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Abstract 

Let X be a finite connected CW-complex. Suppose that its fundamental 
group 7r is residually finite, i.e. there is a nested sequence . . .  C F,n+l C 
F,n C �9 .. C r of in 7r normal subgroups of finite index whose intersection 
is trivial. Then we show that the p-th L2-Betti number of X is the limit 
of the sequence bp(Xm)/[r: Fm] where bp(Xm) is the (ordinary) p-th Betti 
number of the finite covering of X associated with I'm. 

I n t r o d u c t i o n  and  S t a t e m e n t  o f  R e s u l t s  

Let X be a finite connected CW-complex  with fundamental  group 7r and 

A C X be a CW-subcomplex. Let b(2)(X, A) be the p-th L2-Betti  number. 
Suppose 7r is residually finite, i.e. there is a nested sequence of in 7r normal 
subgroups . . .  C Fm+l C Fm C . . .  C r such that  the index [r : Fm] is finite 
for all m > 0 and the intersection f3m>oF m is the trivial group. Examples 
of residually finite groups are fundamental  groups of compact  Haken 3- 
manifolds and finitely generated groups possessing a faithful representation 
into GL(n, F) for some field F .  Consider any such sequence (Fro)m>0. 
Let Pm:  Xm --+ X be the covering of X associated with Fm C 7r and put  
Am = p~l(A). Denote by bp(Xm, Am) the (ordinary) p-th Bett i  number  of 
(Xm, Am). The following theorem answers a query of Gromov ([G3, pp. 13, 
153]). 
T H E O R E M  0.1 (Kazhdan's equality). Under the conditions above 

bp(Xm, AT,) 
l i m  [Tr: Fro] - b(2)(X'A)" = 

bp(x,,,a,.) _ b(2)(X, A) for X a c losedman-  The inequality lira s u p m _ ~  [~:r,,l < 

ifold and empty  A is discussed by Gromov ([G3, pp. 13,153]) and is essen- 
tially due to Kazhdan ([Ka]). Theorem 0.1 has been proven by Yeung ([Y]) 
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in the special case of a closed Ks manifold with negative sectional cur- 
vature. 

There are estimates on the sum of the ordinary Betti numbers  by the 
volume and by the simplicial volume for a closed Riemannian manifold 
which satisfies certain pinching conditions on its curvature ([G1, p. 12]). 
Provided that  the fundamental  group is residually finite, these hold also for 
the stun of the L2-Betti numbers by Theorem 0.1. 

Suppose that  M is a closed Riemannian manifold. Let L2~k(~r)  be the 

Hilbert space of square integrable p-forms on the universal covering M. The 
Laplace operator A p acting on L2f~k(M) is essentially self-adjoint. Hence 
the spectral theorem applies and there is a spectral family {P~'IA e [0, ~ ) }  

associated to ~xp. Let P~(x,y)  be a Schwartz kernel of P;~. Denote by 
t rn (P~(x, x)) the trace of the linear endomorphism of the finite-dimensional 

real vector space APT*M. Let ~" C M be a fundamental  domain for the 7r- 
action. Define the analytic p-th spectral density ,function of M by 

F p : [ 0 , ~ )  -~ [ 0 , ~ )  A ~  / t rn ( P ; ( x , x ) ) . d v o l .  

Notice that  FP(0) = b(2)(M) and that  the spectrum of A'P has a gap at zero 
if and only if FP(~) - FP(0) = 0 for some A > 0. 

Suppose that  r = 7q (M) is residually finite with a nested sequence of 
normal  subgroups of finite index (Fm)m>O with trivial intersection as above. 
Fix a CW-st ruc ture  on M. Equip all finite coverings Mm with the induced 
CW-structure .  The cellular C[rm\r]-cochain complex CP(Mm; C) inherits 
a E-basis and in particular a Hilbert space structure.  Hence the adjoint 
(cP) * of its differential c p is defined. The combinatorial Laplace operator 
APm: CP(Mrn;C) --* CP(Mm;C)is  defined by cP-I(cp-1) * + (cP) *c p. Denote 
by NPm(A) the number  of eigenvalues # of A~P~ satisfying # _< A counted with 

multiplicity. Notice that  the spectrum of AP has a gap at zero if and only 
if FP(A) -- FP(0) for some A > 0. We get under the conditions above 

T H E O R E M  0.2 (Kazhdan's criterion). The spectrum of AP has a gap at 
zero i f  and only i f  there is a ~ > 0 such that 

lim N~(A) - N~(O) = O. [] 

T H E O R E M  0.3 (Logarithmic spectral density estimate). There are con- 
stants C > 0 and e > 0 (depending on M but not on A) such that t'or all 

e 
C 

FP(A) - FP(O) < -in(A-----) " [] 
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Notice that  zero is not in the spectrum of Ap if and only if FP(0) = 
b(2)(M) = 0 and the spectrum of A'~ has a gap at zero, or equivalently, if 
and only if FP(A) = 0 for some A > 0. Hence Theorem 0.1 and Theorem 0.2 
together imply the necessary and the sufficient Kazhdan criterion in [G3, 
p. 14] for the question whether zero is not in the spectrum of Ap. Theorem 
0.3 gives some evidence for [LLii, Conjecture 9.1] that  the Novikov-Shubin 
invariants of M are always positive. This means that  one can improve the 
inequality in Theorem 0.3 for some a > 0 to 

F p ( 0 )  < . 

All we have said about a closed Riemannian manifold M can be ex- 
tended to compact Riemannian manifolds with boundary by imposing ab- 
solute boundary conditions. 

We give two applications to "middle" algebraic K-groups of l r ,  provided 
that r is countable and residually finite. Let JV'(r) = B ( 1 2 ( r ) ,  12(r))r be 
the von Neumann algebra of r and denote by tr~(~) its unique center valued 
trace. 

THEOREM 0.4 (Swan's theorem for countable residually finite groups). 
1. Let p E M(n,  n, I t )  be an idempotent. If  11 is the unit element in 

Af(r) and r is the rank of the abelian group Z |  ira(p), then 

t r k ( . ) ( p )  = r .  r l .  

2. The change of rings homomorphism 

ko(z ) 
is trivial. D 

Roughly speaking, Theorem 0.4 means for a finitely generated projective 
I t - m o d u l e  P that  12(r) | P is r-isometrically isomorphic to the Hilbert 
Af(r)-module G~=l/2(r) for r the rank of Z @z~ P. Theorem 0.4 was already 
proven by Swan ([S, Theorem S.1]) for finite r .  Notice that  for finite r 
the von Neumann algebra A/'(r) reduces to C r  and I r i . t r~(~)(p)  for an 
idempotent p E M(n,  n, Zr) is the character of the complex r-representation 
C | im(p). Bass ([S, w shows for a torsionfree linear finitely generated 
group F the even stronger statement that  the Hattori-Stallings rank of a 
finitely generated projective IF-module  is the Hattori-Stallings rank of the 
free ZF-module of rank dimQ(Q |  P). 

Secondly, we show 
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THEOREM 0.5 (Homotopy invariance of combinatorial L2-torsion). 
1. I f  7r is a countable residually finite group, then 

r : Wh(~r) ~---* R >~ 

given by the Fuglede Kadison determinant is trivial. 
2. The combinatorial L2-torsion of a finite CW-complex with residually 

finite fundamental group whose L2-Betti numbers are all trivial and whose 
Novikov-Shubin invariants are all positive is a homotopy invariant. 

Combinatorial L2-torsion was introduced and studied in [CMat], [L/ill 
and [LiiRo]. The equivalence of the two assertions in Theorem 0.5 is proven 
in [L/il, Theorem 1.4]. In this context we mention the conjecture that 
the combinatorial L2-torsion agrees with the analytic L2-torsion defined by 
Lott ([L]) and Mathai ([Mat]). The analytic L2-torsion is known to be a 
diffeomorphism invariant of closed Riemannian manifolds whose L2-Betti 
numbers all vanish and whose Novikov-Shubin invariants are all positive. 
The considerations above make it plausible that the analytic L2-torsion is 
even a homotopy invariant. Notice that the isomorphism conjectures by 
Farrell and Jones ([FJ]) imply both Theorem 0.4 and Theorem 0.5. 

Let M be a compact connected orientable irreducible 3-manifold with 
infinite fundamental group which is Haken, Seifert or hyperbolic. Suppose 
that its boundary is empty or a disjoint union of incompressible tori. Let 
21//1,... M~ be the hyperbolic pieces in the decomposition by incompressible 
tori into Seifert and hyperbolic pieces. There is the [L/il, Conjecture 2.3] 
for the combinatorial L2-torsion p(M) 

r 

- 1 .  ~--~ Vol(Mi) . ln(p(M)) = 3~r 
i-----1 

This implies in particular tha t  ln(p(M)) is always non-positive. We can 
prove this last statement in 

THEOREM 0.6 (Bound on combinatorial L2-torsion for 3-manifolds). Let 
M be a 3-manifold satisfying the conditions above or let M be a connected 
finite 2-dimensional CW-complex with residually finite fundamental group 
whose L2-Betti numbers are all trivial and whose Novikov-Shubin invariants 
are all positive. Then we get for the combinatorial L2-torsion 

p(M) < 1.  

The paper is organized as follows: 
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1. Review of L2-Betti  numbers  and residually finite groups 
2. Proof  of Kazhdan 's  equali ty 
3. Density functions and their invariants 
4. Extending  Swan's theorem from finite to residually finite groups 

References 

1. R e v i e w  of  L2-Betti  N u m b e r s  a n d  R e s i d u a l l y  F i n i t e  G r o u p s  

We give the basic definitions of L2-Betti  numbers  and of residually finite 
groups and state some impor tan t  facts. For the remainder  of this section 
let X be a finite connected CW-comt)lex with fundamenta l  group 7r and 
A C X be a CW-subcomplex .  Let p : X --* X be the universal covering and 
put  A = p- l (A) .  We let 7r operate from the left on the universal covering 
and on its cellular chain complex. 

We recall the basic definitions about  L2-Betti  numbers .  Let 12(7r) be 
the Hilbert  space of formal sums )-'~g~ )~g �9 g with complex coefficients )~g 
satisfying ~-~ae,~ ]~g12 < (X3. The yon Neumann algebra of 7r 

= B ( / 2 ( . ) ,  

is the algebra of bounded  7r-equivariant operators  from 12(7r) to 12(7r). The  
yon Neumann trace of an element f G A/'(Tr) is defined by 

t rx (~ ) ( f  ) = (f(e),c) 

for e G 7r the unit  element.  For a bounded  7r-equivariant operator  f : 
On=l/2(Tr) n 2 |  (~') define 

trAr(~)(f) = ~ trAc(~)(f,,/) . 
i=1 

A finitely generated Hi/bert A/'(r)-modu/e P is a Hilbert  space with iso- 
metr ic  r -ac t ion  such there exists an isometric 7r-equivariant embedding  
into O[=112(7r) (which is not  par t  of the s tructure)  for some r E N. Let 
p r :  @/=llr 2(7r) ~ | be a project ion whose image is isometrically 7r- 
equivariantly isomorphic to P .  The  yon Neumann dimension of P is defined 
by 

dim~v(~) (P)  = t rx(~)(pr)  . 

If we tensor the ZTr-chain complex C(X,  A) with/2(7r),  we obtain a chain 
complex C (2) (X, A) of finitely generated Hilbert  A/'(Tr)-modules with bounded  
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7r-equivariant operators  c (2) as differentials. Define the  p-th L2-homology 
H(2)(X,A) by the quotient  ker(c(2))/clos(im(c(2)+l)). Since we divide by 
the closure of the image, this is again a finitely generated Hilbert  .h/'(Tr)- 
module .  Its yon N eumann  dimension is the p-th L 2-Betti number of (X, A). 
Notice tha t  L2-homology and L2-cohomology are the same up to isometric 
r - i somorphism.  We give some basic facts about  L2-Betti  numbers .  For 
more  information we refer to [G3, w 

o The  L2-Betti  numbers  are homotopy  invariants. 
o If x(X,A)  is the Euler characteristic, then ([A]) 

x(X,A)  = E( -1)P .b(2) (X ,A)  . 
p>_o 

o Let M be a compact  Riemannian  manifold.  The  space of harmonic  
L2-integrable p-forms on M satisfying absolute boundary  condit ions is 
isometrically 7r-isomorphic to H (2) (M) and its yon Neumann  dimension 

agrees with b(p2)(M) ([D]) for closed M ([LLii, w 
o The  von N eumann  dimension is addit ive under  exact sequences of finitely 

generated Hilbert  A/'(Tr)-modules. The  yon Neumann  dimension of P is 
zero if and only if P is zero. The  yon Neumann  dimension is continuous, 
i.e. if P1 D P2 D . . .  is a nested sequence of finitely generated Hilbert 
A-modules  then  

dim~4 = lim dim.a(Pn) . 
n - - - - +  r  

u 

o If the compact  manifold M fibers over S 1, then bp(M) = 0 for all p > 0 
([Liil]). 

o If r l  (X) is an extension of a finitely presented group which contains l 

as a subgroup by an infinite finitely presented group, then  b~2)(X) = 0 
([L/il]). 

o If r contains a normal  infinite amenable  subgroup and B~r is of finite 
type,  then  b(2)(B~r) = 0 for all p _> 0 ([ChG]). 

o Let M be a closed Pdemannian manifold of d imension n with sectional 
curvature K pinched by 

/ n - 2 ~  2 
- l _ < K _ < - c  2 < 1 -  \ n - l /  

Then  the L2-Betti  number  bp(M) vanishes if [ p -  n/21 _> 1 ([DoX]). 
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o If M is a symmetric space of non-compact type, then the L2-cohomology 
vanishes possibly except for the middle dimension. 

o If M is Ks hyperbolic in the sense of [G2], then the L2-cohomology 
vanishes except for the middle dimension where it is non-trivial ([G2]). 

o Let M be a compact 3-manifold with infinite fundamental  group whose 
prime decomposition M = MI~M2~... ~M~ consists of non-exceptional 
manifolds Mi (i.e. which are finitely covered by a manifold which is 
homotopy equivalent to a Haken, Seifert or hyperbolic manifold). Then 
([LL/i]) 

b(2)(M) 

bi2)(M) 

b~2)(M) 

b(2)(M) 

= 0  

r 1 
= (r--i)-- ~ [?rl(Mj) [ -x(M)+[{C e ~ro(OM) s.t. C~-$2}[ 

7" 

= ( r _ l ) _ X  ~ 1 + [{C e ro(OM) s.t. C ~- S2}I 
[=I(Mj)[ j=l 

= 0 .  

Two of the outstanding conjectures on L2-cohomology are Singer's con- 
jecture that  the L2-Betti numbers of a closed aspherical manifold vanish 
possible except in the middle dimension and Atiyah's conjecture that  the 
L2-Betti numbers of a compact manifold are rational and, provided that  
the fundamental  group is torsionfree, are integers. Atiyah's conjecture im- 
plies Kaplansky's conjecture that  the rational group ring of a group has no 
zero-divisors if and only if the group is torsionfree. 

A group ~r is called residually finite if for any g E 7r there is a finite 
group G and a homomorphism r : r ~ G satisfying r r 1. If a group ~r 
is countable and residually finite, then there is a nested sequences of normal 
subgroups . . .  C F,,+I C Fm C . . .  C r such that  l~m C ?r is of finite index 
and Nm~=0Fm = {1}. We list some basic facts about residually finite groups, 
for more information we refer to the survey article [M]. 

o The free product of two residually finite groups is again residually finite 
([Gr], [Co, p. 27]). 

o A finitely generated residually finite group has a solvable word problem 
([Mo]). 

o The automorphism group of a finitely generated residually finite group 
is residually finite ([Ba D . 

o A finitely generated residually finite group is hopfian, i.e. any surjective 
endomorphism is an automorphism ([Ma], IN, Corollary 41.44]). 
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o Let ~r be a finitely generated group possessing a faithful representat ion 
into GL( n ,F )  for F a field. Then  zr is residually finite ([Ma], IT ,  The- 
orem 4.2]). 

o Let zr be a finitely generated group. Let 7r "f be the quot ient  of 7r by 
the normal  subgroup which is the intersection of all normal  subgroups 
of 7r of finite index. The  group ~r "f is residually finite and  any finite- 
dimensional  representat ion of ~r in a field factorizes over the canonical 
project ion 7r -~ r ~f. 

o The  fundamenta l  group of a compact  3-manifold whose pr ime decom- 
posi t ion consists of non-exceptional manifolds (i.e. which are finitely 
covered by a manifold which is homotopy  equivalent to a Haken, Seifert 
or hyperbolic manifold) is residually finite ([H, p. 380]). 

o There  is an infinite group with four generators and four relations which 
has no finite quotient  except the trivial one ([Hi]). 

2. Proof  of Kazhdan's Equality 

For the remainder  of this section we fix the following 

DATA 2.1. 
o a countable residually finite group 7r. 
o a nested sequence . . .  C Fm+l C Fm C . . .  C ~r such that Fm C 7r is a 

normal subgroup of finite index [~r: Fro] and nm%orm = {1). 
o a ZTr-linear map f : @~=117r --~ O~__IZzr (of left Zw-modules). 

We introduce the following notat ion.  We have explained At( r ) ,  trA;(~) 
and dimx(~)  in section 1. 

NOTATION 2.2. 
o Let B E M(a,  b, Z~r) be the matrix describing f ,  i.e. f (x )  is given by xB.  
o Let fro: @~=lC[Fm\~r] ~ Ob=lC[r~m\Ir] be the C-linear map induced by 

f .  Denote  by f (2 ) :  @~=1/2(7r) ~ @~=1/20r) the bounded ~r-equivariant 
operator induced by f . 

o Let {P(A) [A 6 [0, oo)} be the right continuous spectral family o[ the 
positive operator (f(2)) .f(2).  The spectral  density funct ion o[ f(2) is 
defined by 

F :  [0, oo) - , , [0,  a I A ~-~ dimA;(,0 ( im(P(A)))  = trx(~) (P(A)) . 

o The L2-Betti  number  of f is defined by 

b(2)(f) = dimN'(r) (ker(f(2)))  = F(0)  . 
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o Let  Em()~) be the ordered set of  eigenvalues # o f f * f r o  satisfying # <_ A 
listed with multiplicity. 

o Define 

[Em(A)[ F~f(~) = 

F~(~)  = lira supFJ (~)  
~Tt--400 

F~ f ( A ) = liminf F~/(A) 
m " ' ~  O 0  

F~/~(),) = lim F ~ f ( s  
~--*0+ 

F~f+(A) = lim F ~ f ( A + 5 ) .  
~ . - - * 0 +  - -  

Notice that all functions appearing in Notation 2.2 are monotone in- 
creasing and, possibly except F ~f and F ~f, are right continuous. The main 
technical result of this paper is 

THEOREM 2.3. 1. F(A) : F-~-+(A) : Frf+(A). 
2. The functions F rf and F ~f are right continuous at zero. We have 

IEm(O)l lira rJ(o)= lira 
m - ~ o o  m - ~ o o  [ ~  : r m ]  " 

3. We have for 0 < A < 1 i l K  is the constant introduced in 2.4 

F(~) - F(0) _< 
a .  ln(K 2) 

- ln (~ )  

Before we give its proof, we explain how it implies Theorem 0.1, Theorem 
0.2 and Theorem 0.3. 

We begin with Theorem 0.1. Let %+1 and cp be the differentials of 
C ( X ,  A). Denote by n v the number of p-cells in X - A. Then we get for 

v is the linear map any finite-dimensional complex 7r-representation V if cp 
obtained by tensoring with V 

bp(X,A;  V) = dime (ker(cY)/ im(cY+l))  

= d i m c  (ker(c y )) - dime (im(cV+,)) 

= dime (ker(cY)) + dime (ker(cY+l)) - n p + x - d i m e ( V )  

= dime (ker(( cv@p+l ) v ) ) _ nv+l "d ime (V) .  
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Similiaxly we get 

b(2)( X, A) = b(2)((% | %+1)(~) ) - / t p + l  �9 

Now Theorem 0.1 follows from Theorem 2.3.2 applied to f = cp | Cp..l_ 1 since 

bp(Xm,Am) bp(X,A;C[Fm\TC]) 

[=: rm] rm] 
= F r f  ( 0 ) -  rtpT 1 

and 

b(2)(X,A) = F ( O ) -  np+l �9 

Next we prove Theorem 0.2 and 0.3. Let f :  Cp(M) --* Cp(M) be the CTr- 
linear map Cp+lC~, + c~,Cp for a given non-negative integer p. Then  F and 
the analytic spectral density function F p defined in the introduction are 
dilatationally equivalent ([E],[GS] and [LLfi]), i.e. there are constants e > 0 
and D > 1 such that  for all A E (0, e) 

F(D -1 .  A) < FP(A) < F ( D .  A) . 

Hence it suffices to prove the claims in Theorems 0.2 and 0.3 for F instead 
of F p. These follow from Theorem 2.3. 

The proof of Theorem 2.3 needs some preparation. 

For u = ~ ] g ~ A g  .g  e C~ define lUll = ~ ] g ~  IA~[. Recall that  B e 
M(a, b, l~r) describes f .  For the sequel fix a real number K satisfying 

b 

K ~ a .  E 
j=l 

max {IB ,jI  l i = X , 2 . . . a } .  (2.4) 

LEMMA 2.5. The number K is greater or equal to the operator norm of 
f(2) and fro. 

Proof: We give the proof only for f(2), the one for fm is completely analo- 
gous. Consider x E/2(7r) and u = Y'~gC,~ Ag .g  E CTr. Then 
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We conclude for x = 

i / ( ~ ) ( ~ ) 1  ~ = 

a 2 
( 3 7 1 , X 2 , . . . , X a )  E (~9i=11 (7(') 

I xi" Bi,j 
- -  i = 1  

b a 2 

] = I  - -  

b a 

<-- Z (i~=l 12"'''iJ'1 ) 
j=t 

b a 

j = l  - -  

max { IB~I~ I i < ~ < a})~ 

~ (max{]Bi,jll I1 < i < a}) 2. ]xil 
j = l  i = I  

~ (max{lBi, j l l  I1 < i < a}) 2 .a 2. [xi[ 2 
j = l  i=1 

b 2 

This finishes the proof of Lemma 2.5. D 

For ~gr Ag �9 g 6 l~r define 

t r z , ~ ( Z A g ' g  ) =)~e 
X g E T r  

where e 6 ~" is the unit element. Recall that  B 6 M(a, b, lrr) is the matrix 
describing f.  Pu t  

a 

trz~ (f) = Z trz~ (Bi,i) 
i = l  

provided a = 5. Denote by B* the matrix (Bj:i) in M(b,a,Z~) i f -  : 
l ~  --, Z r  is the involution sending -~-~ge~ Ag 'g  to ~ g e ~  Ag. g-1. Let 
f* : | ~ | be the :/r-linear map described by B*. Notice that  
(f(2)), = (f,)(2).  One easily checks that  f* f  is described by BB* and 

trN(,~) ((f(2)),f(2)) = trz,~(f*f) �9 

The proof of the following lemma is the only place where we need the 
assumption that  Fm C ~r is normM. 
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LEMMA 2.6. Let p(It) be a polynomiM. There is a number mo ((I~m)m>o,p) 
such that for nil m > mo ((Fm)m>O,P) 

1 
trz~ (p( f* f ) )  = [Tr: Fro] �9 trc (p(fLfm))  �9 

Proof: Recall that  the matr ix  B E M(a ,  b, ZTr) describes f .  Fix elements 
go ,g1 , . . . , g r  E r and )~o,)q, . . . , )~r E C such that  go = e, gi ~ e and Ai # 0 
for 1 < i < r a n d  

(p(Bn') )~ ,~  = ~ : , ,g, .  
j = l  i=0  

We get: 

and 

t r , .  ( p ( f * f ) )  = ~o 

t r c  (P( f*  fm)) = t rc  Ai . r(gi) 
i=1 

: C [F , , \ r ]  ~ C [ F m \ r ] )  

where r(gi) is right multiplication with gi. Since the intersection of the l"m-S 
is trivial, there is a number  m0 such that  for m > m0 none of the elements 
gi for 1 < i < r lies in Fro. Since Fm C Ir is normal, we conclude for m > mo 
a n d l < i < r  

t r c  ( r (g / ) :  C[Fm\Tr] --~ C[PmkTrl) = O. 

This implies for m > mo 

1 " t r c (p ( f~n fm) ) .  n trz~ (p(f*f) )  = [~: rml 

LEMMA 2.7. Let pn(l~) be a sequence of polynomials such that for the 
characteristic function Xto,~q (#) of the interval [0, ,X] and an appropriate rea/ 
number  L 

lira pn(p) = X[o,xl(#) and IP=(g)l -< L 

holds for each ~ e [0, If(2)12]. Then 

lira trz,~ (p~(f* f)) = F(A) . 
n,,,,-* oo 



V o l . 4 ,  1 9 9 4  A P P R O X I M A T I N G  L 2 - I N V A R I A N T S  467 

Proof: Let {P(A) I A E [0, I.f(~)l ~} be the right continuous spectral family 
of (f(2)) , f(2) .  We get, using Lebesgue's Theorem of Majorized Conver- 
gence and the fact that  the von Neumann trace is linear, monotone and 
ultraweakly continuous 

lim trz~ (p . ( f* f ) )  = lira tr~-(~)(pn((f(2))*f(2))) 
n----~ OO n " ~  OO 

(i )) = lim trz(~) pn(A) dP(A 
n---~ o o  JO 

[ IWlff 
= lim p.(A) dF(A) 

n - - *  o o  J O  

/o 
[ llfll 2 

= X[o,~l dF(A) 
,/o 

= F ( A ) .  

This finishes the proof of Lemma 2.7. D 

LEMMA 2.8. Let g : V --~ W be a linear map  of finite-dimensioned Hilbert 
spaces V and W. Let p(t) = det(t id - g'g) be the characteristic polynomied 
of g*g. Write p(t) = t k.  q(t) for a polynomied q satisfying q(O) • O. Let K 
be a positive real number  such that K > 1 and K > Ilgll and let C be a 
positive reed number such that C <_ Iq(O)b Let E(A) be the ordered set of 
eigenvalues # of g*g satisfying # < A listed with multiplicity. Then we get 
for O < A < l : 

IE(A)I- IE(0)I -ln(C) l n (K  2) 

d ime(V)  -< d ime(V)  �9 ( -  In(A)) + - ln(A-----~ " 

Proof: Let 0 _< #0 _< ~1 ___~ . . .  __~ ~dimc(V) be the eigenvalues of g*g listed 
with multiplicity. Let r be the integer for which jui = 0 for i _< r and #i > 0 
for i > r holds. Let s be the integer for which #i _< A for i _< s and #i > A 
for i > s is valid. Then 

and 

dimc(V) 

q(t) = H ( t -  I~i) 
i = r + l  

I E ( A ) [ -  I E ( 0 ) [  = s - r .  
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We conclude for A < 1 (and hence ln(A) < 0) since #i _< K 2 for all i 

d i m e ( V )  

H ( -# i )  = q(0) 
i = r + l  

d i m c ( V )  

" = l q ( ~  " II 
i = r + l  i m s + l  

s d i m c ( V )  

II II 
i = r + l  i = s + l  

A IE(~)l-lE(~ > C.  K -2dimc(V) 

(IE(A)I- IE(0)I). In(A)> I n ( C ) -  d ime(V) ,  ln(K 2) 

ln(K 2) IE (A ) I -  Iz(o)l < -ln(C) + _ _  

dime(V) - d ime(V) .  ( -  in(A)) -In(A) " 

This finishes the proof of Lemma 2.8. o 

Next we proof Theorem 2.3.1. Fix A _> 0. Define for n > 1 a continuous 
function 

f n  : R -"~ R 

1 + 1 / n  # < A  

#~--+ l + l / n - n . ( p - A )  A<_#<_A+~ 
1 <  1In A+ g _ # 

Obviously Xi0,Xl(#) < fn+l(#) < fn(#) and fn(#) converges for n ~ ~ to 
Xto,xl(#) for all # E [0, ~ ) .  For each n choose a polynomial p .  such that 
[XI0,xl(P) < pn(g) < f . (#)  holds for all # E [0, K2]. Such polynomial can 
be found by approximating f .+ t  sufficiently close. Hence 

X[0,~](#) < P,(#) < 2 and l i m p , ( # )  = X[0,~l(P) for p e [0, K2] . 
n - - - *  O O  

Recall that Era(A) is the ordered set of eigenvalues # of f*fm satisfy- 
ing # < A listed with multiplicity. We conclude since g 2 _> Ill*frail by 
Lemma 2.5 

, 

[Tr: F m ~ "  trc (Pn(f*fm)) 
1 

P-(#) z., 
#E E, , , (  K 2 ) 
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1 
IE..m(~)l -[- [~:l~m] " 

(~,eE~(:~) (Pn(#) -- 1) + 

pEE~(K~)-E~(AT1/n) 

This implies 

F&:(:~)- tEm(:~)l < 
[~: rm] - 

We conclude further 
1 

[ r :  Fro] " t rc  (Pn( f* fm))  

p-(.)  
I.zeEra(.,kT1/n)-Em(.~) 

p,,(,)) 

[r : Fm] 
�9 t rc  ( P n ( f m f m ) )  �9 

IE~(~)[ sup {pn(#) -  1 I ~ ~ [0, X]}. [Em(A)[ 
< [~: rm] + [~: r~] 

sup {p,(/z) I # e [A,A + l / n ] } .  IEm(,k + 1/n) - Era(A)] 
+ [~: r~] 

sup {pn(~) ] ~ ~ [A + 1/n, K2]}. IEm(K 2) - E~(,k + 1/n)l 
+ [~: rm] 

[Era(X)[ 1/n. [Em(~)] (1 + I / n ) .  IEm(), + I /n)  - Em(A)I 
< [~:rm] + [~:rm] + [~:rm] 

1/n. IEm(g2) - Em(A + l /n)[  
+ 

[~:rm] 
< Em(A + 1/n)l + 1 .  [Em(g2)[ 
--  [Tr: Fro]  n [Tr: Fro] 

1 
<_ Fr l (A  q - 1 / n )  W -  .a . 

n 

Because of Lemma 2.6 there is for each n E N a number re(n) such that for 
all m > m(n)  

1 
[~r: Fm-------~ . t r c  (Pn( f* fm))  = trz~ (pn( f* f ) )  �9 

Hence we get for m > re(n): 

F~f(A) < trz,~ (pn(f* f ) )  < F~f ()~ + 1/n) + 1 - -  * a  , 

n 
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Taking for fixed n the limit superior, respectively limit inferior, for m --+ co 
gives 

F~I(~)  < trz~ (Pn(f* f))  <_ F"/ (~  + 1/n) + a . n 
Now we take the limit for n --+ co and obtain because of Lemma 2.7 

F~I(A) <_ F(A) < F~I+(A) . 

We have for all e > 0 

F()~) < F":+()~) <_ F'~I(~ + e) <_ F'~I()~ + e) <_ F(.~ + e) . 

Since limr F()~ + e) = F()~) we get 

F ( )  0 = F~I § = F ~ I + ( s  

This finishes the proof of Theorem 2.3.1. o 

Next we show Theorem 2.3.2 and 2.3.3. We want to apply Lemma  2.8 to 
the functions fm simultaneously. Let Pm be the characteristic polynomial 
of fm and pro(t) = t ~'~" qm(t) for appropriate rm and qm(t) with qm(0) r 0. 
Since f is a ZTr-linear map, the matr ix  describing fm has integers as entries. 
Hence Pm is an integer polynomial and Iqm(0)l > 1. We get for 0 < ~ < 1 
from Lemma 2.8 and Lemma 2.5 with the constants K and C -- 1 which 
are independent  of m 

F,~:(~,)- F~:(O) < - l n O )  + ln(K2) 
a - a . [ ~  : r m ] .  ( - l n ( ~ ) )  - ln(~) 

and hence 
a .  ln(K 2) 

F,~I($) <_ F,~I(O) + 

Taking the limit inferior and limit superior for ra -+ co gives: 

a - l n ( K  2) 
< rr: (0)  + 

and 

Taking the limit for ~ --* 0 gives 

a .  In(K 2) 

F~f (O) = F~I+ (O) 
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and 
F~f (O)=Fr l+(O) .  

We already know F r$ ~'(0) = F ( 0 ) =  F*I(O) from Theorem 2.3.1. 

proves Theorem 2.3.2. Since a'ln(K2) is right continuous, we conclude: - ln(~) 

This 

a .  h (K 2) 
F "f + (A) < F(O) + 

- ln( ) 

Now Theorem 2.3.3 follows from Theorem 2.3.1. This  finishes the proof of 
Theorem 2.3. [] 

3.  D e n s i t y  F u n c t i o n s  a n d  T h e i r  I n v a r i a n t s  

We consider density functions and their invariants like Bett i  numbers,  
Novikov-Shubin invariants and determinants .  We show that  these invariants 
are not  changed if the density function in question is made  right continu- 
ous. This  is useful in connection with Theorem 2.3.1. We apply this to 
the spectral  density function of f (given in Data  2.1) and will express these 
invariants for f(2) in terms of the fm-S. We will prove Theorem 0.5 and 
Theorem 0.6. 

DEFINITION. A density function is a monotone increasing function F : 
[0, c~) --, [0, 0o). Put  

b(2)(F) = lim F()~) . 
~--~0+ 

Define 

a ( F )  = l iminf  ln (F(A)  - b(2)(F)) e [0, ec] , 
~-~0+ ln(,k) 

provided that F($)  > b(2)(F) holds for all ~ > O. Otherwise, we put  
a (F)  = oc + . Suppose there is a K satisfying F(A) = F ( K  2) for all A >_ K 2. 
I f  the integral 

exists as real number, pu t  
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If the integral does not exist, define det(F) = 0. D 

It is not hard to check that the definition of det(F) is independent of 
the choice of K and that the integral exists as real number if a (F)  > 0. If 
g :  @[=l/2(r) --* (~[=xl2(r) is an invertible bounded ~r-equivariant operator 
its Fuglede Kadison determinant is defined by [FuK] 

det(g) = exp ( 1 .  tr~f(~) ( ln(g * g)) ) E (O, oo) . 

It coincides with the determinant of Definition 3.1 applied to the spectral 
density function of g by [Lfil, Lemma 4.2]. 

LEMMA 3.2. Let F : [0, oc) --* [0, oc) be a density function. Define the right 
continuous density function 

Then 

F + :  [0, oc) --* [0, oc) X ~  lim F ( A + 6 ) .  
~--.*0+ 

b(2)(F) = b(2)(F +) = F+(0), c~(F) = a ( F  +) and det(F) = det(F +) . 

and hence for 0 < A < 1 

F(A)-b(2)(F) > F+(X)-b(2)(F +) > F(2.  A)-b(2)(F)  
in(A) - ln(A) - ln(A) 

F(2.  X ) -  b(2)(F) ( ln(2) 
= ln(2.A) �9 l + l n ( A ) ]  " 

Now the we get by taking the limit inferior for A --* 0+ 

a(F) >_ a(F +) >_ a(F) 

and thus the claim 
a(F)  = a ( F  + ) .  

Proof: Obviously we have bO)(F) = b(U)(F +) = F+(0). 
A > 0  

F(X) _< F+(X) < F(2.  X) 

We have for all 
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For e > 0 and/5 > 0 we estimate 

O <_ j[K2 F()~ + /5)- b(U)(F) d~ _ j[K2 F()~) -.b(~)(F) d~ 

= j[ K2 F()~ + /5) - b(2)(F)~-(-5 " + /S dA - j[K2 F(~) -Ab-(U)(F) d~ 

= j [  K2 F ( A + ~ ) 4 ? ( 2 ) ( F ) d ) ~ + / 5 .  j[ K2 F(A+/5)~(~ + !(~)(F)d)~ - 

+/5. (:,+ 

+/5. + 

F(g2) K s " F ( g 2 )  
</5 �9 K----- Y -  +/5.  e----- Y -  

( F ( K  2) K 2 . F(K2) ) 
--/5"k, K 2 + ~-~ �9 

We conclude from Lebesgue's Theorem of Majorized Convergence 

g~F+(~)-- (2)(F+) d~ = lim 
5--,o A 

= 5--olim j[K" F(A + 5)~ b(U)(F) dA 

From Levi's Theorem of Monotone Convergence we conclude 

fo K2 F+(A) -~ b(2)(F+) dA= lim f K2 F+(A) -~b(2)(F+) dA 
+ e-'+~176 
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= elim ~K2 F(A) "-.b(2)(F) dA 

= fo+2 F(A) "-- b(2)(F) d~ 

This finishes the proof of Lemma 3.2. 

Now we consider Data  2.1 and use Notation 2.2 

[:3 

L E M M A 3 . 3 .  1. 

~o imin f  fo ~'~ F r o ( A ) -  Fro(0) K2 F ( A ) - F ( 0 )  dA < 1 y dA.  
+ A - + 

2. If 

then 

. 

I > o}  d A <  cr 

fo 2~or f"' F~(~)- Fro(0) K~ F ( A ) -  F(0) d~ = 
+ A + 

dA.  

fo f K2 Fm(~) - Fro(O) K2 F ( A ) - F ( O )  dA = lim lim dA 
+ A ~-~o , ~ o r  A" " 

Proof: 1. We get from Theorem 2.3, Lemma 3.2 and Levi's Theorem of 
Monotone Convergence 

f 
K~ r(:~)- F(O) 

dA 
+ 

---- dO [K~+ F~I+(A) -A F~I+(O) dA 

-- -- f K~ F~f(A)-F~I(O) dA 

Jo + 

= [~" liminfm_~F.~()t)-lim,~_o~F,~(O)dA 
Jo+ 
~o K2 Fm(A) - Fm(O) 

lira inf dA 
+ m--,or 
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= + limoo inf ~ n > m  dA 

/- I } = lim inf -~ n > m dA 
nt-.--~ oo + 

< lira inf n m 
- m - . ~  + A - 

K 2 

l i m i n f [  F ro (A) -  Fro(O) dA 
m ~  J 0 +  A " 

2. We get from Theorem 2.3, Lemma 3.2 and Lebegues Theorem of 
Majorized Convergence 

[ K2 Fro(A) - Fro(O) 
lim sup d)~ 
m--*oo JO+/ A 

= lim sup A - 
/ n - "+  OO + 

< lim sup ~ > m dA 
rn---+ oe  + 

= lim sup ~ n >_ m dA 

/ K~ Fm(A) -- Fm(O) 
= lim sup dA 

+ m--.~ A 

[ K~ lim s u p m _ ~  Fro(A) - l im~-oo  F,n(O) 
d)~ 

J0 + A 

[ Ks F r Y ( A ) -  F . I ( 0 )  
dA 

J0 + A 

= / Ks F-Y/+(A) - F"I+(O) dA 
+ A 

/ Ks F ( A ) -  F(0)  
dA 

+ A " 

Now assertion 2 follows using assertion 1. 
3. If we substi tute the lower bound 0+ in the calculations of assertion 

1 and assertion 2 by e > 0, they remain true without the additional as- 
sumption in assertion 2 that  a certain integral is smaller than oo. Hence we 
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get 

[ K~ F ( ) , ) -  F(0) dA = lim [g~ Fm()~)- Fro(O) dA 
)~ m ' - ~ ~ 1 7 6  J c  l ) t  " 

Now we derive from Levi's Theorem of Monotone Convergence 

~0 ~ K~ F ( A ) -  F(0) K2 F(A)  - F ( 0 )  dA = lira dA 
+ ~ ~-~o ~ " 

This finishes the proof of Lemma 3.3. n 

The main technical result of this section is 

THEOREM 3.4. 1. Let p(t) = detc(t - f*f ,n)  be the characteristic poly- 
nomial of the C-linear endomorphism f *  fm. Write p(t) ---- t r .q(t) for ap- 
propriate r and q satisfying q(O) # O. Then 

1 

det(Fm) = ( I I  2 # )  2'-rfzm~ --- Iq(0) 12'-IV~ >_ 1 
~EE,n(K ),/z>O 

where Em(K 2) is the ordered set of eigenvalues of f ~ f m  counted with mul- 
tiplicity. 

2. 
det(F) _> limsupdet(Fm) > 1.  

m - ~ O O  

3. Suppose there are constants a > O, e > 0 and C > 0 such that for all 
)~E(0, E) a n d m > 0  

Then 
c~(F) > 

de t (F)- -  lira det(Fm) . 
r r t  -- '* O o  

Proof: 1. follows from the definition of det(Fm) by an elementary calcula- 
tion since Fm (A) is a step function and 

p(t) = 1 ]  ( t -  , )  . 
t tEEm(K z) 

Since f,n is described by a matrix with integral coefficients, p(t) is an integer 
polynomial. Hence q(0) an integer and Iq(0)I _~ 1. 
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2. From Theorem 2.3.2 and L e m m a  3.3.1 

f0 K2 F(A) - b(2)(F) dA 2.  ln (de t (F) )  = ln(K2) �9 ( F ( K  2) - b(2l(F)) - ,k 
+ 

imminf fo K2 F m ( ~ ) -  Fm(O) > ln(K2) �9 ( F m ( g  2) - l im Fro(O)) - 1 -~ ds 

( / /  ) = l i m s u p  ln(K2) �9 (Fm(K 2) - Fro(O)) - Fm(,k) - Fro(O) ~ + -~ dX 

= lim sup 2.  In (de t (Fm))  
m---* O0 

and the claim follows. 
3. We get from the assumpt ion  and Theorem 2.3 for small  0 < )~ < 0, 

Frf()~) - b(2)(ff 77) = l i m s u p F m ( s  - l im Fro(0) _< 
rn---* oo  m---* oo  

_< sup {Fro(A) - Fro(0) ! m > 0} _< C .  A n 

Hence a ( F  rI) >_ a. Since a(F)  = a ( - ~  +) = ve(F ~f) by Theorem 2.3.1 and 
L e m m a  3.2 we get a ( F )  _> a.  Because 

/0 } sup ~ m > 0  d ~ < C .  ~ d ) ~ < c ~  
+ + 

holds, de t (F )  = l imm- .~  det(Fm) follows from L e m m a  3.3.2. This  finishes 
the proof of Theorem 3.4 

Now we can prove Theorem 0.5. We have already ment ioned  in the intro- 
duct ion tha t  assertions 1 and 2 are equivalent so tha t  we only have to prove 
assertion 2. Suppose tha t  f:| O a = l l T I  " is a /Tr-automorphism. 
Choose K large enough for the inequality 2.4 to hold for bo th  f and f - 1 .  

Then  the operator  norms of f(2), (f(2)) -1,  f , ,  and f ~ l  for all m _> 0 are 
less or equal to K.  In part icular  Fm(,k) = Fro(O) = 0 holds for ,k < K -1. 
From Theorem 3.4.3 we get for the Fuglede Kadison de te rminant  of f(2) 
which is de t (F)  if det(: denotes the de te rminant  of a linear au tomorph i sm 
of a finite-dimensional C-vector space 

de t (F)  = l im d e t c ( f * f m ) ~ .  
m - - ~ O o  

Since f is described by a matr ix  with coefficients in ZTr, the  mat r ix  describ- 
ing f , ,  has integer entries. Hence d e t c ( f m ) = + l  and therefore d e t c ( f * f m ) =  
1 for all m. This  implies de t (F)  = 1 and finishes the proof  of Theorem 0.5. 



478 w. LOCK G A F A  

Finally we prove Theorem 0.6. The proof of [L/il, Theorem 2.4] shows 
that for an appropriate 17r-endomorphism f : @i~lZrr ~ @7=lZTr 

p(M) = de t ( f )  -1 

holds. Now apply Theorem 3.4.2 

4. Extending Swan's Theorem from Finite  
to Residually Finite  Groups 

This section is devoted to the proof of Theorem 0.4. We mention that it is 
not hard to prove Theorem 0.4 using Bass [B, Remark 6.11]. We begin with 
explaining the meaning of assertion 1 and why it does imply assertion 2. 

Denote by tr~(~) the center valued trace of the finite von Neumann al- 
gebra Af(Tr) [KR, Theorem 8.2.8]. Two idempotents p E M ( n ,  n, JV'(Tr)) and 
q E M ( m ,  m, Af(Tr)) are called stably equivalent ifp @ 0 = xy and q | 0 = yx 
for some l >  m, n and x, y e M(1, l,A/'(r)) holds. This is equivalent to 
the statement that im(p) and im(q) are isometrically r-isomorphic Hilbert 
Af(Tr)-modules. Moreover, p and q are stably equivalent if and only if they 
have the same center valued trace [KR, Theorem 8.4.3]. Hence the first as- 
sertion in Theorem 0.4 means that for any idempotent p E M ( n ,  n, ZTr) the 
idempotent p(2) is stably equivalent to the idempotent given by the identity 
matrix I~ e M(r ,  r, Af(Tr)) for r the rank of the abelian group Z | im(p). 
Equivalently, im(p (2)) is isometrically r-isomorphic to | Hence 
assertion 1 implies assertion 2 and it remains to prove assertion 1. 

We have to show for an idempotent p e M ( n ,  n, Zr) that tr~c(~)(p (2)) = 
rI1 for/1 the unit element in Af(r). Consider an element u in the center 
Z(Zr)  of I t .  Denote by uIn the diagonal (n, n)-matrix with all diagonal 
entries equal to u. From Lemma 2.6 applied to f = uI~p and f = uI1 we 
obtain the existence of a positive integer m satisfying (in the Notation 2.2) 

1 
tr (.) uln.'T p) = [r: rm] �9 trc ((uZn .p)m) 

and 
1 

trAc(~)(uI1) = [ r :  rm]" t rc (umZl) .  

By Swan's result IS, Theorem 8.1] applied to the finite group Fm\Tr the 
image of P,n is a finitely generated free C[Fm\r]-module of rank r. Hence 
we get 

t rc  ((uln "P)m) = trr ((uI~)m) = rUmI1 . 



Vol.4, 1994 APPROXIMATING L2-1NVARIANTS 479 

This implies 
trx(~) (uIn . p) = t rx(~)(ruI1)  . 

From the universal proper ty  of the center valued trace [KR, Proposit ion 
8.3.101, 

trx(~) (HI . .  p) = trAc(~) (u I z .  trot(.)(p)) . 

Hence we get for all u E Z(17r) 

trnr(~) (u l z -  ( t r~( , ) (p)  - r / l ) )  = O. 

For g E r denote by (g) the set of elements of r which are conjugated to 
g. The center valued trace applied to gI1 gives 0 if (g) is infinite and 1 

(~,he(g) h)I1 otherwise. Hence tr~f(~)(p) - rI1 = vlz for an appropriate 

element v in Z(Z~) .  We conclude for u = v* 

tr~f(,) ((tr~f(~)(p) - rI1)* . (tr~(~)(p) - r I , ) )  = O . 

Since trnr(~) is positive, 

(tr~(~)(p) - r11)* �9 (tr~(~)(p) - r11) = 0 

and hence 
trk(~)(p)  - rXl = 0 .  

This finishes the proof of Theorem 0.4. [] 
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