→ W,

where pr and i are the canonical projection and inclusion, u is a unitary
isomorphism and s is a densely defined unbounded closed G-operator which
is positive and a weak isomorphism. Let {Eλ | λ ∈ [0,∞)} be the spec-
tral family of s. Since Eλ converges for λ → ∞ strongly to id, we get
limλ→∞ dimN (G)(im(Eλ)) = dimN (G)(im(f)). Fix ε > 0. Choose λ0 with
dimN (G)(im(f)) − dimN (G)(im(Eλ0)) ≤ ε/2. Since L is essentially dense
in W , we can find a Hilbert N (G)-submodule P ⊂ W with P ⊂ L and
dimN (G)(W )− dimN (G)(P ) ≤ ε/2. We conclude from Theorem 1.12 (2)

dimN (G)(im(f))− dimN (G)(P ∩ im(Eλ0)) ≤ ε. (8.4)
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Notice that im(Eλ0) ⊂ dom(s) follows from (1.66) since each y ∈ im(Eλ0)
lies in the domain of

∫∞
−∞ λdEλ. Moreover, s induces a bounded G-operator

sλ0 : im(Eλ0) → im(Eλ0) which is a weak isomorphism, and s−1(P ∩
im(Eλ0)) = s−1(P ∩ im(Eλ0)) ∩ im(Eλ0) = (sλ0)

−1(P ∩ im(Eλ0)) is a closed
G-invariant subspace of im(f). We conclude from Lemma 2.12

dimN (G)(s−1(P ∩ im(Eλ0))) = dimN (G)(P ∩ im(Eλ0)). (8.5)

We conclude from Additivity (see Theorem 1.12 (2))

dimN (G)

(
s−1(P ∩ im(Eλ0))

)
+ dimN (G)(ker(f))

= dimN (G)

(
(s ◦ u ◦ pr)−1(P ∩ im(Eλ0))

)
; (8.6)

dimN (G)(V ) = dimN (G)(ker(f)) + dimN (G)(im(f)). (8.7)

Hence (s ◦ u ◦ pr)−1(P ∩ im(Eλ0)) is a Hilbert N (G)-submodule of V , is
contained in f−1(L) and because of (8.4), (8.5), (8.6) and (8.7)

dimN (G)(V )− dimN (G)

(
(s ◦ u ◦ pr)−1(P ∩ im(Eλ0))

) ≤ ε.

Hence f−1(L) is essentially dense.
(3) Let V be a finitely generated Hilbert N (G)-module. We first show that an
affiliated operator h : V → V which is symmetric is already selfadjoint. We do
this using the Cayley transform κ(s) of a symmetric densely defined operator
s : dom(s) ⊂ H → H, which is the operator (s − i)(s + i)−1 with domain
dom(κ(s)) = (s + i)(dom(s)). Let us summarize the basic properties of the
Cayley transform (see [421, Section 5.2]). It is an isometry on its domain
dom(κ(s)). The operator κ(s)− 1 with the same domain as κ(s) is injective
and has range im(κ(s) − 1) = dom(s). If in addition s is closed, then the
subspaces (s± i)(dom(s)) are closed. The operator s is selfadjoint if and only
if (s + i)(dom(s)) = (s− i)(dom(s)) = H.

We want to use the latter criterion to show that h is selfadjoint. No-
tice that κ(h) is a G-operator as h is a G-operator, and dom(κ(h)) =
(h + i)(dom(h)) is closed as h is closed. Let p denote the projection onto
the G-invariant closed subspace dom(κ(h)). Then κ(h) ◦ p− p is everywhere
defined and im(κ(h)− 1)) = im(κ(h) ◦ p− p). Since

(κ(h)◦p−p)∗ = ((κ(h) ◦ p− p) ◦ p)∗ = p∗ ◦(κ(h)◦p−p)∗ = p◦(κ(h)◦p−p)∗,

we conclude using Additivity (see Theorem 1.12 (2))

dimN (G)(dom(h)) = dimN (G)(im(κ(h)− 1))
= dimN (G)(im(κ(h) ◦ p− p))
= dimN (G)(im((κ(h) ◦ p− p)∗))
≤ dimN (G)(im(p))
= dimN (G)((h + i)(dom(h))).
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This and assertion (2) imply

dimN (G)((h + i)(dom(h))) = dimN (G)(V ).

Since (h + i)(dom(h)) ⊂ V is closed, we conclude (h + i)(dom(h)) =
dom(κ(h)) = V from Theorem 1.12 (1) and (2). Since κ(h) is an isometry on
its domain and a G-operator, we get dimN (G)(im(κ(h)) = dimN (G)(V ). As
(h− i)(dom(h)) = im(κ(h)) is closed, we conclude (h− i)(dom(h)) = V . This
finishes the proof that h is selfadjoint.

Now we can give the proof of (3). Let f = uh be the polar decomposition
of f . Put h′ = u∗f ′. Since u∗ is a bounded G-operator and f ′ is affiliated, h′

is affiliated. We have h′ = u∗f ′ ⊂ u∗f = h. We conclude h′ ⊂ h = h∗ ⊂ (h′)∗,
i.e. h′ is symmetric. Hence h′ is selfadjoint by the argument above. This
implies h′ = h = h∗ = (h′)∗ and hence dom(f ′) = dom(h′) = dom(h) =
dom(f), i.e. f = f ′.
(4) Any closed densely defined operator which is bounded on its domain is
automatically everywhere defined. ut

Now we are ready to define the desired C-category with involution
{fin. gen. Hilb. N (G)-mod.}U as follows. Objects are finitely generated Hilbert
N (G)-modules. Given two finitely generated Hilbert N (G)-modules V and
W , the set of morphisms from V to W consists of all affiliated operators
f : dom(f) ⊂ V → W . The identity element of V is given by the identity
operator id : V → V . Given an affiliated operator f : dom(f) ⊂ V → W , its
adjoint f∗ : dom(f∗) ⊂ W → V is affiliated, since the adjoint of a closed
densely defined operator is always closed and densely defined and the adjoint
of a G-operator is always a G-operator. Thus we can define the involution by
taking the adjoint.

Given morphisms f : dom(f) ⊂ U → V and g : dom(g) ⊂ V → W , de-
fine their composition g ◦ f in {fin. gen. Hilb. N (G)-mod.}U by the minimal
closure of the unbounded operator g ◦ f : U → W with domain f−1(dom(g))
as defined in Notation 1.69. We have to check that this is well-defined. From
Lemma 8.3 (2) we conclude that f−1(dom(g)) is essentially dense and in
particular dense in U . We know already that the adjoints g∗ and f∗ are affili-
ated again and hence f∗◦g∗ with domain (g∗)−1(dom(f∗)) is densely defined.
Since the domain of the adjoint of g ◦ f contains (g∗)−1(dom(f∗)), (g ◦ f)∗

is densely defined. This implies that g ◦ f is closable, namely, ((g ◦ f)∗)∗ is
its minimal closure. Obviously g ◦ f is a G-operator. Hence its minimal clo-
sure is indeed affiliated. Analogously one defines the complex vector space
structure on the set of morphisms from V to W by taking the minimal clo-
sure of the addition and scalar multiplication of unbounded operators de-
fined in Notation 1.69. We leave it to the reader to check that the various
axioms like associativity of the composition and so on are immediate con-
sequences of Lemma 8.3 (3). Obviously {fin. gen. Hilb. N (G)-mod.} is a C-
subcategory with involution of {fin. gen. Hilb. N (G)-mod.}U . Next we show
that {fin. gen. Hilb. N (G)-mod.}U has the desired properties.
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Lemma 8.8. (1) An affiliated operator f : dom(f) ⊂ V → W represents an
isomorphism in {fin. gen. Hilb. N (G)-mod.}U if and only if f is a weak
isomorphism, i.e. f has trivial kernel and dense image f(dom(f));

(2) Let f : dom(f) ⊂ V → W be an affiliated operator. Then there are
bounded (everywhere defined) G-operators a : V → W and b : V → V
with the properties that b is a weak isomorphism and f = ab−1 holds in
{fin. gen. Hilb. N (G)-mod.}U .

Proof. (1) Suppose that f : dom(f) ⊂ V → W is an affiliated operator
which is a weak isomorphism. Let f = us be its polar decomposition. Then
u : V → W is a unitary bijective G-operator and s : dom(s) ⊂ V → V
is an affiliated operator which is positive and a weak isomorphism. Let
h(s) : V → V be the operator given by the functional calculus applied to
s for the Borel function h : R → R which sends λ 6= 0 to λ−1 and 0 to, let
us say, 0. Notice that h(s) is a densely defined selfadjoint G-operator and
in particular affiliated. If {Eλ | λ ∈ [0,∞)} is the spectral family of s, then
im(En) ∩ im(E⊥

1/n) is contained in dom(h(s)) for all integers n ≥ 1. Since
s has trivial kernel, limn→∞ dimN (G)(im(En) ∩ im(E⊥

1/n)) = dimN (G)(V ).
Since both s and h(s) map im(En) ∩ im(E1/n)⊥ to itself and define in-
verse operators there, Lemma 8.3 (3) implies that s and h(s) define in-
verse morphisms in {fin. gen. Hilb. N (G)-mod.}U . Since u obviously defines
an isomorphism in {fin. gen. Hilb. N (G)-mod.}U , f is an isomorphism in
{fin. gen. Hilb. N (G)-mod.}U .

Now suppose that the affiliated operator f : dom(f) ⊂ V → W defines an
isomorphism in {fin. gen. Hilb. N (G)-mod.}U . Let h : dom(h) ⊂ W → V be
an inverse. For x ∈ ker(f) we have x ∈ f−1(dom(h)) and hence x = id(x) =
h ◦ f(x) = 0. Hence f has trivial kernel. Since f ◦h = id in U , the image of f
contains the subspace h−1(dom(f)) which is dense by Lemma 8.3 (2). Hence
the image of f is dense. This shows that f is a weak isomorphism.
(2) Let f = us be the polar decomposition of f . Let p = 1− u∗u. This is the
projection onto ker(u∗u) = ker(us) = ker(s). We have f = u(s+p) and (s+p)
is an affiliated positive operator dom(s + p) ⊂ V → V with trivial kernel.
Define Borel functions h1, h2 : R→ R by h1(λ) = λ and h2(λ) = 1 for λ ≤ 1
and by h1(λ) = 1 and h2(λ) = 1/λ for λ ≥ 1. Then u◦h1(s+p) and h2(s+p)
are bounded G-operators, h2(s + p) represents an invertible morphism in
{fin. gen. Hilb. N (G)-mod.}U and f = (u ◦ h1(s + p)) ◦ (h2(s + p))−1 in
{fin. gen. Hilb. N (G)-mod.}U . ut
Definition 8.9 (Algebra of affiliated operators). Define U(G) to be the
ring with involution given by the endomorphisms of l2(G) in the C-category
with involution {fin. gen. Hilb. N (G)-mod.}U , i.e. the ring of affiliated oper-
ators f : dom(f) ⊂ l2(G) → l2(G).

Let {l2(G)n}U ⊂ {fin. gen. Hilb. N (G)-mod.}U be the full subcategory,
whose objects are l2(G)n for n ≥ 0. Let {U(G)n} be the category whose
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objects are the (left) U(G)-modules U(G)n for n ≥ 0 and whose morphisms
are U(G)-homomorphisms. Then we obtain an isomorphism of C-categories
with involution (compare with 6.22)

νU : {U(G)n} → {l2(G)n}U . (8.10)

Example 8.11. Let G = Zn. Using the identifications of Example 1.4 we
get an identification of U(Zn) with the complex algebra L(Tn) of equivalence
classes of measurable functions f : Tn → C. Recall that two such functions
are equivalent if they differ on a subset of measure zero only.

Let i : H → G be an injective group homomorphism. We have associated
to it a covariant functor of C-categories with involution

i∗ : {fin. gen. Hilb. N (H)-mod.} → {fin. gen. Hilb. N (G)-mod.}
in Definition 1.23. The same construction induces a covariant functor of C-
categories with involution

i∗ : {fin. gen. Hilb. N (H)-mod.}U → {fin. gen. Hilb. N (G)-mod.}U
because for an affiliated operator f : U → V of finitely generated Hilbert
N (H)-modules the densely defined G-operator id⊗CHf : dom(id⊗CHf) =
CG ⊗CH dom(f) ⊂ i∗U → i∗V has a densely defined adjoint and therefore
its minimal closure exists and is affiliated. Functoriality follows from Lemma
8.3 (3). In particular we get a ring homomorphism

i∗ : U(H) → U(G). (8.12)

Notice that N (G) is a ∗-subring of U(G) and that U(G) does not carry a
natural topology anymore. However, U(G) has nice properties as a ring what
we will explain below.

8.2 Basic Properties of the Algebra of Affiliated
Operators

In this section we explain and prove various ring-theoretic properties of U(G).

8.2.1 Survey on Ore Localization

Definition 8.13. Let R be a ring. Given a set S ⊂ R, a ring homomorphism
f : R → R′ is called S-inverting if f(s) is invertible in R′ for all s ∈ S. An
S-inverting ring homomorphism f : R → RS is called universal S-inverting
if for any S-inverting ring homomorphism g : R → R′ there is precisely one
ring homomorphism g : RS → R′ satisfying g ◦ f = g.
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The universal property implies as usual that the universal S-inverting homo-
morphism f : R → RS is unique up to unique isomorphism. One can construct
such a universal S-inverting ring homomorphism by writing down a suitable
ring with generators and relations. If S is the set of elements s ∈ R for which
f(s) ∈ RS is a unit, then S is multiplicatively closed, i.e s, t ∈ S implies st ∈ S
and 1 ∈ S, and the ring homomorphism φ : RS → RS , which is uniquely de-
termined by fS ◦ φ = fS , is an isomorphism. Hence we can assume in the
sequel without loss of generality that S is multiplicatively closed. If R is com-
mutative and S ⊂ R multiplicatively closed, one can describe RS in terms of
fractions rs−1 with the obvious rules for addition and multiplications. Under
a certain condition this nice approach works also for non-commutative rings.

Definition 8.14 (Ore localization). Let S ⊂ R be a multiplicatively closed
subset of the ring R. The pair (R, S) satisfies the (right) Ore condition if i.)
for (r, s) ∈ R × S there exists (r′, s′) ∈ R × S satisfying rs′ = sr′ and ii.) if
for r ∈ R and s ∈ S with sr = 0 there is t ∈ S with rt = 0.

If (R,S) satisfies the Ore condition, define the (right) Ore localization
to be the following ring RS−1. Elements are represented by pairs (r, s) ∈
R × S, where two such pairs (r, s) and (r′, s′) are called equivalent if there
are u, u′ ∈ R such that ru = r′u′ and su = s′u′ hold and su = s′u′ belongs
to S. The addition and multiplication is given on representatives by (r, s) +
(r′, s′) = (rc+ r′d, t), where t = sc = s′d ∈ S and by (r, s) · (r′, s′) = (rc, s′t),
where sc = r′t for t ∈ S. The unit element under addition is represented
by (0, 1) and under multiplication by (1, 1). Let f : R → RS−1 be the ring
homomorphism which sends r ∈ R to the class of (r, 1).

One may try to remember part i.) of the Ore condition by saying that for
any left (= wrong way) fraction s−1r there is a right fraction r′(s′)−1 with
s−1r = r′(s′)−1. Notice that part ii.) of the Ore condition is automatically
satisfied if S contains no zero-divisor.

Lemma 8.15. Suppose that (R,S) satisfies the Ore condition. Then

(1) The map f : R → RS−1 is the universal S-inverting ring homomorphism;
(2) The kernel of f : R → RS−1 is {r ∈ R | rs = 0 for some s ∈ S};
(3) The functor RS−1 ⊗R − is exact;
(4) The pair (Mn(R), S · In) satisfies the Ore condition, where Mn(R) is the

ring of (n, n)-matrices over R and In is the unit matrix. The canon-
ical ring homomorphism induced by the universal property Mn(R)(S ·
In)−1

∼=−→ Mn(RS−1) is an isomorphism.

Proof. [484, Proposition II.1.4 on page 51]. ut
The next example is based on [489].

Example 8.16. Let G be a torsionfree amenable group. Suppose that the
Kaplansky Conjecture 10.14 holds for G with coefficients in the field F , i.e.
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FG has no non-trivial zero-divisors. We want to show that the set S of non-
zero-divisor satisfies the left Ore condition. Since FG is a ring with involution
the right Ore condition follows as well. Notice that then the Ore localization
(FG)S−1 is a skewfield, in which FG embeds.

Consider elements β, γ in FG such that γ is a non-zero-divisor. Choose
a finite subset S ⊂ G such that s ∈ S ⇒ s−1 ∈ S and β and γ can be
written as β =

∑
s∈S bs · s and γ =

∑
s∈S cs · s. Since G satisfies the Følner

condition (see Lemma 6.35), we can find a non-empty subset A ⊂ G satisfying
|∂SA|·|S| < |A|. We want to find elements δ =

∑
a∈A da ·a and ε =

∑
a∈A ea ·a

such that ε is a non-zero-divisor and εβ = δγ. Let AS ⊂ G be the subset
{a · s | a ∈ A, s ∈ S}. Then the latter equation is equivalent to the following
set of equations indexed by elements u ∈ AS

∑

a∈A,s∈S,s·a=u

eabs − dacs = 0.

This is a system of |AS| homogeneous equations over F in 2|A| variables da

and ea. Suppose that |AS| < 2|A|. Then we can find a solution different from
zero, in other words, we can find δ and ε such that εβ = δγ and at least one of
the elements δ and ε is different from zero. Since γ is a non-zero-divisor, ε = 0
implies δ = 0. Therefore ε 6= 0. By assumption ε must be a non-zero-divisor.
It remains to prove |AS| < 2|A|. From

AS ⊂ A ∪
⋃

s∈S

{a ∈ A | a · s−1 6∈ A} · s ⊂ A ∪
⋃

s∈S

∂SA · s.

we conclude
|AS| ≤ |A|+ |S| · |∂SA| < 2|A|.

and the claim follows.
Let Fg be the free group with g ≥ 2 generators. Let S be the multiplica-

tively closed subset of CFg consisting of all non-zero-divisors. We mention
that CFg has no non-trivial zero-divisors and that (CFg, S) does not satisfy
the Ore condition.

The lamplighter group L is amenable but the set S of non-zero-divisors
does not satisfies the left Ore condition [311].

8.2.2 Survey on von Neumann Regular Rings

Definition 8.17 (Von Neumann regular). A ring R is called von Neu-
mann regular if for any r ∈ R there is an s ∈ R with rsr = r.

This notion should not be confused with the notion of a regular ring,
i.e. a Noetherian ring for which every R-module has a projective resolution
of finite dimension. For instance a principal ideal domain R is always reg-
ular since submodules of free R-modules are free (see [15, Corollary 1.2 in
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chapter 10 on page 353]), but it is von Neumann regular if and only if it is
a field. The definition above is appropriate to check whether a ring is von
Neumann regular. However, for structural questions the following equivalent
characterizations are more useful.

Lemma 8.18. The following assertions are equivalent for a ring R.

(1) R is von Neumann regular;
(2) Every principal (left or right) ideal in R is generated by an idempotent;
(3) Every finitely generated (left or right ) ideal in R is generated by an

idempotent;
(4) Every finitely generated submodule of a finitely generated projective (left

or right ) R-module is a direct summand;
(5) Any finitely presented (left or right ) R-module is projective;
(6) Every (left or right ) R-module is R-flat.

Proof. see [444, Lemma 4.15, Theorem 4.16 and Theorem 9.15], [518, Theo-
rem 4.2.9 on page 98]. ut

Several processes preserve the property of a ring to be von Neumann
regular.

Lemma 8.19. (1) If R is von Neumann regular, then the matrix ring Mn(R)
is von Neumann regular;

(2) The center of a von Neumann regular ring is von Neumann regular;
(3) A directed union of von Neumann regular rings is von Neumann regular.

Proof. Assertions (1) and (2) follow from [224, Theorem 1.7 and Theorem
1.14], whereas assertion (3) follows directly from the Definition 8.17 of von
Neumann regular. ut

Recall that an R-module is semisimple if any submodule of a module is a
direct summand. A ring R is called semisimple if any R-module is semisim-
ple. A ring R is semisimple if and only if R considered as an R-module is
semisimple.

Lemma 8.20. Let R be von Neumann regular. Then

(1) Any element in R is either a zero-divisor or a unit;
(2) If a von Neumann regular ring is Noetherian or Artinian, then it is al-

ready semisimple.

Proof. (1) This follows from Lemma 8.18 (2). Assertion (2) is proved in [224,
page 21]. ut

In our situation the rings are rings with involution ∗ : R → R, sometimes
also called ∗-rings. The involution is required to satisfy i.) ∗ ◦ ∗ = id; ii.)
∗(1) = 1, iii.) ∗(r + s) = ∗(r) + ∗(s) and iv.) ∗(r · s) = ∗(s) · ∗(r) for r, s ∈ R.
We often write ∗(r) = r∗.
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Example 8.21. The complex group ring CG is von Neumann regular if and
only if G is locally finite. If G is locally finite this follows from Lemma 8.19
(3) since G is the directed union of its finitely generated subgroups and the
complex group ring of a finite group is semisimple and hence in particular
von Neumann regular.

Suppose that CG is von Neumann regular. Let H ⊂ G be a finitely
generated subgroup. Let s1, s2, . . ., sr be a set of generators of H. There is
an exact sequence of CH-modules CHn i−→ CH

ε−→ C → 0, where C comes
with the trivial H-action, i is given by the (r, 1) matrix (s1 − 1, . . . , sr − 1)
and ε sends

∑
h∈H λhh to

∑
h∈H λh. This sequence stays exact after applying

CG⊗CH −. From Lemma 8.18 (5) we conclude that C[G/H] = CG⊗CH C is
a projective CG-module. This implies that H is finite. This shows that G is
locally finite.

More information about von Neumann regular rings can be found for
instance in [224].

8.2.3 Basic Properties of the Algebra of Affiliated Operators

The next result summarizes the main properties of the algebra of affiliated
operators.

Theorem 8.22 (The algebra of affiliated operators).

(1) The set of non-zero-divisors S in N (G) satisfies the right Ore condition
and the Ore localization N (G)S−1 is canonically isomorphic to U(G);

(2) U(G) is flat as N (G)-module;
(3) U(G) is von Neumann regular;
(4) Let M be a finitely presented N (G)-module. Then U(G) ⊗N (G) M is a

finitely generated projective U(G)-module. If additionally dimN (G)(M) =
0, then U(G)⊗N (G) M = 0;

(5) A sequence P0 → P1 → P2 of finitely generated projective N (G)-modules
is weakly exact at P1 if and only if the induced sequence U(G)⊗N (G)P0 →
U(G)⊗N (G) P1 → U(G)⊗N (G) P2 is exact at U(G)⊗N (G) P1;

(6) If q ∈ Mn(U(G)) is a projection, then q ∈ Mn(N (G)). If e ∈ Mn(U(G))
is an idempotent, then there is a projection p ∈ Mn(N (G)) such that
pe = e and ep = p holds in Mn(U(G));

(7) Given a finitely generated projective U(G)-module Q, there is a finitely
generated projective N (G)-module P such that U(G)⊗N (G) P and Q are
U(G)-isomorphic;

(8) If P0 and P1 are two finitely generated projective N (G)-modules, then
P0
∼=N (G) P1 ⇔ U(G)⊗N (G) P0

∼=U(G) U(G)⊗N (G) P1.

Proof. (1) An element f ∈ N (G) = B(l2(G))G is not a zero-divisor if and only
if f is a weak isomorphism (see Lemma 1.13). Hence the right Ore condition
for the set S of non-zero-divisors of N (G) is satisfied by Lemma 8.8 (2). From
Lemma 8.8 (2) and Lemma 8.15 (1) we obtain a canonical homomorphism of
rings with involution N (G)S−1 → U(G) which is bijective.
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(2) This follows from assertion (1) and Lemma 8.15 (3).
(3) Consider a ∈ U(G). Let a = us be its polar decomposition into a G-
equivariant partial isometry u and a positive affiliated operator s. Let f : R→
R be the function which sends λ to λ−1 if λ > 0 and to zero if λ ≤ 0. Then
f(s) ∈ U and sf(s)s = s holds in U(G). If we put b = f(s)u∗, we conclude

aba = usf(s)u∗us = usf(s)s = us = a.

(4) Because of Theorem 6.5 and Theorem 6.7 (3) and (4e) it suffices to prove
the claim that dimN (G)(M) = 0 implies U(G) ⊗N (G) M = 0. From Lemma
6.28 we get an exact sequence 0 → N (G)n s−→ N (G)n → M → 0 with
a weak isomorphism s. By Theorem 6.24 (3) ν(s) is a weak isomorphism.
We get from Lemma 8.8 (1) that U(G) ⊗N (G) s is an isomorphism. Hence
U(G)⊗N (G) M = 0.
(5) We firstly show for a finitely generated projective N (G)-module P

P = 0 ⇔ U(G)⊗N (G) P = 0. (8.23)

Choose an idempotent e : N (G)n → N (G)n whose image is N (G)-isomorphic
to P . Then U(G)⊗N (G)e is an idempotent whose image is U(G)-isomorphic to
U(G)⊗N (G)P . The matrix in Mn(U(G)) describing U(G)⊗N (G)e is the image
of the matrix in Mn(N (G)) describing e under the injection Mn(N (G)) →
Mn(U(G)) induced by the inclusion of rings N (G) ⊂ U(G). Hence e is zero
if and only if U(G)⊗N (G) e = 0. Therefore (8.23) is true.

Consider a sequence of finitely generated projective N (G)-modules P0
f0−→

P1
f1−→ P2. Since N (G) is semihereditary (see Theorem 6.5 and Theo-

rem 6.7 (1)), the image of f1 ◦ f0 is a finitely generated projective N (G)-
module. We conclude from assertion (2) and (8.23) that f1 ◦ f0 is zero
if and only if U(G) ⊗N (G) f1 ◦ U(G) ⊗N (G) f0 is zero. Hence we can as-
sume without loss of generality that im(f0) ⊂ ker(f1). Recall that the

given sequence P0
f0−→ P1

f1−→ P2 is weakly exact if and only if the finitely
generated projective N (G)-module P (ker(f1)/ im(f0)) is trivial and that
ker(f1)/ im(f0) = P (ker(f1)/ im(f0)) ⊕ T (ker(f1)/ im(f0)) (see Definition
6.1, Theorem 6.5 and Theorem 6.7 (3)). Now apply Theorem 6.7 (4e), asser-
tion (2), assertion (4) and (8.23).
(6) Let q ∈ Mn(U(G)) be a projection. Then the induced affiliated oper-
ator l2(G)n → l2(G)n is bounded on its domain, namely by 1, and hence
everywhere defined by Lemma 8.3 (4). Therefore q ∈ Mn(N (G)).

Let e ∈ Mn(U(G)) be an idempotent. Put z = 1 − (e∗ − e)2 = 1 +
(e∗ − e)(e∗ − e)∗. This element z is invertible in Mn(U(G)) by Lemma 1.13
and Lemma 8.8 (1) because the induced affiliated operator l2(G) → l2(G) is
obviously injective. We have z = z∗, ze = ez = ee∗e, ze∗ = e∗ee∗ = e∗z. We
also get z−1e = ez−1 and z−1e∗ = e∗z−1. Put p = ee∗z−1. Then one easily
checks p∗ = p, p2 = p, pe = e and ep = p.



8.3 Dimension Theory and L2-Betti Numbers over U(G) 329

(7) Let Q be a finitely generated projective U(G)-module. Let e ∈ Mn(U(G))
be an idempotent whose image is U(G)-isomorphic to Q. By assertion (6)
there is a projection p ∈ Mn(N (G)) such that pe = p and ep = e holds in
Mn(U(G)). Put P = im(p). Then P is a finitely generated projective N (G)-
module with U(G)⊗N (G) P ∼=U(G) Q.
(8) Let P0 and P1 be two finitely generated projective N (G)-modules with
U(G) ⊗N (G) P0

∼=U(G) U(G) ⊗N (G) P0. Because of assertion (1) there is an
N (G)-map f : P0 → P1 such that U(G) ⊗N (G) f is an isomorphism. By
assertion (5) f : P0 → P1 is a weak isomorphism. Hence P0 and P1 are N (G)-
isomorphic by Lemma 6.28 (1). ut

8.3 Dimension Theory and L2-Betti Numbers over the
Algebra of Affiliated Operators

In this section we construct a dimension function dimU(G) for arbitrary U(G)-
modules such that Additivity, Cofinality and Continuity hold and for any
N (G)-module M we recapture dimN (G)(M) by dimU(G)(U(G) ⊗N (G) M).
This allows us to define L2-Betti numbers over U(G).

Notation 8.24. Denote by Ldr(Rn) the set of direct summands in Rn with
the partial ordering ≤ induced by inclusion. Denote by Ldr(l2(G)n) the set
of Hilbert N (G)-submodules of l2(G)n with the partial ordering ≤ induced by
inclusion.

Define for a finitely generated projective U(G)-module Q

dimU(G)(Q) := dimN (G)(P ) ∈ [0,∞), (8.25)

where P is any finitely generated projectiveN (G)-module P with U(G)⊗N (G)

P ∼=U(G) Q. This definition makes sense because of Lemma 8.22 (7) and (8)

Lemma 8.26. (1) Let j : Ldr(N (G)n) → Ldr(U(G)n) be the map which
sends P ⊂ N (G)n to the image of the composition

U(G)⊗N (G) P
U(G)⊗N(G)i−−−−−−−−→ U(G)⊗N (G) N (G)n l−→ U(G)n,

where i : P → N (G)n is the inclusion and l the obvious isomorphism.
Then j preserves the partial ordering and is bijective;

(2) The map k : Ldr(N (G)n) → Ldr(l2(G)n) induced by the functor ν (see
(6.22)) is bijective and preserves the ordering;

(3) For a subset S ⊂ Ldr(U(G)n) there is a least upper bound sup(S) ∈
Ldr(U(G)n). If S is directed under inclusion, then

dimU(G)(sup(S)) = sup{dimU(G)(P ) | P ∈ S}.
The analogous statement holds for N (G) instead of U(G).
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Proof. (1) Obviously j preserves the partial ordering. Bijectivity follows from
Lemma 8.22 (6).
(2) This is obvious.
(3) Because of assertions (1) and (2) it suffices to show for any subset S ⊂
Ldr(l2(G)n)) that a least upper bound sup(S) exists in Ldr(l2(G)n) and that
dimN (G)(sup(S)) = sup{dimN (G)(V ) | V ∈ S} holds if S is directed under
≤. We construct sup(S) as the intersection of all Hilbert N (G)-submodules
V of l2(G)n for which each element of S is contained in V . Suppose that S
is directed under inclusion. Then sup(S) is the same as the closure of the
union of all elements in S. Now the second claim follows from Lemma 1.12
(3). This finishes the proof of Lemma 8.26. ut
Lemma 8.27. The pair (U(G), dimU(G)) satisfies Assumption 6.2.

Proof. We already know that (N (G), dimN (G)) satisfies Assumption 6.2 (see
Theorem 6.5). Hence (U(G), dimU(G)) satisfies Assumption 6.2 (1). It remains
to prove Assumption 6.2 (2). One easily checks that it suffices to do this for
a submodule K ⊂ U(G)n for some positive integer n. Let S = {P | P ⊂
K, P fin. gen. U(G)-module}. Notice that each P ∈ S belongs to Ldr(U(G)n)
since U(G) is von Neumann regular (see Lemma 8.18 (4) and Lemma 8.22
(3)). By assertion (3) of the previous Lemma 8.26 the supremum sup(S) ∈
Ldr(U(G)n) exists and satisfies

dimU(G)(sup(S)) = sup{dimU(G)(P ) | P ∈ S}.
Hence it remains to prove K = sup(S). Consider f : U(G)n → U(G) with K ⊂
ker(f). Then ker(f) ∈ Ldr(U(G)n) and P ⊂ ker(f) for P ∈ S. This implies
sup(S) ⊂ ker(f). Since any finitely generated submodule of K belongs to S
and hence is contained in sup(S), we get K ⊂ sup(S) and hence K ⊂ sup(S).

ut
Definition 8.28. Let M be a U(G)-module. Define its extended von Neu-
mann dimension

dimU(G)(M) ∈ [0,∞]

by the extension constructed in Definition 6.6 of dimU(G)(Q) which we have
introduced for any finitely generated projective U(G)-module Q in (8.25).

Specializing Theorem 6.7 about dimension functions for arbitrary modules
to this case and using Lemma 6.28 (3) and Theorem 8.22 (see also [435,
Chapter 3]) we obtain

Theorem 8.29. [Dimension function for arbitrary U(G)-modules].
The dimension dimU(G) satisfies Additivity, Cofinality and Continuity. Given
any N (G)-module M , we get

dimN (G)(M) = dimU(G)(U(G)⊗N (G) M).

If P is a projective U(G)-module, then dimU(G)(P ) = 0 ⇔ P = 0.
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Now we can define L2-Betti numbers working with U(G) instead of N (G).
This corresponds in the classical setting for Betti numbers of a CW -complex
Y to define the p-th Betti number as the dimension of the rational vector
space Hp(Y ;Q) instead of the rank of the abelian group Hp(Y ;Z).

Definition 8.30. Let X be a (left) G-space. Define the singular homology
HG

p (X;U(G)) of X with coefficients in U(G) to be the homology of the U(G)-
chain complex U(G)⊗ZGCsing

∗ (X), where Csing
∗ (X) is the singular chain com-

plex of X with the induced ZG-structure. Define the p-th L2-Betti number of
X by

b(2)
p (X;U(G)) := dimU(G)(HG

p (X;U(G))) ∈ [0,∞],

where dimU(G) is the extended dimension function of Definition 8.28.

We conclude from Lemma 8.22 (2) and the above Theorem 8.29

Theorem 8.31. Let X be a G-space with G-action. Then we get

b(2)
p (X;N (G)) := b(2)

p (X;U(G)).

8.4 Various Notions of Torsion Modules over a Group
von Neumann Algebra

In this section we consider three different notions of torsion modules in the
category of N (G)-modules and analyse their relationship. We have already
introduced for an N (G)-module M its submodule TM in Definition 6.1 as
the closure of {0} in M , or, equivalently, as the kernel of the canonical map
i(M) : M → (M∗)∗. Next we define

Definition 8.32. Let M be an N (G)-module. Define N (G)-submodules

TdimM :=
⋃{

N | N is an N (G)-submodule of M with dimN (G)(N) = 0
}

;

TUM := ker(j) for j : M → U(G)⊗N (G) M, m 7→ 1⊗m.

Notice that Tdim(M) ⊂ M is indeed an N (G)-submodule by Additivity
(see Theorem 6.7 (4b)) and can be characterized to be the largest N (G)-
submodule of M of dimension zero. Because of Lemma 8.15 (2) or [484,
Corollary II.3.3 on page 57] one can identify TUM with the set of elements
m ∈ M for which there is a non-zero-divisor r ∈ N (G) with rm = 0. Notice
that

M = TM ⇔ M∗ = homN (G)(M,N (G)) = 0;
M = TdimM ⇔ dimN (G)(M) = 0;
M = TUM ⇔ U(G)⊗N (G) M = 0.
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Lemma 8.33. (1) If M is an N (G)-module, then TUM ⊂ TdimM ⊂ TM ;
(2) If M is a finitely generated projective N (G)-module, then TUM =

TdimM = TM = 0;
(3) If M is a finitely presented N (G)-module, then TUM = TdimM = TM ;
(4) If M is a finitely generated N (G)-module, then TdimM = TM .

Proof. (1) Since U(G) is flat overN (G), the U(G)-map U(G)⊗N (G)(TUM) →
U(G)⊗N (G) M is injective. Since this map at the same time is the zero map,
U(G) ⊗N (G) (TUM) is trivial. We get dimN (G)(TUM) = 0 from Theorem
8.29. This implies TUM ⊂ TdimM . Let f : M → N (G) be any N (G)-
map. Then f(TdimM) is an N (G)-submodule of dimension zero in N (G)
by Additivity (Theorem 6.7 (4b)). By Theorem 6.7 (1) and (4b) each finitely
generated N (G)-submodule of f(TdimM) ⊂ N (G) is projective and has di-
mension zero. Any finitely generated projective N (G)-module of dimension
zero is trivial (Lemma 6.28 (3)). Hence f(TdimM) is trivial. This implies
TdimM ⊂ TM .
(2) Obviously TP is trivial for a finitely generated projective N (G)-module
P . Now apply assertion (1).
(3) Let M be finitely presented. Then M = PM ⊕TM with finitely gener-
ated projective PM by Theorem 6.7 (1). Because of assertions (1) and (2) it
suffices to prove TU (TM) = TM . This follows from Theorem 6.7 (4e) and
Lemma 8.22 (4).
(4) This follows from Theorem 6.7 (4e). ut
Example 8.34. We want to construct a finitely generated non-trivial N (G)-
module M with the property that TU (M) = 0 and TdimM = M and in
particular TU (M) 6= TdimM . Let I1 ⊂ I2 ⊂ . . . ⊂ N (G) be a nested sequence
of ideals which are direct summands in N (G) such that dimN (G)(In) 6= 1 and
limn→∞ dimN (G)(In) = 1. Let I be the ideal

⋃∞
n=1 In. Put M = N (G)/I.

Then dimN (G)(M) = 0 by Theorem 6.7 (4b) and (4c). This implies TdimM =
M . By Lemma 8.33 (2) we get TUN (G)/In = 0 for n ≥ 1. Lemma 8.36 (1)
below implies that TUM = colimn≥1 TUN (G)/In = 0.

We get for instance for G = Z such a sequence of ideals (In)n≥1 by the
construction in Example 1.14.

Example 8.35. An example of an N (Z)-module M with M∗ = 0 and
dimN (G)(M) = 1 and hence with TdimM 6= TM is given in the exercises
of Chapter 6.

The notion TU has the best properties in comparison with Tdim and T.

Lemma 8.36. (1) The functor TU is left exact and commutes with colimits
over directed systems;

(2) An N (G)-module M is cofinal measurable in the sense of [343, Defini-
tion 2.1], i.e. all its finitely generated submodules are quotients of finitely
presented N (G)-modules of dimension zero, if and only if TUM = M .
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(1) Let {Mi | i ∈ I} be a directed system of N (G)-modules. Since the
functor U(G)⊗N (G) − is compatible with arbitrary colimits and the functor
colimi∈I is exact for directed systems, the canonical map colimi∈I TUMi →
TU (colimi∈I Mi) is an isomorphism. Since U(G) is flat over N (G) by Theo-
rem 8.22 (2), TU is left exact.
(2) Obviously submodules of cofinal-measurable N (G)-modules are cofinal-
measurable again. Because of Lemma 8.33 (3) and assertion (1) it suffices to
prove for a finitely generated N (G)-module M that U(G) ⊗N (G) M = 0 is
true if and only if M is the quotient of a finitely presented N (G)-module N
with U(G)⊗N (G) N = 0.

The if-part is obvious, the only-if-part is proved as follows. Let M be a
finitely generated U(G)-module with U(G)⊗N (G) M = 0. Choose an epimor-
phism f : N (G)n → M . Since U(G) is flat overN (G) by Theorem 8.22 (2), the
inclusion i : ker(f) → N (G)n induces an isomorphism U(G)⊗N (G) ker(f) →
U(G)⊗N (G) N (G)n. Hence we can find an A-map g : N (G)n → ker(f) such
that U(G)⊗N (G)g is an isomorphism. Hence coker(i◦g) is a finitely presented
N (G)-module with U(G)⊗N (G) coker(i◦g) = 0 which maps surjectively onto
M . ut

8.5 Miscellaneous

Let R be a principal ideal domain with quotient field F . We have already
mentioned in Example 6.12 that R together with the usual notion of the
rank of a finitely generated free R-module satisfies Assumption 6.2 and that
the extended dimension function of Definition 6.6 is given by dimR(M) =
dimF (F ⊗R M). Notice that F is the Ore localization of R with respect to
the set S of non-zero-divisors and that all the properties of U(G) as stated in
Lemma 8.22 and Theorem 8.29 do also hold for F . Moreover, the condition
M = TUM translates to the classical notion of a torsion module, namely
that F ⊗R M = 0, or, equivalently, that for each element m ∈ M there is an
element r ∈ R with r 6= 0 and rm = 0.

More information about affiliated rings and their regularity properties
can be found in [36], [37], [247]. A systematic study of U(G) and dimension
functions is carried out in [435, chapters 2 and 3].

Exercises

8.1. A ring R with involution ∗ is called ∗-regular if it is von Neumann
regular and for any r ∈ R we have r∗r = 0 ⇔ r = 0. Show that U(G) is
∗-regular.

8.2. Construct a commutative diagram of C-categories
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{fin. gen. proj. N (G)-mod.} ν−−−−→ {fin. gen. Hilb. N (G)-mod.}y
y

{fin. gen. proj. U(G)-mod.} νU−−−−→ {fin. gen. Hilb. N (G)-mod.}U
whose vertical arrows are the obvious inclusions and whose horizontal arrows
are equivalences of C-categories.

8.3. Let G be a group. Make sense out of the following chain of inclusions

G ⊂ ZG ⊂ CG ⊂ l1(G) ⊂ C∗r (G) ⊂ N (G) ⊂ l2(G) ⊂ U(G),

where l1(G) is the Banach algebra of formal sums
∑

g∈G λg · g which satisfy∑
g∈G |λg| < ∞.

8.4. Let f : P → Q be a homomorphism of finitely generated projective U(G)-
modules with dimU(G)(P ) = dimU(G)(Q). Show that the following assertions
are equivalent: i.) f is injective, ii.) f is surjective, iii.) f is bijective.

8.5. Show that the functor Tdim is left exact, but the functor T is not left
exact.

8.6. Show that the functor Tdim does not commute with colimits over
directed systems, unless all structure maps are injective.

8.7. Give an example of a non-trivial N (Z)-module M and a directed system
{Mi | i ∈ I} of submodules (directed by inclusion) with the properties that
M∗ = 0 and Mi

∼= N (Z) for i ∈ I. Show that this implies TM 6= ⋃
i∈I TMi.

8.8. Given an N (G)-module M , define T′UM by the cokernel of i : M →
U(G) ⊗N (G) M, m 7→ 1 ⊗ m. Construct for an exact sequence of N (G)-
modules 0 → L → M → N → 0 a natural exact sequence 0 → TUL →
TUM → TUN → T′UL → T′UM → T′UN → 0.

8.9. Show for an infinite locally finite group G that

b(2)
p (G;N (G)) = b(2)

p (G;U(G)) = 0

for all p ≥ 0, but HG
0 (EG;U(G)) 6= 0.

Show that we get an N (G)-module M such that

dimN (G)(M) = dimU(G)(U(G)⊗U(G) M) = 0,

but U(G)⊗U(G) M 6= {0}.



9. Middle Algebraic K-Theory and L-Theory
of von Neumann Algebras

Introduction

So far we have only dealt with the von Neumann algebra N (G) of a group
G. We will introduce and study in Section 9.1 the general concept of a von
Neumann algebra. We will explain the decomposition of a von Neumann
algebra into different types. Any group von Neumann algebra is a finite von
Neumann algebra. A lot of the material of the preceding chapters can be
extended from group von Neumann algebras to finite von Neumann algebras
as explained in Subsection 9.1.4. In Sections 9.2 and 9.3 we will compute
Kn(A) and Kn(U) for n = 0, 1 in terms of the centers Z(A) and Z(U), where
U is the algebra of operators which are affiliated to a finite von Neumann
algebra A. The quadratic L-groups Lε

n(A) and Lε
n(U) for n ∈ Z and the

decorations ε = p, h, s are determined in Section 9.4. The symmetric L-groups
Ln

ε (A) and Ln
ε (U) turn out to be isomorphic to their quadratic counterparts.

In Section 9.5 we will apply the results above to detect elements in the K-
and G-theory of the group ring. We will show for a finite normal subgroup H
of an arbitrary (discrete) group G that the map Wh(H)G → Wh(G) induced
by the inclusion of H into G has finite kernel, where the action of G on
Wh(H) comes from the conjugation action of G on H (see Theorem 9.38).
We will present some computations of the Grothendieck group G0(CG) of
finitely generated (not necessarily projective) CG-modules. The main result,
Theorem 9.65, says for an amenable group G that the rank of the abelian
group G0(CG) is greater or equal to the cardinality of the set con(G)f,cf of
conjugacy classes (g) of elements g ∈ G for which |g| < ∞ and |(g)| < ∞
hold. The map detecting elements in G0(CG) is based on the center valued
dimension which is related to the Hattori-Stallings rank. We will review the
Hattori-Stallings rank, the Isomorphism Conjecture for K0(CG) and the Bass
Conjecture in Subsection 9.5.2. This chapter needs only a small input from
Chaper 8 and is independent of the other chapters.
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9.1 Survey on von Neumann Algebras

So far we have only considered the von Neumann algebra N (G) of a group
G (see Definition 1.1). In this section we introduce and study the notion of
a von Neumann algebra in general.

9.1.1 Definition of a von Neumann Algebra

Let H be a Hilbert space and B(H) be the C∗-algebra of bounded (linear)
operators from H to itself, where the norm is the operator norm. The norm
topology is the topology on B(H) induced by the operator norm. The strong
topology, ultra-weak topology or weak topology respectively is the unique topol-
ogy such that a subset A ⊂ B(H) is closed if and only if for any net (xi)i∈I

of elements in A, which converges strongly, ultra-weakly or weakly respec-
tively to an element x ∈ B(H), also x belongs to A (see Subsection 1.1.3 for
the various notions of convergence). The norm topology contains both the
strong topology and the ultra-weak topology, the strong topology contains
the weak topology, the ultra-weak topology contains the weak topology. In
general these inclusions are strict and there is no relation between the ultra-
weak and strong topology [144, I.3.1 and I.3.2]. A map of topological spaces
h : X → Y is continuous if and only if for any net (xi)i∈I converging to x the
net (h(xi))i∈I converges to h(x). Notice that this characterization of continu-
ity is valid for all topological spaces. Only if X satisfies the first countability
axiom (i.e. any point has a countable neighborhood basis) one can use se-
quences (xn)n≥0 instead of nets, but this axiom will not be satisfied for some
of the topologies on B(H) introduced above.

Definition 9.1 (Von Neumann algebra). A von Neumann algebra A is
a sub-∗-algebra of B(H) which is closed in the weak topology and contains
id : H → H.

The condition weakly closed can be rephrased in a more algebraic fashion
as follows. Given a subset M ⊂ B(H), its commutant M ′ is defined to be the
subset {f ∈ B(H) | fm = mf for all m ∈ M}. If we apply this construction
twice, we obtain the double commutant M ′′. The proof of the following so
called Double Commutant Theorem can be found in [282, Theorem 5.3.1. on
page 326].

Theorem 9.2 (Double Commutant Theorem). Let M ⊂ B(H) be a
sub-∗-algebra, i.e. M is closed under addition, scalar multiplication, multipli-
cation and under the involution ∗ and contains 0 and 1. Then the following
assertions are equivalent.

(1) M is closed in the weak topology;
(2) M is closed in the strong topology;
(3) M = M ′′.



9.1 Survey on von Neumann Algebras 337

In particular the closure of M in the weak topology as well as in the strong
topology is M ′′.

9.1.2 Types and the Decomposition of von Neumann Algebras

Next we recall the various types of von Neumann algebras. A projection p
in a von Neumann algebra A is an element satisfying p2 = p and p∗ = p.
It is called abelian if pAp is a commutative algebra. Two projections p and
q are called equivalent p ∼ q, if there is an element u ∈ A with p = uu∗

and q = u∗u. We write p ≤ q if qp = p. A projection p is finite, if q ≤ p
and q ∼ p together imply p = q, and infinite otherwise. A projection p is
properly infinite if p is infinite and cp is either zero or infinite for all central
projections c ∈ A. The central carrier cp of a projection p is the smallest
central projection cp ∈ A satisfying p ≤ cp.

A von Neumann algebraA is of type I if it has an abelian projection whose
central carrier is the identity 1. If A has no non-zero abelian projection but
possesses a finite projection with central carrier 1, then A is of type II. If A
has no non-zero finite projection, it is of type III. We call A finite, infinite
or properly infinite respectively if 1 is a projection, which is finite, infinite or
properly infinite respectively. A von Neumann algebra A is of type If or of
type II1 respectively if A is finite and of type I or of type II respectively. It
is of type I∞ or of type II∞ respectively if A is properly infinite and of type I
or of type II respectively. All von Neumann algebras of type III are properly
infinite. A von Neumann algebra can only be of at most one of the types If ,
I∞, II1, II∞ and III. A von Neumann algebra A is called a factor if its
center Z(A) := {a ∈ A | ab = ba for all b ∈ A} consists of {λ · 1 | λ ∈ C}. A
factor is of precisely one of the types If , I∞, II1, II∞ or III.

One has the following unique decomposition [283, Theorem 6.5.2 on page
422].

Theorem 9.3. Given a von Neumann algebra A, there is a natural unique
decomposition

A = AIf
×AI∞ ×AII1 ×AII∞ ×AIII

into von Neumann algebras of type If , I∞, II1, II∞ and III. In particular
one obtains natural decompositions for the K-groups

Kn(A) = Kn(AIf
)×Kn(AI∞)×Kn(AII1)×Kn(AII∞)×Kn(AIII).

Lemma 9.4. Let G be a discrete group. Let Gf be the normal subgroup of
G consisting of elements g ∈ G, whose centralizer has finite index (or, equiv-
alently, whose conjugacy class (g) consists of finitely many elements). Then

(1) The group von Neumann algebra N (G) is of type I if and only if G is
virtually abelian;



338 9. Middle Algebraic K-Theory and L-Theory of von Neumann Algebras

(2) The group von Neumann algebra N (G) is of type II if and only if the
index of Gf in G is infinite;

(3) Suppose that G is finitely generated. Then N (G) is of type If if G is
virtually abelian, and of type II1 if G is not virtually abelian;

(4) The group von Neumann algebra N (G) is a factor if and only if Gf is
the trivial group.

Proof. (1) This is proved in [285], [490].
(2) This is proved in [285],[366].
(3) This follows from (1) and (2) since for finitely generated G the group Gf

has finite index in G if and only if G is virtually abelian.
(4) This follows from [144, Proposition 5 in III.7.6 on page 319]. ut

9.1.3 Finite von Neumann Algebras and Traces

One of the basic properties of finite von Neumann algebras is the existence
of the center valued trace which turns out to be universal.

A finite trace tr : A → C on a von Neumann algebra is a C-linear mapping
satisfying tr(ab) = tr(ba) for a, b ∈ A and tr(a) ≥ 0 for a ≥ 0 (i.e. a = bb∗

for some b ∈ A). It is called faithful, if for a ∈ A with a ≥ 0 we have
tr(a) = 0 ⇒ a = 0. It is called normal if for f ∈ A, which is the supremum
with respect to the usual ordering ≤ of positive elements (see 1.7) of some
monotone increasing net {fi | i ∈ I} of positive elements in A, we get tr(f) =
sup{tr(fi) | i ∈ I}. The next result is taken from [283, Theorem 7.1.12 on page
462, Proposition 7.4.5 on page 483, Theorem 8.2.8 on page 517, Proposition
8.3.10 on page 525, Theorem 8.4.3 on page 532].

Theorem 9.5. Let A be a finite von Neumann algebra on H. There is a
map

tru = tru
A : A → Z(A)

into the center Z(A) of A called the center valued trace or universal trace
of A, which is uniquely determined by the following properties:

(1) tru is a trace with values in the center, i.e. tru is C-linear, for a ∈ A
with a ≥ 0 we have tru(a) ≥ 0 and tru(ab) = tru(ba) for all a, b ∈ A;

(2) tru(a) = a for all a ∈ Z(A).

The map tru has the following further properties:

(3) tru is faithful;
(4) tru is normal, or, equivalently, tru is continuous with respect to the ultra-

weak topology on A;
(5) || tru(a)|| ≤ ||a|| for a ∈ A;
(6) tru(ab) = a tru(b) for all a ∈ Z(A) and b ∈ A;
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(7) Let p and q be projections in A. Then p ∼ q, if and only if tru(p) = tru(q);
(8) Any linear functional f : A → C which is continuous with respect to

the norm topology on A and which is central, i.e. f(ab) = f(ba) for all
a, b ∈ A, factorizes as

A tru

−−→ Z(A)
f |Z(A)−−−−→ C.

Example 9.6. Let X be a compact space together with a finite measure ν
on its Borel-σ-algebra. Let L∞(X, ν) be the Banach algebra of equivalence
classes of essentially bounded measurable functions X → C, where two such
functions are called equivalent if they only differ on a set of measure zero. It
becomes a Banach algebra with the norm

||f ||∞ = inf{K > 0 | ν({x ∈ X | |f(x)| ≥ K}) = 0}
and the involution coming from complex conjugation. This turns out to be a
commutative von Neumann algebra by the obvious embedding

L∞(X, ν) → B(L2(X, ν))

coming from pointwise multiplication. Any commutative von Neumann alge-
bra is isomorphic to L∞(X, ν) for appropriate X and ν [144, Theorem 1 and
2 in I.7.3 on page 132].

Example 9.7. Let G be a group. The right regular representation ρr : CG →
B(l2(G)) sends g ∈ G to the operator rg−1 : l2(G) → l2(G), u 7→ ug, whereas
the left regular representation ρl : CG → B(l2(G)) sends g ∈ G to the oper-
ator lg : l2(G) → l2(G), u 7→ gu. The left regular representation is a ho-
momorphism of C-algebras, whereas the right regular representation is an
anti-homomorphism of C-algebras, i.e. it respects the scalar multiplication
and addition, but respects multiplication only up to changing the order. We
get from [283, Theorem 6.7.2 on page 434]

im(ρr)′′ = im(ρl)′ = B(l2(G))G.

Hence N (G) as introduced in Definition 1.1 is the closure of CG, which we
view as a ∗-subalgebra of B(l2(G)) by the right regular representation ρr, in
B(l2(G)) with respect to the weak or strong topology. The closure of im(ρr) in
B(l2(G)) with respect to the norm topology is called the reduced C∗-algebra
C∗r (G) of G. In the special case G = Zn, we get C∗r (Zn) = C(Tn) (compare
with Example 1.4), where C(Tn) denotes the space of continuous functions
from Tn to C.

We will later need for the computation of K1(A) the following technical
condition. It is always satisfied for a von Neumann algebra acting on a sep-
arable Hilbert space and in particular for the group von Neumann algebra
N (G) of any countable group G.

Definition 9.8. A von Neumann algebra is countably composable if every
orthogonal family of non-zero projections is countable.
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9.1.4 Extending Results for Group von Neumann Algebras to
Finite von Neumann Algebras

Let A be a finite von Neumann algebra with some faithful finite normal trace
tr : A → C. Define a pre-Hilbert structure on A by 〈a, b〉 = tr(ab∗). Let l2(A)
be the Hilbert completion of A. Denote by ||a|| the induced norm on l2(A).
Given a ∈ A, we obtain a linear operator A → A sending b to ab. This
operator is bounded with operator norm ||a||. Hence it extends uniquely to
a bounded operator ρl(a) : l2(A) → l2(A) satisfying ||ρl(a)||∞ = ||a||. This
yields the left regular representation

ρl : A → B(l2(A)).

Thus we obtain a left A-module structure on l2(A). Analogously we get
ρr(a) : l2(A) → l2(A) induced by b 7→ ba. In particular we obtain the
right regular representation ρr : A → BA(l2(A)) from A into the subalgebra
BA(l2(A)) of linear bounded A-operators of B(l2(A)). The following result
is fundamental for the theory of Hilbert modules over a finite von Neumann
algebra (see Dixmier [144, Theorem 1 in I.5.2 on page 80, Theorem 2 in I.6.2
on page 99]).

Theorem 9.9. Let A be a finite von Neumann algebra. Then the right reg-
ular representation

ρr : A → BA(l2(A))

is an isometric anti-homomorphism of C-algebras.

In the special case where A is the group von Neumann algebra N (G) :=
B(l2(G))G, the inclusion N (G) → l2(G) f → f∗(1) induces an isometric
isomorphism l2(N (G)) → l2(G) and thus an identification of BN (G)(l2(N (G))
with B(l2(G))G. Under this identification the map ρr of Theorem 9.9 becomes
the the anti-homomorphisms of C-algebras N (G) → N (G) sending f to the
operator i ◦ f∗ ◦ i, where i : l2(G) → l2(G) sends

∑
g∈G λg · g to

∑
g∈G λg · g.

Remark 9.10. In view of Example 9.7 and Theorem 9.9 it is clear that a lot
of the material of the preceding chapters extends from group von Neumann
algebras (with the standard trace) to finite von Neumann algebras with a
given finite faithful normal trace. For instance, there is an obvious notion
of a finitely generated Hilbert A-module and the corresponding category is
equivalent to the category of finitely generated projective A-modules as C-
category with involution (cf. Theorem 6.24). It is clear how to define the
von Neumann dimension for a finitely generated A-module and to extend for
instance Theorem 6.5 and Theorem 6.7. Moreover, the definition of the L2-
Betti number b

(2)
p (X; V ) of a G-space X (see Definition 6.50) can be extended

to the case where an A-CG-bimodule V , which is finitely generated projective
over A, is given. Then the definition of b

(2)
p (X;N (G)) is the special case V =

N (G), where the N (G)-CG-bimodule structure comes from the inclusion of



9.2 Middle K-Theory of a Neumann Algebra 341

rings CG ⊂ N (G). Also the notion of the algebra U(G) of operators affiliated
to N (G) extends to a finite von Neumann algebra A. All the nice properties
of U(G) carry over to U = U(A), for instance U(A) is von Neumann regular
and is the Ore localization of A with respect to the set of non-zero divisors.

For the rest of this chapter we will use some of the results, which we only
have proved for group von Neumann algebras, also for finite von Neumann
algebras.

9.2 Middle K-Theory of a Neumann Algebra

In this section we define and compute the K-groups K0(A), K1(A) and
K inj

1 (A) for a von Neumann algebra A.

9.2.1 K0 of a von Neumann Algebra

Definition 9.11 (Projective class group K0(R)). Let R be an (associa-
tive) ring (with unit). Define its projective class group K0(R) to be the abelian
group whose generators are isomorphism classes [P ] of finitely generated pro-
jective R-modules P and whose relations are [P0] + [P2] = [P1] for any exact
sequence 0 → P0 → P1 → P2 → 0 of finitely generated projective R-modules.
Define G0(R) analogously but replacing finitely generated projective by finitely
generated.

One should view K0(R) together with the assignment sending a finitely
generated projective R-module P to its class [P ] in K0(R) as the univer-
sal dimension for finitely generated projective R-modules. Namely, suppose
we are given an abelian group and an assignment d which associates to
a finitely generated projective R-module an element d(P ) ∈ A such that
d(P0) + d(P2) = d(P1) holds for any exact sequence 0 → P0 → P1 → P2 → 0
of finitely generated projective R-modules. Then there is precisely one homo-
morphism φ of abelian groups from K0(R) such that φ([P ]) = d(P ) holds for
each finitely generated projective R-module. The analogous statement holds
for G0(R) if we consider finitely generated R-modules instead of finitely gen-
erated projective R-modules.

Definition 9.12 (Center valued trace). Let A be a finite von Neumann
algebra and let tru be its center valued trace (see Theorem 9.5). For a finitely
generated projective A-module P define its center valued von Neumann di-
mension by

dimu(P ) := tru(A) :=
n∑

i=1

tru(ai,i) ∈ Z(A)Z/2 = {a ∈ Z(A) | a = a∗}

for any matrix A = (ai,j)i,j ∈ Mn(A) with A2 = A such that im(RA : An →
An) induced by right multiplication with A is A-isomorphic to P .
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The definition of dimu(P ) is independent of the choice of A (cf. (6.4)).
The matrix A appearing in Definition 9.12 can be chosen to satisfy both
A2 = A and A∗ = A. This follows from Theorem 6.24. Therefore dimu(P )
is an element in Z(A)Z/2 with respect to the Z/2-action coming from taking
the adjoint.

The next result follows from [283, Theorem 8.4.3 on page 532, Theorem
8.4.4 on page 533].

Theorem 9.13 (K0 of finite von Neumann algebras). Let A be a finite
von Neumann algebra.

(1) The following statements are equivalent for two finitely generated projec-
tive A-modules P and Q:
(a) P and Q are A-isomorphic;
(b) P and Q are stably A-isomorphic, i.e. P ⊕ V and Q ⊕ V are A-

isomorphic for some finitely generated projective A-module V ;
(c) dimu(P ) = dimu(Q);
(d) [P ] = [Q] in K0(A);

(2) The center valued dimension induces an injection

dimu : K0(A) → Z(A)Z/2 = {a ∈ Z(A) | a = a∗},

where the group structure on Z(A)Z/2 comes from the addition. If A is
of type II1, this map is an isomorphism. ut

Example 9.14. Let A be an abelian von Neumann algebra. Then it is of the
shape L∞(X, ν) as explained in Example 9.6. Let L∞(X, ν,Z) be the abelian
subgroup of L∞(X, ν) consisting of elements which can be represented by
bounded measurable functions f : X → Z. We claim that the center-valued
dimension induces an isomorphism

dimu : K0(L∞(X, ν)) → L∞(X, ν,Z).

This follows from Theorem 9.13 (2) and the following result taken from [331,
Lemma 4.1]. Namely, for an abelian von Neumann algebra A and an A-
homomorphism t : An → An, which is normal, i.e. t and t∗ commute, there
exists a unitary morphism u : An → An such that u∗ ◦ t ◦ u is diagonal.

Theorem 9.15. Let A be a properly infinite von Neumann algebra. Then
K0(A) = 0.

Proof. We firstly show that for a properly infinite projection in a von Neu-
mann algebra A the class [im(p)] ∈ K0(A) of the finitely generated pro-
jective A-module im(p) is zero. This follows essentially from [283, Lemma
6.3.3 on page 411] from which we get a projection q satisfying q ≤ p and
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q ∼ p − q ∼ p. Since equivalent projections have A-isomorphic images and
im(p) is A-isomorphic to im(p− q)⊕ im(q), we get in K0(A)

[im(p)] = [im(q)] + [im(p− q)] = [im(p)] + [im(p)] ⇒ [im(p)] = 0.

Given any projective A-module P , choose a projection p ∈ Mn(A) such that
im(p : An → An) is A-isomorphic to P . Notice that Mn(A) is again a von
Neumann algebra.

Next we want to show that p ⊕ 1 ∈ Mn+1(A) is properly infinite. The
center Z(Mn+1(A)) is {c · In+1 | c ∈ Z(A)}, where In+1 is the identity
matrix in Mn+1(A). This follows for instance from Theorem 9.2. Hence any
central projection c in Mn+1(A) is of the form c = q · In+1 for some central
projection q ∈ A. If c(p ⊕ 1) is not zero, then q ∈ A is a non-zero central
projection. Since A is by assumption properly infinite, q is infinite. But then
also c is infinite by [283, Theorem 6.3.8 on page 414]. Hence p⊕ 1 is properly
infinite.

The Morita isomorphism µ : K0(Mn+1(A)) → K0(A) is defined by
µ([P ]) = [An+1 ⊗Mn+1(A) P ]. In particular it maps the class of im(p ⊕ 1) to
the class of im(p)⊕im(1) = P⊕A. Since we have already shown that properly
infinite projections represent zero in K0, we conclude [A] = 0 ∈ K0(A) and
[im(p⊕ 1)] = 0 ∈ K0(Mn+1(A)). Hence we get in K0(A)

[P ] = [im(p)⊕ im(1)]− [A] = 0− 0 = 0.ut
In view of Theorem 9.3 and Theorem 9.15 we get for any von Neumann

algebra A that K0(A) = K0(AIf
)⊕K0(AII1) and hence the computation of

K0(A) follows from Theorem 9.13.

9.2.2 K1 of a von Neumann Algebra

Definition 9.16 (K-group K1(R)). Let R be a ring. Define K1(R) to be
the abelian group whose generators are conjugacy classes [f ] of automor-
phisms f : P → P of finitely generated projective R-modules with the follow-
ing relations:
i.) Given a commutative diagram of finitely generated projective R-modules

0 −−−−→ P1
i−−−−→ P2

p−−−−→ P3 −−−−→ 0

f1

y f2

y f3

y
0 −−−−→ P1

i−−−−→ P2
p−−−−→ P3 −−−−→ 0

with exact rows and automorphisms as vertical arrows, we get [f1]+[f3] = [f2].
ii.) Given automorphisms f, g : P → P of a finitely generated projective R-
module P , we get [g ◦ f ] = [f ] + [g].

Define K inj
1 (R) analogously by replacing automorphisms by injective en-

domorphisms everywhere.
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We leave it to the reader to check that the definition of K1(R) by
K1(R) := GL(R)/[GL(R), GL(R)] in Subsection 3.1.1 coincides with the
one of Definition 9.16.

Let Z(A)inv be the abelian group of elements in the center of A which
are invertible. The set of non-zero-divisors in Z(A) is an abelian monoid
under multiplication and we denote by Z(A)w the abelian group which is
obtained from this abelian monoid by the Grothendieck construction. We can
identify the abelian von Neumann algebra Z(A) with L∞(X, ν) (see Example
9.6). Then Z(A)inv becomes the space of equivalence classes of measurable
functions f : X → C which are essentially bounded from below and above,
i.e. there are positive constants k and K such that {x ∈ X | |f(x)| ≤ k}
and {x ∈ X | |f(x)| ≥ K} have measure zero. The space Z(A)w becomes the
space of equivalence classes of measurable functions from f : X → C for which
f−1(0) has measure zero. Notice that Z(A)w = U(Z(A))inv = Z(U(A))inv.
We get from [344, Theorem 2.1]

Theorem 9.17 (K1 of von Neumann algebras of type If). Let A be a
von Neumann algebra of type If . Then there is a so called normalized deter-
minant

detnorm : Mk(A) → Z(A)

with the following properties:

(1) If A ∈ Mk(A) satisfies detnorm(A) = 1, then A is a product of two
commutators in GLk(A);

(2) The normalized determinant induces isomorphisms

detnorm : K1(A)
∼=−→ Z(A)inv;

detnorm : K inj
1 (A)

∼=−→ Z(A)w,

which are compatible with the involutions.

We can use the center valued trace to define the center valued Fuglede-
Kadison determinant

detFK : GLk(A) → Z(A)+,inv, A 7→ exp
(

1
2
· tru(ln(A∗A))

)
,

where Z(A)+,inv is the (multiplicative) abelian group of elements in the center
of A which are both positive and invertible. We get from [344, Theorem 3.3]

Theorem 9.18 (K1 of von Neumann algebras of type II1). Let A be
a countably composable von Neumann algebra of type II1.

(1) If A ∈ GLk(A) satisfies detFK(A) = 1, then A is a product of nine
commutators in GLk(A);

(2) The center valued Fuglede-Kadison determinant induces an isomorphism

detFK : K1(A)
∼=−→ Z(A)+,inv;
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(3) K inj
1 (A) = 0.

Theorem 9.18 (2) has also been proved in [179], provided that A is a
factor. We get from [344, Theorem 4.2]

Theorem 9.19. Let A be a countably composable properly infinite von Neu-
mann algebra. Then K1(A) = K inj

1 (A) = 0.

In view of Theorem 9.3, Theorem 9.18 (3) and Theorem 9.19 we get for
a countably composable von Neumann algebra A that K1(A) = K1(AIf

) ⊕
K1(AII1) and K inj

1 (A) = K inj
1 (AIf

) and hence the computation of K1(A)
and K inj

1 (A) follows from Theorem 9.17 (2) and Theorem 9.18 (2).
The condition countably composable appearing in Theorem 9.18 and The-

orem 9.19 is purely technical, it may be possible that it can be dropped.

9.3 Middle K-Theory of the Algebra of Affiliated
Operators

In this section we compute the K-groups K0(U) and K1(U) of the algebra
U of operators affiliated to a finite von Neumann algebra A and deal with a
part of the localization sequence associated to A → U .

Theorem 9.20 (K-groups of U). Let A be a finite von Neumann algebra
and U be the algebra of affiliated operators. Then

(1) The map i∗ : K0(A) → K0(U) induced by the inclusion i : A → U is an
isomorphism;

(2) There is a natural isomorphism

j : K inj
1 (A)

∼=−→ K1(U).

Proof. (1) This follows from Theorem 8.22 (7) and (8).
(2 ) Since for an injective endomorphism f : P → P of a finitely generated
projective A-module P the induced map U ⊗A f : U ⊗A P → U ⊗A P is a
U-isomorphism (see Lemma 6.28 (2) and Theorem 8.22 (5)), we obtain a nat-
ural map j : K inj

1 (A) → K1(U). We define an inverse k : K1(U) → K inj
1 (A) as

follows. Let η ∈ K inj
1 (U) be an element for which there is a U-automorphism

f : Un → Un with η = [f ]. By Lemma 8.8 we can choose injective endomor-
phisms a, b : An → An such that U ⊗A a = f ◦ U ⊗A b (identifying U ⊗A An

and Un). Define k(η) = [a]− [b]. We leave it to the reader to verify that k is
well-defined and an inverse of j. ut

Notice that Theorem 9.20 together with the results of Subsections 9.2.1
and 9.2.2 give the complete computation of Kn(U) for n = 0, 1, provided that
AII is countably composable.
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Definition 9.21. Let K0(A → U) be the abelian group whose generators are
isomorphism classes of finitely presented A-modules M with U⊗AM = 0 and
whose relations are [M0] + [M2] = [M1] for any exact sequence 0 → M0 →
M1 → M2 → 0 of such A-modules.

Recall that the following conditions for an A-module M are equivalent by
Lemma 6.28 (4) and Lemma 8.33 (3): i.) M is finitely presented with U ⊗A
M = 0, ii.) M is finitely presented with dimA(M) = 0, iii.) M has a resolution
0 → An → An → M → 0, iv.) M has a resolution 0 → P0 → P1 → M → 0
for finitely generated projective A-modules and U ⊗A M = 0.

Let S ⊂ R be a multiplicatively closed subset of the ring R satisfying the
Ore condition (see Definition 8.14). Provided that S contains no zero-divisors,
there is an exact localization sequence associated to an Ore localization R →
RS−1 [39]

K1(R) i1−→ K1(RS−1)
j−→ K0(R → RS−1) k−→ K0(R) i0−→ K0(RS−1). (9.22)

Here i1 and i0 are induced by the canonical map i : R → RS−1 and K0(R →
RS−1) is defined in terms of R-modules M which possess a resolution 0 →
P1 → P0 → M → with finitely generated projective R-modules P0 and
P1 and satisfy RS−1 ⊗R M = 0. The map k sends the class of such an
R-module M to [P0] − [P1]. The class of an automorphism f : (RS−1)n →
(RS−1)n is sent by j to [coker(a)] − [coker(b)] for any R-endomorphisms
a, b : Rn → Rn, for which RS−1⊗R a and RS−1⊗R b are bijective and satisfy
f = RS−1 ⊗R a ◦ (RS−1 ⊗R b)−1.

Lemma 9.23. Let A be a finite von Neumann algebra. Then

(1) The localization sequence (9.22) yields for A and its Ore localization U
(see Theorem 8.22 (1)) the exact sequence

K1(A) i1−→ K1(U)
j−→ K0(A → U)

j−→ K0(A) i1−→ K0(U);

It splits into an exact sequence

K1(A) i1−→ K1(U)
j−→ K0(A → U) → 0 (9.24)

and an isomorphism
i0 : K0(A)

∼=−→ K0(U);

(2) The localization sequence is the direct product of the localization sequences
of the summands AIf

and AII1 appearing in the decomposition A =
AIf

×AII1 (see Theorem 9.3);
(3) If A is of type If , then the exact sequence (9.24) is isomorphic to the

short exact sequence

0 → Z(A)inv → Z(A)w → Z(A)w/Z(A)inv → 0.

In particular K0(A → U) = Z(A)w/Z(A)inv;
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(4) If A is of type II1 and countably composable, then the exact sequence
(9.24) becomes

Z(A)+,inv → 0 → 0 → 0.

In particular K0(A → U) = 0.

Proof. (1) This follows from Theorem 9.20 (1).
(2) This is obvious.
(3) This follows from Theorem 9.17 and Theorem 9.20 (2).
(4) This follows from Theorem 9.18 and Theorem 9.20 (2). ut

9.4 L-Theory of a von Neumann Algebra and the
Algebra of Affiliated Operators

In this section we give the computation of the L-groups of a von Neumann
algebra A and of the algebra U of affiliated operators. The definitions of the
various decorated quadratic and symmetric L-groups Lε

n(R) and Ln
ε (R) for

a ring R with involution ∗ : R → R are given for instance in [429], [430]. The
decoration ε = p or ε = h respectively means that the underlying modules
are finitely generated projective or finitely generated free respectively. If we
write ε = s, we mean the L-groups with respect to the trivial subgroup in
K̃1.

Before we state the result, we need some preparation. A non-singular
symmetric form a : P → P ∗ on a finitely generated projective (left) R-module

is an R-isomorphism P → P ∗ such that the composition P
i−→ (P ∗)∗ a∗−→ P ∗

is equal to a, where i is the canonical isomorphism and the involution on R is
used to transform the canonical right module structure on P ∗ to a left module
structure. Two symmetric non-singular forms a : P → P ∗ and b : Q → Q∗ are
isomorphic if there is an R-isomorphism f : P → Q satisfying f∗ ◦ b ◦ f = a.
Given a finitely generated projective R-module P , the associated hyperbolic
non-singular symmetric form h(P ) : P⊗P ∗ → (P⊗P ∗)∗ = P ∗⊕P is given by

the matrix
(

0 1
1 0

)
. Two non-singular symmetric forms are called equivalent

if they become isomorphic after adding hyperbolic forms. The Witt group of
equivalence classes of non-singular symmetric forms with the addition coming
from the orthogonal sum can be identified with L0(R) [429, Proposition 5.1 on
page 160]. The analogous statement is true for L0

h(R) or L0
s(R) respectively

if one considers only non-singular symmetric forms a : F → F ∗ for finitely
generated free R-modules or non-singular symmetric forms a : Rn → (Rn)∗

respectively such that the element in K̃1(R) given by the composition of a
with the standard isomorphism

i : (Rn)∗ → Rn, f 7→ (f(e1)∗, f(e2)∗, . . . , f(en)∗)
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vanishes. If A is a von Neumann algebra (actually it is enough to require A
to be a C∗-algebra), there are maps

sign(2) : L0
p(A) → K0(A); (9.25)

ι : K0(A) → L0
p(A), (9.26)

which turn out to be inverse to one another [442, Theorem 1.6 on page 343]).
The map ι of (9.26) above sends the class [P ] ∈ K0(A) of a finitely generated
projective A-module P to the class of µ : P → P ∗ coming from some inner
product µ on P (see Section 6.2). Such an inner product exists and the class
of µ : P → P ∗ in L0

p(A) is independent of the choice of the inner product by
Lemma 6.23.

Next we define sign(2)([a]) for the class [a] ∈ L0(A) represented by a
nonsingular symmetric form a : P → P ∗. Choose a finitely generated pro-
jective A-module Q together with an isomorphism u : An → P ⊕ Q. Let
i : (An)∗ → An be the standard isomorphism. Let a : An → An be the
endomorphism i ◦ u∗ ◦ (a + 0) ◦ u. We get by spectral theory projections
χ(0,∞)(a) : An → An and χ(−∞,0)(a) : An → An. Define P+ and P− to be
image of χ(0,∞)(a) and χ(−∞,0)(a). Put sign(2)([a]) = [P+]− [P−]. We leave it
to the reader to check that this is well defined. The non-singular symmetric
form a : P → P ∗ is isomorphic to the orthogonal sum of a+ : P+ → P ∗+ and
a− : P− → P ∗−, where a+ and −a− come from inner products. This implies
that sign(2) and ι are inverse to one another. One can define analogously
isomorphisms, inverse to one another,

sign(2) : L0
p(U) → K0(U); (9.27)

ι : K0(U) → L0
p(U). (9.28)

Let R be a ring with involution. The involution on R induces involutions
on the reduced K-groups K̃i(R) for i = 0, 1 which are defined as the cok-
ernel of the homomorphisms Ki(Z) → Ki(R) induced by the obvious ring
homomorphism Z→ R. Denote by Ĥn(Z/2; K̃i(R)) the Tate cohomology of
the group Z/2 with coefficients in the Z[Z/2]-module K̃i(R). For any Z[Z/2]-
module M , Ĥn(Z/2; M) is 2-periodic with

Ĥ0(Z/2;M) = ker(1− t : M → M)/ im(1 + t : M → M);

Ĥ1(Z/2;M) = ker(1 + t : M → M)/ im(1− t : M → M),

where t ∈ Z/2 is the generator. We get long exact Rothenberg sequences [429,
Proposition 9.1 on page 181]

. . . → Ĥ0(Z/2; K̃0(R)) → L1
h(R) → L1

p(R) → Ĥ1(Z/2; K̃0(R))

→ L0
h(R) → L0

p(R)
j−→ Ĥ0(Z/2; K̃0(R)) → . . . , (9.29)
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where j sends the class of a symmetric non-singular form f : P → P ∗ to the
class of the element [P ] ∈ K̃0(R), and

. . . → Ĥ0(Z/2; K̃1(R)) → L1
s(R) → L1

h(R) → Ĥ1(Z/2; K̃1(R))

→ L0
s(R) → L0

h(R) k−→ Ĥ0(Z/2; K̃1(R)) → . . . , (9.30)

where k sends the class of a symmetric non-singular form a : F → F ∗ to the
class of the element [i◦h∗ ◦a◦h] ∈ K̃1(R) for any R-isomorphism h : Rn → F

and i : (Rn)∗
∼=−→ Rn the standard isomorphism. There are also Rothenberg

sequences for the quadratic L-groups, just replace the symmetric L-groups
in (9.29) and (9.30) by the quadratic versions.

Theorem 9.31 (L-groups of von Neumann algebras). Let A be a von
Neumann algebra. If A is finite, let U = U(A) be the algebra of affiliated
operators. Then

(1) The symmetrization maps

Ln
ε (A)

∼=−→ Lε
n(A);

Ln
ε (U)

∼=−→ Lε
n(U)

are isomorphisms for n ∈ Z and ε = p, h, s;
(2) The quadratic L-groups are 2-periodic, i.e. there are natural isomor-

phisms

Lε
n(A)

∼=−→ Lε
n+2(A);

Lε
n(U)

∼=−→ Lε
n+2(U)

for n ∈ Z and ε = p, h, s and analogously for the symmetric L-groups;
(3) The L2-signature maps sign(2) defined in (9.25) and (9.27) and the maps

ι defined in (9.26) and (9.28) are isomorphisms, inverse to one another,
and yield a commutative square of isomorphisms

L0
p(A)

sign(2)

−−−−→∼= K0(A)
y∼=

y∼=

L0
p(U)

sign(2)

−−−−→∼= K0(U)

(4) We have L1
p(A) = 0 and L1

p(U) = 0;
(5) If A is of type II1, then for n ∈ Z the diagram of natural maps

0 −−−−→ Z/2 −−−−→ L0
h(A) −−−−→ L0

p(A) −−−−→ 0
yid

y∼=
y∼=

0 −−−−→ Z/2 −−−−→ L0
h(U) −−−−→ L0

p(U) −−−−→ 0
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is commutative, the vertical maps are isomorphisms and the rows are
exact. We have L1

h(A) = L1
h(U) = 0.

If A is countably composable and of type II1, then the natural maps
appearing in the commutative square

Ln
s (A)

∼=−−−−→ Ln
h(A)

y∼=
y∼=

Ln
s (U)

∼=−−−−→ Ln
h(U)

are isomorphisms for n ∈ Z;
(6) Suppose that A is of type If . Then the natural map Ln

ε (A) → Ln
ε (U) is

bijective for n ∈ Z and ε = p, h, s. We have L1
h(A) = 0.

Let l : L0
h(A) → K0(A) be the composition of the natural map i : L0

h(A) →
L0

p(A) with the isomorphism sign(2) : L0
p(A)

∼=−→ K0(A). If [A] ∈ 2·K0(A),
then we get an exact sequence

0 → Z/2 → L0
h(A) l1−→ 2 ·K0(A) → 0,

where l1 is induced by l. If [A] /∈ 2 · K0(A), then l is injective and its
image is generated by 2 ·K0(A) and [A].
If K1(Z) → K1(A) is trivial, then we get an exact sequence

0 → L0
s(A) → L0

h(A) → {f ∈ Z(A)inv | f2 = 1} → 0

and Ls
1(A) = 0.

Suppose that K1(Z) → K1(A) is not trivial. Let κ be the subgroup of
{f ∈ Z(A)inv | f2 = 1} generated by the image of [− id : A → A] under
the isomorphism detnorm : K1(A)

∼=−→ Z(A)inv of Theorem 9.17. Then we
obtain an exact sequence

0 → L0
s(A) → L0

h(A) → {f ∈ Z(A)inv | f2 = 1}/κ → 0

and L1
s(A) ∼= Z/2;

(7) If A is properly infinite, then Ln
p (A) and Ln

h(A) vanish for n ∈ Z. If A
is countably composable and properly infinite, then Ln

s (A) vanishes for
n ∈ Z.

Proof. (1) This follows from the fact that 2 is invertible in A and U [429,
Proposition 3.3 on page 139]. The proof is given there only for Lp but applies
also to Lh and Ls.
(2) This follows from assertion (1) and from the fact that i =

√−1 belongs to
Z(A) and Z(U) and is sent under the involution to −i (see [429, Proposition
4.3 on page 150]. The proof is given there only for Lp but applies also to Lh

and Ls.
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(3) This follows from the constructions and definitions and from Theorem
9.20 (1). The map sign(2) : L0

p(A) → K0(A) is defined and bijective not only
for a von Neumann algebra A, but also for a C∗-algebra A (see [442, Theorem
1.6 on page 343]).
(4) The L-group L1

p(A) is isomorphic to the topological K-group K1
top(A)

(for any C∗-algebra A) [442, Theorem 1.8 on page 347]. For a von Neumann
algebra Ktop

1 (A) is trivial. [51, Example 8.1.2 on page 67], [514, Example
7.1.11 on page 134].

Since U(G) is von Neumann regular (see Theorem 8.22 (3)), any finitely
generated submodule of a finitely generated projective module is a direct
summand (see Lemma 8.18 (4)). Hence the argument that Lp

1(R) vanishes
for semisimple rings in [428] carries over to U . One could also argue by doing
surgery on the inclusion of H0(C∗) → C∗ in the sense of [429, Section 4].
(5) We conclude from Theorem 9.13 (2) and Theorem 9.18 (2) that the in-
volution on Ki(A) is trivial and 2 · id : Ki(A)

∼=−→ Ki(A) is bijective for
i = 0, 1. Hence Ĥn(Z/2;Ki(A)) = 0 for i, n ∈ {0, 1}. The natural map
K1(A) → K̃1(A) is bijective by Theorem 9.18 (2). We get a short exact se-
quence 0 → K0(Z) = Z → K0(A) → K̃0(A) → 0 from Theorem 9.13 (2). It
induces a long exact sequence of Tate cohomology groups. This implies that
Ĥ1(Z/2, K̃0(A)) = Z/2, Ĥ0(Z/2, K̃0(A)) = 0 and Ĥn(Z/2, K̃1(A)) = 0 for
n = 0, 1. We conclude from Theorem 9.18 (3) and Theorem 9.20 that the
natural map Ĥn(Z/2, K̃i(A)) → Ĥn(Z/2, K̃i(U)) is bijective for n, i ∈ {0, 1}.
Now assertion (5) follows from the Rothenberg sequences (9.29) and (9.30).
(6) We have already proved in assertion (3) and (4) that i : L0

p(A) → L0
p(U)

is bijective for all n.
The involution on K0(A) is trivial and multiplication with 2 is injective

by Theorem 9.13 (2). This implies

Ĥ0(Z/2; K0(A)) = K0(A)/2 ·K0(A);

Ĥ1(Z/2; K0(A)) = 0.

The long exact Tate cohomology sequence associated to 0 → K0(Z) = Z →
K0(A) → K̃0(A) → 0 yields the exact sequence

0 → Ĥ1(Z/2; K̃0(A)) → Z/2
η−→ K0(A)/2 ·K0(A) → Ĥ0(Z/2; K̃0(A)) → 0,

where η sends the generator of Z/2 to the class of [A]. The natural map
Ĥn(Z/2; K̃0(A)) → Ĥn(Z/2; K̃0(U)) is bijective for n = 0, 1 by Theorem
9.20 (1). Hence the part of assertion (6) for Ln

h follows from assertions (3),
(4) and from the Rothenberg sequence (9.29). It remains to treat Ln

s .
We conclude from Example 9.6 applied to Z(A), Theorem 9.17 (2) and

Theorem 9.20 (2) that detnorm induces isomorphisms

Ĥ0(Z/2; K1(A)) = {f ∈ Z(A) | f2 = 1};
Ĥ1(Z/2; K1(A)) = 0,
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and that the natural map Ĥn(Z/2; K1(A))
∼=−→ Ĥn(Z/2;K1(U)) is bijective

for n = 0, 1. We begin with the case where K1(Z) → K1(A) is trivial. Then
the natural maps K1(A) → K̃1(A) and K1(U) → K̃1(U) are bijective. The
Rothenberg sequence (9.30) reduces to

0 → L0
s(A) → L0

h(A) k−→ {f ∈ Z(A) | f2 = 1} → L1
s(A) → 0.

By inspecting the proof of Theorem 9.17 in [344, Theorem 2.1] one checks
that any element in x ∈ K1(A) with x∗ = x can be represented by an element
a ∈ Ainv with a∗ = a. (Notice that this is not completely obvious since the
composition of the canonical map Z(A)inv → K1(A) with detnorm : K1(A) →
Z(A)inv is not the identity in general.) Hence the map k in the Rothenberg
sequence above is surjective and assertion (6) follows.

It remains to treat the case where K1(Z) → K1(A) is not trivial. The exact
Tate cohomology sequence associated to the exact sequence 0 → K1(Z) =
{±1} → K1(A) → K̃1(A) → 0 and the computations above yield a short
exact sequence

0 → {f ∈ Z(A) | f2 = 1}/κ
i−→ Ĥ0(Z/2; K̃1(A)) → {±1} → 0 (9.32)

and imply Ĥ1(Z/2; K̃1(A)) = 0 and that the natural map Ĥn(Z/2; K̃1(A))
∼=−→

Ĥn(Z/2; K̃1(U)) is bijective for n = 0, 1. The Rothenberg sequence (9.30) re-
duces to

0 → L0
s(A) → L0

h(A) k−→ Ĥ0(Z/2; K̃1(A)) → L1
s(A) → 0.

Since any element in x ∈ K1(A) with x∗ = x can be represented by an
element a ∈ Ainv with a∗ = a, the image of k contains the image of the map i
appearing in the exact sequence (9.32). From the definition of k one concludes
that im(k) ⊂ im(i). Namely, for a symmetric non-degenerate symmetric form
f : P → P ∗ or a : F → F ∗ respectively the element [P ] ∈ K̃0(R) or [i◦h∗ ◦a◦
h] ∈ K̃1(R) respectively, which appears in the definition of the image under
k of the element [f ] ∈ L0

p(R) or [a] ∈ L0
h(R) respectively, lifts to an element

in the unreduced K-group, which is fixed under the involution. Hence we get
im(k) = im(i). Now assertion (6) follows.
(7) We already know that Ki(A) = 0 for i = 0, 1 (see Theorem 9.15 and
Theorem 9.19). Now the claim follows for ε = p from assertions (2), (3) and
(4). The claim for the other decorations ε = h, s is a direct consequence of the
Rothenberg sequences (9.29) and (9.30). This finishes the proof of Theorem
9.31. ut
Remark 9.33. The canonical decomposition of A (see Theorem 9.3) induces
an isomorphism

Ln
p (A)

∼=−→ Ln
p (AIf

)× Ln
p (AI∞)× Ln

p (AII1)× Ln
p (AII∞)× Ln

p (AIII).
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If A is finite, the canonical decomposition of A (see Theorem 9.3) induces a
splitting

Ln
p (U(A)) ∼= Ln

p (U(AIf
))× Ln

p (U(AII1)).

This comes from a general splitting Ln
p (R × S)

∼=−→ Ln
p (R) × Ln

p (S) for rings
with involution. This splitting is not available for the other decorations ε =
h, s essentially because we only get a splitting Ki(R×S)

∼=−→ Ki(R)×Ki(S) for
the unreduced K-groups, which does not carry over to the reduced K-groups.

Example 9.34. Let G be a finitely generated group which does not contain
Zn as subgroup of finite index. Then N (G) is of type II1 and countably
composable by Lemma 9.4. We conclude from Theorem 9.13, Theorem 9.18,
Theorem 9.20 and Theorem 9.31 that

K0(N (G)) ∼= Z(N (G))Z/2;
K1(N (G)) ∼= Z(N (G))+,inv;
K0(U(G)) ∼= Z(N (G))Z/2;
K1(U(G)) = 0;
L0

p(N (G)) ∼= Z(N (G))Z/2;

L0
h(N (G)) ∼= L0

s(N (G));
L1

ε(N (G)) ∼= 0 for ε = p, h, s;
Ln

ε (N (G)) ∼= Ln
ε (U(G)) for n ∈ Z, ε = p, h, s;

Lε
n(N (G)) ∼= Ln

ε (N (G)) for n ∈ Z, ε = p, h, s;
Lε

n(U(G)) ∼= Ln
ε (U(G)) for n ∈ Z, ε = p, h, s;

and that there is an exact sequence 0 → Z/2 → L0
h(N (G)) → Z(N (G))Z/2 →

0. If G contains no element g ∈ G with g 6= 1 and |(g)| < ∞, then we conclude
from Lemma 9.4 (4)

Z(N (G))Z/2 ∼= R;
Z(N (G))+,inv ∼= R>0.

Remark 9.35. Analogously to the localization sequence in K-theory (9.22)
there is a long exact localization sequence in L-theory [430, Section 3.2]. Let
A be a finite von Neumann algebra and U the algebra of affiliated operators
such that AII1 is countably composable. Then the maps Ln

ε (A) → Ln
ε (U)

and Lε
n(A) → Lε

n(U) are bijective for all n ∈ Z and ε = p, h, s by Theorem
9.31. Hence the relative terms Ln

ε (A → U) and Lε
n(A → U) must vanish for

n ∈ Z and ε = p, h, s. They are defined in terms of U -acyclic Poincaré A-
chain complexes. Equivalently, they can be defined in terms of linking forms
and formations on finitely presented A-modules which are U-torsion [430,
Proposition 3.4.1 on page 228, Proposition 3.4.7 on page 274, Proposition
3.5.2 on page 292, Proposition 3.5.5 on page 361]. See also [184], [186].
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9.5 Application to Middle K- and G-Theory of Group
Rings

9.5.1 Detecting Elements in K1 of a Complex Group Ring

We have introduced the Whitehead group Wh(G) of a group G in Subsection
3.1.1. Let i : H → G be the inclusion of a normal subgroup H ⊂ G. It induces
a homomorphism i0 : Wh(H) → Wh(G). The conjugation action of G on H
and on G induces a G-action on Wh(H) and on Wh(G) which turns out to
be trivial on Wh(G). Hence i0 induces homomorphisms

i1 : Z⊗ZG Wh(H) → Wh(G); (9.36)
i2 : Wh(H)G → Wh(G). (9.37)

The main result of this subsection is the following theorem. We emphasize
that it holds for all groups G.

Theorem 9.38 (Detecting elements in Wh(G)). Let i : H → G be the
inclusion of a normal finite subgroup H into an arbitrary group G. Then the
maps i1 and i2 defined in (9.36) and (9.37) have finite kernel.

Proof. Since H is finite, Wh(H) is a finitely generated abelian group. Hence
it suffices to show for k = 1, 2 that ik is rationally injective, i.e. idQ⊗Zik is
injective. The G-action on H by conjugation c : G → aut(H) factorizes as
G

pr−→ G/CGH
c−→ aut(H), where CH is the centralizer of H, i.e. the kernel

of c, and c is injective. Since H is finite, aut(H) and therefore G/CGH are
finite. This implies that the natural map

b : Q⊗Z Wh(H)G = Q⊗Z Wh(H)G/CGH

→ Q⊗Z[G/CGH] Wh(H) = Q⊗ZG Wh(H)

sending q ⊗Z x to q ⊗ZG x is an isomorphism. Its composition with Q⊗ZG i1
is Q⊗ZG i2. Hence it suffices to show that i2 is rationally injective.

Next we construct the following commutative diagram



9.5 Application to Middle K- and G-Theory of Group Rings 355

(Z(CH)inv
)G×Z/2 s◦i6−−−−→ Z(N (G))+,inv

j3

y detF K

x
K1(CH)G×Z/2 i5−−−−→ K1(N (G))

j2

x k2

x
K1(ZH)G×Z/2 i4−−−−→ K1(ZG)Z/2

p

y q

y
Wh(H)G×Z/2 i3−−−−→ Wh(G)Z/2

j1

y k1

y
Wh(H)G i2−−−−→ Wh(G)

The G-actions on the various groups above come from the conjugation action
of G on the normal subgroup H. The Z/2-actions are given by the involutions
coming from the involutions on the rings. Notice that these two actions com-
mute. The maps j1 and k1 are the obvious inclusions. The homomorphisms
p and q are induced by the canonical projections K1(ZH) → Wh(H) and
K1(ZG) → Wh(G). The maps j2 and k2 come from the obvious ring ho-
momorphisms. Let j′3 : Z(CH)inv → K1(CH) be the homomorphism sending
u ∈ Z(CH)inv to the class in K1(CH) represented by the CH-automorphism
of CH given by multiplication with u. It induces the homomorphism j3. We
have indicated the definition of the center-valued Fuglede-Kadison determi-
nant K1(N (G)) → Z(N (G))+,inv in Subsection 9.2.2. Notice that it is defined
for any group G. The condition that N (G) is countably decomposable enters
in the proof of Theorem 9.18, not in the construction of the Fuglede-Kadison
determinant. The horizontal maps i2, i3 and i4 are induced by the inclusion
i : H → G in the obvious way. The map i5 comes from the inclusion of CH

into N (G). Let i6 :
(Z(CH)inv

)G×Z/2 → (N (G)inv
)G×Z/2 be the injection in-

duced by the inclusion of rings CH → N (G). We have N (G)G = Z(N (G)),
since CG is dense in N (G) in the weak topology. We have N (G)inv ∩
Z(N (G)) = Z(N (G))inv. This implies

(N (G)inv
)G×Z/2 =

(Z(N (G))inv
)Z/2.

Hence we can define a map s :
(N (G)inv

)G×Z/2 → Z(N (G))+,inv by sending a

to |a| = √
a∗a. For u ∈ Z(N (G))Z/2 the Fuglede-Kadison determinant of the

N (G)-automorphism of N (G) given by multiplication with u is |u| = √
u∗u.

Now one easily checks that the diagram above commutes. In order to show
that i2 is rationally injective, it suffices to prove the following assertions:

(1) s is rationally injective;
(2) i6 is injective;
(3) j3 is an isomorphism;
(4) j2 is rationally injective;
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(5) p is rationally an isomorphism;
(6) j1 is rationally an isomorphism;
(7) k1 is injective;
(8) detFK ◦k2(ker(q)) = 1.

(1) This follows from s(a) = 1 ⇔ a2 = 1.
(2) This follows from the definition.
(3) Recall that j3 is induced by a homomorphism j′3 : Z(CH)inv → K1(CH)
by taking the G × Z/2- fixed point set. Since the G × Z/2-action factorizes
through the finite group G/CGH × Z/2, j3 is a rational isomorphism if j′3
is a rational isomorphism. Since CH is semisimple, there is an isomorphism
pr: CH → ∏b

a=1 Mna(C). Thus we obtain a commutative diagram

Z(CH)inv −−−−→∼=
∏b

a=1Z(Mna
(C))inv

∏b
a=1 da←−−−−−∼=

∏b
a=1 Cinv

j′3

y ∏b
a=1 k′a

y ∏b
a=1 ma

y

K1(CH) −−−−→∼=
∏b

a=1 K1(Mna
(C))

∏
a=1 detC ◦µa−−−−−−−−−→∼=

∏b
a=1 Cinv

Here the isomorphism da : Cinv → Z(Mna(C))inv sends λ to the diagonal
(na, na)-matrix whose diagonal entries are all λ, the maps k′a are defined
analogously to j′3, the map ma : Cinv → Cinv sends λ to λna , the Morita
isomorphism µa : K1(Mna(C)) → K1(C) is given by applying Cna ⊗Mna (C)−
and detC : K1(C) → Cinv is the isomorphism induced by the determinant.
Since all horizontal arrows and the maps ma are rational isomorphisms, j′3 is
rationally bijective.
(4) Wall [511] has shown for finite H that the kernel SK1(ZH) of the change of
rings map K1(ZH) → K1(QH) is finite and maps under the canonical projec-
tion K1(ZH) → Wh(H) bijectively onto the torsion subgroup tors(Wh(H))
of Wh(H) (see also [406, page 5 and page 180]). The change of rings map
K1(QH) → K1(CH) is injective [406, page 5 and page 43]. Hence the change
of rings map K1(ZH) → K1(CH) is rationally injective. Since j2 is obtained
by taking the fixed point set under the action of the finite group G/CGH×Z/2
from it, j2 is rationally injective.
(5) The kernel of the projection K1(ZH) → Wh(H) is finite as H is finite.
Hence p is rationally bijective since it is obtained from a rational isomor-
phism by taking the fixed point set under the operation of the finite group
G/CGH × Z/2.
(6) The involution on Wh′(H) := Wh(H)/ tors(Wh(H)) = Wh(H)/SK1(ZH)
is trivial [511], [406, page 182]. This implies Wh′(H) = Wh′(H)Z/2. Since
SK1(ZH) is finite, we conclude that the inclusion Wh(H)Z/2 → Wh(H) is a
rational isomorphism. This implies that j1 is rationally bijective.
(7) This is obvious.



9.5 Application to Middle K- and G-Theory of Group Rings 357

(8) An element in the kernel of K1(ZG) → Wh(G) is represented by a ZG-
automorphism r±g : ZG → ZG which is given by right multiplication with an
element ±g for g ∈ G. Since for the induced N (G)-map r±g : N (G) → N (G),
we have (r±g)∗◦r±g = 1, we get detFK ◦k2([r±g]) = 1. This finishes the proof
Theorem 9.38. ut

9.5.2 Survey on the Isomorphism Conjecture for K0 of Complex
Group Rings, the Bass Conjecture and the Hattori-Stallings Rank

In this section we explain the Isomorphism Conjecture for K0(CG) and the
Bass Conjecture and their relation. We introduce the Hattori-Stallings rank
and study its relation to the center valued dimension of a group von Neumann
algebra.

We begin with the Isomorphism Conjecture for K0(CG). For more in-
formation about the Isomorphism Conjectures in algebraic K- and L-theory
due to Farrell and Jones and the related Baum-Connes Conjecture for the
topological K-theory of the reduced group C∗-algebra we refer for instance
to [27, Conjecture 3.15 on page 254], [128, section 6], [194], [256] [257], [339],
[340], and [501].

The orbit category Or(G) has as objects homogeneous spaces G/H and
as morphisms G-maps. Let Or(G,FIN ) be the full subcategory of Or(G)
consisting of objects G/H with finite H. We define a covariant functor

Or(G) → ABEL, G/H 7→ K0(CH) (9.39)

as follows. It sends G/H to the projective class group K0(CH). Given a
morphism f : G/H → G/K there is an element g ∈ G with g−1Hg ⊂ K such
that f(g′H) = g′gK. Define f∗ : K0(CH) → K0(CK) as the map induced by
induction with the group homomorphism cg : H → K, h 7→ g−1hg. This is
independent of the choice of g since any inner automorphism of K induces
the identity on K0(CK).

Conjecture 9.40 (Isomorphism Conjecture). The Isomorphism Conjec-
ture for K0(CG) says that the map

a : colimOr(G,FIN ) K0(CH) → K0(CG)

induced by the various inclusions H ⊂ G is an isomorphism.

Notation 9.41. Let con(G) be the set of conjugacy classes (g) of elements
g ∈ G. Let con(G)f be the subset of con(G) of conjugacy classes (g) for
which each representative g has finite order. Let con(G)cf be the subset of
con(G) of conjugacy classes (g) which contain only finitely many elements.
Put con(G)f,cf = con(G)f ∩ con(G)cf . We denote by class0(G), class0(G)f ,
class0(G)cf , and class0(G)f,cf respectively the complex vector space with the
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set con(G), con(G)f , con(G)cf and con(G)f,cf respectively as basis. We de-
note by class(G), class(G)f , class(G)cf , and class(G)f,cf respectively the com-
plex vector space of functions from the set con(G), con(G)f , con(G)cf and
con(G)f,cf respectively to the complex numbers C.

Notice that class0(G), class0(G)f , class0(G)cf and class0(G)f,cf can be
identified with the complex vector space of functions with finite support from
con(G), con(G)f , con(G)cf and con(G)f,cf to C. Recall that (g) is finite if and
only if the centralizer Cg of g has finite index in G. We obtain an isomorphism
of complex vector spaces

z : class0(G)cf

∼=−→ Z(CG), (g) 7→
∑

g′∈(g)

g′. (9.42)

Define the universal CG-trace of
∑

g∈G λgg ∈ CG by

tru
CG


∑

g∈G

λgg


 :=

∑

g∈G

λg · (g). ∈ class0(G). (9.43)

Under the obvious identification of class0(G) with CG/[CG,CG], the trace
tru
CG becomes the canonical projection. This extends to square matrices in

the usual way

tru
CG : Mn(CG) → class0(G), A 7→

n∑

i=1

tru
CG(ai,i). (9.44)

Let P be a finitely generated projective CG-module. Define its Hattori-
Stallings rank by

HS(P ) := tru
CG(A) ∈ class0(G), (9.45)

where A is any element in Mn(CG) with A2 = A such that the image of the
map CGn → CGn given by right multiplication with A is CG-isomorphic to
P . This definition is independent of the choice of A (cf. (6.4)). The Hattori-
Stallings rank defines homomorphisms

HS: K0(CG) → class0(G), [P ] 7→ HS(P ); (9.46)
HSC : K0(CG)⊗Z C→ class0(G), [P ]⊗ λ 7→ λ ·HS(P ). (9.47)

Conjecture 9.48 (Bass Conjecture). The strong Bass Conjecture for CG
says that the image of the map HSC : K0(CG)⊗Z C→ class0(G) of (9.47) is
class0(G)f .

The strong Bass Conjecture for ZG says that for a finitely generated
projective ZG-module P
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HS(C⊗Z P )(g) =
{

0 if g 6= 1;
rkZ(Z⊗ZG P ) if g = 1.

The weak Bass Conjecture for ZG says that for a finitely generated projective
ZG-module P

HS(C⊗Z P )(1) =
∑

(g)∈con(G)

HS(P )(g) = rkZ(Z⊗ZG P ).

Theorem 9.49. For any group G there is a commutative diagram whose left
vertical arrow is an isomorphism

(
colimOr(G,FIN ) K0(CH)

)⊗Z C a⊗ZidC−−−−→ K0(CG)⊗Z C
h

y∼=
yHSC

class0(G)f −−−−→
e

class0(G)

Proof. Firstly we explain the maps in the square. We have introduced the
map a in Conjecture 9.40 and the map HSC in (9.47). The map e is given
extending a function con(G)f → C to a function con(G) → C by putting it to
be zero on elements in con(G) which do not belong to con(G)f . Define for a
group homomorphism ψ : G → G′ a map ψ∗ : con(G) → con(G′) by sending
(h) to (ψ(h)). It induces a homomorphism ψ∗ : class0(G) → class0(G′). One
easily checks that the following diagram commutes

K0(CG)
ψ∗−−−−→ K0(CG′)

HS

y HS

y
class0(G)

ψ∗−−−−→ class0(G′)

(9.50)

There is a canonical isomorphism

f1 :
(
colimOr(G,FIN ) K0(CH)

)⊗Z C
∼=−→

colimOr(G,FIN ) (K0(CH)⊗Z C) . (9.51)

The Hattori-Stallings rank induces for each finite subgroup H of G an iso-
morphism K0(CH) ⊗Z C → class(H) by elementary complex representation
theory for finite groups [470, Theorem 6 in Chapter 2 on page 19]. Thus we
get an isomorphism

f2 : colimOr(G,FIN ) (K0(CH)⊗Z C)
∼=−→ colimOr(G,FIN ) class(H). (9.52)

Let f ′3 : colimOr(G,FIN ) con(H) → con(G)f be the map induced by the
inclusions of the finite subgroups H of G. Define a map f ′4 : con(G)f →
colimOr(G,FIN ) con(H) by sending (g) ∈ con(G)f to the image of (g) ∈
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con(〈g〉) under the structure map from con(〈g〉) to colimOr(G,FIN ) con(H),
where 〈g〉 is the cyclic subgroup generated by g. One easily checks that this
is independent of the choice of the representative g of (g) and that f ′3 and f ′4
are inverse to one another. The bijection f ′3 induces an isomorphism

f3 : colimOr(G,FIN ) class(H)
∼=−→ class0(G)f , (9.53)

because colimit and the functor sending a set to the complex vector space
with this set as basis commute. Now the isomorphism h is defined as the
composition of the isomorphisms f1 of (9.51), f2 of (9.52) and f3 of (9.53).
It remains to check that the square in Theorem 9.49 commutes. This follows
from the commutativity of (9.50). This finishes the proof of Theorem 9.49.

ut
A group G is poly-cyclic if there is a finite sequence of subgroups {1} =

G0 ⊂ G1 ⊂ G2 ⊂ . . . Gr = G such that Gi is normal in Gi+1 with cyclic
quotient Gi+1/Gi for i = 0, 1, 2, . . . , r − 1. We call G virtually poly-cyclic if
G contains a poly-cyclic subgroup of finite index.

Theorem 9.54. (1) The map a⊗Z idC :
(
colimOr(G,FIN ) K0(CH)

)⊗Z C→
K0(CG)⊗Z C is injective;

(2) The Isomorphism Conjecture for K0(CG) 9.40 implies that the map
HSC : K0(CG) ⊗Z C → class0(G) of (9.47) is injective with image
class0(G)f and hence implies the strong Bass Conjecture for K0(CG)
9.48;

(3) Let P be a finitely generated projective CG-module and let g ∈ G be an
element of infinite order with finite (g). Then HS(P )(g) = 0;

(4) Let P be a finitely generated projective ZG-module. Then HS(C ⊗Z
P )(g) = 0 for any element g ∈ G with g 6= 1 for which |g| < ∞ or
|(g)| < ∞;

(5) The strong Bass Conjecture for ZG is true for residually finite groups
and linear groups;

(6) The strong Bass Conjecture for CG is true for amenable groups;
(7) The strong Bass Conjecture for CG is true for a countable group G,

if the Bost Conjecture holds for G, which is the version of the Baum-
Connes Conjecture with C∗r (G) replaced by l1(G). (A discussion of the
Bost Conjecture and the class of groups for which it is known can be found
in [38]. The class contains all countable groups which are a-T-menable);

(8) Suppose that G is virtually poly-cyclic. Then the map

a : colimOr(G,FIN ) K0(CH) → K0(CG)

is surjective and induces an isomorphism

a :
(
colimOr(G,FIN ) K0(CH)

)⊗Z C
∼=−→ K0(CG)⊗Z C,

and the forgetful map
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f : K0(CG) → G0(CG)

is an isomorphism;
(9) If P is a finitely generated projective CG-module, then HS(P )(1) ∈ Q.

Proof. (1) and (2) These follow from Theorem 9.49.
(3) This follows from [23, Theorem 8.1 on page 180].
(4) and (5) These follow from [307, Theorem 4.1 on page 96].
(6) This is proved for elementary amenable groups in [197, Theorem 1.6]. The
proof for amenable groups can be found in [38].
(7) This is proved in [38].
(8) Moody has shown [384] that the obvious map

⊕
H∈FIN G0(CH) →

G0(CG) given by induction is surjective. Since G is virtually poly-cyclic,
the complex group ring CG is regular, i.e. Noetherian and any CG-module
has a finite dimensional projective resolution [447, Theorem 8.2.2 and Theo-
rem 8.2.20]. This implies that f : K0(CG) → G0(CG) is bijective. The same
is true for any finite subgroup H ⊂ G. Now the claim follows using assertion
(1).
(9) is proved in [529]. See also [78]. ut

Next we investigate the relation between the center valued dimension
dimu

N (G) (see Definition 9.12) and the Hattori-Stallings rank. Define a homo-
morphism

φ : Z(N (G)) → class(G)cf (9.55)

by assigning to u ∈ Z(N (G))

φ(u) : con(G)cf → C, (h) 7→ trN (G)


u · 1

|(h)| ·
∑

h̃∈(h)

h̃−1


 .

Equivalently, φ(u) can be described as follows. If we evaluate u ∈ Z(N (G)) ⊂
N (G) = B(l2(G))G at the unit element e ∈ G, we obtain an element u(e) =∑

g∈G λg ·g ∈ l2(G) with the property that λg depends only on the conjugacy
class (g) of g ∈ G. This implies that λg = 0 if (g) is infinite and φ(u)(g) = λg

for g ∈ G with finite (g).

Lemma 9.56. The map φ : Z(N (G)) → class(G)cf is injective. The compo-
sition of k : class0(G)cf → Z(N (G)) with φ : Z(N (G)) → class(G)cf is the
canonical inclusion class0(G)cf → class(G)cf , where k is given by

k


 ∑

(g)∈con(G)

λ(g) · (g)


 =

∑

(g)

λ(g) ·

 ∑

g′∈(g)

g′


 .

The following diagram commutes
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K0(CG) HS−−−−→ class0(G) r−−−−→ class0(G)cf

i∗

y k

y

K0(N (G))
dimu

N(G)−−−−−→ Z(N (G))Z/2 j−−−−→ Z(N (G)),

where r is given by restriction, i∗ is induced by the inclusion i : CG → N (G),
j is the inclusion and the other maps have been defined in Definition 9.12
and (9.46).

Proof. Obviously φ is injective and φ ◦ k is the canonical inclusion. For the
commutativity of the diagram above it is enough to show for an element
A ∈ Mn(CG) and h ∈ G with finite (h)

tru
CG(A)(h) = (φ ◦ tru

N (G)(A))(h), (9.57)

since for A ∈ Mn(CG) with A2 = A we have

φ ◦ k ◦ r ◦HS(im(A))(h) = tru
CG(A)(h);

φ ◦ j ◦ dimu
N (G) ◦i∗([im(A)]) = (φ ◦ tru

N (G)(A))(h).

To prove (9.57) it suffices to show for g ∈ G and h ∈ G with finite (h)

tru
CG(g)(h) = (φ ◦ tru

N (G)(g))(h). (9.58)

Obviously

tru
CG(g)(h) = trN (G)


g ·

∑

h̃∈(h)

h̃−1


 . (9.59)

We conclude from the universal property of tru
N (G) for all x ∈ N (G) (see

Theorem 9.5)

trN (G)


x ·

∑

h′∈(h)

(h′)−1


 = (φ ◦ tru

N (G)(x))(h). (9.60)

Now (9.58) and hence (9.57) follow from (9.59) and (9.60). This finishes the
proof of Lemma 9.56. ut

We conclude from Theorem 9.54 (9) and Lemma 9.56

Corollary 9.61. Let P be a finitely generated projective CG-module. Then
dimN (G)(N (G)⊗ZG P ) = HS(P )(1) and this is a non-negative rational num-
ber.

The next result shows that one cannot detect elements in K̃0(ZG) by
K̃0(N (G)) in contrast to Wh(G) (cf. Theorem 9.38).
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Theorem 9.62. The change of rings map K̃0(ZG) → K̃0(N (G)) is trivial.

Proof. Because of Theorem 9.13 (2) and Lemma 9.56 it suffices to prove for
a finitely generated projective ZG-module P that HS(C ⊗Z P )(g) = 0 for
g ∈ G with g 6= 1 and |(g)| < ∞, and HS(C⊗Z P )(1) ∈ Z. This follows from
Theorem 9.54 (4) and the fact that P ∼=ZG im(A) for some A ∈ Mn(ZG)
with A2 = A. ut
Theorem 9.63. The image of the composition

K0(CG)⊗Z C HSC−−→ class0(G) r−→ class0(G)cf

is class0(G)f,cf .

Proof. Apply Theorem 9.49 and Theorem 9.54 (3). ut

9.5.3 G-Theory of Complex Group Rings

In this subsection we investigate G0(CG) (see Definition 9.11). We have de-
fined TN (G)⊗CG M and PN (G)⊗CG M in Definition 6.1 (see also Section
8.4). Recall from Theorem 6.5 and Theorem 6.7 (3) that PN (G)⊗CG M is a
finitely generated projective N (G)-module.

Theorem 9.64. If G is amenable, the map

l : G0(CG) → K0(N (G)), [M ] 7→ [PN (G)⊗CG M ]

is a well-defined homomorphism. If f : K0(CG) → G0(CG) is the forgetful
map sending [P ] to [P ] and i∗ : K0(CG) → K0(N (G)) is induced by the
inclusion i : CG → N (G), then the composition l ◦ f agrees with i∗.

Proof. If 0 → M0
b−→ M1

p−→ M2 → 0 is an exact sequence of finitely generated
CG-modules we have to check in K0(N (G))

[PN (G)⊗CG M0]− [PN (G)⊗CG M1] + [PN (G)⊗CG M2] = 0.

Consider the induced sequence PN (G) ⊗CG M0
b−→ PN (G) ⊗CG M1

p−→
PN (G) ⊗CG M2. Obviously p is surjective as p is surjective. We conclude
from Theorem 6.7 (1) that ker(b) and ker(p) are finitely generated projective
N (G)-modules. Theorem 6.7 (4b) and (4e) and Theorem 6.37 imply

dimN (G)

(
ker(b)

)
= 0;

dimN (G) (PN (G)⊗CG M0) = dimN (G) (ker(p)) .

Lemma 6.28 shows that b is injective and PN (G) ⊗CG M0
∼=N (G) ker(p).

Obviously ker(p)⊕PN (G)⊗CGM2 and PN (G)⊗CGM1 areN (G)-isomorphic.
ut

Now we can detect elements in G0(CG) for amenable groups G.
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Theorem 9.65. Suppose that G is amenable. Then the image of the compo-
sition

G0(CG)⊗Z C l⊗ZC−−−→ K0(N (G))⊗Z C
dimu

N(G)−−−−−→ Z(N (G))
φ−→ class(G)cf

contains the complex vector space class0(G)f,cf . In particular

rkZ(G0(CG)) ≥ | con(G)f,cf |.

Proof. Apply Lemma 9.56, Theorem 9.63 and Theorem 9.64. ut
Theorem 9.66. (1) If G is amenable, the class [CG] generates an infinite

cyclic subgroup in G0(CG) and is in particular not zero;
(2) If G contains Z ∗ Z as subgroup, we get [CG] = 0 in G0(CG).

Proof. (1) The map l : G0(CG) → K0(N (G)) of Theorem 9.64 sends [CG]
to [N (G)] and [N (G)] ∈ K0(N (G)) generates an infinite cyclic subgroup
because of dimN (G)(N (G)) = 1.
(2) We abbreviate F2 = Z ∗ Z. Induction with the inclusion F2 → G induces
a homomorphism G0(CF2) → G0(CG) which sends [CF2] to [CG]. Hence
it suffices to show [CF2] = 0 in G0(CF2). The cellular chain complex of
the universal covering of S1 ∨ S1 yields an exact sequence of CF2-modules
0 → (CF2)2 → CF2 → C→ 0, where C is equipped with the trivial F2-action.
This implies [CF2] = −[C] in G0(CF2). Hence it suffices to show [C] = 0 in
G0(CF2). Choose an epimorphism f : F2 → Z. Restriction with f defines a
homomorphism G0(CZ) → G0(CF2). It sends C viewed as trivial CZ-module
to C viewed as trivial CF2-module. Hence it remains to show [C] = 0 in
G0(CZ). This follows from the exact sequence 0 → CZ s−1−−→ CZ → C → 0
for s a generator of Z which comes from the cellular CZ-chain complex of
S̃1. ut

Theorem 9.66 gives evidence for

Conjecture 9.67. (Amenability and the regular representation in
G-theory). A group G is amenable if and only if [CG] 6= 0 in G0(CG).

Example 9.68. Let D be the infinite dihedral group D = Z/2 ∗ Z/2. Then
we compute

K̃0(ZD) = 0;
K0(CD) ∼= Z3;
G0(CD) ∼= K0(CD).

as follows. Since K̃0(Z[Z/2]) = 0 [125, Corollary 5.17] and the obvious map
K̃0(Z[Z/2])⊕K̃0(Z[Z/2]) → K̃0(ZD) is bijective [508, Corollary 11.5 and the
following remark], we conclude K̃0(ZD) = 0. If s1 and s2 are the generators
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of the subgroups Z/2 ∗ 1 and 1 ∗ Z/2, then the set conf (G) consists of the
three elements (1), (s1) and (s2). Let C− be the C[Z/2]-module with C as
underlying complex vector space and the Z/2-action given by − id. Let P1

and P2 be the CD-modules given by induction with Z/2 = 〈s1〉 ⊂ Z/2 ∗ Z/2
and Z/2 = 〈s2〉 ⊂ Z/2 ∗Z/2 applied to C−. One easily checks that HS(Pi) =
1/2·((e)−(si)) for i = 1, 2 and e ∈ D the unit element. Notice that D contains
an infinite cyclic subgroup of index 2, namely 〈s1s2〉. Because of Theorem
9.54 (1) and (8) the forgetful map f : K0(CG)

∼=−→ G0(CG) is bijective and
we obtain isomorphisms u : Z3

∼=−→ K0(CD) and v : K0(CD)
∼=−→ Z3, which are

inverse to one another and defined by

u(n0, n1, n2) = n0 · [ZD] + n1 · [P1] + n2 · [P2];
v([P ]) = (HS(P )(1) + HS(P )(s1) + HS(s2),−2 ·HS(P )(s1),−2 ·HS(s2)).

The composition

Z3 u−→ K0(CD) i∗−→ K0(N (D))
dimN(D)−−−−−→ R

sends (n0, n1, n2) to n0 + n1/2 + n2/2. In particular the map i∗ : K̃0(CD) →
K̃0(N (D)) is not trivial (compare with Theorem 9.62.)

Remark 9.69. The knowledge about G0(CG) is very poor. At least there is
Moody’s result stated as Theorem 9.54 (8) and we will show in Example 10.13
that for the amenable locally finite group A =

⊕
n∈Z Z/2 the map K0(CA) →

G0(CA) is not surjective. On the other hand we do not know a counterex-
ample to the statement that for an amenable group with an upper bound on
the orders of its finite subgroups both a : colimOr(G,FIN ) K0(CH) → K0(CG)
and K0(CG) → G0(CG) are bijective. We also do not know a counterexample
to the statement that for a group G, which is non amenable, G0(CG) = {0}.
To our knowledge the latter equality is not even known for G = Z ∗ Z.

9.6 Miscellaneous

We have emphasized the analogy between a finite von Neumann algebra A
and a principal ideal domain R and their Ore localizations U and F with
respect to the set of non-zero-divisors (see Example 6.12 and Section 8.5). Of
course F is just the quotient field of R. Some of the results of this chapters
are completely analogous for R and F . For instance K0(R) → K0(F ) is
bijective (compare Theorem 9.20 (1)). We have K1(F ) = F inv and K0(R →
F ) = F inv/Rinv. We also get K1(R) = Rinv, provided that R has a Euclidean
algorithm, for instance if R is Z or K[x] for a field K (compare Theorem
9.17, Theorem 9.20 (2) and Theorem 9.23 (3)).
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The topological K-theory Ktop
p (A) of a von Neumann algebra A equals

by definition K0(A) for p = 0 and π0(GL(A)) for p = 1. We have computed
Ktop

0 (A) = K0(A) in Subsection 9.2.1 and Ktop
1 (A) = 0 holds for any von

Neumann algebra [51, Example 8.1.2 on page 67], [514, Example 7.1.11 on
page 134].

More information about the Bass Conjecture can be found for instance in
[23], [38], [159], [161], [165], [175], [176], [307], [458].

For an introduction to algebraic K-theory see for instance [378] and [441].
Computations of G0(AG) for Noetherian rings A and finite nilpotent

groups G can be found in [246], [305] and [513]. In [246] a conjecture is
stated which would give a computation for all finite groups G in terms of
certain orders associated to the irreducible rational representations of G.

One can also consider instead of G0(R) the version GFP∞
0 (R) of G-

theory as suggested by Weibel. The group GFP∞
0 (R) is defined in terms of

R-modules which are of type FP∞, i.e. possess a (not necessarily finite di-
mensional) finitely generated projective resolution (cf. Definition 9.11). This
version is much closer to K-theory than G0. For instance the forgetful map
f : K0(AG) → GFP∞

0 (AG) is bijective for a commutative ring A if the trivial
AG-module A has a finite dimensional (not necessarily finitely generated)
projective AG-resolution. The latter condition is always satisfied for a ring
A containing Q as subring if there is a finite dimensional G-CW -model for
the classifying space E(G,FIN ) for proper G-actions. This is the case for a
word-hyperbolic group G and for a discrete subgroup G of a Lie group which
has only finitely many path components (see [1, Corollary 4.14], [370]).

Exercises

9.1. Let A be a von Neumann algebra. Show that A is finite if and only if it
possesses a finite normal faithful trace tr : A → C.

9.2. Let M be a closed hyperbolic manifold. Show that N (π1(M)) is of type
II1.

9.3. Let M be a compact connected orientable 3-manifold whose boundary
does not contain S2 as a path component. Show that N (π1(M)) is of type
If if and only if M has a finite covering M → M such that M is homotopy
equivalent to S3, S1×S2, S1×D2, T 2×D1 or T 3, and that it is of type II1

otherwise.

9.4. Construct for any ring R and natural number m natural isomorphisms
Kn(Mm(R))

∼=−→ Kn(R) for n = 0, 1.

9.5. Let A be an abelian von Neumann algebra. Show that [A] ∈ K0(A) is
not contained in 2 ·K0(A) and the canonical projection K1(A) → K̃1(A) is
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not bijective but that [M2(A)] ∈ K0(M2(A)) is contained in 2 ·K0(M2(A))
and K1(M2(A)) → K̃1(M2(A)) is bijective.

9.6. Show that the topological K-group Ktop
1 (A) := π0(GL(A)) is trivial

for any von Neumann algebra A.

9.7. Let G be a finite group. Let V and W be two finite dimensional unitary
representations. Define the character of V by the function χV : G → C which
sends g ∈ G to the trace trC(lg : V → V ) of the endomorphism lg of the finite
dimensional C-vector space V given by left multiplication with g. Show that
V and W are unitarily CG-isomorphic if and only if χV = χW .

9.8. Let R be a ring such that the set S of non-zero divisors satisfies the Ore
condition. Let C∗ be a finite free R-chain complex such that each homology
group Hn(C∗) has a 1-dimensional finitely generated free R-resolution and is
S-torsion, i.e. RS−1 ⊗R Hn(C∗) = 0. Define an element

ρh(C∗) :=
∑

n∈Z
(−1)n · [Hn(C∗)] ∈ K0(R → RS−1).

Choose an R-basis for C∗. It induces an RS−1-basis for RS−1 ⊗R C∗. Show
that RS−1 ⊗R C∗ is an acyclic based free RS−1-chain complex. Define its
torsion

ρ(RS−1 ⊗R C∗) ∈ K1(RS−1)

as in (3.1). Show that the image of this element under the projection to
the cokernel coker(i1) of the map i1 : K1(R) → K1(RS−1) appearing in
the localization sequence (9.22) is independent of the choice of the R-
basis and is an R-chain homotopy invariant of C∗. Show that the map
j : K1(RS−1) → K0(R → RS−1) appearing in the localization sequence
(9.22) maps ρ(RS−1 ⊗R C∗) to ρh(C∗).

9.9. Compute explicitly for R = Z and S ⊂ Z the set of non-zero divisors
that RS−1 = Q and that the localization sequence (9.22) becomes

{±1} → Qinv p−→ Q+,inv 0−→ Z id−→ Z,

where p maps a rational number different from zero to its absolute value.
Show for a finite free Z-chain complex C∗ that Hn(C∗) has a 1-dimensional
finitely generated free R-resolution and is S-torsion for all n ∈ Z, if and only
if Hn(C∗) is a finite abelian group for all n ∈ Z. Prove that in this case the
invariant ρh(C∗) introduced in the previous exercise becomes under these
identifications

ρh(C∗) =
∏

n∈Z
|Hn(C∗)|(−1)n ∈ Q+,inv.
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9.10. Let G be a finite group. Show that CG is semisimple, i.e. any submodule
of a finitely generated projective module is a direct summand. Conclude that
CG is a product of matrix algebras Mn(C). Compute Kn(CG) for n = 0, 1
and Lε

n(CG) for ε = p, h, s and n ∈ Z as an abelian group.

9.11. Show that for a group G the following assertions are equivalent:

(1) N (G) is Noetherian;
(2) U(G) is Noetherian;
(3) U(G) is semisimple;
(4) K0(U(G)) is finitely generated;
(5) K0(N (G)) is finitely generated;
(6) G is finite.

9.12. For a ring R let Nil0(R) be the abelian group whose generators [P, f ] are
conjugacy classes of nilpotent endomorphisms f : P → P of finitely generated
projective R-modules and whose relations are given by [P0, f1] − [P1, f1] +
[P2, f2] = 0 for any exact sequence 0 → (P0, f0) → (P1, f1) → (P2, f2) → 0
of such nilpotent endomorphisms. Nilpotent means that fn = 0 for some
natural number n. Show

(1) The natural map i : K0(R) → Nil0(R) sending [P ] to [P, 0] is split injec-
tive;

(2) Let Ñil0(R) be the cokernel of the natural map i : K0(R) → Nil0(R). If
R is semihereditary, then Ñil0(R) = 0;

(3) Show for a group G that Ñil0(N (G)) = Ñil0(U(G)) = 0.

9.13. Let G be a group such that Wh(G) vanishes. Show that any finite
subgroup of the center of G is isomorphic to a product of finitely many
copies of Z/2 and Z/3 or to a product of finitely many copies of Z/2 and
Z/4.

9.14. Suppose that the group G satisfies the weak Bass Conjecture for ZG.
Then the change of rings homomorphism K0(ZG) → K0(N (G)) maps the
class [P ] of a finitely generated projective ZG-module P to rkZ(Z ⊗ZG P ) ·
[N (G)].

9.15. Show that G satisfies the strong Bass Conjecture for CG if and only if
HS(P )(g) = 0 holds for any finitely generated projective CG-module P and
any element g ∈ G with |g| = |(g)| = ∞.

9.16. Show that the group G satisfies con(G)f,cf = {(1)} if and only if the
image of the change of rings map K̃0(CG) → K̃0(N (G)) consists of torsion
elements.

9.17. Let A be a finite von Neumann algebra. Construct homomorphisms
dA : G0(A) → K0(A) and dU : G0(U) → K0(U) such that dA ◦ fA = id
and dU ◦ fU = id holds for the forgetful maps fA : K0(A) → G0(A) and
fU : K0(U) → G0(U).
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9.18. Let F be a free group. Let V be a CF -module whose underlying complex
vector space is finite dimensional and let H ⊂ F be a subgroup. Show that
V ⊗C C[F/H] with the diagonal F -action is a finitely generated CF -module
whose class in G0(CF ) is zero.

9.19. Let G be finite. Show that the change of coefficients map j : G0(ZG) →
K0(QG) is well-defined and surjective.





10. The Atiyah Conjecture

Introduction

Atiyah [9, page 72] asked the question, whether the analytic L2-Betti numbers
b
(2)
p (M) of a cocompact free proper Riemannian G-manifold with G-invariant

Riemannian metric and without boundary, which are defined in terms of the
heat kernel (see (1.60)), are always rational numbers. This is implied by the
following conjecture which we call the (strong) Atiyah Conjecture in view of
Atiyah’s question above.

Given a group G, let FIN (G) be the set of finite subgroups of G. Denote
by

1
|FIN (G)|Z ⊂ Q (10.1)

the additive subgroup of R generated by the set of rational numbers { 1
|H| |

H ∈ FIN (G)}.
Conjecture 10.2 (Strong Atiyah Conjecture). A group G satisfies the
strong Atiyah Conjecture if for any matrix A ∈ M(m,n,CG) the von Neu-
mann dimension of the kernel of the induced bounded G-operator

r
(2)
A : l2(G)m → l2(G)n, x 7→ xA

satisfies

dimN (G)

(
ker

(
r
(2)
A : l2(G)m → l2(G)n

))
∈ 1
|FIN (G)|Z.

We will explain in Subsection 10.1.4 that there are counterexamples to
the strong Atiyah Conjecture 10.2, but no counterexample is known at the
time of writing if one replaces 1

|FIN (G)|Z by Q or if one assumes that there
is an upper bound for the orders of finite subgroups of G.

In Subsection 10.1.1 we will give various reformulations of the Atiyah
Conjecture. In particular we will emphasize the module-theoretic point of
view which seems to be the best one for proving the conjecture for certain
classes of groups (see Lemma 10.7). This is rather surprising if one thinks
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about the original formulation of Atiyah’s question in terms of heat kernels.
On the other hand it gives some explanation for the strong Atiyah Conjecture
10.2. Roughly speaking, the strong Atiyah Conjecture 10.2 predicts that all
L2-Betti numbers for G are induced by L2-Betti numbers of finite subgroups
H ⊂ G. This is the same philosophy as in the Isomorphism Conjecture 9.40
for K0(CG) or in the Baum-Connes Conjecture for Ktop

∗ (C∗r (G)). We discuss
the relation of the Atiyah Conjecture to other conjectures like the Kaplansky
Conjecture in Subsection 10.1.2. We will give a survey on positive results
about the Atiyah Conjecture in Subsection 10.1.3.

In Section 10.2 we will discuss first a general strategy how to prove the
strong Atiyah Conjecture 10.2. Then we will explain the concrete form in
which the strategy will appear to prove the strong Atiyah Conjecture 10.2
for Linnell’s class of groups C.

In Section 10.3 we give the details of the proof of Linnell’s Theorem
10.19. The proof is complicated, but along the way one can learn a lot of
notions and techniques like transfinite induction, universal localization of
rings, division closure and rational closure, crossed products and G- and K-
theory. Knowledge of these concepts is not required for any other parts of the
book. To get a first impression of the proof, one may only consider the proof
in the case of a free group presented in Subsection 10.3.1 which can be read
without knowing any other material from this Chapter 10.

To understand this chapter, the reader is only required to be familiar with
Sections 1.1, 1.2 and 6.1.

10.1 Survey on the Atiyah Conjecture

In this section we formulate various versions of the Atiyah Conjecture, discuss
its consequences and a strategy for the proof.

10.1.1 Various Formulations of the Atiyah Conjecture

Conjecture 10.3 (Atiyah Conjecture). Let G be a group. Let F be a field
Q ⊂ F ⊂ C and let Z ⊂ Λ ⊂ R be an additive subgroup of R. We say that
G satisfies the Atiyah Conjecture of order Λ with coefficients in F if for any
matrix A ∈ M(m,n, FG) the von Neumann dimension (see Definition 1.10)
of the kernel of the induced bounded G-operator r

(2)
A : l2(G)m → l2(G)n, x 7→

xA satisfies

dimN (G)

(
ker

(
r
(2)
A : l2(G)m → l2(G)n

))
∈ Λ.

Notice that the strong Atiyah Conjecture 10.2 is the special case F = C
and Λ = 1

|FIN (G)|Z, where the choices of F and Λ are the best possible ones.
Sometimes we can only prove this weaker version for special choices of F and
Λ but not the strong Atiyah Conjecture 10.2 itself.
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Lemma 10.4. Let G be the directed union of the directed system {Gi | i ∈ I}
of subgroups. Then G satisfies the Atiyah Conjecture 10.3 of order Λ with
coefficients in F if and only if each Gi does. In particular a group G satisfies
the Atiyah Conjecture 10.3 of order Λ with coefficients in F if and only if
each finitely generated subgroup does.

Proof. Let A ∈ M(m, n, FGi). Then we conclude from Lemma 1.24

dimN (Gi)

(
ker

(
r
(2)
A : l2(Gi)m → l2(Gi)n

))

= dimN (G)

(
ker

(
r
(2)
A : l2(G)m → l2(G)n

))
.

For any A ∈ M(m, n, FG) there is Gi such that A already belongs to
M(m,n, FGi) because there are only finitely many elements in G which ap-
pear with non-trivial coefficient in one of the entries of A. A group G is the
directed union of its finitely generated subgroups. ut

We can reformulate the Atiyah Conjecture 10.3 for F = Q as follows.

Lemma 10.5. (Reformulation of the Atiyah Conjecture in terms of
L2-Betti numbers). Let G be a group. Let Z ⊂ Λ ⊂ R be an additive
subgroup of R. Then the following statements are equivalent:

(1) For any cocompact free proper G-manifold M without boundary we have

b(2)
p (M ;N (G)) ∈ Λ;

(2) For any cocompact free proper G-CW -complex X we have

b(2)
p (X;N (G)) ∈ Λ;

(3) The Atiyah Conjecture 10.3 of order Λ with coefficients in Q is true for
G.

Proof. (3) ⇒ (2) This follows from Additivity (see Theorem 1.12 (2)).

(2) ⇒ (3) Because of Lemma 10.4 and the equality b
(2)
p (G ×H Z;N (G)) =

b
(2)
p (Z;N (H)) for p ≥ 0, H ⊂ G and Z an H-CW -complex (see Theorem 6.54

(7)), we can assume without loss of generality that G is finitely generated.
Put Y =

∨g
i=1 S1. Choose an epimorphism f : π1(Y ) = ∗g

i=1Z→ G from the
free group on g generators to G. Let p : Y → Y be the G-covering associated
to f . Let A be an (m,n)-matrix over QG and let d ≥ 3 be an integer. Choose
k ∈ Z with k 6= 0 such that k ·A has entries in ZG. By attaching n copies of
G×Dd−1 to Y with attaching maps of the shape G×Sd−2 → G → Y and m
d-cells G×Dd one can construct a pair of finite G-CW -complexes (X, Y ) such
that the d-th differential of the cellular ZG-chain complex C∗(X) is given by
k ·A and the (d+1)-th differential is trivial. This follows from the observation
that the composition of the Hurewicz map πd−1(Xd−1) → Hd−1(Xd−1) with
the boundary map Hd−1(Xd−1) → Hd−1(Xd−1, Xd−2) is surjective since each



374 10. The Atiyah Conjecture

element of the cellular ZG-basis for Cd−1(X) = Hd−1(Xd−1, Xd−2) obviously
lies in the image of the composition above. Hence C

(2)
∗ (X) is a finite Hilbert

N (G)-chain complex such that H
(2)
d (C(2)

∗ (X)) = H
(2)
d (X;N (G)) is just the

kernel of r
(2)
k·A : l2(G)m → l2(G)n. Obviously r

(2)
k·A and r

(2)
A have the same

kernel. Hence dimN (G)

(
ker(r(2)

A )
)

= b
(2)
d (X;N (G)).

(1) ⇒ (2) Given a cocompact free proper G-CW -complex X of dimension n,
we can find an embedding of G\X in R2n+3 with regular neighborhood N
with boundary ∂N [445, chapter 3]. Then there is an (n + 1)-connected map
f : ∂N −→ G\X. Let f : ∂N → X be obtained by the pullback of X → G\X
with f . Then f is (n + 1)-connected and ∂N is a cocompact free proper
G-manifold without boundary. We get b

(2)
p (X;N (G)) = b

(2)
p (∂N ;N (G)) for

p ≤ n from Theorem 1.35 (1).
(2) ⇒ (1) This is obvious. This finishes the proof of Lemma 10.5. ut

Atiyah’s question [9, page 72], whether the L2-Betti numbers b
(2)
p (M ;N (G))

of a cocompact free proper Riemannian G-manifold M with G-invariant Rie-
mannian metric and without boundary are always rational numbers, has a
positive answer if and only if the Atiyah Conjecture 10.3 of order Λ = Q with
coefficients in F = Q is true for G. This follows from the L2-Hodge-de Rham
Theorem 1.59, the expression of the L2-Betti numbers in terms of the heat
kernel (see (1.60) and Theorem 3.136 (1)) and Lemma 10.5 above.

All examples of L2-Betti numbers of G-coverings of closed manifolds or
of finite CW -complexes, which have explicitly been computed in this book,
are consistent with the strong Atiyah Conjecture 10.2, provided that there is
an upper bound on the orders of finite subgroups of G. Without the latter
condition counterexamples do exist as we will explain in Remark 10.24.

One can rephrase the Atiyah Conjecture also in a more module-theoretic
fashion, where one emphasizes the possible values dimN (G)(N (G) ⊗FG M)
for FG-modules M . This point of view turns out to be the best one for proofs
of the Atiyah Conjecture. Recall that we have defined the von Neumann
dimension of any N (G)-module in Definition 6.6 (using Theorem 6.5).

Notation 10.6. Let G be a group and let F be a field with Q ⊂ F ⊂ C.
Define Λ(G,F )fgp, Λ(G,F )fp, Λ(G, F )fg or Λ(G,F )all respectively to be the
additive subgroup of R given by differences

dimN (G)(N (G)⊗FG M1)− dimN (G)(N (G)⊗FG M0),

where M0 and M1 run through all finitely generated projective FG-modules,
finitely presented FG-modules, finitely generated FG-modules or FG-modules
with dimN (G)(N (G)⊗FG Mi) < ∞ for i = 0, 1 respectively.

Lemma 10.7. (Reformulation of the Atiyah Conjecture in terms
of modules). A group G satisfies the Atiyah Conjecture of order Λ with
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coefficients in F if and only if Λ(G,F )fp ⊂ Λ, or equivalently, if and only if
for any finitely presented FG-module M

dimN (G)(N (G)⊗FG M) ∈ Λ.

Proof. Given a matrix A ∈ M(m, n, FG), let rA : FGm → FGn and
r
N (G)
A : N (G)m → N (G)n be the associated FG-homomorphism and N (G)-

homomorphism given by right multiplication with A. Since the tensor product
N (G)⊗FG− is right exact, coker

(
r
N (G)
A

)
is N (G)-isomorphic to N (G)⊗FG

coker(rA). We conclude from Additivity (see Theorem 6.7 (4b))

dimN (G)

(
ker

(
r
N (G)
A

))
= m− n + dimN (G) (N (G)⊗FG coker(rA)) . (10.8)

Since N (G) is semihereditary (see Theorem 6.5 and Theorem 6.7 (1)),
ker

(
r
N (G)
A

)
is finitely generated projective. We get from Theorem 6.24

dimN (G)

(
ker

(
r
N (G)
A

))
= dimN (G)

(
ker

(
r
(2)
A

))
. (10.9)

We conclude from (10.8) and (10.9) that dimN (G)

(
ker

(
r
(2)
A

))
belongs to Λ if

and only if dimN (G) (N (G)⊗FG coker(rA)) belongs to Λ since m−n ∈ Z ⊂ Λ.
ut

Lemma 10.10. Let G be a group and let F be a field with Q ⊂ F ⊂ C.

(1) We have 1
|FIN (G)|Z ⊂ Λ(G,F )fgp. If the Isomorphism Conjecture 9.40

for K0(CG) is true, we have 1
|FIN (G)|Z = Λ(G,F )fgp;

(2) Λ(G,F )fgp ⊂ Λ(G,F )fp ⊂ Λ(G,F )fg ⊂ Λ(G,F )all;
(3) Λ(G,F )fg ⊂ clos(Λ(G,F )fp), where the closure is taken in R;
(4) clos(Λ(G,F )fp) = clos(Λ(G,F )fg) = Λ(G,F )all.

Proof. (1) The image of the following composition

colimOr(G,FIN ) K0(FH) a−→ K0(FG) i−→ K0(N (G))
dimN(G)−−−−−→ R

is 1
|FIN (G)|Z, where a is essentially given by the various inclusions of the finite

subgroups H of G and is in the case F = C the assembly map appearing in
the Isomorphism Conjecture 9.40 for K0(CG), and i is a change of rings
homomorphism. This follows from the compatibility of the dimension with
induction (see Theorem 6.29 (2)) and the fact that dimN (H)(V ) = 1

|H| ·
dimC(V ) holds for a finitely generated N (H)-module for finite H ⊂ G. The

image of the composition K0(FG) i−→ K0(N (G))
dimN(G)−−−−−→ R is by definition

Λ(G,F )fgp.

(2) This is obvious.
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(3) Let M be a finitely generated FG-module. Choose an exact sequence⊕
i∈I FG

p−→ FGn → M → 0 for an appropriate n ∈ N and index set I.
For a finite subset J ⊂ I let MJ be the cokernel of the restriction of p to⊕

i∈J FG. We obtain a directed system of finitely presented FG-modules
{MJ | J ⊂ I, |J | < ∞} such that colimJ⊂I,|J|<∞MJ = M . We conclude
colimJ⊂I,|J|<∞N (G)⊗FG MJ = N (G)⊗FG M since N (G)⊗FG− has a right
adjoint and hence respects colimits. Each of the structure maps N (G) ⊗FG

MJ1 → N (G)⊗FG MJ2 for J1 ⊂ J2 ⊂ I with |J1|, |J2| < ∞ is surjective and
each FG-module MJ is finitely presented. Hence the claim follows since the
dimension is compatible with directed colimits (see Theorem 6.13 (2)).

(4) Let M be an FG-module. Let {Mi | i ∈ I} be the directed system of its
finitely generated submodules. Then M is colimi∈I Mi. Hence N (G)⊗FG M
is colimi∈I N (G) ⊗FG Mi. Because of Theorem 6.13 (2) and assertion (3) it
suffices to show that for any map f : M0 → M1 of finitely generated FG-
modules we have

dimN (G) (im (id⊗FGf : N (G)⊗FG M0 → N (G)⊗FG M1)) ∈ Λ(G,F )fg.

This follows from Additivity (see Theorem 6.7 (4b)) and the exact sequence

N (G)⊗FG M0
id⊗F Gf−−−−−→ N (G)⊗FG M1

id⊗F G pr−−−−−−→ N (G)⊗FG coker(f) → 0.ut

Remark 10.11. Let G be a group. Then 1
|FIN (G)|Z is closed in R if and

only if there is an upper bound on the orders of finite subgroups. Suppose
that there is such an upper bound. Then the least common multiple d of the
orders of finite subgroups is defined and

1
|FIN (G)|Z = {r ∈ R | d · r ∈ Z}

and by Lemma 10.7 and Lemma 10.10 the strong Atiyah Conjecture 10.2 is
equivalent to the equality

{r ∈ R | d · r ∈ Z} = Λ(G,C)fgp = Λ(G,C)fp = Λ(G,C)fg = Λ(G,C)all.

In particular the strong Atiyah Conjecture 10.2 for a torsionfree group G is
equivalent to the equality

Z = Λ(G,C)fgp = Λ(G,C)fp = Λ(G,C)fg = Λ(G,C)all.

Remark 10.12. Assume that G is amenable and that there is an upper
bound on the orders of finite subgroups of G. Then G satisfies the strong
Atiyah Conjecture 10.2 if and only if the image of the map

dimN (G) : G0(CG) → R, [M ] 7→ dimN (G)(N (G)⊗CG M)
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(see Theorem 6.7 (4e) and Theorem 9.64) is contained in (and hence equal to)
1

|FIN (G)|Z. Moreover, we conclude from Theorem 9.54 (8) and Lemma 10.10
(1) that the strong Atiyah Conjecture 10.2 holds for virtually poly-cyclic
groups G.

Example 10.13. Let A =
⊕

n∈Z Z/2. This abelian group is locally finite and
hence satisfies the Isomorphism Conjecture 9.40 for K0(CG) and by Lemma
10.4 the strong Atiyah Conjecture 10.2 . This implies

Z[1/2] =
1

|FIN (A)|Z = Λ(A,C)fgp = Λ(A,C)fp.

We want to show that each real number r ≥ 0 can be realized by r =
dimN (A)(N (A)⊗QA M) for a finitely generated QG-module M . This implies

Λ(A,C)fg = R

or, equivalently, that the map

dimN (A) : G0(CA) → R, [M ] 7→ dimN (A)(N (A)⊗CA M)

(see Theorem 6.7 (4e) and Theorem 9.64) is surjective. The image of its com-
position with the forgetful map f : K0(CA) → G0(CA) is Z[1/2]. In particular
we conclude that f is not surjective and G0(CA) is not countable.

Let An ⊂ A be the finite subgroup
⊕n−1

k=0 Z/2 of order 2n for n ≥ 1.
Denote by Nn ∈ QA the element 2−n · ∑a∈An

a. Let In and (Nn) be the
ideals of QA generated by the elements Nn −Nn−1 and Nn. Since NmNn =
Nmax{m,n}, we get a direct sum decomposition (Nn) ⊕ In = (Nn−1) Since
(Nn) is QG-isomorphic to QG⊗QAn Q for Q with the trivial An-action and
the dimension is compatible with induction (see Theorem 6.29 (2)), we get

dimN (A)(N (A)⊗QA In)
= dimN (A)(N (A)⊗QA (Nn−1))− dimN (A)(N (A)⊗QA (Nn))

=
1

|An−1| −
1
|An|

= 2−n.

Fix any number r ∈ [0, 1). Because it has a 2-adic expansion, we can find a
(finite or infinite) sequence of positive integers n1 < n2 < n3 < . . . such that

r =
∑

i≥1

2−ni =
∑

i≥1

dimN (A)(N (A)⊗QA Ini).

Let Pk ⊂ QA be the QA-submodule
∑k

i=1 Ini . By construction Pk =⊕k
i=1 Ini and Pk is a direct summand in QA. This implies
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dimN (A)(N (A)⊗QA QA/Pk) = 1−
k∑

i=1

2−ni .

Let P ⊂ QA be the union of the submodules Pk. Then N (A)⊗QA QA/P =
colimk→∞N (A)⊗QA QA/Pk. We conclude from Theorem 6.13 (2)

dimN (A)(N (A)⊗QA QA/P ) = 1−
∑

i≥1

2−ni = 1− r.

Since M = QAn ⊕ QA/P is a finitely generated QA-module and satisfies
dimN (A)(N (A)⊗QA M) = n + 1− r, the claim follows.

10.1.2 Relations of the Atiyah Conjecture to Other Conjectures

In this subsection we relate the Atiyah Conjecture to other conjectures.

Conjecture 10.14 (Kaplansky Conjecture). The Kaplansky Conjecture
for a torsionfree group G and a field F says that the group ring FG has no
non-trivial zero-divisors.

If G contains an element g of finite order n > 1, then x =
∑n

i=1 gi is a non-
trivial zero-divisor, namely x(n−x) = 0. Hence the Kaplansky Conjecture is
equivalent to the statement that, given a field F , a group G is torsionfree if
and only if FG has no non-trivial zero-divisors.

If G is a right-ordered torsionfree group and F is a field, then the Kaplan-
sky Conjecture is known to be true [302, Theorem 6.29 on page 101]), [310,
Theorem 4.1]. Delzant [140] deals with group rings of word-hyperbolic groups
and proves the Kaplansky Conjecture for certain word-hyperbolic groups.
Given a torsionfree group G, a weaker version of the Kaplansky Conjecture
predicts that FG has no non-trivial idempotents and a stronger version pre-
dicts that all units in FG are trivial, i.e. of the form λ ·g for λ ∈ F, λ 6= 0 and
g ∈ G [302, (6.20) on page 95]). For more information about the Kaplansky
Conjecture we refer for instance to [310, Section 4]. A proof of the next result
can also be found in [172].

Lemma 10.15. Let F be a field with Z ⊂ F ⊂ C and let G be a torsionfree
group. Then the Kaplansky Conjecture holds for G and the field F if the
Atiyah Conjecture 10.3 of order Λ = Z with coefficients in F is true for G.

Proof. Let x ∈ FG be a zero-divisor. Let r
(2)
x : l2(G) → l2(G) be given by

right multiplication with x. We get 0 < dimN (G)

(
ker(r(2)

x )
)
≤ 1 from The-

orem 1.12 (1) and (2). Since by assumption dimN (G)

(
ker(r(2)

x )
)
∈ Z, we

conclude dimN (G)

(
ker(r(2)

x )
)

= 1. Since ker(r(2)
x ) is closed in l2(G), Theo-

rem 1.12 (1) and (2) imply ker(r(2)
x ) = l2(G) and hence x = 0. ut
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Lemma 10.16. Let G be a torsionfree amenable group. Then the strong
Atiyah Conjecture 10.2 for G is equivalent to the Kaplansky Conjecture 10.14
for G and the field C.

Proof. Because of Lemma 10.15 it suffices to prove the strong Atiyah Con-
jecture 10.2, provided that the Kaplansky Conjecture 10.14 holds for G
and C. We first show for a CG-module M which admits an exact sequence
CGn c−→ CG → M → 0 that dimN (G)(N (G)⊗CG M) ∈ {0, 1}. Let C∗ be the
chain complex concentrated in dimension 1 and 0 with c as first differential.
We conclude from Lemma 1.18, Theorem 6.24 and the dimension-flatness of
N (G) over CG for amenable G (see Theorem 6.37)

dimN (G)(N (G)⊗CG M) = dimN (G)(coker(N (G)⊗CG c))

= dimN (G)(H
(2)
0 (l2(G)⊗CG C∗))

= dimN (G)(ker(∆0 : l2(G) → l2(G))
= dimN (G)(ker(N (G)⊗CG c∗c))
= dimN (G)(N (G)⊗CG ker(c∗c)).

Since c∗c : CG → CG is CG-linear and hence given by right multiplica-
tion with an element in CG, its kernel is either trivial or CG. This implies
dimN (G)(N (G) ⊗CG ker(c∗c)) ∈ {0, 1} and thus dimN (G)(N (G) ⊗CG M) ∈
{0, 1}.

In order to prove the strong Atiyah Conjecture 10.2 it suffices to show
for any finitely generated CG-module M that dimN (G)(N (G)⊗CG M) is an
integer. We proceed by induction over the number n of generators of M .
In the induction beginning n = 1 we can assume the existence of an exact
sequence

⊕
i∈I CG

p−→ CG → M . Given a finite subset J ∈ I, let MJ be
the cokernel of the restriction of p to

⊕
i∈J CG. Then dimN (G)(N (G) ⊗CG

MJ) ∈ {0, 1} by the argument above. We conclude as in the proof of Lemma
10.10 (3) that dimN (G)(N (G) ⊗CG M) ∈ {0, 1}. It remains to prove the
induction step from n to n+1. Obviously we can find a short exact sequence
of CG-modules 0 → L → M → N → 0 such that L is generated by one
element and N by n elements. By induction hypothesis dimN (G)(N (G)⊗CGL)
and dimN (G)(N (G) ⊗CG N) are integers. We conclude from Additivity (see
Theorem 6.7 (4b)) and dimension-flatness of N (G) over CG for amenable G
(see Theorem 6.37)

dimN (G)(N (G)⊗CGM) = dimN (G)(N (G)⊗CGL)+dimN (G)(N (G)⊗CGN).

Hence dimN (G)(N (G)⊗CG M) is an integer. ut
The result above follows also from [416, Theorem 2.2].
Suppose that there is an integer d such that the order of any finite sub-

group of G divides d and that the strong Atiyah Conjecture 10.2 holds for
G. Suppose furthermore that h(2)(G) < ∞ and hence χ(2)(G) is defined (see
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Definition 6.79). Theorem 6.99 (2) says that d · b(2)
p (G) ∈ Z holds for all p.

This implies

d · χ(2)(G) ∈ Z.

This is consistent with the result of Brown [69, Theorem IX.9.3 on page
257] that d · χ′(G) ∈ Z holds for a group G of finite homological type, i.e.
a group G of finite virtual cohomological dimension such that for any ZG-
module M , which is finitely generated as abelian group, Hi(G; M) is finitely
generated for all i ≥ 0. Here χ′(G) is defined by

χ′(G) =
1

[G : G0]
·
∑

p≥0

(−1)p rkZ(Hp(G0;Z)) (10.17)

for any torsionfree subgroup G0 ⊂ G of finite index [G : G0]. Namely, if G
contains a torsionfree subgroup G0 of finite index, which has a finite model
for BG, then both χ(2)(G) and χ′(G) are defined and agree. This follows
from Remark 6.81, where χ(2)(G) = χvirt(BG) is shown, and the fact that
χvirt(BG) = χ′(G) [69, page 247].

We will state, discuss and give some evidence for the Singer Conjecture
in Chapter 11. Because of the Euler-Poincaré formula (see Theorem 1.35 (2))
the Singer Conjecture implies for a closed aspherical manifold M that all the
L2-Betti numbers b

(2)
p (M̃) of its universal covering are integers, as predicted

by the strong Atiyah Conjecture 10.2 in combination with Lemma 10.5.
A link between the Atiyah Conjecture and the Baum-Connes Conjecture

will be discussed in Section 10.4. A connection between the Atiyah Conjecture
and the Isomorphism Conjecture 9.40 for K0(CG) has already been explained
in Lemma 10.10 (1). Notice that the Atiyah Conjecture is harder than the
Baum-Connes Conjecture and the Isomorphism Conjecture for K0(CG) in
the sense that it deals with finitely presented modules (see Lemma 10.7) and
not only with finitely generated projective modules.

10.1.3 Survey on Positive Results about the Atiyah Conjecture

In this subsection we state some cases, where the Atiyah Conjecture is known
to be true.

Definition 10.18 (Linnell’s class of groups C). Let C be the smallest class
of groups which contains all free groups and is closed under directed unions
and extensions with elementary amenable quotients.

We will extensively discuss the proof of the following theorem due to
Linnell [309, Theorem 1.5] later in this chapter.

Theorem 10.19 (Linnell’s Theorem). Let G be a group such that there
is an upper bound on the orders of finite subgroups and G belongs to C. Then
the strong Atiyah Conjecture 10.2 holds for G.
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The next result is a direct consequence of Theorem 13.3 (2), Theorem
13.31 (2) and Proposition 13.35 (1) which deal with the Approximation Con-
jecture 13.1.

Theorem 10.20. Let Z ⊂ Λ ⊂ R be an additive subgroup of R which is
closed in R. Let {Gi | i ∈ I} be a directed system of groups such that each
Gi belongs to the class G (see Definition 13.9) and satisfies the Atiyah Con-
jecture 10.3 of order Λ with coefficients in Q. Then both its colimit (= direct
limit) and its inverse limit satisfy the Atiyah Conjecture 10.3 of order Λ with
coefficients in Q.

The next definition and the next theorem, which is essentially a conse-
quence of the two Theorems 10.19 and 10.20 above by transfinite induction,
are taken from [463].

Definition 10.21. Let D be the smallest non-empty class of groups such that

(1) If p : G → A is an epimorphism of a torsionfree group G onto an elemen-
tary amenable group A and if p−1(B) ∈ D for every finite group B ⊂ A,
then G ∈ D;

(2) D is closed under taking subgroups;
(3) D is closed under colimits and inverse limits over directed systems.

Theorem 10.22. (1) If the group G belongs to D, then G is torsionfree and
the Atiyah Conjecture 10.3 of order Λ = Z with coefficients in F = Q is
true for G;

(2) The class D is closed under direct sums, direct products and free products.
Every residually torsionfree elementary amenable group belongs to D.

The fundamental group of compact 2-dimensional manifold M belongs to
C since it maps onto the abelian group H1(M) with a free group as kernel. If
π1(M) is torsionfree, it belongs also to D. This follows from the fact that a
finitely generated free group is residually torsionfree nilpotent [354, §2]. The
pure braid groups belong to D since they are residually torsionfree nilpo-
tent [180, Theorem 2.6]. The Atiyah Conjecture 10.3 of order Λ = Z with
coefficients in F = Q is also true for the braid group (see [313]). Positive
one-relator groups, i.e. one relator groups whose relation can be written as
a word in positive multiples of the generators, belong to D because they are
residually torsionfree solvable.

10.1.4 A Counterexample to the Strong Atiyah Conjecture

The lamplighter group L is defined by the semidirect product

L :=
⊕

n∈Z
Z/2o Z
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with respect to the shift automorphism of
⊕

n∈Z Z/2, which sends (xn)n∈Z
to (xn−1)n∈Z. Let e0 ∈

⊕
n∈Z Z/2 be the element whose entries are all zero

except the entry at 0. Denote by t ∈ Z the standard generator of Z which
we will also view as element of L. Then {e0t, t} is a set of generators for
L. The associated Markov operator M : l2(G) → l2(G) is given by right
multiplication with 1

4 · (e0t + t + (e0t)−1 + t−1). It is related to the Laplace
operator ∆0 : l2(G) → l2(G) of the Cayley graph of G by ∆0 = 4 · id−4 ·
M . The following result is a special case of the main result in the paper of
Grigorchuk and Żuk [230, Theorem 1 and Corollary 3] (see also [229]). An
elementary proof can be found in [143].

Theorem 10.23 (Counterexample to the strong Atiyah Conjecture).
The von Neumann dimension of the kernel of the Markov operator M of the
lamplighter group L associated to the set of generators {e0t, t} is 1/3. In
particular L does not satisfy the strong Atiyah Conjecture 10.2.

Notice that each finite subgroup of the lamplighter group L is a 2-group
and for any power 2n of 2 a subgroup of order 2n exists. Hence 1

|FIN (L)| ·Z =
Z[1/2] and we obtain a counterexample to the strong Atiyah Conjecture 10.2.
At the time of writing the author does not know of a counterexample to the
strong Atiyah Conjecture in the case, where one replaces 1

|FIN (L)Z by Q or
where one assumes the existence of an upper bound on the orders of finite
subgroups.

Remark 10.24. The lamplighter group L is a subgroup of a finitely pre-
sented group G such that any finite subgroup of G is a 2-group. By Theo-
rem 10.23 above and a slight variation of the proof of Lemma 10.5 we con-
clude the existence of a closed Riemannian manifold M with G = π1(M)
such that not all the L2-Betti numbers of its universal covering belong to

1
|FIN (π1(M))|Z = Z[1/2].

The group G is constructed as follows (see [229]). Let φ : L → L be the
injective endomorphism sending t to t and e0 to e0t

−1e0t. Let G be the HHN-
extension associated to the subgroups L and im(φ) of L and the isomorphism
φ : L → im(φ). This group G has the finite presentation

G = 〈e0, t, s | e2
0 = 1, [t−1e0t, e0] = 1, [s, t] = 1, s−1e0s = e0t

−1e0t〉.
The general theory of HHN-extensions implies that G contains L as a sub-
group, namely, as the subgroup generated by e0 and t and each finite sub-
group of G is isomorphic to a subgroup of L [350, Theorem 2.1 on page 182,
Theorem 2.4 on page 185].

Remark 10.25. For the lamplighter group L the Isomorphism Conjecture
9.40 is true, i.e. the assembly map

a : colimL/H⊂Or(L,FIN ) K0(CH) → K0(CL)
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is bijective.
We first prove surjectivity. A ring is called regular coherent , if any finitely

presented module has a finite projective resolution. For a finite group H the
rings CH and C[H × Z] are regular coherent. Given a commutative ring R,
any finitely presented R[

⊕
n∈Z Z/2]-module or R[(

⊕
n∈Z Z/2) × Z]-module

respectively is the induction of a finitely presented RH-module or R[H ×Z]-
module respectively for some finite subgroup H ⊂ ⊕

n∈Z Z/2. Hence the rings
C[

⊕
n∈Z Z/2] and C[(

⊕
n∈Z Z/2)× Z] are regular coherent. For a commuta-

tive ring R and automorphism α : R → R the change of rings homomorphism
K0(R) → K0(Rα[t, t−1]) is surjective, where Rα[t, t−1] is the ring of α-twisted
Laurent series over R, provided that R and R[Z] are regular coherent [508,
Corollary 13.4 and the following sentence on page 221]. This implies that
K0(C[

⊕
n∈Z Z/2]) → K0(CL) is surjective. Since

⊕
n∈Z Z/2 is locally finite,⊕

n∈Z Z/2 satisfies the Isomorphism Conjecture 9.40. This proves the surjec-
tivity of a : colimH⊂FIN (L) K0(CH) → K0(CL).

Next we prove injectivity. For finite subgroups H ⊂ K of L the inclusion
H → K is split injective, because both H and K are Z/2-vector spaces.
Therefore K0(CH) → K0(CK) is a split injection of finitely generated free
abelian groups. Hence colimH⊂FIN (L) K0(CH) is torsionfree. Since a⊗ZC is
injective by Theorem 9.54 (1), the assembly map a is injective.

We conclude for the lamplighter group L that Λ(G,C)fgp 6= Λ(G,C)fp.

10.2 A Strategy for the Proof of the Atiyah Conjecture

In this section we discuss a strategy for the proof of the strong Atiyah Con-
jecture 10.2. We begin with a general strategy. Although it cannot work in
full generality because of the counterexample presented in Subsection 10.1.4,
it is nevertheless very illuminating and is the basic guideline for proofs in
special cases. We will give some basic facts about localization in order to
formulate the result which we will prove and which implies Linnell’s The-
orem 10.19. After presenting some induction principles we will explain the
concrete form in which the strategy will appear to prove the strong Atiyah
Conjecture 10.2 for Linnell’s class of groups C. To get a first impression of the
proof, one may only consider the proof in the case of a free group presented
in Subsection 10.3.1 which can be read without knowing any other material
from this Chapter 10.

Linnell proves his Theorem 10.19 in [309, Theorem 1.5]. Our presentation
is based on the Ph. D. thesis of Reich [435].

10.2.1 The General Case

In this Subsection we discuss a general strategy for the proof of the strong
Atiyah Conjecture 10.2. We have introduced and studied the notion of a von
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Neumann regular ring in Subsection 8.2.2 and of the algebra U(G) in Defini-
tion 8.9 and Subsection 8.2.3. It suffices to recall for the sequel the following
facts. A ring is von Neumann regular if and only if any finitely presented R-
module is finitely generated projective (see Lemma 8.18). The algebra U(G) is
the Ore localization of N (G) with respect to the multiplicatively closed sub-
set of non-zero-divisors in N (G) (see Theorem 8.22 (1)). The algebra U(G) is
von Neumann regular (see Theorem 8.22 (3)). The explicit operator theoretic
definition U(G) will not be needed. The dimension function dimN (G) for ar-
bitrary N (G)-modules extends to a dimension function dimU(G) for arbitrary
U(G)-modules (see Theorem 8.29).

Lemma 10.26 (General Strategy). Let G be a group. Suppose that there
is a ring S(G) with CG ⊂ S(G) ⊂ U(G) which has the following properties:

(R’) The ring S(G) is von Neumann regular;
(K’) The image of the composition

K0(S(G)) i−→ K0(U(G))
dimU(G)−−−−−→ R

is contained in 1
|FIN (G)|Z, where i denotes the change of rings homo-

morphism.

Then G satisfies the strong Atiyah Conjecture 10.2.

Proof. Because of Lemma 10.7 it suffices to show for a finitely presented
CG-module M that dimN (G)(N (G) ⊗CG M) belongs to 1

|FIN (G)|Z . Since
S(G) is von Neumann regular, the finitely presented S(G)-module S(G)⊗CG

M is finitely generated projective (see Lemma 8.18) and hence defines a
class in K0(S(G)). The composition dimU(G) ◦i : K0(S(G)) → R has im-
age 1

|FIN (G)|Z by assumption and sends the class of S(G) ⊗CG M to
dimN (G)(N (G)⊗CG M) by Theorem 8.29. ut
Remark 10.27. The role of the ring-theoretic condition (R’) is to reduce
the problem from finitely presented modules to finitely generated projective
modules. Thus one can use K-theory of finitely generated projective modules.
The price to pay is that one has to enlarge CG to an appropriate ring S(G)
which is nicer than CG, namely, which is von Neumann regular. This will be
done by a localization process, namely, we will choose S(G) to be the division
closure of CG in U(G). This will be a minimal choice for S(G). Notice that
localization usually improves the properties of a ring and that in general CG
does not have nice ring theoretic properties. For instance CG is von Neumann
regular if and only if G is locally finite (see Example 8.21). No counterexample
is known to the conjecture that CG is Noetherian if and only if G is virtually
poly-cyclic. The implications G virtually poly-cyclic ⇒ CG regular ⇒ CG
Noetherian are proved in [447, Theorem 8.2.2 and Theorem 8.2.20]. In order
to be able to treat dimensions, the algebra U(G) comes in, which in contrast
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to N (G) does contain S(G). The passage from N (G) to U(G) does not cause
any problems since the dimension theory of N (G) extends to a dimension
theory for U(G) and the change of rings map K0(N (G)) → K0(U(G)) is
bijective (see Theorem 8.29 and Theorem 9.20 (1)).

Lemma 10.28. Let S(G) be a ring with CG ⊂ S(G) ⊂ U(G).

(1) Suppose that S(G) is semisimple. Then there is an upper bound on the
orders of finite subgroups of G;

(2) Suppose that S(G) satisfies the conditions (R’) and (K’) of Lemma 10.26
and that there is an upper bound on the orders of finite subgroups of G.
Then S(G) is semisimple;

(3) Suppose that G is torsionfree. Then S(G) is a skew field if and only if
S(G) satisfies the conditions (R’) and (K’) of Lemma 10.26. In this case
we get for any CG-module M

dimN (G)(N (G)⊗CG M) = dimU(G)(U(G)⊗CG M)
= dimS(G)(S(G)⊗CG M),

where dimS(G)(V ) for an S(G)-module V is defined to be n if V ∼=S(G)

S(G)n for a non-negative integer n and by ∞ otherwise.

Proof. (1) By Wedderburn’s Theorem the semisimple ring S(G) is a finite
product of matrix rings over skewfields. Since K0 is compatible with prod-
ucts and K0(D) ∼= Z for a skewfield D, the Morita isomorphism implies
that K0(S(G)) is a finitely generated free abelian group. Hence 1

|FIN (G)|Z
is finitely generated since it is contained in the image of the composition
dimU(G) ◦i : K0(S(G)) → R. If a1, a2, . . ., ar are generators for 1

|FIN (G)|Z,
we can find l ∈ Z such that l·ai ∈ Z for i = 1, 2 . . . , r. Hence l· 1

|FIN (G)|Z ⊂ Z.
Therefore l is an upper bound on the orders of finite subgroups of G.

(2) Let l be the least common multiple of the orders of finite subgroups of
G. By condition (K’) the image of the composition

K0(S(G)) → K0(U(G))
dimU(G)−−−−−→ R

lies in 1
l ·Z = {r ∈ R | l ·r ∈ Z}. We want to show that for any chain of ideals

{0} = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ir = S(G) of S(G) with Ii 6= Ii+1 we have r ≤ l.
Then S(G) is Noetherian and hence is semisimple by Lemma 8.20 (2).

Choose xi ∈ Ii with xi /∈ Ii−1 for 1 ≤ i ≤ r− 1. Let Ji be the ideal gener-
ated by x1, x2, . . ., xi for 1 ≤ i ≤ r−1. Then we obtain a sequence of finitely
generated ideals of the same length {0} = J0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂ Jr = S(G)
of S(G) with Ji 6= Ji+1. Since U(G) is von Neumann regular, Ji−1 is a direct
summand in Ji (see Lemma 8.18 (4)). Hence we get direct sum decomposi-
tions Ji = Ji−1 ⊕Ki for i = 1, 2, . . . , r for finitely generated projective non-
trivial S(G)-modules K1, K2, . . ., Kr. Choose an idempotent pi ∈ Mni(S(G))
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representing Ki. Then pi considered as an element Mni(U(G)) represents
U(G) ⊗S(G) Ki and is non-trivial. Hence U(G) ⊗S(G) Ki is a non-trivial
finitely generated projective U(G)-module. We conclude from Theorem 8.29
dimU(G)(U(G)⊗U(S) Ki) > 0 for i = 1, 2, . . . , r and hence

0 < dimU(G)(U(G)⊗S(G) J1) < dimU(G)(U(G)⊗S(G) J2)
< . . . < dimU(G)(U(G)⊗S(G) Jr−1) < 1.

Since l · dimU(G)(U(G) ⊗S(G) Ji) is an integer for i = 1, 2, . . . , r − 1, we get
r ≤ l.

(3) Suppose that S(G) satisfies conditions (R’) and (K’). By the argument
above S(G) is semisimple and contains no non-trivial ideal. Hence it is a skew
field. Recall that over a skew field S(G) any S(G)-module V is isomorphic
to

⊕
i∈I S(G) for some index set I. Now apply Theorem 8.29. Any skewfield

satisfies the conditions (R’) and (K’). This finishes the proof of Lemma 10.28.
ut

Example 10.29. Consider the free abelian group Zn of rank n. Let C[Zn](0)
be the quotient field of the commutative integral domain C[Zn]. By inspecting
Example 8.11 we see that C[Zn] ⊂ C[Zn](0) ⊂ U(Zn). By Lemma 10.28 (3) the
quotient field C[Zn](0) satisfies the conditions of Lemma 10.26. This proves
the strong Atiyah Conjecture 10.2 for Zn and that for any C[Zn]-module M

dimN (Zn)(N (Zn)⊗C[Zn] M) = dimC[Zn](0)(C[Zn](0) ⊗C[Zn] M)

holds. The reader should compare this with the explicit proof of Lemma 1.34,
which corresponds to the case of a finitely presented C[Zn]-module M .

Remark 10.30. Suppose that G is a torsionfree amenable group which
satisfies the Kaplansky Conjecture 10.14. We have already shown in Ex-
ample 8.16 that set S of non-zero-divisors of CG satisfies the Ore condi-
tion (see Definition 8.14) and that the Ore localization S−1CG is a skew
field. Recall from Theorem 8.22 (1) that U(G) is the Ore localization of
the von Neumann algebra N (G) with respect to the set of all non-zero-
divisors. A non-zero-divisor x of CG is still a non-zero-divisor when we
regard it as an element in N (G) by the following argument. Denote by
r
N (G)
x : N (G) → N (G) and rCG

x : CG → CG the maps given by right multi-
plication with x. The kernel of r

N (G)
x is a finitely generated projective N (G)-

module since N (G) is semihereditary (see Theorem 6.5 and Theorem 6.7 (1)).
We conclude dimN (G)(ker(rN (G)

x ) = dimN (G)(N (G)⊗CG ker(rCG
x )) from the

dimension-flatness of N (G) over CG for amenable G (see Theorem 6.37).
Since ker(rx) = {0}, Lemma 6.28 (3) implies that r

N (G)
x has trivial kernel and

hence x is a non-zero-divisor in N (G). We conclude CG ⊂ S−1C[G] ⊂ U(G).
Hence the strong Atiyah Conjecture 10.2 holds for G by Lemma 10.28 (3).
Notice that this gives a different proof of Lemma 10.16.
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Remark 10.31. We know already from Subsection 10.1.4 that the strong
Atiyah Conjecture 10.2 does not hold for arbitrary groups G. We think that
the extra condition that there is an upper bound on the order of finite sub-
groups of G is very important. Under this condition we see from Lemma 10.28
(2) that we can replace in Lemma 10.26 the condition (R’) that S(G) is von
Neumann regular by the stronger condition (R) that S(G) is semisimple. Ac-
tually, the proof of Linnell’s Theorem does only work if we use (R) instead
of (R’). ut

10.2.2 Survey on Universal Localizations and Division and
Rational Closure

We give some basic facts about universal localization and division and ratio-
nal closure.

Let R be a ring and Σ be a set of homomorphisms between (left) R-
modules. A ring homomorphism f : R → S is called Σ-inverting if for every
map α : M → N ∈ Σ the induced map S ⊗R α : S ⊗R M → S ⊗R N is
an isomorphism. A Σ-inverting ring homomorphism i : R → RΣ is called
universal Σ-inverting if for any Σ-inverting ring homomorphism f : R → S
there is precisely one ring homomorphism fΣ : RΣ → S satisfying fΣ ◦ i = f .
This generalizes Definition 8.13. If f : R → RΣ and f ′ : R → R′Σ are two
universal Σ-inverting homomorphisms, then by the universal property there
is precisely one isomorphism g : RΣ → R′Σ with g ◦ f = f ′. This shows
the uniqueness of the universal Σ-inverting homomorphism. The universal
Σ-inverting ring homomorphism exists if Σ is a set of homomorphisms of
finitely generated projective modules [465, Section 4]. If Σ is a set of matrices,
a model for RΣ is given by considering the free R-ring generated by the set
of symbols {ai,j | A = (ai,j) ∈ Σ} and dividing out the relations given in
matrix form by AA = AA = 1, where A stands for (ai,j) for A = (ai,j). The
map i : R → RΣ does not need to be injective and the functor RΣ ⊗R− does
not need to be exact in general.

Notation 10.32. Let S be a ring and R ⊂ S be a subring. Denote by T (R ⊂
S) the set of all elements in R which become invertible in S. Denote by
Σ(R ⊂ S) the set of all square matrices A over R which become invertible in
S.

A subring R ⊂ S is called division closed if T (R ⊂ S) = Rinv, i.e. any
element in R which is invertible in S is already invertible in R. It is called
rationally closed if Σ(R ⊂ S) = GL(R), i.e. any square matrix over R which
is invertible over S is already invertible over R. Notice that the intersection
of division closed subrings of S is again division closed, and analogously for
rationally closed subrings. Hence the following definition makes sense.

Definition 10.33 (Division and rational closure). Let S be a ring with
subring R ⊂ S. The division closure D(R ⊂ S) or rational closure R(R ⊂ S)
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respectively is the smallest subring of S which contains R and is division
closed or rationally closed respectively.

Obviously R ⊂ D(R ⊂ S) ⊂ R(R ⊂ S) ⊂ S. One easily checks D(D(R ⊂
S) ⊂ S) = D(R ⊂ S) and R(R(R ⊂ S) ⊂ S) = R(R ⊂ S). The rational
closure R(R ⊂ S) of R in S is the set of elements s ∈ S for which there is
a square matrix A over S and a matrix B over R such that AB = BA = 1
holds over S and s is an entry in A [118, section 7.1]. The easy proof of the
next two results is left to the reader (or see [435, Proposition 13.17]).

Lemma 10.34. Let S be a ring with subring R ⊂ S.

(1) If R is von Neumann regular, then R is division closed and rationally
closed in S;

(2) If D(R ⊂ S) is von Neumann regular, then D(R ⊂ S) = R(R ⊂ S).

Lemma 10.35. Let S be a ring with subring R ⊂ S.

(1) The map φ : RT (R⊂S) → S given by the universal property factorizes as

φ : RT (R⊂S)
Φ−→ D(R ⊂ S) ⊂ S;

(2) Suppose that the pair (R, T (R ⊂ S)) satisfies the (right) Ore condition
(see Definition 8.14). Then

RT (R⊂S) = RT (R ⊂ S)−1 = D(R ⊂ S),

i.e. the map given by the universal property RT (R⊂S)
j−→ RT (R ⊂ S)−1

is an isomorphism, and Φ : RT (R⊂S) → D(R ⊂ S) is an isomorphism;
(3) The map ψ : RΣ(R⊂S) → S given by the universal property factorizes as

ψ : RΣ(R⊂S)
Ψ−→ R(R ⊂ S) ⊂ S. The map Ψ : RΣ(R⊂S) → R(R ⊂ S) is

always surjective.

The map Ψ : RΣ(R⊂S) → R(R ⊂ S) is not always injective. (An example
will be given in the exercises.)

Lemma 10.36. Let Ri ⊂ Si ⊂ S be subrings for i ∈ I and R =
⋃

i∈I Ri

and S =
⋃

i∈I Si directed unions of rings. Suppose that all rings Si are von
Neumann regular. Then S is von Neumann regular and we obtain directed
unions

T (R ⊂ S) =
⋃

i∈I

T (Ri ⊂ Si);

Σ(R ⊂ S) =
⋃

i∈I

Σ(Ri ⊂ Si);

D(R ⊂ S) =
⋃

i∈I

D(Ri ⊂ Si);

R(R ⊂ S) =
⋃

i∈I

R(Ri ⊂ Si).
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Proof. One easily checks that S satisfies Definition 8.17 of von Neumann
regular.

Suppose that x ∈ R becomes invertible in S. Choose i ∈ I with x ∈ Ri.
Obviously x is not a zero-divisor in Si. Since Si is von Neumann regular, xi is
invertible in Si by Lemma 8.20 (1). This shows T (R ⊂ S) =

⋃
i∈I T (Ri ⊂ Si).

The proof of Σ(R ⊂ S) =
⋃

i∈I Σ(Ri ⊂ Si) is similar using the fact that
a matrix ring over a von Neumann ring is again von Neumann regular by
Lemma 8.19 (1).

Since Si is von Neumann regular, Lemma 10.34 (1) implies D(Ri ⊂ Si) =
D(Ri ⊂ S) ⊂ D(R ⊂ S) and hence

⋃
i∈I D(Ri ⊂ Si) ⊂ D(R ⊂ S).

Since
⋃

i∈I D(Ri ⊂ Si) =
⋃

i∈I D(Ri ⊂ S) is division closed in S, we get⋃
i∈I D(Ri ⊂ Si) = D(R ⊂ S). The proof for the rational closure is analo-

gous. ut

10.2.3 The Strategy for the Proof of Linnell’s Theorem

We will outline the strategy of proof for Linnell’s Theorem 10.19.

Notation 10.37. Let G be a group. Define D(G) to be the division closure
D(CG ⊂ U(G)) and R(G) to be the rational closure R(CG ⊂ U(G)) of CG
in U(G) (see Definition 10.33). We abbreviate T (G) = T (CG ⊂ U(G)) and
Σ(G) = Σ(CG ⊂ U(G)) (see Notation 10.32).

The ring D(G) will be our candidate for S(G) in Lemma 10.26. We con-
clude from Lemma 10.34 that any von Neumann regular ring S(G) with
CG ⊂ S(G) ⊂ U(G) satisfies D(G) ⊂ R(G) ⊂ S(G) and that D(G) = R(G)
holds if D(G) is von Neumann regular. Hence D(G) is a minimal choice for
S(G) in Lemma 10.26 and we should expect D(G) = R(G). In view of Re-
mark 10.31 we should also expect that D(G) is semisimple. The upshot of
this discussion is that, in order to prove Linnell’s Theorem 10.19, we will
prove the following

Theorem 10.38 (Strong version of Linnell’s Theorem). Let G be a
group in the class C (see Definition 10.18) such that there exists a bound on
the orders of finite subgroups. Then

(R) The ring D(G) is semisimple;
(K) The composition

colimG/H∈Or(G,FIN ) K0(CH) a−→ K0(CG) i−→ K0(D(G))

is surjective, where a is the assembly map appearing in the Isomorphism
Conjecture 9.40 for K0(CG) and essentially given by the various inclu-
sions of the finite subgroups of G, and i is a change of rings homomor-
phism.
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Notice that we have replaced the condition (K’) appearing in Lemma
10.26 by the stronger condition (K) above. The stronger condition gives bet-
ter insight in what is happening and also yields a connection to the Isomor-
phism Conjecture 9.40 for K0(CG). Namely, the surjectivity of the change of
rings map K0(CG) → K0(D(G)) is equivalent to the condition (K) provided
that the Isomorphism Conjecture 9.40 for K0(CG) holds.

We will prove in the strong version of Linnell’s Theorem 10.38 a statement
which implies the strong Atiyah Conjecture 10.2 by Lemma 10.26 but which
in general contains more information than the strong Atiyah Conjecture 10.2.
At least for torsionfree groups G the statement turns out to be equivalent to
the strong Atiyah Conjecture 10.2 by the next lemma.

Lemma 10.39. Let G be a torsionfree group. Then the strong Atiyah Conjec-
ture 10.2 is true if and only if D(G) is a skewfield. In this case D(G) = R(G)
and the composition

colimOr(G,FIN ) K0(CH) a−→ K0(CG) i−→ K0(D(G))

is surjective.

Proof. Suppose that D(G) is a skewfield. Then D(G) = R(G) follows
from Lemma 10.34 (2). Since any finitely generated module over a skew-
field is finitely generated free, the composition colimOr(G,FIN ) K0(CH) a−→
K0(CG) i−→ K0(D(G)) is surjective. The strong Atiyah Conjecture 10.2 fol-
lows from Lemma 10.26.

Now suppose that the strong Atiyah Conjecture 10.2 holds. We want to
show that R(G) is a skewfield. It suffices to show for any element x ∈ R(G)
with x 6= 0 that x is invertible in U(G), because then x is already invertible
in R(G) since R(G) is rationally closed in U(G). By Lemma 10.35 (3) there is
y ∈ CGΣ(G) which is mapped to x under the canonical ring homomorphism
Ψ : CGΣ(G) →R(G). Two square matrices A and B over a ring R are called
associated if there are invertible square matrices U and V and non-negative
integers m and n satisfying

U

(
A 0
0 Im

)
V =

(
B 0
0 In

)
.

For a set of matrices Σ over R, the universal Σ-inverting homomorphism
f : R → RΣ and s ∈ RΣ we can find a square matrix A over R such that
f(A) and s are associated in RΣ . This follows from Cramer’s Rule (see [465,
Theorem 4.3 on page 53]). If we apply this to y ∈ CGΣ(G) regarded as
(1, 1)-matrix and push forward the result to R(G) by Ψ , we obtain invertible
matrices U, V over R(G) and a matrix A over CG satisfying

U

(
x 0
0 Im−1

)
V = A.
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If we consider this over U(G), we conclude for the maps rx and rA induced
by right multiplication with x and A

dimU (im(rx : U(G) → U(G))+m−1 = dimU(G) (im(rA : U(G)m → U(G)m)) .

Since by assumption the strong Atiyah Conjecture 10.2 holds, Theorem 8.29
and Lemma 10.7 imply that dimU(G) (im (rA : U(G)m → U(G)m)) must be an
integer ≤ m and hence dimU (ker(rx : U(G) → U(G))) ∈ {0, 1}. Since x is by
assumption non-trivial and U(G) is von Neumann regular by Theorem 8.22
(3), the kernel of rx is trivial by Lemma 8.18 and Theorem 8.29. Hence x
must be a unit by Lemma 8.20 (1). Hence R(G) is a skewfield. Since D(G)
is division closed and contained in the skewfield R(G), D(G) is a skewfield.
We conclude D(G) = R(G) from Lemma 10.34 (2). This finishes the proof of
Lemma 10.39. ut

The rest of this chapter is devoted to the proof of the strong version
of Linnell’s Theorem 10.38. First of all we explain the underlying induction
technique.

Lemma 10.40 (Induction principle). Suppose that (P) is a property for
groups such that the following is true:

(1) (P) holds for any free group;
(2) Let 1 → H → G → Q → 1 be an extension of groups such that (P) holds

for H and Q is virtually finitely generated abelian, then (P) holds for G.
(3) If (P) holds for any finitely generated subgroup of G, then (P) holds for

G;

Then (P) holds for any group G in C.
If we replace condition (1) by the condition that (P) holds for the trivial

group, then (P) holds for any elementary amenable group G.

Proof. This follows from the following description of the class C and the class
EAM of elementary amenable groups respectively by transfinite induction in
[300, Lemma 3.1] and [309, Lemma 4.9]. Define for any ordinal α the class of
groups Dα as follows. Put D0 to be the class consisting of virtually free groups
or of the trivial group respectively. If α is a successor ordinal, define Dα to be
the class of groups G which fit into an exact sequence 1 → H → G → Q → 1
such that any finitely generated subgroup of H belongs to Dα−1 and Q is
either finite or infinite cyclic. If α is a limit ordinal, then Dα is the union of
the Dβ over all β with β < α. Then C or EAM respectively is

⋃
α>0Dα. ut

Lemma 10.40 is the reason why it sometimes is easier to prove a property
(P) for all elementary amenable groups than for all amenable groups. We
conclude from Lemma 10.40.

Lemma 10.41 (Plan of proof). In order to prove the strong version of
Linnell’s Theorem 10.38 and hence Linnell’s Theorem 10.19 it suffices to
show that the following statements are true:
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(1) Any free group G has the property (R), i.e. D(G) is semisimple;
(2) If 1 → H → G → Q → 1 is an extension of groups such that H has

property (R) and Q is finite, then G has property (R);
(3) If 1 → H → G → Q → 1 is an extension of groups such that H has

property (R) and Q is infinite cyclic, then G has property (R);
(4) Any virtually free group G has property (K), i.e. the composition

colimG/H∈Or(G,FIN ) K0(CH) a−→ K0(CG) i−→ K0(D(G))

is surjective;
(5) Let 1 → H → G → Q → 1 be an extension of groups. Suppose that for any

group H ′, which contains H as subgroup of finite index, properties (K)
and (R) are true. Suppose that Q is virtually finitely generated abelian.
Then (K) holds for G;

(6) Suppose that G is the directed union of subgroups {Gi | i ∈ I} such that
each Gi satisfies (K). Then G has property (K);

(7) Let G be a group such that there is an upper bound on the orders of finite
subgroups. Suppose that G is the directed union of subgroups {Gi | i ∈ I}
such that each Gi satisfies both (K) and (R). Then G satisfies (R).

Proof. We call two groups G and G′ commensurable if there exists subgroups
G0 ⊂ G and G′0 ⊂ G′ such that [G : G0] < ∞ and [G′ : G′0] < ∞ holds and
G0 and G′0 are isomorphic. In order to prove Lemma 10.41, it suffices to show
for any G ∈ C the following property:

(P)
If there is an upper bound on the orders of finite subgroups of G
and G0 is commensurable to G, then G0 satisfies (R) and (K).

This is done by proving the conditions in Lemma 10.40.
Since any group G which is commensurable with a free group is virtually

free, condition (1) of Lemma 10.40 follows from assumptions (1), (2) and (4)
in Lemma 10.41.

Let 1 → H → G → Q → 1 be an extension such that Q is virtually finitely
generated abelian, H has property (P) and there is an upper bound on the
orders of finite subgroups of G. Let G0 be any group which is commensurable
to G. Then one easily constructs an extension 1 → H0 → G0 → Q0 → 1 such
that H0 is commensurable to H and Q0 is commensurable to Q and hence
virtually finitely generated abelian. Then G0 satisfies (K) by assumption (5)
of Lemma 10.41. Moreover one can find a filtration of G0 by a sequence of
normal subgroups H0 = Gn ⊂ Gn−1 ⊂ . . . ⊂ G1 ⊂ G0 such that Gi/Gi−1

∼=
Z for 1 ≤ i ≤ n− 1 and G0/G1 is finite. The group G0 has property (R) by
assumptions (2) and (3) of Lemma 10.41. Hence G has property (P). This
proves condition (2) of Lemma 10.40.

Finally we prove condition (3) of Lemma 10.40. Suppose that there is an
upper bound on the orders of finite subgroups of G. Any finitely generated
subgroup of G0 is commensurable to a finitely generated subgroup of G.
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Hence G0 has properties (K) and (R) by assumptions (6) and (7) of Lemma
10.41. Now Lemma 10.41 follows from Lemma 10.40. ut
Remark 10.42. Notice that in the formulation of condition (P) in the proof
of Lemma 10.41 we have to build in the commensurable group G0 since we
cannot prove in general that a group G has property (K) if a subgroup
G0 ⊂ G of finite index has property (K).

In the statements (5) and (7) of Lemma 10.41 we need both (K) and (R)
to get a conclusion for (K) or (R) alone. Therefore we cannot separate the
proof of (K) from the one of (R) and vice versa.

If we would replace (R) by (R′) in Lemma 10.41, statement (7) remains
true if we omit the condition that there is an upper bound on the orders
of finite subgroups and that each Gi satisfies (K). We only need that each
Gi satisfies (R′) to prove that G satisfies (R′). This looks promising. The
problem is that we cannot prove statements (3) and (5) for (R′) instead
of (R). Namely, the proofs rely heavily on the assumption that D(H) is
Noetherian (see Goldie’s Theorem 10.61 and Moody’s Induction Theorem
10.67). Notice that a von Neumann regular ring is semisimple if and only
if it is Noetherian (see Lemma 8.20 (2)). The counterexample to the strong
Atiyah Conjecture given by the lamplighter group L (see Subsection 10.1.4)
actually shows that at least one of the statements (3) and (5) applied to
1 → ⊕

n∈Z Z/2 → L → Z→ 0 is wrong, if we replace (R) by (R′).
We can replace condition (K) by (K′) in Lemma 10.41 getting a weaker

conclusion in the strong version of Linnell’s Theorem 10.38. This still gives
the strong Atiyah Conjecture and the proof of statement (4) simplifies con-
siderably. But we prefer the stronger condition (K) because we get a stronger
result in strong version of Linnell’s Theorem 10.38.

10.3 The Proof of Linnell’s Theorem

This section is devoted to the proof that the conditions appearing in Lemma
10.41 are satisfied. Recall that then the strong version of Linnell’s Theorem
10.38 and hence Linnell’s Theorem 10.19 follow.

10.3.1 The Proof of Atiyah’s Conjecture for Free Groups

In this subsection we prove

Lemma 10.43. The strong Atiyah Conjecture 10.2 holds for any free group
G, i.e. for any matrix A ∈ M(m,n,CG) the von Neumann dimension of the
kernel of the induced bounded G-operator

r
(2)
A : l2(G)m → l2(G)n, x 7→ xA

satisfies
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dimN (G)

(
ker

(
r
(2)
A : l2(G)m → l2(G)n

))
∈ Z.

The proof uses the notion of a Fredholm module and is designed along
the new conceptual proof of the Kadison Conjecture for the free group F2

on two generators due to Connes [120, IV.5] (see also [166]). The Kadison
Conjecture says that there are no non-trivial idempotents in C∗r (G) for a
torsionfree group G. We begin with introducing Fredholm modules.

Let H be a Hilbert space. Given a Hilbert basis {bi | i ∈ I} and f ∈ B(H),
define tr(f) ∈ C to be

∑
i∈I〈f(bi), bi〉 if this sum converges. We say that f is of

trace class if tr(|f |) < ∞ holds for one (and then automatically for all) Hilbert
basis, where |f | is the positive part in the polar decomposition of f . (Notice
that this agrees with Definition 1.8 applied to |f | in the case G = {1}.) If f is
of trace class, then

∑
i∈I〈f(bi), bi〉 converges and defines a number tr(f) ∈ C

which is independent of the choice of Hilbert basis. We call f ∈ B(H) compact
if the closure of the image of the unit disk {x ∈ H | |x| ≤ 1} is compact.
We call f ∈ B(H) an operator of finite rank if the image of f is a finite
dimensional vector space. We denote by L0(H), L1(H), and K(H) the (two-
sided) ideal in B(H) of operators of finite rank, of operators of trace class
and of compact operators. Denote by Lp(H) = {f ∈ B(H) | |f |p ∈ L1(H)}
the Schatten ideal in B(H) for p ∈ [1,∞). Notice that L0(H) ⊂ L1(H) ⊂
Lq(H) ⊂ Lq′(H) ⊂ K(H) holds for 1 ≤ q ≤ q′. A ∗-algebra or algebra with
involution B is an algebra over C with an involution of rings ∗ : B → B, which
is compatible with the C-multiplication in the sense ∗(λ·b) = λ·∗(b) for λ ∈ C
and b ∈ B. We call a ∗-homomorphism ρ : B → B(H) a B-representation. Here
we do not require that ρ sends 1 ∈ B to idH ∈ B(H).

Definition 10.44. Let B ⊂ A be an arbitrary ∗-closed subalgebra of the
C∗-algebra A. For p ∈ {0} ∪ [1,∞) a p-summable (A,B)-Fredholm module
consists of two A-representations ρ± : A → B(H) such that ρ+(a)− ρ−(a) ∈
Lp(H) holds for each a ∈ B.

We will later construct a 0-summable Fredholm (N (G),CG)-module. The
next lemma follows using the equation

ρ+(ab)− ρ−(ab) = ρ+(a)(ρ+(b)− ρ−(b)) + (ρ+(a)− ρ−(a))ρ−(b).

Lemma 10.45. Let ρ± : A → B(H) be a p-summable (A,B)-Fredholm mod-
ule. Then

(1) For q ∈ {0} ∪ [1,∞) the set Aq = {a ∈ A | ρ+(a) − ρ−(a) ∈ Lq(H)} is
a ∗-subalgebra of A. For q ≤ q′ we have the inclusions A0 ⊂ A1 ⊂ Aq ⊂
Aq′ ⊂ A;

(2) The map
τ : A1 → C, a 7→ tr(ρ+(a))− tr(ρ−(a))

is linear and has the trace property τ(ab) = τ(ba);
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(3) Tensoring ρ± with the standard representation ρst of Mn(C) on Cn yields
a p-summable (Mn(A), Mn(B))-Fredholm module. We have Mn(Ap) ⊂
Mn(A)p.

To show that certain numbers are integers, the key ingredient will be the
following lemma.

Lemma 10.46. Let p, q ∈ B(H) be two projections with p−q ∈ L1(H). Then
tr(p− q) is an integer.

Proof. The operator (p − q)2 is a selfadjoint compact operator. We get a
decomposition of H into the finite dimensional eigenspaces of (p − q)2 [434,
Theorem IV.16 on page 203]

H = ker((p− q)2)⊕
⊕

λ 6=0

Eλ.

This decomposition is respected by both p and q since both p and q commute
with (p−q)2. Notice that ker(p−q) = ker((p−q)2). Next we compute the trace
of (p− q) with respect to a Hilbert basis which respects this decomposition

tr(p− q) =
∑

λ6=0

tr((p− q)|Eλ
) =

∑

λ 6=0

tr(p|Eλ
)− tr(q|Eλ

).

Each difference tr(p|Eλ
)− tr(q|Eλ

) is an integer, namely, the difference of the
dimensions of finite dimensional vector spaces dimC(p(Eλ)) − dimC(q(Eλ)).
Since the sum of these integers converges to the real number tr(p − q), the
claim follows. ut
Lemma 10.47. Let a, b ∈ B(H) be elements with a− b ∈ L0(H). Denote by
pker(a) and pker(b) the orthogonal projections onto their kernels. Then pker(a)−
pker(b) ∈ L0(H).

Proof. One easily checks that pker(a) and pker(b) agree on ker(a − b). Since
the orthogonal complement of ker(a − b) is finite dimensional because of
a− b ∈ L0(H), we conclude pker(a) − pker(b) ∈ L0(H). ut

In order to construct the relevant Fredholm module, we need some basic
properties of the free group F2 in two generators s1 and s2. The associated
Cayley graph is a tree with obvious F2-action. The action is free and transitive
on the set V of vertices. It is free on the set E of edges such that F2\E maps
bijectively to the set of generators {s1, s2}. Hence we can choose bijections
of F2-sets V ∼= F2 and E ∼= F2

∐
F2. We equip the Cayley graph with the

word-length metric. Then any to distinct points x and y on the Cayley graph
can be joined by a unique geodesic which will be denoted by x → y. On
x → y there is a unique initial edge init(x → y) on x → y starting at x. Fix
a base point x0 ∈ V . Define a map

f : V → E
∐
{∗} (10.48)
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by sending x to init(x → x0) if x 6= x0 and to ∗ otherwise. Notice for x 6= x0

that g init(x → x0) = init(gx → gx0) is different from init(gx → x0) if and
only if gx lies on gx0 → x0. This implies

Lemma 10.49. The map f is bijective and almost equivariant in the follow-
ing sense: For a fixed g ∈ F2 there is only a finite number of vertices x 6= x0

with gf(x) 6= f(gx). The number of exceptions is equal to the distance from
x0 to gx0.

It is shown in [141] that free groups are the only groups which admit maps
with properties similar to the one of f .

Let l2(V ) and l2(E) be the Hilbert spaces with the sets V and E as Hilbert
basis. We obtain isomorphisms of C[F2]-representations l2(V ) ∼= l2(F2) and
l2(V ) ∼= l2(F2)⊕ l2(F2) from the bijections V ∼= F2 and E ∼= F2

∐
F2 above.

Thus we can view l2(V ) and l2(E) as N (F2)-representations. Denote by C the
trivial N (F2)-representation for which ax = 0 for all a ∈ N (F2) and x ∈ C.
Denote by ρ+ : N (F2) → B(l2(V )) and by ρ : N (F2) → B(l2(E) ⊕ C) the
corresponding representations. The map f from (10.48) induces an isometric
isomorphism of Hilbert spaces F : l2(V )

∼=−→ l2(E) ⊕ C. Let ρ− : N (G) →
B(l2(V )) be defined by ρ−(a) = F−1 ◦ ρ(a) ◦ F .

Lemma 10.50. (1) We have for a ∈ N (F2)

trN (F2)(a) =
∑

x∈V

〈(ρ+(a)− ρ−(a))(x), x〉;

(2) The representations ρ+ and ρ− define a 0-summable (N (F2),C[F2])-
Fredholm module;

(3) We get trN (F2)(A) = τ(A) for A ∈ Mn(N (F2))1, if τ : Mn(N (F2))1 → R
is the map defined in Lemma 10.45 for the Fredholm module ρ± ⊗ ρst.

Proof. (1) We get for g ∈ F2 and x ∈ V with x 6= x0

〈(ρ+(g)− ρ−(g))(x0), x0〉 = trN (F2)(g);
〈(ρ+(g)− ρ−(g))(x), x〉 = 0.

By linearity we get the equations above for any a ∈ C[F2]. Recall that N (F2)
is the weak closure of C[F2] in B(l2(F2)). One easily checks that trN (F2)(a)
and 〈ρ+(a) − ρ−(a))(x), x〉 are weakly continuous functionals on a ∈ N (G)
for each x ∈ E. This implies for a ∈ N (F2) and x ∈ V with x 6= x0

〈(ρ+(a)− ρ−(a))(x0), x0〉 = trN (F2)(a);
〈(ρ+(a)− ρ−(a))(x), x〉 = 0.

Now assertion (1) follows by summing over x ∈ E.

(2) By Lemma 10.49 we have
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ρ+(g)(x) = gx = f−1(gf(x)) = ρ−(g)(x)

for all x ∈ V with a finite number of exceptions. Hence ρ+(g) − ρ−(g) has
finite rank for g ∈ F2. By linearity ρ+(a)−ρ−(a) has finite rank for a ∈ C[F2].

(3) This follows from (1) and Lemma 10.45 (3). ut
Now we are ready to prove Lemma 10.43.

Proof. Since any finitely generated free group occurs as a subgroup in F2

and any finitely generated subgroup of a free group is a finitely generated
free group, it suffices to prove the strong Atiyah Conjecture only for F2 by
Lemma 10.4. Since for any matrix B ∈ M(m,n,C[F2]) the matrix BB∗ is
a square matrix over C[F2] and ker

(
r
(2)
BB∗

)
= ker

(
r
(2)
B

)
holds, it suffices to

prove for each square matrix A ∈ Mn(C[F2])

dimN (F2)

(
ker

(
r
(2)
A : l2(F2)n → l2(F2)n

))
∈ Z.

Consider the 0-summable (N (F2),CF2)-Fredholm module of Lemma 10.50
(2). By 0-summability we know C[F2] ⊂ N (F2)0. From Lemma 10.45 (3) we
conclude Mn(C[F2]) ⊂ Mn(N (F2)0) ⊂ Mn(N (F2))0. Hence ρ+ ⊗ ρst(A) −
ρ− ⊗ ρst(A) is a finite rank operator. We conclude from Lemma 10.47 that
pker(ρ+⊗ρst(A))−pker(ρ−⊗ρst(A)) is of finite rank. Since up to the summand C we

are dealing with sums of regular representations, we get ρ+⊗ρst

(
p
ker(r

(2)
A )

)
=

pker(ρ+⊗ρst(A)) and ρ− ⊗ ρst

(
p
ker(r

(2)
A )

)
⊕ pCn = pker(ρ−⊗ρst(A)), where pCn

is the projection onto the summand Cn. Hence p
ker(r

(2)
A )

∈ Mn(N (F2))0 ⊂
Mn(N (F2))1. Lemma 10.50 (3) implies

dimN (F2)

(
ker

(
r
(2)
A

))
= trN (F2)

(
p
ker(r

(2)
A )

)
= τ

(
p
ker(r

(2)
A )

)
.

We conclude from Lemma 10.46 that τ
(
p
ker(r

(2)
A )

)
is an integer. This finishes

the proof of Lemma 10.43. ut
Lemma 10.39 and Lemma 10.43 imply

Lemma 10.51. Let G be a free group. Then D(G) is a skewfield and in
particular statement (1) in Lemma 10.41 holds.

We will give a different proof for the Atiyah Conjecture 10.3 of order Z
with coefficients in Q for any free group F in Example 13.5, which is based
on approximation techniques.

Remark 10.52. The strong Atiyah Conjecture 10.2 for a virtually free group
G follows if one knows it for free groups by the following argument. It suffices
to treat the case where G is finitely generated by Lemma 10.4. If d is the
least common multiple of the orders of finite subgroups of G, then one can
find a finitely generated free subgroup F ⊂ G of index d. For a proof of this
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well-known fact we refer for instance to [24, Theorem 8.3 and Theorem 8.4],
[461, Theorem 5 in Section 7 on page 747]. For any matrix A ∈ M(m, n,CG)
we get from Theorem 1.12 (6)

dimN (G)(ker(r(2)
A )) =

1
d
· dimN (F )(ker(r(2)

A )).

10.3.2 Survey on Crossed Products

In this subsection we will introduce the concept of crossed product which we
will need later.

Let R be a ring and let G be a group. Suppose that we are given maps of
sets c : G → aut(R), g 7→ cg and τ : G×G → Rinv satisfying

cτ(g,g′) ◦ cgg′ = cg ◦ cg′ ;
τ(g, g′) · τ(gg′, g′′) = cg(τ(g′, g′′)) · τ(g, g′g′′)

for g, g′, g′′ ∈ G, where cτ(g,g′) : R → R is conjugation with τ(g, g′), i.e. it
sends r to τ(g, g′)rτ(g, g′)−1. Let R∗G = R∗c,τ G be the free R-module with
the set G as basis. It becomes a ring with the following multiplication


∑

g∈G

λgg


 ·

(∑

h∈G

µhh

)
=

∑

g∈G




∑

g′,g′′∈G,
g′g′′=g

λg′cg′(µg′′)τ(g′, g′′)


 g.

This multiplication is uniquely determined by the properties g · r = cg(r) · g
and g · g′ = τ(g, g′) · (gg′). The two conditions above relating c and τ are
equivalent to the condition that this multiplication is associative. We call
R ∗G = R ∗c,τ G the crossed product of R and G with respect to c and τ .

Example 10.53. Let 1 → H
i−→ G

p−→ Q → 1 be an extension of groups.
Let s : Q → G be a map satisfying p ◦ s = id. We do not require s to
be a group homomorphism. Let R be a commutative ring. Define c : Q →
aut(RH) by cq(

∑
h∈H λhh) =

∑
h∈H λhs(q)hs(q)−1. Define τ : Q × Q →

(RH)inv by τ(q, q′) = s(q)s(q′)s(qq′)−1. Then we obtain a ring isomorphism
RH ∗Q → RG by sending

∑
q∈Q λqq to

∑
q∈Q i(λq)s(q), where i : RH → RG

is the ring homomorphism induced by i : H → G. Notice that s is a group
homomorphism if and only if τ is constant with value 1 ∈ R.

Example 10.54. Let φ : R → R be a ring automorphism. Fix a generator
t ∈ Z. Define c : Z → aut(R) by c(tn) = φn and let τ : Z × Z → Rinv be the
constant map with value 1. Then R ∗c,τ Z is the φ-twisted Laurent ring and
sometimes denoted by R[t, t−1]φ. Given any other data c : Z → aut(R) and
τ : Z× Z→ Rinv for a crossed product structure, there is an isomorphism of
rings
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R[t, t−1]φ
∼=−→ R ∗c,τ Z

which sends
∑

n∈Z λntn to
∑

n∈Z (λnrn) tn, where

rn = τ(t, t)τ(t2, t) . . . τ(tn−1, t) for n ≥ 2;
rn = 1 for n = 0, 1;
rn = τ(t−1, t)ct−1(τ(t−1, t))τ(t−1, t−1) . . .

ctn+1(τ(t−1, t))τ(tn+1, t−1) for n ≤ −2.

The crossed product R ∗c,τ G has the following universal property. Let S
be a ring together with a map ν : G → Sinv. Denote by τν : G × G → Sinv

the map which sends (g, g′) to ν(g)ν(g′)ν(gg′)−1. Suppose that we are given
a ring homomorphism f : R → S satisfying cν(g) ◦ f = f ◦ cg and τν = f ◦ τ ,
where cν(g) : S → S sends s to ν(g)sν(g)−1. Then there is exactly one ring
homomorphism called crossed product homomorphism F = f∗ν id : R∗c,τ G →
S with the properties that F (r) = f(r) for r ∈ R and F (g) = ν(g). It sends∑

g∈G λgg to
∑

g∈G f(λg)ν(g).
If R∗c,τ G is another crossed product and f : R → R a ring homomorphism

satisfying cg ◦ f = f ◦ cg and τ = f ◦ τ , then by the universal property
above there is exactly one ring homomorphism, also called crossed product
homomorphism, F = f ∗id : R∗c,τ G → R∗c,τ G which in uniquely determined
by the properties that F (r) = f(r) for r ∈ R and F (g) = g for g ∈ G.

Next we collect the basic properties of crossed products which we will need
later. Recall that a ring R is (left) Artinian if any descending sequence of
finitely generated (left) R-modules M1 ⊃ M2 ⊃ M2 ⊃ . . . becomes stationary,
i.e. there is an integer n with Mm = Mm+1 for m ≥ n. A ring R is (left)
Noetherian if any ascending sequence of finitely generated (left) R-modules
becomes stationary. It suffices to check these condition for ideals. A ring R is
(left) Noetherian if and only if any submodule of a finitely generated (left) R-
module is again finitely generated. A ring R is semiprime if for any two-sided
ideal I ⊂ R the implication I2 = {0} ⇒ I = {0} holds. For more information
about these notions we refer for instance to [448].

Lemma 10.55. Let R ∗G be a crossed product. Then

(1) If R is Artinian and G is finite, then R ∗G is Artinian;
(2) If R is Noetherian and G is virtually poly-cyclic, then R∗G is Noetherian;
(3) If R is semisimple of characteristic 0, then R ∗G is semiprime;
(4) If R is semisimple of characteristic 0 and G is finite, then R ∗ G is

semisimple.

Proof. (1) An ascending chain of finitely generated R ∗ G-modules can be
viewed as an ascending chain of finitely generated R-modules since G is by
assumption finite. Hence it is stationary since R is Artinian by assumption.

(2) The same argument as in the proof of assertion (1) shows that R ∗ G is
Noetherian if R is Noetherian and G is finite. A virtually poly-cyclic group



400 10. The Atiyah Conjecture

can be obtained by iterated extensions with infinite cyclic groups or finite
groups as quotient. If G is an extension 1 → H → G → Q → 1, one gets
R ∗ G ∼= (R ∗ H) ∗ Q. Hence it remains to treat the case where Q = Z. By
Example 10.54 it suffices to show that the twisted Laurent ring R[t, t−1]φ is
Noetherian for an automorphism φ : R → R of a Noetherian ring R. This
follows from [446, Proposition 3.1.13 on page 354, Proposition 3.5.2 on page
395].

(3) This follows from [417, Theorem I].

(4) A ring is semiprime and Artinian if and only if it is semisimple [448,
Theorem 2.3.10 on page 139]. Now apply assertions (2) and (3). ut
Lemma 10.56. Let R ⊂ S be an inclusion of rings and let R ∗ G → S ∗ G
be an inclusion of crossed products.

(1) The subring of S ∗G generated by D(R ⊂ S) and G in S ∗G is a crossed
product D(R ⊂ S) ∗ G such that R ∗ G ⊂ D(R ⊂ S) ∗ G is an inclusion
of crossed products. The analogous statement holds for R(R ⊂ S);

(2) Let Σ be a set of matrices of R which is invariant under the automor-
phisms cg : R → R for all g ∈ G. Let i : R → RΣ be universal Σ-
inverting. Then c : G × G → aut(R) induces cΣ : G → aut(RΣ) such
that i ◦ cg = cΣ

g ◦ i holds for all g ∈ G and the map of crossed products
i ∗G : R ∗G → RΣ ∗G is universal Σ-inverting.

Proof. (1) Since R ∗ G ⊂ S ∗ G is by assumption an inclusion of crossed
products, we get for the crossed product structure maps cR : G → aut(R),
τR : G×G → Rinv, cS : G → aut(S) and τS : G×G → Sinv that cS

g : S → S

induces cR
g : R → R and τR = τS . By the universal property of the division

closure cS
g induces also an automorphism c

D(R⊂S)
g : D(R ⊂ S) → D(R ⊂

S). Thus we can form the crossed product D(R ⊂ S) ∗ G with respect to
cD(R⊂S) : G × G → aut(D(R ⊂ S)) and τD(R⊂S) : G × G → D(R ⊂ S)inv,
where τD(R⊂S) is given by τR. There is an obvious map from D(R ⊂ S) ∗G
to S ∗ G whose image is the subring generated by D(R ⊂ S) and G. One
easily checks that it is injective since S ∗ G is the free S-module with G as
basis.

(2) The extension cΣ exists by the universal property of i : R → RΣ since
cg(Σ) = Σ holds for g ∈ G by assumption. From the universal property of
the crossed product we deduce that i ∗ G is universal Σ-inverting, since i is
universal Σ-inverting by assumption. ut

We conclude from Lemma 10.56 (using Notation 10.37)

Lemma 10.57. Let 1 → H → G → Q → 1 be an extension of groups. Let
s : Q → G be a set-theoretic section.

(1) The subring of U(G) generated by D(H) and s(Q) is a crossed product
D(H) ∗Q such that
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CG = CH ∗Q ⊂ D(H) ∗Q ⊂ U(H) ∗Q ⊂ U(G)

is given by inclusions of rings or crossed products. The analogous state-
ment holds for R(H);

(2) If CH → R(H) is universal Σ(H)-inverting, then CG = CH ∗ Q →
R(H) ∗Q is universal Σ(H)-inverting;

Lemma 10.58. Let 1 → H → G → Q → 1 be an extension of groups. Then

D(D(H) ∗Q ⊂ U(G)) = D(G);
R(R(H) ∗Q ⊂ U(G)) = R(G);

Proof. Since U(H) is von Neumann regular (see Theorem 8.22 (3)) and hence
division closed and rationally closed by Lemma 10.34 (1), we get an inclusion

D(H) = D(CH ⊂ U(H)) = D(CH ⊂ U(G)) ⊂ D(CG ⊂ U(G)) = D(G).

Fix a set-theoretic section s : Q → G. Since D(H) ∗ Q can be viewed as the
subring of U(G) generated by D(H) and s(Q) by Lemma 10.57 (1) and s(Q)
lies in D(G), we get D(H) ∗Q ⊂ D(G). This implies D(D(H) ∗Q ⊂ U(G)) ⊂
D(D(G) ⊂ U(G)) = D(G). Since D(G) = D(CG ⊂ U(G)) = D(CH ∗ Q ⊂
U(G)) ⊂ D(D(H) ∗ Q ⊂ U(G)) obviously holds, Lemma 10.58 follows for
D(G). The proof for R(G) is analogous. ut

10.3.3 Property (R) Ascends to Finite Extensions

Lemma 10.59. Statement (2) in Lemma 10.41 is true, i.e. if 1 → H →
G → Q → 1 is an extension of groups such that D(H) is semisimple and Q
is finite, then D(G) is semisimple. Moreover, D(G) agrees with D(H) ∗Q.

Proof. We conclude from Lemma 10.55 (4) that D(H) ∗Q is semisimple. In
particular D(H) ∗ Q is von Neumann regular. From Lemma 10.34 (1) and
Lemma 10.58 we conclude D(G) = D(H) ∗Q. ut

10.3.4 Property (R) Ascends to Extensions by Infinite Cyclic
Groups

This subsection is devoted to the proof of

Lemma 10.60. Statement (3) in Lemma 10.41 is true, i.e. if 1 → H →
G → Z → 1 is an extension of groups such that D(H) is semisimple, then
D(G) is semisimple. Moreover, NZD(D(H) ∗Z) = T (D(H) ∗Z ⊂ U(G)), the
Ore localization (D(H) ∗ Z)NZD(D(H) ∗ Z)−1 exists and is isomorphic to
D(G).
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Here and elsewhere NZD(R) denotes the set of non-zero-divisors of a
ring R. Its proof needs the following ingredients. We will fix throughout this
subsection an extension 1 → H → G → Z → 1 together with a section
s : Z→ G which is a group homomorphism.

Theorem 10.61 (Goldie’s Theorem). Let R be a Noetherian semiprime
ring. Then (R, NZD(R)) satisfies the Ore condition and the Ore localization
R NZD(R)−1 is semisimple.

Proof. [119, Section 9.4]. ut
We will need the following consequence

Lemma 10.62. Let R be a semisimple ring. Let R ∗ Z be a crossed product
which is contained in the ring S. Suppose that NZD(R ∗ Z) = T (R ∗ Z ⊂ S).
Then the Ore localization (R ∗ Z)NZD(R ∗ Z)−1 exists, is a semisimple ring
and embeds into S as the division closure D(R ∗ Z ⊂ S).

Proof. Since R∗Z is Noetherian and semiprime by Lemma 10.55, we conclude
from Goldie’s Theorem 10.61 that the Ore localization (R ∗Z)NZD(R ∗Z)−1

exists and is semisimple. By Lemma 10.35 (2) (R ∗ Z) NZD(R ∗ Z)−1 is iso-
morphic to D(R ∗ Z ⊂ S). ut
Theorem 10.63. Suppose that the first non-vanishing coefficient of the Lau-
rent polynomial f(z) ∈ N (H) ∗ Z is a non-zero-divisor in N (H). Then f is
a non-zero-divisor in N (H) ∗ Z.

Proof. This is a special case of [308, Theorem 4]. ut
We will need the following conclusion of Theorem 10.63 above.

Lemma 10.64. Suppose that f(z) ∈ U(H) ∗Z is of the form 1 + a1z + . . . +
anzn. Then f is invertible in U(G).

Proof. Recall from Theorem 8.22 (1) that U(H) is the Ore localization of
N (H) with respect to the set of non-zero-divisors in N (H). Hence we can
find a non-zero-divisor s ∈ N (H) and g(z) ∈ N (H) ∗ Z such that f(z) =
s−1g(z). The first non-vanishing coefficient of g(z) is s. By Theorem 10.63
above g(z) is a non-zero-divisor in N (G) and hence a unit in U(G). Therefore
f(z) = s−1g(z) is a unit in U(G). ut

Finally we will need

Lemma 10.65. Let R be a semisimple ring. Let R ∗ Z be a crossed product
which is contained in the ring S. Suppose that polynomials of the form f(z) =
1 + a1z + . . . + anzn in R ∗ Z become invertible in S. Then NZD(R ∗ Z) =
T (R ∗ Z ⊂ S).

Before we give the proof of Lemma 10.65, we explain how the main result
of this subsection Lemma 10.60 follows from the results above. By assumption
D(H) is semisimple. Lemma 10.64 ensures that the assumptions of Lemma
10.65 are satisfied for R = D(H) and S = U(G). Hence NZD(D(H) ∗ Z) =
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T (D(H)∗Z ⊂ U(G)). Lemma 10.62 implies that the Ore localization (D(H)∗
Z)NZD(D(H) ∗ Z)−1 exists, is semisimple and agrees with D(D(H) ∗ Z ⊂
U(G)). Since D(D(H) ∗ Z ⊂ U(G)) is D(G) by Lemma 10.58, Lemma 10.60
follows.

It remains to prove Lemma 10.65. Recall that by Wedderburn’s Theorem
[302, Theorem 3.5 in Chapter I on page 35] any semisimple ring R can be
written as a finite product

∏r
i=1 Mni

(Di) of matrix rings over skewfields Di.
We begin with the case where R itself is a skewfield. Then any non-zero

element in R ∗ Z can be written up to multiplication with a unit in R and
an element of the form zn in the form f(z) = 1 + a1z + . . . + anzn. Hence it
is invertible by assumption in S. This proves NZD(R ∗ Z) = T (R ∗ Z ⊂ S)
provided that R is a skewfield.

Next we treat the case where R looks like Mn(D) for a skewfield D. We
first change the given crossed product structure (c, τ) to a better one by a
construction similar to the one in Example 10.54. We can write ct : Mn(D) →
Mn(D) as a composition cu ◦Mn(θ) for some u ∈ Mn(D) and automorphism
θ : D → D, where cu is conjugation with u and Mn(θ) is given by applying θ
to each entry of a matrix [277, Theorem 8 on page 237]. Define a new crossed
product structure c : Z → aut(Mn(D)) and τ : Z × Z → Mn(D) by ctn =
(u−1 ◦ ct)n and τ(ta, tb) = 1. Notice that Mn(D) ∗c,τ Z and Mn(D) ∗c,τ Z are
isomorphic. In the sequel we will use the new crossed product structure given
by c and τ . Notice that the assumption about polynomials is invariant under
this change of crossed product structure since 1 + a1t + . . . + antn becomes
with respect to the new crossed product structure r0 + a1r1t + . . . + anrntn

for appropriate elements r0, r1, . . ., rn in Mn(D)inv.
In the sequel we consider D ⊂ Mn(D) by the diagonal embedding which

sends d ∈ D to the diagonal matrix whose diagonal entries are all d. The
crossed product structure on Mn(D) induces one on D and we obtain an
inclusion of crossed products D ∗ Z ⊂ Mn(D) ∗ Z. In particular D ∗ Z be-
comes a subring of S because by assumption Mn(D) ∗ Z ⊂ S. Since D is
a skewfield, we know already NZD(D ∗ Z) = T (D ∗ Z ⊂ S). By Lemma
10.62 the Ore localization (D ∗ Z)NZD(D ∗ Z)−1 exists, is semisimple and
embeds into S. In the sequel we identify D ∗ Z as a subring of Mn(D ∗ Z)
by the diagonal embedding. Since NZD(D ∗ Z) ⊂ D ∗ Z satisfies the Ore
condition, one easily checks that NZD(D ∗ Z) ⊂ Mn(D ∗ Z) satisfies the
Ore condition and the inclusion Mn(D ∗ Z) ⊂ S is NZD(D ∗ Z)-inverting
and hence induces a homomorphism Mn(D ∗ Z)NZD(D ∗ Z)−1 → S. It is
injective since Mn(D ∗ Z) ⊂ S and (D ∗ Z)NZD(D ∗ Z)−1 ⊂ S are injec-
tive. Hence we get an embedding Mn(D ∗ Z)NZD(D ∗ Z)−1 ⊂ S. Consider
x ∈ NZD(Mn(D) ∗ Z). It is a non-zero-divisor when considered in the Ore
localization Mn(D ∗ Z)NZD(D ∗ Z)−1. Since Mn(D ∗ Z) NZD(D ∗ Z)−1 =
Mn

(
(D ∗ Z)NZD(D ∗ Z)−1

)
is von Neumann regular by Lemma 8.19 (1),

any non-zero-divisor in Mn(D ∗ Z)NZD(D ∗ Z)−1 is invertible by Lemma
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8.20 (1). Hence x becomes invertible in Mn(D ∗ Z)NZD(D ∗ Z)−1 and in
particular in S. This shows NZD(Mn(D) ∗ Z) = T (Mn(D) ∗ Z ⊂ S).

Finally it remains to treat the general case R =
∏r

i=1 Mni(Di). We will
equip R∗Z with the crossed product structure constructed in Example 10.54
for an appropriate automorphism φ : R → R. An automorphism of R per-
mutes the factors Mni(R). Hence we can find a positive integer m such that
φm leaves the various factors invariant and can be written as

∏r
i=1 φi for

appropriate automorphisms φi : Mni(Di) → Mni(Di). This induces decom-
positions

R ∗mZ =
r∏

i=1

(Mni
(Di) ∗ Z) ;

NZD(R ∗mZ) =
r∏

i=1

NZD(Mni
(Di) ∗ Z) ;

T (R ∗mZ ⊂ S) =
r∏

i=1

T (Mni(Di) ∗ Z ⊂ S) ;

We have already proved NZD (Mni(Di) ∗ Z) = T (Mni(Di) ∗ Z ⊂ S) for i =
1, 2 . . . r. This implies NZD(R ∗ mZ) = T (R ∗ mZ ⊂ S). We conclude from
Lemma 10.62 that the Ore localization (R ∗ mZ)NZD(R ∗ mZ)−1 exists,
is semisimple and embeds as the division closure D(R ∗ mZ ⊂ S) into S.
One easily checks that

(
(R ∗mZ)NZD(R ∗mZ)−1

) ∗ Z/m is isomorphic to
((R ∗mZ) ∗ Z/m)NZD(R ∗mZ)−1. We conclude from Lemma 10.55 (4) that
((R ∗mZ) ∗ Z/m)NZD(R ∗ mZ)−1 is semisimple. Since R ∗ Z agrees with
(R ∗ mZ) ∗ Z/m and R ∗ Z ⊂ S by assumption, we get inclusions R ∗ Z ⊂
(R∗Z)NZD(R∗mZ)−1 ⊂ S and (R∗Z)NZD(R∗mZ)−1 is semisimple. Since
any non-zero-divisor in R ∗ Z is a non-zero-divisor in the Ore localization
(R ∗ Z)NZD(R ∗mZ)−1 and any non-zero-divisor in a semisimple ring is a
unit, we get NZD(R ∗ Z) = T (R ∗ Z ⊂ S). This finishes the proof of Lemma
10.65 and hence of Lemma 10.60. ut

10.3.5 Property (K) and Extensions by Virtually Finitely
Generated Abelian Groups

The main result of this section will be

Lemma 10.66. The statement (5) in Lemma 10.41 is true.

Again the proof will need some preparation. The main ingredient will be
the next result. For its proof we refer to [383], [384], or to [112], [188] and [418,
Chapter 8]. We have introduced the Grothendieck group of finitely generated
R-modules G0(R) in Definition 9.11.
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Theorem 10.67 (Moody’s Induction Theorem). Let R be a Noethe-
rian ring and Q be a virtually finitely generated abelian group. Then the
induction map

colimQ/K∈Or(Q,FIN ) G0(R ∗K) → G0(R ∗Q)

is surjective.

However, more input is needed. We begin with the following general result
about iterated localization.

Lemma 10.68. Let R ⊂ S be a ring extension and T ⊂ T (R ⊂ S) be a mul-
tiplicatively closed subset. Assume that the pairs (R, T ) and (RT−1, T (RT−1 ⊂
S)) satisfy the Ore condition. Then also (R, T (R ⊂ S)) satisfies the Ore con-
dition and RT (R ⊂ S)−1 = (RT−1)T (RT−1 ⊂ S)−1. We get inclusions

R ⊂ (RT−1)T (RT−1 ⊂ S)−1 = RT (R ⊂ S)−1 ⊂ S.

If we assume in addition that T (RT−1 ⊂ S) = NZD(RT−1), then T (R ⊂
S) = NZD(R).

Proof. We begin with verifying the Ore condition for (R, T (R ⊂ S)). Given
r1 ∈ R and t1 ∈ T , we must find r2 ∈ R and t2 ∈ T with t1r2 = r1t2. Since
(RT−1, T (RT−1 ⊂ S)) satisfies the Ore condition, we can find r3, r4 ∈ R and
t3, t4 ∈ T satisfying t1r3t

−1
3 = r1r4t

−1
4 in RT−1 and r4t

−1
4 ∈ T (RT−1 ⊂ S).

Since (R, T ) satisfies the Ore condition, we can find r5 ∈ R and t5 ∈ T
satisfying t3t5 = t4r5. This implies t1r3t5 = r1r4r5 and r5 ∈ T (R ⊂ S). Put
r2 = r3t5 and t2 = r4r5. Since r4t

−1
4 ∈ T (RT−1 ⊂ S) and r5 ∈ T (R ⊂ S)

holds, we get t2 ∈ T (R ⊂ S).
One easily checks that the composition R → RT−1 → (RT−1)T (RT−1 ⊂

S)−1 is universally T (R ⊂ S)-inverting. Since the same holds for R →
RT (R ⊂ S)−1, we conclude RT (R ⊂ S)−1 = (RT−1)T (RT−1 ⊂ S)−1. Since
a non-zero-divisor in R is a non-zero-divisor in RT−1, we conclude from the
assumption T (RT−1 ⊂ S) = NZD(RT−1) that T (R ⊂ S) = NZD(R) holds.

ut
Lemma 10.69. Let 1 → H → G → Q → 1 be an extension of groups such
that Q is virtually finitely generated abelian. Suppose that D(H) is semisim-
ple. Then NZD(D(H) ∗Q) = T (D(H) ∗Q ⊂ U(G)), and the Ore localization
(D(H) ∗Q)NZD(D(H) ∗Q)−1 exists, is semisimple and agrees with D(G).

Proof. We begin with the special case where Q is finite. Then D(G) = D(H)∗
Q and is semisimple by Lemma 10.59. Since in a semisimple ring any non-
zero-divisor is a unit, we conclude

NZD(D(H) ∗Q) = (D(H) ∗Q)inv = T (D(H) ∗Q ⊂ U(G)).

In particular D(H) ∗Q = (D(H) ∗Q) NZD(D(H) ∗Q)−1. So the claim holds
for finite Q.
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If Q is infinite cyclic, the claim follows from Lemma 10.60.
Any extension by a virtually finitely generated abelian group can be re-

placed by an iterated extension by infinite cyclic groups and by finite groups.
Hence we must ensure that we can iterate. But this follows from Lemma
10.68. ut
Lemma 10.70. (1) Let T ⊂ R be a set of non-zero-divisors. Suppose that

(R, T ) satisfies the Ore condition. Then the inclusion R → RT−1 induces
an epimorphism G0(R) → G0(RT−1);

(2) If R is semisimple, then the forgetful map K0(R) → G0(R) is bijective.

Proof. (1) Let M be a finitely generated RT−1-module. Choose an epimor-
phism f : (RT−1)n → M . Let i : Rn → (RT−1)n be the obvious injection.
Now N = f ◦ i(Rn) is a finitely generated R-submodule of M . The inclu-
sion j : N → M induces an injection id⊗Rj : RT−1 ⊗R N → RT−1 ⊗R M
since RT−1⊗R− is exact by Lemma 8.15 (3). Since f is surjective, id⊗Rj is
bijective. Since for any RT−1-module L we have RT−1 ⊗R L ∼=RT−1 L, the
RT−1-modules M and RT−1 ⊗R N are isomorphic.

(2) Any finitely generated module over a semisimple ring is finitely generated
projective. ut
Lemma 10.71. Let 1 → H → G

p−→ Q → 1 be an extension of groups such
that Q is virtually finitely generated abelian and D(H) is semisimple. Then
the map

G0(D(H) ∗Q) → G0(D(G))

is surjective.

Proof. This follows from Lemma 10.69 and Lemma 10.70 (1). ut
Now we are ready to prove the main result of this subsection Lemma

10.66. We have to show for an extension of groups 1 → H → G → Q → 1
with virtually finitely generated abelian Q that the canonical map

colimG/G0∈Or(G,FIN ) K0(CG0) → K0(D(G))

is surjective, provided that for any group K with H ⊂ K ⊂ G and [K : H] <
∞ the canonical map

colimK/K0∈Or(K,FIN ) K0(CK0) → K0(D(K))

is surjective and D(K) is semisimple. We will show that the map of interest
can be written as the following composition of maps which are surjective or
even bijective:
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colimG/G0∈Or(G,FIN ) K0(CG0)
f1−→ colimQ/Q0∈Or(Q,FIN ) colimp−1(Q0)/L∈Or(p−1(Q0),FIN ) K0(CL)
f2−→ colimQ/Q0∈Or(Q,FIN ) K0(D(p−1(Q0)))
f3−→ colimQ/Q0∈Or(Q,FIN ) G0(D(p−1(Q0)))
f4−→ colimQ/Q0∈Or(Q,FIN ) G0(D(H) ∗Q0)
f5−→ G0(D(H) ∗Q)
f6−→ G0(D(G))
f7−→ K0(D(G))

The isomorphism f1 is due to the fact that any finite subgroup G0 ⊂ G
occurs as finite subgroup in p−1(p(G0)) and p(G0) is finite. The map f2 is
bijective by assumption. The map f3 is bijective by Lemma 10.70 (2) since
D(p−1(Q0)) is semisimple by assumption. The map f4 is an isomorphism since
D(H) ∗ Q0 = D(p−1(Q0)) holds by Lemma 10.59. The map f5 is surjective
by Moody’s Induction Theorem 10.67. The map f6 is surjective by Lemma
10.71. The map f7 is an isomorphism by Lemma 10.70 (2) since D(G) is
semisimple by Lemma 10.59 and Lemma 10.60. This finishes the proof of
Lemma 10.66. ut

10.3.6 Property (K) holds for Virtually Free Groups

The main goal of this subsection is to prove

Lemma 10.72. Statement (4) in Lemma 10.41 is true, i.e. for any virtually
free group G the composition

colimOr(G,FIN ) K0(CH) a−→ K0(CG) i−→ K0(D(G))

is surjective.

The main ingredients in the proof of Lemma 10.72 will be the following
two results.

Theorem 10.73. For a virtually free group the Isomorphism Conjecture
9.40 for K0(CG) is true, i.e. the assembly map

a : colimG/H∈Or(G,FIN ) K0(CH) → K0(CG)

is surjective.

Proof. [309, Lemma 4.8]. ut
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Theorem 10.74. Let R be a hereditary ring with faithful projective rank
function ρ : K0(R) → R and let Σ be a set of full matrices with respect
to ρ. Then the universal Σ-inverting homomorphism R → RΣ induces an
epimorphism K0(R) → K0(RΣ).

Some explanations about Theorem 10.74 are in order. Recall that a ring is
called hereditary, if any submodule of a projective module is again projective.
A projective rank function for R is a function ρ : K0(R) → R such that for any
finitely generated projective R-module P we have ρ([P ]) ≥ 0 and ρ([R]) = 1.
It is called faithful if ρ([P ]) = 0 implies P = 0. Our main example of a faithful
projective rank function will be (see Theorem 8.29)

K0(CG) → R, [P ] 7→ dimU(G)(U(G)⊗CG P ).

Given an R-map α : P → Q of finitely generated projective R-modules, de-
fine ρ(α) to be the infimum over all numbers ρ(P ′), where P ′ runs through
all finitely generated projective R-modules P ′ for which there exists a fac-
torization α : P → P ′ → Q. We call α left full or right full respectively if
ρ(α) = ρ(P ) or ρ(α) = ρ(Q) respectively holds. It is called full if it is both
left full and right full. Theorem 10.74 is now a special case of [465, Theorem
5.2], since by [465, Lemma 1.1 and Theorem 1.11] a projective rank function
is in particular a Sylvester projective function and by [465, Theorem 1.16]
there are enough left and right full maps.

We want to apply Theorem 10.74 to the case R = CH for a virtu-
ally finitely generated free group H, the rank function ρ given by dimU(H)

and Σ = Σ(H) := Σ(CH ⊂ U(H)). The trivial CH-module C has a 1-
dimensional projective resolution P∗ since this is obviously true for a finitely
generated free subgroup F ⊂ H of finite index [H : F ] and [H : F ] is
invertible in C. Hence any CH-module M has a 1-dimensional projective res-
olution, namely P∗ ⊗C M with the diagonal H-action. This implies that CH
is hereditary.

Next we check that Σ(H) consists of full maps. Suppose that α : P → Q
is a homomorphism of CH-modules such that id⊗CHα : U(H) ⊗CH P →
U(H) ⊗CH Q is an isomorphism. If α factorizes over the finitely generated
projective CH-module P ′, then the isomorphism id⊗CHα factorizes over
U(H)⊗CH P ′. Theorem 8.29 implies

ρ(α) ≤ ρ(P ) = dimU(H)(U(H)⊗CH P ) ≤ dimU(H)(U(H)⊗CH P ′).

Hence ρ(α) = ρ(P ) = ρ(Q), i.e. α is full.
Now Theorem 10.74 implies that the map K0(CH) → K0(CHΣ(H)) is

surjective for virtually finitely generated free group H. The third ingredient
will be the next lemma

Lemma 10.75. Let G be a virtually free group. Then the inclusion CG →
D(G) is universally Σ(G)-inverting.
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Before we give its proof, we explain how we can derive Lemma 10.72 from
it. Namely, we conclude that for any virtually finitely generated free group
H the map K0(CH) → K0(D(H)) is surjective. Let G be a virtually free
group G. It is the directed union G = {Gi | i ∈ I} of its finitely generated
subgroups Gi. Each Gi is virtually finitely generated free. The ring CG is the
directed union of the subrings CGi and the ring D(G) is the directed union
of the subrings D(Gi) (see Lemma 10.83). Since K0 commutes with colimits,
we get

K0(CG) = colimi∈I K0(CGi);
K0(D(G)) = colimi∈I K0(D(Gi)).

Since a directed colimit of epimorphisms is again an epimorphism, we get

Lemma 10.76. If G is a virtually free group, then K0(CG) → K0(D(G)) is
surjective.

Theorem 10.73 and Lemma 10.76 together imply Lemma 10.72. It remains
to give the proof of Lemma 10.75. This needs some preparation.

We will need the following notions. A ring homomorphism f : R → K
from a ring into a skewfield is called an R-field . It is called epic R-field if
K is generated as a skewfield by the image of f , or, equivalently, for any
skewfield K ′ with im(f) ⊂ K ′ ⊂ K we have K = K ′. An epic R-field is
called field of fractions for R if f is injective. Unfortunately, this notion is
not unique, a ring can have several non-isomorphic field of fractions. We have
to develop this notion further in order to achieve uniqueness.

A local homomorphism from the R-field f : R → K to the R-field
g : R → L is an R-algebra homomorphism u : K0 → L, where K0 ⊂ K is
an R-subalgebra of K and K0 − ker(u) ⊂ K inv

0 . The ring K0 is a local ring
with maximal ideal ker(u). Two local homomorphisms are equivalent if they
restrict to a common homomorphism, which is again local. An equivalence
class is called specialization. An initial object f : R → K in the category of
epic R-fields is called a universal R-field. If f is a universal R-field with
injective f , then it is called universal R-field of fractions. The universal R-
field is unique up to isomorphism, but even if there exists a field of fractions
for R, there need not exist a universal R-field. Moreover, if a universal R-
field f : R → K exists, the map f is not necessarily injective, i.e. it is not
necessarily a field of fractions for R.

The ring R = Z has the following epic Z-fields f0 : Z→ Q and fp : Z→ Fp,
where Fp is the finite field of prime order p. Notice that for any R-field

f : R → K there is an obvious factorization f : R → RΣ(f : R→K)
Ψ−→ K.

In the case fp it is given by Z → Z(p) → Fp. The next lemma will give
a criterion when Ψ is bijective. A ring R is called semifir if every finitely
generated submodule of a free module is free and for a free module any two
basis have the same cardinality.
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Lemma 10.77. Let R be a semifir. Then there exists a universal field of
fractions f : R → K and the canonical map Ψ : RΣ(f : R→K) → K is an
isomorphism.

Proof. By [118, Corollary 5.11 in Chapter 7 on page 417] there is a universal
field of fractions f : R → K such that every full homomorphism P → Q of
finitely generated projective R-modules becomes an isomorphism over K. Full
is meant with respect to the faithful projective rank function given by the
isomorphism K0(R)

∼=−→ Z ⊂ R. Hence the set of full matrices over R agrees
with Σ(R ⊂ K). Hence Ψ is bijective by [118, Proposition 5.7 in Chapter 7
on page 415]. ut

Given a free group F , there is a universal field of fractions f : CF → K
by Lemma 10.77 since CF is a semifir [117, Corollary on page 68], [142].

The next result is shown in [306, Proposition 6]. The notion of Hughes-free
is explained below in the proof of Lemma 10.81.

Lemma 10.78. The universal field of fractions of CF is Hughes-free.

A special case of the main theorem in [267] says

Lemma 10.79. Let F be a free group. Any two CF -fields of fractions which
are Hughes-free are isomorphic as CF -fields.

We conclude from Lemma 10.77, Lemma 10.78 and Lemma 10.79.

Lemma 10.80. Let F be a free group. Let CF → K be a Hughes-free CF -
field of fractions. Then it is a universal CF -field of fractions and it is uni-
versal Σ(CF → K)-inverting.

Now we are ready to show

Lemma 10.81. Let F be a free group. Then D(F ) is a skewfield and the
inclusion CF → D(F ) is universally Σ(F )-inverting.

Proof. We know already that D(F ) is a skewfield by Lemma 10.51. We have
Σ(F ) = Σ(CF → D(F )). Because of Lemma 10.80 it suffices to show that
CF → D(F ) is Hughes-free. This means the following. Given any finitely
generated subgroup H ⊂ F and an element t ∈ H together with a homo-
morphism pt : H → Z which maps t to a generator, the set {ti | i ∈ Z} is
D(C[ker(pt)] ⊂ D(F ))-linear independent in D(F ). Since U(ker(pt)) is von
Neumann regular by Theorem 8.22 (3), Lemma 10.34 (1) implies

D(C[ker(pt)] ⊂ D(F )) = D(C[ker(pt)] ⊂ U(F ))
= D(C[ker(pt)] ⊂ U(ker(pt))) = D(ker(pt)).

From the split exact exact sequence 1 → ker(pt) → H
pt−→ Z → 1 and

Lemma 10.57 (1) we conclude that the subring of U(ker(pt)) ∗ Z generated
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by D(ker(pt)) and Z is itself a crossed product D(ker(pt)) ∗ Z. In particular
it is a free D(ker(pt))-module with basis {ti | i ∈ Z}. ut

Now we are ready to prove Lemma 10.75. Choose an extension 1 → F →
G → Q → 1 for a free group F and a finite group Q. We conclude from Lemma
10.51 and Lemma 10.59 that D(G) is semisimple and D(G) = D(F )∗Q. Since
CF → D(F ) is universally Σ(F )-inverting by Lemma 10.81, the inclusion
CG = CF ∗Q ⊂ D(F ) ∗Q = D(G) is universally Σ(F )-inverting by Lemma
10.57 (2). Notice that D(G) = R(G) by Lemma 10.34 (2). Hence CG → D(G)
is both Σ(G)-inverting and universally Σ(F )-inverting. One easily checks that
then it is automatically universally Σ(G)-inverting. This finishes the proof of
Lemma 10.75 and hence of the main result of this subsection, Lemma 10.72.

10.3.7 The Induction Step for Directed Unions

In this subsection we want to show

Lemma 10.82. The statements and (6) and (7) in Lemma 10.41 are true.

We begin with the following result

Lemma 10.83. Let the group G be the directed union of subgroups G =⋃
i∈I Gi. Then

D(G) =
⋃

i∈I

D(Gi);

R(G) =
⋃

i∈I

R(Gi).

If each D(Gi) or R(Gi) respectively is von Neumann regular, then D(G) or
R(G) respectively is von Neumann regular.

Proof. We have CG =
⋃

i∈I CGi. We conclude from Lemma 10.36 that

D
(
CG ⊂

⋃

i∈I

U(Gi)

)
=

⋃

i∈I

D(Gi).

Since each U(Gi) is von Neumann regular (see Theorem 8.22 (3)),
⋃

i∈I U(Gi)
is von Neumann regular. Lemma 10.34 (1) implies

D(G) = D
(
CG ⊂

⋃

i∈I

U(Gi

)
.

The proof for the rational closure is similar. ut
Now we can give the proof of Lemma 10.82. We begin with statement (6)

We have to show the surjectivity of the map
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colimG/H∈Or(G,FIN ) K0(CH) → K0(D(G)),

provided that G is a directed union G =
⋃

i∈I Gi and each of the maps
colimGi/K∈Or(G,FIN ) K0(CK) → K0(D(Gi) is surjective. This follows from
CG =

⋃
i∈I CGi and D(G) =

⋃
i∈I D(Gi) (see Lemma 10.83) and the facts

that K0 commutes with colimits over directed systems and the colimit over
a directed system of epimorphisms is again an epimorphism.

Next we prove statement (7). We have to show for G the directed union
of subgroups G =

⋃
i∈I Gi that D(G) is semisimple provided that there

is an upper bound on the orders of finite subgroups of G, each D(Gi) is
semisimple and each map colimGi/K∈Or(Gi,FIN ) K0(CK) → K0(D(Gi) is
surjective. We have already shown that the latter condition implies that
colimG/H∈Or(G,FIN ) K0(CH) → K0(D(G) is surjective. Because of Lemma
10.28 (2) it suffices to prove that D(G) is von Neumann regular. This follows
from Lemma 10.83, since each D(Gi) is by assumption semisimple and hence
von Neumann regular. This finishes the proof of Lemma 10.82. ut

Notice that we have proved the conditions appearing in Lemma 10.41,
namely, statement (1) in Lemma 10.51, statement (2) in Lemma 10.59, state-
ment (3) in Lemma 10.60, statement (5) in Lemma 10.66, statement (4) in
Lemma 10.72 and statements (6) and (7) in Lemma 10.82. This proves the
strong version of Linnell’s Theorem 10.38 and hence Linnell’s Theorem 10.19.

ut

10.4 Miscellaneous

No counterexamples to the Atiyah Conjecture 10.3 of order Λ = Q with
coefficients in F = C are known to the author at the time of writing. Recall
that the Atiyah Conjecture 10.3 of order Λ = Q with coefficients in F = Q is
equivalent to a positive answer to Atiyah’s original question whether the L2-
Betti numbers of a G-covering of a closed Riemannian manifold are rational
numbers. In [143, Example 5.4] the real number

κ(1/2, 1/2) =
∑

k≥2

φ(k)
(2k − 1)2

= 0, 1659457149 . . .

is studied, where φ(k) denotes the number of primitive k-th roots of unity.
It is shown that this number occurs as an L2-Betti number of the universal
covering of a closed manifold. Some evidence is given that this number may
not be rational but no proof of the irrationality of this number is known to the
author at the time of writing. So there are some doubts about this version of
the Atiyah Conjecture. There is some hope that the strong Atiyah Conjecture
10.2 is true under the additional assumption that there is an upper bound
on the orders of finite subgroups of G.
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At the time of writing there is no proof known to the author that the
strong Atiyah Conjecture 10.2 holds for a group G if it is true for a subgroup
H ⊂ G of finite index. Some special results in this direction can be found in
[313].

Some of the results of this Chapter 10 have been extended from Q as
coefficients to the field of algebraic numbers Q ⊂ C. Namely, Theorem 10.20
and Theorem 10.22 have also been proved in the case where one replaces Q by
Q in [148, Theorem 1.6 and Proposition 1.9]. (There only torsionfree groups
and Λ = Z is considered, but the same proof applies to the case where Λ is
assumed to be closed in R.) This is interesting because of Lemma 10.15 and
the fact that a torsionfree group G satisfies the Kaplansky Conjecture for the
field Q if and only if is satisfies the Kaplansky Conjecture for the complex
numbers C. The well-known proof of this fact can be found for instance in
[148, Proposition 4.1].

A group G has the algebraic eigenvalue property if for every matrix A ∈
Md(QG) the eigenvalues of the operator rA : l2(G)d → l2(G)d are algebraic.
There is the conjecture that every group has this property [148, Conjecture
6.8]. It is based on the following results. If G is a free group, then the series

f(z) =
∞∑

n=0

trQG(An) · z−n−1

is an algebraic function over Q(z) and hence each eigenvalue of rA is an
algebraic number since it is a pole of f(z) [456]. Hence a free group has the
algebraic eigenvalue property. More generally any group in Linnell’s class C
(see Definition 10.18) has the algebraic eigenvalue property [148, Corollary
6.7].

So far we have studied the passage from modules over CG to N (G). Let
C∗r (G) be the reduced C∗-algebra of G. We have CG ⊂ C∗r (G) ⊂ N (G). We
have mentioned in Lemma 10.10 that 1

|FIN (G)|Z ⊂ Λ(G,C)fgp and that the
Isomorphism Conjecture 9.40 for K0(CG) implies 1

|FIN (G)|Z = Λ(G,C)fgp,
where Λ(G,C)fgp is the image of the composition

K0(CG) i−→ K0(N (G))
dimN(G)−−−−−→ R.

Let Λ(G,C∗r )fgp be the image of the composition

K0(C∗r (G)) i−→ K0(N (G))
dimN(G)−−−−−→ R.

Obviously
Λ(G,C)fgp ⊂ Λ(G,C∗r )fgp.

If equality would hold, this would suggest to study modules over C∗r (G) in
order to attack the strong Atiyah Conjecture 10.2. This equality was conjec-
tured in [26, page 21]. The question whether this equality holds is related
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to the Baum-Connes Conjecture (see [26], [27] [257]), which is the analog of
the Isomorphism Conjecture 9.40 for K0(CG) and known for a much larger
class of groups. However, a counterexample to this equality has meanwhile
been given by Roy [449]. There a group G is constructed which fits into an
exact sequence 1 → π1(M) → G → Z/3 × Z/3 → 1 for a closed aspherical
4-dimensional manifold M and whose non-trivial finite subgroups are isomor-
phic to Z/3, but for which − 1105

9 belongs to Λ(G,C∗r )fgp. It is not known to
the author whether the Isomorphism Conjecture 9.40 for K0(CG), the strong
Atiyah Conjecture 10.2 or the Baum-Connes Conjecture is true or false for
the group G above. The counterexample of Roy does not imply that one of
these conjectures is false for this group G.

Let Z ⊂ Z
[

1
|FIN (G)|

]
⊂ Q be the subring of Q obtained from Z by

inverting all the orders of finite subgroups of G. One should not confuse the
abelian group 1

|FIN (G)|Z defined in (10.1) with the larger ring Z
[

1
|FIN (G)|

]
.

Provided that G satisfies the Baum-Connes-Conjecture,

Λ(G, C∗r )fgp ⊂ Z
[

1
|FIN (G)|

]

is shown in [339]. Notice that the lamplighter group L satisfies the Baum-
Connes Conjecture by [257]) since it it amenable. Hence Λ(L, C∗r )fgp ⊂ Z

[
1
2

]
but Λ(L,C)fp contains 1/3 (see Theorem 10.23) and hence is not contained
in Z

[
1
2

]
or Λ(L,C∗r )fgp.

The next result is taken from [435, Theorem 9.1].

Theorem 10.84. Let G be a group such that there is an upper bound on the
orders of finite subgroups. Then

(1) If G belongs to C, then for any CG-module M

TorCG
p (M ;D(G)) = 0 for all p ≥ 2;

(2) If G is elementary amenable, then for any CG-module M

TorCG
p (M ;D(G)) = 0 for all p ≥ 1.

In other words, the functor −⊗CG D(G) is exact.

Notice that −⊗ZGCG is always exact and −⊗D(G)U(G) is exact provided
that D(G) is semisimple. Consider a group G, which belongs to C and has
an upper bound on the orders of its finite subgroups, and a G-space X.
We conclude from the strong version of Linnell’s Theorem 10.38, Theorem
10.84 and the universal coefficients spectral sequence that there is an exact
sequence

0 → Hn(X;Z)⊗ZGU(G) → HG
n (X;U(G)) → TorZG

1 (Hn−1(X;Z),U(G)) → 0.
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In particular we get in the special case X = EG

HG
1 (EG;U(G)) = TorZG

1 (Z,U(G)); (10.85)
HG

n (EG;U(G)) = 0 for n ≥ 2. (10.86)

Notice that for an infinite group G we have b
(2)
0 (G;N (G)) = 0 (see Theorem

6.54) (8b)) and hence dimU(G)(HG
0 (EG;U(G))) = 0 by Theorem 8.31. We

conclude for an infinite group G, which belongs to C and has an upper bound
on the orders of its finite subgroups, that χ(2)(G) is defined if and only if
dimU(G)(TorZG

1 (Z,U(G))) < ∞, and in this case

χ(2)(G) = − dimU(G)(TorZG
1 (Z,U(G))) ≤ 0.

Let G be a group in the class C such that there exists a bound on the
orders of finite subgroups. Then CG → D(G) is universally Σ(G)-inverting
(see [435, Theorem 8.3]). The proof of this statement is along the lines of the
one of the strong version of Linnell’s Theorem 10.38. This is also true for the
following statement (see [435, Theorem 8.4]).

Let G be an elementary amenable group such that there exists a bound on
the orders of finite subgroups. Then the set of non-zero-divisors of CG equals
T (G), i.e. any non-zero-divisor in CG becomes invertible in U(G). The pair
(CG, T (G)) satisfies the Ore condition and the Ore localization is D(G). In
particular CG → D(G) is both universally Σ(G)-inverting and universally
T (G)-inverting.

Notice, however, that the lamplighter group L is amenable and neither
D(L) nor U(L) is flat over CL, and that CL does not have a classical ring
of quotients, i.e. the set S of non-zero-divisors does not satisfies the left Ore
condition [311].

Lemma 10.87. Suppose for the group G that D(G) is semisimple. Then the
change of rings map

K0(D(G)) → K0(U(G))

is injective.

Proof. We have a decomposition D(G) =
∏r

i=1 Mni(Di) for skewfields D1,
D2, . . . , Dr by Wedderburn’s Theorem. Let ei be the projection onto
Mni(Di). Then each ei is central in D(G) and eiej = 0 for i 6= j and
K0(D(G)) is the free abelian group with { 1

ni
· [im(ei)] | i = 1, 2 . . . , r} as

basis. By Theorem 8.22 (6) we can choose a projection pi in N (G) such that
piei = ei and eipi = pi holds in U(G).

The element ei ∈ U(G) commutes with any element f ∈ N (G) by the
following argument. Because of the Double Commutant Theorem 9.2 we can
find a net {fj | j ∈ J} of elements in CG ⊂ N (G) = B(l2(G))G which
converges to f in the strong topology. Since ei commutes with any element
in D(G), it commutes with any element fj , i .e. we have the equality ei ◦
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fj = fj ◦ ei of affiliated unbounded operators from l2(G) to l2(G). Obviously
dom(ei) ⊂ dom(fj ◦ ei) and dom(ei) ⊂ dom(f ◦ ei) since each fj and f
are bounded. By definition dom(fj ◦ ei) = dom(ei ◦ fj) and dom(f ◦ ei) =
dom(ei ◦ f). For x ∈ dom(ei) we have

lim
j∈J

fj(x) = f(x);

lim
j∈J

ei ◦ fj(x) = lim
j∈J

fj ◦ ei(x) = f ◦ ei(x).

Hence f(x) ∈ dom(ei) and ei ◦ f(x) = f ◦ ei(x). Lemma 8.3 (3) implies that
f ◦ ei = ei ◦ f holds in U(G) for each f ∈ N (G).

Since U(G) is the Ore localization of N (G) with respect to all non-zero-
divisors (see Theorem 8.22 (1)), ei ∈ U(G) is central in U(G). This implies
ei = pi in U(G) and pi ∈ Z(N (G))Z/2. The composition

K0(D(G)) → K0(U(G))
∼=←− K0(N (G))

dimN(G)−−−−−→ Z(A)Z/2

(see Theorem 9.13 (2) and Theorem 9.20 (1)) sends [im(ei)] to pi. Since
pipj = 0 for i 6= j and p2

i = pi, the elements p1, p2, . . ., pr are linearly
independent over R. Hence the composition above is injective. This finishes
the proof of Lemma 10.87. ut

Exercises

10.1. Let G be a finitely presented group. Let Z ⊂ Λ ⊂ R be an additive
subgroup of R. Show that the following statements are equivalent:

(1) For any closed manifold M with G = π1(M) we have b
(2)
p (M̃) ∈ Λ;

(2) For any finite CW -complex X with G = π1(X) we have b
(2)
p (X̃) ∈ Λ;

(3) The Atiyah Conjecture 10.3 of order Λ with coefficients in Q is true for
G.

10.2. Suppose that there exists a cocompact free proper G-CW -complex
X which has finitely many path components. Show that then G is finitely
generated. On the other hand show for a finitely generated group G that there
is a cocompact connected free proper G-manifold M without boundary.

10.3. Let Λ ⊂ R be an additive subgroup different from {0}. Let d(Λ) be the
infimum of the subset {λ ∈ Λ | λ > 0} of R. Show that Λ ⊂ R is closed if and
only if

Λ = {r ∈ R | d(Λ) · r ∈ Z}.

10.4. Let G be a discrete group, let F be a field with Q ⊂ F ⊂ C and let
Z ⊂ Λ ⊂ R be an additive subgroup of R. Suppose that Λ ⊂ R is closed and
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that G satisfies the Atiyah Conjecture 10.3 of order Λ with coefficients in F .
Prove that then for any FG-chain complex C∗

dimN (G)(Hp(N (G)⊗FG C∗)) ∈ Λ
∐
{∞}.

10.5. Let X be a G-CW -complex such that h(2)(X;N (G)) < ∞ and hence
χ(2)(X;N (G)) is defined (see Definition 6.79). Suppose that there is an inte-
ger d such that the order of any finite subgroup of G divides d. Assume that
the strong Atiyah Conjecture 10.2 holds for G. Then show

d · χ(2)(X;N (G)) ∈ Z.

10.6. Let G be a group. Suppose that there is a chain of finite subgroups
1 ⊂ H1 ⊂ H2 ⊂ . . . and a prime number p such that the orders of the p-Sylow
subgroups of Hn become arbitrary large. Show that there exists a chain of
subgroups 1 ⊂ K1 ⊂ K2 ⊂ . . . with |Kn| = pn and Λ(A,C)fg = R holds.

10.7. Prove for the class C:
(1) C is closed under taking subgroups;
(2) If {Gi | i ∈ I} is a collection of groups in C, then ∗i∈IGi belongs to C;
(3) Let 1 → H → G → K → 1 be an extension of groups such that H is

finite or infinite cyclic and K belongs to C, then G belongs to C;
(4) If G belongs to C and H ⊂ G is an elementary amenable normal subgroup

of G, then G/H belongs to C.
10.8. Let (Gn)n≥1 be a sequence of groups and (dn)n≥1 be a sequence of
positive integers such that Gn belongs C and dn is an upper bound on the
orders of finite subgroups of Gn. Show that G = ∗n≥1Gn satisfies the strong
Atiyah Conjecture 10.2. Give an example of a group G such that G satisfies
the strong Atiyah Conjecture 10.2, G contains only 2-groups as subgroups
and has no upper bound on the orders of finite subgroups.

10.9. Show for any 2-dimensional manifold that π1(M) belongs to C and
satisfies the strong Atiyah Conjecture 10.2.

10.10. Let M be a closed 3-manifold such that there is a finite covering
M → M and a fibration F → M → S1, where F is a closed connected
orientable manifold. Show that π1(M) belongs to C and satisfies the strong
Atiyah Conjecture 10.2.

10.11. Let G be a torsionfree group which satisfies the Atiyah Conjecture 10.3
of order Λ = Z with coefficients in F = Q. Suppose that there is a model
for BG of finite type. Show for any p ≥ 0 that the Hilbert N (G)-module
H

(2)
p (EG) is isomorphic to l2(G)n for an appropriate integer n ≥ 0.
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10.12. Let M be a closed hyperbolic manifold of dimension 2n. Show that
π1(M) does belong to C if and only if n = 1.

10.13. Find an extension of groups 1 → H → G → K → 1 such that H and
K satisfy the strong Atiyah Conjecture 10.2 but G does not.

10.14. Let G be the directed union of the directed system of subgroups
{Gi | i ∈ I}. Suppose that for any i ∈ I there is a ring S(Gi) with CGi ⊂
S(Gi) ⊂ U(Gi) which satisfies condition (R’) or (K’) respectively of Lemma
10.26. Suppose that S(Gi) ⊂ S(Gj) holds for i ≤ j. Put S(G) =

⋃
i∈I S(Gi).

Show that CG ⊂ S(G) ⊂ U(G) and that S(G) satisfies conditions (R’) or
(K’) respectively of Lemma 10.26. Give an example to show that the assertion
above is not true in general for (R).

10.15. Show that the map τ defined in Lemma 10.45 (2) and (3) induces a
map

τ : K0(A1) → R

by sending an element in K0(A1) represented by an idempotent p to τ(p).
Show that the image of this map is contained in Z.

10.16. Let H ⊂ G be a subgroup of finite index d. Suppose that D(H) is
semisimple. Show that the following diagram is well-defined and commutes

K0(D(G)) −−−−→ K0(U(G))
dimU(G)−−−−−→ R

res

y res

y d·id
y

K0(D(H)) −−−−→ K0(U(H))
dimU(H)−−−−−→ R

Show that for all virtually free groups G the image of the composition

K0(D(G)) i−→ K0(U(G))
dimU(G)−−−−−→ R

is contained in 1
|FIN (G)|Z.

10.17. Let C〈x, y, z〉 and C〈x, u〉 be non-commutative polynomial rings.
It is known that non-commutative polynomial rings are semifirs [118, Sec-
tion 10.9]. Hence there are universal fields of fractions C〈x, y, z〉 → K and
C〈x, u〉 → L by Lemma 10.77. Define a map f : C〈x, y, z〉 → C〈x, u〉 by
f(x) = x, f(y) = xu and f(z) = xu2. Show that this map is injective.
Let D be the division closure of the image of f in L. Show that f yields
a field of fractions C〈x, y, z〉 → D. It factorizes by the universal property
as the composition C〈x, y, z〉 → C〈x, y, z〉Σ(C〈x,y,z〉→D)

Ψ−→ D. Show that Ψ
maps y−1z − x−1y to zero and deduce that Ψ in not injective. Prove that
C〈x, y, z〉 → D is not the universal field of fractions of C〈x, y, z〉 and that
there are two non-isomorphic fields of fractions for C〈x, y, z〉.
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10.18. Let G be the directed union of subgroups
⋃

i∈I Gi. Give an example
to show that in general neither N (G) =

⋃
i∈I N (Gi) nor U(G) =

⋃
i∈I U(Gi)

is true.

10.19. Let G be a group in the class C, which has an upper bound on the
orders of finite subgroups. Show that the kernel of K0(CG) → K0(D(G)) and
of K0(CG) → K0(N (G)) agree.





11. The Singer Conjecture

Introduction

This chapter is devoted to the following conjecture (see [477] and also [146,
Conjecture 2]).

Conjecture 11.1 (Singer Conjecture). If M is an aspherical closed man-
ifold, then

b(2)
p (M̃) = 0 if 2p 6= dim(M).

If M is a closed connected Riemannian manifold with negative sectional cur-
vature, then

b(2)
p (M̃)

{
= 0 if 2p 6= dim(M);
> 0 if 2p = dim(M).

Because of the Euler-Poincaré formula χ(M) =
∑

p≥0(−1)p · b(2)
p (M̃) (see

Theorem 1.35 (2)) the Singer Conjecture 11.1 implies the following conjecture
in the cases where M is aspherical or has negative sectional curvature.

Conjecture 11.2 (Hopf Conjecture). If M is an aspherical closed man-
ifold of even dimension, then

(−1)dim(M)/2 · χ(M) ≥ 0.

If M is a closed Riemannian manifold of even dimension with sectional cur-
vature sec(M), then

(−1)dim(M)/2 · χ(M) > 0 if sec(M) < 0;
(−1)dim(M)/2 · χ(M) ≥ 0 if sec(M) ≤ 0;

χ(M) = 0 if sec(M) = 0;
χ(M) ≥ 0 if sec(M) ≥ 0;
χ(M) > 0 if sec(M) > 0.

In original versions of the Singer Conjecture 11.1 and the Hopf Conjecture
11.2 the statements for aspherical manifolds did not appear. Notice that any
Riemannian manifold with non-positive sectional curvature is aspherical by
Hadamard’s Theorem. We will also discuss
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Conjecture 11.3 (L2-torsion for aspherical manifolds). If M is an as-
pherical closed manifold of odd dimension, then M̃ is det-L2-acyclic and

(−1)
dim(M)−1

2 · ρ(2)(M̃) ≥ 0.

If M is a closed connected Riemannian manifold of odd dimension with neg-
ative sectional curvature, then M̃ is det-L2-acyclic and

(−1)
dim(M)−1

2 · ρ(2)(M̃) > 0.

If M is an aspherical closed manifold whose fundamental group contains an
amenable infinite normal subgroup, then M̃ is det-L2-acyclic and

ρ(2)(M̃) = 0.

Notice that for aspherical closed manifolds of odd dimension Conjecture
11.3 is stronger than the Singer Conjecture 11.1. Recall that the Euler charac-
teristic of a closed manifold of odd dimension vanishes and that for a closed
Riemannian manifold M of even dimension ρ(2)(M̃) = 0 holds. Therefore
the Hopf Conjecture or Conjecture 11.3 respectively are not interesting for
manifolds whose dimension is odd or even respectively.

We will discuss special cases for which these conjectures are known in
Section 11.1. We give the proof of Gromov’s result on Kähler manifolds in
Section 11.2.

To understand this chapter, it is only required to be familiar with Sections
1.1 and 1.2 and to have some basic knowledge of Section 3.4. For Subsections
11.2.3 and 11.2.4 small input from Chapter 2 is needed.

11.1 Survey on Positive Results about the Singer
Conjecture

In this section we discuss results which give some evidence for the Singer
Conjecture 11.1, the Hopf Conjecture 11.2 and Conjecture 11.3. Notice that
it suffices to consider closed connected manifolds which are orientable. If
M is not orientable, one can pass to the orientation covering M → M

and use the fact that b
(2)
p (M̃ ;N (π1(M))) = 2 · b

(2)
p (M̃ ;N (π1(M))) and

ρ(2)(M̃ ;N (π1(M))) = 2 · ρ(2)(M̃ ;N (π1(M))) holds (see Theorem 1.35 (9)
and Theorem 3.96 (5)).

11.1.1 Low-Dimensional Manifolds

We begin with low-dimensional manifolds. Let Fg be the closed orientable
surface of genus g. It is aspherical if and only if g ≥ 1. It carries a hyperbolic
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structure if and only if g ≥ 2, a flat Riemannian metric if and only if g = 1
and a Riemannian metric with positive constant sectional curvature if and
only if g = 0. If Fg carries a Riemannian metric with sectional curvature
sec(M) < 0, sec(M) ≤ 0, sec(M) = 0, sec(M) ≥ 0 or sec(M) > 0 respectively,
the Gauss-Bonnet Theorem [218, 3.20 on page 107 and 3.111 on page 147]
implies χ(M) < 0, χ(M) ≤ 0, χ(M) = 0. χ(M) ≥ 0 or χ(M) > 0 respectively.
If g ≥ 1, then b

(2)
p (F̃g) = 0 for p 6= 1 and b

(2)
1 (F̃g) = 2g − 2 = −χ(M) holds

by Example 1.36. Hence the Singer Conjecture 11.1 and the Hopf Conjecture
11.2 are true in dimension 2.

Next we consider dimension 3 and Conjecture 11.3. We have already ex-
plained in Section 4.1 that the Sphere Theorem [252, Theorem 4.3] implies
that a compact connected orientable irreducible 3-manifold is aspherical if
and only if it is a 3-disk or has infinite fundamental group. This implies that
a closed connected orientable 3-manifold is aspherical if and only if its prime
decomposition contains at most one factor which is not a homotopy sphere
and this factor must be irreducible with infinite fundamental group. Hence
a closed orientable 3-manifold M is aspherical if and only if it is diffeomor-
phic to N#Σ for a closed connected orientable irreducible 3-manifold N with
infinite fundamental group and a homotopy sphere Σ. Choose a homotopy
equivalence g : Σ → S3. We have briefly introduced the notion of Whitehead
torsion and simple homotopy equivalence in Section 3.1.2. Since the White-
head group of the trivial group is trivial and S3 has trivial fundamental group,
the Whitehad torsion of g is trivial. By homotopy invariance and the sum
formula for Whitehead torsion we conclude that id #g : N#Σ → N#S3 has
trivial Whitehead torsion. This shows that there is a simple homotopy equiv-
alence f : M → N . Hence a closed orientable 3-manifold M is aspherical if
and only if it is simply homotopy equivalent to a closed connected orientable
irreducible 3-manifold with infinite fundamental group. We conclude from
Theorem 3.96 (1) that M is det-L2-acyclic if and only if N is det-L2-acyclic,
and in this case ρ(2)(M̃) = ρ(2)(Ñ).

Suppose from now on that N satisfies Thurston’s Geometrization Con-
jecture. Then we conclude from Theorem 4.3 that Ñ is det-L2-acyclic and
ρ(2)(Ñ) ≤ 0. Suppose that N carries a Riemannian metric of negative sec-
tional curvature. Then its fundamental group is word-hyperbolic and hence
cannot contain Z ⊕ Z as subgroup [65, Corollary 3.10 on page 462], Then
N is already hyperbolic and ρ(2)(Ñ) < 0. This is consistent with Conjec-
ture 11.3. In other words, Conjecture 11.3 is true for 3-dimensional mani-
folds if Thurston’s Geometrization Conjecture holds. Notice that there exist
closed graph manifolds, i.e. closed irreducible 3-manifolds M whose decom-
position along a family of disjoint, pairwise-nonisotopic incompressible tori
in M contains only Seifert pieces, which do not admit a Riemannian metric
of non-positive sectional curvature but are aspherical. [304, Example 4.2]. So
it makes a difference whether one makes the assumption aspherical instead of
the stronger condition that there is a Riemannian metric with non-positive
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sectional curvature. Also, weakening the assumption in the conjectures, gives
them a different flavour because aspherical is a purely homotopy-theoretic
condition.

The Hopf Conjecture 11.2 is known for a closed 4-dimensional Rieman-
nian manifold with non-positive or non-negative curvature [59], [108], where
the result is attributed to Milnor. Actually it is shown that the integrand
appearing in the Gauss-Bonnet formula is non-negative. It follows from the
example of Geroch [219] that one cannot deduce in higher even dimension
the positivity of the Gauss-Bonnet integrand at a point x purely algebraically
from the fact that the sectional curvature is positive. The Singer Conjecture
11.1 for a closed orientable 4-manifold M is equivalent to the statement that
b
(2)
1 (M̃) = 0 because of Poincaré duality and the fact that infinite π1(M)

implies b
(2)
0 (M̃) = 0 (see Theorem 1.35 (3) and (8)). We have given a lot of

sufficient conditions on π1(M) to ensure b
(2)
1 (M̃) = 0 in Subsection 7.1.1. To

the authors knowledge at the time of writing the Singer Conjecture 11.1 is
not known for all closed 4-dimensional manifolds.

11.1.2 Pinched Curvature

The following two results are taken from the paper by Jost and Xin [280,
Theorem 2.1 and Theorem 2.3].

Theorem 11.4. Let M be a closed connected Riemannian manifold of di-
mension dim(M) ≥ 3. Suppose that there are real numbers a > 0 and b > 0
such that the sectional curvature satisfies −a2 ≤ sec(M) ≤ 0 and the Ricci
curvature is bounded from above by −b2. If the non-negative integer p satisfies
2p 6= dim(M) and 2pa ≤ b, then

b(2)
p (M̃) = 0.

Theorem 11.5. Let M be a closed connected Riemannian manifold of di-
mension dim(M) ≥ 4. Suppose that there are real numbers a > 0 and b > 0
such that the sectional curvature satisfies −a2 ≤ sec(M) ≤ −b2. If the non-
negative integer p satisfies 2p 6= dim(M) and (2p− 1) · a ≤ (dim(M)− 2) · b,
then

b(2)
p (M̃) = 0.

The next result is a consequence of a result of Ballmann and Brüning [18,
Theorem B on page 594].

Theorem 11.6. Let M be a closed connected Riemannian manifold. Suppose
that there are real numbers a > 0 and b > 0 such that the sectional curvature
satisfies −a2 ≤ sec(M) ≤ −b2. If the non-negative integer p satisfies 2p <
dim(M)− 1 and p · a < (dim(M)− 1− p) · b, then
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b(2)
p (M̃) = 0;

α∆
p (M) = ∞+.

Notice that Theorem 11.5 and Theorem 11.6 are improvements of the
older results by Donnelly and Xavier [155], where bp(M̃) = 0 for p /∈
{dim(M)−1

2 ,dim(M), dim(M)+1
2 } is shown provided that there is a real number

ε satisfying −1 ≤ sec(M) ≤ −1 + ε and 0 ≤ ε < 1 − (dim(M)−2)2

(dim(M)−1)2 . The proof
of Theorem 11.6 follows along the lines of [155], the decisive improvement is
[18, Theorem 5.3 on page 619]. The Hopf Conjecture for pinched sectional
curvature is also treated in [58].

11.1.3 Aspherical Manifolds and Locally Symmetric Spaces

Suppose that M is an aspherical closed Riemannian manifold. Then Corollary
5.16 shows that M satisfies the Singer Conjecture 11.1, the Hopf Conjecture
11.2 and Conjecture 11.3 provided that M carries the structure of a locally
symmetric space. Suppose that M is a closed locally symmetric Riemannian
manifold whose sectional curvature is negative. Then M satisfies the Singer
Conjecture 11.1, the Hopf Conjecture 11.2 and Conjecture 11.3 by Corollary
5.16.

If the aspherical closed manifold M carries a non-trivial S1-action, then it
satisfies the Singer Conjecture 11.1, the Hopf Conjecture 11.2 and Conjecture
11.3 by Theorem 3.111.

If the aspherical closed manifold M appears in a fibration F → M →
S1 such that F is a connected CW -complex of finite type, then the Singer
Conjecture 11.1 and the Hopf Conjecture 11.2 hold for M by Theorem 1.39. If
additionally F̃ is det-L2-acyclic, M satisfies also Conjecture 11.3 by Theorem
3.106.

We have proved in Theorem 7.2 (1) and (2) that the Singer Conjecture
11.1 and the Hopf Conjecture 11.2 hold for an aspherical closed manifold M
whose fundamental group contains an amenable infinite normal subgroup.
We have proved in Theorem 3.113 that Conjecture 11.3 is true in the special
case, where M is a closed aspherical manifold, whose fundamental group is of
det ≥ 1-class and contains an elementary amenable infinite normal subgroup.

We will deal with the Singer Conjecture 11.1 for Kähler manifolds in
Corollary 11.17.

11.2 The Singer Conjecture for Kähler Manifolds

Let M be a complex manifold (without boundary). Let h denote a Hermitian
metric. Thus we have for any x ∈ M a Hilbert space structure

hx : TxM × TxM → C (11.7)
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on the complex vector space TxM . It induces a Riemannian metric g by

gx : TxM × TxM → R, (v, w) 7→ <(hx(v, w)). (11.8)

The associated fundamental form is the 2-form ω defined by

ωx : TxM × TxM → R, (v, w) 7→ − 1
2 · =(hx(v, w)). (11.9)

Obviously h contains the same information as g and ω together.

Definition 11.10 (Kähler manifold). Let M be a complex manifold with-
out boundary. A Hermitian metric h is called Kähler metric if (M, g) is a
complete Riemannian manifold and the fundamental form ω ∈ Ω2(M) is
closed, i.e. dω = 0. A Kähler manifold M = (M,h) is a connected complex
manifold M without boundary together with a Kähler metric h.

Definition 11.11. Let (M, g) be a connected Riemannian manifold. A (p−
1)-form η ∈ Ωp−1(M) is bounded if ||η||∞ := sup{||η||x | x ∈ M} < ∞
holds, where ||η||x is the norm on Altp−1(TxM) induced by gx. A p-form
ω ∈ Ωp(M) is called d(bounded) if ω = d(η) holds for some bounded (p− 1)-
form η ∈ Ωp−1(M). A p-form ω ∈ Ωp(M) is called d̃(bounded) if its lift
ω̃ ∈ Ωp(M̃) to the universal covering M̃ is d(bounded).

The next definition is taken from [236, 0.3 on page 265].

Definition 11.12 (Kähler hyperbolic manifold). A Kähler hyperbolic
manifold is a closed connected Kähler manifold (M,h) whose fundamental
form ω is d̃(bounded).

Example 11.13. The following list of examples of Kähler hyperbolic mani-
folds is taken from [236, Example 0.3]:

(1) M is a closed Kähler manifold which is homotopy equivalent to a Rie-
mannian manifold with negative sectional curvature;

(2) M is a closed Kähler manifold such that π1(M) is word-hyperbolic in the
sense of [234] and π2(M) = 0;

(3) M̃ is a symmetric Hermitian space of non-compact type;
(4) M is a complex submanifold of a Kähler hyperbolic manifold;
(5) M is a product of two Kähler hyperbolic manifolds.

The complex projective space CPn equipped with the Fubini-Study met-
ric, which is up to scaling with a constant the only U(n + 1)-invariant Rie-
mannian metric, is a closed Kähler manifold but is not Kähler hyperbolic.
Namely, it is simply connected and its fundamental form is not of the form
d(η) since in H2(CPn;Z) it represents the non-trivial class c1(γ1|CPn) given
by the first Chern class of the restriction of the universal complex line bundle
γ1, which lives over CP∞, to CPn (see [520, Example 2.3 in VI.2 on page
224]).



11.2 The Singer Conjecture for Kähler Manifolds 427

The following result is due to Gromov [234, Theorem 1.2.B and Theorem
1.4.A on page 274].

Theorem 11.14. (L2-Betti numbers and Novikov-Shubin invariants
of Kähler hyperbolic manifolds). Let M be a closed Kähler hyperbolic
manifold of complex dimension m and real dimension n = 2m. Then

b(2)
p (M̃) = 0 if p 6= m;

b(2)
m (M̃) > 0;

(−1)m · χ(M) > 0;

αp(M̃) = ∞+ for p ≥ 1.

This has interesting consequences in algebraic geometry.

Theorem 11.15. Let M be a closed Kähler hyperbolic manifold of complex
dimension m and real dimension n = 2m.

(1) The canonical line bundle L = ΛmT ∗M is quasi-ample, i.e. its Kodaira
dimension is m;

(2) M satisfies all of the following four assertions (which are equivalent for
closed Kähler manifolds):
(a) M is Moishezon, i.e. the transcendental degree of the field M(M) of

meromorphic functions is equal to m;
(b) M is Hodge, i.e. the Kähler form represents a class in H2(M ;C)

which lies in the image of H2(M ;Z) → H2(M ;C);
(c) M can be holomorphically embedded into CPN for some N ;
(d) M is a projective algebraic variety;

(3) The fundamental group is an infinite non-amenable group of deficiency
≤ 1. It cannot be a non-trivial free product.

Proof. (1) and (2a) We will see in Corollary 11.36 that there is a holomor-
phic L2-integrable m-form on the universal covering M̃ of any closed Kähler
hyperbolic manifold. This is used by Gromov [236, Section 3] to construct
meromorphic functions on M and leads to the result that the canonical line
bundle L is quasi-ample and M is Moishezon. The equivalence of the asser-
tions (2a), (2b), (2c) and (2d) for closed Kähler manifolds is due to results of
Chow, Kodaira and Moishezon (see [249, Appendix B4 on page 445], [294],
[382], [520, Remark on page 11, Theorem 4.1 in VI.4 on page 234]).

We conclude α1(M̃) = ∞+ and b
(2)
0 (M̃) = 0 from Theorem 11.14. Theorem

1.35 (8) and Theorem 2.55 (5b) imply that π1(M) is an infinite non-amenable
group. If m = 1, then π1(M) is the fundamental group of a closed orientable
surface with infinite fundamental group and hence has deficiency ≤ 1 and
cannot be a non-trivial free product. Suppose m ≥ 2. Then b

(2)
1 (M̃) = 0

by Theorem 11.14. This shows b
(2)
1 (π1(M)) = 0. Lemma 7.22 implies that
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π1(M) has deficiency ≤ 1. We conclude from Theorem 1.35 (5) that the only
finitely presented group G, which satisfies b

(2)
1 (G) = 0 and is a non-trivial

free product, is G = Z/2 ∗ Z/2. Since this group is amenable, π1(M) cannot
be a non-trivial free product. ut

Gromov’s notion of Kähler hyperbolic reflects the negative curvature case.
The following notion due to Cao and Xavier [86] and Jost and Zuo [281] is
weaker and modelled upon non-positive sectional curvature. A Kähler mani-
fold M is called Kähler non-elliptic manifold if the lift ω̃ of the fundamental
form ω to the universal covering M̃ can be written as d(η) for some 1-form
η which satisfies for some point x0 ∈ M̃ and constants C1, C2 > 0, which
depend on η but not on x ∈ M̃ ,

||η||x ≤ C1 · d(x, x0) + C2.

Here d(x, x0) is the distance of x and x0 with respect to the metric on M̃
associated to its Riemannian metric. (Actually Jost and Zuo consider more
generally arbitrary coverings and local systems.) Of course a Kähler hyper-
bolic manifold is in particular Kähler non-elliptic. If a closed Kähler manifold
carries a Riemannian metric with non-positive sectional curvature, then it is
Kähler non-elliptic. The following result is due to Cao and Xavier [86, Theo-
rem 2 on page 485] and Jost and Xin [281, Theorem 3], where also applications
to algebraic geometry are given.

Theorem 11.16. (L2-Betti numbers of Kähler non-elliptic mani-
folds). Let M be a closed Kähler non-elliptic manifold of complex dimension
m and real dimension n = 2m. Then

b(2)
p (M̃) = 0 if p 6= m;

(−1)m · χ(M) ≥ 0.

Theorem 11.14 and Theorem 11.16 imply

Corollary 11.17. Let M be a closed Riemannian manifold whose sectional
curvature is negative or non-positive respectively. Then M satisfies the Singer
Conjecture 11.1 if M carries some Kähler structure. An aspherical closed
Kähler manifold satisfies the Singer Conjecture 11.1 if its fundamental group
is word-hyperbolic in the sense of [234].

The remainder of this section is devoted to the proof of Theorem 11.14
and Theorem 11.16.

11.2.1 Hodge Theory on Kähler manifolds

We give a brief introduction to Hodge theory on a complex manifold M
(without boundary). Let m be its complex and n = 2m be its real dimension.
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Recall that each tangent space TxM is a complex vector space. We introduce
the following notation for a complex vector space V

C⊗R V := C⊗R resRC V ;
Altp(V ⊗R C) := Altp

R
(
resRC V, resRCC

)
= Altp

C (C⊗R V,C) .

Denote by J : V → V multiplication with i. It induces an involution of
complex vector spaces C⊗R J : C⊗R V → C⊗R V . Denote by (C⊗R V )+ and
(C⊗R V )− the eigenspace for +i and −i. We get canonical identifications of
complex vector spaces

C⊗R V = (C⊗R V )+ ⊕ (C⊗R V )−;
V = (C⊗R V )+;

Altr(C⊗R V ) =
⊕

p+q=r

Altp((C⊗R V )+)⊗C Altq((C⊗R V )−).

We have already defined the complex vector space Ωp(M) of smooth p-forms
on M in Section 1.3. We define the space of (p, q)-forms Ωp,q(M) by

Altp,q(C⊗R TxM) := Altp((C⊗R TxM)+)⊗C Altq((C⊗R TxM)−),
Ωp,q(M) := C∞ (Altp,q(C⊗R TM)) . (11.18)

We obtain a canonical decomposition

Ωr(M) =
⊕

p+q=r

Ωp,q(M). (11.19)

We have introduced the exterior differential d in (1.46), the Hodge-star op-
erator ∗ in (1.48) and adjoint of the exterior differential δ in (1.50). The
Hodge-star operator ∗r : Ωr(M) → Ωn−r(M) decomposes as

∗p,q : Ωp,q(M) → Ωm−p,m−q(M).

Define

∂p,q : Ωp,q(M) → Ωp+1,q(M); (11.20)
∂p,q : Ωp,q(M) → Ωp,q+1(M) (11.21)

by the composition

Ωp,q(M) i−→ Ωp+q(M) dp+q

−−−→ Ωp+q+1(M)
pr−→

{
Ωp+1,q(M)
Ωp,q+1(M)

where i is the inclusion and pr the projection. Define

∆r = dr−1δr + δr+1dr : Ωr(M) → Ωr(M); (11.22)
2p,q := ∂p−1,q(∂p−1,q)∗ + (∂p,q)∗∂p,q : Ωp,q(M) → Ωp,q(M); (11.23)

2p,q = ∂
p,q−1

(∂
p,q−1

)∗ + (∂
p,q

)∗∂
p,q

: Ωp,q(M) → Ωp,q(M). (11.24)

The proof of the following lemma can be found in [520, Theorem 3.7 in
Chapter I on page 34 and Theorem 4.7 in Chapter V on page 191].
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Lemma 11.25. If M is a Kähler manifold, then

∂ ◦ ∂ = 0;
∂ ◦ ∂ = 0;

d = ∂ + ∂;
∆ = 2 ·2 = 2 ·2.

Definition 11.26. Let M be a Kähler manifold. Define the space of har-
monic L2-integrable (p, q)-forms and harmonic r-forms

Hp,q
(2)(M) := {ω ∈ Ωp,q(M) | 2(ω) = 0,

∫

M

ω ∧ ∗ω < ∞};

Hr
(2)(M) := {ω ∈ Ωr(M) | ∆(ω) = 0,

∫

M

ω ∧ ∗ω < ∞}.

We get the following extension of Theorem 1.57.

Theorem 11.27 (L2-Hodge decomposition for Kähler manifolds). If
M is a Kähler manifold, then we get orthogonal decompositions

L2Ωr(M) = Hr(M)⊕ clos(dr−1(Ωr−1
c (M)))⊕ clos(δr+1(Ωr+1

c (M)));

Hr
(2)(M) =

⊕
p+q=r

Hp,q
(2)(M),

where Ωp
c (M) ⊂ Ωp(M) is the subspace of p-forms with compact support.

11.2.2 The L2-Lefschetz Theorem

Theorem 11.28 (L2-Lefschetz Theorem). Let M be a (not necessarily
compact) Kähler manifold of complex dimension m and real dimension n =
2m. Let ω be its fundamental form. Then the linear map

Lk : Ωr(M) → Ωr+2k(M), φ 7→ φ ∧ ωk

satisfies

(1) L commutes with ∆ and d;
(2) Lk induces bounded operators denoted in the same way

Lk : L2Ωr(M) → L2Ωr+2k(M);
Lk : Hr

(2)(M) → Hr+2k
(2) (M);

(3) The operators Lk of assertion (2) are quasi-isometries, i.e. there is a
positive constant C such that C−1 · ||φ|| ≤ ||Lk(φ)|| ≤ C · ||φ|| holds,
and in particular are injective, provided that k satisfies 2r + 2k ≤ n.
These operators are surjective, if k satisfies 2r + 2k ≥ n.
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Proof. (1) [520, Theorem 4.7 in Chapter V on page 191 and Theorem 4.8 in
Chaper V on page 192].

(2) Notice that Lk is defined fiberwise, for each x we have a linear map
Lk

x : Altr(TxM ⊗R C) → Altr+2k(TxM ⊗R C). The Kähler condition implies
that ωm

x 6= 0 for all x ∈ M (see [520, (1.12) on page 158]). The fundamen-
tal form ω is parallel with respect to the Levi-Civita connection since the
fiber transport tw : TxM → TyM for any path w in M from x to y with
respect to the Levi-Civita connection is an isometric C-linear isomorphism.
The following diagram commutes

Altr(TxM ⊗R C)
Lk

x−−−−→ Altr+2k(TxM ⊗R C)

tw

y tw

y

Altr(TyM ⊗R C)
Lk

y−−−−→ Altr+2k(TyM ⊗R C)

This implies that Lk is bounded.
(3) Elementary linear algebra shows Lk

x : Altr(C⊗RTxM) → Altr+2k(C⊗R
TxM) is injective for 2r+2k = n [520, Theorem 3.12 (c) in V.3 on page 182].
Since the source and target are complex vector spaces of the same finite di-
mension, it is bijective for 2r+2k = n. Because of the identity Lk

x◦Ll
x = Lk+l

x

we conclude that Lk
x is injective, if k satisfies 2r + 2k ≤ n, and surjective, if

k satisfies 2r +2k ≥ n. This implies that Lk is a quasi-isometry and injective
if k satisfies 2r + 2k ≤ n. It remains to prove the claim about surjectivity.
Because of the factorization

Ll+k : Ωr−2l(M) Ll

−→ Ωr(M) Lk

−−→ Ωr+2k(M)

it suffices to prove surjectivity for Lk in the case 2r + 2k = n.
Consider the adjoint Kx : Altr+2k(C ⊗R TxM) → Altr(C ⊗R TxM) of

Lk
x : Altr(C ⊗R TxM) → Altr+2k(C ⊗R TxM). Since Lk

x is surjective, Kk
x is

injective. We get a quasi-isometry K : L2Ωr+2k(M) → L2Ωr(M) which is
the adjoint of Lk. Since K is injective, Lk has dense image. Since Lk is a
quasi-isometry, Lk has closed image and hence is surjective. The proof for
Hr

(2)(M) is analogous. This finishes the proof of Theorem 11.28. ut
Corollary 11.29. Let M be a closed Kähler manifold of complex dimen-
sion m and real dimension n = 2m. Let br(M) = dimC

(
Hr

(2)(M)
)

=
dimC(Hr(M ;C)) be the ordinary r-th Betti number and define hp,q(M) :=

dimC
(
Hp,q

(2)(M)
)
. Then

(1) br(M) =
∑

p+q=r hp,q(M) for r ≥ 0;
(2) br(M) = bn−r(M) and hp,q(M) = hm−p,m−q(M) for r, p, q ≥ 0;
(3) hp,q(M) = hq,p(M) for p, q ≥ 0;
(4) br(M) is even for r odd;



432 11. The Singer Conjecture

(5) h1,0(M) = b1(M)
2 and depends only on π1(M);

(6) br(M) ≤ br+2(M) for r < m.

The corresponding statements except for (4) hold for the L2-versions
b
(2)
r (M̃) and hp,q(M̃).

Now we can give the proof of Theorem 11.16.

Proof. Because of Poincaré duality (see Theorem 1.35 (3)) it suffices to show
Hr

(2)(M̃) = 0 for r < m. Let ω̃ be the lift of the fundamental form on M to

the universal covering M̃ . Then

L1 : Hr
(2)(M̃) → Hr+2

(2) (M̃), φ 7→ φ ∧ ω̃

is injective by Theorem 11.28 (3). Consider φ ∈ Hr
(2)(M̃). By assumption

there is η ∈ Ω1(M̃) which satisfies

ω̃ = d(η);
||η||x ≤ C1 · d(x, x0) + C2

for positive constants C1, C2 > 0 and some point x0 ∈ M̃ . By the Hodge De-
composition Theorem 11.27 it suffices to show φ∧ ω̃ ∈ clos

(
dr+1(Ωr+1

c (M̃))
)

because then L1(φ) = φ ∧ ω̃ ∈ Hr+2(M̃) implies L1(φ) = 0 and thus φ = 0.
Let Br be the closed ball of radius r around x0. Choose a smooth function

ar : M̃ → [0, 1] together with a constant C3 > 0 such that ar(x) = 1 for
x ∈ Br, ar(x) = 0 for x /∈ B2r and ||dar||x ≤ C3

d(x,x0)
for x ∈ B2r −Br. Since

φ∧ arη lies in Ωr+1
c (M̃), it suffices to prove that (−1)r · d(φ∧ arη) converges

to φ ∧ ω̃ in the L2-norm.
We have

||φ ∧ ω̃ − φ ∧ arω̃||2L2 =
∫

M̃

||φ ∧ ω̃ − φ ∧ arω̃||2x dvol

=
∫

M̃

(1− ar(x))2 · ||φ ∧ ω̃||2x dvol

≤
∫

M̃−Br

||φ ∧ ω̃||2x dvol .

Since φ ∧ ω̃ is L2-integrable, we get limr→∞
∫

M̃−Br
||φ ∧ ω̃||2x dvol = 0 from

Lebesgue’s Theorem of majorized convergence. This shows that φ∧ arω̃ con-
verges to φ ∧ ω̃ in the L2-norm. Since

(−1)r · d(φ ∧ arη) = φ ∧ dar ∧ η + φ ∧ arω̃,

it remains to show that φ∧ dar ∧ η converges to zero in the L2-norm. We get
for appropriate constants C4, C5 > 0 and r ≥ 1
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∫

M̃

||φ ∧ dar ∧ η||2x dvol

≤
∫

B2r−Br

||φ ∧ dar ∧ η||2x dvol

≤
∫

B2r−Br

C4 · ||φ||2x · ||dar||2x · ||η||2x dvol

≤
∫

B2r−Br

C4 · ||φ||2x ·
C2

3

d(x, x0)2
· (C1 · d(x, x0) + C2)2 dvol

≤ C5 ·
∫

B2r−Br

||φ||2x dvol .

Since φ is L2-integrable, limr→∞
∫

B2r−Br
||φ||2x dvol = 0. Hence φ ∧ dar ∧ η

converges to zero in the L2-norm. This finishes the proof of Theorem 11.16.
ut

11.2.3 Novikov-Shubin Invariants for Kähler Hyperbolic
Manifolds

In this subsection we will prove

Theorem 11.30. Let M be a closed Kähler hyperbolic manifold. Then

αp(M̃) = ∞+ for p ≥ 1.

Proof. Because of Poincaré duality (see Theorem 2.55 (2)) it suffices to treat
the case p > m, if the real dimension of M is 2m.

We will use the analytic definition of the Novikov-Shubin invariants in
terms of the analytic spectral density function Fp(M̃) (see Definition 2.64).
Recall that the analytic and cellular versions agree by Theorem 2.68. We
have to find ε > 0 such that Fp(M̃)(λ) = Fp(M̃)(0) holds for 0 ≤ λ ≤ ε. We
conclude from the Hodge Decomposition Theorem 1.57 that the orthogonal
complement of the kernel of dp

min : dom(dp
min) ⊂ L2Ωp(M̃) → L2Ωp+1(M̃)

is clos
(
δp+1(Ωp+1

c (M̃))
)
. Because of Definition 2.1 and Lemma 2.2 (1)

is suffices to find ε > 0 such that for all elements ψ in dom(dp
min) ∩

clos
(
δp+1(Ωp+1

c (M̃))
)

with d(ψ) := dp
min(ψ) ∈ dom(δp+1) we have

||ψ||L2 ≤ ε · ||d(ψ)||L2 . (11.31)

Put k = p−m. In the sequel C1, C2, . . . are positive constants which depend
only on M (but not on ψ). Let ω̃ ∈ Ω2(M̃) be the lift of the fundamental form
ω of M to the universal covering M̃ . The map Lk : L2Ωp−2k(M̃) → L2Ωp(M̃)
sending φ to φ ∧ ω̃k is bijective, commutes with ∆ and satisfies

C1 · ||φ|| ≤ ||Lk(φ)||L2 ≤ 1
C1

· ||φ||
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by Theorem 11.28. Consider ψ in dom(dp
min) ∩ clos

(
δp+1(Ωp+1

c (M̃))
)

with

d(ψ) ∈ dom(δp+1). We can choose φ with

φ ∈ dom((∆p−2k)min);
ψ = Lk(φ).

Notice that some complication in the proof comes from the fact that d(φ) (in
contrast to δ ◦ d(φ) = ∆(φ)) does not lie in the range, where we know that
Lk is a quasi-isometry. Since Lk commutes with ∆ and hence with ∆1/2 we
conclude using partial integration (see Lemma 1.56)

||d(ψ)||2L2 = 〈d(ψ), d(ψ)〉 = 〈δ◦d(ψ), ψ〉 = 〈∆(ψ), ψ〉 = 〈∆1/2(ψ),∆1/2(ψ)〉
= 〈∆1/2 ◦ Lk(φ),∆1/2 ◦ Lk(φ)〉 = 〈Lk ◦∆1/2(φ), Lk ◦∆1/2(φ)〉 =

||Lk ◦∆1/2(φ)||2L2 ≥ C2
1 · ||∆1/2(φ)||2L2 = C2

1 · 〈∆1/2(φ), ∆1/2(φ)〉 =

C2
1 · 〈∆(φ), φ〉 = C2

1 · (〈δ ◦ d(φ), φ〉+ 〈d ◦ δ(φ), φ〉)
= C2

1 · (〈d(φ), d(φ)〉+ 〈δ(φ), δ(φ)〉) = C2
1 ·

(||d(φ)||2L2 + ||δ(φ)||2L2

)

≥ C2
1 · ||d(φ)||2L2 .

This shows

||d(φ)||L2 ≤ 1
C1

· ||d(ψ)||L2 . (11.32)

Since M is Kähler hyperbolic by assumption, we can find η ∈ Ω1(M̃)
with ||η||∞ < ∞ and ω̃ = d(η). We have ||ω̃||L2 < ∞. Put

θ := (−1)p · φ ∧ ω̃k−1 ∧ η;
µ := (−1)p · dφ ∧ ω̃k−1 ∧ η.

Both forms θ and µ are L2-integrable and

||µ||L2 ≤ C2 · ||dφ||L2 · ||ω̃k−1||∞ · ||η||∞; (11.33)
ψ = dθ − µ.

We conclude using partial integration (see Lemma 1.56)

||ψ||2L2 = 〈ψ,ψ〉L2 = 〈ψ, dθ − µ〉L2 = 〈ψ, dθ〉L2 − 〈ψ, µ〉L2

= 〈δψ, θ〉L2 − 〈ψ, µ〉L2 = − 〈ψ, µ〉L2 ≤ ||ψ||L2 · ||µ||L2 .

This implies

||ψ||L2 ≤ ||µ||L2 . (11.34)

If we put ε = C2
C1
· ||ω̃k−1||∞ · ||η||∞, we get the desired inequality (11.31)

from the inequalities (11.32), (11.33) and (11.34). This finishes the proof of
Theorem 11.30. ut
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11.2.4 Non-Vanishing of the Middle L2-Betti Number for Kähler
Hyperbolic Manifolds

In this subsection we sketch the proof of the following result. The proof is
due to Gromov [236, Section 2] and inspired by [499]. Notice that Theorem
11.14 then follows from Theorem 11.16, Theorem 11.30 and Theorem 11.35
below.

Theorem 11.35. Let M be a closed Kähler hyperbolic manifold of complex
dimension m and real dimension n = 2m. Then

Hp,q
(2)(M̃) 6= 0 for p + q = m.

Proof. Fix p with 0 ≤ p ≤ m. Consider the following elliptic cochain complex
of differential operators of order 1

. . .
∂p,q−2−−−−→ Ωp,q−1(M̃)

∂p,q−1−−−−→ Ωp,q(M̃)
∂p,q−−→ . . .

We define its (reduced) L2-cohomology as in Subsection 1.4.2 by

Zp,q(M̃) := ker
((

∂
p,q

: Ωp,q
c (M̃) → L2Ωp,q+1(M̃)

)
min

)
;

Bp,q(M̃) := im
((

∂
p,q−1

: Ωp,q−1
c (M̃) → L2Ωp,q(M̃)

)
min

)
;

Hp,q
(2) (M̃) := Zp,q(M̃)/ clos(Bp,q(M̃)).

The Hilbert spaces Hp,q
(2) (M̃) are finitely generated HilbertN (π1(M))-modules

and isomorphic toHp,q
(2)(M̃) since the Laplacian associated to the elliptic com-

plex (Ωp,∗(M̃), ∂p,∗) is by definition 2p,q introduced in (11.24). The L2-index
of the elliptic complex (Ωp,∗(M̃), ∂p,∗) is by definition

index(2)
(
Ωp,∗(M̃), ∂p,∗

)
=

∑

q≥0

(−1)q · dimN (π1(M))

(
Hp,q

(2) (M̃)
)

.

Using the lift ω̃ of the fundamental form ω of M to M̃ , Gromov [236, Section
2] constructs a family of elliptic complexes (Ωp,∗(M̃), ∂p,∗[t]) with t ∈ R,
which depends continuously on t and agrees with (Ωp,∗(M̃), ∂p,∗) for t = 0.
Moreover, he shows using a twisted L2-index theorem (see also [361, Theorem
3.6 on page 223]) that for some non-constant polynomial p(t)

index(2)
(
Ωp,∗(M̃), ∂p,∗[t]

)
= p(t).

This implies that there exist arbitrary small t > 0 with the property that at
least one of the Hilbert modules Hp,q

(2)

(
Ωp,∗(M̃), ∂p,∗[t]

)
= ker ((2p,q[t])min)

is different from zero.
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We want to use this fact to show that the assumption Hp,m−p
(2) (M̃) =

0 leads to a contradiction. We already know that Hp,q
(2)(M̃) = 0 for q 6=

m − p from Theorem 11.16 and Theorem 11.27. In Theorem 11.30 we have
already proved that αr(M̃) = ∞+ for all r ≥ 1. Lemma 2.66 (2) implies that
α((∆r)min : dom((∆r)min) ⊂ L2Ωr(M̃) → L2Ωr(M̃)) = ∞+ for all r ≥ 0.
We conclude from Lemma 11.25 that

α
(
(2p,q)min : dom((2p,q)min) ⊂ L2Ωp,q(M̃) → L2Ωp,q(M̃)

)
= ∞+

for q ≥ 0. Hence there is ε > 0 such that for the spectral density function
F ((2p,q)min) (λ) = 0 holds for all q ≥ 0 and λ ≤ ε. Since by construction
2p,q[t] − 2p,q is a bounded operator with operator norm ≤ C · t for some
constant C, this contradicts the existence of arbitrary small t > 0 such that
ker ((2p,q[t])min) 6= 0 for some q. This finishes the proof of Theorem 11.35.

ut
For applications in algebraic geometry the following consequence is cru-

cial.

Corollary 11.36. Let M be a closed Kähler hyperbolic manifold of complex
dimension m and real dimension n = 2m. Then there exists a non-trivial
holomorphic L2-integrable m-form on M̃ .

Proof. Choose a non-trivial element φ in H0,m(M̃) whose existence follows
from Theorem 11.35. Obviously 20,m(φ) = 0 implies ∂0,m(φ), i.e. φ is holo-
morphic. ut

11.3 Miscellaneous

One may consider the following more general version of the Singer Conjecture.

Conjecture 11.37. (Singer Conjecture for contractible proper co-
compact Poincaré G-CW -complexes).
Let X be a finite proper G-CW -complex. Suppose that X is contractible (af-
ter forgetting the group action). Suppose that there is an element [X] ∈
HG

dim(X)(X;Q) for Q with the trivial action such that the QG-chain map
∩[X] : Cdim(X)−∗(X) → C∗(X), which is uniquely defined up to QG-chain
homotopy, is a QG-chain homotopy equivalence. Then

b(2)
p (X;N (G)) = b(2)

p (G) = 0 if 2p 6= dim(X).

This version seems to cut down the assumptions to the absolutely neces-
sary and decisive properties, namely contractibility, Poincaré duality, proper-
ness and cocompactness. If M is an aspherical closed orientable manifold,
then M̃ with the canonical π1(M)-action satisfies the assumptions of Con-
jecture 11.37. Hence Conjecture 11.37 implies the Singer Conjecture 11.1 for



11.3 Miscellaneous 437

aspherical closed orientable manifolds. Notice that in the situation of Con-
jecture 11.37 the equality

b(2)
p (X;N (G)) = b(2)

p (G)

follows from Theorem 6.54 (3). If a group G acts properly on a smooth con-
tractible manifold M by orientation preserving diffeomorphisms, the assump-
tion of Conjecture 11.37 are satisfied because there exist smooth equivariant
triangulations [273]. Poincaré duality is explained for instance in [345, page
245].

Anderson [5], [6] has constructed simply connected complete Riemannian
manifolds with negative sectional curvature such that the space of harmonic
forms Hp

(2)(M) is non-trivial for some p with 2p 6= dim(M). This manifold M

does not admit a cocompact free proper action of a group G by isometries.
Hence it yields a counterexample neither to the Singer Conjecture 11.1 nor
to Conjecture 11.37. But this example shows the necessity of the condition
of cocompactness for the Singer Conjecture 11.1 to be true.

The author does not know a counterexample to the conjecture that for
a closed even-dimensional Riemannian manifold M with negative sectional
curvature αp(M̃) = ∞+ holds for p ≥ 1. This is true for locally symmetric
spaces (see Corollary 5.16 (3)), Kähler manifolds (see Theorem 11.14) and
for pinched curvature −1 ≤ sec(M) < −(1− 2

dim(M) )
2 (see Theorem 11.6).

Next we mention the work of Davis and Okun [130]. A simplicial complex
L is called a flag complex if each finite non-empty set of vertices, which pair-
wise are connected by edges, spans a simplex of L. To such a flag complex they
associate a right-angled Coxeter group WL defined by the following presenta-
tion [130, Definition 5.1]. Generators are the vertices v of L. Each generator
v satisfies v2 = 1. If two vertices v and w span an edge, there is the relation
(vw)2 = 1. Given a finite flag complex L, Davis and Okun associate to it a
finite proper WL-CW -complex ΣL, which turns out to be a model for the
classifying space of the family of finite subgroups E(G,FIN ) [130, 6.1, 6.1.1
and 6.1.2]. Equipped with a specific metric, ΣL turns out to be non-positive
curved in a combinatorial sense, namely, it is a CAT(0)-space [130, 6.5.3]. If
L is a generalized rational homology (n− 1)-sphere, i.e. a homology (n− 1)-
manifold with the same rational homology as Sn−1, then ΣL is a polyhedral
homology n-manifold with rational coefficients [130, 7.4]. So ΣL is a remi-
niscence of the universal covering of a closed n-dimensional manifold with
non-positive sectional curvature and fundamental group G. In view of the
Singer Conjecture 11.1 the conjecture makes sense that b

(2)
p (ΣL;N (WL)) = 0

for 2p 6= n provided that the underlying topological space of L is Sn−1 (or,
more generally, that it is a homology (n−1)-sphere) [130, Conjecture 0.4 and
8.1]. Davis and Okun show that the conjecture is true in dimension n ≤ 4
and that it is true in dimension (n + 1) if it holds in dimension n and n is
odd [130, Theorem 9.3.1 and Theorem 10.4.1].
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A group G is called Kähler group if it is the fundamental group of a closed
Kähler manifold. A lot of information about Kähler groups can be found in
[3]. For instance if G is a Kähler group with b

(2)
1 (G) 6= 0, then it contains a

subgroup G0 of finite index for which there is an epimorphism G0 → π1(Fg)
with finite kernel for some closed orientable surface Fg of genus g ≥ 2 [235,
3.1 on page 69]. Thus a Kähler group has b

(2)
1 (G) = 0 or looks like a surface

group of genus ≥ 2.

Exercises

11.1. Construct a closed connected Riemannian manifold M of even dimen-
sion, whose sectional curvature is non-positive but not identically zero, such
that b

(2)
p (M̃) = 0 holds for all p ≥ 0.

11.2. Show for a flat closed connected Riemannian manifold M that it is
det-L2-acyclic and ρ(2)(M̃) = 0.

11.3. Let M be a closed connected 4-manifold. Suppose that there is a
fibration F → M → B for closed connected manifolds F and B of dimension
1, 2 or 3. Prove:

(1) b
(2)
0 (M̃) 6= 0 if and only if F and B have finite fundamental groups. In

this case

b
(2)
p (M̃) = 1

|π1(M)| for p = 0, 4;

b
(2)
p (M̃) = 0 for p 6= 0, 2, 4;

b
(2)
2 (M̃) = χ(F ) · χ(B)− 2

|π1(M)| ;
χ(M) > 0;

(2) Suppose that π1(F ) is finite and π1(B) is infinite or that π1(F ) is infinite
and π1(B) is finite. Then

b
(2)
p (M̃) = χ(F )·χ(B)

2 for p = 1, 3;
b
(2)
p (M̃) = 0 for p 6= 1, 3;

χ(M) ≤ 0;

(3) Suppose that F and B have infinite fundamental groups. Then

b
(2)
p (M̃) = 0 for p 6= 2;

b
(2)
p (M̃) = χ(F ) · χ(B) for p = 2;

χ(M) ≥ 0;

(4) Suppose that M is aspherical. Show that χ(M) = χ(B) · χ(F ) ≥ 0 and
that we have χ(M) > 0 if and only if both F and B carry a hyperbolic
structure.
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11.4. Let M be a closed connected Riemannian manifold of even dimension
such that its sectional curvature satisfies −1 ≤ sec(M) < −(1 − 2

dim(M) )
2.

Show that b
(2)
p (M̃) = 0 for 2p 6= dim(M) and αp(M̃) = ∞+ for p ≥ 1 holds.

11.5. Let M be a Kähler manifold and N ⊂ M be a complex submanifold.
Show that N inherits the structure of a Kähler manifold. Show the analogous
statement for Kähler hyperbolic instead of Kähler.

11.6. Let M be a Kähler manifold of complex dimension m. Let ω be its
fundamental form and dvol be its volume form. Show

m! · dvol = ωm,

where ωm denotes the m-fold wedge product of ω with itself.

11.7. Let M be a Kähler hyperbolic manifold. Show that its universal covering
does not contain a closed complex submanifold of positive dimension.

11.8. Show that the torus T 2n carries the structure of a Kähler manifold
but not of a Kähler hyperbolic manifold.

11.9. Let M be a Kähler manifold. Show that there is an isometric C-
isomorphism from Hp,q(M̃) to the complex dual of Hq,p(M̃).

11.10. Suppose that the group G contains a subgroup G0 of finite index for
which there is an epimorphism G0 → π1(Fg) with finite kernel for some closed
connected orientable surface Fg of genus g ≥ 2. Show that b

(2)
1 (G) > 0.

11.11. A symplectic form ω on a smooth manifold of even dimension n = 2m
is a 2-form ω ∈ Ω2(M) such that ωm

x 6= 0 for all x ∈ M and d(ω) = 0.
Suppose that M comes with a complex structure. We call ω compatible with
the complex structure if ω(Jv, Jw) = ω(v, w) holds, where J is multiplication
with i. Show that a Kähler structure on a complex manifold is the same as a
symplectic structure which is compatible with the complex structure.





12. The Zero-in-the-Spectrum Conjecture

Introduction

In this section we deal with the zero-in-the-spectrum Conjecture which to
the author’s knowledge appears for the first time in Gromov’s article [233,
page 120].

Conjecture 12.1 (Zero-in-the-spectrum Conjecture). Let M̃ be a com-
plete Riemannian manifold. Suppose that M̃ is the universal covering of an
aspherical closed Riemannian manifold M (with the Riemannian metric com-
ing from M). Then for some p ≥ 0 zero is in the spectrum of the minimal
closure

(∆p)min : dom ((∆p)min) ⊂ L2Ωp(M̃) → L2Ωp(M̃)

of the Laplacian acting on smooth p-forms on M̃ .

Remark 12.2. Lott [318, page 347] gives five versions of this conjecture,
stated as a question, where the conditions on M̃ are varied. Namely,

(1) M̃ is a complete Riemannian manifold;
(2) M̃ is a complete Riemannian manifold with bounded geometry, i.e. the

injectivity radius is positive and the sectional curvature is pinched be-
tween −1 and 1;

(3) M̃ is a complete Riemannian manifold, which is uniformly contractible,
i.e. for all r > 0 there is an R(r) > 0 such that for all m ∈ M the open
ball Br(m) around m of radius r is contractible within BR(r)(m);

(4) M̃ is the universal covering of a closed Riemannian manifold M (with
the Riemannian metric coming from M);

(5) M̃ is the universal covering of an aspherical closed Riemannian manifold
M (with the Riemannian metric coming from M).

Notice that version (5) agrees with Conjecture 12.1. Meanwhile there are
counterexamples to version (4) due to Farber and Weinberger [187] which
also yield counterexamples to versions (1) and (2). To the authors knowledge
there are no counterexamples known to versions (3) and (5) (at the time of
writing).
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We will give a purely algebraic reformulation of the zero-in-the-spectrum
Conjecture 12.1 in Section 12.1. Some evidence for the zero-in-the-spectrum
Conjecture 12.1 is presented in Section 12.2. Most of the positive results are
based on direct computations or on appropriate index theorems applied to
pertubations of invertible operators. We deal with the counterexamples of
Farber and Weinberger in the non-aspherical case in Section 12.3.

To understand this chapter some knowledge about Chapters 1 and 2 is
required.

12.1 An Algebraic Formulation of the
Zero-in-the-Spectrum Conjecture

Next we reformulate the zero-in-the-spectrum Conjecture 12.1 into a purely
algebraic statement, namely, that for an aspherical closed manifold M
with fundamental group π = π1(M) at least one of the homology groups
Hπ

p (M̃ ;N (π)) is different from zero. Recall that for a G-CW -complex X

the N (G)-module HG
p (X;N (G)) is defined by Hp(N (G)⊗ZG C∗(X)), where

N (G) is just viewed as a ring, no topology enters. Analogously define
HG

p (X; C∗r (G)), where C∗r (G) is the reduced C∗-algebra of G.

Lemma 12.3. Let X be a free G-CW -complex of finite type. Let n be a non-
negative integer or ∞. Then the following assertions are equivalent, where in
assertion (5) we assume that X is a cocompact free proper G-manifold with
G-invariant Riemannian metric.

(1) We have

b(2)
p (X;N (G)) = 0 for p ≤ n;

αp(X;N (G)) = ∞+ for p ≤ n + 1;

(2) HG
p (X;N (G)) vanishes for p ≤ n;

(3) HG
p (X;C∗r (G)) vanishes for p ≤ n;

(4) For each p ≤ n zero is not in the spectrum of the combinatorial Laplacian
∆p : C

(2)
p (X) → C

(2)
p (X), or, equivalently, ∆p is invertible;

(5) For each p ≤ n zero is not in the spectrum of the minimal closure

(∆p)min : dom ((∆p)min) ⊂ L2Ωp(X) → L2Ωp(X)

of the Laplacian acting on smooth p-forms on X.

Proof. (1) ⇒ (5) We conclude from Lemma 2.66 (2) and Theorem 2.68 that
assertion (1) is equivalent to the condition that for each p ≤ n there exists
εp > 0 such that the spectral density function F∆

p of (∆p)min : dom ((∆p)min) ⊂
L2Ωp(X) → L2Ωp(X) satisfies F∆

p (λ) = 0 for λ ≤ εp. This is equivalent to
the existence of εp > 0 such that
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εp · ||ω||L2 ≤ ||(∆p)min(ω)||L2 for ω ∈ dom ((∆p)min) .

We conclude that (∆p)min is injective and has closed image. Since (∆p)min is
selfadjoint (see Lemma 1.70 (1)), we have im ((∆p)min)⊥ = ker ((∆p)min) = 0.
Hence (∆p)min : dom ((∆p)min) → L2Ωp(X) is bijective. One easily checks
that the inverse is a bounded operator. Hence zero is not in the spectrum of
(∆p)min for p ≤ n.

(5) ⇒ (1) By assumption we can find for each p ≤ n a bounded oper-
ator Sp : L2Ωp(X) → L2Ωp(X) with im(Sp) = dom ((∆p)min) such that
Sp ◦ (∆p)min = iddom((∆p)min) and (∆p)min ◦ Sp = idL2Ωp(X). Consider
ω ∈ dom ((∆p)min). Choose φ ∈ L2Ωp(X) with Sp(φ) = ω. Denote by ||Sp||∞
the operator norm of Sp. We get

||(∆p)min(ω)||L2 = ||(∆p)min ◦ Sp(φ)||L2 = ||φ||L2

≥ ||Sp||−1
∞ · ||Sp(φ)||L2 = ||Sp||−1

∞ · ||ω||L2 .

This implies F∆
p (λ) = 0 for λ < ||Sp||−1

L2 . Hence (1) is true.

(1) ⇔ (4) Its proof is analogous but simpler because the combinatorial Lapla-
cian is a bounded everywhere defined operator.

(1) ⇔ (2) This follows from Lemma 6.98.

(4) ⇒ (3) Let f : CGm → CGn be a CG-linear map. Let A be the (m,n)-
matrix describing f . Let A∗ be obtained from A by transposing and applying
to each entry the standard involution CG → CG which sends

∑
g∈G λg · g

to
∑

g∈G λg · g−1. Define the adjoint f∗ : CGn → CGm of f to be the CG-
linear map given by A∗. Recall that C∗(X) is the cellular ZG-chain com-
plex and the finitely generated Hilbert N (G)-chain complex C

(2)
∗ (X) is de-

fined by l2(G)⊗ZG C∗(X). Define ∆c
p : Cp(X) → Cp(X) to be the CG-linear

map cp+1c
∗
p+1 + c∗pcp, where the adjoints of cp and cp+1 are taken with re-

spect to a cellular basis. (The cellular basis is not quite unique but the
adjoints are). Then the combinatorial Laplacian ∆p : C

(2)
p (X) → C

(2)
p (X)

is idl2(G)⊗ZG ∆c
p. We conclude from (6.22) that ∆p is invertible if and

only if idN (G)⊗ZG ∆c
p : N (G) ⊗ZG Cp(X) → N (G) ⊗ZG Cp(X) is bi-

jective. We will need the following standard result about C∗-algebras. If
A ⊂ B is an inclusion of C∗-algebras and a ∈ A is invertible in B,
then a is already invertible in A [282, Proposition 4.1.5 on page 241].
If we apply this to A = Ml(C∗r (G)) and B = Ml(N (G)), we get that
idC∗r (G)⊗ZG ∆c

p : C∗r (G) ⊗ZG Cp(X) → C∗r (G) ⊗Z Cp(X) is invertible for
p ≤ n. One easily checks cp ◦ ∆c

p = ∆c
p−1 ◦ cp for all p. This implies

that idC∗r (G)⊗ZG cp ◦
(
idC∗r (G)⊗ZG ∆c

p

)−1 =
(
idC∗r (G)⊗ZG ∆c

p−1

)−1 ◦
idC∗r (G)⊗ZG cp holds for p ≤ n. For p ≤ n consider x ∈ ker

(
idC∗r (G)⊗ZG cp

)
.

Then x lies in the image of idC∗r (G)⊗ZG cp+1 because of the easily verified
equation
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idC∗r (G)⊗ZG cp+1 ◦ idC∗r (G)⊗ZG c∗p+1 ◦
(
idC∗r (G)⊗ZG ∆c

p

)−1 (x) = x.

This proves HG
p (X;C∗r (G)) = 0 for p ≤ n.

(3) ⇒ (2) Since C∗r (G)⊗ZGC∗(X) is a projective C∗r (G)-chain complex whose
modules vanish in negative dimensions, (3) implies that it is C∗r (G)-chain
homotopy equivalent to a projective C∗r (G)-chain complex P∗ with Pp = 0
for p ≤ n. Since N (G) ⊗ZG C∗(X) is N (G)-chain homotopy equivalent to
N (G)⊗C∗r (G) P∗, assertion (2) follows. This finishes the proof of Lemma 12.3.

ut
Remark 12.4. Let M be an aspherical closed Riemannian manifold with
fundamental group π. We conclude from Lemma 12.3 that M̃ satisfies the
zero-in-the-spectrum Conjecture 12.1 if and only if Hπ

p (Eπ;N (π)) 6= 0 for
at least one p ≥ 0. In particular the answer to the problem, whether the
universal covering of a closed connected Riemannian manifold M satisfies
the zero-in-the-spectrum Conjecture 12.1, depends only on the homotopy
type of M and not on its Riemannian metric.

So one may ask the question for which groups G, whose classifying space
BG possesses a finite CW -model, finite dimensional CW -model or CW -
model of finite type, Hπ

p (Eπ;N (π)) = 0 holds for p ≥ 0. In comparison
with the zero-in-the-spectrum Conjecture 12.1, the condition Poincaré du-
ality is dropped but a finiteness condition and the contractibility of Eπ re-
main. Without the finiteness assumption such groups G exists. For example
the group G =

∏∞
n=1(Z ∗ Z) satisfies HG

p (EG;N (G)) = 0 for all p ≥ 0 (see
Lemma 12.11 (5))).

12.2 Survey on Positive Results about the
Zero-in-the-Spectrum Conjecture

In this section we present some positive results on the zero-in-the-spectrum
Conjecture 12.1. Notice that it suffices to consider closed connected man-
ifolds which are orientable. If M is not orientable, one can pass to the
orientation covering M → M and use the fact that b

(2)
p (M̃ ;N (π1(M))) =

2 · b(2)
p (M̃ ;N (π1(M))) and α(M̃ ;N (π1(M))) = α(M̃ ;N (π1(M))) holds (see

Theorem 1.35 (9) and Theorem 2.55 (6)).

12.2.1 The Zero-in-the-Spectrum Conjecture for Low-Dimensional
Manifolds

The zero-in-the-spectrum Conjecture 12.1 is true for universal coverings of
closed 2-dimensional manifolds by Example 1.36, actually zero is contained
in the spectrum of the Laplacian in dimension 1.
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We have already explained in Section 4.1 that the Sphere Theorem [252,
Theorem 4.3] implies that a closed connected orientable 3-manifold is as-
pherical if and only if it is homotopy equivalent to a closed connected ori-
entable irreducible 3-manifold M with infinite fundamental group. If M is
non-exceptional, then M̃ satisfies the zero-in-the-spectrum Conjecture 12.1
by Theorem 4.2 (2) and (4). More precisely, zero is contained in the spec-
trum of the Laplacian in dimension 1 and 2. In other words, if Thurston’s
Geometrization Conjecture is true, then the zero-in-the-spectrum Conjecture
12.1 holds for universal coverings of aspherical closed 3-manifolds.

Lemma 12.5. Let M be a closed connected 4-dimensional manifold with fun-
damental group π. Then zero is not the spectrum of (∆p)min : dom ((∆p)min) ⊂
L2Ωp(M̃) → L2Ωp(M̃) for all p ≥ 0 if and only if Hπ

p (Eπ;N (π)) = 0 for
p = 0, 1 and χ(M) = 0.

Proof. We conclude from Lemma 12.3 that zero is not the spectrum of
(∆p)min : dom ((∆p)min) ⊂ L2Ωp(M̃) → L2Ωp(M̃) for all p ≥ 0 if and only
if b

(2)
p (M̃) = 0 and αp+1(M̃) = ∞+ for p ≥ 0. Since the classifying map

f : M → Bπ for π = π1(M) is 2-connected, we have b
(2)
p (M̃) = b

(2)
p (π) for

p = 0, 1 and αp(M̃) = αp(π) for p ≤ 2 (see Theorem 1.35 (1) and Theo-
rem 2.55 (1)). Now the claim follows from Lemma 12.3, Poincaré duality (see
Theorem 1.35 (3) and Theorem 2.55 (2)) and the Euler-Poincaré formula (see
Theorem 1.35 (2)). ut

The possible geometries on 4-manifolds have been classified by Wall [512].
If a closed connected 4-manifold possesses a geometry, one can compute the
L2-Betti numbers and get enough information about their Novikov-Shubin
invariants to conclude that M satisfies the zero-in-the-spectrum Conjecture
12.1 [329, Theorem 4.3] and [318, Proposition 18]. Let M be a 4-manifold
with a complex structure. Then its universal covering satisfies the zero-in-the-
spectrum Conjecture 12.1. Otherwise we would get a contradiction. Namely,
a closed 4-manifold with complex structure, which satisfies b

(2)
p (M̃) = 0 for

p ≥ 0 and hence χ(M) = sign(M) = 0 by Theorem 1.35 (2) and Lemma 7.22,
possesses a geometry [512, page 148-149].

12.2.2 The Zero-in-the-Spectrum Conjecture for Locally
Symmetric Spaces

The zero-in-the-spectrum Conjecture 12.1 holds for the universal cover-
ing M̃ of aspherical closed locally symmetric spaces M by Corollary 5.16
(2). Actually zero is in the spectrum of the Laplacian in dimension p, if
dim(M)−1

2 ≤ p ≤ dim(M)+1
2 .
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12.2.3 The Zero-in-the-Spectrum Conjecture for Kähler
Hyperbolic Manifolds

If M is a closed Kähler hyperbolic manifold (see Definition 11.12), then zero
is in the spectrum of the Laplacian on the universal covering in dimension
dim(M)/2 and in particular M satisfies the zero-in-the-spectrum Conjecture
12.1 by Theorem 11.14.

12.2.4 The Zero-in-the-Spectrum Conjecture for HyperEuclidean
Manifolds

A complete Riemannian manifold N is called hyperEuclidean if there is a
proper distance non-increasing map F : N → Rn of nonzero degree for n =
dim(N). Proper means that the preimage of a compact set is again compact.
The degree of a proper map f : N → P of oriented manifolds of the same
dimension n is the integer deg(f) for which the map induced by f on the
n-th homology with compact support sends the fundamental class [N ] to
the fundamental class [P ] multiplied by deg(f). Suppose that f : N → P is
smooth and proper and y is a regular value of f , i.e. Txf : TxN → TyP is
bijective for all x ∈ f−1(y). Then f−1(y) consists of finitely many points.
Define ε(x) for x ∈ f−1(y) to be 1 if Txf is orientation preserving and to be
−1 otherwise. Then deg(f) =

∑
x∈f−1(y) ε(x).

Any simply connected Riemannian manifold with non-positive sectional
curvature is hyperEuclidean, namely, take f to be the inverse of the expo-
nential map expy : TyM → M for some point y ∈ N .

Theorem 12.6. (1) Let N be a complete Riemannian manifold which is
hyperEuclidean. Then zero is in the spectrum of (∆p)min if dim(N)−1

2 ≤
p ≤ dim(N)+1

2 ;
(2) Let M be a closed Riemannian manifold with non-positive sectional cur-

vature. Then the universal covering M̃ satisfies the zero-in-the-spectrum
Conjecture 12.1.

Proof. (1) We only sketch the proof, more details can be found in [233] and
[318, Proposition 7]. Suppose that n = dim(N) is even and (1) is not true.
This leads to a contradiction by the following argument. Take a non-trivial
complex vector bundle over Rn with fixed trivialization at infinity and pull
it back via the composition of f with ε · id : Rn → Rn. Then the pullback Fε

carries an ε-flat connection which is trivial at infinity. The signature operator
is invertible, since we assume that zero is not in the spectrum of (∆p)min for
all p. If we twist the signature operator with this ε-flat connection, then for
small enough ε this pertubation is still invertible and hence its index is zero.
On the other hand a relative index theorem [239, Proposition 4.13 on page
121] shows that the index of the pertubated operator is non-zero for small
ε. Here one needs the fact that the vector bundle F is non-trivial and f has
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degree different from zero. The case, where n is odd, is reduced to the case,
where n is even, by considering N × R.

(2) This follows from (1) since M̃ is hyperEuclidean. ut

12.2.5 The Zero-in-the-Spectrum Conjecture and the Strong
Novikov Conjecture

The strong Novikov Conjecture says for a group G that the so called assembly
map a : Kp(BG) → Ktop

p (C∗r (G)) from the topological K-homology of BG to
the topological K-theory of the reduced group C∗-algebra C∗r (G) of G is ra-
tionally injective for all p ∈ Z. For more information about this conjecture we
refer for instance to [199]. Notice that the Baum-Connes Conjecture implies
the strong Novikov Conjecture.

Theorem 12.7. Suppose that M is an aspherical closed Riemannian man-
ifold. If its fundamental group π = π1(M) satisfies the strong Novikov
Conjecture, then M̃ satisfies the zero-in-the-spectrum Conjectur 12.1. Ac-
tually zero is in the spectrum of the Laplacian on M̃ in dimension p if
dim(M)−1

2 ≤ p ≤ dim(M)+1
2 .

Proof. We give a sketch of the proof. More details can be found in [318,
Corollary 4]. We only explain that the assumption that in every dimension
zero is not in the spectrum of the Laplacian on M̃ , yields a contradiction in
the case that n = dim(M) is even. Namely, this assumption implies that the
index of the signature operator twisted with the flat bundle M̃×πC∗r (π) → M
in K0(C∗r (π)) is zero. This index is the image of the class [D] defined by the
signature operator in K0(Bπ) under the assembly a : K0(Bπ) → K0(C∗r (π)).
Since by assumption the assembly map is injective, this implies [D] = 0 in
K0(Bπ). Notice that M is aspherical by assumption and hence M = Bπ.
The homological Chern character defines an isomorphism

Q⊗Zπ K0(Bπ) = Q⊗Zπ K0(M) → Hev(M ;Q) =
⊕

p≥0

H2p(M ;Q),

which sends D to the Poincaré dual L(M) ∩ [M ] of the Hirzebruch L-class
L(M) ∈ Hev(M ;Q). This implies that L(M)∩ [M ] = 0 and hence L(M) = 0.
This contradicts the fact that the component of L(M) in H0(M ;Q) is 1. ut

12.2.6 The Zero-in-the-Spectrum Conjecture and Finite
Asymptotic Dimension

A metric space X has finite asymptotic dimension if there exists an integer
n such that for any r > 0 there is a covering X =

⋃
i∈I Ci together with a

constant D such that the diameter of the subset Ci ⊂ X is bounded by D for
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all i ∈ I and a ball of radius r intersects at most (n + 1) of the sets Ci non-
trivially. The smallest such n is called the asymptotic dimension. This is the
coarse geometric analog of the notion of finite covering dimenson in topology.
The following theorem is due to Yu [528, Theorem 1.1 and Corollary 7.4]. Its
proof is based on the fact that the coarse Baum-Connes Conjecture holds for
proper metric spaces with finite asymptotic dimension [528, Corollary 7.1]
and coarse index theory.

Theorem 12.8. (1) Let M be a uniformly contractible Riemannian mani-
fold without boundary which has finite asymptotic dimension. Then zero
is in the spectrum of (∆p)min for at least one p ≥ 0;

(2) Let G be a group such that there is a finite model for BG and G re-
garded as a metric space with respect to the word-length metric has finite
asymptotic dimension. Then G satisfies the strong Novikov Conjecture;

(3) Let M be an aspherical closed manifold. Suppose that π1(M) regarded as
a metric space with respect to the word-length metric has finite asymp-
totic dimension. Then the universal covering M̃ satisfies the zero-in-the-
spectrum Conjecture 12.1.

If G is a finitely generated group which is word-hyperbolic in the sense of
[234], then G regarded as a metric space with respect to the word-length met-
ric has finite asymptotic dimension [237, Remark on page 31]. A torsionfree
word-hyperbolic group has a finite model for BG given by the Rips complex
[65, Corollary 3.26 in III. Γ on page 470] and hence satisfies the assumptions
of Theorem 12.8 (2).

If the finitely generated group G regarded as a metric space with respect
to the word-length metric has finite asymptotic dimension, then any finitely
generated subgroup H ⊂ G has the same property [528, Proposition 6.2].

Meanwhile Gromov has announced that he can construct groups with
finite models for BG such that G as a metric space with respect to the word-
length metric does not have finite asymptotic dimension.

12.3 Counterexamples to the Zero-in-the-Spectrum
Conjecture in the Non-Aspherical Case

For some time it was not known whether the zero-in-the-spectrum Conjecture
12.1 is true if one drops the condition aspherical. Farber and Weinberger [187]
gave the first example of a closed Riemannian manifold for which zero is not in
the spectrum of the minimal closure (∆p)min : dom ((∆p)min) ⊂ L2Ωp(M̃) →
L2Ωp(M̃) of the Laplacian acting on smooth p-forms on M̃ for each p ≥ 0. We
will present a short proof of a more general result following ideas of Higson,
Roe and Schick [258] which also were obtained independently by the author.
We want to emphasize that the key idea is due to Farber and Weinberger
[187]. Namely, they considered HG

p (X̃; C∗r (G;R)) instead of HG
p (X̃;N (G)),
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where C∗r (G;R) is the reduced real group C∗-algebra. This is possible in the
context of the zero-in-the-spectrum Conjecture 12.1 since Ml(C∗r (G;R)) is
division closed in Ml(N (G;R)) (see [282, Proposition 4.1.5 on page 241]).
The crucial observation is that for any invertible element in Ml(C∗r (G;R))
we can find an element B ∈ Ml(QG), which is arbitrary close to A in the C∗-
norm and hence invertible in Ml(C∗r (G;R)). (This is not true for N (G;R)
with its C∗-norm because C∗r (G;R) 6= N (G;R) in general). We have used
this fact at several places before when we applied index theorems to small
pertubations of invertible operators of Hilbert modules over C∗-algebras.

Theorem 12.9. Let G be a finitely presented group. Then the following as-
sertions are equivalent:

(1) We have HG
p (EG;N (G)) = 0 for p = 0, 1, 2;

(2) We have HG
p (EG; C∗r (G)) = 0 for p = 0, 1, 2;

(3) There is a finite 3-dimensional CW -complex X with fundamental group
π1(X) = G such that HG

p (X̃; C∗r (G)) = 0 for p ≥ 0;
(4) There is a finite 3-dimensional CW -complex X with fundamental group

π1(X) = G such that HG
p (X̃;N (G)) = 0 for p ≥ 0;

(5) For any integer n ≥ 6 there is a connected closed orientable Riemannian
manifold M with fundamental group π1(M) = G of dimension n such
that HG

p (M̃ ;N (G)) = 0 for p ≥ 0;
(6) For any integer n ≥ 6 there is a connected closed orientable Riemannian

manifold M of dimension n with fundamental group π1(M) = G such that
for each p ≥ 0 zero is not in the spectrum of (∆p)min : dom ((∆p)min) ⊂
L2Ωp(M̃) → L2Ωp(M̃).

Proof. (1) ⇒ (2) This follows from Lemma 12.3.

(2) ⇒ (3) Since G is finitely presented, we can find a CW -model for BG
whose 2-skeleton is finite. By assumption HG

p (EG;C∗r (G)) = 0 for p = 0, 1, 2.
Let C∗r (G;R) be the reduced real group C∗r -algebra of G. Since C∗r (G) =
C⊗R C∗r (G;R), we conclude HG

p (EG;C∗r (G;R)) = 0 for p = 0, 1, 2. Let Z be
the 2-skeleton of BG. Then we obtain an exact sequence of C∗r (G;R)-modules
0 → HG

2 (Z̃; C∗r (G;R)) → C∗r (G;R) ⊗ZG C2(Z̃) → C∗r (G;R) ⊗ZG C1(Z̃) →
C∗r (G;R)⊗ZG C0(Z̃) → 0. Since the C∗r (G;R)-module C∗r (G;R)⊗ZG Cp(Z̃) is
finitely generated free for p = 0, 1, 2, the C∗r (G;R)-module HG

2 (Z̃; C∗r (G;R))
becomes finitely generated free after taking the direct sum with C∗r (G;R)l

for an appropriate integer l ≥ 0. Put Y = Z ∨∨l
i=1 S2. Then Y is a finite 2-

dimensional CW -complex with π1(Y ) = G such that HG
p (Ỹ ; C∗r (G)) vanishes

for p = 0, 1 and is a finitely generated free C∗r (G)-module for p = 2.
The universal coefficient spectral sequence converges to HG

p+q(Ỹ ;C∗r (G;R))
and its E2-term is E2

p,q = TorZG
p (Hq(Ỹ ); C∗r (G;R)). Since H1(Ỹ ) = 0, it gives

an exact sequence of C∗r (G;R)-modules
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C∗r (G;R)⊗ZG H2(Ỹ )
ψ−→ HG

2 (Ỹ ; C∗r (G;R)) → HG
2 (EG; C∗r (G;R)) → 0,

where ψ is the obvious map. Since HG
2 (EG; C∗r (G;R)) = 0 by assumption,

ψ : C∗r (G;R)⊗ZG H2(Ỹ ) → HG
2 (Ỹ ; C∗r (G;R)) is surjective.

Let φ : H2(Ỹ ) → C∗r (G;R)⊗ZG H2(Ỹ ) be the ZG-map sending u to 1⊗ZG

u. Next we show that the image of ψ◦φ : H2(Ỹ ) → HG
2 (Ỹ ; C∗r (G;R)) contains

a C∗r (G;R)-basis. Fix a C∗r (G;R)-basis {b1, b2, . . . , bl} of HG
2 (Ỹ ;C∗r (G;R)).

Since ψ is surjective, we can find elements ci,j ∈ C∗r (G;R) and hi,j ∈ H2(Ỹ )
such that

bi =
si∑

ji=1

ci,ji
· ψ ◦ φ(hi,ji

)

holds for i = 1, 2, . . . , l.
Let µ :

⊕l
i=1 C∗r (G;R)si → Ml(C∗r (G;R)) be the C∗r (G;R)-linear map

which is uniquely determined by the property

l∑

k=1

(µ(x1, . . . , xl))i,k · bk =
si∑

ji=1

xi,ji · ψ ◦ φ(hi,ji) for i = 1, 2, . . . , l.

We equip C∗r (G;R)m with the norm ||(x1, . . . , xm)||1 =
∑m

i=1 ||xi||C∗r (G;R)

and Ml(C∗r (G;R)) with the standard C∗-norm. Since µ is C∗r (G;R)-linear, it
is continuous with respect to these norms by the following calculation. Here
ei,ji is the obvious element of the standard basis for the source of µ and
C := max{||µ(ei,ji)||Ml(C∗r (G;R)) | 1 ≤ ji ≤ si, 1 ≤ i ≤ l}

||µ(x)||Ml(C∗r (G;R)) ≤
∣∣∣∣∣∣

∣∣∣∣∣∣

l∑

i=1

si∑

ji=1

xi,ji · µ(ei,ji)

∣∣∣∣∣∣

∣∣∣∣∣∣
Ml(C∗r (G;R))

≤
l∑

i=1

si∑

ji=1

||xi,ji · µ(ei,ji)||Ml(C∗r (G;R))

≤
l∑

i=1

si∑

ji=1

||xi,ji ||C∗r (G;R) · ||µ(ei,ji)||Ml(C∗r (G;R))

≤
l∑

i=1

si∑

ji=1

||xi,ji ||C∗r (G;R) · C

= C · ||x||1.
The set of invertible matrices Gll(C∗r (G;R)) ⊂ M∗

l (C∗r (G;R)) is open. This
standard fact for C∗-algebras follows from the observation that for an element
A in a C∗-algebra with norm ||A|| < 1 the sequence

∑
n≥0 An converges

to an inverse of 1 − A. With respect to the C∗-norm QG ⊂ C∗r (G;R) is
dense. Since µ sends

(
(c1,j1)

s1
j1=1, . . . , (cl,jl

)sl
jl=1

)
to the identity matrix, we
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can find q :=
(
(q1,j1)

s1
j1=1, . . . , (ql,jl

)sl
jl=1

)
in

⊕l
i=1QGsi such that µ(q) lies in

GLl(C∗r (G;R)). Choose an integer N such that each number ni,ji
:= N · qi,ji

is an integer. Obviously µ(N · q) = N · µ(q) lies in GLl(C∗r (G;R)). Define
ui ∈ H2(Ỹ ) for i = 1, 2, . . . , l by ui =

∑si

ji=1 ni,j · hi,j . Then {ψ ◦ φ(ui) | i =
1, 2, . . . , l} is a C∗r (G;R)-basis for HG

2 (Ỹ ; C∗r (G;R)).
Since Ỹ is simply connected, the Hurewicz homomorphism h : π2(Ỹ ) →

H2(Ỹ ) is surjective [521, Corollary 7.8 in Chapter IV.7 on page 180]. Hence
we can find maps ai : S2 → Ỹ for i = 1, 2, . . . , l such that the composition
ψ ◦ φ ◦ h : π2(Ỹ ) → HG

2 (Ỹ , C∗r (G;R)) sends {[a1], . . . , [al]} to a C∗r (G;R)-
basis. Now attach to Z a 3-cell with attaching map p ◦ ai : S2 → Y for
each i = 1, 2, . . . , l, where p : Ỹ → Y is the projection. We obtain a CW -
complex X such that the inclusion Y → X is 2-connected. In particular
π1(X) = π1(Y ) = G and HG

p (X̃; C∗r (G;R)) = HG
p (Ỹ ; C∗r (G;R)) for p = 0, 1.

Moreover, there is an exact sequence of C∗r (G;R)-modules

0 → HG
3 (X̃; C∗r (G;R)) → C∗r (G;R)⊗ZG C3(X̃) ν−→ HG

2 (Ỹ ; C∗r (G;R))

→ HG
2 (X̃; C∗r (G;R)) → 0,

where ν sends 1⊗vi for vi the i-th element of the cellular basis of C3(X̃) = ZGl

to ψ◦φ◦h([ai]). Hence ν is an isomorphism. This implies HG
p (X̃, C∗r (G;R)) =

0 for p = 2, 3 and hence HG
p (X̃, C∗r (G)) = 0 for p ≥ 0.

(3) ⇔ (4) This follows from Lemma 12.3.

(4) ⇒ (5) We can find an embedding of X in Rn+1 for n ≥ 6 with reg-
ular neighborhood N with boundary ∂N [445, chapter 3]. Then X and
N are homotopy equivalent and the inclusion ∂N → N is 2-connected.
In particular we get identifications G = π1(X) = π1(N) = π1(∂N) and
HG

p (Ñ ;N (G)) = HG
p (X̃;N (G)) = 0 for p ≥ 0. By Poincaré duality

HG
p (Ñ , ∂̃N ;N (G)) is N (G)-isomorphic to Hn+1−p(Ñ ;N (G)), where the

latter is defined by the cohomology of homZG(C∗(Ñ),N (G)). There is a
canonical N (G)-isomorphism homZG(C∗(Ñ),N (G)) ∼= homN (G)(N (G) ⊗ZG

C∗(Ñ),N (G)). Since N (G) ⊗ZG C∗(Ñ) is a free N (G)-chain complex with
trivial homology, it is contractible. This implies that homN (G)(N (G) ⊗ZG

C∗(Ñ),N (G)) is contractible. Hence HG
p (Ñ , ∂̃N ;N (G)) vanishes for p ≥ 0.

The long exact homology sequence

. . . → HG
p+1(Ñ , ∂̃N ;N (G)) → HG

p (∂̃N ;N (G)) → HG
p (Ñ ;N (G))

→ HG
p (Ñ , ∂̃N ;N (G)) → . . .

implies that ∂N is a closed connected orientable Riemannian manifold with
G = π1(∂N) and HG

p (∂̃N ;N (G)) = 0 for p ≥ 0.
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(5) ⇒ (1) This follows from the fact that the classifying map M → BG is 2-
connected and hence induces epimorphisms HG

p (M̃ ;N (G)) → HG
p (EG;N (G))

for p = 0, 1, 2.

(5) ⇔ (6) This follows from Lemma 12.3. This finishes the proof of Theorem
12.9. ut

It remains to investigate the class of groups for which Theorem 12.9 ap-
plies.

Definition 12.10. Let d be a non-negative integer or d = ∞. Define Zd to
be the class of groups for which HG

p (EG;N (G)) = 0 holds for p ≤ d.

Lemma 12.11. Let d be a non-negative integer or d = ∞. Then

(1) Let G be the directed union
⋃

i∈Gi of subgroups Gi ⊂ G. Suppose that
Gi ∈ Zd for each i ∈ I. Then G ∈ Zd;

(2) If G contains a normal subgroup H ⊂ G with H ∈ Zd, then G ∈ Zd;
(3) If G ∈ Zd and H ∈ Ze, then G×H ∈ Zd+e+1;
(4) Z0 is the class of non-amenable groups;
(5) Let G be a non-amenable group, for instance a non-abelian free group.

Then
∏d

i=0 G lies in Zd.

Proof. (1) Inspecting for instance the bar-resolution or the infinite join model
for EG, one sees that EG is the colimit of a directed system of G-CW -
subcomplexes of the form G×Gi EGi directed by I. Hence

HG
p (EG;N (G)) = colimi∈I HG

p (G×Gi EGi;N (G)).

We get HG
p (G×Gi EGi;N (G)) = N (G)⊗N (Gi) HGi

p (EGi,N (Gi)) = 0 from
Theorem 6.29 (1).

(2) The Serre spectral sequence applied to BH → BG → B(G/H) with
coefficients in the ZG-module N (G) converges to HG

p+q(EG;N (G)) and has

as E2-term E2
p,q = H

G/H
p (E(G/H); HH

q (EH;N (G))). Theorem 6.29 (1) im-
plies HH

q (EH;N (G)) = N (G)⊗N (H) HH
q (EH;N (H)) = 0 for q ≤ d. Hence

HG
n (EG;N (G)) = 0 for n ≤ d.

(3) The condition G ∈ Zd implies that N (G) ⊗ZG C∗(EG) is N (G)-chain
homotopy equivalent to an N (G)-chain complex P∗ such that Pp = 0
holds for p ≤ d, and analogously for the condition H ∈ Ze. Notice
that C∗(E(G ×H)) is Z[G ×H]-isomorphic to C∗(EG) ⊗Z C∗(EH). Hence
N (G×H)⊗Z[G×H] C∗(E(G×H)) is N (G×H)-chain homotopy equivalent
to the N (G×H)-chain complex N (G×H)⊗N (G)⊗CN (H) (P∗⊗CQ∗), whose
chain modules in dimension n ≤ d + e + 1 are zero. Hence G×H ∈ Zd+e+1.

(4) This follows from Lemma 6.36.

(5) This follows from assertions (3) and (4) for d < ∞. The case d = ∞
follows from (2). This finishes the proof of Lemma 12.10. ut
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12.4 Miscellaneous

The Singer Conjecture 11.1 and the results presented in Section 12.2 suggest
to consider the following stronger version of the zero-in-the-spectrum Con-
jecture 12.1. Let M be an aspherical closed manifold. Then zero is in the
spectrum of (∆p)min : dom ((∆p)min) ⊂ L2Ωp(M̃) → L2Ωp(M̃) for p with
dim(M)−1

2 ≤ p ≤ dim(M)+1
2 . Roughly speaking, zero is always in the spectrum

of the Laplacian in the middle dimension.
If M is a 2-dimensional complete Riemannian manifold, then zero is in

the spectrum of (∆p)min for some p ≥ 0 by an argument due to Dodziuk and
Lott [318, Proposition 10].

Let M be a complete Riemannian manifold. We have introduced its re-
duced L2-cohomology Hp

(2)(M) and unreduced L2-cohomology Hp
(2),unr(M)

in Definition 1.71. The unreduced cohomology Hp
(2),unr(M) vanishes if and

only if zero is not in the spectrum of (∆p)min : dom ((∆p)min) ⊂ L2Ωp(M) →
L2Ωp(M). The question whether the unreduced and reduced L2-cohomology
are quasi-isometry invariants is investigated in [237, page 291] and [410].

We have seen for an integer n and a free G-CW -complex X of finite
type in Lemma 12.3 that HG

p (X;N (G)) = 0 for p ≤ n is equivalent to
HG

p (X; C∗r (G))) = 0 for p ≤ n. The proof was essentially based on the fact
that C∗r (G) is rationally closed in N (G), i.e. a matrix in Ml(C∗r (G)) which
is invertible in Ml(N (G)) is already invertible in Ml(C∗r (G)). This does not
imply that N (G) is flat over C∗r (G) as the following elementary example
illustrates.

Example 12.12. We want to show that N (Z) is not flat over C∗r (Z). Choose
a numeration by the positive integers of Q∩ [0, 1] = {qn | n = 1, 2, . . .}. Fix a
sequence of positive real numbers (εn)n≥1 with

∑
n≥1 εn < 1/2. Let A ⊂ S1

be the complement of the open subset
⋃

n≥0{exp(2πix) | x ∈ (qn−εn, qn+εn)}
of S1. Obviously A is closed and its volume is greater than zero. Choose a
continuous function f : S1 → C such that f−1(0) = A. (Actually one can
choose f to be smooth [67, Satz 14.1 on page 153].) Then multiplication with
f ∈ C∗r (Z) = C(S1) induces an injective C∗r (Z)-homomorphism rf : C(S1) →
C(S1) since the complement of A contains the dense subset {exp(2πiq) |
q ∈ Q ∩ [0, 1]}. Multiplication with f ∈ N (Z) = L∞(S1) (see Example 1.4)
induces a N (Z)-homomorphism L∞(S1) → L∞(S1) which is not injective
since its kernel contains the non-zero element χA given by the characteristic
function of A. We mention that both C∗r (Z) and N (Z) are flat over CZ (see
Conjecture 6.49).

A result similar to Theorem 12.9 has been proved by Kervaire [289].

Theorem 12.13. Let G be a finitely presented group. Suppose Hp(BG;Z) =
0 for p = 1, 2. Then there is for each n ≥ 5 a closed n-dimensional manifold
M with Hp(M ;Z) ∼= Hp(Sn;Z) for p ≥ 0 and π1(M) ∼= G.
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More information about the zero-in-the-spectrum Conjecture 12.1 can be
found in [318] and in [237, section 8.A5].

Exercises

12.1. Let T : dom(T ) ⊂ H → H be a densely defined closed operator.
Suppose that T is selfadjoint. Prove

resolv(T ) = {λ ∈ C | (T − λ id)(dom(T )) = H}.

12.2. Let M be a compact connected orientable 3-manifold such that each
prime factor is non-exceptional. Show that then Hπ

p (Eπ;N (π)) is non-zero
for p = 0 or p = 1.

12.3. Let M be an aspherical closed locally symmetric space with funda-
mental group π. Then Hπ

p (Eπ;N (π)) = 0 for p <
dim(Mncp)−f-rk(Mncp)

2 and
Hπ

p (Eπ;N (π)) 6= 0 for p = dim(Mncp)−f-rk(Mncp)
2 .

12.4. Show that the universal covering of an aspherical closed Riemannian
manifold is uniformly contractible.

12.5. Let f : M → N be a map of closed connected orientable manifolds
of the same dimension. Suppose that f has non-zero degree and induces an
isomorphism on the fundamental groups. Assume that zero is not in the
spectrum of (∆p)min : dom ((∆p)min) ⊂ L2Ωp(M̃) → L2Ωp(M̃) for p ≥ 0.
Show that then zero is not in the spectrum of (∆p)min : dom ((∆p)min) ⊂
L2Ωp(Ñ) → L2Ωp(Ñ) for p ≥ 0.

12.6. Let F → E → B be a fibration of closed connected manifolds such
that π1(F ) → π1(E) is injective. Suppose that zero is not in the spectrum
of (∆p)min : dom ((∆p)min) ⊂ L2Ωp(F̃ ) → L2Ωp(F̃ ) for p ≥ 0. Show that
then zero is not in the spectrum of (∆p)min : dom ((∆p)min) ⊂ L2Ωp(Ẽ) →
L2Ωp(Ẽ) for p ≥ 0.

12.7. Let X be a finite 2-dimensional CW -complex with fundamental group
π. Suppose that π is not amenable, Hπ

1 (Eπ;N (π)) = 0 and χ(X) = 0. Show
that Hπ

p (X;N (π)) = 0 for p ≥ 0 and X is aspherical.

12.8. Let G be a finitely presented group G such that HG
p (EG;N (G)) = 0

for p ≤ 1. Show

def(G) ≤ 1.

Prove that def(G) = 1 implies the existence of an aspherical finite CW -
complex X of dimension 2 such that G = π1(X) and HG

p (X̃;N (G)) = 0 for
p ≥ 0.
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12.9. Let G be a finitely presented group G such that HG
p (EG;N (G)) = 0

for p ≤ 1. Define q(G) to be the infimum over the Euler characteristics χ(M)
of all closed connected orientable 4-manifolds with π1(M) ∼= G. Show

q(G) ≥ 0.

Suppose q(G) = 0. Then there exists a closed connected orientable 4-
manifold M with G ∼= π1(M) such that zero is not in the spectrum of
(∆p)min : dom ((∆p)min) ⊂ L2Ωp(M̃) → L2Ωp(M̃) for p ≥ 0.

12.10. Let G and H be groups with models for BG and BH of finite type.
Let d and e be integers or be ∞. Suppose that

HG
p (EG;N (G)) = 0 p ≤ d;

HG
p (EG;N (G)) 6= 0 p = d + 1;

HH
p (EH;N (H)) = 0 q ≤ e;

HH
p (EH;N (H)) 6= 0 q = e + 1.

Then HG×H
n (E(G×H);N (G×H)) is zero for n ≤ d + e + 1 and is not zero

for p = d + e + 2.

12.11. Determine for the following groups G the supremum s over the set
of integers n for which HG

p (EG;N (G)) = 0 for p ≤ n holds: G = Z/2, Zk,
∗r

i=1Z,
∏r

i=1 Z ∗ Z, Z× (Z ∗ Z),
∏∞

i=1(Z/2 ∗ Z/2),
∏∞

i=1(Z/2 ∗ Z/3).

12.12. Let N be a compact connected oriented manifold of dimension n = 4k
for some integer k. Let M be a complete Riemannian manifold which is
diffeomorphic to the interior N − ∂N . Show

(1) The image of H2k(N ; ∂N ;C) → H2k(N ;C) is isomorphic to the image of
H2k

c (M ;C) → H2k(M ;C), where H2k
c (M ;C) denotes cohomology with

compact support;
(2) Suppose that the signature of N is different from zero. Conclude that

then the image of H2k
c (M ;C) → H2k(M ;C) is non-trivial and zero is in

the spectrum of (∆2k)min : dom ((∆2k)min) ⊂ L2Ω2k(M) → L2Ω2k(M).





13. The Approximation Conjecture and the
Determinant Conjecture

The Approximation Conjecture and the Determinant Conjecture

Introduction

This chapter is devoted to the following two conjectures.

Conjecture 13.1 (Approximation Conjecture). A group G satisfies the
Approximation Conjecture if the following holds:

Let {Gi | i ∈ I} be an inverse system of normal subgroups of G directed
by inclusion over the directed set I. Suppose that

⋂
i∈I Gi = {1}. Let X be a

G-CW -complex of finite type. Then Gi\X is a G/Gi-CW -complex of finite
type and

b(2)
p (X;N (G)) = lim

i∈I
b(2)
p (Gi\X;N (G/Gi)).

Let us consider the special case where the inverse system {Gi | i ∈ I} is
given by a nested sequence of normal subgroups of finite index

G = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ . . . .

Notice that then b
(2)
p (Gi\X;N (G/Gi)) = bp(Gi\X)

[G:Gi]
, where bp(Gi\X) is the

ordinary p-th Betti number of the finite CW - complex Gi\X (see Example
1.32). The inequality

lim sup
i→∞

bp(Gi\X)
[G : Gi]

≤ b(2)
p (X;N (G))

is discussed by Gromov [237, pages 20, 231] and is essentially due to Kazhdan
[284]. In this special case Conjecture 13.1 was formulated by Gromov [237,
pages 20, 231] and proved in [328, Theorem 0.1]. Thus we get an asymptotic
relation between the L2-Betti numbers and Betti numbers, namely

lim
i→∞

bp(Gi\X)
[G : Gi]

= b(2)
p (X;N (G)),

although the L2-Betti numbers of the universal covering Ỹ and the Betti
numbers of a finite CW -complex Y have nothing in common except the fact
that their alternating sum gives χ(Y ) (see Example 1.38).
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The Approximation Conjecture 13.1 in its present form for I = {0, 1, 2, . . .}
appears in [462, Conjecture 1.10].

The second conjecture is

Conjecture 13.2 (Determinant Conjecture). Every group G is of det ≥
1-class (see Definition 3.112), i.e. for any A ∈ M(m,n,ZG) the Fuglede-
Kadison determinant (see Definition 3.11) of the morphism r

(2)
A : l2(G)m →

l2(G)n given by right multiplication with A satisfies

det(r(2)
A ) ≥ 1.

We will see that the Determinant Conjecture 13.2 implies both the Ap-
proximation Conjecture 13.1 and the Conjecture 3.94 about the homotopy
invariance of L2-torsion (see Lemma 13.6 and Theorem 13.3 (1)).

In Section 13.1 we will explain the relevance of the two conjectures above
and formulate the main Theorem 13.3 of this chapter, which says that the
two conjectures above are true for a certain class G of groups. This theorem is
proved in Section 13.2. Variations of the approximation results are presented
in Section 13.3.

To understand this chapter, it is only required to be familiar with Sections
1.1, 1.2 and to have some basic knowledge of Section 3.2.

13.1 Survey on the Approximation Conjecture and
Determinant Conjecture

In this section we discuss the Approximation Conjecture 13.1 and the Deter-
minant Conjecture 13.2 and introduce the class of groups for which they are
known.

13.1.1 Survey on Positive Results about the Approximation
Conjecture and the Determinant Conjecture

The following theorem is the main result of this chapter. It is proved in [462,
Theorem 1.14, Theorem 1.19 and Theorem 1.21] for a class of groups which
is slightly smaller than our class G which will be introduced in Definition
13.9 and studied in Subsection 13.1.3. The general strategy is based on [328],
where the case that each quotient G/Gi is finite is carried out. See also [82,
Theorem 5.1 on page 71] for a treatment of determinant class in this special
case. The treatment of amenable exhaustions uses ideas of [149]. We will
present the proof of Theorem 13.3 in Section 13.2.

Theorem 13.3. (1) The Approximation Conjecture 13.1 for G and the in-
verse system {Gi | i ∈ I} is true if each group Gi is of det ≥ 1-class;

(2) If the group G belongs G, then G is of det ≥ 1-class and satisfies the
Approximation Conjecture 13.1;
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(3) The class of groups, which are of det ≥ 1-class, is closed under the oper-
ations (1), (2), (3), (4) and (5) appearing in Definition 13.9;

(4) The class of groups, for which assertion (1) of Conjecture 3.94 is true,
is closed under the operations (2), (3) and (4) appearing in Definition
13.9.

13.1.2 Relations to Other Conjectures

We leave the proof of the next lemma, which is similar to the one of Lemma
10.5, to the reader.

Lemma 13.4. Let G be a group. Let {Gi | i ∈ I} be an inverse system of
normal subgroups directed by inclusion over the directed set I. Suppose that⋂

i∈I Gi = {1}. Then the following assertions are equivalent:

(1) The group G satisfies the Approximation Conjecture 13.1 for the inverse
system {Gi | i ∈ I};

(2) The group G satisfies the Approximation Conjecture 13.1 for the inverse
system {Gi | i ∈ I} for all cocompact free proper G-manifolds X without
boundary;

(3) Let A ∈ M(m,n,QG) be a matrix. Let Ai ∈ M(m,n,Q[G/Gi]) be the
matrix obtained from A by applying elementwise the ring homomorphism
QG → Q[G/Gi] induced by the projection G → G/Gi. Then

dimN (G)

(
ker

(
r
(2)
A : l2(G)m → l2(G)n

))

= lim
i→∞

dimN (G/Gi)

(
ker

(
r
(2)
Ai

: l2(G/Gi)m → l2(G/Gi)n
))

,

where r
(2)
A and r

(2)
Ai

are given by right multiplication.

The Approximation Conjecture is interesting in connection with the
Atiyah Conjecture. The main application has already been stated in The-
orem 10.20.

Example 13.5. We can give another proof that the Atiyah Conjecture 10.3
of order Z with coefficients in Q holds for any free group F . Namely, we
can assume that F is finitely generated free by Lemma 10.4. The descending
central series of a finitely generated free group F yields a sequence of in F
normal subgroups F = F0 ⊃ F1 ⊃ F2 ⊃ . . . such that

⋂
i≥1 Fi = {1} and

each quotient F/Fi is torsionfree and nilpotent [354, §2]. Since finitely gener-
ated nilpotent groups are poly-cyclic groups, each quotient F/Fi satisfies the
Atiyah Conjecture of order Z with coefficients in Q by Moody’s induction
theorem (see Remark 10.12). Theorem 13.3 (2) and Theorem 10.20 imply
that limi∈I F/Fi satisfies the Atiyah Conjecture of order Z with coefficients
in Q. Since F is a subgroup of limi∈I F/Fi, Lemma 10.4 shows that F satis-
fies Atiyah Conjecture of order Z with coefficients in Q. Recall that we have
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already proved the strong Atiyah Conjecture 10.2 for a free group F2 of rank
two and thus for all free groups using Fredholm modules in Subsection 10.3.1.

The Determinant Conjecture is important in connection with L2-torsion
because of the next result.

Lemma 13.6. If the group G satisfies the Determinant Conjecture 13.2 (for
instance if G belongs to the class G introduced in Subsection 13.1.3), then G
satisfies Conjecture 3.94.

Proof. Suppose that G satisfies the Determinant Conjecture 13.2. Then asser-
tion (3) of Conjecture 3.94 follows directly from the definitions. Assertion (1)
of Conjecture 3.94 follows from the following calculation based on Theorem
3.14 (1)

1 ≤ det(r(2)
A ) =

1

det(r(2)
A−1)

≤ 1.

Theorem 3.93 (1) implies that assertion (1) of Conjecture 3.94 implies asser-
tion (2) of Conjecture 3.94. ut

We conclude from Theorem 2.68 and Theorem 3.28

Theorem 13.7. (Logarithmic estimate for spectral density func-
tions). If G satisfies Conjecture 3.94 (for instance if G belongs to the class
G introduced in Subsection 13.1.3), then we get for any cocompact free proper
G-manifold Mwith G-invariant Riemannian metric and p ≥ 1 that its p-th
analytic spectral density function Fp (see Definition 2.64) satisfies for appro-
priate ε > 0 and C > 0

Fp(λ) ≤ C

− ln(λ)
for 0 < λ < ε.

13.1.3 A Class of Groups

Now we define the class G of groups for which we can prove the Approximation
Conjecture 13.1 and the Determinant Conjecture 13.2.

Definition 13.8. Let H ⊂ G be a subgroup. The discrete homogeneous space
G/H is called amenable if we can find a G-invariant metric d : G/H ×
G/H → R such that any set with finite diameter consists of finitely many
elements and for all K > 0 and ε > 0 there is a finite non-empty subset
A ⊂ G/H with

|BK(A) ∩BK(G/H −A)| ≤ ε · |A|.
Here and elsewhere BK(A) denotes for a subset A of a metric space (X, d)
the set {x ∈ X | d(x,A) < K}. If H ⊂ G is a normal subgroup with
amenable quotient, then G/H is an amenable discrete homogeneous space by
the following argument. Consider K > 0 and ε > 0. Equip G/H with the word
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length metric. Because of Lemma 6.35 we can choose a set B ⊂ G/H such that
for S = B2K(eH) we get |∂SB| ≤ ε

1+ε · |B|. Put A = B−(B∩BK(G/H−B)).
Then BK(A) ∩BK(G/H −A) ⊂ ∂SB. This implies

|BK(A) ∩BK(G/H −A)| ≤ ε

1 + ε
· |B|.

Since

(1− ε

1 + ε
) · |B| ≤ |B| − |∂SB| = |B| − |B ∩B2K(G/H −B)|

≤ |B| − |B ∩BK(G/H −B)| ≤ |A|,

we get
|BK(A) ∩BK(G/H −A)| ≤ ε · |A|.

Definition 13.9. Let G be the smallest class of groups which contains the
trivial group and is closed under the following operations:

(1) Amenable quotient
Let H ⊂ G be a (not necessarily normal) subgroup. Suppose that H ∈ G
and the quotient G/H is an amenable discrete homogeneous space. Then
G ∈ G (In particular G ∈ G if G contains a normal amenable subgroup
H ⊂ G with G/H ∈ G) ;

(2) Colimits
If G = colimi∈I Gi is the colimit of the directed system {Gi | i ∈ I} of
groups indexed by the directed set I and each Gi belongs to G, then G
belongs to G;

(3) Inverse limits
If G = limi∈I Gi is the limit of the inverse system {Gi | i ∈ I} of groups
indexed by the directed set I and each Gi belongs to G, then G belongs to
G;

(4) Subgroups
If H is isomorphic to a subgroup of the group G with G ∈ G, then H ∈ G;

(5) Quotients with finite kernel
Let 1 → K → G → Q → 1 be an exact sequence of groups. If K is finite
and G belongs to G, then Q belongs to G.

Next we provide some information about the class G. Notice that Schick
defines in [462, Definition 1.12] a smaller class, also denoted by G, by requiring
that his class contains the trivial subgroup and is closed under operations (1),
(2), (3) and (4), but not necessarily under operation (5).

Let (P ) be a property of groups, e.g. being finite or being amenable.
Then a group is residually (P) if for any g ∈ G with g 6= 1 there is an
epimorphism p : G → G′ to a group having property (P) such that p(g) 6= 1.
If G is countable and (P) is closed under taking subgroups and extensions,
this is equivalent to the condition that there is a nested sequence of subgroups
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G = G0 ⊃ G1 ⊃ G2 ⊃ . . . such that each Gi is normal in G and each quotient
G/Gi has property (P). In particular we get the notions of a residually finite
and residually amenable group. For the reader’s convenience we record some
basic properties of residually finite groups. For more information we refer to
the survey article [355].

Theorem 13.10 (Survey on residually finite groups).

(1) The free product of two residually finite groups is again residually finite
[241], [114, page 27];

(2) A finitely generated residually finite group has a solvable word problem
[389];

(3) The automorphism group of a finitely generated residually finite group is
residually finite [29];

(4) A finitely generated residually finite group is Hopfian, i.e, any surjective
endomorphism is an automorphism [356], [399, Corollary 41.44];

(5) Let G be a finitely generated group possessing a faithful representation
into GL(n, F ) for F a field. Then G is residually finite [356], [517, The-
orem 4.2];

(6) Let G be a finitely generated group. Let Grf be the quotient of G by the
normal subgroup which is the intersection of all normal subgroups of G of
finite index. The group Grf is residually finite and any finite dimensional
representation of G over a field factorizes over the canonical projection
G → Grf ;

(7) The fundamental group of a compact 3-manifold whose prime decomposi-
tion consists of non-exceptional manifolds (i.e., which are finitely covered
by a manifold which is homotopy equivalent to a Haken, Seifert or hy-
perbolic manifold) is residually finite (see [253, page 380]);

(8) There is an infinite group with four generators and four relations which
has no finite quotient except the trivial one [255].

Lemma 13.11. (1) A group G belongs to G if and only if each finitely gen-
erated subgroup of G belongs to G;

(2) The class G is residually closed, i.e. if there is a nested sequence of sub-
groups G = G0 ⊃ G1 ⊃ G2 ⊃ . . . such that

⋂
i≥0 Gi = {1} and each Gi

belongs to G, then G belongs to G;
(3) Any residually amenable and in particular any residually finite group

belongs to G;
(4) Suppose that G belongs to G and f : G → G is an endomorphism. Define

the “mapping torus group” Gf to be the quotient of G ∗ Z obtained by
introducing the relations t−1gt = f(g) for g ∈ G and t ∈ Z a fixed
generator. Then Gf belongs to G;

(5) Let {Gj | j ∈ J} be a set of groups with Gj ∈ G. Then the direct sum⊕
j∈J Gj and the direct product

∏
j∈J Gj belong to G.
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Proof. (1) Any group G is the directed union of its finitely generated sub-
groups and a directed union is a special case of a colimit of a directed system.
(2) There is an obvious group homomorphism G → limi∈I G/Gi. It is injec-
tive because of

⋂
i≥0 Gi = {1}.

(3) This follows from (2).
(4) There is an exact sequence 1 → K → Gf → Z → 1, where K is the

colimit of the directed system . . . → G
f−→ G

f−→ G → . . . indexed by the
integers.
(5) We first show that G ×H belongs to G, provided that G and H belong
to G. Let G×G be the class of groups {H | G×H ∈ G}. It contains the trivial
group because G belongs to G by assumption. It suffices to show that G×G is
closed under the operation appearing in Definition 13.9 because then G ⊂ G×G
holds by definition of G. This is obvious for operations (1), (4) and (5). For
operations (2) and (3) one uses the fact that for a directed system or in-
verse system {Gi | i ∈ I} over the directed set I the canonical maps induce
isomorphisms

colimi∈I(G×Gi) ∼= G× colimi∈I Gi;
G× lim

i∈I
Gi

∼= lim
i∈I

(G×Gi).

Since
∏

j∈J Gj is the limit of the inverse system {∏j∈I Gj | I ⊂ J, I finite}
and

⊕
i∈I Gi is by definition a subgroup of

∏
j∈J Gi, assertion (5) follows.

This finishes the proof of Lemma 13.11. ut

13.2 The Proof of the Approximation Conjecture and
the Determinant Conjecture in Special Cases

In this section we give the proof of Theorem 13.3. As a warm-up we prove

Lemma 13.12. The trivial group is of det ≥ 1-class.

Proof. Let A ∈ Mn(Z) be a matrix. Let λ1, λ2, . . ., λr be the eigenvalues
of AA∗ (listed with multiplicity), which are different from zero. Then we get
from Example 3.12

det(r(2)
A ) =

√√√√
r∏

i=1

λi.

Let p(t) = detC(t−AA∗) be the characteristic polynomial of AA∗. It can be
written as p(t) = ta · q(t) for some polynomial q(t) with integer coefficients
and q(0) 6= 0. One easily checks

|q(0)| =
r∏

i=1

λi.
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Since q has integer coefficients, we conclude det(r(2)
A ) ≥ 1. ut

13.2.1 The General Strategy

In this subsection we prove in Theorem 13.19 a general result about approx-
imations. It will be applied to the various cases, we will have to deal with,
when we will for instance show assertion (3) of Theorem 13.3 that the class
of groups, for which the Determinant Conjecture 13.2 is true, is closed under
the operations (1), (2), (3), (4) and (5) appearing in Definition 13.9.

Throughout this subsection we will consider the following data:

• R is a ring which satisfies Z ⊂ R ⊂ C and is closed under complex conju-
gation;

• G is a group, A is a matrix in Md(RG) and trN (G) : Md(N (G)) → C is
the von Neumann trace (see Definition 1.2). Suppose that r

(2)
A : l2(G)d →

l2(G)d, which is given by right multiplication with A, is positive;
• I is a directed set. For each i ∈ I we have a group Gi, Ai ∈ Md(RGi)

and a finite normal trace tri : Md(N (Gi)) → C (see Subsection 9.1.3) such
that tri(Id) = d holds for the unit matrix Id ∈ Md(N (Gi)). Suppose that
r
(2)
Ai

: l2(Gi)d → l2(Gi)d is positive.

Let F : [0,∞) → [0,∞) be the spectral density function of the morphism
r
(2)
A : l2(G)d → l2(G)d (see Definition 2.1). Let Fi : [0,∞) → [0,∞) be the

spectral density function of the morphism r
(2)
Ai

: l2(Gi)d → l2(Gi)d defined

with respect to the trace tri (which may or may not be trN (Gi)). Since r
(2)
A

is positive, we get F (λ) = trN (G)(Eλ) for {Eλ | λ ∈ R} the family of spectral
projections of r

(2)
A (see Lemma 2.3 and Lemma 2.11 (11)). The analogous

statement holds for Fi. Recall that for a directed set I and a net (xi)i∈I of
real numbers one defines

lim inf
i∈I

xi := sup{inf{xj | j ∈ I, j ≥ i} | i ∈ I};
lim sup

i∈I
xi := inf{sup{xj | j ∈ I, j ≥ i} | i ∈ I}.

Put

F (λ) := lim inf
i∈I

Fi(λ); (13.13)

F (λ) := lim sup
i∈I

Fi(λ). (13.14)

Notice that F and Fi are density functions in the sense of Definition 2.7, i.e.
they are monotone non-decreasing and right-continuous. The functions F and
F are monotone non-decreasing, but it is not clear whether they are right-
continuous. To any monotone non-decreasing function f : [0,∞) → [0,∞) we
can assign a density function
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f+ : [0,∞) → [0,∞), λ 7→ lim
ε→0+

f(λ + ε). (13.15)

We always have

F (λ) ≤ F (λ); (13.16)
F (λ) ≤ F+(λ); (13.17)

F (λ) ≤ F
+
(λ). (13.18)

Define det(r(2)
A ) as in Definition 3.11 and analogously define deti(r

(2)
Ai

) by

exp
(∫∞

0+
ln(λ) dFi

)
if

∫∞
0+

ln(λ) dFi > −∞ and by 0 if
∫∞
0+

ln(λ) dFi = −∞.
The main technical result of this subsection is

Theorem 13.19. Suppose that there is a constant K > 0 such that for the
operator norms ||r(2)

A || ≤ K and ||r(2)
Ai
|| ≤ K hold for i ∈ I. Suppose that for

any polynomial p with real coefficients we have

trN (G)(p(A)) = lim
i∈I

tri(p(Ai)).

Then

(1) For every λ ∈ R
F (λ) = F+(λ) = F

+
(λ);

(2) If deti(r
(2)
Ai

) ≥ 1 for each i ∈ I, then

F (0) = lim
i∈I

Fi(0);

det(r(2)
A ) ≥ 1.

Proof. (1) Fix λ ≥ 0. Choose a sequence of polynomials pn(x) with real
coefficients such that

χ[0,λ](x) ≤ pn(x) ≤ χ[0,λ+1/n](x) + 1
n · χ[0,K](x) (13.20)

holds for 0 ≤ x ≤ K. Recall that χS is the characteristic function of a set
S. Recall that the von Neumann trace is normal and satisfies trN (G)(f) ≤
trN (G)(g) for 0 ≤ f ≤ g, and each tri has the same properties by assumption.
We conclude from (13.20) and the assumptions ||r(2)

Ai
|| ≤ K and tri(Id) = d

Fi(λ) ≤ tri(r
(2)
pn(Ai)

) ≤ Fi(λ +
1
n

) +
d

n
.

Taking the limit inferior or the limit superior we conclude using the assump-
tion trN (G)(pn(A)) = limi∈I tri(p(Ai))

F (λ) ≤ trN (G)(r
(2)
pn(A)) ≤ F (λ + 1

n ) + d
n . (13.21)
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We conclude from (13.20) and the assumption ||r(2)
A || ≤ K

F (λ) ≤ trN (G)(r
(2)
pn(A)) ≤ F (λ +

1
n

) +
d

n
.

This implies
lim

n→∞
trN (G)(r

(2)
pn(A)) = F (λ).

We get by applying limn→∞ to (13.21)

F (λ) ≤ F (λ) ≤ F+(λ).

Since F is monotone non-decreasing, we get for ε > 0 using (13.16)

F (λ) ≤ F (λ + ε) ≤ F (λ + ε) ≤ F (λ + ε).

Since F is right continuous, we get by taking limε→0+

F (λ) = F+(λ) = F
+
(λ).

This finishes the proof of assertion (1).
(2) We conclude from Lemma 3.15 (1) (the proof for deti is analogous)

ln(det(r(2)
A )) = ln(K) · (F (K)− F (0))−

∫ K

0+

F (λ)− F (0)
λ

dλ; (13.22)

ln(deti(r
(2)
Ai

)) = ln(K) · (Fi(K)− Fi(0))−
∫ K

0+

Fi(λ)− Fi(0)
λ

dλ. (13.23)

We get from the assumptions ln(deti(r
(2)
Ai

)) ≥ 0 and tri(Id) = d

∫ K

0+

Fi(λ)− Fi(0)
λ

dλ ≤ ln(K) · (Fi(K)− Fi(0)) ≤ ln(K) · d. (13.24)

We conclude
∫ K

ε

F (λ)− F (0)
λ

dλ =
∫ K

ε

F+(λ)− F (0)
λ

dλ. (13.25)

from the following calculation based on Lebesgue’s Theorem of majorized
convergence and the fact that F (λ) = F (K) = d for λ ≥ K

∣∣∣∣∣
∫ K

ε

F+(λ)− F (0)
λ

dλ−
∫ K

ε

F (λ)− F (0)
λ

dλ

∣∣∣∣∣

=

∣∣∣∣∣
∫ K

ε

limn→∞ F (λ + 1/n)− F (0)
λ

dλ−
∫ K

ε

F (λ)− F (0)
λ

dλ

∣∣∣∣∣

=

∣∣∣∣∣
∫ K

ε

lim
n→∞

F (λ + 1/n)− F (0)
λ + 1/n

dλ−
∫ K

ε

F (λ)− F (0)
λ

dλ

∣∣∣∣∣

=

∣∣∣∣∣ lim
n→∞

∫ K

ε

F (λ + 1/n)− F (0)
λ + 1/n

dλ−
∫ K

ε

F (λ)− F (0)
λ

dλ

∣∣∣∣∣
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= lim
n→∞

∣∣∣∣∣
∫ K

ε

F (λ + 1/n)− F (0)
λ + 1/n

dλ−
∫ K

ε

F (λ)− F (0)
λ

dλ

∣∣∣∣∣

= lim
n→∞

∣∣∣∣∣
∫ K+1/n

ε+1/n

F (λ)− F (0)
λ

dλ−
∫ K

ε

F (λ)− F (0)
λ

dλ

∣∣∣∣∣

≤ lim
n→∞

(∣∣∣∣∣
∫ ε+1/n

ε

F (λ)− F (0)
λ

dλ

∣∣∣∣∣ +

∣∣∣∣∣
∫ K+1/n

K

F (λ)− F (0)
λ

dλ

∣∣∣∣∣

)

≤ lim
n→∞

(
F (K)− F (0)

ε · n +
F (K)− F (0)

K · n
)

= 0.

Since (13.25) holds for all ε > 0, we conclude from Levi’s Theorem of
monotone convergence

∫ K

0+

F (λ)− F (0)
λ

dλ =
∫ K

0+

F+(λ)− F (0)
λ

dλ. (13.26)

Next we show∫ K

ε

lim infi∈I(Fi(λ)− Fi(0))
λ

dλ ≤ lim inf
i∈I

∫ K

ε

Fi(λ)− Fi(0)
λ

dλ; (13.27)

∫ K

0+

lim infi∈I(Fi(λ)− Fi(0))
λ

dλ ≤ lim inf
i∈I

∫ K

0+

Fi(λ)− Fi(0)
λ

dλ. (13.28)

These follow from the following calculation for S = [ε,K] or S = (0,K].
Since sup {inf { Fj(λ)− Fj(0) | j ∈ I, i ≤ j} | i ∈ I} is a monotone non-
decreasing function in λ ∈ S, we can find a sequence of step function
t1 ≤ t2 ≤ t3 ≤ . . . which converges pointwise on S to it. Hence we
can find a sequence i1 ≤ i2 ≤ . . . of elements in I such that tn − 1

n ≤
inf {Fj(λ)− Fj(0) | j ∈ I, in ≤ j} holds for n ≥ 0 and hence

sup {inf { Fj(λ)− Fj(0) | j ∈ I, i ≤ j} | i ∈ I}
= lim

n→∞
(inf {Fj(λ)− Fj(0) | j ∈ I, in ≤ j}) .

We conclude from Levi’s Theorem of monotone convergence applied to the
sequence

(
inf

{
Fj(λ)−Fj(0)

λ

∣∣∣ j ∈ I, in ≤ j
})

n∫

A

lim infi∈I(Fi(λ)− Fi(0))
λ

dλ

=
∫

A

sup
{

inf
{

Fj(λ)− Fj(0)
λ

∣∣∣∣ j ∈ I, i ≤ j

} ∣∣∣∣ i ∈ I

}
dλ

=
∫

A

lim
n→∞

(
inf

{
Fj(λ)− Fj(0)

λ

∣∣∣∣ j ∈ I, in ≤ j

})
dλ

= lim
n→∞

∫

A

inf
{

Fj(λ)− Fj(0)
λ

∣∣∣∣ j ∈ I, in ≤ j

}
dλ
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≤ sup
{∫

A

inf
{

Fj(λ)− Fj(0)
λ

∣∣∣∣ j ∈ I, i ≤ j

}
dλ

∣∣∣∣ i ∈ I

}

≤ sup
{

inf
{ ∫

A

Fj(λ)− Fj(0)
λ

dλ

∣∣∣∣ j ∈ I, i ≤ j

} ∣∣∣∣ i ∈ I

}

= lim inf
i∈I

∫

A

Fj(λ)− Fj(0)
λ

dλ.

We get for ε > 0 from assertion (1) and equations (13.18), (13.24), (13.25)
and (13.27)

∫ K

ε

F (λ)− F (0)
λ

dλ =
∫ K

ε

F+(λ)− F (0)
λ

dλ

=
∫ K

ε

F (λ)− F (0)
λ

dλ

≤
∫ K

ε

F (λ)− F (0)
λ

dλ

=
∫ K

ε

lim infi∈I Fi(λ)− lim supi∈I Fi(0)
λ

dλ

≤
∫ K

ε

lim infi∈I(Fi(λ)− Fi(0))
λ

dλ

≤ lim inf
i∈I

∫ K

ε

Fi(λ)− Fi(0)
λ

dλ

≤ lim inf
i∈I

∫ K

0+

Fi(λ)− Fi(0)
λ

dλ

≤ ln(K) · d.

Since this holds for all ε > 0, we conclude from Levi’s Theorem of monotone
convergence

∫ K

0+
F (λ)−F (0)

λ dλ ≤ ∫ K

0+
F (λ)−F (0)

λ dλ ≤ ln(K) · d.

In particular we get
∫ K

0+
F (λ)−F (0)

λ dλ < ∞ which is only possible if

F+(0)− F (0) = lim
λ→0+

F (λ)− F (0) = 0.

This and assertion (1) implies F (0) = F (0). The same argument applies to
any directed subset J ⊂ I, so that we get for any directed subset J ⊂ I

lim sup
i∈J

Fi(0) = F (0). (13.29)

This implies
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lim
i∈I

Fi(0) = F (0), (13.30)

because otherwise we could construct ε > 0 and a sequence i1 ≤ i2 ≤ i3 ≤ . . .
of elements in I with Fin

(0) ≤ F (0) − ε for n ≥ 1, what would contradict
(13.29).

We conclude using F (K) = d = Fi(K) from assertion (1) and equations
(13.22), (13.23), (13.26), (13.28) and (13.30)

ln(det(r(2)
A ))

= ln(K) · (F (K)− F (0))−
∫ K

0+

F (λ)− F (0)
λ

dλ

= ln(K) · (F (K)− F (0))−
∫ K

0+

F+(λ)− F (0)
λ

dλ

= ln(K) · (F (K)− F (0))−
∫ K

0+

F (λ)− F (0)
λ

dλ

= ln(K) · (F (K)− lim
i∈I

Fi(0))−
∫ K

0+

lim infi∈I Fi(λ)− limi∈I Fi(0))
λ

dλ

= ln(K) · (F (K)− lim
i∈I

Fi(0))−
∫ K

0+

lim infi∈I(Fi(λ)− Fi(0))
λ

dλ

≥ ln(K) · (F (K)− lim
i∈I

Fi(0))− lim inf
i∈I

∫ K

0+

Fi(λ)− Fi(0)
λ

dλ

= lim sup
i∈I

(
ln(K) · (F (K)− Fi(0))−

∫ K

0+

Fi(λ)− Fi(0)
λ

dλ

)

= lim sup
i∈I

(
ln(K) · (Fi(K)− Fi(0))−

∫ K

0+

Fi(λ)− Fi(0)
λ

dλ

)

= lim sup
i∈I

ln(deti(r
(2)
Ai

))

≥ 0.

This finishes the proof of Theorem 13.19. ut

13.2.2 Limits of Inverse Systems

Throughout this subsection we consider an inverse system of groups {Gi | i ∈
I} over the directed set I. Denote its limit by G = limi∈I Gi. Let ψi : G → Gi

for i ∈ I and φi,j : Gj → Gi for i, j ∈ I, i ≤ j be the structure maps. Let Z ⊂
R ⊂ C be a ring closed under complex conjugation. Let A ∈ M(m,n, RG)
be a matrix. Denote by Ai ∈ M(m,n, RG) the matrix obtained by applying
elementwise the ring homomorphism RG → RGi induced by ψi for i ∈ I.
Let F be the spectral density function and det(r(2)

A ) be the Fuglede-Kadison
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determinant of the morphism of finitely generated Hilbert N (G) modules
r
(2)
A : l2(G)m → l2(G)n. Let Fi be the spectral density function and det(r(2)

Ai
)

be the Fuglede-Kadison determinant of the morphism of finitely generated
Hilbert N (Gi)-modules r

(2)
Ai

: l2(Gi)m → l2(Gi)n. Define F , F , F+ and F
+

as in (13.13), (13.14) and (13.15). We want to prove

Theorem 13.31. We get in the notation above:

(1) For every λ ∈ R
F (λ) = F+(λ) = F

+
(λ);

(2) If deti(r
(2)
Ai

) ≥ 1 for each i ∈ I, then

dimN (G)(ker(r(2)
A )) = lim

i∈I
dimN (Gi)(ker(r(2)

Ai
));

det(r(2)
A ) ≥ 1.

In order to prove this we want to apply Theorem 13.19, but we first need
the following preliminaries. Define for a matrix B ∈ M(m, n,CG) a (very
secret Russian) real number

KG(B) := mn ·max{||bi,j ||1 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, (13.32)

where for a =
∑

g∈G λgg ∈ CG its L1-norm ||a||1 is defined by
∑

g∈G |λg|.
Lemma 13.33. We get for any B ∈ M(m,n, RG)

||r(2)
B : l2(G)m → l2(G)n|| ≤ KG(B).

Proof. We get for u ∈ l2(G) and b =
∑

g∈G λg · g ∈ CG

||ub||l2 =

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

g∈G

λg · ug

∣∣∣∣∣∣

∣∣∣∣∣∣
l2

≤
∑

g∈G

||λg · ug||l2 ≤
∑

g∈G

|λg| · ||u||l2 = ||b||1 · ||u||l2 .

This implies for x ∈ l2(G)m

∣∣∣
∣∣∣r(2)

B (x)
∣∣∣
∣∣∣
2

l2
=

n∑

j=1

∣∣∣∣∣

∣∣∣∣∣
m∑

i=1

xiBi,j

∣∣∣∣∣

∣∣∣∣∣

2

l2

≤
n∑

j=1

(
m∑

i=1

||xiBi,j ||l2
)2

≤
n∑

j=1

(
m∑

i=1

||xi||l2 · ||Bi,j ||1
)2

≤
n∑

j=1

(
m∑

i=1

||xi||l2 ·max{||Bi,j ||1 | 1 ≤ i ≤ m}
)2
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=
n∑

j=1

max{||Bi,j ||1 | 1 ≤ i ≤ m}2 ·
(

m∑

i=1

||xi||l2
)2

≤
n∑

j=1

max{||Bi,j ||1 | 1 ≤ i ≤ m}2 ·m2 ·
m∑

i=1

||xi||2l2

≤ n ·max{||Bi,j ||1 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}2 ·m2 · ||x||2l2
≤ (nm ·max{||Bi,j ||1 | 1 ≤ i ≤ m, 1 ≤ j ≤ n} · ||x||l2)2

=
(
KG(B) · ||x||l2

)2
.

This finishes the proof of Lemma 13.33. ut
Lemma 13.34. Let p(x) be a polynomial with real coefficients and B ∈
Mm(CG). Then there is i0 ∈ I with

trN (G)(p(B)) = trN (Gi)(p(Bi)) for i ≥ i0.

Proof. Let p(B) be the matrix
(∑

g∈G λg(i, j) · g
)

i,j
. Then

trN (G)(p(B)) =
m∑

i=1

λ1(i, i);

trN (Gi)(p(Bi)) =
m∑

i=1

∑

g∈G,ψi(g)=1

λg(i, i).

Only finitely many of the numbers λg(i, j) are different from zero. Since G is
limi∈I Gi, there is an index i0 such that ψi(g) = 1 together with λg(i, i) 6= 0
implies g = 1 for all i ≥ i0. Now Lemma 13.34 follows. ut

We want to apply Theorem 13.19 to AA∗, where A∗ is obtained by
transposing A and applying elementwise the involution of RG, which sends∑

g∈G λg ·g to
∑

g∈G λg ·g−1. The conditions appearing in Theorem 13.19 are
satisfied, where we take the constant K appearing in Theorem 13.19 to be
KG(A∗A) (see (13.32)). This follows from Lemma 13.33 and Lemma 13.34,
since KGi(ψi(B)) ≤ KG(B) holds for any matrix B ∈ M(m,n,CG).

Recall that r
(2)
A∗ =

(
r
(2)
A

)∗
. Hence r

(2)
AA∗ is positive, the spectral density

functions of r
(2)
AA∗ and r

(2)
A differ by a factor 2 (see Lemma 2.11 (11)) and

det(r(2)
AA∗) = det(r(2)

A )2 (see Theorem 3.14 (1) and (3)). The analogous state-
ment holds for Ai for i ∈ I. Hence Theorem 13.31 follows. ut

13.2.3 Colimits of Directed Systems

Throughout this subsection we consider a directed system of groups {Gi |
i ∈ I} over the directed set I. Denote its colimit by G = colimi∈I Gi. Let
ψi : Gi → G for i ∈ I and φi,j : Gi → Gj for i, j ∈ I, i ≤ j be the structure
maps. Let A ∈ M(m, n,ZG) be a matrix. We want to show



472 13. The Approximation Conjecture and the Determinant Conjecture

Proposition 13.35. We get in the notation above:

(1) Suppose that each Gi is of det ≥ 1-class. Then the same is true for G
and there are matrices Ai ∈ M(m,n,ZGi) such that

dimN (G)

(
ker

(
r
(2)
A : l2(G)m → l2(G)n

))

= lim
i∈I

dimN (G)

(
ker

(
rAi : l2(Gi)m → l2(Gi)n

))
;

(2) If φGi : Wh(Gi) → R, [A] 7→ ln(det(r(2)
A )) (see (3.92)) is trivial for each

i ∈ I, then φG : Wh(G) → R is trivial.

Proof. (1) Consider a matrix A ∈ M(m, n,ZG). Write Ai,j =
∑

g∈G λg(i, j) ·
g. Let V be the set of elements g ∈ G for which λg(i, j) 6= 0 holds for
some (i, j). The set V is finite. Since G is colimi∈I Gi, we can find i0 ∈ I with
V ⊂ im(ψi0). Choose for each g ∈ V an element g ∈ Gi0 with ψi0(g). Define a
matrix Ai0 ∈ Mm(ZGi0) by requiring that its (i, j)-th entry is

∑
g∈V λg(i, j) ·

g. Then A = ψi0(Ai0), where we denote by the same letter ψi0 the ring
homomorphism Mm(ZGi) → Mm(ZG) induced by ψi0 Notice that this lift
Ai0 is not unique. Let Ai for i ≥ i0 be the matrix in Mm(ZGi) obtained from
φi0,i and Ai0 . Put B = AA∗, Bi0 = Ai0A

∗
i0

and Bi = AiA
∗
i for i ≥ i0.

By construction we get KGi(Bi) ≤ KGi0 (Bi0) for all i ≥ i0 and KG(B) ≤
KGi0 (Bi0). If we put K = KGi0 (Bi0), we conclude from Lemma 13.33

||r(2)
B || ≤ K; (13.36)

||r(2)
Bi
|| ≤ K for i ≥ i0. (13.37)

Let p(x) be a polynomial with real coefficients. Then ψi0(p(Bi0)) = p(B).
Choose i1 ∈ I with i0 ≤ i1 such that for any (of the finitely many) g ∈ Gi1 ,
for which for some entry in p(Bi1) the coefficient of g is non-trivial, the
implication ψi1(g) = 1 ⇒ g = 1 holds. Then we get

trN (Gi)(p(Bi)) = trN (G)(p(B)) for i ≥ i1. (13.38)

Because of (13.36), (13.37) and (13.38) the conditions of Theorem 13.19 are
satisfied. Since by assumption det(r(2)

Bi
) ≥ 1 for all i ∈ I and rB and rBi for

i ∈ I are positive, we conclude det(r(2)
B ) ≥ 1 and

dimN (G)

(
ker

(
r
(2)
B : l2(G)m → l2(G)n

))

= lim
i∈I

dimN (G)(r
(2)
Bi

: l2(Gi)m → l2(Gi)n).

Since det(r(2)
A ) = det(r(2)

B )2 holds by Theorem 3.14 (1) and (3) and the kernels
of r

(2)
A and r

(2)
B and the kernels of r

(2)
Bi

and r
(2)
Ai

for i ∈ I agree, assertion (1)
follows.
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(2) Suppose that A ∈ Mm(ZG) is invertible. We use the same notation and
construction as before and apply it to B = AA∗ and to B−1 = (A−1)∗A−1.
The lifts Bi0 and B−1

i0
are not inverse to one another. But we can find an

index i1 ≥ i0 such that Bi and B−1
i are inverse to one another for all i ≥ i1.

By assumption det(r(2)
Bi

) = det(r(2)

B−1
i

) = 1. We conclude from Theorem 13.19

as explained above that det(r(2)
B ) ≥ 1 and det(r(2)

B−1) ≥ 1 hold. Theorem 3.14
(1) and (3) implies det(r(2)

B ) = 1 and hence det(r(2)
A ) = 1. This finishes the

proof of Theorem 13.35. ut

13.2.4 Amenable Extensions

This subsection is devoted to the proof of

Proposition 13.39. Let H ⊂ G be a subgroup such that H is of det ≥ 1-
class and G/H is an amenable discrete homogeneous space. Then G is of
det ≥ 1-class.

Let (X, d) be a metric space such that any bounded set consists of finitely
many elements. Define for K ≥ 0 and A ⊂ X the set NK(A) = BK(A) ∩
BK(X −A). A nested sequence of finite subsets E1 ⊂ E2 ⊂ E2 ⊂ . . . of X is
called an amenable exhaustion if X =

⋃
n≥1 En and for all K > 0 and ε > 0

there is an integer n(K, ε) such that |NK(En)| ≤ ε·|En| holds for n ≥ n(K, ε).

Lemma 13.40. Let H ⊂ G be a subgroup such that G/H is an amenable
discrete homogeneous space. Then it possesses an amenable exhaustion.

Proof. By assumption we can find for positive integers n,K a subset An,K

with |NK(An,K)| ≤ 1
n · |An,K |. Since G acts transitively on G/H and the

metric is G-invariant, we may assume after translation that the element
1H ∈ G/H belongs to An,K . We construct the desired exhaustion (En)n≥1

inductively over n. Put E1 = A1,1. Suppose that we have already constructed
E1, E2, . . ., En with |Nk(Ek)| ≤ 1

k · |Ek| for k = 1, 2, . . . , n. Choose a
positive integer d such that En ⊂ Bd(1H) and d ≥ n + 1 holds. Define
En+1 := En ∪ Bn(1H) ∪ An+1,2d. We conclude Bd(En+1) ⊂ B2d(An+1,2d)
from the triangle inequality and 1H ∈ An+1,2d. We have Bd(G/H−En+1) ⊂
B2d(G/H−An+1,2d). This implies Nn+1(En+1) ⊂ Nd(En+1) ⊂ N2d(An+1,2d).
We conclude

|Nn+1(En+1)| ≤ |N2d(An+1,2d)| ≤ 1
n + 1

· |An+1,2d| ≤ 1
n + 1

· |En+1|.

Since Bn(1G) ⊂ En+1 by construction, we have G/H =
⋃

n≥1 En. ut
Fix an amenable exhaustion E1 ⊂ E2 ⊂ E2 ⊂ . . . of G/H. For B ∈

Md(N (H)) put

trn(B) :=
trN (H)(B)
|En| .
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Consider A ∈ Md(N (G)) such that the associated morphism rA : l2(G)d →
l2(G)d of Hilbert N (G)-modules is positive. Let qn : l2(G)d → l2(G)d be⊕d

i=1 q′n, where q′n : l2(G) → l2(G) is the orthogonal projection onto the
subspace of l2(G) generated by the preimage of En under the canonical
projection pr : G → G/H. Notice that qn is not G-equivariant in general,
but is H-equivariant. The image of qn is a finitely generated Hilbert N (H)-
module, namely, after a choice of a preimage x of each element x in En under
the projection pr : G → G/H we get an obvious isometric H-isomorphism
un : im(qn)

∼=−→ l2(H)d|En|. Let An ∈ Md|En|(N (H)) be the matrix uniquely
determined by the property that rAn

: l2(H)d|En| → l2(H)d|En| is the mor-
phism u ◦ qn ◦ rA ◦ u−1. In the sequel we identify im(qn) and l2(H)d|En| by
u. In particular rAn = qnrAqn and rAn is positive. Since ||qn|| ≤ 1 holds for
any projection, we conclude

Lemma 13.41. We have ||rAn || ≤ ||rA|| for all n ≥ 1.

Lemma 13.42. Consider a matrix A ∈ Md(N (G)). Let p be a polynomial
with real coefficients. Then

trN (G)(p(A)) = lim
n→∞

trn(p(An)).

Proof. By linearity it suffices to treat the case p(x) = xs for some positive in-
teger s. For k = 1, 2, . . . , d let ek ∈ l2(G)d be the element, whose components
are zero except for the k-th entry, which is the unit element of G consid-
ered as element in l2(G). Recall that pr : G → G/H denotes the canonical
projection.

Fix g ∈ G with pr(g) ∈ En and k ∈ {1, 2, . . . , d}. Since qn(gek) = gek and
qn is selfadjoint, we get

〈rs
An

(gek), gek〉 = 〈(qnrAqn)s(gek), gek〉 = 〈rAqnrAqn . . . qnrA(gek), gek〉.

We have the telescope sum

rAqnrAqn . . . qnrA = rs
A − rA(1− qn)rs−1

A − rAqnrA(1− qn)rs−2
A

− . . .− rAqnrAqn . . . rA(1− qn)rA.

This implies

|〈rs
A(gek), gek〉 − 〈rs

An
(gek), gek〉|

≤
s−1∑

i=1

|〈(1− qn)ri
A(gek), (r∗Aqn)s−i(gek)〉|

≤
s−1∑

i=1

||(1− qn)ri
A(gek)||l2 · ||r∗A||s−i. (13.43)



13.2 Partial Proofs of the Approximation and Determinant Conjecture 475

Fix ε > 0 and i ∈ {1, 2, . . . , s}. For k = 1, 2, . . . , d we write

ri
A(ek) =


∑

g∈G

λg(k, l) · g



d

l=1

∈ l2(G)d.

Since this element belongs to l2(G)d, we can choose R = R(ε) ≥ 0 such that
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
ri
A(ek)−


 ∑

g∈G,pr(g)∈BR(1H)

λg(k, l) · g



d

l=1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
l2

≤ ε.

Suppose that g0 ∈ G satisfies BR(pr(g0)) ⊂ En. Then

{g ∈ G,pr(g0g) /∈ En} ⊂ {g ∈ G, pr(g) /∈ BR(1H)}.

We conclude

||(1− qn)ri
A(g0ek)||l2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
(1− qn)


∑

g∈G

λg(k, l) · g0g




d

l=1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
l2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣


 ∑

g∈G,pr(g0g)/∈En

λg(k, l) · g0g




d

l=1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
l2

≤

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣


 ∑

g∈G,pr(g)/∈BR(1H)

λg(k, l) · g0g




d

l=1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
l2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
ri
A(g0ek)−


 ∑

g∈G,pr(g)∈BR(1H)

λg(k, l) · g0g




d

l=1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
l2

=

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
ri
A(ek)−


 ∑

g∈G,pr(g)∈BR(1H)

λg(k, l) · g



d

l=1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
l2

≤ ε. (13.44)

Choose for any x ∈ En an element x ∈ G with pr(x) = x. We conclude from
(13.43) and (13.44)
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∣∣trN (G)(As)− trn(As
n)

∣∣

=

∣∣∣∣∣
1
|En|

d∑

k=1

∑

x∈En

〈rs
A(xek), xek〉 − 〈rs

An
(xek), xek〉

∣∣∣∣∣

≤ 1
|En|

d∑

k=1

∑

x∈En

∣∣〈rs
A(xek), xek〉 − 〈rs

An
(xek), xek〉

∣∣

≤ 1
|En|

d∑

k=1

∑

x∈En

s−1∑

j=1

∣∣∣
∣∣∣(1− qn)rj

A(xek)
∣∣∣
∣∣∣
l2
· ||r∗A||s−j

≤ 1
|En|

d∑

k=1

∑

x∈En,x/∈NR(En)

s−1∑

j=1

∣∣∣
∣∣∣(1− qn)rj

A(xek)
∣∣∣
∣∣∣
l2
· ||r∗A||s−j

+
1
|En|

d∑

k=1

∑

x∈En,x∈NR(En)

s−1∑

j=1

∣∣∣
∣∣∣(1− qn)rj

A(xek)
∣∣∣
∣∣∣
l2
· ||r∗A||s−j

≤ 1
|En|

d∑

k=1

∑

x∈En,x/∈NR(En)

s−1∑

j=1

ε · ||r∗A||s−j

+
|NR(En)|
|En| · ds · ||1− qn|| ·max{||rA||j · ||r∗A||s−j | j = 1, 2 . . . , s− 1}

≤ ε · ds ·max{||r∗A||j | j = 1, 2, . . . , s}
+
|NR(En)|
|En| · ds · 2 ·max{||rA||j · ||r∗A||s−j | j = 1, 2 . . . , s− 1}.

Put

C1 := ds ·max{||r∗A||j | j = 1, 2, . . . , s};
C2 := ds · 2 ·max{||rA||j · ||r∗A||s−j | j = 1, 2 . . . , s− 1}.

Then C1 and C2 are independent of ε and n and we get

∣∣trN (G)(As)− trn(As
n)

∣∣ ≤ C1 · ε + C2 · |NR(En)|
|En| .

Since (En)n≥1 is an amenable exhaustion, we can find n(ε) such that
|NR(En)|
|En| ≤ ε for n ≥ n(ε) holds. Hence we get for n ≥ n(ε)

∣∣trN (G)(As)− trn(As
n)

∣∣ ≤ C1 · ε + C2 · ε.

Since ε > 0 was arbitrary, Lemma 13.42 follows. ut
Now we can finish the proof of Proposition 13.39. Namely, because of

Lemma 13.41 and Lemma 13.42 the assumptions of Theorem 13.19 are sat-
isfied and Proposition 13.39 follows.
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13.2.5 Quotients with Finite Kernels

This subsection is devoted to the proof of

Lemma 13.45. Let 1 → K → G
p−→ Q → 1 be a group extension such

that K is finite. Let f : M → N be a morphism of finitely generated Hilbert
N (Q)-modules.

(1) The Hilbert space resp M together with the G-action obtained from the
given Q-action and p : G → Q is a finitely generated Hilbert N (G)-
module. The morphism f yields a morphism of finitely generated Hilbert
N (G)-modules resp f : resp M → resp N ;

(2) If M = N , then the von Neumann traces of f and resp f satisfy
trN (G)(resp f) = 1

|K| · trN (Q)(f);
(3) We get for the spectral density functions of f and resp f

FG(resp f) =
1
|K| · F

Q(f);

(4) dimN (G)(ker(resp f)) = 1
|K| · dimN (Q)(ker(f));

(5) The Novikov-Shubin invariants of f and resp f satisfy

α(resp f) = α(f);

(6) The Fuglede-Kadison determinants of f and resf satisfy

detN (G)(resp f) =
(
detN (Q)(f)

) 1
|K| ;

(7) The group Q is of det ≥ 1-class, if G is of det ≥ 1-class.

Proof. (1) Obviously it suffices to check this for M = l2(Q). Let NK ∈ CG
be the element

∑
k∈K k. Then right multiplication with |K|−1 · NK yields

an orthogonal projection r|K|−1·NK
: l2(G) → l2(G). We get an isometric

G-isomorphism v : resp l2(Q) → im(r|K|−1·NK
) by sending

∑
q∈Q λq · q to∑

q∈Q λq · |K|−1/2 ·∑g∈p−1(q) g.

(2) Obviously it suffices to treat the case M = N = l2(Q). Denote by eQ ∈ Q
and eG ∈ G the unit element. Let f(eQ) =

∑
q∈Q λq ·q. If i : im(r|K|−1·NK

) →
l2(G) is the inclusion, we get

i ◦ v ◦ resp f ◦ v−1 ◦ r|K|−1·NK
(eG) =

∑

q∈Q

λq

|K| ·
∑

g∈p−1(q)

g.

This implies

trN (Q)(f) = 〈f(eQ), eQ〉l2(Q)

= λeQ

= |K| · 〈i ◦ v ◦ f ◦ v−1 ◦ r|K|−1·NK
(eG), eG〉l2(G)

= |K| · trN (G)(resp f).
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(3) This follows from assertions (1) and (2).
(4), (5) and (6) follow from assertions (1) and (3).

(7) Let A ∈ Md(ZQ) be a matrix. It induces a morphism r
(2)
A : l2(Q)d →

l2(Q)d of finitely generated Hilbert N (Q)-modules by right multiplication.
We have to show det(r(2)

A ) ≥ 1 provided that G is of det ≥ 1-class.
Let n be any positive integer. We get a morphism resp r

(2)
An : resp l2(Q)d →

resp l2(Q)d of finitely generated Hilbert N (G)-modules. Notice that we have
the orthogonal sum decomposition

l2(G) = im(r|K|−1·NK
)⊕ im(r1−|K|−1·NK

).

Consider the morphism
(
vd ◦ r

(2)
An ◦ (v−1)d

)
⊕ idd

im(r1−|K|−1·NK
) : l2(G)d → l2(G)d,

where the isomorphism v and the orthogonal projection r|K|−1·NK
are taken

from the proof of assertion (1). We conclude from Assertion (6), Theorem
3.14 (1) and Lemma 3.15 (7)

(
detN (Q)(r

(2)
A )

)n

= detN (Q)(r
(2)
An)

=
1
|K| · detN (G)(resp r

(2)
An)

=
1
|K| · detN (G)

(
vd ◦ r

(2)
An ◦ (v−1)d

)
· detN (G)

(
(idim(r1−|K|−1·NK

))d
)

=
1
|K| · detN (G)

(
vd ◦ r

(2)
An ◦ (v−1)d ⊕ (idim(r1−|K|−1·NK

))d
)

. (13.46)

For u =
∑

q∈Q λq · q in ZQ let u ∈ ZG be the element
∑

q∈Q λq ·∑
g∈p−1(q) g. Define B = (bi,j)i,j ∈ Md(ZG) to be the matrix obtained

from An = (ai,j)i,j by putting bi,j = ai,j − 1. One easily checks

1
|K| · r

(2)
|K|·Id+B = vd ◦ r

(2)
An ◦ (v−1)d ⊕ (idim(r1−|K|−1·NK

))d,

where Id is the identity matrix in Md(ZG). Notice that |K| · Id + B lies in
Md(ZG) so that by assumption detN (G)

(
r
(2)
|K|·Id+B

)
≥ 1 holds. Theorem 3.14

(1) implies
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detN (G)

(
vd ◦ r

(2)
An ◦ (v−1)d ⊕ (idim(r1−|K|−1·NK

))d
)

= detN (G)

(
1
|K| · r

(2)
|K|·Id+B

)

=
1

|K|d · detN (G)

(
r
(2)
|K|·Id+B

)

≥ 1
|K|d . (13.47)

We conclude from (13.46) and (13.47) that for any positive integer n

detN (Q)(r
(2)
A ) ≥ |K|−(d+1)/n

holds. Hence detN (Q)(r
(2)
A ) ≥ 1. This finishes the proof of Lemma 13.45. ut

Finally we can give the proof of Theorem 13.3.

Proof. (1) Because of Lemma 13.4 it suffices to prove assertion (3) of Lemma
13.4. The natural homomorphism i : G → limi∈I G/Gi is injective because of⋂

i≥1 Gi = {1}. We conclude

dimN (G)

(
ker

(
r
(2)
A

))
= dimN (limi∈I G/Gi)

(
ker

(
r
(2)
i∗A

))

from Lemma 1.24. Since the composition of i : G → limi∈I G/Gi with the
structure map ψi : limi∈I G/Gi → G/Gi is the canonical projection G →
G/Gi, the claim follows from Theorem 13.31 (2).
(3) This follows from Theorem 3.14 (6), Theorem 13.31 (2), Proposition 13.35
Proposition 13.39 and Lemma 13.45 (7).
(2) follows from assertions (1) and (3) as soon as we have shown that the
trivial group is of det ≥ 1-class. This has already been done in Lemma 13.12.

(4) This follows from Theorem 3.14 (6), Theorem 13.31 (2) and Proposition
13.35. This finishes the proof of the main result of this chapter, namely,
Theorem 13.3. ut

13.3 Variations of the Approximation Results

In this sections we discuss some variations of the approximation results above
(Theorem 13.48, Theorem 13.49 and Theorem 13.50) whose proofs are essen-
tially modifications of the proof of Theorem 13.3.

We begin with a result of Dodziuk and Mathai [149, Theorem 0.1]. We
will state it as presented by Eckmann [163], where a different proof is given.

Let G be an amenable group and let X be a finite free simplicial G-
complex. We get a closed fundamental domain F as follows. For each simplex
e of G\X choose a simplex ê in X, which lies in the preimage of e under the
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projection p : X → G\X and is mapped bijectively onto e under p. Let F
be the union

⋃
e ê, where e runs through the simplices of G\X. This is a

sub-CW -complex of X. Let Em ⊂ X for m = 1, 2, . . . be a sub-CW -complex
of X, which is the union of Nm translates (by elements of G) of F . Let ∂F be
the topological boundary of F . Denote by ∂Nm the number of translates of
F which meet ∂Em. We call (Em)m≥1 a Følner exhaustion if E1 ⊂ E2 ⊂ . . .,
X =

⋃
m≥1 Em and limm→∞ ∂Nm

Nm
= 0. Since G is assumed to be amenable,

such a Følner exhaustion exists. Let bp(Em) be the (ordinary) Betti number
of the finite CW -complex Em.

Theorem 13.48. We get for the amenable group G and the finite free sim-
plicial G-complex X with Følner exhaustion (Em)m≥1

b(2)
p (X;N (G)) = lim

m→∞
bp(Em)

Nm
.

The proof of Theorem 13.48 is analogous to the one of Proposition 13.39.
The modified versions of Lemma 13.41 and Lemma 13.42 are proved in [149,
Lemma 2.2 and Lemma 2.3].

Next we explain two results of Farber [183, Theorem 0.3 and Theorem
0.4].

Theorem 13.49. Let G be a group with a sequence of (not necessarily nor-
mal) subgroups of finite index [G : Gi]

G = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ . . .

such that
⋂

i≥0 Gi = {1}. Let ni be the number of subgroups in G which are
conjugate to Gi. For a given g ∈ G let ni(g) be the number of subgroups of
G which are conjugate to Gi and contain g. Suppose that for any g ∈ G with
g 6= 1

lim
i→∞

ni(g)
ni

= 0.

Let X be a free G-CW -complex of finite type. Then

b(2)
p (X;N (G)) = lim

i→∞
bp(Gi\X)
[G : Gi]

.

If each Gi is normal in G, then the condition limi→∞
ni(g)

ni
= 0 is

obviously satisfied and Theorem 13.49 reduces to [328, Theorem 0.1] and can
be viewed as a special case of Theorem 13.3.

Notice that one can construct out of the given nested sequence G = G0 ⊃
G1 ⊃ G2 ⊃ . . . a new one G = G′0 ⊃ G′1 ⊃ G′2 ⊃ . . . such that each
G′i ⊂ G is a normal subgroup of finite index and

⋂
i∈I G′i = {1}. Namely,

take G′i =
⋂

g∈G g−1Gig. So the group G appearing in Theorem 13.49 is
residually finite.
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The proof of Theorem 13.49 is an application of Theorem 13.19. One has
to prove the relevant versions of Lemma 13.33 and Lemma 13.34. Lemma
13.33 carries over directly. For Lemma 13.34 one has to use the following
easily verified equation

1
[G : Gi]

· trC(rg) =
ni(g)
ni

,

where g ∈ G and rg : C[Gi\G] → C[Gi\G] is given by right multiplication
with g. Notice that det(rAi

) ≥ 1 by the argument appearing in the proof of
Theorem 13.3 (2).

The proof of the next result (and of some generalizations of it) can be
found in [183, page 360].

Theorem 13.50. Let G be a group with a sequence of normal subgroups of
finite index [G : Gi]

G = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ . . .

such that
⋂

i≥0 Gi = {1}. Let K ⊂ C be an algebraic number field which is
closed under complex conjugation. Let R ⊂ K be the ring of algebraic integers
in K. Consider a unitary G-representation ρ : G → Mm(R). Let X be a free
G-CW -complex of finite type. Denote by V i the flat vector bundle over Gi\X
given by the representation ρ restricted to Gi. Then

b(2)
p (X;N (G)) = lim

i→∞
dimC(Hp(Gi\X;V i))
dimC(V i) · [G : Gi]

.

If one takes V to be C with the trivial G-action, Theorem 13.50 reduces
to [328, Theorem 0.1].

One can also deal with the signature and the L2-signature instead of the
Betti numbers and the L2-Betti numbers. The next result is taken from [347],
where also the (rather obvious) notions of a finite Poincaré pair (X,Y ), of
the L2-signature of a G-covering (X, Y ) and of the signature of (X,Y ) are
explained.

Theorem 13.51. Let G be a group with a sequence of normal subgroups of
finite index [G : Gi]

G = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ . . .

such that
⋂

i≥0 Gi = {1}. Let (X,Y ) be a 4n-dimensional finite Poincaré
pair. Let p : X → X be a G-covering of X and Y be the preimage of Y
under p. Denote by (Xi, Yi) the 4n-dimensional finite Poincaré pair given by
(Gi\X,Gi\Y ). Then

sign(2)(X, Y ) = lim
i→∞

sign(Xi, Yi)
[G : Gi]

.
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Some generalizations and variations of Theorem 13.51 and a version for
signatures of Theorem 13.48 can be found in [347]. From the Atiyah-Patodi-
Singer index theorem [11, Theorem 4.14] and its L2-version due to Cheeger
and Gromov [105, (0.9)] it is clear that Theorem 13.51 implies a similar
result for eta-invariants and L2-eta-invariants of the spaces Y and Yk. Such a
convergence result has been proved without the assumption that Y appears
in a pair (X, Y ) in [500, Theorem 3.12]. Namely, if M is a closed (4n − 1)-
dimensional manifold and p : M → M is a G-covering, then we get for Mi =
Gi\M

η(2)(M) = lim
i→∞

η(Mi)
[G : Gi]

.

Question 13.52. (Approximating Fuglede-Kadison determinants by
determinants).
Is there also an approximation results for the (generalized) Fuglede-Kadison
determinant?

This seems to be a difficult question and to involve more input. At least we
can show the following very special result.

Lemma 13.53. Let p ∈ Q[Z] be an element different from zero and let
f : Q[Z] −→ Q[Z] be the Q[Z]-map given by multiplication with p. Write
p as a product

p = c · tk ·
r∏

i=1

(t− ai)

for non-zero complex numbers c, a1, . . ., ar and an integer k. Then we get

ln(det(f (2))) = lim
n→∞

ln(det(f [n]))
n

= ln(|c|) +
∑

i=1,2,...,r
|ai|>1

ln(|ai|),

where det(f (2)) is the Fuglede-Kadison-determinant of the morphism of
Hilbert N (Z)-modules f (2) : l2(Z) → l2(Z) obtained from f by tensoring with
l2(Z) over Q[Z], and det(f [n]) is the Fuglede-Kadison determinant of the
morphism of Hilbert N (1)-modules f [n] : C[Z/n] → C[Z/n] obtained from f
by taking the tensor product with C[Z/n] over Q[Z].

Proof. We obtain from (3.23)

ln(det(f (2))) = ln(|c|) +
∑

i=1,2,...,r
|ai|>1

ln(|ai|). (13.54)

Next we compute det(f [n]). The regular Z/n-representation C[Z/n] is the
orthogonal direct sum

⊕n−1
j=0 Vj of one-dimensional Z/n-representations Vj ,

where the generator of Z/n acts on Vj = C by multiplication with ζj
n for ζn =
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exp(2πi/n). Then f [n] is the direct sum
⊕n−1

j=0 f [n]j , where f [n]j : Vj −→ Vj

is multiplication with p(ζj
n). We get from Example 3.12 and Lemma 3.15 (7)

det(f [n]) =
n−1∏

j=0

det(f [n]j);

det(f [n]j) =
{ |c| ·∏r

i=1 |ζj
n − ai| if ζj

n /∈ {a1, a2, . . . , ar}
1 otherwise ;

det(f [n]) =
∏

j=0,...,(n−1)

ζj
n 6∈{a1,a2,...,ar}

|c| ·
r∏

i=1

|ζj
n − ai|. (13.55)

Since n − r ≤ #{j ∈ {0, 1, . . . , (n − 1)} | ζj
n 6∈ {a1, a2, . . . , ar}} ≤ n and

limn→∞ n−r
n = limn→∞ n

n = 1 holds, we get

lim
n→∞

1
n
· ln




∏

j=0,...,(n−1)

ζj
n 6∈{a1,a2,...,ar}

|c|


 = ln(|c|). (13.56)

Notice that c is the highest coefficient of p and hence a rational number. We
conclude from (13.54), (13.55) and (13.56) that we can assume without loss
of generality c = 1.

Equation (13.55) implies

det(f [n]) =




∏

j=0,1,...,(n−1)

ζj
n∈{a1,a2,...ar}

∏

i=1,...,r
ζj

n 6=ai

|ζj
n − ai|




−1

·
n−1∏

j=0

∏

i=1,...,r
an

i 6=1

∣∣ζj
n − ai)

∣∣

·
n−1∏

j=0

∏

i=1,...,r
an

i =1,ai 6=ζj
n

∣∣ζj
n − ai)

∣∣ .

=




∏

l=1,...,r
an

l =1

∏

i=1,...,r
al 6=ai

|al − ai|




−1

·
∏

i=1,...,r
an

i 6=1

n−1∏

j=0

∣∣ζj
n − ai)

∣∣

·
∏

i=1,...,r
an

i =1

∏

j=0,1,...,(n−1)

ai 6=ζj
n

∣∣ζj
n − ai)

∣∣ . (13.57)

From the identities of polynomials with complex coefficients
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n−1∏

j=0

(t− ζj
n) = tn − 1;

n−1∏

j=1

(t− ζj
n) =

n−1∑

j=0

tj ,

we conclude

∏

i=1,...,r
an

i 6=1

n−1∏

j=0

∣∣ζj
n − ai)

∣∣ =
∏

i=1,...,r
an

i 6=1

|an
i − 1| ; (13.58)

∏

i=1,...,r
an

i =1

∏

j=0,1,...,(n−1)

ai 6=ζj
n

∣∣ζj
n − ai)

∣∣ =
∏

i=1,...,r
an

i =1

n. (13.59)

We conclude from (13.57), (13.58) and (13.59)

ln(det(f [n]))
n

=
∑

i=1,...,r
an

i 6=1

ln(|an
i − 1|)
n

+
∑

i=1,...,r
an

i =1

ln(n)
n

−
∑

l=1,...,r
an

l =1

∑

i=1,...,r
al 6=ai

ln(|al − ai|)
n

. (13.60)

We have

lim
n→∞

∑

l=1,...,r
an

l =1

∑

i=1,...,r
al 6=ai

ln(|al − ai|)
n

= 0; (13.61)

lim
n→∞

ln(|an
i − 1|)
n

= ln(|ai|) if |ai| > 1; (13.62)

lim
n→∞

ln(|an
i − 1|)
n

= 0 if |ai| < 1; (13.63)

lim
n→∞

ln(n)
n

= 0. (13.64)

Notice that p is by assumption a polynomial with rational coefficients
and hence each root ai is an algebraic integer. The main input, which is not
needed when dealing with Betti numbers or signatures, is the following result
taken from [472, Corollary B1 on page 30]. Namely, there is a constant D > 0
(depending only on p but not on n) such that for n ≥ 2 and ai with an

i 6= 1
the equation

|an
i − 1| ≥ n−D (13.65)

holds. Hence we get for n ≥ 2 from (13.65) for ai with an
i 6= 1 and |ai| = 1
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−D · ln(n)
n

≤ ln(|an
i − 1|)
n

≤ ln(2)
n

. (13.66)

Equations (13.64) and (13.66) imply

lim
n→∞

∑

i=1,...,r
an

i 6=1,|ai|=1

ln(|an
i − 1|)
n

= 0. (13.67)

We conclude from equations (13.60), (13.61), (13.62), (13.63), (13.64) and
(13.67)

lim
n→∞

det(f [n])
n

=
∑

i=1,2,...r,|ai|>1

ln(|ai|). (13.68)

Now Lemma 13.53 follows from (13.54) and (13.68). ut
Next we show that Lemma 13.53 is not true in general for polynomials

p ∈ C[Z] with complex coefficients. Hence the condition that the coefficients
are rational (or at least algebraic) is essential.

Example 13.69. Fix a sequence of positive integers 2 = n1 < n2 < n3 < . . .
such that for each k ≥ 1

1
nk+1

≤ 1
2knk exp(nk)

. (13.70)

Choose a sequence of positive integers (mk)k with m1 = 1 such that for all
k ≥ 1

0 < mk+1
nk+1

− mk

nk
≤ 1

nk+1
. (13.71)

Namely, define mk+1 inductively as the smallest integer for which 0 < mk+1
nk+1

−
mk

nk
holds. We get from (13.70) and (13.71)

∞∑

l=k

(
ml+1

nl+1
− ml

nl

)
≤

∞∑

l=k+1

1
2lnl exp(nl)

≤ exp(−nk)
nk

·
∞∑

l=k+1

2−l

≤ exp(−nk)
nk

.

This shows that we can define a real number

s = lim
k→∞

mk

nk

and that the following holds
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0 ≤ nks−mk ≤ exp(−nk). (13.72)

Put a = exp(2πis). The number s is not rational (in fact it is not even
algebraic) and hence an 6= 1 for all n ≥ 1, since otherwise (13.72) would
imply that mk

nk
becomes stationary for large k, a contradiction to (13.71). We

conclude from the estimate | exp(iu)− 1| ≤ 2 ·
√
|u| and (13.60) and (13.72)

ln(| det((t− a) : C[Z/nk] → C[Z/nk])|)
nk

=
ln(|ank − 1|)

nk

=
ln(| exp(2πinks)− 1|)

nk

=
ln(| exp(2πi(nks−mk))− 1|)

nk

≤ ln(2 ·
√

2π(nks−mk))
nk

≤ ln(2 ·
√

2π exp(−nk))
nk

= −1
2

+
ln(2) + ln(

√
2π)

nk
.

Hence the sequence ln(| det((t−a) : C[Z/nk]→C[Z/nk])|)
nk

cannot converge to zero.
On the other hand we get det

(
(t− a) : l2(Z) −→ l2(Z)

)
= 0 from (3.23).

We mention without proof that Lemma 13.53 can be extended to matrices
A ∈ M(m,n,Q[Z]).

13.4 Miscellaneous

Some special cases of the results of this chapter have been proved in [110],
[153] and [527]. Further variations of the approximation results can be found
in Farber [183], where von Neumann categories and Dixmier traces are in-
vestigated. Generalizations of some of the results of this chapter from Q as
coefficients to the field of algebraic numbers Q ⊂ C can be found in [148]. Let
G be a group with a sequence of normal subgroups of finite index [G : Gi]

G = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ . . .

such that
⋂

i≥0 Gi = {1}. Estimates for the individual Betti numbers

bp(Gi\X) are given in [111] in the case that b
(2)
p (X) = 0 or that b

(2)
p (X) = 0

and α(X) = ∞+.
Lemma 13.53 motivates the following question, which is linked to Question

13.52.
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Question 13.73 (Approximating L2-torsion by torsion). Let M be a
closed Riemannian manifold and let

π1(M) = G0 ⊃ G1 ⊃ G2 ⊃ . . .

be a nested sequences of normal subgroups of finite index with
⋂

i≥0 Gi = {1}.
Equip M̃ and Gi\M̃ with the induced Riemannian metric. Let ρ

(2)
an (M̃) be the

analytic L2-torsion of M̃ (see Definition 3.128) and let ρan(Gi\M̃) be the
analytic Ray-Singer torsion of Gi\M̃ with respect to the trivial representation
C (see (3.9)).

Under which circumstances does

ρ(2)
an (M̃) = lim

i→∞
ρan(Gi\M̃)
[π1(M) : Gi]

hold?

Maybe there is a link between the Volume Conjecture 4.8 and Question
13.73 above.

Exercises

13.1. Show that the maps ΦG : Wh(G) → R and ΦG×Z : Wh(G × Z) → R
have the same image.

13.2. Let f : U → U be a positive endomorphism of a finitely generated
Hilbert N (G)-module. Show for the spectral density function F of f

dimN (G)({u ∈ U | f(u) = λu}) = F (λ)− lim
ε→0+

F (λ− ε).

13.3. Consider the situation described in the beginning of Subsection 13.2.1
for R = C. Suppose that there is a constant K > 0 such that for the operator
norms ||r(2)

A ||∞ ≤ K and ||r(2)
Ai
||∞ ≤ K hold for i ∈ I. Suppose that for any

polynomial p with real coefficients we have

trN (G)(p(A)) = lim
i∈I

tri(p(Ai)).

Let λ ≥ 0 be a number such that there is no x 6= 0 with r
(2)
A (x) = λ ·x. Prove

F (λ) = lim
i∈I

Fi(λ).

13.4. Let {Gi | i ∈ I} be an inverse system of normal subgroups of the group
G directed by inclusion over the directed set I such that

⋂
i∈I Gi = {1}.
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Suppose that G is countable. Show that there is a sequence i1 ≤ i2 ≤ i3 ≤ . . .
of elements in I such that

⋂∞
n=1 Gin

= {1}.
13.5. Let G be a group which is of det ≥ 1-class. Show for any finite subgroup
H ⊂ G that its Weyl group WH = NH/H is of det ≥ 1-class. Show that the
homomorphism

K1(WH) → R,

which sends the class of a matrix A ∈ GLn(Z[WH]) to the Fuglede-Kadison
determinant of the morphism of finitely generated Hilbert N (G)-modules
r
(2)
A : l2(G/H)n → l2(G/H)n given by right multiplication with A, is trivial.

13.6. If G contains a residually finite or residually amenable subgroup of
finite index, then G is residually finite or residually amenable.

13.7. Let Fg be a closed orientable surface of genus g ≥ 2. Put X = S1×Fg.
Construct a sequence π1(X) = G0 ⊃ G1 ⊃ G2 ⊃ . . . of normal subgroups of
finite index with

⋂∞
i=0 Gi = {1} such that

lim
i→∞

b1(Gi\X̃)
[π1(X) : Gi]

= 0,

but for any ε > 0

lim
i→∞

b1(Gi\X̃)
[π1(X) : Gi]1−ε

= ∞

holds.

13.8. Let N be a closed Riemannian manifold. Consider nested sequences
of normal subgroups of finite index π1(S1) ⊃ G0 ⊃ G1 ⊃ G2 ⊃ . . . and
π1(N) ⊃ H0 ⊃ H1 ⊃ H2 ⊃ . . . with

⋂
i≥0 Hi =

⋂
i≥0 Gi = {1}. Fix a

Riemannian metric on S1 and equip S1 × N with the product Riemannian
metric. Equip each covering of S1×N with the induced Riemannian metric.
Show

ρ(2)
an (S̃1 ×N) = lim

i→∞
ρan((Gi ×Hi)\(S̃1 ×N))
[π1(S1 ×N) : (Gi ×Hi)]

.



14. L2-Invariants and the Simplicial Volume

Introduction

In this chapter we give a survey on bounded cohomology and Gromov’s notion
of the simplicial volume ||M || ∈ R of a closed connected orientable manifold
and discuss the following conjecture.

Conjecture 14.1 (Simplicial volume and L2-invariants). Let M be an
aspherical closed orientable manifold of dimension ≥ 1. Suppose that its sim-
plicial volume ||M || vanishes. Then M̃ is of determinant class and

b(2)
p (M̃) = 0 for p ≥ 0;

ρ(2)(M̃) = 0.

The part about the L2-Betti numbers is taken from [237, section 8A on
page 232], whereas the part about the L2-torsion appears in [330, Conjecture
3.2].

In Section 14.1 we give a survey on the basic definitions and properties
of bounded cohomology and simplicial volume. In Section 14.2 we discuss
Conjecture 14.1 and give some evidence for it. Conjecture 14.1 suggests an
interesting connection between two rather different notions. It is illuminating
to draw conclusions from it, which partially have already been proved or
whose direct proof should be easier than a possible proof of Conjecture 14.1.

To understand this chapter, it is only required to be familiar with Sections
1.2 and 3.4.

14.1 Survey on Simplicial Volume

In this section we define the notions of simplicial volume and bounded coho-
mology and give a survey about their basic properties.

14.1.1 Basic Definitions

Let X be a topological space and let Csing
∗ (X;R) be its singular chain complex

with real coefficients. Recall that a singular p-simplex of X is a continuous
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map σ : ∆p → X, where here ∆p denotes the standard p-simplex (and not
the Laplace operator). Let Sp(X) be the set of all singular p-simplices. Then
Csing

p (X;R) is the real vector space with Sp(X) as basis. The p-th differential
∂p sends the element σ given by a p-simplex σ : ∆p → X to

∑p
i=0(−1)i ·σ◦si,

where si : ∆p−1 → ∆p is the i-th face map. Define the L1-norm of an element
x ∈ Csing

p (X;R), which is given by the (finite) sum
∑

σ∈Sp(X) λσ · σ, by

||x||1 :=
∑

σ

|λσ|. (14.2)

Define the L1-seminorm of an element y in the p-th singular homology
Hsing

p (X;R) := Hp(C
sing
∗ (X;R)) by

||y||1 := inf{||x||1 | x ∈ Csing
p (X;R), ∂p(x) = 0, y = [x]}. (14.3)

Notice that ||y||1 defines only a seminorm on Hsing
p (X;R), it is possible that

||y||1 = 0 but y 6= 0. The next definition is taken from [232, page 8].

Definition 14.4 (Simplicial volume). Let M be a closed connected ori-
entable manifold of dimension n. Define its simplicial volume to be the non-
negative real number

||M || := ||j([M ])||1 ∈ [0,∞)

for any choice of fundamental class [M ] ∈ Hsing
n (M ;Z) and j : Hsing

n (M ;Z) →
Hsing

n (M ;R) the change of coefficients map associated to the inclusion Z→ R.

Let φ ∈ Cp
sing(X;R) := homR(Csing

p (X;R),R) = map(Sp(X),R) be a
singular cochain. Define its L∞-norm by

||φ||∞ := sup{|φ(σ)| | σ ∈ Sp(X)}. (14.5)

Define the L∞-seminorm of an element ψ in the p-th singular cohomology
Hp

sing(X;R) := Hp(C∗sing(X;R)) by

||ψ||∞ := inf{||φ||∞ | φ ∈ Cp
sing(X;R), δp(φ) = 0, ψ = [φ]}, (14.6)

where δp : Cp
sing(X;R) → Cp+1

sing (X;R) is the p-th differential. Notice that
||φ||∞ and ||ψ||∞ can take the value ∞.

Definition 14.7 (Bounded cohomology). Let Ĉ∗(X) be the subcochain
complex of C∗sing(X;R) consisting of singular cochains φ with ||φ||∞ < ∞.
The bounded cohomology Ĥp(X) is defined to be the cohomology Hp(Ĉ∗(X))
of Ĉ∗(X). For a group G we put Ĥ∗(G) := Ĥ∗(BG).

Notice that Ĥ∗(BG) is independent of the choice of model of BG because
of homotopy invariance of bounded cohomology. Sometimes the bounded co-
homology of a group is defined in terms of the obvious bounded cochain
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complex of the real cochain complex given by the bar-resolution. These two
notions agree (see [232, page 49], [275, (3.4) and Corollary 3.6.1]).

In some situations we want to extend the definition of simplicial volume
to the case where M is not compact. The locally finite homology H lf

p (X;Z)
of a topological space X is the homology of the chain complex C lf

∗ (X) of
(formal possibly infinite) sums

∑
σ λσ ·σ of singular simplices with coefficients

λσ ∈ Z which are locally finite, i.e. for any compact subset C ⊂ X the
number of singular simplices σ, which meet C and satisfy λσ 6= 0, is finite.
The notion of L1-norm carries over to elements in the locally finite homology
if one also allows the value ∞. Recall that for an orientable manifold M
without boundary of dimension n the n-th locally finite homology H lf

n (M ;Z)
is isomorphic to Z and that a choice of an orientation corresponds to a choice
of a generator [M ] called fundamental class.

Definition 14.8 (Simplicial volume). Let M be a connected (not neces-
sarily compact) orientable manifold of dimension n without boundary. Define
its simplicial volume by

||M || := ||j([M ])||1 ∈ [0,∞],

where j : H lf
n (M ;Z) → H lf

n (M ;R) is the change of coefficients map associated
to the inclusion Z → R and [M ] ∈ H lf

n (M ;Z) is any choice of fundamental
class.

14.1.2 Elementary Properties

Bounded cohomology is not a cohomology theory. It is natural, i.e. a con-
tinuous map f : X → Y induces a homomorphism Ĥp(f) : Ĥp(Y ) → Ĥp(X)
such that Ĥp(g ◦ f) = Ĥp(f) ◦ Ĥp(g) and Ĥp(id) = id hold. It satisfies ho-
motopy invariance, i.e. two homotopic maps induce the same homomorphism
on bounded cohomology, and the dimension axiom, i.e. Ĥp({∗}) is zero for
p ≥ 1 and R for p = 0. But excision does not hold and there is no long ex-
act sequence associated to a pair and no Mayer-Vietoris sequence. Therefore
bounded cohomology is much harder to compute than ordinary cohomology.
Moreover, we will see that the bounded cohomology Ĥp(X) of a finite CW -
complex X can be non-trivial for some p > dim(X).

Notice that the inclusion i∗ : Ĉ∗(X) → C∗sing(C;R) induces homomor-
phisms

ip : Ĥp(X) → Hp
sing(X;R) . (14.9)

The Kronecker product 〈ψ, y〉 of ψ ∈ Hp
sing(X;R) and y ∈ Hsing

p (X;R) is
defined by φ(x) for any choice of elements φ ∈ ker(δp) and x ∈ ker(∂p) with
ψ = [φ] and y = [x]. For ψ ∈ Ĥp(X) and x ∈ Hsing

p (X;R) we define 〈ψ, y〉 by
〈ip(ψ), y〉.



492 14. L2-Invariants and the Simplicial Volume

Lemma 14.10. (1) Let X be a topological space. Consider x ∈ Hsing
p (X;R).

We have ||x||1 = 0 if and only if for any ψ ∈ Ĥp(X) the Kronecker
product satisfies 〈ψ, x〉 = 0. Otherwise ||x||1 > 0 and

1
||x||1 = inf{||ψ||∞ | ψ ∈ Ĥp(X), 〈ψ, x〉 = 1};

(2) Let M be a closed connected orientable manifold of dimension n. Then the
simplicial volume ||M || vanishes if and only if in : Ĥn(M) → Hn

sing(M ;R)
is trivial. Otherwise we get

1
||M || = ||α||∞,

where α ∈ Hn
sing(M ;R) is the image of the fundamental cohomology

class of M under the change of rings homomorphism Hn
sing(M ;Z) →

Hn
sing(M ;R).

Proof. (1) This is proved for instance in [35, Proposition F.2.2 on page 278].
(2) This follows from (1). ut
Lemma 14.11. Let f : M → N be a map of closed connected oriented man-
ifolds of the same dimension n. Let deg(f) be the degree of f . Then

||M || ≥ | deg(f)| · ||N ||.

In particular the simplicial volume is a homotopy invariant.

Proof. For any x ∈ Csing
n (X;R) we get ||Csing

n (f)(x)||1 = ||x||1. ut
Corollary 14.12. If f : M → M is a selfmap of a closed connected ori-
entable manifold of degree different from −1, 0 and 1, then ||M || = 0.

Lemma 14.13. Let p : M → N be a d-sheeted covering of closed connected
orientable manifolds. Then

||M || = d · ||N ||.

Proof. Since p is a map of degree d, it suffices to prove because of Lemma
14.11 that ||M || ≤ d · ||N ||. For a singular simplex σ : ∆n → N let L(σ)
be the set of singular simplices σ̃ : ∆n → M with p ◦ σ̃ = σ. It consists of
precisely d elements. If the singular chain u =

∑
σ λσ ·σ represents [N ], then

ũ =
∑

σ λσ ·
∑

σ̃∈L(σ) σ̃ represents [M ] and ||ũ||1 = d · ||u||1. ut
Lemma 14.14. Let X be a topological space. We have ||y||1 = 0 for any
y ∈ H1(X;R). Moreover, Ĥ1(X) = 0.
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Proof. Any element y ∈ H1(X;R) can be represented by an R-linear combi-
nation of elements of the shape [σ : S1 → X] for continuous maps σ : S1 → X.
If σk : S1 → X is the composition of σ with the map S1 → S1 sending z to
zk for some integer k > 0, then σ and 1

k · σk represent the same element in
H1(X;R) and || 1k · σk||1 = 1

k · ||σ||1. This implies ||y||1 = 0.
Consider an element ψ ∈ Ĥ1(X). Fix a representative φ ∈ ker(δ̂1). We

conclude from Lemma 14.10 (1) that i1 : Ĥ1(X) → H1
sing(X;R) is trivial.

Hence there is u ∈ C0
sing(X) with δ0(u) = φ. We have |u(σ0)−u(σ1)| ≤ ||φ||∞

for any two singular 0-simplices σ0 and σ1 whose images lie in the same path
component of X. Since φ ∈ Ĉ1(X), we can arrange u ∈ Ĉ0(X). Hence ψ = 0.

ut

14.1.3 Bounded Cohomology and Amenable Groups

The next result is due to Gromov [232, page 40], [275, Theorem 4.3].

Theorem 14.15. (Mapping theorem for bounded cohomology).
Let f : X → Y be a map of path-connected topological spaces which induces
an epimorphism π1(X) → π1(Y ) with an amenable group as kernel. Then the
induced map Ĥp(f) : Ĥp(Y ) → Ĥp(X) is an isometric isomorphism.

Theorem 14.15 and Lemma 14.10 (1) imply

Corollary 14.16. (1) Let X be a path-connected topological space with fun-
damental group π and classifying map f : X → Bπ. Then f induces for
p ≥ 0 an isometric isomorphism Ĥp(f) : Ĥp(Bπ)

∼=−→ Ĥp(X);
(2) Let X be a path-connected topological space with amenable fundamental

group. Then Ĥp(X) is zero for p ≥ 1 and R for p = 0;
(3) Let M be a connected closed orientable manifold of dimension n with

fundamental group π and classifying map f : M → Bπ. Then

||M || = ||Hsing
n (f)([M ])||1;

(4) Let M be a closed connected orientable manifold of dimension ≥ 1 with
amenable fundamental group. Then

||M || = 0.

14.1.4 The Simplicial Volume of Hyperbolic and Low-Dimensional
Manifolds

Define the positive real number vn to be the supremum of the volumes of
all n-dimensional geodesic simplices, i.e. the convex hull of (n + 1) points in
general position, in the n-dimensional hyperbolic space Hn. This is the same
as the maximum over the volumes of all simplices in Hn

, which is obtained
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from Hn by adding its natural boundary. Any regular ideal simplex in Hn

has volume vn and any simplex in Hn
of volume vn is a regular ideal simplex

[243]. We have (see [243])

v2 = π;

v3 =
3
2
·
∑

j≥1

sin(2πj/3)
j2

' 1.10149;

v4 =
10π

3
· arcsin(1/3)− π2

3
' 0.26889;

vn ≤ π

(n− 1)!
;

lim
n→∞

n! · vn√
n · e = 1.

Theorem 14.17 (Simplicial volume of hyperbolic manifolds). Let M
be a closed hyperbolic orientable manifold of dimension n. Then

||M || = vol(M)
vn

.

If n = 2r + 1 is odd and Cn > 0 is the constant introduced in (3.151), then
M̃ is L2-det-acyclic and

||M || =
(−1)r

Cn · vn
· ρ(2)(M̃).

Proof. The equation ||M || = vol(M)
vn

follows from work of Gromov and
Thurston (see [232, page 11]). The second equation follows from Theorem
3.152. ut
Theorem 14.18 (Simplicial volume of low-dimensional manifolds).

(1) We have ||S1|| = 0;
(2) We have ||S2|| = ||T 2|| = 0. Let Fg be the closed connected orientable

surface of genus g ≥ 1. Then

||Fg|| = 2 · |χ(Fg)| = 4g − 4;

(3) Let M be a compact connected orientable irreducible 3-manifold with in-
finite fundamental group such that the boundary of M is empty or a dis-
joint union of incompressible tori. Suppose that M satisfies Thurston’s
Geometrization Conjecture, i.e. there is a decomposition along a mini-
mal family of pairwise non-isotopic not boundary-parallel incompressible
2-sided tori in M whose pieces are Seifert manifolds or hyperbolic mani-
folds. Let M1, M2, . . ., Mr be the hyperbolic pieces. They all have finite
volume [385, Theorem B on page 52]. Then M is det-L2-acyclic and
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||M || =
1
v3
·

r∑

i=1

vol(Mi) =
−6π

v3
· ρ(2)(M̃).

In particular, ρ(2)(M̃) = 0 if and and only if ||M || = 0.

Proof. (1) This follows from Corollary 14.12 or Lemma 14.14.
(2) This follows for S2 and T 2 from Corollary 14.12. The other cases are
proved in [232, page 9].

(3) The claim for ||M || is proved in [479], [491]. The claim for ρ(2)(M̃) has
already been proved in Theorem 4.3. ut

14.1.5 Volume and Simplicial Volume

In this subsection we discuss the relation of the simplicial volume and the
volume of a closed Riemannian manifold.

The next result is due to Thurston. Its proof can be found for instance in
[232, Section 1.2]. (See also [274], [491].)

Theorem 14.19 (Thurston’s estimate on the simplicial volume). Let
M be a complete connected orientable Riemannian manifold of dimension
n, which has finite volume and whose sectional curvature satisfies −k ≤
sec(M) ≤ −1 for some real number k ≥ 1. Then there is a constant Cn > 0,
which depends only on n = dim(M) but not on M such that

vol(M) ≤ Cn · ||M ||.

In particular ||M || > 0.

One knows that Cn ≤ π
(n−1)! . Certainly Cn ≥ vn by Theorem 14.17. It is

unknown whether one can take Cn = vn.
Next we want to get reverse estimates, i.e. we want to estimate the volume

by the simplicial volume from below. This is motivated by the following result
due to Cheeger [102].

Theorem 14.20 (Cheeger’s finiteness theorem). For any given num-
bers D > 0 and v > 0 there are only finitely many diffeomorphism classes
of closed Riemannian manifolds M of fixed dimension n such that for the
sectional curvature | sec(M)| ≤ 1, for the diameter diam(M) ≤ D and for
the volume vol(M) ≥ v hold.

Definition 14.21 (Minimal volume). Let M be a smooth manifold. De-
fine its minimal volume minvol(M) to be the infimum over all volumes
vol(M, g), where g runs though all complete Riemannian metrics on M , for
which the sectional curvature satisfies | sec(M, g)| ≤ 1.
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Let M be a closed connected orientable Riemannian manifold of dimension
n. Then for any x̃ ∈ M̃ the following limit exists

hvol(M) := lim
R→∞

ln(vol(BR(x̃))
R

, (14.22)

where BR(x̃) is the geodesic ball in the universal covering M̃ with center x̃ of
radius R. This limit is independent of the choice of x̃ and called the (volume)
entropy of M . One always has the inequality hvol(M)(M) ≤ (dim(M)− 1) by
Bishop’s inequality if sec(M) ≥ −1.

The entropy h(G,S) of a finitely generated group G with respect to a
finite set of generators S is defined by

h(G,S) := lim inf
R→∞

ln(N(R))
R

,

where N(R) is the number of elements of G which can be written as a word
of length ≤ R in the generators of S or their inverses. The entropy h(G) of
a finitely generated group G is the infimum over all numbers h(G, S), where
S runs through all finite sets of generators. If M is a closed Riemannian
manifold of diameter diam(M), then h(π1(M)) ≤ 2 · diam(M) · hvol(M) (see
[238, Theorem 5.16 on page 282] or [377] for a proof).

The next result is taken from [232, page 12 and page 37], [238, 5.39 on
page 307]. For a real number k and a complete Riemannian manifold M of
dimension n the bound on the sectional curvature sec(M) ≥ −k2 implies the
bound on its Ricci curvature

Riccix(v, v) ≥ −(n− 1) · k2 · 〈v, v〉x (14.23)

for all x ∈ M and v ∈ TxM .

Theorem 14.24 (Gromov’s estimate on the simplicial volume).

(1) Let M be a closed connected orientable Riemannian manifold of dimen-
sion n whose Ricci curvature satisfies for all x ∈ M and v ∈ TxM

Riccix(v, v) ≥ − 1
n− 1

· 〈v, v〉x.

Then there exists a constant Cn with 0 < Cn < n!, which depends on n
but not on M , such that

||M || ≤ Cn · vol(M);

(2) Let M be a closed connected orientable Riemannian manifold of dimen-
sion n. Then there exists a constant Cn with 0 < Cn < n!, which depends
on n but not on M , such that

||M || ≤ Cn · hvol(M)n · vol(M);
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(3) Let M be a closed connected orientable Riemannian manifold of dimen-
sion n. Then

||M || ≤ (n− 1)n · n! ·minvol(M).

Example 14.25. Obviously any closed flat Riemannian manifold has van-
ishing minimal volume. Hence we get

minvol(Tn) = ||Tn|| = 0.

Let Fg be the closed orientable surface of genus g, then

minvol(Fg) = 2π · |χ(Fg)| = 2π · |2− 2g| = π · ||Fg||

by the following argument. The Gauss-Bonnet formula implies for any Rie-
mannian metric on Fg whose sectional curvature satisfies | sec | ≤ 1

vol(Fg) ≥
∫

Fg

| sec | dvol ≥
∣∣∣∣∣
∫

Fg

sec dvol

∣∣∣∣∣ = |2π · χ(Fg)|.

If g 6= 1 and we take the Riemannian metric whose sectional curvature is
constant 1 or −1, then the Gauss-Bonnet Theorem shows

|2π · χ(Fg)| =

∣∣∣∣∣
∫

Fg

sec dvol

∣∣∣∣∣ = vol(Fg).

Now the claim follows.
Notice that ||S2|| = 0 and minvol(S2) 6= 0. We have (see [32], [232, page

93])

minvol(R2) = 2π(1 +
√

2);
minvol(Rn) = 0 for n ≥ 3.

The next result is taken from [232, page 6].

Theorem 14.26 (Minimal volume and characteristic classes). Let M
be a closed connected orientable manifold of dimension n. Denote by pI(M)
the Pontryagin number of M for a fixed partition I of n (see [379, page 185]).
Then there is a constant C(I, n), which depends on I and n but not on M ,
such that

|pI(M)| ≤ C(I, n) ·minvol(M).

There is also a dimension constant En satisfying

|χ(M)| ≤ En ·minvol(M).
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Proof. The Chern-Weil-Theorem (see [379, Corollary 1 on page 308]) implies
that for an appropriate polynomial PI(x)

|pI(M)| =
∣∣∣∣
∫

M

PI(Ω)
∣∣∣∣ ≤ sup{||PI(Ω)||x | x ∈ M} · vol(M),

where Ω is the curvature tensor. If the sectional curvature satisfies | sec(M)| ≤
1, then one can find a constant C(I, n), which depends only on I and n but
not on M , such that sup{||PI(Ω)||x | x ∈ M} ≤ C(I, n). The proof for the
Euler characteristic is similar and based on the Gauss-Bonnet Theorem. ut

A discussion of examples of Riemannian manifolds with vanishing minimal
volume is given in [232, Appendix 2].

14.1.6 Simplicial Volume and Betti Numbers

The next theorem is taken from [232, page 12].

Theorem 14.27 (Betti numbers and simplicial volume). Let M be a
complete connected orientable Riemannian manifold of dimension n with fi-
nite volume. Let k1 ≥ k2 > 0 be positive constants such that the sectional cur-
vature satisfies −k1 ≤ sec(M) ≤ −k2. Then there is a constant C(n, k1/k2),
which depends only on n and the ratio k1/k2 but not on M , such that

∑

i≥0

bp(M) ≤ C(n, k1/k2) · ||M ||.

Notice that both Theorem 14.19 and Theorem 14.27 imply that ||M || > 0
holds for a closed connected orientable Riemannian manifold with negative
sectional curvature.

The next example is illuminating since it shows how information about
the fundamental class gives bounds on the sum of the Betti numbers.

Example 14.28. Let X be a simplicial complex with N simplices. Then
∑

p≥0

bp(X) ≤
∑

p≥0

dimZ Cp(X) ≤ N.

Let M be a closed manifold of dimension n. Suppose that M admits a trian-
gulation with t simplices of dimension n. Then the total number of simplices
in this triangulation is bounded by 2t since any p-simplex σ is the intersection
of the n-simplices which contain σ. This implies

∑

p≥0

bp(M) ≤ 2t.

One can also get an estimate in terms of singular simplices. Let M be a closed
oriented manifold M of dimension n. Suppose that [M ] ∈ Hn(M ;Z) can be
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represented by a Z-linear combination
∑t

i=1 λi · σi of t singular simplices σi.
Then we get ∑

p≥0

bp(M) ≤ t · 2n.

This follows from Poincaré duality by the following argument. Let Sp(M) be
the set of singular p-simplices. Let Sp(M)′ be the subset of Sp(M) consisting
of those singular p-simplices which are obtained from one of the singular n-
simplices σi : ∆n → M above by composition with some face map ∆p → ∆n.
Let ψ ∈ Hp(M ;R) be any element which can be represented by a cocyle
φ ∈ Cp

sing(M ;R) = map(Sp(M),R) which vanishes on any singular simplex
in Sp(M)′. Then

ψ ∩ [M ] =

[
φ ∩

(
t∑

i=1

λi · σi

)]
=

[
t∑

i=1

λi · φ ∩ σi

]
=

[
t∑

i=1

λi · 0
]

= 0

follows from the definition of the cap-product [226, 24.19 on page 152]. Since
? ∩ [M ] : Hp(M ;R) → Hn−p(M,R) is bijective by Poincaré duality, this im-
plies ψ = 0. We conclude that the dimension of Hp(M ;R) is at most the
cardinality of Sp(M)′. Now the claim follows.

Remark 14.29. Notice, however, that in general the minimum over all the
numbers t for which [M ] ∈ Hn(M ;Z) can be represented by a Z-linear com-
bination

∑t
i=1 λi ·σi of t singular simplices (see Example 14.28 above ) is not

related to ||M ||. It is bounded from above by the infimum of the L1-seminorms
of all integral singular cycles representing [M ] but this infimum has not the
nice properties as ||M || and is very hard to handle. A better version is de-
fined by Gromov [238, page 306] using ideas of Thurston. Gromov introduces
an extension of the simplicial volume to foliations with transverse measures
and defines a new invariant ||[M ]Z||F∆ for a closed orientable manifold M . It
satisfies

||M || ≤ ||[M ]Z||F∆. (14.30)

There seems to be no known counterexample to the equality ||M || =
||[M ]Z||F∆.

The next result appears as an exercise in [238, page 307].

Theorem 14.31. Let M be an aspherical closed orientable manifold of di-
mension n. Then ∑

p≥0

b(2)
p (M̃) ≤ 2n · ||[M ]Z||F∆.
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14.1.7 Simplicial Volume and S1-Actions

Theorem 14.32. Let M be a connected closed orientable manifold. If M
carries a non-trivial S1-action, then

||M || = 0.

If M carries an S1-action with MS1
= ∅, then

minvol(M) = 0.

Proof. The claim for the simplicial volume is proved in [232, Section 3.1, page
41], [526], the one for the minimal volume is taken from [232, page 7]. ut

14.1.8 Some Information about the Second Bounded Cohomology
of Groups

We mention the following two results due to Epstein-Fujiwara [178], [209]
and Bestvina-Fujiwara [41].

Theorem 14.33. The second bounded cohomology Ĥ2(BG) is a real vector
space of infinite dimension if G is a non-elementary word-hyperbolic group or
if G is a subgroup, which is not virtually abelian, of the mapping class group
of a compact orientable surface of genus g with p punctures.

This shows in particular that the second bounded cohomology of B(Z ∗
Z) = S1∨S1 is non-trivial despite the fact that S1∨S1 is a 1-dimensional finite
CW -complex. We see that there are no Mayer-Vietoris sequences for bounded
cohomology in general. The behaviour of the second bounded cohomology of
a group under free amalgamated products and HNN-extensions is analysed
in [210]. Burger and Monod [76], [77, Theorem 20 and Theorem 21] show that
the natural map from the second bounded cohomology group to the second
cohomology group of G is injective if G is an irreducible lattice in a connected
semisimple Lie group with finite center, no compact factors and of rank ≥ 2.

14.1.9 Further Properties of the Simplicial Volume

We begin by stating a proportionality principle for the simplicial volume [232,
page 11] which is analogous to the one for L2-invariants (see Theorem 3.183).

Theorem 14.34 (Proportionality principle for the simplicial volume).
Let M and N be closed connected orientable Riemannian manifolds, whose
universal coverings are isometrically diffeomorphic. Then

||M ||
vol(M)

=
||N ||

vol(N)
.
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The proof of the next result can be found for instance in [35, Theorem
F.2.5. on page 279] and [232, page 10].

Lemma 14.35. Let M and N be closed connected orientable manifolds of
dimensions m and n. There exists for each integer k a constant C(k) which
depends on k but not on M and N , such that

||M ×N || ≤ C(m + n) · ||M || · ||N ||;
||M || · ||N || ≤ ||M ×N ||.

The next result is taken from [232, page 10].

Theorem 14.36. Let M and N be closed connected orientable manifolds of
the same dimension n ≥ 3. Then we get for their connected sum M#N

||M#N || = ||M ||+ ||N ||.

14.2 Simplicial Volume and L2-Invariants of Universal
Coverings of Closed Manifolds

In this section we give some evidence for Conjecture 14.1 and discuss some
consequences.

Remark 14.37. Conjecture 14.1 is definitely false if one drops the condition
“aspherical” since the simplicial volume of a simply connected closed ori-
entable manifold M is zero (see Corollary 14.16 (4)), but b

(2)
0 (M̃) = b0(M) =

1. One may ask whether for a (not necessarily aspherical) det-L2-acyclic
closed orientable manifold M with vanishing simplicial volume the L2-torsion
ρ(2)(M̃) must be trivial. The answer is again negative. Namely, let M be a
3-dimensional hyperbolic manifold. Put N = S2 × M . Then ||N || = 0 by
Corollary 14.12, the universal covering is det-L2-acyclic and ρ(2)(Ñ) 6= 0 by
Theorem 3.96 (4) and Theorem 3.152.

14.2.1 Hyperbolic Manifolds and 3-Manifolds

Let M be a hyperbolic orientable manifold of dimension n or a closed con-
nected orientable manifold of dimension 3 satisfying the assumptions of The-
orem 14.18 (3). Then M is aspherical and of determinant class and we get
for a dimension constant Dn which is different from zero for n odd and zero
for n even (see Theorem 4.1, Theorem 3.96 (3), Theorem 14.17 and Theorem
14.18 (3))

b(2)
p (M̃) = 0 for p ≥ 0 if ||M || = 0;

ρ(2)(M̃) = Dn · ||M ||.
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Hence for such manifolds Conjecture 14.1 is true.
The considerations above lead to the question whether the relation

ρ(2)(M̃) = Dn · ||M || may hold for all aspherical closed orientable man-
ifolds of dimension n for a dimension constant Dn. This is not the case as
the following example shows.

Example 14.38. Let M be a 3-dimensional orientable closed hyperbolic 3-
manifold. Let N be M ×M ×M and F be an orientable closed hyperbolic
surface. Let F d be the d-fold cartesian product of F with itself. We get from
Theorem 3.96 (4), Theorem 14.17 and Theorem 14.35

ρ(2)(Ñ × F d) = 0;

ρ(2)( ˜M × F d+3) 6= 0;
||N × F d|| 6= 0.

All the manifolds appearing in the list above are orientable closed aspherical
manifolds of dimension 9 + 2d. If ρ(2)(M̃) = D9+2d · ||M || holds for all of
them, we get D9+2d = 0 from the first and third equation and D9+2d 6= 0
from the second, a contradiction.

14.2.2 S1-Actions

Let M be an aspherical closed orientable manifold with non-trivial S1-action.
Then ||M || = 0 by Theorem 14.32. Hence Conjecture 14.1 predicts that M̃

is det-L2-acyclic and ρ(2)(M̃) = 0. This has already been proved in Theorem
3.111.

14.2.3 Amenable Fundamental Groups

Let M be an aspherical closed orientable manifold with amenable fundamen-
tal group. Then ||M || = 0 by Corollary 14.16 (4). Hence Conjecture 14.1
predicts that M̃ is det-L2-acyclic and ρ(2)(M̃) = 0. This has already been
proved in Theorem 3.113 in the special case where the fundamental group is
elementary amenable.

Actually, it suffices in Theorem 3.113 to require that π1(M) contains a
normal infinite elementary amenable subgroup. This raises

Question 14.39. (Simplicial volume and normal infinite amenable
subgroups).
For which closed connected orientable manifolds, whose fundamental group
contains an amenable infinite normal subgroup, does the simplicial volume
vanish?
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14.2.4 Selfmaps of Degree Different from −1, 0 and 1

Let f : M → M be a selfmap of an aspherical closed orientable manifold M
whose degree is different from −1, 0 and 1. Then ||M || = 0 by Corollary
14.12. Hence Conjecture 14.1 predicts that b

(2)
p (M̃) = 0 for all p ≥ 0, M̃

is of determinant class and ρ(2)(M̃) = 0. There is the conjecture that f is
homotopic to a covering with deg(f) sheets and then this conclusion would
follow from Theorem 1.35 (9) and Theorem 3.96 (5) provided that M̃ is of
determinant class. Without this conjecture we can at least prove the claim
for the L2-Betti numbers under certain assumptions about the fundamental
group.

A group G is Hopfian if any surjective group homomorphism f : G → G
is an isomorphism. Examples of Hopfian groups are residually finite groups
[356], [399, Corollary 41.44]. It is not true that a subgroup of finite index of
a Hopfian group is again Hopfian [31, Theorem 2]. At least any subgroup of
finite index in a residually finite group is again residually finite and hence
Hopfian.

Theorem 14.40. Let M be an aspherical closed orientable manifold. Sup-
pose that any normal subgroup of finite index of its fundamental group is
Hopfian and there is a selfmap f : M → M of degree deg(f) different from
−1, 0, and 1. Then

b(2)
p (M̃) = 0 for p ≥ 0.

Proof. Fix an integer n ≥ 1. Let p : M → M be the covering of M associated
to the image of π1(fn) : π1(M) → π1(M). By elementary covering theory
there is a map fn : M → M satisfying p◦fn = fn. Since deg(fn) = deg(fn) ·
deg(p) and deg(p) = [π1(M) : im(π1(f)], we conclude

[π1(M) : im(π1(fn))] ≤ | deg(fn)| = | deg(f)|n. (14.41)

Consider a map g : N1 → N2 of two closed connected oriented n-dimensional
manifolds of degree deg(g) 6= 0. Abbreviate G1 = π1(N1) and G2 = π1(N2).
Then there is a diagram of ZG2-chain complexes which commutes up to
ZG2-homotopy

homZG1(Cn−∗(Ñ1),ZG1)⊗Z[π1(g)] ZG2
g∗←−−−− homZG2(Cn−∗(Ñ2),ZG2)

(?∩[N1])⊗Z[π1(g)]id

y ?∩g∗([N1])

y
C∗(Ñ1)⊗Z[π1(g)] ZG2

g∗−−−−→ C∗(Ñ2)

Tensoring with l2(G2) and then applying (reduced) L2-homology yields a
commutative diagram of finitely generated Hilbert N (G2)-modules
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Hn−p
(2)

(
homZG1(C∗(Ñ1),ZG1)⊗Z[π1(g)] l2(G2)

)
g∗←−−−− Hn−p

(2) (Ñ2;N (G2))

H(2)
∗ ((?∩[N1])⊗Z[π1(g)]id)

y H(2)
∗ (?∩g∗([N1]))

y
H

(2)
p

(
C∗(Ñ1)⊗Z[π1(g)] l2(G2)

)
g∗−−−−→ H

(2)
p (Ñ2;N (G2))

The right vertical arrow is bijective since deg(g) is invertible in R, g∗([N1]) =
deg(g) · [N2] and ? ∩ [N2] : homZG2(Cn−∗(Ñ2),ZG2) → C∗(Ñ2) is a Z[G2]-
chain homotopy equivalence by Poincaré duality. Hence the morphism of
finitely generated Hilbert N (G2)-modules

g∗ : H(2)
p

(
C∗(Ñ1)⊗Z[π1(g)] l2(G2)

)
→ H(2)

p (Ñ2;N (G2))

is surjective. Theorem 1.12 (2) implies

dimN (G2)

(
H(2)

p

(
C∗(Ñ1)⊗Z[π1(g)] l2(G2)

))
≥ b(2)

p (Ñ2).

Let ep(N1) be the number of p-cells in a fixed triangulation of N1. We con-
clude from Theorem 1.12 (2)

dimN (G2)

(
H(2)

p

(
C∗(Ñ1)⊗Z[π1(g)] l2(G2)

))

≤ dimN (G2)

(
Cp(Ñ1)⊗Z[π1(g)] l2(G2)

)

≤ ep(N1).

This shows

b(2)
p (Ñ2) ≤ ep(N1) for p ≥ 0. (14.42)

If we apply (14.42) to g = fn, we get

b(2)
p (M̃) ≤ ep(M).

Since b
(2)
p (M̃) = [π1(M) : im(π1(fn))] · b(2)

p (M̃) holds by Theorem 1.35 (9),
we get

b(2)
p (M̃) ≤ ep(M)

[π1(M) : im(π1(fn))]
. (14.43)

Hence it suffices to show that there is no integer n such that im(π1(fn)) =
im(π1(fk)) for all k ≥ n since then the limit for n → ∞ of the right-hand
side of (14.43) is zero. Suppose that such n exists. Then the composition
fn ◦ p : M → M induces an epimorphism on π1(M). Since π1(M) is Hopfian
by assumption, fn ◦ p : M → M is an isomorphism. Since M is aspherical,
fn ◦ p is a homotopy equivalence. This implies
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1 = deg(fn ◦ p) = deg(fn) · deg(p).

This shows that |deg(p)| = 1 and hence π1(fn) is surjective. Since π1(M)
is Hopfian and M aspherical, we conclude | deg(fn)| = | deg(f)n| = 1. This
contradicts the assumption deg(f) /∈ {−1, 0, 1}. This finishes the proof of
Theorem 14.40. ut

14.2.5 Negative Sectional Curvature and Locally Symmetric
Spaces

There is the following conjecture which is attributed to Gromov in [457, page
239].

Conjecture 14.44. (Gromov’s Conjecture about positivity of the
simplicial volume for non-negative sectional and negative Ricci cur-
vature). Let M be a closed connected orientable Riemannian manifold whose
sectional curvature is non-negative and whose Ricci curvature is everywhere
negative. Then

||M || > 0.

Suppose that M is a closed connected orientable manifold with negative
sectional curvature. Then the Singer Conjecture 11.1 and Conjecture 11.3
predict that either one of the L2-Betti numbers b

(2)
p (M̃) or ρ(2)(M̃) is different

from zero. Hence together with Conjecture 14.1 they predict ||M || > 0. Indeed
||M || > 0 follows from Theorem 14.19 or from Theorem 14.27 for such M .

Conjecture 14.44 implies the following

Conjecture 14.45. (Positivity of the simplicial volume of locally
symmetric spaces of non-compact type). Let M be a closed connected
Riemannian manifold whose universal covering is a symmetric space of non-
compact type. Then

||M || > 0.

Conjecture 14.45 has been proved by Savage [457, page 239] in the case
where the universal covering M̃ is SL(n,R)/SO(n).

Thus Conjecture 14.1 is true for aspherical locally symmetric spaces if
Conjecture 14.45 is true (see Lemma 5.10 and equations (5.13) and (5.15)).

14.2.6 Simplicial Volume and L2-Invariants

The following result follows from Gromov [238, page 300].

Theorem 14.46 (L2-Betti numbers and volume). Let M be an aspher-
ical closed Riemannian manifold of dimension n. Suppose that for some δ > 0
the Ricci curvature satisfies for all x ∈ M and v ∈ TxM

Riccix(v, v) ≥ −δ · 〈v, v〉x.
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Then there is a constant C(n, δ), which depends on n and on δ but not on
M , such that ∑

p≥0

b(2)
p (M̃) ≤ C(n, δ) · vol(M).

Theorem 14.46 implies together with (14.23)

Theorem 14.47 (L2-Betti numbers and minimal volume). Let M be
an aspherical closed Riemannian manifold with minvol(M) = 0. Then for
p ≥ 0

b(2)
p (M̃) = 0.

The essential property of Riemannian manifolds with Riccix(v, v) ≥ −δ ·
〈v, v〉x comes from packing inequalities as explained in [238, 5.31 on page
294]. A metric space X has packing type P for a function P (R, r) with
values in the positive integers if every ball of radius R contains at most
P (R, r) pairwise disjoint balls of radius r. Bishop’s inequality implies for a
Riemannian manifold M of dimension n with Riccix(v, v) ≥ −(n−1) · 〈v, v〉x
that P (R, r) ≤ C · (R/r)n for 0 ≤ r ≤ R ≤ 1 and P (R, r) ≤ exp(αn · R) for
1/2 ≤ r ≤ R and 1 ≤ R, where C is a universal constant and αn a dimension
constant. These packing inequalities are used to describe the manifold M in
question as a homotopy retract of a simplicial complex Q which comes from
the nerve of a covering of M and whose number of simplices is controlled.

Some evidence for Conjecture 14.1 comes from Theorem 14.24 (3) and
Theorem 14.47. It raises the following question

Question 14.48. (Minimal volume and L2-torsion for aspherical
manifolds).
Let M be an aspherical closed Riemannian manifold with minvol(M) = 0. Is
then M̃ of determinant class and

ρ(2)(M̃) = 0 ?

Some further evidence for Conjecture 14.1 comes from Remark 14.29 and
Theorem 14.31.

14.3 Miscellaneous

More information about the simplicial volume can be found for instance in
[76], [77] [178], [227], [232], [238], [275], [412] and [480].

One may ask

Question 14.49 (Simplicial volume and S1-foliations). Does the sim-
plicial volume ||M || of a connected closed orientable manifold M vanish, if
M carries an S1-foliation?
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This question has a positive answer if one considers special S1-foliations
of certain 3-manifolds [52]. In view of of Conjecture 14.1 this is related to
Question 3.186.

We mention the following result due to Besson-Courtois-Gallot [40, page
733].

Theorem 14.50. Let M be a closed connected manifold M of dimension n ≥
3 with Riemannian metric g, whose Ricci curvature satisfies Riccix(v, v) ≥
−(n − 1)〈v, v〉x for x ∈ M and v ∈ TxM and whose volume vol(M, g) co-
incides with its minimal volume minvol(M). Then (M, g) is hyperbolic, i.e.
sec(M, g) = −1.

We mention the following improvement by Smillie and Gromov (see [232,
page 23], [35, Proposition F.4.12 on page 293], [478]) of a result of Milnor
[372] and Sullivan [487].

Theorem 14.51 (Flat bundles and simplicial volume). Let E → B be
a flat orientable n-dimensional vector bundle over a topological space B. Then
its Euler class e(E) ∈ Hn(B;R) (see [379, page 98]) satisfies

||e(E)||∞ ≤ 2−n.

In particular one gets for a flat n-dimensional bundle E → M over a closed
connected orientable manifold M of dimension n

χ(E) ≤ 2−n · ||M ||,

where χ(E) = 〈e(E), [M ]〉 is the Euler number of E.

We mention the following conjecture due to Sullivan [487, page 187]. A
manifold M of dimension n has an affine structure if there is an atlas whose
change of coordinates maps are restrictions of affine isomorphisms Rn → Rn.

Conjecture 14.52. (Sullivan’s Conjecture on affine manifolds and
Euler characteristic). Let M be an n-dimensional closed connected ori-
entable manifold which admits an affine structure. Then χ(M) = 0.

Notice that the tangent bundle TM of a manifold M with affine structure
is flat and that the Euler number χ(TM) of the tangent bundle of a closed
manifold M is equal to its Euler characteristic χ(M) [379, Corollary 11.12 on
page 130]. Hence for an n-dimensional closed connected orientable manifold
M , which admits an affine structure, the vanishing of ||M || implies χ(M) = 0
by Theorem 14.51. This raises

Question 14.53. (Vanishing of the simplicial volume for affine man-
ifolds).
For which closed connected orientable manifolds M , which admit an affine
structure, does ||M || = 0 hold?
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A proof of the following result using bounded cohomology is presented in
[35, Theorem F.6.5 on page 307]. The original proof appeared in [261].

Theorem 14.54. Let M be an n-dimensional closed connected orientable
manifold which admits an affine structure. Suppose that the range of the
holonomy π1(M) → GL(n,R)+ of the flat tangent bundle TM is amenable.
Then χ(M) = 0.

The key idea is to show that the projection p : STM → M induces an injec-
tion Ĥn(M) → Ĥn(STM) and then use the observation that the pullback
p∗TM has a non-vanishing section and hence p∗e(TM) = e(p∗(TM)) = 0.

Because of the Euler-Poincaré formula (see Theorem 1.35 (2)) Sullivan’s
Conjecture 14.52 follows from the following conjecture which is posed as a
question in [237, page 232].

Conjecture 14.55. (Gromovs’s Conjecture on affine structures and
L2-Betti numbers). Let M be an n-dimensional closed connected orientable
manifold which admits an affine structure. Then b

(2)
p (M̃) = 0 for p ≥ 0.

We have discussed the Volume Conjecture 4.8 already in Section 4.3 which
links the simplicial volume ||S3 −K|| (or, equivalently, ρ(2)(K) of Definition
4.5 by Theorem 14.18 (3)) for a knot K ⊂ S3 to the colored Jones polynomial.

Exercises

14.1. Let M be a closed connected orientable manifold of dimension n. Let
m be the minimal number of n-dimensional simplices appearing in a smooth
triangulation of M . Show ||M || ≤ m.

14.2. Prove ||R|| = ∞.

14.3. Let M and N be oriented manifolds without boundary. Suppose that
there is a proper map f : M → N of degree d. Show that then ||M || ≥ d·||N ||.
Conclude ||Rn|| = 0 for n ≥ 2.

14.4. Show for a path-connected topological space X that Ĥ0(X) ∼= R.

14.5. Let X be a simplicial complex. Let C∗(X;R) be the cellular cochain
complex with coefficients in R. Let Ip be a cellular basis for Cp(X). Then
Cp(X) = map(Ip,R). Define for φ ∈ Cp(X) its L∞-norm by

||φ||∞ := sup{φ(b) | b ∈ Ip}.

Show that this is independent of the choice of cellular basis. Let l∞Cp(X) ⊂
Cp(X) be the submodule given by elements φ with ||φ||∞ < ∞. Show that this
defines a subchain complex l∞C∗(X) of C∗(X;R) so that H∗(l∞C∗(X)) is
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defined. Show that in general H∗(l∞C∗(X)) is not isomorphic to the bounded
cohomology Ĥp(X).

14.6. Let M be a closed connected orientable Riemannian manifold of dimen-
sion n with residually finite fundamental group. Let k1 ≥ k2 > 0 be positive
constants such that the sectional curvature satisfies −k1 ≤ sec(M) ≤ −k2.
Then there is a constant C(n, k1/k2), which depends only on n and the ratio
k1/k2 but not on M , such that

∑

i≥0

b(2)
p (M̃) ≤ C(n, k1/k2) · ||M ||.

14.7. Let M be a closed connected oriented Riemannian manifold of di-
mension n. Let dvolM be its volume form. Show that the cochain φ ∈
Cn

sing,C∞(M ;R) sending a singular smooth simplex σ : ∆n → M to 1
vol(M) ·∫

M
σ∗ dvolM is a cocycle and represents an element in Hn

sing(M ;R) which is
the image of the cohomological fundamental class of M under the change of
rings map Hn(M ;Z) → Hn(M ;R). Prove that ||φ||∞ = ∞.

14.8. Let f : X → Y be a map of topological spaces. Show for any y ∈
Hsing

p (X;R) and ψ ∈ Hp
sing(Y ;R)

||Hsing
p (f)(y)||1 ≤ ||y||1;

||Hp
sing(f)(ψ)||∞ ≤ ||ψ||∞.

14.9. Let M be an aspherical closed orientable Riemannian manifold of
dimension n. Suppose that for some δ > 0 the Ricci curvature satisfies for all
x ∈ M and v ∈ TxM

Riccix(v, v) ≥ −δ · 〈v, v〉x.

Show that there is a constant C(n, δ), which depends on n and on δ but not
on M , such that

χ(M) ≤ C(n, δ) · vol(M);
sign(M) ≤ C(n, δ) · vol(M).

14.10. Show for the free group Fg on g generators

h(Fg) = ln(2g − 1).

14.11. Let M and N be closed connected oriented manifolds. Let f : M → N
be a map of degree 1. Show that π1(f) is surjective. Prove that ||M || = ||N ||
if the kernel of π1(f) is amenable.

14.12. Let M be an aspherical closed connected orientable manifold which
carries a non-trivial S1-action. Show minvol(M) = 0.
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14.13. Let M be a closed connected orientable manifold. Suppose that it
carries an S1-action such that MS1

is empty. Show that then all Pontryagin
numbers vanish.

14.14. Give an example of a closed connected orientable manifold M with
infinite fundamental group whose minimal volume minvol(M) is zero and at
least one L2-Betti number of its universal covering is positive.

14.15. Let F → E
p−→ B be a fibration of closed connected orientable mani-

folds with dim(F ) ≥ 1. Suppose that π1(F ) is amenable. Show ||E|| = 0.

14.16. Show that the torus T 2 is the only closed connected orientable 2-
dimensional manifold which admits an affine structure.

14.17. Let M be a closed connected manifold of dimension n. Suppose that for
any ε > 0 there are positive integers dε and tε satisfying tε

dε
≤ ε together with

a dε-sheeted covering pε : Mε → M such that Mε has a smooth triangulation
with tε simplices of dimension n. Prove

||M || = 0;

b(2)
p (M̃) = 0.

Assume furthermore that the fundamental group π1(M) is of det ≥ 1-class.
Then show that M̃ is det-L2-acyclic and

ρ(2)(M̃) = 0.



15. Survey on Other Topics Related to
L2-Invariants

Introduction

In this chapter we discuss very briefly some topics which are related to L2-
invariants but cannot be covered in this books either because the author
does not feel competent enough to write more about them or either because
it would require to write another book to treat them in detail. The interested
reader should look at the references cited below. Neither the list of references
nor the list of topics is complete.

15.1 L2-Index Theorems

The starting point for investigating L2-invariants was the L2-version of the
index theorem by Atiyah [9]. Let P be an elliptic differential operator on a
closed Riemannian manifold M and let M → M be a regular covering of M
with G as group of deck transformations. Then we can lift the Riemannian
metric and the operator P to M . The operator P is Fredholm and its index
is defined by

ind(P ) = dimC(ker(P ))− dimC(ker(P ∗)). (15.1)

Using the von Neumann trace one can define the L2-index of the lifted oper-
ator P analogously

indN (G)(P ) = dimN (G)(ker(P ))− dimN (G)(ker(P
∗
)). (15.2)

Then the L2-index theorem says

indN (G)(P ) = ind(P ). (15.3)

If one puts elliptic boundary conditions on the operator, this result was
generalized to the case where M is compact and has a boundary by Schick
[459]. This generalization is the L2-version of the index theorem in [10].

These boundary conditions are local. Atiyah, Patodi and Singer [11], [12],
[13] prove versions of the index theorem for manifolds with boundary using
global boundary conditions, which, in contrast to the local conditions, apply
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to important geometrically defined operators such as the signature opera-
tor. This index theorem involves as a correction term the eta-invariant. The
L2-version of the eta-invariant has been defined and studied by Cheeger and
Gromov [105], [106]. The L2-version of this index theorem for manifolds with
boundary using global boundary conditions has been proved by Ramachan-
dran [427] for Dirac type operators.

The difference ρ(2)(M) := η(2)(M̃) − η(M) is the relative von Neumann
eta-invariant. This invariant depends only on the smooth structure of M ,
not on the Riemannian metric [105]. If π1(M) is torsionfree and the Baum-
Connes Conjecture holds for the maximal group C∗-algebra of π1(M), then
Keswani [291] shows that ρ(2)(M) is a homotopy invariant. See also [359].
Chang and Weinberger [98] use ρ(2)(M) to prove their Theorem 0.10.

The L2-index Theorem of Atiyah is a consequence of the index theorem
of Mishchenko-Fomenko [380], where an index is defined which takes values
in K0(C∗r (G)). If one applies the composition of the change of rings ho-
momorphism K0(C∗r (G)) → K0(N (G)) and the dimension homomorphism
dimN (G) : K0(N (G)) → R to the index of Mishchenko and Fomenko, one
obtains the L2-index of Atiyah.

Some further references on L2-index theory and related topics are [7], [21],
[71], [72], [120], [121], [122], [154], [339], [386], [391], [392], [394], [437], [438],
[439], [440], [460], [474], [485], [486].

Connections between L2-cohomology and discrete series of representations
of Lie groups are investigated, for instance, in [14], [123], [131], [135], [464].

15.2 Lp-Cohomology

One can also define and investigate Lp-cohomology for p ∈ [1,∞], as done for
instance by Gromov [237, section 8] and Pansu [409], [410], [413]. One sys-
tematically replaces the L2-condition by a Lp-condition and l2(G) by lp(G).
Thus one gets Lp-cohomology for each p ∈ [1,∞]. However, only for p = 2
the reduced Lp-cohomology is a Hilbert space and one can associate to the
Lp-cohomology a real number, its dimension. There exists a Lp-version of the
de Rham Theorem. The question whether for an element α ∈ CG with α 6= 0
there is β ∈ lp(G) with β 6= 0 and α ∗ β = 0 is studied in [312], [422]. Notice
that the Atiyah-Conjecture predicts that for p = 2 and G torsionfree such
an element β does not exists, but for p > 2 such elements are constructed in
the case of finitely generated free and finitely generated free abelian groups
in [312], [422].

Further references on Lp-cohomology are [2], [101], [170], [222], [223], [535].
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15.3 Intersection Cohomology

When we have investigated L2-invariants of manifolds M , we mostly have
considered the case where there is a proper and cocompact action of a group
G on M . Of course L2-cohomology can also be interesting and has been inves-
tigated for complete non-necessarily compact Riemannian manifolds without
such an action. For instance algebraic and arithmetic varieties have been
studied. In particular, the Cheeger-Goresky-MacPherson Conjecture [104]
and the Zucker Conjecture [531] have created a lot of activity. They link
the L2-cohomology of the regular part with the intersection homology of an
algebraic variety. Some references concerning these topics are [53], [55], [95],
[174], [266], [315], [319], [367], [397], [398], [402], [403], [414], [415], [451], [452],
[453], [454], [455], [530], [531], [532], [533], [534].

15.4 Knot Concordance and L2-signature

A knot in the 3-sphere is slice if there exists a locally flat topological embed-
ding of the 2-disk into D4 whose restriction to the boundary is the given knot.
For a long time Casson-Gordon invariants [97] have been the only known ob-
structions for a knot to be slice. Cochran, Orr and Teichner give in [113] new
obstructions for a knot to be slice using L2-signatures. They construct a hier-
archy of obstructions depending on one another and on certain choices. The
obstructions take values in relative L-groups associated to Ore localizations
of certain group rings. These rings map to the von Neumann algebra N (G)
of certain groups G and the Ore localizations map to the algebra U(G) of
affiliated operators. Recall that U(G) is the Ore localization of N (G) with
respect to the multiplicative set of non-zero-divisors in N (G). Therefore they
can use L2-signatures to detect these obstructions in certain cases. Thus they
can construct an explicit knot, which is not slice, but whose Casson-Gordon
invariants are all trivial.





16. Solutions of the Exercises

Chapter 1

1.1. If H is finite, then use the projection l2(G) → l2(G) given by right
multiplication with 1

|H| ·
∑

h∈H h. Suppose that l2(G/H) is a Hilbert N (G)-
module. Since l2(G/H)H is non-trivial, there must be a non-trivial Hilbert
space V such that (V ⊗ l2(G))H 6= 0. Hence l2(G)H 6= 0. This implies |H| <
∞.

1.2. Because of Theorem 1.9 (5) it suffices to prove for a weak isomor-
phism of finite dimensional Hilbert N (G)-modules u : V → W and pos-
itive endomorphisms f : V → V and g : W → W with u ◦ f = g ◦ u
that trN (G)(f) = trN (G)(g). By polar decomposition of u one can achieve
U = V and that u is positive. Let {Eλ | λ ∈ [0,∞)} be the spec-
tral family of u. Consider the decomposition V = im(Eλ) ⊕ im(1 − Eλ).

One writes f as a matrix with respect to this decomposition
(

f1,1 f1,2

f2,1 f2,2

)

and similar for g. Since u respects this decomposition, the morphisms f2,2

and g2,2 are conjugated by the automorphism of im(1 − Eλ) induced by
u. Hence trN (G)(f2,2) = trN (G)(g2,2). We have trN (G)(f) − trN (G)(f2,2) =
trN (G)(f1,1) and trN (G)(g) − trN (G)(g2,2) = trN (G)(g1,1). Since trN (G)(f1,1)
and trN (G)(g1,1) are bounded by max{||f ||, ||g||} ·dimN (G)(im(Eλ)) and The-
orem 1.12 (4) implies

lim
λ→0

dimN (G)(im(Eλ)) = dimN (G)(ker(u)) = 0,

the claim follows.

1.3. Put I = {1, 2, . . .}. Let Vn be the Hilbert N (G)-module given by the
Hilbert sum

⊕∞
m=n l2(G). Then dimN (G)(Vn) = ∞ for all n but

⋂
n≥0 Vn =

{0}.

1.4. Replace U1 and V1 by U1/ ker(u1) and V1/ ker(v1) and replace U5 and V5

by clos(im(u4)) and clos(im(v4)). Then split the problem into three diagrams
whose rows are short weakly exact sequences. It suffices to prove the claim
for these diagrams. One reduces the claim to the case, where the rows are
short exact sequences, by replacing a weakly exact sequence 0 → V0 → V1

q−→
V2 → 0 by the exact sequence 0 → ker(q) → V1

pr−→ ker(q)⊥ → 0. Then the
claim follows from the long weakly exact homology sequence (see Theorem
1.21).

1.5. Use (f ◦ g)∗ = g∗ ◦ f∗ for composable bounded operators of Hilbert
spaces.
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1.6. Existence of finite self-covering (see Example 1.37), computation in
terms of the quotient field of the group ring (see Lemma 1.34), S1-action (see
Theorem 1.40), mapping torus (see Theorem 1.39).

1.7. One can construct a fibration S1 → X → B. The main difficulty is to
show that B is up to homotopy of finite type (see [331, Lemma 7.2]). Then
one can apply Theorem 1.41. A more general statement will be proved in
Theorem 7.2 (1) and (2).

1.8. See [434, Theorem VIII.3 on page 256].

1.9. One easily checks that this is a spectral family and then use the char-
acterization of

∫∞
−∞ g(λ)dEλ given in (1.65).

1.10. The graph norm is the L2-norm on the kernel of an operator.

1.11. Take M = R−{0} with the Riemannian metric coming from R. Take
ω = χ(0,∞) and η = exp(−x2) · dx.

1.12. Write C ⊗Z C∗(X) as a direct sum of suspensions of 1-dimensional
chain complexes of the shape C[Z]n → C[Z]n with non-trivial differentials
and of zero-dimensional chain complexes with C[Z]n in dimension zero (see
the proof of Lemma 2.58). The 1-dimensional chain complexes do not con-
tribute to the L2-Betti number (see Lemma 1.34 (1)). The contribution of
the zero-dimensional chain complexes to the L2-Betti numbers and to the
Betti numbers are the same.

1.13. The zero-th and first L2-Betti numbers of E(Z/2 ∗ Z/2) vanish since
Z/2 ∗ Z/2 contains Z as subgroup of finite index (see Lemma 1.34 (2) and
Theorem 1.35 (9)). Hence the zero-th and first L2-Betti numbers of M̃ vanish
by Theorem 1.35 (1). From the Euler-Poincaré formula and Poincaré duality
(see Theorem 1.35 (2) and (3)) we get χ(M) = b

(2)
2 (M̃). Since b1(B(Z/2 ∗

Z/2)) = 0, one shows analogously χ(M) = 2 + b2(M).

1.14. Use Example 1.38 and truncate the relevant CW -complexes of fi-
nite type BG and X occuring there above dimension n + 1. Notice that
b
(2)
p (X̃ ∨ Y ) = b

(2)
p (X̃) + b

(2)
p (Ỹ ) holds for p ≥ 1 if π1(X) and π1(Y ) are in-

finite (see Theorem 1.35 (5) and (8)) and that bp(X ∨ Y ) = bp(X) + bp(Y )
holds for p ≥ 1.
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Chapter 2

2.1. Assertion i.) is obvious. Assertion ii.) is proved as follows. If f and
g are Fredholm and weak isomorphisms, g ◦ f is a weak isomorphism and
Fredholm by Lemma 2.13 (3). Suppose that g◦f and f are Fredholm and weak
isomorphisms. Injectivity and Fredholmness of g follow from Lemma 2.13 (2),
density of the image of g is obvious. Suppose that g and g ◦ f are Fredholm
and weak isomorphisms. Then f is a weak isomorphism and Fredholm since
f∗ is a weak isomorphism and Fredholm by the argument above applied to
f∗ ◦ g∗ and g∗. Notice that f is Fredholm and a weak isomorphism if and
only if f∗ is Fredholm and a weak isomorphism (see Lemma 2.4). The desired
counterexample is constructed in Example 1.19

2.2. For G = Z we find u by Lemma 2.58. By induction (see (2.57)) we get
the desired u for each group G with Z ⊂ G. Now construct X as follows.
Start with the finite 2-skeleton of EG. Then attach for p = 3, 4, . . . trivially a
p-cell and then a (p+1)-cell, where the attaching map is given by an element
up corresponding to αp and involves only the trivially attached p-cell.

2.3. The matrix A lives already over a finitely generated subgroup H of
G. Now use induction (see (2.57)) and the fact that over a finite group all
Novikov-Shubin invariants are ∞+ (see Example 2.5).

2.4. The condition α1(X̃) = 1 implies that π is virtually nilpotent with
growth rate precisely 1 (see Theorem 2.55 (5)). Hence π1(X) contains Z as
subgroup of finite index by the formula for the growth rate appearing in
Subsection 2.1.4. We conclude from Theorem 2.55 (1) and (6) that α2(X̃) =
α2(Eπ) = α2(EZ) = ∞+.

2.5. The fundamental group π of M is finitely presented. Hence there is a
model for Bπ with finite 2-skeleton. Let f : M → Bπ be the classifying map.
If we apply Theorem 2.55 (1) to its restriction to the 2-skeletons M2 → Bπ2

we conclude that π determines αp(M̃) = α for p = 1, 2. Now apply Poincaré
duality Theorem 2.55 (2) and the fact that a compact 3-manifold M with
non-empty boundary is homotopy equivalent to a finite 2-dimensional CW -
complex.

2.6. If π2(B) → π1(S1) is not trivial, then π1(E) is finite and all Novikov-
Shubin invariants must be ∞+ (see Example 2.5). Suppose that π2(B) →
π1(S1) is trivial. Then π1(S1) → π1(E) is an isomorphism. Now apply Lemma
2.58 and Theorem 2.61.

2.7. Suppose that the C[Zn]-module l2(Zn) is flat. Then im(c(2)
2 ) = ker(c(2)

1 )
holds for the differentials of C

(2)
∗ (T̃n) and im(c(2)

2 ) must be closed. We con-
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clude from Lemma 2.11 (8) and (9) that α2(T̃n) = ∞+. Example 2.59 implies
n = 1.

It remains to show for each C[Z]-module M that TorC[Z]
p (M, l2(Z)) = 0

for p ≥ 1. The functor Tor commutes in both variables with colimits over
directed systems [94, Proposition VI.1.3. on page 107]. Hence we can assume
without loss of generality that M is a finitely generated C[Z]-module since
each module is the directed union of its finitely generated submodules. Recall
that C[Z] is a principal ideal domain (see [15, Proposition V.5.8 on page 151
and Corollary V.8.7 on page 162]). Hence M is a finite sum of principal ideals.
Therefore it suffices to show that for any non-trivial p ∈ C[Z] multiplication
with p induces an injection l2(Z) → l2(Z). Since the von Neumann dimension
of this kernel is zero by Lemma 2.58), the kernel is trivial by Theorem 1.12
(1).

2.8. Use the product formula (see Theorem 1.35 (4) and Theorem 2.55 (3))
and Examples 2.59 and 2.69.

2.9. Use the product formula (see Theorem 1.35 (4) and Theorem 2.55 (3))
and Examples 2.59 and 2.70.

2.10. Use the product formula (see Theorem 2.55 (3)).

2.11. See Theorem 3.100 and Remark 3.184.

2.12. There exist up to isomorphism only countably many finitely presented
groups. Moreover, for a given finitely presented group G and m, n ≥ 0 there
are only countably many elements in M(m,n,ZG). Hence A is countable. We
get {r | r ∈ Q, r ≥ 0} ⊂ A from the product formula (see Theorem 2.55 (3)),
Lemma 2.58 and Example 2.59.

Chapter 3

3.1. First show for a chain homotopy equivalence f : C∗ → D∗ of finite based
free Z-chain complexes that

ρZ(D∗)− ρZ(C∗) = τ(f)−
∑

p≥0

(−1)p · ln (detZ(Hp(f))) = 0.

The proof is an easy version of the one of Theorem 3.35 (5). Then prove that
both sides of the equation are homotopy invariants and additive under direct
sums of Z-chain complexes. Construct a Z-chain complex D∗ which is Z-
homotopy equivalent to C∗ and which is a direct sum of iterated suspensions
of 0-dimensional Z-chain complexes with Z as zero-th chain module and of
1-dimensional Z-chain complexes of the shape Z n−→ Z for some n ∈ Z, n 6= 0.
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This reduces the claim to these special chain complexes, where the proof is
trivial.

3.2. Follow the proof of Theorem 3.35 (2) or see [116, (23.1)].

3.3. Follow the proof of Theorem 3.35 (4).

3.4. Follow the proof of Theorem 3.35 (6c) or see [116, (23.2)].

3.5. See [327, Corollary 5.5].

3.6. See [327, Example 1.15].

3.7. Use Lemma 3.15 (1) and
∫ a

ε
1

λ·(− ln(− ln(λ))·ln(λ)) dλ = − ln(ln(− ln(a)))+
ln(ln(− ln(ε))) for 0 < ε < a < e−e.

3.8. Since C[Zn](0) is a field, we can transform A over C[Zn](0) by elementary
row and column operations into a diagonal matrix. Hence we can find over
C[Zn] matrices E1, E2, . . . , Em+n and a diagonal matrix D such that each Ei

is a triangular matrix with non-zero diagonal entries or a permutation matrix
and

E1 · E2 · . . . · Em ·A · Em+1 · E2 · . . . · Em+n = D.

The claim is easily verified for each matrix Ei and the matrix D and then
proved for A using Lemma 1.34 (1), Theorem 3.14 (1) and (2) and Lemma
3.37 (1) and (2).

3.9. All claims except for ρ(2)(X) have already been proved in Lemma 2.58.
Notice that the determinant of Rn : l2(Z) → l2(Z) for n ∈ Z, n > 0 is n

and the homology of the 1-dimensional C[Z]-chain complex C[Z] Rn−−→ C[Z] is
zero for n ∈ Z, n > 0. For each n ∈ Z, n > 0 one constructs a free Z-CW -
complex which is obtained from S̃1 by attaching trivially an Z-equivariant
3-cell and then a Z-equivariant 4-cell such that the 4-th differential of C∗(Xn)
looks like Rn. Then Xm and Xn for m 6= n leads to the example of two
finite Z-CW -complexes whose homology with C-coefficients vanishes in all
dimensions exept in dimension zero and hence is isomorphic in all dimensions
but whose L2-torsion are different.

Let C∗ be a finite free Z[Z]-chain complex such that C ⊗Z Hp(C∗) is a
torsion module over C[Z] for all p ∈ Z. Then l2(Z)⊗Z[Z] C∗ is det-L2-acyclic.
After a choice of a Z[Z]-basis for C∗ we can define ρ(2)(l2(Z)⊗Z[Z] C∗) ∈ R.

Let f∗ : C∗ → D∗ be a Z[Z]-chain homotopy equivalence of finite based
free Z[Z]-chain complexes for which C⊗ZHp(C∗) and C⊗ZHp(D∗) are torsion
modules over C[Z] for p ∈ Z. We get

ρ(2)(l2(Z)⊗Z[Z] C∗)− ρ(2)(l2(Z)⊗Z[Z] D∗) = ΦZ(τ(f∗))
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for the homomorphism ΦZ : Wh(Z) → R defined in (3.92). This follows from
the chain complex version of Theorem 3.93 (1). Since Wh(Z) = {1}, we
conclude

ρ(2)(l2(Z)⊗Z[Z] C∗) = ρ(2)(l2(Z)⊗Z[Z] D∗).

Hence ρ(2)(l2(Z) ⊗Z[Z] C∗) depends only on the Z[Z]-chain homotopy type
of C∗ and is in particular independent of the choice of the Z[Z]-basis. Let
0 → C∗ → D∗ → E∗ → 0 be an exact sequence of finite free Z[Z]-chain
complexes for which C⊗ZHp(C∗), C⊗ZHp(D∗) and C⊗ZHp(E∗) are torsion
modules over C[Z] for p ≥ 0. From Additivity of L2-torsion (see Theorem
3.35 (1)) we conclude

ρ(2)(l2(Z)⊗Z[Z] C∗)− ρ(2)(l2(Z)⊗Z[Z] D∗) + ρ(2)(l2(Z)⊗Z[Z] E∗) = 0.

Let M be a finitely generated Z[Z]-module such that C ⊗Z M is a tor-
sion C[Z]-module. The ring Z[Z] is Noetherian. Any finitely generated Z[Z]-
module M has a finite free Z[Z]-resolution F∗. Define

ρ(2)(M) = ρ(2)(l2(Z)⊗Z[Z] F∗)

for any finite free Z[Z]-resolution F∗ of M . The choice of F∗ does not matter
since two such resolutions are Z[Z]-chain homotopy equivalent.

Let C∗ be any finite based free Z[Z]-chain complex such that C⊗ZHp(C∗)
is a torsion C[Z]-module for p ∈ Z. Without loss of generality we can assume
Cp = 0 for p < 0. Then one can show by induction over the number n for
which Hp(C∗) = 0 for p ≥ n

ρ(2)(l2(Z)⊗Z[Z] C∗) =
∑

p≥0

(−1)p · ρ(2)(Hp(C∗)).

The induction beginning n = 0 follows from the fact that the vanishing of
Hp(C∗) for all p ≥ 0 implies that C∗ is Z[Z]-chain homotopy equivalent
to the trivial Z[Z]-chain complex. In the induction step from (n − 1) to n
choose a finite free resolution F∗ of Hn(C∗) and construct a Z[Z]-chain map
ΣnF∗ → C∗ which induces an isomorphism on the n-th homology. We get
an exact sequence of finite free Z[Z]-chain complexes 0 → C∗ → cone(f∗) →
Σn+1F∗ → 0. We conclude that Hp(cone(f∗)) = Hp(C∗) for p ≤ n − 1 and
Hp(cone(f∗)) = 0 for p ≥ n− 1. Moreover, we get

ρ(2)(l2(Z)⊗Z[Z] C∗) = ρ(2)(l2(Z)⊗Z[Z] cone(f∗))− ρ(2)(l2(Z)⊗Z[Z] Σn+1P∗).

From the definitions we get

−ρ(2)(l2(Z)⊗Z[Z] Σn+1P∗) = (−1)n · ρ(2)(Hn(C∗)).

This finishes the induction step.
We can write
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ρ(2)(l2(Z)⊗Z[Z] C∗) = − 1
2
·
∑

p≥0

(−1)p · p·

ln
(
det

(
idl2(Z)⊗rAp : l2(Z)⊗Z[Z] Z[Z]sp → l2(Z)⊗Z[Z] Z[Z]sp

))

for appropriate matrices Ap ∈ Msp
(Z[Z]). If dp = det[Z[Z](Ap), we get from

the previous Exercise 3.8

det
(
idl2(Z)⊗rAp : l2(Z)⊗Z[Z] Z[Z]sp → l2(Z)⊗Z[Z] Z[Z]sp

)

= det
(
idl2(Z)⊗rdp

: l2(Z)⊗Z[Z] Z[Z] → l2(Z)⊗Z[Z] Z[Z]
)
.

We can write ln
(
det

(
idl2(Z)⊗rdp

: l2(Z)⊗Z[Z] Z[Z] → l2(Z)⊗Z[Z] Z[Z]
))

as
ln(|a|)− ln(|b|) for algebraic integers a, b with |a|, |b| ≥ 1 because of Example
3.22. Hence the same is true for ρ(2)(l2(Z)⊗Z[Z] C∗).

3.10. Consider an endomorphism a : V → V of a finitely generated Hilbert
N (G)-module which is a weak isomorphism and not of determinant class. Let
C∗ be the 1-dimensional N (G)-chain complex V ⊕ V

pr1−−→ V and D∗ be the
N (G)-chain complex with D1 = V and Dp = 0 for p 6= 1. Let f∗ : C∗ → D∗
be the chain map given by f1 = id⊕a and f0 = 0. Then H

(2)
1 (f∗) can be

identified with a and fp is of determinant class for all p ∈ Z. Hence H
(2)
1 (f∗)

is not of determinant class and f∗ cannot be of determinant class by Theorem
3.35 (5).

3.11. Without loss of generality the double chain complex is in the first
quadrant. It suffices to prove the claim for the alternating sum of the rows,
otherwise skip the double complex. Use induction over the width n, i.e. the
smallest number n ≥ −1 such that Cp,q = 0 for p > n. The induction
beginning n ≤ 1 follows from Theorem 3.35 (1) applied to the obvious exact
sequence 0 → C0,∗ → T∗ → ΣC1,∗ → 0. In the induction step from n − 1 ≥
1 to n we can consider the double subcomplex C ′∗,∗ ⊂ C∗,∗ with C ′n,∗ =
Cn,∗, C ′n−1,∗ = clos(im(Cn,∗ → Cn−1,∗)) and C ′p,∗ = 0 for p 6= n − 1, n and
define C ′′∗,∗ to be C∗,∗/C ′∗,∗. We have an exact sequence of double complexes
0 → C ′∗,∗ → C∗,∗ → C ′′∗,∗ → 0 which induces also an exact sequence of the
associated total complexes. Then for p ∈ Z the columns and rows of C ′∗,∗ and
C ′′∗,∗ are det-L2-acyclic (see Lemma 3.14 (2), Lemma 3.15 (3) and Theorem
3.35 (1)). Now apply Theorem 3.35 (1) and the induction hypothesis to C ′∗,∗
and C ′′∗,∗.

3.12. Statement (1) is equivalent to the corresponding statement about
finitely generated groups since any matrix over ZG comes by induction of
a matrix over a finitely generated subgroup and Theorem 3.14 (6) holds.
Because of Theorem 3.93 (1) it suffices to prove for a finitely generated group
G that for any element in x ∈ Wh(G) we can find a G-homotopy equivalence
f : M → N of cocompact free proper G-manifolds without boundary such
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that τG(f) = x+∗(x) since φG(x+∗(x)) = 2·φG(x). One can find a cocompact
free proper G-manifold W of even dimension such that ∂W = ∂0W

∐
∂1W ,

the inclusion ik : ∂kW → W is a G-homotopy equivalence for k = 0, 1 and
τG(i0) = x. Poincaré duality implies τG(i−1

1 ◦ i0) = x + ∗(x).

3.13. This follows from Example 3.12 and Theorem 3.14 (6) and the obvious
fact that the (classical) determinant of an invertible matrix over Z takes
values in {±1}.

3.14. The set of matrices over ZG of finite size is a countable set. Hence the
three sets are countable.

The first set is closed under addition because of b
(2)
p (X ∪G Y ;N (G)) =

b
(2)
p (X;N (G)) + b

(2)
p (Y ;N (G)) for p ≥ 1 and |G| = ∞ (see Theorem 1.35

(5) and (8)) and the first set is {n · |G|−1 | n ∈ Z, n ≥ 0} for |G| < ∞ by
Example 1.32.

The third set can be identified with the subgroup of R

{ln(det(rA))− ln(det(rB))}
where A and B run through all matrices A ∈ Mk(ZG) and B ∈ Ml(ZG)
for k, l ≥ 1 such that rA : l2(G)k → l2(G)k and rB : l2(G)l → l2(G)l are
weak isomorphisms of determinant class. Namely, fix a det-L2-acyclic finite
free proper G-CW -complex X. Then X × S3 is a finite, free, proper and
det-L2-acyclic with ρ(2)(X × S3) = 0 by Theorem 3.93 (4). Given such a
matrix A one can attach to X × S3 free G-cells in two consecutive dimen-
sions such that the resulting G-CW -complex ZA or ZB respectively is fi-
nite, free, proper and det-L2-acyclic and ρ(2)(ZA;N (G)) = ln(det(rA)) or
ρ(2)(ZB ;N (G)) = − ln(det(rB)) respectively (use Theorem 3.35 (1)). Now
consider Z = ZA ∪X×S3 ZB . It is a det-L2-acyclic finite free proper G-CW -
complex with ρ(2)(Z;N (G)) = ln(det(rA)) − ln(det(rB)) by Theorem 3.93
(2).

3.15. Use the exercise before and the facts that there are only countably
many finitely presented groups and the fundamental group of a connected
finite CW -complex is finitely presented.

3.16. Consider a connected finite CW -complex X with fundamental group
π and A ∈ Mk(Zπ) such that [A] ∈ Wh(π) is different from zero. Attach
trivially k 4-cells to X and call the result Y . Construct an extension of
id : X → X to a self map f : Y → Y such that C∗(f̃ , ĩd) is given by A. Then
τ(f) = [A] holds in Wh(G) and f induces the identity on π. We obtain a
fibration Y → Tf → S1 such that θ(p) ∈ H1(S1; Wh(π1(Tf ))) = Wh(π1(Tf ))
defined in (3.98) is the image of τ(f) under the homomorphism i∗ : Wh(π) →
Wh(π1(Tf )) induced by the inclusion i : Y → Tf . Since i induces the obvious
split injection on the fundamental groups π → π × Z = π1(Tf ), θ(p) is non-
trivial.
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3.17. The fundamental group π1(Tf ) has a presentation as an HNN-
extension

〈π, s | sws−1 = f∗(w) for w ∈ π〉.
This follows from the Theorem of Seifert and van Kampen applied to an
appropriate decomposition of the mapping torus into two connected pieces
with connected intersection.

3.18. This follows from Example 3.107.

3.19. Use the exercise before.

3.20. (1) We get from Lemma 3.139 (2)

θF (t) = t ·
∫ ∞

0

e−tλ · F (λ) dλ

= t ·
∫ K

0

e−tλ · F (λ) dλ + F (K) · t ·
∫ ∞

K

e−tλ dλ

= t ·
∫ K

0

e−tλ · F (λ) dλ + F (K) · e−tK

= t ·
∫ K

0

∑

n≥0

(−λ)n

n!
· tn · F (λ) dλ + F (K) ·

∑

n≥0

(−K)n

n!
· tn

=
∑

n≥0

(−1)n

n!
·
(
−

∫ K

0

n · λn−1 · F (λ) dλ + F (K) ·Kn

)
· tn.

We get from the definitions

a0 = θF (0) =
∫ ∞

0

e0·λ dF (λ) = F (K)− F (0) = F (K).

(2) We can write θF (t) =
∑N

n=0 an · tn + R(t) for a function R(t) satisfying
limt→0

R(t)
tN = 0. We get

1
Γ (s)

·
∫ ε

0

ts−1 · θF (t) dt =
N∑

n=0

an · 1
Γ (s)

·
∫ ε

0

ts+n−1 dt

+
1

Γ (s)
·
∫ ε

0

ts−1 ·R(t) dt

=
N∑

n=0

an · 1
Γ (s + 1)

· s

s + n
· εs+n

+
1

Γ (s)
·
∫ ε

0

ts−1 ·R(t) dt.
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The function 1
Γ (s) ·

∫ ε

0
ts−1 ·R(t) dt is holomorphic for <(s) > −N .

(3) For any α with 0 < α < α(F ) we can find t0 such that θF (t) ≤ t−α holds
for t ≥ t0. Now go through the calculation (3.131) in the case δ = ∞.

(4) We get from partial integration (3.16)
∫ K

ε+

λ−s dF (λ) = −s ·
∫ K

ε

λ−s−1 · F (λ) dλ + K−s · F (K)− ε−s−1 · F (ε).

For any α with 0 < α < α(F ) there is λ(α) such that F (λ) ≤ λα holds for 0 ≤
λ ≤ λ(α). We conclude from Lebesgue’s Theorem of majorized convergence

∫ ∞

0

λ−s dF (λ) = −s ·
∫ K

0

λ−s−1 · F (λ) dλ + K−s · F (K).

This implies using Lemma 3.15 (1)

d

ds

∫ ∞

0

λ−s dF (λ)
∣∣∣∣
0

=

(
−s · d

ds

∫ K

0

λ−s−1 · F (λ) dλ

−
∫ K

0

λ−s−1 · F (λ) dλ + ln(K) ·K−s · F (K)

)∣∣∣∣∣
s=0

= −
∫ K

0

F (λ)
λ

dλ + ln(K) · F (K)

=
∫ ∞

0

ln(λ) dF (λ).

(5) This is analogous to (3.133) using (3.132).

(6) This follows from the other assertions.

3.21. The heat kernel of ∆0 on R is given by

e−t∆0(x, y) =
1

4πt
· e−(x−y)2/4t.

Since [0, 1] is a fundamental domain for the Z-action on R = S̃1, we get for
t > 0

θ0(S̃1)(t) =
∫ 1

0

1
4πt

· e−(x−x)2/4t dx =
1

4πt
.

From ∗ ◦∆1 = ∆0 ◦ ∗ we get θ1(S̃1) = θ0(S̃1). We have for <(s) > 1

1
Γ (s)

·
∫ 1

0

ts−1 · θ1(S̃1) dt =
1
4π

· s · 1
(s− 1) · Γ (s + 1)

.

This implies
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d

ds

1
Γ (s)

·
∫ 1

0

ts−1 · θ1(S̃1) dt

∣∣∣∣
s=0

= − 1
4π

.

A direct computation shows
∫ ∞

1

t−1 · θ1(S̃1) dt =
1
4π

.

3.22. See [327, Example 1.18].

3.23. From Poincaré duality (see Theorem 1.35 (3)) and from the long exact
weak homology sequence (see Theorem 1.21) we conclude

b(2)
p (M) = b(2)

p (M, ∂M) = b(2)
p (∂M).

From the version of Poincaré duality for manifolds with boundary (cf. Theo-
rem 3.93 (3) and its proof) we conclude that (M,∂M) is det-L2-acyclic and
satisfies

ρ(2)(M) = −ρ(2)(M, ∂M).

We conclude from Theorem 3.35 (1) that ∂M is det-L2-acyclic and we have

ρ(2)(M) = ρ(2)(M, ∂M) + ρ(2)(∂M).

3.24. Let A be the (1, 1)-matrix over C[Z] with entry (z − λ) for λ ∈ R≥0.
The operator norm of RA is 1 + λ. We compute:

tr
((

1− AA∗

(1 + λ)2

)p)

= tr
((

1− (z − λ)(z−1 − λ)
(1 + λ)2

)p)

= tr
((

1− 1 + λ2 − λ · (z + z−1)
(1 + λ)2

)p)

= tr
((

2 · λ
(1 + λ)2

+
λ

(1 + λ)2
· (z + z−1)

)p)

=
λp

(1 + λ)2p
· tr

((
2 + (z + z−1)

)p
)

=
λp

(1 + λ)2p
· tr

(
p∑

k=0

(
p

k

)
· 2p−k · (z + z−1)k

)

=
(2 · λ)p

(1 + λ)2p
·

p∑

k=0

(
p

k

)
· 2−k · tr (

(z + z−1)k
)
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=
(2 · λ)p

(1 + λ)2p
·

p∑

k=0

(
p

k

)
· 2−k · tr




k∑

j=0

(
k

j

)
· zj · z−(k−j)




=
(2 · λ)p

(1 + λ)2p
·

p∑

k=0

(
p

k

)
· 2−k ·

k∑

j=0

(
k

j

)
· tr (

z2j−k
)

=
(2 · λ)p

(1 + λ)2p
·

p∑

k=0,k even

(
p

k

)
· 2−k ·

(
k

k/2

)

=
(2 · λ)p

(1 + λ)2p
·
[p/2]∑

k=0

(
p

2k

)
· 4−k ·

(
2k

k

)

=
(2 · λ)p

(1 + λ)2p
·
[p/2]∑

k=0

4−k · p!
(p− 2k)! · k! · k!

Now apply (3.24) and Theorem 3.172.

Chapter 4

4.1. Suppose that M has a prime decomposition whose factors are homotopy
spheres with precisely one exception which is D3 or an irreducible manifold
with infinite fundamental group. By the Sphere Theorem [252, Theorem 4.3]
an irreducible 3-manifold is aspherical if and only if it is a 3-disk or has
infinite fundamental group. Hence M is aspherical.

Suppose that M is aspherical. Then its fundamental group is torsionfree.
Hence each summand in its prime decomposition M = M1#M2# . . . #Mr

has trivial or torsionfree infinite fundamental group. We can assume without
loss of generality that no Mi is homotopy equivalent to S3 since the connected
sum with such manifolds does not affect the homotopy type. Since S3 is not
aspherical, we have r ≥ 1. There is an obvious 2-connected map #r

i=1Mi →∨r
i=1 Mi. Hence π2 (

∨r
i=1 Mi) ∼= π2

(∨̃r
i=1 Mi

) ∼= H2

(∨̃r
i=1 Mi

)
is trivial. A

Mayer Vietoris argument implies H2

(∨̃r
i=1 Mi|Mi

)
= 0 for i = 1, 2, . . . , r.

Since the inclusion of Mi into
∨r

i=1 Mi is injective, we conclude H2(M̃i) = 0
for i = 1, 2, . . . , r. This shows that each Mi is different from S1 × S2. Hence
each Mi is either an irreducible manifold with infinite fundamental group or
D3. In particular each Mi is aspherical. The obvious map #r

i=1Mi →
∨r

i=1 Mi

is a map of aspherical spaces inducing an isomorphism on the fundamental
groups. Hence it is a homotopy equivalence. It induces a homeomorphism
∂M → ∐r

i=1 ∂Mi. Hence it induces an isomorphism

H3(M,∂M)) ∼= Z→ H3

(
r∨

i=1

Mi,

r∐

i=1

∂Mi

)
∼=

r⊕

i=1

H3(Mi, ∂Mi) ∼= Zr.
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This implies r = 1.

4.2. Theorem 3.183 implies for two closed connected 3-manifolds M and N

with the same geometry that αp(M̃) = αp(Ñ) for p ≥ 1 and that b
(2)
p (M̃) =

0 ⇔ b
(2)
p (Ñ) = 0 for p ≥ 0. If M has a geometry, it is either aspherical or the

geometry is S3 or S2×R. Since we assume π1(M) to be infinite, the geometry
S3 cannot occur. If M is aspherical, it is an irreducible manifold with infinite
fundamental group by Exercise 4.1 and hence b

(2)
p (M̃) = 0 for all p ≥ 0 by

Theorem 4.1. If M has the geometry S2×R, we conclude b
(2)
p (M̃) = 0 for all

p ≥ 0, since S1×S2 has geometry S2×R and b
(2)
p ( ˜S1 × S2) = 0 for all p ≥ 0.

We conclude from Theorem 4.2 that one can distinguish the geometries from
one another by the Novikov-Shubin invariants of the universal coverings of
closed 3-manifolds except H2 × R and S̃L2(R).

4.3.

(1) H3: The fundamental group of a closed hyperbolic manifold does not
contain Z⊕Z as subgroup [466, Corollary 4.6 on page 449]. It cannot be
virtually cyclic because this would imply that a finite covering of M is
homotopy equivalent to S1 or because this would imply α1(M̃) = 1 by
Theorem 2.55 (5a) contradicting Theorem 4.2 (2) which says α1(M̃) =
∞+;

(2) S3: π is finite if and only if M̃ is compact;
(3) S2 ×R: M is finitely covered by S1 × S2 and hence has infinite virtually

cyclic fundamental group. Since α1(M) = 1 is only true for the geometry
S2 × R by Theorem 4.2 (2), the fundamental groups for all the other
geometries cannot be infinite virtually cyclic by Theorem 2.55 (5a);

(4) R3: M is finitely covered by T 3 and hence contains Z3 as subgroup of finite
index. Since α1(M) = 3 is only true for the geometry R3 by Theorem 4.2
(2), the fundamental groups of all the other geometries cannot contain
Z3 as subgroup of finite index by Theorem 2.55 (5a);

(5) Nil: M is finitely covered by a closed manifold M which is a S1-fibration
S1 → M → T 2. Hence π contains a subgroup of finite index G which can
be written as an extension 1 → Z→ G → Z2 → 1;

(6) H2 × R: M is finitely covered by S1 × Fg for a closed surface of genus
g ≥ 2. Hence π contains a subgroup of finite index which is isomorphic
to Z×G for some group G which is not solvable. Hence π is not solvable.
The fundamental groups of all geometries except H3, H2×R and S̃l2(R)
are solvable;

(7) S̃l2(R): M is finitely covered by a closed manifold M which is a S1-
prinicipal bundle S1 → M → Fg for a closed surface of genus g ≥ 2. This
shows that π is not solvable and contains Z⊕Z as subgroup. Next we show
that π does not contain a subgroup of finite index of the shape Z×G for a
group G. Suppose the contrary. Then we can arrange by possibly passing
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to a finite covering over M that π1(M) = Z × G. Since S1 → M →
Fg is a S1-principal bundle, the center of π1(M) contains the image of
π1(S1) → π1(M). Since Z(π1(Fg)) does not contain Z⊕Z and hence has
trivial center, the center of π1(M) is the image of π1(S1) → π1(M). The
center of Z×G is Z×Z(G). This implies that the map π1(S1) → π1(M)
has a retraction which comes from the projection Z×G → Z. Hence the
S1-bundle S1 → M → Fg is trivial. This implies that M is diffeomorphic
to S1 × Fg and hence carries the geometry H2 × R, a contradiction;

(8) Sol: Any Sol-manifold M has a finite covering M which can be written
as a bundle T 2 → M → S1 [466, Theorem 5.3 on page 447]. Hence we
get a subgroup G ⊂ π of finite index which is an extension 0 → Z2 →
G → Z→ 0. The group π cannot be virtually abelian, since otherwise π
contains Z3 as subgroup of finite index and carries the geometry R3.

4.4. All Novikov-Shubin invariants are ∞+ (see Example 2.5) and we have
b
(2)
p (M̃) = |π|−1·bp(M̃) (see Theorem 1.35 (9)). If M is closed, M̃ is homotopy

equivalent to S3. If M has boundary, then Hp(M̃) = 0 for p = 1, 3 and we
get dimC(H2(M̃ ;C)) = χ(M̃)− 1. Hence

b
(2)
0 (M̃) = |π|−1;

b
(2)
1 (M̃) = 0;

b
(2)
2 (M̃) = χ(M)− |π|−1 if ∂M 6= ∅;

b
(2)
2 (M̃) = 0 if ∂M = ∅;

b
(2)
3 (M̃) = 0 if ∂M 6= ∅;

b
(2)
3 (M̃) = |π|−1 if ∂M = ∅.

4.5. We have to check that it is not true that b
(2)
p (M̃) = 0 for all p ≥ 0

and α(M̃) = ∞+ for all p ≥ 1 holds. Suppose that it is true. Then we
conclude from Theorem 4.1 and Theorem 4.2 (2) and (4) that M is an ir-
reducible 3-manifold with non-empty compressible torus boundary. Now use
the construction in the proof of [322, Lemma 6.4 on page 52] based on the
Loop Theorem [252, Theorem 4.2 on page 39] and the formula for the sec-
ond Novikov-Shubin invariants under wedges (cf. Theorem 2.55 (4)) to get a
contradiction also in this remaining case.

4.6. See [322, Proposition 6.5 on page 54].

4.7. This follows from Theorem 3.106. Notice that π1(Tf ) belongs to the
class G (cf. the paragraph after the proof of Theorem 3.106).
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Chapter 5

5.1. See [251, Lemma 3.1 in IV.3 on page 205].

5.2. See see [293, page 4 and 5].

5.3. See [293, page 7].

5.4. See [293, page 8].

5.5. Since GL(n,C)×GL(m,C) is a subgroup of GL(m+n,C) closed under
taking conjugate transpose and similar for R, we get that the product G×H of
two connected linear reductive Lie groups G and H is again a connected linear
reductive Lie group. Since we get for the center Z(G×H) = Z(G)×Z(H),
the claim follows by the previous Exercise 5.4.

5.6. Since the spaces in question are homogeneous, it suffices to construct
the global symmetry tx in some model at one point x.

5.7. One can identify Gp(Rp+q) with SO(p+ q)/SO(p)×SO(q). Now apply
Example 5.11.

5.8. By Theorem 5.12 (2) one can read off dim(M)− f-rk(M̃) from αp(M̃)
for p ≥ 1 which depends only on the homotopy type (see Theorem 2.55 (1)).
Notice that M and N are aspherical by Lemma 5.10 and hence homotopic if
they have isomorphic fundamental groups.

5.9. Amenability of π1(M) is equivalent to α1(M̃) 6= ∞+ by Theorem 2.55
(5b) provided that π1(M) is infinite. We conclude from (5.14) and the fact

that dim(M̃ncp)−f-rk(M̃ncp)
2 ≥ 1 if M̃ncp 6= {∗} (see Theorem 5.12 (2)) that

M̃ncp = {∗} if π1(M) is amenable.
Suppose that M̃ncp = {∗}. Then M carries a Riemannian metric with non-

negative sectional curvature (see Theorem 5.9) and hence with non-negative
Ricci curvature. Then π1(M) has polynomial growth (see [218, Theorem 3.106
on page 144]). Hence π1(M) is virtually nilpotent and in particular amenable.

5.10. Let Xn for n = 2, 3, 5 be a closed hyperbolic manifold of dimension n.
Put M = X5×X5 and N = X3×X3×X2×X2. We have Z4 ⊂ π1(N), but
Z4 cannot be a subgroup of π1(M) since any abelian subgroup of π1(X5) is
trivial or Z. Hence M and N have non-isomorphic fundamental groups. All
L2-Betti numbers, all Novikov-Shubin invariants and the L2-torsion of M̃
and Ñ with respect to the π1(M)- and π1(N)-action agree. This follows from
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the various product formulas and the known values for hyperbolic manifolds
or directly from Theorem 5.12.

5.11. Since M is aspherical, M̃ = M̃Eucl× M̃ncp by Lemma 5.10. Now apply
Theorem 1.35 (2) and (5.15).

5.12. Suppose that b
(2)
p (M̃) = 0 for all p ≥ 0. Since M carries a Riemannian

metric with non-positive sectional curvature (see Theorem 5.9 and Lemma
5.10), the Whitehead group of its fundamental group vanishes [192, page 61].
Hence also Ñ is det-L2-acyclic and ρ(2)(M̃) = ρ(2)(Ñ) by Theorem 3.96 (1).

Suppose that b
(2)
p (M̃) 6= 0 for some p ≥ 0. Then M has even dimen-

sion by Theorem 5.12 (1). But ρ(2)(Ñ) = 0 for any closed even-dimensional
Riemannian manifold (see Subsection 3.4.3).

Chapter 6

6.1. Since M is the directed union of its finitely generated submodules, we
can assume without loss of generality because of Theorem 6.7 (1) and (4c)
that M is finitely generated projective. Now apply Lemma 6.28 (3).

6.2. Choose an exact sequence 0 → K → N (G)n → M → 0. We conclude
from Theorem 6.7 (4b) that dimN (G)(K) + dimN (G)(M) = n. Since K is
the directed union of its finitely generated submodules, we get from Theo-
rem 6.7 (1) and (4c) the existence of a finitely generated projective N (G)-
module P ⊂ K with dimN (G)(P ) ≥ dimN (G)(K) − ε/2. Hence N (G)n/P
is a finitely presented N (G)-module which satisfies dimN (G)(N (G)n/P ) ≤
dimN (G)(M) + ε/2 because of Theorem 6.7 (4b) and maps surjectively onto
M . Therefore we can assume without loss of generality that M is finitely
presented.

Because of Theorem 6.7 (3) we may assume M = TM .

From Lemma 6.28 (4), we get an exact sequence 0 → N (G)n f−→ N (G)n →
M → 0 for some positive N (G)-map f . Let {Eλ | λ ≥ 0} be the spectral
family of ν(f) (see (6.22)). Then ν(f) splits as the orthogonal sum of a weak
isomorphism gλ : im(Eλ) → im(Eλ) and an automorphism g⊥λ : im(Eλ)⊥ →
im(Eλ)⊥. Thus we obtain an exact sequence 0 → ν−1(im(Eλ))

ν(gλ)−−−→
ν−1(im(Eλ)) → M → 0 and dimN (G)(ν−1(im(Eλ))) = dimN (G)(im(Eλ))
from Theorem 6.24. Since ker(ν(f)) = 0 by Theorem 6.24 (3) we conclude
from Theorem 1.12 (4) that limλ→0 dimN (G)(im(Eλ)) = 0. Hence we can find
λ > 0 with dimN (G)(ν−1(im(Eλ))) ≤ ε. Since M is a quotient of ν−1(im(Eλ)),
the claim follows.

6.3. From the previous Exercise 6.2 we get a finitely generated projective
N (G)-module Q with an epimorphism f : Q → P/M such that dimN (G)(Q) ≤
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dimN (G)(P/M) + ε holds. Choose an N (G)-map p : P → Q such that f ◦
p = p holds for the canonical projection p : P → P/M . Because of Theorem
6.7 (1) P/ ker(p) is a finitely generated projective N (G)-module and hence
ker(p) is a direct summand in P . Theorem 6.7 (4b) implies dimN (G)(M) ≤
dimN (G)(ker(p)) + ε. Take P ′ = ker(p).

6.4. If M is finitely generated and projective, M and M∗ are isomorphic, an
isomorphism is given by any inner product (see Lemma 6.23). If M is finitely
generated, the claim follows from Theorem 6.7 (3) and (4e). The countably
generated case is reduced to the finitely generated case as follows.

Since M is countably generated, we can find a family {Mn | n = 0, 1, 2, . . .}
of finitely generated submodules of M such that Mm ⊂ Mn holds for m ≤ n
and M is the union

⋃
n≥0 Mn. Then

M = colimn→∞Mn;
M∗ = lim

n→∞
M∗

n.

Theorem 6.13 (1) and Theorem 6.18 imply

dim(M) = sup {dim(Mn) | n ≥ 0} ;
dim(M∗) = sup {inf {dim(im(M∗

n → M∗
m)) | n = m,m + 1, . . .} | m ≥ 0} .

Hence it suffices to show that dim(im(M∗
n → M∗

m)) = dim(M∗
m) for m ≤ n.

As the canonical projection induces an isomorphism (PMn)∗ → M∗
n it suffices

to show for an inclusion P ⊂ Q of finitely generated projectiveN (G)-modules
that dim(im(Q∗ → P ∗)) = dim(P ∗).

Since P is a direct summand in Q, it suffices to treat the case Q = P .
Theorem 6.7 (4d) implies dim(P ) = dim(P ) and hence dim(P ∗) = dim(P

∗
).

We get an exact sequence 0 → (P/P )∗ → P
∗ i∗−→ P ∗ → coker(i∗) → 0. Since

(P/P )∗ is zero, we conclude dim(coker(i∗)) = 0 and hence the claim from
Theorem 6.7 (4b).

6.5. Each map φJ,K is injective and hence its image has dimension 1 by
Theorem 6.7 (4b). Theorem 6.13 (2) implies dimN (Z)(M) = 1. Notice that
φ∗J,K is given by multiplication with

∏
u∈K−J(z − u). Since M∗ is the limit

over the inverse system given by the maps φ∗J,K , we get an isomorphism

M∗ =
⋂

u∈S1

(z − u),

where (z − u) is the ideal generated by (z − u). We have already shown in
Example 6.19 that

⋂
u∈S1(z − u) = {0}.

6.6. We first show that N (Z) is not Noetherian. Identify N (Z) = L∞(S1)
(see Example 1.4). Consider the sequence of L∞(S1)-submodules P1 ⊂ P2 ⊂
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P3 ⊂ . . . ⊂ L∞(S1) such that Pn is the ideal generated by the characteristic
function of {exp(2πit) | t ∈ [1/n, 1]}. One easily checks that P =

⋃
n≥1 Pn

is a submodule of L∞(S1) which can be written as the infinite sum of non-
trivial L∞(S1)-modules Qn for n ≥ 1, where Qn is the ideal generated by the
characteristic function of {exp(2πit) | t ∈ [1/(n + 1), 1/n]}. Hence P cannot
be finitely generated.

If i : Z → G is an inclusion, i∗P is a submodule of i∗N (Z) = N (G) and
is the infinite sum of non-trivial N (G)-modules i∗Qn by Theorem 6.29 (1).

We will later show in an exercise of Chapter 9 that N (G) is Noetherian
if and only if G is finite.

6.7. Choose a free AG-module F and AG-maps i : P → F and r : F → P
with r◦ i = id. Since M ⊂ P is finitely generated, there is a finitely generated
free direct summand F0 ⊂ F with i(M) ⊂ F0 and F1 = F/F0 free. Hence
i induces a map f : P/M → F1. It suffices to show that f is trivial because
then i(P ) ⊂ F0 and the restriction of r to F0 yields an epimorphism F0 → P .

Let g : AG → P/M be any AG-map. Since the von Neumann algebra
N (G) is semihereditary (see Theorem 6.7 (1)), the image of N (G)⊗AG (f ◦g)
is a finitely generated projective N (G)-module. Its von Neumann dimension
is zero by Theorem 6.7 (4b) since N (G)⊗AG P/M has trivial dimension by
assumption. We conclude from Lemma 6.28 (3) that the image of N (G)⊗AG

(f ◦g) is trivial. Hence N (G)⊗AG (f ◦g) is the zero map. Since AG → N (G)
is injective, f ◦ g is trivial. This implies that f is trivial since g was arbitrary.

6.8. We conclude from Theorem 6.7 (4b) that TdimM is the largest N (G)-
submodule of M with vanishing von Neumann dimension.

This definition of TdimM coincides with the one of Definition 6.1 of TM
by Theorem 6.7 (3), (4b) and (4e) and Lemma 6.28 (3), provided that M is
finitely generated.

A counterexample for not finitely generated M comes from Exercise 6.5,
where a module M was constructed with dim(M) = 1 and M∗ = 0.

6.9. Let M be a CH-module. If P∗ is a projective CH-resolution for M ,
then CG ⊗CH P∗ is a projective CG-resolution for CG ⊗CH M . We have
N (G) ⊗CG CG ⊗CH P∗ ∼=N (G) N (G) ⊗N (H) N (H) ⊗CH P∗. Theorem 6.29
implies

dimN (H)

(
TorCH

p (N (H),M)
)

= dimN (G)

(
N (G)⊗N (H) TorCH

p (N (H),M)
)

= dimN (G)

(
TorCG

p (N (G),CG⊗CH M)
)

.

6.10. Let Z ⊂ G be an infinite cyclic subgroup of finite index. Let M be
a CG-module. Consider the canonical CG-map p : CG ⊗C[Z] resZG M → M
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sending g ⊗m to gm, where resZG M is the restriction of the CG-module M
to a C[Z]-module. Define a CG-map i : M → CG ⊗C[Z] resZG M by sending
m to 1

[G:Z] ·
∑

gZ∈G/Z g ⊗ g−1m. One easily checks that it is independent of
the choice of representative g for gZ and satisfies p ◦ i = id. Since [G : Z]
is finite, N (G) is isomorphic as N (Z)-module to

⊕
[G:Z]N (Z). This implies

that TorCG
p (N (G); M) is a direct summand in

TorCG
p (N (G),CG⊗C[Z] resZG M) ∼=

⊕

[G:Z]
TorC[Z]

p (N (Z), resZG M).

Hence it suffices to prove the claim for G = Z.
The functor Tor commutes in both variables with colimits over directed

systems [94, Proposition VI.1.3. on page 107]. Hence it suffices to prove for
a finitely generated CZ-module M that TorC[Z]

p (N (Z),M) = 0 for p ≥ 1.
Since C[Z] is a principal ideal domain [15, Proposition V.5.8 on page 151 and
Corollary V.8.7 on page 162], we can write

M = C[Z]np ⊕



sp⊕

ip=1

C[Z]/((z − ap,ip)rp,ip )




for ap,ip ∈ C and np, sp, rp,ip ∈ Z with np, sp ≥ 0 and rp,ip ≥ 1, where z is
a fixed generator of Z. Hence we can assume without loss of generality that
M = C[Z]/(z−a)n for appropriate a ∈ C and n ≥ 1. Using the obvious C[Z]-
resolution one reduces the claim to the assertion that N (Z)

r(z−a)n−−−−−→ N (Z) is
injective which is obvious in view of the identification N (Z) = L∞(S1) (see
Example 1.4).

6.11. (1) This is a modification of the corresponding argument for dimension-
flatness appearing in the solution to Exercise 6.9.
(2) Show that TorCK

p (N (K),M) is a direct summand in

TorCK
p (N (K),CK ⊗CG resG

K M) ∼=
⊕

[K:G]

TorCG
p (N (G), resG

K M)

for any CK-module M . The argument is analogous to the one appearing in
the solution of the previous Exercise 6.10.
(3) Since N (G) is flat over CG, we get for p ≥ 1

HG
p (EG;N (G)) = N (G)⊗CG Hp(EG) = 0.

(4) This follows from (3).
(5) This follows from (3) and Lemma 6.98.
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(6), (7) (8) These follow from (1), (4) and (5) and the following statements.
We get from Theorem 1.35 (2) and (8) and Example 2.59

α1(EZn;N (Zn)) = n;

b
(2)
1 (E(Z ∗ Z);N (Z ∗ Z)) = χ(S1 ∨ S1)− b

(2)
0 (E(Z ∗ Z);N (Z ∗ Z)) = 1.

If M is an aspherical manifold whose universal covering is a symmetric space,
then we get for G = π1(M) from Corollary 5.16 (2) that one of the L2-Betti
numbers b

(2)
p (G) is different from zero or one of the Novikov Shubin invariants

αp(EG;N (G)) is different from ∞+.
(9) Because of (1) and (3) it suffices to prove for the fundamental group π
of a connected sum M = M1# . . . #Mr of (compact connected orientable)
non-exceptional prime 3-manifolds Mj that HG

p (Eπ;N (π)) is different from
zero for at least one p ∈ {0, 1, 2}. We can assume without loss of generality
that ∂M contains no S2, otherwise glue D3-s to M . It suffices to treat the
case |π| = ∞ because H0(EG;N (G)) is non-zero for finite G (see Theorem
6.54 (8b)). We conclude from Theorem 4.1 that either b

(2)
1 (M̃) 6= 0 or M is

RP3#RP3 or M is a prime manifold with infinite fundamental group whose
boundary is empty or a disjoint union of tori. Since the classifying map M →
Bπ is 2-connected we conclude from Lemma 6.98 that H1(Eπ;N (π)) 6= 0

if b
(2)
1 (M̃) 6= 0 or α1(M̃) 6= 0. Since α1( ˜RP3 ∗ RP3) = α1( ˜S1 × S2) = 1 by

Theorem 4.2 (2), only the case of an non-exceptional irreducible 3-manifold
with infinite fundamental group whose boundary is empty or a disjoint union
of tori is left. Notice that M is aspherical by Exercise 4.1. Hence it suffices
to show that α2(M̃) 6= ∞+ because of Lemma 6.98. This follows in the case,
where the boundary is empty or a union of incompressible tori from Theorem
4.2. Now reduce the case, where the boundary contains a compressible torus,
to the case, where the boundary is a union of incompressible tori, using
the construction in the proof of [322, Lemma 6.4 on page 52] based on the
Loop Theorem [252, Theorem 4.2 on page 39] and the formula for the second
Novikov-Shubin invariants under wedges (cf. Theorem 2.55 (4)).

6.12. See [334, Theorem 5.3 on page 233].

6.13. See [107, Section 4].

6.14. Fix a natural number n. Then the number of cells with isotropy group
whose order is less or equal to n must be finite since otherwise

m(X;N (G)) ≥
∑

c∈I(X),|Gc|≤n

|Gc|−1 ≥
∑

c∈I(X),|Gc|≤n

n−1 ≥ ∞.

6.15. Use induction over the cells of B. In the induction step apply the sum
formula (see Theorem 6.80 (2)) to the pushout on the level of total spaces
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which is obtained from a pushout on the base space level, which is given by
attaching a cell, by the pullback construction.

6.16. Let K be the kernel of the projection p : Z ∗ Z → Z which sends
the two generators of Z ∗ Z to the generator of Z. We obtain a fibration
BK → B(Z ∗ Z) → BZ. Hence B(Z ∗ Z) is homotopy equivalent to the
mapping torus of an appropriate selfhomotopy equivalence BK → BK. But
b
(2)
1 (Z ∗ Z) = 1.

6.17. We can assume without loss of generality that the boundary of M
contains no S2-s, otherwise attach D3-s to M .

If M is a prime manifold with infinite fundamental group, then either M
is irreducible and hence aspherical by Exercise 4.1 and we get χ(2)(π1(M)) =
χ(M) from Theorem 1.35 (2) or M = S1×S2 and hence χ(2)(π1(S1×S2)) =
χ(2)(S̃1) = χ(S1) = χ(S1 × S2) = 0 by Theorem 1.35 (2). Notice that
π1(M) = ∗r

i=1π1(Mi) and χ(M) =
∑r

i=1 χ(Mi). We conclude χ(2)(M̃) = 1−
r+

∑r
i=1 χ(2)(M̃i) from Theorem 6.80 (2) and (8). We have χ(2)(EG;N (G)) =

|G|−1 for a finite group G by Theorem 6.80 (7). Now the claim follows from
Theorem 4.1.

6.18. b
(2)
p (G) = b

(2)
p (E(G;FIN );N (G)) follows from Theorem 6.54 (2) since

EG× E(G;FIN ) is a model for EG.

6.19. C⊗ZC∗(E(G;FIN )) is a projective CG-resolution of C equipped with
the trivial G-action.

6.20. This follows from Theorem 6.54 (2) since EG×X is a model for EG.

6.21. There is an obvious exact sequence of Z[Z/5] modules 0 → Z →
Z[Z/5] → Z[Z/5]/(N) → 0, where Z carries the trivial Z/5-action. The asso-
ciated long cohomology sequence implies

H1(Z/5;Z[Z/5]/(N)) ∼= H2(Z/5;Z) ∼= Z/5.

Notice that the obvious Z/5-action on Z[Z/5]/(N) has no non-trivial fixed
point. Now apply Example 6.94.

6.22. Since im(cp) and ker(cp) are submodules of free C[Fg]-modules, they
are free. Since 0 → ker(cp) → Cp → im(cp) → 0 is exact, we conclude that
im(cp) and ker(cp) are finitely generated free C[Fg]-modules. In particular we
see that Hp(C∗(X)) has a finite free 1-dimensional resolution, for instance
0 → im(cp+1) → ker(cp) → Hp(C∗(X)) → 0. Now fix any finite based free
C[Fg]-chain complex F [p]∗ which is concentrated in dimension p and p+1 and
satisfies Hn(F [p]∗) = 0 for n 6= p and Hp(F [p]∗) ∼=C[Fg ] Hp(C∗(X)). Notice
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that the C[Fg]-chain homotopy type of F [p]∗ depends only on the C[Fg]-
isomorphism class of Hp(C∗(X)). One easily constructs a C[Fg]-chain map
f∗ :

⊕
p≥0 F [p]∗ → C∗(X) which induces an isomorphism on homology and

hence is a C[G]-chain equivalence. We conclude from the homotopy invariance
of the Novikov-Shubin invariants and the L2-Betti numbers (see Theorem
2.19)

b(2)
p (X;N (G)) = bp(l2(G)⊗C[Fg ] F [p]∗) + bp(l2(G)⊗C[Fg] F [p− 1]∗);

αp(X;N (G)) = αp(l2(G)⊗C[Fg] F [p− 1]∗)

and that bp(l2(G) ⊗CFg ] F [p]∗) and αp+1(l2(G) ⊗CFg] F [p]∗) depend only on
the C[Fg]-isomorphism class of Hp(C∗(X)).

6.23. We know b
(2)
0 (Z ∗ Z) = 0 and α1(Z ∗ Z) = ∞+ from Theorem 1.35

(8) and Theorem 2.55 (5). Let Gr ⊂ G be the subgroup
∏r

i=1 Z ∗ Z. We
conclude from the product formulas Theorem 1.35 (4) and Theorem 2.55 (3)
that b

(2)
p (Gr) = 0 for p ≤ r − 1 and αp(Gr) = ∞+ for p ≤ r holds. Lemma

6.98 implies HGr
p (EGr;N (Gr)) = 0 for p ≤ r − 1.

Let G′r be the subgroup
∏∞

i=r+1 Z ∗ Z of G. Obviously G = Gr × G′r.
Hence EGr × EG′r with the obvious G = Gr × G′r-operation is a model for
EG. Hence we get an N (G)-chain isomorphism

N (G)⊗N (Gr)⊗N (G′r)

(
(N (Gr)⊗CGr C∗(EGr))⊗C

(N (G′r)⊗CG′r C∗(EG′r)
))

∼= N (G)⊗CG C∗(EG).

Since Hp(N (Gr)⊗CGr C∗(EGr)) = 0 for p ≤ r−1, and N (Gr)⊗CGr C∗(EGr)
is a free N (Gr)-chain complex, N (Gr)⊗CGr C∗(EGr) is N (Gr)-chain homo-
topy equivalent to a projective N (Gr)-chain complex P∗ with Pp = 0 for
p ≤ r − 1. Hence N (G) ⊗CG C∗(EG) is N (G)-chain homotopy equivalent
to an N (G)-chain complex Q∗ with Qp = 0 for p ≤ r − 1. This implies
Hn(N (G)⊗CG C∗(EG)) = 0 for p ≤ r − 1. Since r can be chosen arbitrarily
large, the assertion follows.

A more general statement will be proved in Lemma 12.11 (5).

6.24. We get HZ
p (S̃1;N (Z)) = {0} for p ≥ 1 and HZ2

1 (T̃ 2;N (Z2)) 6= {0}
from Lemma 6.98 since b

(2)
p (S̃1) = 0 for p ≥ 1, αp(S̃1) = ∞+ for p ≥ 2 and

α2(T̃ 2) = 2 holds by Example 2.59.

6.25. If N = N (H), Theorem 6.104 follows from Theorem 6.29 applied to the
inclusion G → G×H. Now Theorem 6.104 follows for any projective N (H)-
module N by Theorem 6.7 (4b) and (4c). Since the statement in Theorem
6.104 (2) is symmetric in M and N , it is now proved in the case, where M
or N is projective.

If N is a finitely generatedN (H)-module, it splits as PN⊕TN , where PN
is finitely generated projective and dimN (H)(TN) = 0 (see Theorem 6.7 (3)
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and (4e)). Since dimN (H)(TN) = 0 and each N (G)-module M is a quotient
of a free N (G)-module, we conclude dimN (G×H)(N (G × H) ⊗N (G)⊗CN (H)

M ⊗C TN) = 0 for any N (G)-module M from Theorem 6.7 (4b). Hence
Theorem 6.104 follows for finitely generated N .

Since N is the directed colimit of its finitely generated submodules and
N (G×H)⊗N (G)⊗CN (H)M⊗C− commutes with directed colimits and directed
colimits are exact, Theorem 6.104 follows from Additivity (see Theorem 6.7
(4b)) and Theorem 6.13.

6.26. Let C∗ and D∗ be positive N (G) and N (H)-chain complexes. There
are canonical isomorphisms of N (G)⊗C N (H)-modules

α :
⊕

p+q=n

Hp(C∗)⊗C Hq(D∗)
∼=−→ Hn(C∗ ⊗D∗).

Next we want to show that the composition of the canonical map

N (G×H)⊗N (G)⊗N (H)Hp(C∗⊗CD∗) → Hp(N (G×H)⊗N (G)⊗N (H)(C∗⊗CD∗))

with N (G×H)⊗N (G)⊗N (H) α is a dim-isomorphism, i.e. its kernel and cok-
ernel have zero dimension. Obviously we may assume that D∗ is finite dimen-
sional. We use induction over the dimension d of D∗ If D∗ is zero-dimensional,
this follows from Theorem 6.104 (1). In the induction step use the long dim-
exact sequences associated to 0 → D∗|d−1 → D∗ → d[Dd] → 0 and a Five-
Lemma for dim-isomorphisms for dim-exact sequences whose proof is an easy
consequence of Theorem 6.7 (4b). Here dim-exact has the obvious meaning
and follows from Theorem 6.104 (1).

As explained in the proof of 6.54 (5), we can assume that X is a G-
CW -complex and Y is an H-CW -complex. Now apply the results above to
C∗ = N (G)⊗ZG C∗(X) and D∗ = N (H)⊗ZH C∗(Y ). The claim follows from
Theorem 6.104 (2) since there is a Z[G × H]-chain isomorphism C∗(X) ⊗C
C∗(Y ) → C∗(X × Y ).

Chapter 7

7.1. This follows from an iterated application of Theorem 7.2 (6).

7.2. This follows from the previous Exercise 7.1.

7.3. We can write BG as the colimit of the directed system

BG1 ⊂ BG1 ∨BG2 ⊂ BG1 ∨BG2 ∨BG3 ⊂ . . . .

Notice that each of the structure maps has a retraction. If p : EG → BG is
the universal covering, we can write EG as the colimit of the directed system
of free G-CW -complexes
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EG|BG1 ⊂ EG|BG1∨BG2 ⊂ EG|BG1∨BG2∨BG3 ⊂ . . . .

We conclude from Theorem 6.7 (4c) and Theorem 6.29

b(2)
p (G) = lim

r→∞
b(2)
p

(
r∨

n=1

Gi

)
.

We have for p ≥ 2

b(2)
p

(
r∨

n=1

Gi

)
=

r∑
n=1

b(2)
p (Gi)

and

b
(2)
1

(
r∨

n=1

Gi

)
− b

(2)
0

(
r∨

n=1

Gi

)
= r − 1 +

r∑
n=1

(b(2)
1 (Gi)− b

(2)
0 (Gi)).

It suffices to prove this in the case r = 2, where it follows from the long
exact homology sequence . . . → HG

p (G;N (G)) → HG
p (G×G1 EG1;N (G))⊕

HG
p (G×G2 EG2;N (G)) → HG

p (EG;N (G)) → HG
p−1(G;N (G)) → . . ., Theo-

rem 6.7 (4b) and Theorem 6.29. Notice that b
(2)
0 (Gi;N (Gi)) ≤ 1/2 holds for

all i ∈ I by Theorem 6.54 (8b).

7.4. This follows from an iterated application of Theorem 6.54 (5).

7.5. It suffices to show that G ∈ Bd for each d ≥ 0. Since B0 is the class of
infinite groups by Theorem 6.54 (8b), this is clear for d = 0. The induction
step from d to d+1 is done as follows. We can write G = G1×G2, where G1

and G2 are of the shape
∏

j∈J Hj for an infinite index set J and non-trivial
groups Hj . Hence G1 ∈ Bd and G2 ∈ B0 by induction hypothesis. Then
G = G1 ×G2 ∈ Bd+1 by Theorem 6.54 (5).

As G =
∏

i∈I Z is abelian and hence amenable, we get HG
0 (EG;N (G)) 6=

0 from Theorem 6.54 (8c).

7.6. An infinite locally finite group is an infinite amenable group. Hence
HG

0 (EG;N (G)) 6= 0 by Theorem 6.54 (8c) and b
(2)
p (G) = 0 for all p ≥ 0 by

Theorem 7.2 (1). We have HH
p (EH;N (H)) = HG

p (G×H EH;N (G)) = 0 for
p ≥ 1 for any finite subgroup H ⊂ G by Theorem 6.29 (1). Since G is the
colimit of the system of its finite subgroups, HG

p (EG;N (G)) = 0 for p ≥ 1
by a colimit argument.

7.7. Suppose that K is finite. Then the claim follows from Theorem 6.54
(6b).

Suppose that H is finite. It suffices to show for any fibration BH → E0
f−→

E1 of connected CW -complexes that
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b(2)
p (Ẽ1) = |H| · b(2)

p (Ẽ0).

The map h induces a C[π1(E0)]-chain homotopy equivalence f∗ : C∗(Ẽ0) →
resC∗(Ẽ1), where res denotes the restriction coming from the epimorphism
π1(f). It yields an N (π1(E0))-chain equivalence

N (π1(E0))⊗C[π1(E0)] C∗(Ẽ0)
'−→ res

(
N (π1(E1))⊗C[π1(E1)] C∗(Ẽ1)

)
.

Since for any N (π1(E1))-module M we have (see Lemma 13.45)

|H| · dimN (π1(E0))(res M) = dimN (π1(E1))(M),

the claim follows.

7.8. Let f : B → B(π1(B)) be the classifying map of B. We can find

a fibration F0
j−→ E0

q−→ B(π1(B)) together with a homotopy equivalence
u : E0 → E such that f ◦p◦u = q (see [521, Theoren 7.30 in I.7 on page 42]).
Since the L2-Betti numbers are homotopy invariants (see Theorem 6.54 (1))
and π1(B) ∈ Bd by assumption, it suffices to prove that b

(2)
p (F̃0) < ∞ for

p ≤ d. There is also a fibration F
k−→ F1

r−→ B̃ and a homotopy equivalence
v : F1 → F0 such that u ◦ j ◦ v ◦ k ' i. It remains to prove that b

(2)
p (F̃1) < ∞

for p ≤ d.
The Serre spectral sequence converges to H

π1(F1)
p+q (F̃1;N (π1(F1))) and has

as E2-term

E2
p,q = Hp(B̃)⊗C Hq

(
N (π1(F1))⊗C[π1(F1)] C[π1(F1)]⊗C[π1(k)] C∗(F̃ )

)

since B̃ is simply connected. Because of Additivity (see Theorem 6.7 (4b))
and the assumption that Hp(B̃;C) is finite dimensional for p ≤ d, it suffices
to show that for q ≤ d

dimN (π1(F1))

(
Hq

(
N (π1(F1))⊗C[π1(F1)] C[π1(F1)]⊗C[π1(k)] C∗(F̃ )

))
< ∞.

But this is b
(2)
q (π1(E)×π1(i) F̃ ;N (π1(E))) by Theorem 6.29.

7.9. We have already explained in the solution of Exercise 7.3 that

b
(2)
1 (G ∗H)− b

(2)
0 (G ∗H) = 1 + b

(2)
1 (G)− b

(2)
0 (G) + b

(2)
1 (H)− b

(2)
0 (H).

Since b
(2)
0 (G) = |G|−1 by Theorem 6.54 (8), the claim follows.

7.10. Theorem 6.80 (4) and Lemma 6.87 show

chg
{1}(χ

G(E(G;FIN ))) = χ(2)(E(G;FIN );N (G)) = χ(2)(G).
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By definition chg
{1} ⊂ {r ∈ R | d · r ∈ Z}.

7.11. SL(2,Z) is isomorphic to Z/6 ∗Z/2 Z/4. We have χ(2)(G) = |G|−1 for
finite G. Now apply (7.13).

7.12. The proof is analogous to the one of Lemma 7.16.

7.13. (1) The Seifert-van Kampen theorem applied to an appropriate de-
composition of TBf into two connected pieces with connected intersection
implies that π1(TBf ) is isomorphic to the quotient of the group G ∗Z, which
is obtained by introducing for a fixed generator t ∈ Z and each g ∈ G the
relation tgt−1 = f(g). This group is isomorphic to K o Z. Analogous to the
proof in Theorem 7.10 one shows that the universal covering of TBf has triv-
ial homology and hence TBf is a model for B(K o Z).

(2) We conclude from Theorem 1.39 that bp( ˜B(K o Z)) = bp(T̃Bf ) = 0 for
p ≥ 0. Since G is of det ≥ 1-class by assumption, K o Z is of det ≥ 1-class
by Theorem 13.3 (3). The invariant is well-defined because of Lemma 13.6.

(3) obvious.

(4) The proofs of assertion (1), (2), (3) and (4) of Theorem 7.27 carry directly
over to the case of an endomorphism. The proofs of assertions (5) of Theorem
7.27 carries over since there is a canonical bijection K/K0

∼=−→ G/G0 if we as-
sume that f induces a bijection G/G0

∼=−→ G/G0. The proofs of assertions (6)
and (7) of Theorem 7.27 carry directly over to the case of an endomorphism
if one reformulates them as stated.

Chapter 8

8.1. We have to show for a Hilbert space H and a densely defined closed
operator f : dom(f) ⊂ H → H that f∗f = 0 implies f = 0. This follows
from Lemma 2.2 (1) and the equation 〈f∗f(x), x〉 = 〈f(x), f(x)〉 for x ∈
dom(f∗f).

8.2. We get a commutative diagram of C-categories

{N (G)n} ν−−−−→ {l2(G)n}y
y

{U(G)n} νU−−−−→ {l2(G)n}U
whose vertical arrows are the obvious inclusions and whose horizontal arrows
are isomorphisms of C-categories. The map ν has already been introduced in
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(6.22). The categories {U(G)n} and {l2(G)n}U and the functor νU are defined
analogously. Now one can apply the functor idempotent completion Idem to
it. This yields a commutative diagram with isomorphisms of C-categories
as horizontal maps. Now identify this diagram with the desired diagram by
equivalences of C-categories. This has been done for the upper horizontal
arrow in the proof of Theorem 6.24 and is done for the lower horizontal
arrow analogously using Lemma 8.3 (4).

8.3. The inclusions G ⊂ ZG ⊂ CG ⊂ l1(G) are obvious. Given u =
∑

g∈G λg ·
g ∈ l1(G), we obtain a bounded G-operator ru : l2(G) → l2(G) which is
uniquely determined by g0 7→

∑
g∈G λg ·g0g. The operator norm of ru satisfies

||ru||∞ ≤ ||u||1. Since C∗r (G) is the closure in the norm topology of the image
of the map CG → B(l2(G)), u 7→ ru, we get an inclusion l1(G) ⊂ C∗r (G).
Since N (G) is defined as B(l2(G))G and B(l2(G))G is closed in the norm
topology in B(l2(G)), we get an inclusion C∗r (G) ⊂ N (G). We get an inclusion
N (G) ⊂ l2(G) by f 7→ f(e) for e ∈ G the unit element. For v ∈ l2(G) we get
a densely defined operator rv : dom(rv) = CG ⊂ l2(G) → l2(G) which maps
u =

∑n
i=1 λi · gi to

∑n
i=1 λi · gi · v. Since its adjoint is densely defined, this

operator is closable. Its minimal closure is an element in U(G). This gives
the inclusion l2(G) ⊂ U(G).

8.4. Since U(G) is regular (see Theorem 8.22 (3)), im(f) ⊂ Q and ker(f) ⊂ P
are direct summands by Lemma 8.18. We get from Theorem 8.29

ker(f) = 0 ⇔ dimU(G)(ker(f)) = 0
⇔ dimU(G)(im(f)) = dimU(G)(Q) ⇔ im(f) = Q.

8.5. Let 0 → M0
i−→ M1

p−→ M2 → 0 be an exact sequence of N (G)-

modules. Then 0 → TdimM0
Tdimi−−−−→ TdimM1

Tdimp−−−−→ TdimM2 is exact since
im(i)∩TdimM1 = i(TdimM0) follows from Additivity (see Theorem 6.7 (4b)).
Hence Tdim is left exact.

In Exercise 6.5 we have constructed an N (Z)-module M = colimJ∈I Nj

satisfying

dimN (Z)(M) = 1;
M∗ = 0.

The structure map of Nj for j = ∅ ∈ I induces an injection i : N (Z) →
M . Thus we obtain an exact sequence 0 → N (Z) i−→ M

p−→ coker(i) → 0.
Obviously TN (Z) = 0. We conclude TM = M from M∗ = 0 and hence
dim(TM) = 1. We conclude from Additivity (see Theorem 6.7 (4b)) that
dimN (G)(coker(i)) = 0 and hence dimN (G)(T coker(i)) = 0 and that the
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sequence TN (Z) Ti−→ TM
Tp−−→ T coker(i) cannot be exact at TM . Hence T

is not left exact.

8.6. The following is taken from Example 8.34. Let I1 ⊂ I2 ⊂ . . . ⊂ N (G)
be a nested sequence of ideals which are direct summands in N (Z) such that
dimN (Z)(In) 6= 1 and limn→∞ dimN (Z)(In) = 1. Let I be the ideal

⋃∞
n=1 In.

Put M = N (Z)/I = colimn→∞N (G)/In. Then Additivity (see Theorem 6.7
(4b)) and Theorem 6.13 (1) imply dim(M) = 0 and hence M = TdimM .
Since N (Z)/In is projective and N (Z) is semihereditary (see Theorem 6.5
and Theorem 6.7 (1)), we conclude from Theorem 6.13 (1) and Lemma 6.28
(3) that Tdim (N (G)/In) = 0. Hence Tdim (colimn→∞N (G)/In) = M 6= {0}
is different from colimn→∞Tdim (N (G)/In) = {0}. This shows that Tdim

does not commute with colimits over directed systems in general.
However, it does commute with colimits over directed systems with in-

jective maps as structure maps since for any submodule N ⊂ M we get
TdimN = TdimM ∩N from Additivity (see Theorem 6.7 (4b)).

8.7. In Exercise 6.5 we have constructed an N (Z)-module M = colimi∈I Ni

satisfying

dimN (Z)(M) = 1;
M∗ = 0;

Take Mi to be the image of the injective structure map ψi : Ni → M . Then
M = TM follows from M∗ = {0} and TMi = 0 from Mi

∼= N (Z) since N (Z)
is semihereditary (see Theorem 6.5 and Theorem 6.7 (1)) and Theorem 6.13
(1) and Lemma 6.28 (3) hold.

8.8. Consider an exact sequence 0 → M0 → M1 → M2 → 0 of N (G)-
modules. It stays exact after applying U(G)⊗N (G)− by Theorem 8.22 (2) and
we obtain by the various maps jMi a map from the first to the second exact
sequence. Now apply the snake lemma to get the desired six-term sequence.

8.9. Let G be a locally finite group G which is infinite. Then G is an infinite
amenable group and we get b

(2)
p (G;N (G)) = b

(2)
p (G;U(G)) = 0 for all p ≥ 0

from Theorem 7.2 (1) and Theorem 8.31.
Let I be the directed set of finite subgroups of G. Consider the directed

system over I which assigns to H,K ∈ I with H ⊂ K the canonical pro-
jection C[G/H] → C[G/K]. We obtain an obvious epimorphism of C[G]-
modules α : colimH∈I C[G/H] → C. Since G is locally finite, I is the same as
the directed set of finitely generated subgroups and hence α is bijective. As
U(G)⊗C[G] − commutes with colimits, we get an isomorphism

β : colimH∈I U(G)⊗C[G] C[G/H]
∼=−→ U(G)⊗CG C.
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Since dimU(G)(U(G) ⊗C[G] C[G/K]) = |K|−1 is different from zero for finite
K ⊂ G, the element 1U(G) ⊗CG 1K in U(G) ⊗C[G] C[G/K] is different from
zero for each finite subgroup K ⊂ G. Hence the source of β is non-trivial and
therefore U(G)⊗CG C 6= {0}. This shows

H0(EG;U(G)) = U(G)⊗CG C 6= {0}.

Chapter 9

9.1. Suppose that tr is a faithful finite normal trace on the von Neumann
algebra A. We want to show that A is finite, i.e. for any projection p ∈ A
with p ∼ 1 we have p = 1. Choose u ∈ A with p = uu∗ and 1 = u∗u. Then

tr(1− p) = tr(1)− tr(p) = tr(u∗u)− tr(uu∗) = 0.

Since tr is faithful, we conclude p = 1.
Suppose that A is finite. Then there is the universal trace tru : A → Z(A)

(see Theorem 9.5). Since Z(A) is an abelian von Neumann algebra, we get
from Example 9.6 an identification Z(A) = L∞(X, ν). We obtain a faithful
finite normal trace

tr : Z(A) = L∞(X, ν) → C, f 7→
∫

X

fdν.

Then tr ◦ tru is a faithful finite normal trace on A.

9.2. Since M is hyperbolic, Z ⊕ Z is not a subgroup of π1(M) (see [65,
Corollary 3.10 on page 462]). Since M is aspherical of dimension ≥ 2, its
fundamental group cannot be virtually cyclic. Hence π1(M) is not virtually
abelian. Since M is closed, π1(M) is finitely generated. Now apply Lemma
9.4 (3).

9.3. Since M is closed, π1(M) is finitely generated. We conclude from Lemma
9.4 (3) that either N (π1(M)) is of type II1 or π1(M) is virtually abelian and
N (π1(M)) is of type If . Suppose that π1(M) is virtually abelian. Then there
is a finite covering M → M such that π1(M) ∼= Zd for some integer d ≥ 0. Up
to homotopy we can assume that the prime decomposition of M contains no
D3 and no homotopy sphere. Hence any factor in the prime decomposition
of M has non-trivial fundamental group. Since π1(M) is abelian, this implies
that M is prime. Hence either M is S1 × S2 or an irreducible manifold
with fundamental group Zd for some integer d ≥ 1. This implies that M
is aspherical. Hence it is homotopy equivalent to T d. Since Hn(M) = 0 for
n ≥ 4, we must have d = 1, 2, 3.
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9.4. The two isomorphisms, inverse to one another, are given by ten-
soring with the R-Mn(R)-bimodule RRn

Mn(R) and the Mn(R)-R-bimodule
Mn(R)R

n
R. Notice that there is an isomorphism of Mn(R)-Mn(R)-bimodules

(Mn(R)R
n

R) ⊗R (RRn
Mn(R)) ∼= Mn(R) and an isomorphism of R-R-

bimodules (RRn
Mn(R))⊗Mn(R) (Mn(R)R

n
R) ∼= R.

9.5. From Example 9.14 we get an isomorphism

dimu : K0(L∞(X, ν)) → L∞(X, ν,Z).

Obviously dimu(A) is the constant function with value 1 which cannot be
written as 2-times an element in L∞(X, ν,Z). If we compose the canonical
map K1(Z) → K1(A) with the map given by the ordinary determinant of
commutative rings det : K1(A) → Ainv, we see that the element in K1(Z)
given by (−1) is mapped to the non-trivial element −1 in A. Hence K1(A) →
K̃1(A) is not injective.

Consider the matrices

P1 =
(

1 0
0 0

)
, P2 =

(
0 0
0 1

)
, U =

(
0 1
1 0

)
.

Then P 2
i = Pi for i = 1, 2, P1 + P2 = I and UP1U

−1 = P2. Hence we get for
the M2(A)-module A2

A2 ⊕A2 ∼= (P1)⊕ (P1) ∼= (P1)⊕ (P2) ∼= (I2) = M2(A).

Hence A2 is finitely generated projective and we get [M2(A)] = 2 · [A2] in
K0(A). The generator of K1(Z) is sent under the canonical map K1(Z) →
K1(M2(A)) to zero because of

(−1 0
0 −1

)
=

(−1 0
0 1

)
· U ·

(−1 0
0 1

)−1

· U−1.

9.6. See [51, Example 8.1.2 on page 67], [514, Example 7.1.11 on page 134].

9.7. This follows from Theorem 9.13 since N (G) = CG for a finite group G.
See also [470, Corollary 2 in Chapter 2 on page 16].

9.8. Let f∗ : C∗ → D∗ be an R-chain homotopy equivalence of finite based
free R-chain complexes such that Hn(C∗) and Hn(D∗) are S-torsion for each
n. Since RS−1 is flat as R-module, the RS−1-chain complexes RS−1 ⊗R C∗
and RS−1 ⊗R D∗ are finite based free acyclic RS−1-chain complexes. Hence
ρ(RS−1 ⊗R C∗) and ρ(RS−1 ⊗R D∗) are defined and we get in K1(RS−1)

ρ(RS−1 ⊗R D∗)− ρ(RS−1 ⊗R C∗) = τ(RS−1 ⊗R f∗).
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Since K1(R) → K1(RS−1) sends τ(f∗) to τ(RS−1⊗Rf∗), we see that the class
of ρ(RS−1 ⊗R C∗) in coker(i1) depends only on the R-chain homotopy type
of C∗ and is in particular independent of the choice of R-basis. Notice that
there is a canonical isomorphism from coker(i1) to the image of K1(RS−1) →
K0(R → S).

Fix based free 1-dimensional chain complexes F∗[n] such that Hi(F∗[n]) =
0 for i 6= 0 and H0(F∗[n]) is R-isomorphic to Hn(C∗). Let d be the dimen-
sion of C∗. One easily constructs an R-chain homotopy equivalence from⊕d

n=0 ΣnF∗[n] to C∗. This implies that ρ(F∗[n]) and
∑d

n=0(−1)n · ρ(F∗[n])
have the same image under the map K1(RS−1) → K0(R → S). One easily
checks that ρ(F∗[n]) is mapped to [Hn(C∗)] under the map K1(RS−1) →
K0(R → S).

9.9. Obviously RS−1 = Q. The determinant of commutative rings induces
isomorphisms K1(Z)

∼=−→ {±1} and K1(Q)
∼=−→ Qinv and the rank of an abelian

group and the dimension of a rational vector space induce isomorphisms
K0(Z)

∼=−→ Z and K0(Q)
∼=−→ Z. This follows from the fact that Z has a

Euclidean algorithm and that Q is a field. A Z-module M is Q-torsion and
has a 1-dimensional finite free resolution if and only if it is a finite abelian
group. This follows from the fact that a finitely generated abelian group
is a direct sum of finitely many copies of cyclic groups. The isomorphism
K0(Z→ Q)

∼=−→ Q+,inv sends a finite abelian group M to its order.

9.10. Since CG = l2(G) any CG-submodule of CG is a direct sum-
mand. Hence CG is semisimple. By Wedderburn’s Theorem we have CG =∏r

i=1 Mni(C) since any finite-dimensional skew field over C is C itself. We
have

Z(CG) ∼=
r∏

i=1

Z(Mni(C)) ∼=
r∏

i=1

C.

This shows that r is the number of conjugacy classes of elements in G. We
have

K0(CG) ∼= K0

(
r∏

i=1

Mni(C)

)
∼=

r∏

i=1

K0(C) ∼= Zr.

Analogously we get

K1(CG) ∼= K1

(
r∏

i=1

Mni(C)

)
∼=

r∏

i=1

K1(C) ∼=
r∏

i=1

Cinv.

We conclude from Theorem 9.31 that

Lp
0(CG) = K0(CG) = Zr;

Lp
1(CG) = 0;

Lh
1 (CG) = 0;

Ls
1(CG) = Z/2;
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and that Ls
0(CG) is a subgroup of finite index in Lh

0 (CG), and Lh
0 (CG) is a

subgroup of finite index in K0(CG). This implies

Lh
0 (CG) = Zr;

Ls
0(CG) = Zr.

9.11. An Ore localization of a Noetherian ring is again Noetherian [448,
Poposition 3.1.13 on page 278]. Hence U(G) is Noetherian if N (G) is (see
Theorem 8.22 (1)). If U(G) is Noetherian, it must be semisimple since it is
von Neumann regular (see Lemma 8.20 (2) and Theorem 8.22 (3)). For any
semisimple ring its K0-group is finitely generated. We conclude K0(N (G)) =
K0(U(G)) from Theorem 9.20 (1).

Suppose that K0(N (G)) is finitely generated. We can split N (G) =
N (G)I×N (G)II . Since K0(N (G)II) → Z(N (G)II)Z/2 is surjective by Theo-
rem 9.13 (2),N (G)II must be trivial. HenceN (G) is of type I. Lemma 9.4 (1)
implies that G is virtually abelian. Since the image of dimN (G) : K0(N (G)) →
R is finitely generated and contains |H|−1 for any finite subgroup H ⊂ G,
there must be a bound on the orders of finite subgroups of G. Suppose that
Z ⊂ G. Since dimN (Z) : K0(N (Z)) → R is surjective and dim is compat-
ible with induction, dimN (G) : K0(N (G)) → R is surjective and therefore
K0(N (G)) is not finitely generated. Hence G is a virtually abelian group
which does not contain Z as subgroup and has a bound on the orders of its
finite subgroups. This implies that G is finite.

9.12. Suppose that R is semihereditary. Let f : P → P be a nilpotent R-
endomorphism of a finitely generated projective R-module. Then im(f) ⊂ P
is a finitely generated submodule of a finitely generated projective one and
hence projective. We have exact sequences 0 → (im(f), f) → (P, f)

pr−→
(P/ im(f), 0) → 0 and 0 → (im(f), 0) → (P, 0)

pr−→ (P/ im(f), 0) → 0. Let
(M, g) be the pullback of (P, f)

pr−→ (P/ im(f), 0))
pr←− (P, 0). We obtain exact

sequences 0 → (im(f), f) → (M, g) → (P, 0) → 0 and 0 → (im(f), 0) →
(M, g) → (P, f) → 0. Notice that M is finitely generated projective (what is
not necessarily true for P/ im(f)) and g is nilpotent as f is nilpotent. We get
in Nil(R)

[im(f), f ] + [P, 0] = [M, g] = [im(f), 0] + [P, f ].

This implies [P, f ] = [im(f), f ] ∈ Ñil(R). We can iterate this argument and
get [P, im(f)] = [im(fn), f ] ∈ Ñil(R) for all natural numbers n. Choose n

large enough that fn = 0 and we conclude [P, f ] = 0 ∈ Ñil(R).
Both N (G) and U(G) are semihereditary (see Theorem 6.5, Theorem 6.7

(1), Lemma 8.18 and Theorem 8.22 (3).

9.13. Suppose Wh(G) is trivial. Consider a finite subgroup H of the center
of G. We derive from Theorem 9.38 that Q⊗ZWh(H) is trivial. The rank of
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the finitely generated abelian group Wh(H) is the difference r− q, where r is
the number of R-conjugacy classes and q the number of Q-conjugacy classes
in G (see Subsection 3.1.1). We conclude r = q. A finite abelian group H
satisfies r = q if and only if any cyclic subgroup has at most two generators.
A non-trivial cyclic group Z/n has at most two generators if and only if
n = 2, 3, 4, 6. Hence H is a finite product of copies of Z/2, Z/3 or of Z/2 and
Z/4.

9.14. We conclude from Theorem 9.62 that the image of K0(N (ZG)) →
K0(N (G)) is generated by [N (G)]. We conclude from Lemma 9.56 for any
finitely generated projective ZG-module P that the image of [P ] under
K0(ZG) → K0(N (G)) is HS(C⊗Z P )(1) · [N (G)].

9.15. This follows from Theorem 9.54 (3).

9.16. This follows from Theorem 9.13 (2), Lemma 9.56 and Theorem 9.63.

9.17. The map dA sends [M ] to [PM ]. The proof that it is well-defined is
similar to the one of Theorem 9.64. The argument for U is analogous using
Lemma 8.27.

9.18. The map G0(CF ) → G0(CF ) given by V ⊗C − and the diagonal F -
action is well-defined and sends the class of C[F/H] to the class of V ⊗C
C[F/H]. Hence it suffices to show that [C[F/H]] = 0 in G0(CF ). If H is
trivial, this has already been proved in Theorem 9.66 (2). Since any subgroup
of a free group is free, it remains to treat the case, where H is a non-trivial
free group.

The map given by induction G0(CH) → G0(CF ) sends [C] to [C[G/H]],
where C is viewed as CH-module by the trivial action. Let f : H → Z be
an epimorphism. Restriction with f induces a homomorphism G0(CZ) →
G0(CH) which sends [C] to [C]. We have already shown in the proof of
Theorem 9.66 (2) that [C] = 0 in G0(CZ).

9.19. Since G is finite, QG is semisimple and hence any finitely generated
QG-module is finitely generated projective. The functor sending a ZG-module
M to the QG-module QG ⊗ZG M ∼=QG Q ⊗Z M is exact. Hence j is well-
defined.

Consider a finitely generated projective QG-module P . Choose an idem-
potent matrix A ∈ Mn(QG) such that the image of the map rA : QGn → QGn

given by right multiplication with A is QG-isomorphic to P . Choose an in-
teger l ≥ 1 such that B := l · A is a matrix over ZG. Let M be the cokernel
of the map rB : ZGn → ZGn. Then G0(ZG) → K0(QG) maps [M ] to [P ].
Hence G0(ZG) → K0(QG) is surjective.

A more general result is proved in Lemma 10.70 (1).
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Chapter 10

10.1. Analogous to the proof of Lemma 10.5, where here Y should be a finite
2-dimensional CW -complex with π1(Y ) ∼= G and p : Y → Y be its universal
covering.

10.2. We get a G-covering X → X/G with finite G\X. We get an exact
sequence π1(G\X) → G → π0(G\X). Since π1(G\X) is finitely generated
and π0(X) is a finite set, G contains a finitely generated subgroup of finite
index. Hence G is finitely generated.

Suppose that there is an epimorphism f ′ : Fg → G from the free group
of rank g to G. Choose a map f : #g

i=1S
1 × S2 → BG which induces f ′ on

the fundamental groups. Take M to be the pullback of EG → BG with f .
Then M is a cocompact free proper G-manifold. The long exact homotopy
sequence implies that M is connected.

10.3. Suppose that d(Λ) = 0. Consider r ∈ R and ε > 0. We can find
g ∈ Λ with 0 < g < ε. Choose n ∈ Z with n · g ≤ r ≤ (n + 1) · g. Hence
0 ≤ r − n · g ≤ ε. Hence Λ is dense in R. This shows that Λ = R if and only
if Λ is closed and satisfies d(Λ) = 0.

Suppose that d(Λ) > 0 and Λ is closed. Then d(Λ) ∈ Λ. Consider g ∈ Λ.
Choose n ∈ Z with n ·d(Λ) ≤ g < (n+1) ·d(Λ). Since 0 ≤ g−n ·d(Λ) < d(Λ)
and g − n · d(Λ) ∈ Λ, we conclude g = n · d(Λ).

10.4. Without loss of generality we can assume that C∗ is finite dimensional.
Since any module is the colimit of its finitely generated submodules, we can
find a directed system of finite FG-subchain complexes C∗[i] ⊂ C∗ such that
C∗ = colimi∈I C∗[i]. Since the functor colimit over directed systems is exact
and N (G)⊗FG − commutes with colimits, we conclude

Hp(N (G)⊗FG Hp(C∗)) = colimi∈I Hp(N (G)⊗ C∗[i]).

Because of Theorem 6.13 (2) it suffices to show for any FG-chain map
f∗ : D∗ → E∗ of finite FG-chain complexes

dimN (G) (im (Hp (id⊗FGf∗ : N (G)⊗FG D∗ → N (G)⊗FG E∗))) ∈ Λ.

Since we have the long exact homology sequence associated to the exact
sequence 0 → D∗ → cone(f∗) → ΣC∗ → 0, we conclude from Additivity (see
Theorem 6.7 (4b)) that it suffices to show for any finite FG-chain complex
F∗ and p ∈ Z that

dimN (G) (Hp (N (G)⊗FG F∗)) ∈ Λ.

Again from Additivity (see Theorem 6.7 (4b)) we conclude that it suffices to
show for any FG-map g : M0 → M1 of finitely generated FG-modules that



16. Solutions of the Exercises 549

dimN (G) (im (id⊗FGg : N (G)⊗FG M0 → N (G)⊗FG M1)) ∈ Λ.

Since N (G)⊗FG M0
id⊗F Gg−−−−−→ N (G)⊗FG M1

pr−→ N (G)⊗FG coker(g) → 0 is
exact, Additivity (see Theorem 6.7 (4b)) implies

dimN (G) (im (id⊗FGg : N (G)⊗FG M0 → N (G)⊗FG M1))
= dimN (G) (N (G)⊗FG M1)− dimN (G) (N (G)⊗FG coker(g)) .

But dimN (G) (N (G)⊗FG M1) and dimN (G) (N (G)⊗FG coker(g)) belong to
Λ because of Lemma 10.7 and Lemma 10.10 (3) since G satisfies by assump-
tion the Atiyah Conjecture 10.3 of order Λ with coefficients in F .

10.5. This follows from the previous Exercise 10.4 applied to N (G) ⊗ZG

C∗(EG) or from Theorem 6.99.

10.6. Pass to the sequence of p-Sylow subgroups. Now use the fact that a
maximal proper subgroup of a p-group has index p and any proper subgroup
is contained in a maximal proper subgroup to construct the desired sequence
K1 ⊂ K2 ⊂ K3 ⊂ . . . . Now the argument is a variation of the argument
appearing in Example 10.13. Notice that |Kn|−1 − |Kn−1|−1| is (p − 1)/p.
Use the p-adic expansion of r/(p − 1) and replace QG by (QG)p−1. If the
n-th coefficient of the p-adic expansion is kn, use (In)kn ⊂ (QG)kn ⊂ (QG)n.

10.7. This is done by transfinite induction (see Lemma 10.40). Details can
be found in [435, Theorem 7.7].

10.8. By the previous Exercise 10.7 C if closed under free products. For any
positive integer k the group ∗k

n=1Gn belongs to Linnell’s class C. Since any
finite subgroup of ∗k

n=1Gn is conjugate to a subgroup of one of the summands
Gi (see [471, Theorem 8 in Section I.4 on page 36]), there is an upper bound
on the orders of finite subgroups of ∗k

n=1Gn. Hence ∗k
n=1Gn satisfies the strong

Atiyah Conjecture 10.2 by Theorem 10.19. Since G is the directed union of
the subgroups ∗k

n=1Gn, we conclude from Lemma 10.4 that G satisfies the
strong Atiyah Conjecture 10.2. Now take G = ∗∞n=1Z/2n. We could also take
G =

⊕
n∈Z Z/2 which satisfies the strong Atiyah Conjecture 10.2 by Lemma

10.4 since it is locally finite.

10.9. Any manifold M which has a boundary or which is not compact
is homotopy equivalent to a CW -complex of dimension dim(M) − 1. Any
1-dimensional CW -complex has a free group as fundamental group. Hence
π1(M) is free and hence belongs to C if M is a 2-dimensional manifold which
has boundary or which is not compact.

Let M be a closed 2-dimensional manifold. If H1(M)/ tors(M) is trivial,
then π1(M) is finite and hence belongs to C. Suppose H1(M)/ tors(M) is not



550 16. Solutions of the Exercises

trivial. Then H1(M)/ tors(M) is Zn for some integer n ≥ 1. Let M → M be
the covering associated to the epimorphism π1(M) → H1(M)/ tors(H1(M)).
Then M is a 2-dimensional non-compact manifold and hence has a free fun-
damental group. Because there is an exact sequence 1 → π1(M) → π1(M) →
Zn → 1, the fundamental group π1(M) belongs to C. Now apply Theorem
10.19.

10.10. The fundamental group of F belongs to C by the previous Exercise
10.9. Since C is closed under extensions with amenable quotient and Z and
each finite group are amenable, π1(M) belongs to C. Now apply Theorem
10.19.

10.11. Suppose that G contains a non-trivial element g such that the
centralizer CG(g) has finite index in G. Then b

(2)
p (G;N (G)) = 0 for all

p ≥ 0 by Theorem 6.54 (6b) and Theorem 7.2 (1) and (2). We conclude
H

(2)
p (EG;N (G)) = 0 from Theorem 6.7 (4e), Lemma 6.28 (3) and Lemma

6.52.
Suppose that G contains no non-trivial element g such that the central-

izer CG(g) has finite index in G. Then N (G) is a factor by Lemma 9.4 (4)
and dimN (G) and the universal center valued dimension dimu

N (G) agree. By

assumption b
(2)
p (EG;N (G)) = dimN (G)(HG

p (EG;N (G)) is a non-negative
integer n. We conclude from Theorem 6.7 (4e) and Theorem 9.13 (1) that
PHG

p (EG;N (G)) is N (G)-isomorphic to N (G)n. Lemma 6.52 implies that

the Hilbert N (G)-modules H
(2)
p (EG) and l2(G)n are isomorphic.

10.12. Suppose that π1(M) belongs to C. We conclude b
(2)
p (M̃) = 0 for

p ≥ 2 from Theorem 8.31 and (10.86). Since b
(2)
n (M̃) 6= 0 by Theorem 1.62,

we conclude n = 1. If n = 1, we get π1(M) ∈ C from Exercise 10.9.

10.13. Let 0 → ⊕
n∈Z Z/2 → L → Z→ 0 be the canonical exact sequence for

the lamplighter group L. The lamplighter group does not satisfy the strong
Atiyah Conjecture 10.2 by Theorem 10.23. Since

⊕
Z Z/2 is locally finite,

it satisfies the strong Atiyah Conjecture 10.2 because of Lemma 10.4. The
group Z satisfies the strong Atiyah Conjecture 10.2 by Lemma 1.34 (1).

10.14. Since each S(Gi) is von Neumann regular by assumption, S(G) is von
Neumann regular. Since K0 commutes with directed unions of rings and each
S(Gi) satisfies K′, the union S(G) satisfies K′ by Theorem 3.14 (6). Let G
be the locally finite group

⊕
n∈Z Z/2 and {Gi | i ∈ I} be the directed system

of its finitely generated subgroups. Each Gi is finite and hence D(Gi) = CGi

is semisimple for each i ∈ I. We get D(G) =
⋃

i∈I D(Gi) from Lemma 10.83.
But D(G) cannot be semisimple by Lemma 10.28 (1).
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10.15. The proof that the map is well-defined is analogous to (6.4). The
integrality of its image follows from Lemma 10.46.

10.16. Fix a set-theoretic section s : G/H → G of the projection G → G/H.
Then a CH-basis for CG considered as CH-module is given by {s(gH) | gH ∈
G/H}. The image of this basis under the obvious inclusion CG ⊂ D(G) is
a D(H)-basis for D(G) considered as D(H)-module (see Lemma 10.59). The
image of this D(H)-basis under the inclusion D(G) → U(G) is a U(H)-basis
for U(G) considered as U(H)-module. This shows that the left and middle
vertical arrow are well-defined and that the diagram commutes.

Let G be a virtually finitely generated free group G. If d is the least
common multiple of the orders of finite subgroups of G, then one can find
a finitely generated free subgroup F ⊂ G of index d (see for instance [24,
Theorem 8.3 and Theorem 8.4], [461, Theorem 5 in Section 7 on page 747]).
Then D(H) is semisimple by Lemma 10.39 and Theorem 10.43. Hence the
image of the composition

K0(D(G)) i−→ K0(U(G))
dimU(G)−−−−−→ R

is contained in 1
|FIN (G)|Z, since this is true for F by Lemma 10.51 and the

diagram appearing in the exercise commutes. Since any virtually free group
G is the directed union of its finitely generated subgroups {Gi | i ∈ I}, each
Gi is again virtually finitely generated free, D(G) =

⋃
i∈I D(Gi) by Lemma

10.83 and K0 commutes with directed unions, the claim follows.

10.17. One easily checks that f is injective. We have

ψ(y−1z − x−1y) = (xu)−1xu2 − x−1xu = u− u = 0.

Since L is a skewfield, the division closure D of im(f) is itself a skewfield.
Since the skewfield generated by im(f) is division closed, it agrees with D, i.e.
f yields a field of fractions f : C〈x, y, z〉 → D. It cannot be a universal field of
fractions by Lemma 10.77. Moreover, f : C〈x, y, z〉 → D and C〈x, y, z〉 → K
cannot be isomorphic fields of fractions.

10.18. Let G be a countable group which is not finitely generated, for in-
stance the free group on a countable infinite set of generators. Let {Gi | i ∈ I}
be the directed system of its finitely generated subgroups. Then G =

⋃
i∈I Gi

but G 6= Gi for all i ∈ I. Choose a numeration G = {g1, g2, g3, . . .}. We get
an element u =

∑∞
n=1

1
n2 · gn in l1(G). We have already seen in Exercise 8.3

that l1(G) ⊂ N (G), namely, right multiplication with u defines a bounded
G-equivariant operator ru : l2(G) → l2(G). If this element lies in N (Gi) for
a finitely generated subgroup Gi, then ru(1) ∈ l2(Gi). This yields a contra-
diction because Gi 6= G. This shows N (G) 6= ⋃

i∈I N (Gi). This implies also
U(G) 6= ⋃

i∈I U(Gi) since N (G) ∩ U(Gi) = N (Gi) by Lemma 8.3 (4).
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10.19. This follows from Theorem 9.20 (1), Theorem 10.38 and Theorem
10.87.

Chapter 11

11.1. Take M = T 2 × Fg for a closed connnected orientable surface Fg of
genus g ≥ 2 and equip M with the product of the flat Riemannian metric
on T 2 and the hyperbolic Riemannian metric on Fg. Theorem 3.105 implies
b
(2)
p (M̃) = 0 for p ≥ 0.

11.2. The universal covering of a flat closed manifold M is isometrically
diffeomorphic to Rn. Recall that T̃n is det-L2-acyclic and ρ(2)(T̃n) = 0 (see
Theorem 3.105). Now apply Theorem 3.183.

11.3. Suppose that π1(F ) and π1(B) are finite. Then π1(E) is finite. The
values of the zero-th and first L2-Betti number of Ẽ can be derived from The-
orem 1.35 (1) and (8). Now apply the Euler-Poincaré formula and Poincaré
duality (see Theorem 1.35 (2) and (3)).

Suppose that exactly one of the groups π1(F ) and π1(B) is finite. Then
π1(E) is infinite and hence b

(2)
0 (Ẽ) = 0 by Theorem 1.35 (8). A spectral

sequence argument shows b
(2)
2 (M̃) = 0, the corresponding entries on the E2-

term have vanishing von Neumann dimension. We get b
(2)
1 (M̃) = b

(2)
3 (M̃) and

b
(2)
0 (M̃) = b

(2)
4 (M̃) = 0 from Poincaré duality (see Theorem 1.35 (3)). Now

apply the Euler-Poincaré formula (see Theorem 1.35 (2)) and the product
formula for the Euler characteristic χ(M) = χ(F ) · χ(B).

Suppose that both π1(B) and π1(F ) are infinite. We conclude b
(2)
p (M̃) =

0 for p = 0, 1 from Theorem 6.67. Now apply Euler-Poincaré formula and
Poincaré duality (see Theorem 1.35 (2) and (3)).

If M is aspherical, either F and B are closed surfaces of genus g ≥ 1 or
one of them is S1.

11.4. Suppose that dim(M) = 2. Then M is a closed surface of genus ≥ 2
by the Gauss-Bonnet formula and the claim follows from Example 1.36 and
Example 2.70.

Suppose dim(M) ≥ 4. We conclude from Theorem 11.6 that b
(2)
p (M̃) = 0

and α∆
p (M̃) = ∞+ holds for p < dim(M)/2 since for some b with 1− dim(M)

2 <
b < 1 and a = 1 we have −a2 ≤ sec(M) ≤ −b2. Now apply Poincaré duality
(see Theorem 1.35 (3) and Theorem 2.55 (2)) and Theorem 2.66 (2).

11.5. See [520, Proposition 4.6 on page 190] for M a Kähler manifold. Kähler
hyperbolicity is proved analogously.
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11.6. See [520, (1.12) on page 158].

11.7. Suppose such N ⊂ M̃ exists. Then N is closed Kähler with Kähler
form ω|N if ω is the Kähler form of M . Then (ω|N )dim(N)/2 is a multiple of
the volume form of N [520, (1.12) on page 158] and cannot be exact although
ω is exact.

11.8. The Kähler structure is given in [520, Example 4.4 on page 189]. Since
b
(2)
n (T̃ 2n) = 0, Theorem 11.14 implies that there is no Kähler hyperbolic

structure on T 2n.

11.9. The desired isomorphism is induced by complex conjugation (see [520,
Theorem 5.1 in V.5 on page 197]).

11.10. Because of Theorem 6.54 (6b) it suffices to treat the case G = G0.
Obviously G acts properly on the contractible space Eπ for π = π1(F ). We
conclude from Example 1.36, Theorem 6.54 (2) and Theorem 13.45 (4)

b
(2)
1 (G) = b

(2)
1 (Eπ;N (G)) = k · b(2)

1 (Eπ;N (π)) = k · b(2)
1 (π) 6= 0

if k is the order of the kernel of G0 → π.

11.11. See [3, page 3]).

Chapter 12

12.1. See [496, Satz 18.2 in §18 on page 223].

12.2. Because of Lemma 12.3 and homotopy invariance (see Theorem 1.35
(1) and Theorem 2.55 (1)) it suffices to show that it is not possible that
both b

(2)
p (M̃) = b

(2)
p (π) vanishes for p = 0, 1 and αp(M̃) = αp(π) is ∞+ for

p = 1, 2. Suppose the contrary.
We can assume without loss of generality that ∂M has no boundary com-

ponent which is homotopy equivalent to S2. Otherwise we can attach finitely
many copies of D3 to M , what does not affect the fundamental group of π
of M . Furthermore we can assume that the prime decomposition contains no
homotopy sphere because removing such factor from the prime decomposition
does not alter the homotopy type.

Since χ(∂M) = 2 · χ(M) implies χ(M) ≤ 0, we conclude from Theorem
4.1 that b

(2)
p (M̃) = 0 for p = 0, 1, 2, 3 and hence M is homotopy equivalent

to RP 3#RP 3 or a prime 3-manifold with infinite fundamental group whose
boundary is empty or a union of tori. Theorem 4.2 (2) implies that M is not
homotopy equivalent to RP3#RP3 or S1×S2. Hence we are left with the case
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that M is irreducible and non-exceptional and has infinite fundamental group.
The case that M is closed is excluded by Theorem 4.2 (2) and (4). The case
that ∂M contains an incompressible torus is ruled out by Theorem 4.2 (4).
The case, where ∂M contains an compressible torus is reduced to the case,
where ∂M contains no compressible torus by the construction appearing in
the proof of [322, Lemma 6.4 on page 52] based on the Loop Theorem [252,
Theorem 4.2 on page 39] and the formula for first L2-Betti number under
wedges (see Theorem 1.35 (5)).

12.3. By Lemma 5.10 we have M̃ = M̃Eucl × M̃ncp. Now the claim follows
from (5.14) and (5.15) and Lemma 12.3.

12.4. Consider r > 0. Choose r0 > 0 and x̃0 ∈ M̃ such that M̃ =⋃
w∈π1(M) Br0(w · x̃0) and r0 ≥ r. This is possible since M is compact. Since

M̃ is contractible, we can find R > 2r0 such that B2r0(x̃0) is contractible
in BR(x̃0). Then B2r0(w · x̃0) is contractible in BR(w · x̃0). For each x̃ ∈ M̃
we can find w ∈ π1(M) such that x̃ ∈ Br0(w · x̃0). Hence we get for ap-
propriate w ∈ π1(M) that Br(x̃) ⊂ B2r0(w · x̃0). This shows that Br(x̃) is
contractible in BR(w · x̃0). Since BR(w · x̃0) ⊂ B2R(x̃), we conclude that
Br(x̃) is contractible in B2R(x̃) for a number 2R which does not depend on
x̃.

12.5. See [341, Lemma 11.6 (5) on page 806].

12.6. This follows from a spectral sequence argument applied to homology
with coefficients in N (π1(E)) and Lemma 12.3.

12.7. Since π is not amenable, Hπ
0 (Eπ;N (π)) = 0 by Lemma 12.11 (4). The

condition χ(X) = 0 and Hπ
p (X̃;N (π)) = Hπ

p (Eπ;N (π)) = 0 for p = 0, 1

imply b
(2)
2 (X̃) = 0 by the Euler-Poincaré formula (see Theorem 1.35 (2)).

Since N (π) is semihereditary (see Theorem 6.5 and Theorem 6.7 (1)) and
H2(X̃;N (π)) is the kernel of the second differential c

N (π)
2 of N (π) ⊗Z[π]

C∗(X̃), H2(X̃;N (π)) is direct mmand in N (π) ⊗Z[π] C2(X̃) ∼= N (π)s. Since
H2(X̃;N (π)) has trivial von Neumann dimension, it must be zero by Lemma
6.28 (3). Since c

N (π)
2 is injective, c2 is injective. Hence Hp(X̃) = 0 for p ≥ 2

and X̃ must be contractible.

12.8. We conclude def(G) ≤ 1 from Lemma 7.22.
Suppose that def(G) = 1. Then we can find a connected finite 2-

dimensional CW -complex X with G ∼= π1(X) and χ(X) = 0. Lemma 12.11
(4) implies that G is non-amenable. Now apply the previous Exercise 12.7 to
X.
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12.9. We get q(G) ≥ 0 from the Euler-Poincaré formula (see Theorem 1.35
(2)) and Poincaré duality (Theorem 1.35 (3)). The claim in the case q(G) = 0
follows from Lemma 12.5.

12.10. We get HG×H
n (E(G × H);N (G × H)) = 0 for n ≤ d + e + 1 from

Lemma 12.11 (3). We conclude HG×H
l+e+2(E(G × H);N (G × H)) 6= 0 from

Lemma 12.3 and the product formulas Lemma 2.35 (1) and Theorem 6.54
(5) using Lemma 2.17 (1). (Notice that in the case of the Novikov-Shubin
invariants we do not need the assumption that the spectral density functions
have the limit property. This enters only when we want to get numerical
values but not when we want to decide whether the Novikov-Shubin invariant
is ∞+.)

12.11. G = Z/2,Zn,
∏∞

i=1(Z/2 ∗ Z/2): Since G is in all cases an extension
of two abelian groups and hence amenable, we conclude s = −1 from Lemma
12.11 (4).

G = ∗r
i=1Z for r ≥ 2: This group is non-amenable and b

(2)
1 (G) = r − 1 6= 0.

We conclude s = 0 from Lemma 12.3 and Lemma 12.11 (4).

G =
∏r

i=1 Z ∗Z: Since Z ∗Z is non-amenable and b
(2)
r (G) 6= 0 by the product

formula (see Theorem 6.54 (5)), we conclude s = r−1 from Lemma 12.3 and
Lemma 12.11 (3).
G = Z × (Z ∗ Z): We have already computed s for Z and Z ∗ Z. Now s = 0
follows from the previous Exercise 12.10.
∏∞

i=1(Z/2 ∗ Z/3): The group Z/2 ∗ Z/3 is not amenable since it contains a
non-abelian free group of finite index. Hence s = ∞ by Lemma 12.11 (5).

12.12. (1) is clear when one works with differential forms and uses a collar
of ∂N in N .
(2) Since the signature of N is non-zero, the image of H2k(N ; ∂N ;C) →
H2k(N ;C) and hence the image of H2k

c (M ;C) → H2k(M ;C) are non-trivial.
Lemma 1.92 implies that Hp

(2)(M) is different from zero. From Theorem 1.72
we conclude that the kernel of (∆2k)min : dom ((∆2k)min) ⊂ L2Ω2k(M) →
L2Ω2k(M) is non-trivial. Hence this operator contains zero in its spectrum.

Chapter 13

13.1. The Bass-Heller Swan decomposition for (Z[G])[Z] = Z[G× Z] yields
an isomorphisms

K0(ZG)⊕K1(ZG)⊕Nil(ZG)⊕Nil(ZG)
∼=−→ K1(Z[G× Z]).
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Its reduced version is the isomorphism

K̃0(ZG)⊕Wh(G)⊕ Ñil(ZG)⊕ Ñil(ZG)
∼=−→ Wh(G× Z).

We have analogous Bass-Heller-Swan isomorphisms for N (G)[Z]. These are
natural with respect to the change of rings map ZG → N (G).

The map K̃0(ZG) → K̃0(N (G)) is trivial (see Theorem 9.62). We get
Ñil(N (G)) = 0 from Exercise 9.12. The map K1(Z[G × Z]) → K1(N (G ×
Z)) factorizes through K1(N (G)[Z]). The composition Wh(G) → Wh(G ×
Z) ΦG×Z
−−−→ R agrees with φG by Theorem 3.14 (6).

13.2. One checks for x ∈ im(Eλ) ∩⋂
µ<λ im(Eµ)⊥ using (1.65) and Lemma

2.2 (2)

〈f(x)− λx, f(x)− λx〉 = ||f(x)||2 − 2λ · 〈f(x), x〉+ λ2 · ||x||2
= λ2||x||2 − 2λ2 · ||x||2 + λ2 · ||x||2 = 0.

This implies

im(Eλ) ∩
⋂

µ<λ

im(Eµ)⊥ = {u ∈ U | f(u) = λ}.

Now apply Additivity and Continuity of dimN (G) (see Theorem 1.12 (2) and
(4)).

13.3. We conclude from the previous Exercise 13.2 that F is continuous at
λ. Theorem 13.19 (1) implies

F (λ) = F+(λ) = F
+
(λ).

If F (λ) = F (λ) − ε, we get F (µ) = F+(µ) ≤ F (λ) ≤ F (λ) − ε for µ < λ.
Continuity of F at λ implies ε = 0. Hence F (λ) = F (λ) = F (λ).

13.4. Choose a numeration {gn | n = 0, 1, 2, . . .} of G with g0 = 1. We
construct inductively a sequence i0 ≤ i1 ≤ i2 ≤ . . . such that {g0, g2, . . . , gn}∩⋂n

k=1 Gik
= {1}. The induction beginning n = 0 is trivial. In the induction

step we can find an index i′n ∈ I such that gn 6∈ Gi′n . Choose in ∈ I such that
i′n ≤ in and in−1 ≤ in.

13.5. Since G is of det ≥ 1-class, NH and WH are of det ≥ 1-class by
Theorem 13.3 (3). Hence ΦWH : Wh(WH) → R is trivial by Lemma 13.6.
The following diagram commutes by Theorem 3.14 (6) and Theorem 13.45
(6).
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K1(ZWH) res−−−−→ K1(QNH) ind−−−−→ K1(QG)y
y

y
K1(N (WH)) res−−−−→ K1(N (NH)) ind−−−−→ K1(N (G))

y
y

y

R
· 1
|H|−−−−→ R id−−−−→ R

The map in question is obtained by starting at the left upper corner, going to
the right upper corner and then going down to the right lower corner. Hence
it factorizes through ΦWH which agrees with the composition of the map,
which is obtained by going from the upper left corner down to the left lower
corner, and the projection K1(ZWH) → Wh(WH).

13.6. Let H ⊂ G be a subgroup of finite index which is residually finite
or residually amenable respectively. Then H ′ =

⋂
g∈G gHg−1 is a normal

subgroup of G of finite index in both H and G. Consider g ∈ G. If g does
not lie in H ′, then the projection G → G/H ′ maps g to an element different
from 1 and G/H ′ is finite and amenable. Suppose g ∈ H ′. Then we can find
an epimorphism f : H → L for some group L, which is finite or amenable
respectively, such that g is not mapped to 1 ∈ L. Let K be the kernel of f
which is a normal subgroup in H. Then K ′∩⋂

g∈G gKg−1 ⊂ G has finite index
and G/K ′ is finite or amenable respectively and the projection G → G/K ′

sends g to an element different from 1 in G/K ′.

13.7. Choose a sequence of normal subgroups of finite index

π1(Fg) = H0 ⊃ H1 ⊃ H2 ⊃ . . .

with
⋂∞

i=0 Hi = {1} and a sequence of integers n1 ≤ n2 ≤ . . . such that
[π1(Fg) : Hi] ≥ exp(i · ni) holds for i ≥ 1. Put Gi = 2ni · Z×Hi. Then

b1(Gi\X̃)
[π1(X) : Gi]1−ε

=
(2g − 2) · [π1(Fg) : Hi] + 3
[π1(Fg) : Hi]1−ε · 2ni·(1−ε)

=
(2g − 2) · [π1(Fg) : Hi]ε

2ni·(1−ε)
+

3
[π1(Fg) : Hi]1−ε · 2ni·(1−ε)

.

If ε = 0, this converges for i →∞ to zero. Suppose ε > 0, we get

b1(Gi\X̃)
[π1(X) : Gi]1−ε

≥ (2g − 2) · exp(i · ni · ε)
2ni·(1−ε)

and hence b1(Gi\X̃)
[π1(X):Gi]1−ε converges to ∞ for i →∞.

13.8. We get from Exercise 3.5 and the product formula for analytic tor-
sion (which can be viewed as a special case of (3.126) in combination with
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Theorem 3.149) and Theorem 3.105

ρan(Gi\S̃1) = ln(vol(Gi\S1));

ρan((Gi ×Hi)\(S̃1 ×N)) = ρan(Gi\S̃1) · χ(Hi\Ñ);

ρ(2)
an (S̃1 ×N) = 0.

Since limi→∞
ln(vol(Gi\S1))

[π1(S1):Gi]
= 0 and χ(Hi\N)

[π1(N):Hi]
= χ(N) hold the claim follows.

Chapter 14

14.1. Let σ1, σ2, . . ., σm be the n-simplices in an oriented triangulation.
Denote by σ′1, σ′2, . . ., σ′m the associated singular n-simplices. Then ||M || is
represented by

∑m
i=1 σ′i and ||M || ≤ ||∑m

i=1 σ′i||1 = m.

14.2. Let u =
∑

σ∈I λσ · σ for some subset I ⊂ S1(R) be a locally finite
singular 1-chain which is in the kernel of the first differential and represents
[R] ∈ H lf

1 (R;Z). We can arrange without changing the properties above and
its L1-norm that each singular simplex σ : [0, 1] → R appearing in I is an
affine orientation preserving embedding and λσ 6= 0 holds for σ ∈ I. Notice
that I must be countable. Since u represents [R], we get for any x ∈ R such
that x does not meet σ({0, 1}) for σ ∈ I

∑
σ,

x∈σ(0,1)

λσ = 1.

Since u is locally finite, we can choose a sequence (xn)n≥0 of real numbers
such that for any σ ∈ I and n ≥ 0 we have xn 6∈ σ({0, 1}) and for any σ ∈ I
the implication xm, xn ∈ im(σ) ⇒ n = m holds . Then we get for an integer
k > 0

||
∑

σ∈I

λσ · σ||1 =
∑

σ∈I

|λσ| ≥
k∑

i=1

∑

σ∈I,
xi∈σ(0,1)

|λσ| ≥
k∑

i=1

1 = k.

14.3. Since f is proper it induces a chain map C lf
∗ (f) : C lf

∗ (M ;R) →
C lf
∗ (N ;R). This chain map preserves the L1-norm. Since f has degree d,

we get H lf
n (f)([M ]) = d · [N ]. This implies ||M || ≥ d · ||N ||.

There exists a proper selfmap Rn → Rn of degree d ≥ 2 provided that
n ≥ 2.
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14.4. Consider φ ∈ Ĉ0(X) with δ0(φ) = 0. Then φ : S0(X) → R is the
constant function since X is path-connected by assumption.

14.5. The condition that X is a simplicial complex (and not only a CW -
complex) ensures that l∞C∗(X) is indeed a subcomplex.

If X is finite, l∞C∗(X) = C∗(X), but in general H∗(X;R) and Ĥ∗(X)
are different for an finite simplicial complex X.

14.6. This follows from 13.3 (1) and (2), Lemma 14.13 and Theorem 14.27.

14.7. The cochain φ is the image under the de Rham cochain map of the
element which is given by the volume form in the de Rham complex mul-
tiplied with vol(M)−1. Hence it is a cocycle which represents the image of
the cohomological fundamental class of M under the change of rings map
Hn(M ;Z) → Hn(M ;R) (see Theorem 1.47).

Choose an orientation preserving embedding i : S1 × [0, 3]n−1 → M . Let
pn : S1 × [0, 3]n−1 → S1 × [0, 3]n−1 be the map which sends (z, t1, . . . , tn−1)
to (zn, t1, . . . , tn−1). Let σ : ∆n → S1× [0, 3]n−1 be an orientation preserving
embedding whose image contains S1 × [1, 2]n−1. Then

|φ(i ◦ pn ◦ σ)| =
∫

∆p

(i ◦ pn ◦ σ)∗ dvolM

≥
∫

S1×[1,2]n−1
(i ◦ pn)∗ dvolM

= n ·
∫

S1×[1,2]n−1
i∗ dvolM .

Since
∫

S1×[1,2]n−1 i∗ dvolM > 0 and n can be chosen arbitrary large, we con-
clude ||φ||∞ = ∞.

14.8. The chain map Csing
p (f) : Csing

p (X;R) → Csing
p (Y ;R) is isometric

with respect to the L1-norm. The cochain map Cp
sing(f) : Cp

sing(Y ;R) →
Cp

sing(X;R) is norm decreasing with respect to the L∞-norm.

14.9. This follows from Theorem 14.46 using the Euler Poincaré formula
(see Theorem 1.35 (2)), the obvious inequality

sign(2)(M̃) ≤ b
(2)
2m(M̃)

for dim(M) = 4m and the equality

sign(2)(M̃) = sign(M)

which is a conclusion of Atiyah’s L2-index theorem (see [9]) applied to the
signature operator.
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14.10. See [238, Example 5.13 on page 281].

14.11. Denote by p : N → N the covering associated to the subgroup
im(π1(f)) of π1(N). Then we can find a map f : M → N satisfying f = p◦f .
Since f has degree one, Hn(p) : Hn(N) → Hn(N) must be surjective for
n = dim(M). Since Hn(N) = 0 for non-compact N , the space N must be
compact and hence the index of im(π1(f)) in π1(N) is finite. Since this index
is the degree of p, it must be 1 and hence π1(f) must be surjective. Now
apply Lemma 14.10 (1) and Theorem 14.15.

14.12. This follows from Corollary 1.43 and Theorem 14.32.

14.13. This follows from Theorem 14.26 and Theorem 14.32.

14.14. Let Fg be a closed orientable surface with g ≥ 2. Then b
(2)
p ( ˜S3 × Fg) 6=

0 for p = 1, 4 by Example 1.32, Theorem 1.35 (4) and Example 1.36. Since
S3 and hence S3×Fg carries a free S1-action, the minimal volume of S3×Fg

vanishes by Theorem 14.32.

14.15. Since the quotient of an amenable group is amenable again, the map
π1(E) → π1(B) is surjective with an amenable group as kernel. Hence p

induces an isometric isomorphism Ĥdim(E)(B)
∼=−→ Ĥdim(E)(E) by Theorem

14.15.
Recall that for any closed oriented manifold M of dimension n the n-th

homology Hn(M ;Z) is Z. Suppose that the π1(B)-action on Hdim(F )(F ;Z)
given by the fiber transport is trivial. A spectral sequence argument shows
that Hn(E;Z) = 0 for n > dim(F ) + dim(B) and Hn(E;Z) = Z for n =
dim(F ) + dim(B). This implies dim(E) = dim(F ) + dim(B). If the π1(B)-
action is non-trivial, pass to the 2-sheeted covering B → B given by the
subgroup of elements in π1(B) which act trivially on Hdim(F )(F ;Z) and apply
the same argument to the pullback fibration F → E → B. Hence we get in
all cases dim(B) < dim(E) since we assume dim(F ) ≥ 1. We conclude that
the map Hdim(E)(p) : Hdim(E)(E;Z) → Hdim(E)(B;Z) is trivial and maps in
particular [E] to 0.

Now ||E|| = 0 follows from Lemma 14.10 (1).

14.16. Suppose that Fg carries an affine structure. Then its tangent bundle
is flat. We conclude from Theorem 14.51 that 4 · |χ(Fg)| ≤ ||Fg||. We get
||Fg|| = 2 · |χ(Fg)| for g ≥ 1 and ||S2|| = 0 from Theorem 14.18 (2). Hence
χ(Fg) = 2 − 2g must be zero. This shows Fg = T 2. Obviously T 2 carries an
affine structure.

14.17. Fix ε > 0. Let pε : Mε → M be a dε-sheeted covering and let Kε be
a triangulation for Mε with tε simplices of dimension n such that tε ≤ dε · ε
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holds. The number of p-simplices in Kε is bounded by
(

n + 1
p

)
·tε. Since each

simplex has at most (n + 1) faces, the norm of the p-th differential c
(2)
p [ε] in

C
(2)
∗ (K̃ε) is bounded by (n+1) for all p ≥ 0. Let ∆p[ε] : C

(2)
p (K̃ε) → C

(2)
p (K̃ε)

be the Laplacian. We conclude for all p ≥ 0

||∆p[ε]|| ≤ 2 · (n + 1)2;

dimN (π1(Kε))(C
(2)
p (K̃ε)) ≤

(
n + 1

p

)
· tε.

This implies for all p ≥ 0 (see Lemma 3.15 (3) and (6))

dimN (π1(Kε))(ker(∆p[ε])) ≤
(

n + 1
p

)
· tε;

detN (π1(Kε))(∆p[ε]) ≤
(

n + 1
p

)
· tε · 2 · (n + 1)2.

Hence we get for all p ≥ 0

b(2)
p (K̃ε) ≤

(
n + 1

p

)
· tε;

ρ(2)(K̃ε) ≤

∑

p≥1

p


 ·

(
n + 1

p

)
· tε · 2 · (n + 1)2.

Recall from Exercise 14.1 that ||Mε|| ≤ tε. Since b
(2)
p (M̃ε) = dε · b(2)

p (M̃)
holds by Theorem 1.35 (9) and ||Mε|| = dε · ||M || holds by Lemma 14.13, we
conclude

b(2)
p (M̃) ≤

(
n + 1

p

)
· ε;

||M || ≤ ε.

Since ε > 0 was arbitrary, we conclude

b(2)
p (M̃) = 0;
||M || = 0.

If we assume that π1(M) is of det ≥ 1-class, then M̃ is det-L2-acyclic and
ρ(2)(M̃) is given by ρ(2)(K̃) for any choice of triangulation (see Lemma 13.6).
Because of Theorem 3.96 (5) the same is true for M̃ε and we get

ρ(2)(M̃) =
ρ(2)(K̃ε)

dε
≤


∑

p≥1

p


 ·

(
n + 1

p

)
· ε · 2 · (n + 1)2.

Since this holds for all ε > 0 we get ρ(2)(M̃) = 0.
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Sup. (4), 19(4):479–490, 1986.

33. M. E. B. Bekka, P.-A. Cherix, and A. Valette. Proper affine isometric actions
of amenable groups. In Novikov conjectures, index theorems and rigidity, Vol.
2 (Oberwolfach, 1993), pages 1–4. Cambridge Univ. Press, Cambridge, 1995.

34. M. E. B. Bekka and A. Valette. Group cohomology, harmonic functions and
the first L2-Betti number. Potential Anal., 6(4):313–326, 1997.

35. R. Benedetti and C. Petronio. Lectures on hyperbolic geometry. Springer-
Verlag, Berlin, 1992.

36. S. K. Berberian. Baer *-rings. Springer-Verlag, New York, 1972. Die
Grundlehren der mathematischen Wissenschaften, Band 195.

37. S. K. Berberian. The maximal ring of quotients of a finite von Neumann
algebra. Rocky Mountain J. Math., 12(1):149–164, 1982.

38. A. J. Berrick, I. Chatterji, and G. Mislin. From acyclic groups to the Bass
conjecture for amenable groups. Preprint, 2001.

39. A. J. Berrick and M. E. Keating. The localization sequence in K-theory.
K-Theory, 9(6):577–589, 1995.

40. G. Besson, G. Courtois, and S. Gallot. Entropies et rigidités des espaces
localement symétriques de courbure strictement négative. Geom. Funct. Anal.,
5(5):731–799, 1995.

41. M. Bestvina and K. Fujiwara. Bounded cohomology of subgroups of mapping
class groups. Preprint, 2000.

42. J.-M. Bismut. From Quillen metrics to Reidemeister metrics: some aspects of
the Ray-Singer analytic torsion. In Topological methods in modern mathemat-
ics (Stony Brook, NY, 1991), pages 273–324. Publish or Perish, Houston, TX,
1993.



References 565

43. J.-M. Bismut and D. S. Freed. The analysis of elliptic families. I. Metrics and
connections on determinant bundles. Comm. Math. Phys., 106(1):159–176,
1986.

44. J.-M. Bismut and D. S. Freed. The analysis of elliptic families. II. Dirac
operators, eta invariants, and the holonomy theorem. Comm. Math. Phys.,
107(1):103–163, 1986.

45. J.-M. Bismut, H. Gillet, and C. Soulé. Analytic torsion and holomorphic
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courbure: rien ne va plus dès la dimension 6. J. Differential Geom., 16(4):537–
550 (1982), 1981.

60. T. P. Branson and P. B. Gilkey. The asymptotics of the Laplacian on a
manifold with boundary. Comm. Partial Differential Equations, 15(2):245–
272, 1990.

61. C. Bratzler. L2-Betti Zahlen und Faserungen. Diplomarbeit, Jo-
hannes Gutenberg-Universität Mainz, 1997. http://www.math.uni-
muenster.de/u/lueck/publ/diplome/bratzler.dvi.

62. M. Braverman. Witten deformation of analytic torsion and the spectral se-
quence of a filtration. Geom. Funct. Anal., 6(1):28–50, 1996.



566 References

63. G. Bredon. Topology and geometry, volume 139 of Graduate texts in Mathe-
matics. Springer, 1993.

64. G. E. Bredon. Introduction to compact transformation groups. Academic
Press, New York, 1972. Pure and Applied Mathematics, Vol. 46.

65. M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature.
Springer-Verlag, Berlin, 1999. Die Grundlehren der mathematischen Wis-
senschaften, Band 319.

66. M. G. Brin and C. C. Squier. Groups of piecewise linear homeomorphisms of
the real line. Invent. Math., 79(3):485–498, 1985.

67. T. Bröcker and K. Jänich. Einführung in die Differentialtopologie. Springer-
Verlag, Berlin, 1973. Heidelberger Taschenbücher, Band 143.
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1. Number Special Issue, pages 95–120 (1990), 1989. Conference on Partial
Differential Equations and Geometry (Torino, 1988).

410. P. Pansu. Cohomologie Lp: Invariance sous quasiisometries. Preprint, Orsay,
1995.

411. P. Pansu. Introduction to L2 Betti numbers. In Riemannian geometry (Wa-
terloo, ON, 1993), pages 53–86. Amer. Math. Soc., Providence, RI, 1996.

412. P. Pansu. Volume, courbure et entropie (d’après G. Besson, G. Courtois et S.
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Vol. 1996/97.

413. P. Pansu. Cohomologie Lp, espaces homogènes et pinchement. Preprint, Orsay,
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B-representation 392
based free chain complex 121
Betti number
– analytic 52
– cellular 13
boundary conditions
– Dirichlet boundary conditions 63
– Neumann boundary conditions 63
boundary operator in the long weakly

exact homology sequence 25
bounded cohomology 486
bounded form 422
Burnside group 281
Burnside integrality conditions 283

Burnside ring 281

C∗-algebra
– reduced C∗-algebra of a group 339
Cartan decomposition 224
Cartan involution 224
Cartan subalgebra
– θ-stable Cartan subalgebra 225
category
– C-category 246
– of compactly generated spaces 31
Cayley graph 93
Cayley transform 320
cell
– equivariant closed n-dimensional cell

31
– equivariant open n-dimensional cell

31
cellular
– cochain complex 60
– L2-Betti number 34
– L2-chain complex 33
– L2-cochain complex 33
– L2-cohomology 34
– L2-homology 34
– L2-torsion 160
– map 32
– Novikov-Shubin invariant 96
– permutation structure 32
– – uniqueness 32
– spectral density function 96
– ZG-basis 32
– ZG-chain complex 32
center of a ring 337
central carrier of a projection 337
chain complex see Hilbert chain

complex
chain contraction 82
– weak 145
characteristic sequence 194
classifying space for a family of

subgroups 33
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classifying space for proper G-spaces
33

closed under
– directed unions 256
– extensions 256
closure of a submodule 237
cochain complex of square-summable

cochains 60
cocompact 32
colimit of a directed system 242
colimit topology 31
commensurable groups 390
commutant 336
– double commutant 336
complete orthonormal system see

Hilbert basis
complete Riemannian manifold 51
Conjecture
– Amenability and dimension-flatness

of N (G) over CG 262
– Amenability and the regular

representation in G-theory 364
– Approximation Conjecture 453
– Atiyah Conjecture 370
– – strong 369
– Bass Conjecture 358
– – Strong Bass Conjecture for CG

358
– – Strong Bass Conjecture for ZG

358
– – Weak Bass Conjecture 359
– Baum-Connes Conjecture 357
– Bost Conjecture 360
– Determinant Conjecture 454
– Flatness of N (G) over CG 263
– Gromov’s Conjecture about posi-

tivity of the simplicial volume for
non-negative sectional and negative
Ricci curvature 501

– Gromovs’s Conjecture on affine
structures and L2-Betti numbers
504

– Homotopy invariance of L2-torsion
163

– Hopf Conjecture 417
– Isomorphism Conjecture for K0(CG)

357
– Kadison Conjecture 391
– Kaplansky Conjecture 376
– Kneser’s Conjecture 212
– L2-torsion for aspherical manifolds

418
– Poincaré Conjecture 123

– Positivity of Novikov-Shubin
invariants 112

– Positivity of the simplicial volume
of locally symmetric spaces of
non-compact type 501

– Simplicial volume and L2-invariants
485

– Singer Conjecture 417
– Singer Conjecture for contractible

proper cocompact Poincaré G-CW -
complexes 432

– Strong Novikov Conjecture 443
– Sullivan’s Conjecture on affine

structures and Euler characteristic
503

– Thurston’s Geometrization Conjec-
ture 213

– Volume Conjecture 218
– Waldhausen’s Conjecture 214
– Zero-in-the-spectrum Conjecture

437
connected
– d-connected 39
convergence
– strong 18
– ultra-weak 18
– weak 18
core 73
crossed product 396
– homomorphism of 397
– universal property 397

d(bounded) form 422
de Rham cochain complex 49
de Rham cohomology 49
deficiency 299
degree of a (proper) map 442
density function 75
det ≥ 1-class 172
det-L2-acyclic
– G-CW -complex 160
– Hilbert chain complex 140
determinant class
– chain map of 141
– Hilbert chain complex of 140
– morphism of Hilbert modules of

127
– weak exact sequence of chain

complexes of 141
– weak exact sequence of modules of

141
differential
– exterior 49
dilatationally equivalent 75
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dimension
– extended dimension 239
– extended von Neumann dimension of

an arbitrary module over N (G) 246
– extended von Neumann dimension of

an arbitrary module over U(G) 330
– of a finitely generated projective
N (G)-module 238

– of a finitely generated projective
U(G)-module 329

– von Neumann dimension of a Hilbert
N (G)-module 21

direct limit see colimit of a directed
system

directed set 17
directed system 242
Dirichlet boundary conditions 63
division closure 385
domain of an operator 54
dual
– of a Hilbert chain complex 82

d̃(bounded) form 422

Eilenberg-MacLane space of type (π, 1)
45

entropy
– (volume) entropy of a closed

connected Riemannian manifold
492

– of a group 492
equivalence of C-categories (with

involution) 247
equivariant smooth triangulation 32,

52
essentially dense 318
Euler characteristic
– L2-Euler characteristic 277
– equivariant Euler characteristic 281
– virtual Euler characteristic 280
exceptional prime 3-manifold 214
extended dimension 239
extended von Neumann dimension of

an arbitrary module over N (G) 246
extended von Neumann dimension of

an arbitrary module over U(G) 330
extension
– minimal closed 55
– of an operator 54
exterior differential 49

Følner exhaustion 476
factor see von Neumann algebra
faithfully flat functor 253

family of subgroups 33
fibration 43
– simple 165
field of fractions 407
– universal 407
flag complex 433
flat Riemannian manifold 226
Følner condition 257
formal adjoint of a differential operator

57
Fredholm
– at p 26
– density function 75
– Hilbert chain complex 26
– morphism 26, 73
Fredholm module
– p-summable (A,B)-Fredholm module

392
Fuglede-Kadison determinant 127
fullness of a triangulation 108
function
– essentially bounded 15
– Γ -function 178
functor
– of C-categories (with involution)

247
fundamental domain 53
fundamental form 422
fundamental rank of a symmetric space

226

G-CW -complex 31
– det-L2-acyclic 160
– finite 32
– finite dimensional 32
– of dimension ≤ n 32
– of finite type 32
G-invariant subordinate smooth

partition 61
Γ -function 178
geodesic symmetry 223
geometry on a 3-manifold 213
globally symmetric space see

symmetric space
graph 54
Grothendieck group 341
group
– a-T-menable 256
– amenable 256
– commensurable 390
– connected linear reductive Lie group

225
– det ≥ 1-class 172
– elementary amenable 256
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– good 257
– Hopfian 499
– Kähler group 434
– lamplighter group 379
– locally finite 287
– measure equivalent 312
– nilpotent 93
– of finite homological type 377
– of polynomial growth 93
– poly-cyclic 360
– residually (P) 457
– residually amenable 458
– residually finite 458
– Thompson’s group 297
– virtually (P) 93
– virtually cyclic 263
– virtually finitely generated abelian

93
– virtually free 93
– virtually nilpotent 93
– virtually poly-cyclic 360
– with the algebraic eigenvalue

property 410
group of isometries 224
group ring 14
group von Neumann algebra 15

h-cobordism 122
Haken 3-manifold 212
Hattori-Stallings rank 358
heat kernel 52
Hilbert basis 17
Hilbert chain complex 24
– contractible 82
– d-dimensional 24
– det-L2-acyclic 140
– dim-finite 140
– finite 24
– finite dimensional 24
– finitely generated 24
– L2-acyclic 140
– positive 24
– weakly acyclic 140
Hilbert module
– finitely generated 16
– Hilbert N (G)-module 16
– map of 16
Hodge star-operator 50
Hodge-de Rham decomposition 51
– of a Hilbert chain complex 24
– for manifolds with boundary 64
homology sequence
– counterexample to weak exactness

26

– long weakly exact 27
homomorphism
– full 406
– left full 406
– local homomorphism of R-fields 407
– right full 406
hyperbolic space 53

idempotent completion 250
identity component 224
incompressible
– incompressible boundary of a

3-manifold 212
– incompressible surface in a 3-manifold

212
index of a differential operator 507
induction
– of group von Neumann algebras 29
– of Hilbert modules 29
– of modules 253
inductive limit see colimit of a

directed system
inner product
– on a finitely generated projective
N (G)-module 247

– standard inner product on N (G)n

248
inverse limit see limit of an inverse

system
inverse system 242
involution
– involution on a C-category 246
irreducible
– 3-manifold 211
– selfhomeomorphism of a surface

307

Kähler hyperbolic manifold 422
Kähler manifold 422
Kähler metric 422
Kähler non-elliptic manifold 424
Killing form 224
knot complement 217
Kronecker product 487

L-groups 347
L1-norm of a singular chain 486
L1-seminorm of a homology class 486
L2-acyclic see Hilbert chain complex
L2-Betti number
– analytic 53
– cellular 34
– for arbitrary G-spaces 263, 331
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– of a densely defined operator of
Hilbert modules 73

– of a density function 75
– of a group 263
– of a Hilbert N (G)-chain complex

24
L2-character map 282
– global 282
L2-cohomology
– cellular 34
L2-de Rham cochain map 61
L2-de Rham cohomology
– reduced 58
– unreduced 58
L2-Euler characteristic 277
L2-homology
– cellular 34
– of a Hilbert N (G)-chain complex

24
L2-index of a differential operator 507
L2-torsion
– analytic 179
– – of a manifold with boundary 190
– of a det-L2-acyclic free finite

G-CW -complex 160
– of a group automorphism 305
– of a Hilbert chain complex 140, 141
– of a knot 217
– topological 176
– – of a manifold with boundary 190
L∞-norm of a singular cochain 486
L∞-seminorm of a homology class 486
lamplighter group 379
Laplace operator 51
– of a Hilbert N (G)-chain complex

24
Laplace transform 181
lattice 313
Lefschetz invariant
– equivariant 288
lens space 124
Lie algebra
– semisimple 224
– simple 224
limit inferior 75, 460
limit of an inverse system 242
limit property
– for a G-CW -complex 92
– for a density function 92
– for Hilbert chain complex 92
limit superior 460
localization
– Ore localization 324

locally finite homology 487
locally symmetric space 223
lower central series 93

manifold
– closed 40
– exceptional prime 3-manifold 214
– flat Riemannian manifold 226
– Haken 3-manifold 212
– hyperbolic 53, 212
– hyperEuclidean 442
– irreducible 3-manifold 211
– Kähler hyperbolic manifold 422
– Kähler manifold 422
– of analytic determinant class 178
– prime 3-manifold 211
– Seifert manifold 212
mapping cone 35
mapping cylinder 35
mapping torus 42
Markov operator 379
measure equivalent groups 312
mesh of a triangulation 108
minimal volume 491
module
– semisimple 326
Morita isomorphism 343
multiplicatively closed 324

neighborhood
– normal neighborhood 223
net 17
– convergence of 18
Neumann boundary conditions 63
normalizer 31
Novikov-Shubin invariant
– analytic 104
– cellular 96
– of a Hilbert chain complex 81
– of a density function 75
– of a manifold with boundary 114
– of map of Hilbert modules 76
NS-L2-acyclic 202

operator
– adjoint 55
– affiliated 318
– closable 55
– closed 54
– compact 392
– essentially selfadjoint 55
– G-operator 317
– maximal closure 57
– minimal closure 55
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– of finite rank 392
– of trace class 392
– positive 16
– positive unbounded densely defined

55
– selfadjoint 55
– symmetric 55
Ore condition 324
Ore localization 324
orientation covering of a manifold 48

partial isometry 55
partition see G-invariant subordinate

smooth partition
Poincaré model 53
Poincaré ZG-chain homotopy equiva-

lence 39
Polar Decomposition 16
– for unbounded densely defined

operators 55
prime 3-manifold 211
product
– ∧-product 49
projection 337
– abelian 337
– central carrier of 337
– equivalent 337
– finite 337
– infinite 337
– properly infinite 337
projective class group 341
projective limit see limit of an inverse

system
projective rank function 405
– faithful 405
proper 31

Question
– Approximating Fuglede-Kadison

determinants by determinants 478
– Approximating L2-torsion by torsion

483
– L2-torsion of groups and quasi-

isometry and measure equivalence
313

– Minimal volume and L2-torsion for
aspherical closed manifolds 502

– Novikov-Shubin invariants and
quasi-isometry 313

– S1-foliations and L2-torsion for
closed aspherical manifolds 202

– Simplicial volume and normal infinite
amenable subgroups 498

– Simplicial volume and S1-foliations
502

– Vanishing of L2-Betti numbers of
groups and epimorphism of groups
297

– Vanishing of the simplicial volume
for affine manifolds 503

Vanishing of L2-Betti numbers of the
base and the total space of a fibration
67

R-field 407
– epic 407
– Hughes-free 408
– universal 407
rank
– complex rank of a semisimple Lie

algebra 226
– complex rank of a semisimple Lie

group 226
– fundamental rank of a symmetric

space 226
rational closure 385
Ray-Singer torsion 126
recurrency probability of the natural

random walk on a group 94
reduced C*-algebra of a group 339
regular representation
– left 339, 340
– right 339, 340
Reidemeister torsion 123
– analytic 126
– – of a manifold with boundary 190
– topological 125
– – of a manifold with boundary 190
resolvent set of an operator 55
Riemannian metric
– product near the boundary 190
ring
– ∗-regular 333
– ∗-ring 326
– Artinian 397
– division closed 385
– hereditary 405
– Noetherian 397
– rationally closed 385
– regular 325
– regular coherent 380
– semifir 407
– semihereditary 239
– semiprime 397
– semisimple 326
– von Neumann regular 325
– with involution 326
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Rothenberg sequence 348

S-inverting 323
– universal 323
Schatten ideal 392
Seifert fibered 3-manifold see Seifert

manifold
Seifert manifold 212
selfadjoint
– essentially selfadjoint 55
– operator 55
– selfadjoint morphism in a C-category

with involution 247
semisimple
– Lie algebra 224
– Lie group 226
– module 326
– ring 326
Σ-inverting 385
– universal 385
simple homotopy equivalence 122
simple structure 164
simplicial volume
– of a closed orientable manifold 486
– of a manifold without boundary

487
singular homology with coefficients

263, 331
skeleton 31
Sobolev space of p-forms 58
space
– compactly generated see category
– of L2-integrable harmonic smooth

p-forms 51
– of L2-integrable harmonic smooth

p-forms on a manifold with boundary
63

– of (p, q)-forms 425
– of harmonic L2-integrable (p, q)-forms

426
– of smooth p-forms 49
– of smooth p-forms with compact

support 51
specialization 407
spectral density function
– analytic 103, 114
– cellular 96
– of a Hilbert chain complex 81
– of a map of Hilbert modules 73
spectral family 56
– of a selfadjoint operator 56
– of an essentially selfadjoint operator

56

spectrum of an operator 55
star
– closed 61
– open 61
support
– of an element in l2(G) 259
survey
– on 3-manifolds 211
– on G-CW -Complexes 31
– on amenable groups 256
– on crossed products 396
– on deficiency of groups 299
– on division and rational closure 385
– on Ore localization 323
– on positive results about the

Approximation Conjecture and the
Determinant Conjecture 454

– on positive results about the Atiyah
Conjecture 378

– on positive results about the Singer
Conjecture 418

– on positive results about the
zero-in-the-Spectrum Conjecture
440

– on residually finite groups 458
– on simplicial volume and bounded

cohomology 485
– on symmetric spaces 223
– on the Approximation Conjecture

and the Determinant Conjecture
454

– on the Atiyah Conjecture 370
– on the Bass Conjecture and the

Hattori-Stallings rank 357
– on the Isomorphism Conjecture for

K0 of complex group rings 357
– on torsion invariants 120
– on unbounded operators and spectral

families 54
– on universal localizations 385
– on von Neumann algebras 336
– on von Neumann Regular rings 325
suspension 35
symmetric space 224
– dual 227
– of compact type 225
– of Euclidean type 225
– of non-compact type 225

Theorem
– Analytic L2-torsion of hyperbolic

manifolds 187
– Analytic and combinatorial Novikov-

Shubin invariants 106
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– Analytic and topological L2-torsion
186

– Betti numbers and simplicial volume
494

– Cellular L2-torsion 161
– Cellular L2-torsion for universal

coverings 163
– Cheeger’s finiteness theorem 491
– Combinatorial computation of

L2-invariants 194
– Counterexample to the strong Atiyah

Conjecture 380
– De Rham Isomorphism Theorem 50
– Detecting elements in Wh(G) 354
– Dimension and colimits 243
– Dimension and limits 244
– Dimension function for arbitrary
N (G)-modules 239

– Dimension function for arbitrary
U(G)-modules 330

– Dimension-flatness of N (G) over CG
for amenable G 259

– Double Commutant Theorem 336
– Flat bundles and simplicial volume

503
– Glueing formula for L2-torsion 192
– Goldie’s Theorem 399
– Gromov’s estimate on the simplicial

volume 492
– Gromov’s mapping theorem for

bounded cohomology 489
– Hadamard-Cartan Theorem 45
– Hodge-de Rham Theorem 51
– Hodge-de Rham Theorem for

manifolds with boundary 63
– Hopf-Rinow Theorem 51
– Inverse Mapping Theorem 16
– K-groups of U 345
– K0 of finite von Neumann algebras

342
– K1 of von Neumann algebras of type

If 344
– K1 of von Neumann algebras of type

II1 344
– Kadison-Fuglede determinant 128
– L-groups of von Neumann algebras

349
– L2-Betti numbers 37
– L2-Betti numbers and aspherical

CW -complexes 48
– L2-Betti number and fibrations 272
– L2-Betti numbers and minimal

volume 502

– L2-Betti numbers and Novikov-
Shubin invariants of Kähler
hyperbolic manifolds 423

– L2-Betti numbers and S1-actions
43, 271

– L2-Betti numbers and volume 501
– L2-Betti numbers for arbitrary

spaces 265
– L2-Betti numbers of 3-manifolds

214
– L2-Betti numbers of Kähler

non-elliptic manifolds 424
– L2-Betti numbers of Thompson’s

group 298
– L2-Euler characteristic 277
– L2-Hodge decomposition for Kähler

manifolds 426
– L2-Hodge-de Rham Theorem 52
– L2-Hodge-de Rham Theorem for

manifolds with boundary 64
– L2-invariants of symmetric spaces

228
– L2-Lefschetz Theorem 426
– L2-torsion for manifolds with

boundary 190
– L2-torsion and aspherical CW -

complexes 172
– L2-torsion and fibrations 166
– L2-torsion and S1-actions 168
– L2-torsion of 3-manifolds 216
– L2-torsion of Hilbert chain complexes

142
– L2-torsion of hyperbolic manifolds

with boundary 191
– L2-torsion of mapping tori 169
– Linnell’s Theorem 378
– Logarithmic estimate for spectral

density functions 456
– Measure equivalence and L2-Betti

numbers 312
– Modules over N (G) and Hilbert
N (G)-modules 249

– Moody’s induction Theorem 402
– Novikov Shubin invariants and

aspherical CW -complexes 103
– Novikov-Shubin invariants 97
– Novikov-Shubin invariants and

S1-actions 102
– Novikov-Shubin invariants of

3-manifolds 215
– Proportionality principle for

L2-invariants 201
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– Proportionality principle for the
simplicial volume 496

– S-cobordism Theorem 122
– Simplicial volume of hyperbolic

manifolds 490
– Simplicial volume of low-dimensional

manifolds 490
– Strong version of Linnell’s Theorem

387
– Survey on residually finite groups

458
– The algebra of affiliated operators

327
– Thurston’s estimate on the simplicial

volume 491
– Torus Theorem 214
– Vanishing of L2-Betti numbers of

mapping tori 42, 270
– von Neumann dimension 21
– von Neumann trace 18
– Weakly exact long L2-homology

sequence 27
– Wedderburn’s Theorem 400
topological L2-torsion 176
topology
– norm 336
– strong 336
– ultra-weak 336
– weak 336
toral splitting of an irreducible

3-manifold 213
– geometric 213
totally geodesic 226
trace
– center valued 338
– faithful 338
– finite 338
– normal 338
– of an endomorphism of a Hilbert

module 17
– over the complex group ring 193
– universal 338
– von Neumann trace 15
triangulation see equivariant smooth

triangulation
twisted Laurent ring 396

uniformly contractible 437
unitary
– unitary morphism in a C-category

with involution 247

– unitary natural equivalence 247
universal R-field 407
universal additive invariant 281
universal R-field of fractions 407
universal S-inverting 323
universal Σ-inverting 385

virtually homotopy-finite CW -complex
280

von Neumann algebra 336
– center 337
– countably composable 339
– factor 337
– finite 337
– infinite 337
– of a group 15
– of type I 337
– of type If 337
– of type I∞ 337
– of type II 337
– of type II1 337
– of type II∞ 337
– of type III 337
– properly infinite 337
von Neumann dimension
– center valued 341
– extended von Neumann dimension of

an arbitrary module over N (G) 246
– extended von Neumann dimension of

an arbitrary module over U(G) 330
– of a finitely generated projective
N (G)-module 238

– of a finitely generated projective
U(G)-module 329

– of a Hilbert N (G)-module 21
– properties 21
von Neumann trace 15

weak chain contraction 145
weak chain isomorphism 144
weak homology equivalence 141
weak homotopy equivalence 32
weak isomorphism 16
weakly acyclic see Hilbert chain

complex
weakly exact sequence 16, 238
Weyl group 31
Whitehead group 121
Whitehead torsion 122
Whitney map 61
Witt group 347


