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0

Introduction

This is an extended version of the lecture notes for a five lecture mini-
course at the MSRI summer graduate school Random and arithmetic struc-
tures in topology (organised by Alexander Furman and Tsachik Gelander) in
June 2019.

This minicourse gives a brief introduction to ergodic theoretic methods in
group homology. By now, this is a vast subject [62]. In the present course,
we will focus on L2-Betti numbers.

The underlying fundamental observation is that taking suitable coefficients
for group (co)homology allows us to connect homological invariants with
ergodic theory; good candidates are coefficients related to non-commutative
measure theory, i.e., to von Neumann algebras and dynamical systems. This
interaction works in both directions:

• On the one hand, (co)homology with coefficients based on dynamical
systems leads to orbit/measure equivalence invariants.

• On the other hand, many homological gradient invariants can be ac-
cessed through the dynamical system given by the profinite completion.

Overview of this minicourse

• Chapter 1.We will start our gentle introduction to L2-Betti numbers by
introducing the von Neumann dimension. In order to keep the technical
overhead at a minimum, we will work with an elementary approach to
von Neumann dimensions and L2-Betti numbers.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
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2 Introduction

• Chapter 2. The von Neumann dimension allows us to define L2-Betti
numbers. We will explore basic computational tools and calculate L2-
Betti numbers in simple examples.

• Chapter 3. On the one hand, L2-Betti numbers are related to classical
Betti numbers through approximation. This residually finite view has
applications to homological gradient invariants.

• Chapter 4. On the other hand, L2-Betti numbers are also related to
measured group theory. We will compare this dynamical view with the
residually finite view.

• Chapter 5. Via invariant random subgroups, ergodic theory also gives a
new way of obtaining approximation results for normalised Betti num-
bers of lattices/locally symmetric spaces.

• Chapter 6. Finally, we will use the dynamical approach to L2-Betti
numbers and related invariants as a blueprint to prove approximation
results for simplicial volume.

None of the material in this book is original; in particular, Chapters 1–3
are covered thoroughly in textbooks on L2-Betti invariants [105, 84] and large
parts of Chapter 4 can be found in surveys on measured group theory [65, 62].

Prerequisites. I tried to keep things as elementary as reasonably possible;
this means that a basic background in algebraic topology (fundamental
group, covering theory, (co)homology, classical group (co)homology), func-
tional analysis (bounded operators, measure theory), and elementary homo-
logical algebra should be sufficient to follow most of the topics of the book.
Chapter 5 requires some knowledge on lattices/locally symmetric spaces and
Chapter 6 requires moderate familiarity with the topology and geometry of
manifolds.

Some basic notions on von Neumann algebras, weak convergence of mea-
sures, and lattices are collected in Appendix A.

Exercises. Each chapter ends with a small selection of exercises; moreover,
small on-the-fly exercises are marked with “(check!)” in the text.

Conventions. The set N of natural numbers contains 0. All rings are unital
and associative (but very often not commutative). By default, modules are
left modules (if not specified otherwise).

Additional material

This brief introduction is in no way exhaustive, but covers only a few selected
topics. I hope that these notes inspire the reader to get involved with more
systematic treatments and the original research literature.
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Textbooks on L2-invariants
• H. Kammeyer. Introduction to ℓ2-invariants, Springer Lecture Notes in

Mathematics, 2247, 2019.
• W. Lück. L2-Invariants: Theory and Applications to Geometry and
K-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 44,
Springer, 2002.

Recommended further reading
• M. Abért, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raim-
bault, I. Samet. On the growth of L2-invariants for sequences of lattices
in Lie groups, Ann. of Math. (2), 185(3), pp. 711–790, 2017.

• M. Abért, N. Nikolov. Rank gradient, cost of groups and the rank versus
Heegaard genus problem, J. Eur. Math. Soc., 14, 1657–1677, 2012.

• M. W. Davis. The Geometry and Topology of Coxeter Groups, Lon-
don Mathematical Society Monographs, 32, Princeton University Press,
2008.

• B. Eckmann. Introduction to l2-methods in topology: reduced l2-
homology, harmonic chains, l2-Betti numbers, notes prepared by Guido
Mislin, Israel J. Math., 117, pp. 183–219, 2000.

• A. Furman. A survey of measured group theory. In Geometry, Rigidity,
and Group Actions (B. Farb, D. Fisher, eds.), 296–347, The University
of Chicago Press, 2011.

• D. Gaboriau. Coût des relations d’équivalence et des groupes, Invent.
Math., 139(1), 41–98, 2000.

• D. Gaboriau. Invariants ℓ2 de relations d’équivalence et de groupes,
Inst. Hautes Études Sci. Publ. Math., 95, 93–150, 2002.

• T. Gelander. A view on invariant random subgroups and lattices, Pro-
ceedings of the International Congress of Mathematicians. Volume II,
pp. 1321–1344, World Sci. Publ., 2018.

• A. S. Kechris, B. D. Miller. Topics in Orbit Equivalence, Springer Lec-
ture Notes in Mathematics, 1852, 2004.

• D. Kerr, H. Li. Ergodic theory. Independence and dichotomies, Springer
Monographs in Mathematics, Springer, 2016.

• W. Lück. Approximating L2-invariants by their finite-dimensional ana-
logues, Geom. Funct. Anal., 4(4), pp. 455–481, 1994.

• J. Raimbault. Blog, https://perso.math.univ-toulouse.fr/jraimbau/
• R. Sauer. Amenable covers, volume and L2-Betti numbers of aspherical
manifolds, J. Reine Angew. Math., 636, 47–92, 2009.

Videos. The videos of the original lectures within the MSRI summer grad-
uate school are available at https://www.msri.org/people/23160 . Moreover,
material for the other two minicourses of this summer school is available at
https://www.msri.org/summer schools/853 .

Errata. Comments and corrections for these notes can be submitted by email
to clara.loeh@mathematik.uni-r.de; errata will be collected at

http://www.mathematik.uni-r.de/loeh/l2 book/errata.pdf .
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The von Neumann dimension

Betti numbers are dimensions of (co)homology groups. In the presence of a
group action, we can alternatively also use an equivariant version of dimen-
sion; this leads to L2-Betti numbers.

In this chapter, we will introduce such an equivariant version of dimension,
using the group von Neumann algebra. In Chapter 2, this dimension will allow
us to define L2-Betti numbers of groups and spaces.

Overview of this chapter.

1.1 From the group ring to the group von Neumann algebra 6
1.2 The von Neumann dimension 11
1.E Exercises 15

Running example. the additive group Z, finite (index sub)groups

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
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6 1. The von Neumann dimension

1.1 From the group ring
to the group von Neumann algebra

Examples of fundamental invariants in algebraic topology are Betti num-
bers of spaces and groups, which are numerical invariants, extracted from
(co)homology by taking dimensions of homology groups.

We will now pass to an equivariant setting: Let Γ ! X be a contin-
uous group action on a topological space X. Then the singular chain com-
plex Csing

∗ (X;C) and the singular homologyH∗(X;C) ofX inherit a Γ-action,
and thus consist of modules over the group ring CΓ.

Unfortunately, the group ring CΓ, in general, does not admit an accessi-
ble module/dimension theory. We will therefore pass to completions of the
group ring: ℓ2Γ (for the modules) and the von Neumann algebra NΓ (for
the morphisms), which lead to an appropriate notion of traces and thus to a
Γ-dimension. We will now explain this in more detail.

1.1.1 The group ring

The group ring of a group Γ is an extension of the ring C with new units
coming from the group Γ:

Definition 1.1.1 (group ring). Let Γ be a group. The (complex) group ring
of Γ is the C-algebra CΓ (sometimes also denoted by C[Γ] to avoid misun-
derstandings)

• whose underlying C-vector space is
⊕

g∈Γ C, freely generated by Γ (we
denote the basis element corresponding to g ∈ Γ simply by g),

• and whose multiplication is the C-bilinear extension of composition
in Γ, i.e.:

· : CΓ × CΓ −→ CΓ
(∑

g∈Γ

ag · g,
∑

g∈Γ

bg · g
)
%−→

∑

g∈Γ

∑

h∈Γ

ah · bh−1·g · g

(where all sums are “finite”, i.e., all but finitely many coefficients are 0).

Example 1.1.2 (group rings).

• The group ring of “the” trivial group 1 is just C[1] ∼=Ring C.

• The group ring C[Z] of the additive group Z is isomorphic to C[t, t−1],
the ring of Laurent polynomials over C (check!).
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• Let n ∈ N>0. Then we have C[Z/n] ∼=Ring C[t]/(tn − 1) (check!).

• In general, group rings are not commutative. In fact, a group ring CΓ
is commutative if and only if the group Γ is Abelian (check!). Hence,
for example, the group ring C[F2] of “the” free group F2 of rank 2 is
not commutative.

Caveat 1.1.3 (notation in group rings). When working with elements in group
rings, some care is required. For example, the term 4 · 2 in C[Z] might be
interpreted in the following different ways:

• the product of 4 times the ring unit and 2 times the ring unit, or

• 4 times the group element 2.

We will circumvent this issue in C[Z], by using the notation “t” for a gen-
erator of the additive group Z and viewing the infinite cyclic group Z as
multiplicative group. Using this convention, the first interpretation would be
written as 4 ·2 (which equals 8) and the second interpretation would be writ-
ten as 4 · t2. Similarly, also in group rings over other groups, we will try to
avoid ambiguous notation.

Proposition 1.1.4 (group ring, universal property). Let Γ be a group. Then the
group ring CΓ, together with the canonical inclusion map i : Γ −→ CΓ (as
standard basis) has the following universal property: For every C-algebra R
and every group homomorphism f : Γ −→ R× , there exists a unique C-algebra
homomorphism Cf : CΓ −→ R with Cf ◦ i = f .

Γ

i
!!

f
"" R× incl "" R

CΓ
∃! Cf

##

Proof. This is a straightforward calculation (check!).

Outlook 1.1.5 (Kaplansky conjecture). The ring structure of group rings is
not well understood in full generality. For example, the following versions of
the Kaplansky conjectures are still open: Let Γ be a torsion-free group.

• Then the group ring CΓ is a domain (?!).

• The group ring CΓ does not contain non-trivial idempotents (?!).
(I.e., if x ∈ CΓ with x2 = x, then x = 1 or x = 0).

However, a positive solution is known for many special cases of groups [38,
117, 44][105, Chapter 10] (such proofs often use input from functional analysis
or geometry) and no counterexamples are known.



8 1. The von Neumann dimension

1.1.2 Hilbert modules

Homology modules are quotient modules. In the presence of an inner prod-
uct, quotients of the form A/B (by closed subspaces B) can be viewed as
submodules of A (via orthogonal complements). Therefore, we will pass from
the group ring CΓ to the completion ℓ2Γ:

Definition 1.1.6 (ℓ2Γ). Let Γ be a group. Then

⟨ · , · ⟩ : CΓ × CΓ −→ C
(∑

g∈Γ

ag · g,
∑

g∈Γ

bg · g
)
%−→

∑

g∈Γ

ag · bg

is an inner product on CΓ. The completion of CΓ with respect to this inner
product is denoted by ℓ2Γ (which is a complex Hilbert space). More con-
cretely, ℓ2Γ is the C-vector space of ℓ2-summable functions Γ −→ C with the
inner product

⟨ · , · ⟩ : ℓ2Γ × ℓ2Γ −→ C
(∑

g∈Γ

ag · g,
∑

g∈Γ

bg · g
)
%−→

∑

g∈Γ

ag · bg.

Example 1.1.7.

• If Γ is a finite group, then ℓ2Γ = CΓ.

• If Γ = Z = ⟨t | ⟩, then Fourier analysis shows that

F : ℓ2Γ −→ L2
(
[−π,π],C

)

∑

n∈Z
an · tn %−→

(
x %→ 1√

2π
·
∑

n∈Z
an · ei·n·x

)

is an isomorphism of C-algebras (with inner product).

Remark 1.1.8 (countability and separability). In order to avoid technical com-
plications, in the following, we will always work with countable groups; then,
the associated ℓ2-space will be separable.

Definition 1.1.9 (Hilbert modules). Let Γ be a countable group.

• A Hilbert Γ-module is a complex Hilbert space V with a C-linear iso-
metric (left) Γ action such that there exists an n ∈ N and an isometric
Γ-embedding V −→ (ℓ2Γ)n. Here, we view ℓ2Γ as a left CΓ-module via

Γ × ℓ2Γ −→ ℓ2Γ

(g, f) %−→
(
x %→ f(x · g)

)
.
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• Let V and W be Hilbert Γ-modules. A morphism V −→ W of Hilbert
Γ-modules is a Γ-equivariant bounded C-linear map V −→W .

In a complex Hilbert space, we have the following fundamental equality
for (closed) submodules A (check!):

C-dimension of A = trace of the orthogonal projection onto A.

For Hilbert Γ-modules, we will use this description of the dimension as a def-
inition. Therefore, we first need to be able to describe orthogonal projections
and we need a suitable notion of trace. Both goals can be achieved by means
of the group von Neumann algebra.

1.1.3 The group von Neumann algebra

Let Γ be a countable group and let a ∈ CΓ. Then the right multiplication
map Ma : ℓ2Γ −→ ℓ2Γ by a is a (left) Γ-equivariant isometric C-linear map.
Similarly, matrices A over CΓ induce morphisms MA between finitely gener-
ated free ℓ2Γ-modules.

However, morphisms of Hilbert Γ-modules, in general, will not be of this
simple form: We will need more general matrix coefficients.

Definition 1.1.10 (group von Neumann algebra). Let Γ be a countable group.

• Let B(ℓ2Γ) be the C-algebra of bounded linear operators ℓ2Γ −→ ℓ2Γ.

• The group von Neumann algebra of Γ is the weak closure of CΓ (acting
by right multiplication on ℓ2Γ) in B(ℓ2Γ).

Remark 1.1.11 (alternative descriptions of the group von Neumann algebra).
Let Γ be a countable group. Then the group von Neumann algebra NΓ is
a von Neumann algebra (Definition A.1.1) and thus can equivalently be de-
scribed as follows (Theorem A.1.2):

• NΓ is the strong closure of CΓ (acting by right multiplication on ℓ2Γ).

• NΓ is the bicommutant of CΓ (acting by right multiplication on ℓ2Γ).

• NΓ is the subalgebra of B(ℓ2Γ) consisting of all bounded operators that
are left CΓ-equivariant.

Theorem 1.1.12 (von Neumann trace). Let Γ be a countable group and let

trΓ : NΓ −→ C
a %−→

〈
e, a(e)

〉
,

where e ∈ CΓ ⊂ ℓ2Γ denotes the atomic function at e ∈ Γ. Then trΓ satisfies
the following properties:
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1. Trace property. For all a, b ∈ NΓ, we have trΓ(a ◦ b) = trΓ(b ◦ a).

2. Faithfulness. For all a ∈ NΓ, we have trΓ(a∗ ◦ a) = 0 if and only
if a = 0. Here, a∗ denotes the adjoint operator of a.

3. Positivity. For all a ∈ NΓ with a ≥ 0, we have trΓ a ≥ 0. Here, a ≥ 0
if and only if ⟨x, a(x)⟩ ≥ 0 for all x ∈ ℓ2Γ.

Proof. Ad 1. A straightforward computation shows that the trace property
holds on the subalgebra CΓ (check!). By construction, trΓ is weakly contin-
uous. Therefore, the trace property also holds on NΓ.

Ad 2. For the non-trivial implication, let a ∈ NΓ with trΓ(a∗ ◦ a) = 0.
Then, by definition, we have

0 = trΓ(a
∗ ◦ a) = ⟨e, a∗ ◦ a(e)⟩ = ⟨a(e), a(e)⟩

and thus a(e) = 0. Because a is Γ-linear, we also obtain a(g ·e) = g ·a(e) = 0.
Continuity of a therefore shows that a = 0.

Ad 3. This is clear from the definition of positivity and the trace.

Example 1.1.13 (some von Neumann traces).

• If Γ is a finite group, then NΓ = CΓ. The von Neumann trace is

trΓ : NΓ = CΓ −→ C
∑

g∈Γ

ag · g %−→ ae.

• If Γ = Z = ⟨t | ⟩, then we obtain [105, Example 1.4]: The group
von Neumann algebra NΓ is canonically isomorphic to L∞([−π,π],C

)

(as can be seen via the Fourier transform) and the action on ℓ2Γ ∼=
L2([−π,π],C) is given by pointwise multiplication; under this isomor-
phism, the trace trΓ on NΓ corresponds to the integration map

L∞([−π,π],C
)
−→ C

f %−→ 1

2π
·
∫

[−π,π]
f dλ.

In view of the previous example (and Theorem A.1.3), the abstract theory
of von Neumann algebras is also sometimes referred to as non-commutative
measure theory.

Remark 1.1.14 (extension of the trace to matrices and morphisms). As in linear
algebra, we can extend the trace from the group von Neumann algebra to
matrices: Let Γ be a countable group and let n ∈ N. Then we define the trace
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trΓ : Mn×n(NΓ) −→ C

A %−→
n∑

j=1

trΓ Ajj .

This trace also satisfies the trace property, is faithful, and positive (check!).
Moreover, every bounded (left) Γ-equivariant map (ℓ2Γ)n −→ (ℓ2Γ)n is

represented by a matrix in Mn×n(NΓ) (by the last characterisation in Re-
mark 1.1.11). Therefore, every bounded Γ-equivariant map (ℓ2Γ)n −→ (ℓ2Γ)n

has a trace.

1.2 The von Neumann dimension

We can now define the von Neumann dimension of Hilbert modules via the
trace of projections:

Proposition and Definition 1.2.1 (von Neumann dimension). Let Γ be a count-
able group and let V be a Hilbert Γ-module. Then the von Neumann Γ-di-
mension of V is defined as

dimNΓ V := trΓ p,

where i : V −→ (ℓ2Γ)n (for some n ∈ N) is an isometric Γ-embedding and
p : (ℓ2Γ)n −→ (ℓ2Γ)n is the orthogonal Γ-projection onto i(V ). This is well-
defined (i.e., independent of the chosen embedding into a finitely generated
free ℓ2Γ-module) and dimNΓ V ∈ R≥0.

Proof. As a first step, we note that i(V ) is a closed subspace of (ℓ2Γ)n (be-
cause V is complete and i is isometric). Hence, there indeed exists an orthog-
onal projection p : (ℓ2Γ)n −→ im i.

The trace is independent of the embedding: Let j : V −→ (ℓ2Γ)m also
be an isometric Γ-embedding and let q : (ℓ2Γ)m −→ im j be the orthogonal
projection. Then we define a partial isometry u : (ℓ2Γ)n −→ (ℓ2Γ)m by tak-
ing j ◦ i−1 on im i and taking 0 on (im i)⊥. By construction j = u ◦ i. Taking
adjoints shows that q = p ◦ u∗ and hence

trΓ q = trΓ(j ◦ q) = trΓ(u ◦ i ◦ q) = trΓ(u ◦ i ◦ p ◦ u∗)

= trΓ(i ◦ p ◦ u∗ ◦ u) (trace property)

= trΓ(i ◦ p ◦ p) = trΓ(i ◦ p) = trΓ p.

The von Neumann dimension is non-negative: Let P ∈Mn×n(NΓ) be the
matrix representing p. Because p (as an orthogonal projection) is a positive
operator (check!), all the diagonal entries Pjj ∈ NΓ of P are also positive
operators (check!). Therefore, positivity of the von Neumann trace (Theo-
rem 1.1.12) shows that dimNΓ V = trΓ p =

∑n
j=1 trΓ Pjj ≥ 0.
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Example 1.2.2 (von Neumann dimension).

• Let Γ be a finite group and let V be a Hilbert Γ-module. Then

dimNΓ V =
1

|Γ| · dimC V,

as can be seen from a direct computation (check!) or by applying the
restriction formula (Theorem 1.2.3).

• Let Γ = Z = ⟨t | ⟩. We will use the description of ℓ2Γ and NΓ from
Example 1.1.13. Let A ⊂ [−π,π] be a measurable set. Then V :=
{f · χA | f ∈ L2([−π,π],C)} is a Hilbert Γ-module and the 1 × 1-
matrix (χA) ∈ M1×1(NΓ) describes the orthogonal projection onto V .
Hence,

dimNΓ V = trΓ χA =
1

2π
·
∫ π

−π
χA dλ =

1

2π
· λ(A)

and thus every number in [0, 1] occurs as the von Neumann dimension
of a Hilbert NΓ-module (!).

Theorem 1.2.3 (basic properties of the von Neumann dimension). Let Γ be a
countable group.

1. Normalisation. We have dimNΓ ℓ2Γ = 1.

2. Faithfulness. For every Hilbert Γ-module V , we have dimNΓ V = 0 if
and only if V ∼=Γ 0.

3. Weak isomorphism invariance. If f : V −→W is a morphism of Hilbert
Γ-modules with ker f = 0 and im f = W , then dimΓ V = dimΓ W .

4. Additivity. Let 0 "" V ′ i "" V
π "" V ′′ "" 0 be a weakly ex-

act sequence of Hilbert Γ-modules (i.e., i is injective, im i = kerπ and
imπ = V ′′). Then

dimNΓ V = dimNΓ V
′ + dimNΓ V

′′.

5. Multiplicativity. Let Λ be a countable group, let V be a Hilbert Γ-
module, and let W be a Hilbert Λ-module. Then the completed tensor
product V ⊗C W is a Hilbert Γ × Λ-module and

dimN(Γ×Λ)(V ⊗C W ) = dimNΓ V · dimNΛ W.

6. Restriction. Let V be a Hilbert Γ-module and let Λ ⊂ Γ be a subgroup
of finite index. Then

dimNΛ ResΓΛ V = [Γ : Λ] · dimNΓ V.
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Proof. Ad 1. This is clear from the definition (we can take idℓ2Γ as embedding
and projection).

Ad 2. In view of faithfulness of the von Neumann trace (Theorem 1.1.12),
it follows that the von Neumann trace of a projection is 0 if and only if the
projection is 0 (check!).

Ad 3. This is a consequence of polar decomposition: Let f = u ◦ p be the
polar decomposition of f into a partial isometry u and a positive operator p
with keru = ker p. We now show that u is a Γ-isometry between V and W :
As f is injective, we have ker u = ker p = 0. Moreover, as a partial isometry,
u has closed image and so im u = imu = im f = W . Hence, u is an isom-
etry. Moreover, the uniqueness of the polar decomposition shows that u is
Γ-equivariant. Therefore, dimNΓ V = dimNΓ W .

Ad 4. The von Neumann dimension is additive with respect to direct sums
(check!). Moreover,

V −→ im i⊕V ′′

x %−→
(
p(x),π(x)

)

is a weak isomorphism of Hilbert Γ-modules (check!), where p : V −→ im i
denotes the orthogonal projection. Therefore, weak isomorphism invariance
of dimΓ shows that

dimΓ V = dimΓ(im i⊕V ′′) = dimΓ im i+ dimΓ V
′′ = dimΓ V

′ + dimΓ V
′′.

Ad 5. The key observation is that ℓ2(Γ × Λ) is isomorphic (as a Hilbert
Γ × Λ-module) to ℓ2Γ⊗C ℓ2Λ [105, Theorem 1.12].

Ad 6. This is Exercise 1.E.4.

Moreover, the von Neumann dimension also satisfies inner and outer reg-
ularity [105, Theorem 1.12].

Outlook 1.2.4 (the extended von Neumann dimension). The above hands-on
construction of the von Neumann dimension is convenient for simple com-
putations. However, this approach only works for the category of Hilbert
modules, which in general is only additive but not Abelian. Several exten-
sions of the von Neumann dimension are available, e.g., by Cheeger and
Gromov [36], Farber [51], and Lück [104, 105]. We will briefly outline Lück’s
algebraic version:

Let Γ be a countable group. Then the category of Hilbert Γ-modules canon-
ically embeds into the category of NΓ-modules (Exercise 1.E.2); moreover,
this construction can be refined to a C-linear equivalence F from the cat-
egory of Hilbert Γ-modules to the category of finitely generated projective
NΓ-modules that satisfies F (ℓ2Γ) = NΓ and preserves (weak) exactness [104,
Theorem 1.8].

If P is a finitely generated projective NΓ-module, then we set
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pdimNΓ P := trNΓ p := trΓ A ∈ R≥0,

where p : (NΓ)n −→ (NΓ)n is a projection with P ∼=NΓ im p and associ-
ated matrix A ∈ Mn×n(NΓ); this definition is independent of the chosen
projection p [105, p. 238f].

For a general NΓ-module V one then defines

dimNΓ V := sup
{
pdimNΓ P

∣∣ P is a finitely generated projective

NΓ-submodule of V
}
∈ R≥0 ∪ {∞}.

It turns out that this definition provides a well-behaved notion of dimension
for NΓ-modules that coincides via F with the von Neumann dimension of
Hilbert Γ-modules [104, Theorem 0.6]. One of the key ingredients is the obser-
vation that the ring NΓ is semi-hereditary (i.e., that every finitely generated
submodule of a projective NΓ-module is projective).

Furthermore, the NΓ-modules of dimension 0 form a Serre subcategory of
the category of NΓ-modules; this allows us to efficiently use standard tools
from homological algebra when working with von Neumann dimensions [123].

In fact, the same construction works for every finite von Neumann algebra,
not only for the group von Neumann algebra NΓ [104, 123]. In Chapter 4,
we will use such an extended von Neumann dimension in the context of
equivalence relations.

Outlook 1.2.5 (Atiyah conjecture). The Atiyah question/conjecture comes in
many flavours (originally formulated in terms of closed Riemannian mani-
folds). One version is:

Let Γ be a torsion-free countable group, let n ∈ N, and let A ∈
Mn×n(CΓ). Then dimNΓ kerMA ∈ Z (?!)

This version of the Atiyah conjecture is known to hold for many classes of
groups (and no counterexample is known so far); however, more general ver-
sions of the Atiyah conjecture are known to be false [12, 72]. One interesting
aspect of the Atiyah conjecture is that it implies the Kaplansky zero-divisor
conjecture (Exercise 1.E.5).
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1.E Exercises

Exercise 1.E.1 (the “trivial” Hilbert module). For which countable groups Γ
is C (with the trivial Γ-action) a Hilbert Γ-module? Which von Neumann
dimension does it have?

Exercise 1.E.2 (Hilbert modules as modules over the von Neumann algebra).
Let Γ be a countable group and let V be a Hilbert Γ-module. Show that the
left Γ-action on V extends to a leftNΓ-action on V . How can this construction
be turned into a functor?
Hints. This fact is the reason why Hilbert Γ-modules are often called Hilbert
NΓ-modules.

Exercise 1.E.3 (kernels and cokernels). Let Γ be a countable group, let V and
W be Hilbert Γ-modules, and let ϕ : V −→ W be a morphism of Hilbert
Γ-modules.

1. Show that kerϕ (with the induced inner product and Γ-action) is a
Hilbert Γ-module

2. Show that W/imϕ (with the induced inner product and Γ-action) is a
Hilbert Γ-module.

Hints. Orthogonal complement!

Exercise 1.E.4 (restriction formula for the von Neumann dimension [105, Theo-
rem 1.12(6)]). Let Γ be a countable group, let V be a Hilbert Γ-module, and
let Λ ⊂ Γ be a finite index subgroup. Show that

dimNΛ ResΓΛ V = [Γ : Λ] · dimNΓ V.

Exercise 1.E.5 (Atiyah =⇒ Kaplansky [105, Lemma 10.15]). Let Γ be a count-
able torsion-free group that satisfies the Atiyah conjecture (Outlook 1.2.5).
Show that CΓ is a domain.
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2.1 An elementary definition of L2 -Betti numbers

L2-Betti numbers are an equivariant version of ordinary Betti numbers. For
simplicity, we will only consider L2-Betti numbers of free Γ-CW-complexes
of finite type.

2.1.1 Finite type

Definition 2.1.1 (equivariant CW-complex). Let Γ be a group.

• A free Γ-CW-complex is a CW-complex X together with a free Γ-action
such that:

– the Γ-action permutes the open cells of X and

– if e is an open cell of X and g ∈ Γ is non-trivial, then g · e∩ e ̸= ∅.

• A morphism of Γ-CW-complexes is a Γ-equivariant cellular map.

Definition 2.1.2 (finite type).

• A CW-complex is of finite type if for each n ∈ N, there are only finitely
many open n-cells.

• Let Γ be a group. A (free) Γ-CW-complex is of finite type if for each
dimension n ∈ N, there are only finitely many Γ-orbits of open n-cells.

• A group Γ is of finite type if it admits a classifying space of finite
type (equivalently, a classifying space whose universal covering with
the induced free Γ-CW-structure is a Γ-CW-complex of finite type).

Remark 2.1.3 (more on groups of finite type). Let Γ be a group.

• If Γ is of finite type, then Γ is finitely presented (as the fundamental
group of a CW-complex of finite type); in particular, Γ is countable.

• If Γ is finitely presented, then Γ is of finite type if and only if C (with the
trivial Γ-action) admits a projective resolution over CΓ that is finitely
generated in each degree [30, Chapter VIII].

Example 2.1.4 (groups of finite type).

• The group Z is of finite type: We can take the circle (with our favourite
CW-structure) as a classifying space.

• If Γ and Λ are of finite type, then so is Γ× Λ (we can take the product
of finite type models as a model for the classifying space of Γ × Λ).
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• If Γ and Λ are of finite type, then so is Γ ∗Λ (we can take the wedge of
finite type models as a model for the classifying space of Γ ∗ Λ).

• In particular, free Abelian groups of finite rank and free groups of finite
rank are of finite type.

• Let g ∈ N≥2 and let Σg be “the” oriented closed connected surface of
genus g. Then π1(Σg) is of finite type (because Σg is a (finite) model
for the classifying space of Σg).

• More generally: If M is an oriented closed connected hyperbolic mani-
fold, then π1(M) has finite type (because M is a (finite) model for the
classifying space of π1(M)).

• If n ∈ N≥2, then Z/n is of finite type (check!), but there is no finite
model for the classifying space of Z/n [30, Corollary VIII.2.5].

• More generally: All finite groups are of finite type (for instance, one can
use the simplicial Γ-resolution as a blueprint to construct a contractible
free Γ-CW-complex and then take its quotient).

• There exist finitely presented groups that are not of finite type [20].

2.1.2 L2-Betti numbers of spaces

Definition 2.1.5 (L2-Betti numbers of spaces). Let Γ be a countable group
and let X be a free Γ-CW-complex of finite type.

• The cellular L2-chain complex of X is the twisted chain complex

C(2)
∗ (Γ ! X) := ℓ2Γ⊗CΓ C∗(X).

Here, C∗(X) denotes the cellular chain complex of X (with C-coeffi-
cients) with the induced Γ-action and ℓ2Γ carries the left CΓ-module
structure given by right translation on Γ.

• Let n ∈ N. The (reduced) L2-homology of X in degree n is defined by

H(2)
n (Γ ! X) := ker ∂(2)

n

/
im ∂(2)

n+1,

where ∂(2)
∗ denotes the boundary operator on C(2)

∗ (Γ ! X).

• The n-th L2-Betti number of X is defined by

b(2)n (Γ ! X) := dimNΓ H
(2)
n (Γ ! X),
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where dimNΓ is the von Neumann dimension (Definition 1.2.1). It

should be noted that H(2)
n (Γ ! X) is indeed a Hilbert Γ-module (this

follows from Exercise 1.E.3).

Notation 2.1.6. Moreover, we use the following abbreviation: If X is a CW-
complex of finite type with fundamental group Γ and universal covering X̃
(with the induced free Γ-CW-complex structure), then we write

b(2)n (X) := b(2)n (Γ ! X̃).

It should be noted that in the literature the notation b(2)n (X̃) can also be found

as an abbreviation for b(2)n (Γ ! X̃). However, we prefer the notation b(2)n (X)

as it is less ambiguous (what is b(2)n (H 2) ?!).

Remark 2.1.7 (homotopy invariance). Let Γ be a countable group, let X and
Y be free Γ-CW-complexes, and let n ∈ N. If f : X −→ Y is a (cellular)
Γ-homotopy equivalence, then

b(2)n (Γ ! X) = b(2)n (Γ ! Y ),

because f induces a CΓ-chain homotopy equivalence C∗(X) ≃ CΓ C∗(Y ) and

thus a chain homotopy equivalence C(2)
∗ (Γ ! X) −→ C(2)

∗ (Γ ! Y ) in the
category of chain complexes of Hilbert Γ-modules.

2.1.3 L2-Betti numbers of groups

Let Γ be a group and let X and Y be models for the classifying space of Γ.
Then the universal coverings X̃ and Ỹ with the induced Γ-CW-structures are

(cellularly) Γ-homotopy equivalent. Therefore, b(2)n (X) = b(2)n (Y ) for all n ∈ N
(Remark 2.1.7). Hence, the following notion is well-defined:

Definition 2.1.8 (L2-Betti numbers of groups). Let Γ be a group of finite type
and let n ∈ N. Then the n-th L2-Betti number of Γ is defined by

b(2)n (Γ) := b(2)n (X),

where X is a model for the classifying space of Γ of finite type.

Similarly, we could also define/compute L2-Betti numbers of groups by
tensoring finite type projective resolutions of C over CΓ with ℓ2Γ (check!).

2.2 Basic computations

For simplicity, in the following, we will focus on L2-Betti numbers of groups.
Similar statements hold for L2-Betti numbers of spaces [105, Theorem 1.35].
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2.2.1 Basic properties

Proposition 2.2.1 (degree 0). Let Γ be a group of finite type.

1. If Γ is finite, then b(2)0 (Γ) = 1/|Γ|.

2. If Γ is infinite, then b(2)0 (Γ) = 0.

Both cases can conveniently be summarised in the formula

b(2)0 (Γ) =
1

|Γ| .

Proof. Classical group homology tells us that b(2)0 (Γ) = dimNΓ V , where

V = ℓ2Γ
/
SpanC{x− g · x | x ∈ ℓ2Γ, g ∈ Γ}.

If Γ is finite, then ℓ2Γ = CΓ, whence V ∼=Γ C (with the trivial Γ-action).
Therefore (Exercise 1.E.1),

b(2)0 (Γ) = dimNΓ C =
1

|Γ| .

If Γ is infinite, then it suffices to show that V ∼=Γ 0: To this end, we only
need to show that every bounded C-linear functional V −→ C is the zero
functional. Equivalently, we need to show that every Γ-invariant bounded C-
linear functional f : ℓ2Γ −→ C satisfies f |Γ = 0 (check!). As Γ is infinite (and
countable), we can enumerate Γ as (gn)n∈N. The element x :=

∑
n∈N 1/n · gn

lies in ℓ2Γ and the computation

f(x) =
∑

n∈N

1

n
· f(gn) (continuity and linearity of f)

=
∑

n∈N

1

n
· f(e) (Γ-invariance of f)

shows that f(e) = 0 (otherwise the series would not converge). Hence f(g) =
f(e) = 0 for all g ∈ Γ (by Γ-invariance), as desired.

Theorem 2.2.2 (inheritance properties of L2-Betti numbers). Let Γ be a group
of finite type and let n ∈ N.

1. Dimension. If Γ admits a finite model of the classifying space of dimen-

sion less than n, then b(2)n (Γ) = 0.

2. Restriction. If Λ ⊂ Γ is a subgroup of finite index, then Λ is also of
finite type and
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b(2)n (Λ) = [Γ : Λ] · b(2)n (Γ).

3. Künneth formula. If Λ is a group of finite type, then

b(2)n (Γ × Λ) =
n∑

j=0

b(2)j (Γ) · b(2)n−j(Λ).

4. Additivity. If Λ is a group of finite type, then

b(2)1 (Γ ∗ Λ) = b(2)1 (Γ) + b(2)1 (Λ) + 1−
(
b(2)0 (Γ) + b(2)0 (Λ)

)

and, if n > 1, then

b(2)n (Γ ∗ Λ) = b(2)n (Γ) + b(2)n (Λ).

5. Poincaré duality. If Γ admits a classifying space that is an oriented
closed connected d-manifold, then

b(2)n (Γ) = b(2)d−n(Γ).

Proof. Ad 1. This is clear from the definition.
Ad 2. If X is a finite type model for the classifying space of Γ, then the

covering space Y associated with the subgroup Λ ⊂ Γ is a model for the
classifying space of Λ; moreover, Y is of finite type because the covering
degree is [Γ : Λ], which is finite. Algebraically, on the cellular chain complex
of the universal covering space X̃ = Ỹ (and whence also on its reduced
cohomology with ℓ2-coefficients), this corresponds to applying the restriction
functor ResΓΛ. Then, we only need to apply the restriction formula for the
von Neumann dimension (Theorem 1.2.3).

Ad 3. Let X and Y be finite type models for the classifying space of Γ
and Λ, respectively. Then X × Y is a model for the classifying space of Γ ×
Λ, which is of finite type. One can now use a Künneth argument and the
multiplicativity of the von Neumann dimension (Theorem 1.2.3) to prove the
claim [105, Theorem 1.35].

Ad 4. Let X and Y be finite type models for the classifying space of Γ and
Λ, respectively. Then the wedge X ∨ Y is a model for the classifying space
of Γ ∗Λ, which is of finite type. One can now use a (cellular) Mayer–Vietoris
argument to prove the additivity formula [105, Theorem 1.35].

Ad 5. The main ingredients are twisted Poincaré duality (applied to the
coefficients ℓ2Γ) and the fact that the L2-Betti numbers can also be computed
in terms of reduced cohomology [105, Theorem 1.35].

Proposition 2.2.3 (Euler characteristic). Let Γ be a group that admits a finite
classifying space. Then
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χ(Γ) =
∑

n∈N
(−1)n · b(2)n (Γ).

Proof. This follows (as in the classical case) from the additivity of the
von Neumann dimension (Exercise 2.E.2).

2.2.2 First examples

Example 2.2.4 (finite groups). Let Γ be a finite group. Then Γ is of finite
type (Example 2.1.4) and, for all n ∈ N, we have

b(2)n (Γ) =
1

|Γ| · dimC Hn(Γ;CΓ) =
{

1
|Γ| if n = 0

0 if n > 0.

Example 2.2.5 (the additive group Z). There are many ways to see that the
L2-Betti numbers of the additive group Z are all equal to 0. For instance: Let
n ∈ N. For k ∈ N>1, we consider the subgroup k ·Z ⊂ Z of index k. Then the
restriction formula (Theorem 2.2.2) shows that

b(2)n (Z) = b(2)n (k · Z) (because k · Z ∼=Group Z)
= k · b(2)n (Z) (restriction formula)

and so b(2)n (Z) = 0.

Example 2.2.6 (free groups). Let r ∈ N≥1 and let Fr be “the” free group of
rank r. Then Xr :=

∨r S1 is a model of the classifying space of Fr.

• Because Fr is infinite, we have b(2)0 (Fr) = 0 (Proposition 2.2.1).

• Because dimXr = 1, we have b(2)n (Fr) = 0 for all n ∈ N≥2.

• It thus remains to compute b(2)1 (Fr). Because the Euler characteristic
can be calculated via L2-Betti numbers (Proposition 2.2.3), we obtain

b(2)1 (Fr) = −χ(Fr) + b(2)0 (Fr) = −χ(Xr) + 0 = r − 1.

Example 2.2.7 (surface groups). Let g ∈ N≥1 and let Γg := π1(Σg), where Σg

is “the” oriented closed connected surface of genus g. Then Σg is a model of
the classifying space of Σg.

• Because Γg is infinite, we have b(2)0 (Γg) = 0 (Proposition 2.2.1).

• Because dimΣg = 2, we obtain from Poincaré duality (Theorem 2.2.2)

that b(2)2 (Γg) = b(2)0 (Γg) = 0 and that b(2)n (Γg) = 0 for all n ∈ N≥3.
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• It thus remains to compute b(2)1 (Σg). Because the Euler characteristic
can be calculated via L2-Betti numbers (Proposition 2.2.3), we obtain

b(2)1 (Γg) = −χ(Γg) + b(2)0 (Γg) + b(2)2 (Γg) = −χ(Σg) + 0 = 2 · (g − 1).

Outlook 2.2.8 (hyperbolic manifolds). More generally: Let Γ be the funda-
mental group of an oriented closed connected hyperbolic manifold M of di-
mension d.

• If d is odd, then b(2)n (Γ) = 0 for all n ∈ N.

• If d is even, then b(2)n (Γ) = 0 for all n ∈ N \ {d/2}. Moreover,

b(2)d/2(Γ) ̸= 0.

The proof is based on the fact that L2-Betti numbers can be computed in
terms of spaces of L2-harmonic forms [46][105, Chapter 1.4] and the ex-
plicit computation of L2-harmonic forms of hyperbolic manifolds [47][105,
Theorem 1.62]. (A cellular version of harmonic forms is discussed in Exer-
cise 3.E.2.)

Outlook 2.2.9 (Singer conjecture). The Singer conjecture predicts that L2-
Betti numbers of closed aspherical manifolds are concentrated in the middle
dimension:

Let M be an oriented closed connected aspherical manifold of dimen-
sion d. Then

∀n∈N\{d/2} b(2)n

(
π1(M)

)
= 0 (?!)

No counterexample is known. However, the analogue of the Singer conjecture
for rationally aspherical manifolds is false [13] and not much is known about
L2-Betti numbers of “exotic” closed aspherical manifolds [41].

2.3 Variations and extensions

• Analytic definition. Originally, Atiyah defined L2-Betti numbers (of
closed smooth manifolds) in terms of the heat kernel on the universal
covering [11]. Dodziuk proved that these analytic L2-Betti numbers
admit a combinatorial description (in terms of ℓ2-chain complexes of
simplicial/cellular complexes of finite type) [46].

• Singular definition. Cheeger and Gromov [36], Farber [51], Lück [104,
105] extended the definition of the von Neumann dimension to all mod-
ules over the von Neumann algebra (Outlook 1.2.4); in particular, this
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allows for a definition of L2-Betti numbers of spaces in terms of singular
homology with twisted coefficients in ℓ2π1 or Nπ1.

• Extension to equivalence relations. Gaboriau extended the definition
of L2-Betti numbers of groups to standard equivalence relations [64].
We will return to this point of view in Chapter 4.

• Extension to topological groups. Petersen gave a definition of L2-Betti
numbers of locally compact, second countable, unimodular groups [119].

• Version for von Neumann algebras. In a slightly different direction,
Connes and Shlyakhtenko introduced a notion of L2-Betti numbers for
tracial von Neumann algebras [40]. However, it is unknown to what
extent these L2-Betti numbers of group von Neumann algebras coincide
with the L2-Betti numbers of groups (which would be helpful in the
context of the free group factor isomorphism problem).

It should be noted that Popa and Vaes showed that Thom’s continuous
version of the corresponding L2-cohomology for tracial von Neumann
algebras is always trivial in degree 1 [121].
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2.E Exercises

Exercise 2.E.1 (products).

1. Let Γ and Λ be infinite groups of finite type. Show that b(2)1 (Γ× Λ) = 0.

2. Conclude: If Γ is a group of finite type with b(2)1 (Γ) ̸= 0, then Γ does
not contain a finite index subgroup that is a product of infinite groups.

Exercise 2.E.2 (Euler characteristic). Let Γ be a group that admits a finite
classifying space. Show that

χ(Γ) =
∑

n∈N
(−1)n · b(2)n (Γ).

Exercise 2.E.3 (an explicit ℓ2-cycle [84, Figure 1.1]). Give an explicit example

of a non-zero 1-cycle in C(2)
∗ (F2 ! T ), where T is “the” regular 4-valent tree.

Exercise 2.E.4 (QI?! [135]). Let Γ be a group of finite type and let r ∈ N≥2.

1. Compute all L2-Betti numbers of Fr ∗Γ in terms of r and the L2-Betti
numbers of Γ.

2. Let k ∈ N≥2. Conclude that the quotient b(2)1 /b(2)k is not a quasi-
isometry invariant.

3. Show that the sign of the Euler characteristic is not a quasi-isometry
invariant.

4. Use these results to prove that there exist groups of finite type that are
quasi-isometric but not commensurable.

Hints. If s ∈ N≥2, then it is known that Fr and Fs are bilipschitz equivalent
and thus that Fr ∗ Γ and Fs ∗ Γ are quasi-isometric [115, 135].

Exercise 2.E.5 (deficiency [102]).

1. Let Γ be a group of finite type and let ⟨S |R⟩ be a finite presentation
of Γ. Show that

|S|− |R| ≤ 1− b(2)0 (Γ) + b(2)1 (Γ)− b(2)2 (Γ).

Taking the maximum of all these differences thus shows that the defi-
ciency def(Γ) of Γ is bounded from above by the right-hand side.

2. Let Γ ⊂ Isom+(H 4) be a torsion-free uniform lattice. Show that

def(Γ) ≤ 1− χ(Γ) = 1− 3

4 · π2
· vol(Γ \ H 4).
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The residually finite view:
Approximation

The L2-Betti numbers are related to classical Betti numbers through ap-
proximation by the normalised Betti numbers of finite index subgroups/finite
coverings.

We explain the (spectral) proof of this approximation theorem and briefly
discuss the relation with other (homological) gradient invariants.

This residually finite view will be complemented by the dynamical view in
Chapter 4 and the approximation theorems for lattices in Chapter 5.
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3.1 The approximation theorem

In the residually finite view, one approximates groups by finite quotients/finite
index subgroups and spaces by finite coverings.

Definition 3.1.1 (residual chain, residually finite group). Let Γ be a finitely
generated group.

• A residual chain for Γ is a sequence (Γn)n∈N of finite index normal
subgroups of Γ with Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . . and

⋂
n∈N Γn = {e}.

• The group Γ is residually finite if it admits a residual chain.

Example 3.1.2 (residually finite groups).

• All finitely generated linear groups are residually finite [107, 113].
In particular: Fundamental groups of closed hyperbolic manifolds are
residually finite. In contrast, it is unknown whether all finitely gener-
ated (Gromov-)hyperbolic groups are residually finite.

• There exist finitely presented groups that are not residually finite (e.g.,
each finitely presented infinite simple group will do).

Theorem 3.1.3 (Lück’s approximation theorem [103]). Let X be a connected
CW-complex of finite type with residually finite fundamental group Γ, let
(Γn)n∈N be a residual chain for Γ, and let k ∈ N. Then

b(2)k (X) = lim
n→∞

bk(Xn)

[Γ : Γn]
.

Here, Xn denotes the finite covering of X associated with the subgroup Γn ⊂ Γ
and bk is the ordinary k-th Q-Betti number (which equals the C-Betti num-
ber).

Corollary 3.1.4 (approximation theorem, for groups). Let Γ be a residually
finite group of finite type, let (Γn)n∈N, and let k ∈ N. Then

b(2)k (Γ) = lim
n→∞

bk(Γn)

[Γ : Γn]
.

3.2 Proof of the approximation theorem

The proof of the approximation theorem (Theorem 3.1.3) is of a spectral
nature; we will roughly follow unpublished notes of Sauer.
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3.2.1 Reduction to kernels of self-adjoint operators

As first step, we reduce the approximation theorem to a statement about
von Neumann dimensions of kernels of self-adjoint operators:

• On the one hand, if Λ ! Y is a free Λ-CW-complex (with a countable
group Λ), then the (combinatorial) Laplacian ∆∗ of the ℓ2-chain com-
plex of Λ ! Y is a positive self-adjoint operator on a Hilbert Λ-module
that satisfies (Exercise 3.E.2)

b(2)k (Λ ! Y ) = dimNΛ ker∆k.

• On the other hand, the right-hand side in the approximation theorem
(Theorem 3.1.3), can also be written as a von Neumann dimension: For
each n ∈ N, the finite group Γ/Γn is of finite type (Example 2.1.4), we
have (Example 1.2.2)

bk(Xn)

[Γ : Γn]
= b(2)k (Γ/Γn ! Xn),

and the boundary operator [Laplacian] on C(2)
∗ (Γ/Γn ! Xn) is the

reduction of the boundary operator [Laplacian] on C(2)
∗ (Γ ! X) mod-

ulo Γn.

Therefore, Theorem 3.1.3 is a consequence of the following, slightly more
algebraically looking, version (because the cellular Laplacian is defined over
the integral group ring):

Theorem 3.2.1 (approximation theorem for kernels). Let Γ be a finitely gener-
ated residually finite group with a residual chain (Γn)n∈N, let m ∈ N, and let
A ∈Mm×m(ZΓ) be self-adjoint and positive. Then

dimNΓ ker
(
MA : (ℓ2Γ)m → (ℓ2Γ)m

)

= lim
n→∞

dimN(Γ/Γn) ker
(
MAn : (ℓ

2(Γ/Γn))
m → (ℓ2(Γ/Γn))

m
)
,

where An ∈Mm×m(Z[Γ/Γn]) denotes the reduction of A modulo Γn.

We will now prove Theorem 3.2.1.

3.2.2 Reformulation via spectral measures

We reformulate the claim of Theorem 3.2.1 in terms of spectral measures: Let
µA be the spectral measure on R (with the Borel σ-algebra) of the self-adjoint



30 3. The residually finite view: Approximation

operator A. This measure has the following properties [23, Chapter 6][84,
Chapter 5.2]:

• The measure µA is supported on the compact set [0, a], where a := ∥A∥.

• If f : [0,∞] −→ R is a measurable bounded function, then the bounded
linear operator f(MA), defined by functional calculus, satisfies

∫

R
f dµA = trΓ f(MA).

• In the same way, for each n ∈ N, the spectral measure µAn of the
reduction An of A is also supported on [0, a] (because ∥An∥ ≤ ∥A∥).

Therefore, we obtain

dimNΓ kerMA = trΓ(orthogonal projection onto kerMA)

= trΓ
(
χ{0}(MA)

)

= µA

(
{0})

and, for all n ∈ N,

dimN(Γ/Γn) kerMAn = µAn

(
{0}
)
.

Hence, the claim of Theorem 3.2.1 is equivalent to the following property of
the spectral measures: µA({0}) = limn→∞ µAn({0}). We will now prove this
statement on spectral measures.

3.2.3 Weak convergence of spectral measures

We first establish weak convergence of the spectral measures (Definition A.2.1):

Lemma 3.2.2 (weak convergence of spectral measures). In this situation, the
sequence (µAn)n∈N of measures on R weakly converges to µA, i.e., for all
continuous functions f : [0, a] −→ R, we have

lim
n→∞

∫

R
f dµAn =

∫

R
f dµA.

Proof. The measures µAn with n ∈ N and the measure µA are all supported
on a common compact set (namely [0, a]). Therefore, by the Weierstraß ap-
proximation theorem, it suffices to take test functions of the form (x %→ xd)
with d ∈ N.

Thus, let d ∈ N and f := (x %→ xd). We then have

∫

R
f dµA = trΓ f(MA) = trΓ(A

d)
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and
∫
R f dµAn = trΓ/Γn

Ad
n.

Let F ⊂ Γ be the support of Ad (i.e., the set of all elements of Γ that
occur with non-zero coefficient in A). Because F is finite and (Γn)n∈N is a
residual chain, there exists an N ∈ N with

∀n∈N≥N
F ∩ Γn ⊂ {e}.

Then (by definition of the trace; check!)

trΓ/Γn
Ad

n = trΓ A
d

for all n ∈ N≥N . This shows weak convergence.

3.2.4 Convergence at 0

In general, weak convergence does not imply convergence of the measures
on {0} (Exercise 3.E.3). But by the portmanteau theorem (Theorem A.2.2),
we at least obtain the following inequalities from Lemma 3.2.2:

lim sup
n→∞

µAn

(
{0}) ≤ µA

(
{0}
)

∀ε∈R>0 lim inf
n→∞

µAn

(
(−ε, ε)

)
≥ µA

(
(−ε, ε)

)
.

The first inequality already gives lim supn→∞ 1/[Γn : Γ]bk(Xn) ≤ b(2)k (X),
the Kazhdan inequality [83].

In order to show the missing lower bound lim infn→∞ µAn({0}) ≥ µ({0}),
we will use integrality of the coefficients of A. More precisely, we will show:

Lemma 3.2.3. In this situation, for all n ∈ N and all ε ∈ (0, 1), we have

µAn

(
(0, ε)

)
≤ m · ln(C)∣∣ln(ε)

∣∣ ,

where C := max
(
∥A∥, 1

)
(which does not depend on n).

Proof. Let n ∈ N and let d := [Γ : Γn]. Computing µAn((0, ε)) amounts to
counting eigenvalues. We can view An as a matrix in Mm×m(Z[Γ/Γn]) ⊂
Md·m×d·m(Z). In this view, An is symmetric and positive semi-definite
(check!); let

0 = λ1 ≤ · · · ≤ λz = 0 < λz+1 ≤ · · · ≤ λd·m

be the eigenvalues of An (listed with multiplicities). Then the characteristic
polynomial of An is of the form T z · q with q ∈ Z[T ]. In particular, q(0) ̸= 0
and thus (because of integrality!)

λz+1 · · · · · λd·m =
∣∣q(0)

∣∣ ≥ 1.
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For ε ∈ (0, 1), let M(ε) be the number of eigenvalues of An in (0, ε). Then

1 ≤ λz+1 · · · · · λd·m ≤ εM(ε) · ∥MAn∥d·m−z−M(ε) ≤ εM(ε) · Cd·m,

and so M(ε) ≤ d ·m · lnC/| ln ε|. Therefore, we obtain

µAn

(
(0, ε)

)
= dimN(Γ/Γn) all eigenspaces of An for eigenvalues in (0, ε)

=
M(ε)

d

≤ m · lnC∣∣ln(ε)
∣∣ .

We can now complete the proof of Theorem 3.2.1 as follows: We have

lim inf
n→∞

µAn

(
{0}
)
= lim inf

n→∞

(
µAn

(
[0, ε]

)
− µAn

(
(0, ε)

))

≥ lim inf
n→∞

µAn

(
(−ε, ε)

)
− m · lnC∣∣ln(ε)

∣∣ (Lemma 3.2.3)

≥ µA

(
(−ε, ε)

)
− m · lnC∣∣ln(ε)

∣∣ (portmanteau theorem)

≥ µA

(
{0}
)
− m · lnC∣∣ln(ε)

∣∣ .

Taking ε → 0 yields the desired estimate lim infn→∞ µAn({0}) ≥ µA({0}).
This finishes the proof of Theorem 3.2.1 and whence also of the approximation
theorem (Theorem 3.1.3).

3.3 Homological gradient invariants

If I is a numerical invariant of (finitely generated residually finite) groups,
then one can consider the associated gradient invariant Î: If Γ is a finitely
generated residually finite group and Γ∗ is a residual chain in Γ, then

Î(Γ,Γ∗) := lim
n→∞

I(Γn)

[Γ : Γn]
.

This raises the following questions:

• Does the limit exist?

• Does Î(Γ,Γ∗) depend on the residual chain Γ∗ of Γ ?

• Does Î have a different interpretation?
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3.3.1 Betti number gradients

For the gradient invariant associated to the ordinary Betti numbers, the ap-
proximation theorem (Theorem 3.1.3) gives a satisfying answer for finitely
presented residually finite groups (of finite type).

Caveat 3.3.1. There exist finitely generated residually finite groups Γ with a
residual chain (Γn)n∈N such that the limit limn→∞ b1(Γn)/[Γ : Γn] does not
exist [50].

In Chapter 5, we will discuss convergence of ordinary Betti numbers when
moving from residual chains to BS-convergent sequences. Generalisations of
the more classical version of the approximation theorem are surveyed in the
literature [106, 91].

For Fp-Betti number gradients the situation is much less understood. There
are known positive examples of convergence/independence, but good candi-
dates for alternative interpretations of the limits are rare.

3.3.2 Rank gradient

A non-commutative version of the first Betti number gradient is the rank
gradient, introduced by Lackenby [93]:

Definition 3.3.2 (rank gradient). Let Γ be a finitely generated infinite resid-
ually finite group.

• For a finitely generated group Λ, we write d(Λ) for the minimal size of
a generating set of Λ.

• If Γ∗ is a residual chain, then we define the rank gradient of Γ with
respect to Γ∗ by

rg(Γ,Γ∗) := lim
n→∞

d(Γn)− 1

[Γ : Γn]
.

• Moreover, the (absolute) rank gradient of Γ is defined as

rgΓ := inf
Λ∈F(Γ)

d(Λ)− 1

[Γ : Λ]
,

where F(Γ) denotes the set of all finite index subgroups of Γ.

Remark 3.3.3. If Γ is a finitely generated group and Λ ⊂ Γ is a finite index
subgroup, then the rank estimate of the Nielsen–Schreier theorem shows that

d(Λ)− 1 ≤ [Γ : Λ] ·
(
d(Γ)− 1

)
.

Hence, the limit in the definition of the rank gradient indeed exists (and is
equal to the infimum).
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Remark 3.3.4 (rank gradient via normal subgroups). Let Γ be a finitely gener-
ated infinite group. Then

rgΓ = inf
Λ∈F(Γ)

d(Λ)− 1

[Γ : Λ]
= inf

Λ∈NF(Γ)

d(Λ)− 1

[Γ : Λ]
,

where NF(Γ) denotes the set of all finite index normal subgroups of Γ (because
every finite index subgroup of Γ contains a finite index subgroup that is
normal in Γ).

Corollary 3.3.5 (rank gradient estimate for the first L2-Betti number). Let Γ
be a finitely presented infinite residually finite group (of finite type). Then

b(2)1 (Γ) ≤ rgΓ.

Proof. If Λ is a finitely generated group, then there exists a classifying space
of Λ with d(Λ) one-dimensional cells. Therefore, b1(Λ) ≤ d(Λ). Applying the
approximation theorem (Theorem 3.1.3) to a residual chain Γ∗ of Γ shows
that

b(2)1 (Γ) = lim
n→∞

b1(Γn)

[Γ : Γn]
≤ lim

n→∞

d(Γn)

[Γ : Γn]
= lim

n→∞

d(Γn)− 1

[Γ : Γn]
= rg(Γ,Γ∗).

Taking the infimum over all residual chains, we obtain with Remark 3.3.3
and Remark 3.3.4 that

b(2)1 (Γ) ≤ inf
Λ∈NF(Γ)

d(Λ)− 1

[Γ : Λ]
= rgΓ.

Alternatively, one can also show directly that b(2)1 (Λ) ≤ d(Λ) for all finitely

generated groups and then use multiplicativity of b(2)1 under finite coverings
(Theorem 2.2.2).

It remains an open problem to determine whether the rank gradient de-
pends on the residual chain; in all known cases, the inequality in Corol-
lary 3.3.5 is an equality and the absolute rank gradient can be computed
by every residual chain. This is related to the fixed price problem (Out-
look 4.3.13).

The Betti number-rank estimate can be improved to estimates for the min-
imal size of normal generating sets in terms of the first L2-Betti number; this
gives lower bounds on the girth of certain Cayley graphs [131, Theorem 5.1].

3.3.3 More gradients

Further examples of gradient invariants are:

• Homology log-torsion gradients (which conjecturally might be related
to L2-torsion?!) [106].

• Simplicial volume gradients (Chapter 6).
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3.E Exercises

Exercise 3.E.1 (surface groups, free groups). Prove the approximation theo-
rem for surface groups and free groups by direct computation of the right-
hand side. Compute the (absolute) rank gradient of surface groups and free
groups.

Exercise 3.E.2 (Laplacian [105, Lemma 1.18]). Let Γ be a countable group, let
C∗ be a chain complex of Hilbert Γ-modules (with boundary operators ∂∗),
and let ∆∗ be the Laplacian of C∗, i.e., for each n ∈ N, we set

∆n := ∂n+1 ◦ ∂∗
n+1 + ∂∗

n ◦ ∂n.

Show that there exists an isomorphism

ker∆n −→ ker ∂n
/
im ∂n+1

of Hilbert Γ-modules.
Hints. Consider the orthogonal projection onto im ∂n+1

⊥
.

Exercise 3.E.3 (weak convergence). Give an example of a sequence (µn)n∈N
of probability measures on [0, 1] (with the Borel σ-algebra) that weakly con-
verges to a probability measure µ on [0, 1], but that satisfies

lim
n→∞

µn

(
{0}
)
̸= µ
(
{0}
)
.

Exercise 3.E.4 (rank gradients of products). Let Γ and Λ be finitely generated
infinite residually finite groups. Compute rg(Γ × Λ).

Exercise 3.E.5 (self-maps). Let M be an oriented closed connected aspherical
manifold with residually finite fundamental group Γ. Moreover, we suppose
that M admits a self-map f : M −→M with |deg f | ≥ 2.

1. Give examples of this situation.

2. Show that rg(Γ) = 0.

3. Show that b(2)k (Γ) = 0 for all k ∈ N [105, Theorem 14.40].

4. Challenge: Does the vanishing of L2-Betti numbers of Γ also hold with-
out any residual finiteness or Hopficity condition on Γ ?! (This is an
open problem.)

Hints. Covering theory shows that im f has finite index in Γ. Moreover, it
is useful to know that residually finite groups are Hopfian, i.e., every self-
epimorphism is an automorphism.
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The dynamical view:
Measured group theory

The theory of von Neumann algebras can be viewed as a model of non-com-
mutative measure theory. Therefore, it is plausible that L2-Betti numbers
can be computed in terms of probability measure preserving actions.

• On the one hand, this leads to an additional way of computing L2-Betti
numbers of groups.

• On the other hand, in this way, L2-Betti numbers provide orbit equiv-
alence invariants.

We will first recall some basic terminology from measured group theory.
Then we will study L2-Betti numbers of standard equivalence relations. More-
over, we will discuss cost and its relation with the first L2-Betti number and
rank gradients.
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4.1 Measured group theory

Measured group theory is the theory of dynamical systems, i.e., of (probabil-
ity) measure preserving actions of groups. We briefly introduce some of the
terminology. More information can be found in the literature [62, 65, 89, 90].

4.1.1 Standard actions

Definition 4.1.1 (standard action). Let Γ be a countable group.

• A standard action of Γ is an action of Γ on a standard Borel probability
space by measure preserving Borel automorphisms.

• A standard action Γ ! (X,µ) is essentially free if µ-almost every point
has trivial stabiliser group.

• A standard action Γ ! (X,µ) is ergodic if every measurable subset A ⊂
X with Γ ·A = A satisfies µ(A) ∈ {0, 1}.

A standard Borel space is a measurable space that is isomorphic to a Pol-
ish space with its Borel σ-algebra. Standard Borel spaces form a convenient
category for measure theory [87].

Example 4.1.2 (Bernoulli shift). Let Γ be a countable group. Then the shift
action of Γ on the product space

∏
Γ{0, 1} (with the product σ-algebra and

the product of the uniform distribution on {0, 1}) is a standard action of Γ.
Moreover, if Γ is infinite, this action is essentially free and ergodic [126,

Lemma 3.37][90, Chapter 2.3.1].

Example 4.1.3 (finite quotients). Let Γ be a countable group and let Λ ⊂ Γ
be a finite index subgroup. Then the translation action of Γ on the coset
space Γ/Λ (with the discrete σ-algebra and the uniform distribution) is a
standard action. It is ergodic, but apart from pathological cases, not essen-
tially free.

Example 4.1.4 (profinite completion). Let Γ be a finitely generated group. We
then consider the profinite completion of Γ, defined by

Γ̂ := lim←−
Λ∈NF(Γ)

Γ/Λ,

where NF(Γ) denotes the set of all finite index normal subgroups of Γ. Then
Γ̂ is a group with the induced composition and the diagonal map Γ −→ Γ̂
is a group homomorphism, which leads to a Γ-action on Γ̂ (by translation of
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each component). The group Γ is residually finite if and only if this action
on Γ̂ is free (Exercise 4.E.1).

Moreover, we can equip Γ̂ with the inverse limit of the discrete σ-algebras
and the inverse limit of the uniform probability measures on the finite factors.
This action Γ ! Γ̂ is then a standard action.

4.1.2 Measure/orbit equivalence

We will now compare measure preserving actions of groups via couplings
and their orbit structure, respectively. Measure equivalence is a measure-
theoretic version of quasi-isometry (the connection being given by Gromov’s
topological criterion for quasi-isometry [74, 0.2.C ′

2])

Definition 4.1.5 (measure equivalence [74, 0.5.E]). Let Γ and Λ be countable
infinite groups.

• An ME coupling between the groups Γ and Λ is a standard Borel mea-
sure space (Ω, µ) of infinite measure together with a measure preserving
action of Γ×Λ by Borel automorphisms so that both actions Γ ! (Ω, µ)
and Λ ! (Ω, µ) admit fundamental domains Y and X, respectively,
of finite measure. The index of such an ME coupling is the quo-
tient µ(X)/µ(Y ).

• The groups Γ and Λ are measure equivalent if there exists an ME cou-
pling between them; in this case, we write Γ ∼ME Λ.

Example 4.1.6 (lattices are measure equivalent). Let G be a locally compact
second countable group (with infinite Haar measure µ) and let Γ,Λ ⊂ G be
lattices in G. Then the action

(Γ × Λ) × G −→ G
(
(γ,λ), x

)
%−→ γ · x · λ−1

shows that the ambient group G yields an ME coupling between Γ and Λ.
In particular, countable infinite commensurable groups are measure equiv-

alent. For instance, Fn ∼ME Fm for all n,m ∈ N≥2.

Measure equivalence indeed defines an equivalence relation on the class of
all countable infinite groups [62, p. 300].

Definition 4.1.7 ((stable) orbit equivalence). Let Γ ! X and Λ ! Y be
standard actions.

• The actions Γ ! X and Λ ! Y are orbit equivalent if there exists a
measure preserving Borel isomorphism f : X ′ −→ Y ′ between co-null
subsets X ′ ⊂X and Y ′ ⊂ Y with
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∀x∈X′ f(Γ · x ∩X ′) = Λ · f(x) ∩ Y ′.

In this case, we write Γ ! X ∼OE Λ ! Y .

• The actions Γ ! X and Λ ! Y are stably orbit equivalent if there exists
a Borel isomorphism f : X ′ −→ Y ′ between measurable subsets X ′ ⊂X
and Y ′ ⊂ Y with µ(X ′) > 0, µ(Y ′) > 0 that satisfies 1/µ(X ′) ·f∗µ|X′ =
1/ν(Y ′) · ν|Y ′ with

∀x∈X′ f(Γ · x ∩X ′) = Λ · f(x) ∩ Y ′.

The index of such a stable orbit equivalence f is µ(Y ′)/µ(X ′) and we
write Γ ! X ∼SOE Λ ! Y .

Moreover, we call Γ and Λ [stably] orbit equivalent if they admit [stably]
orbit equivalent standard actions.

Theorem 4.1.8 (measure equivalence [62, Theorem 2.5]). Two countable groups
are measure equivalent if and only if they admit essentially free standard ac-
tions that are stably orbit equivalent.

Example 4.1.9 (lattices are stably orbit equivalent). In view of Theorem 4.1.8
and Example 4.1.6, we obtain: Lattices in locally compact second countable
topological groups with infinite Haar measure are stably orbit equivalent.

In particular, Fn ∼SOE Fm for all n,m ∈ N≥2.

In order to get a better understanding of measure/orbit equivalence of
groups, we need suitable invariants. A first example is amenability [118, 122];
the class of amenable groups contains, for instance, the class of all virtu-
ally solvable groups. Orbit/measure equivalence invariance of amenability is
established by the theorems of Dye, Connes–Feldman-Weiss, and Ornstein–
Weiss:

Theorem 4.1.10 (dynamical characterisation of amenable groups [114][89,
Chapter 10][90, Chapter 4.8/4.9]).

1. A countable infinite group is amenable if and only if it is measure equiv-
alent to Z.

2. Any two ergodic standard actions of any two countable infinite amenable
groups are orbit equivalent.

Further examples of suitable invariants are (vanishing of) L2-Betti num-
bers, the (sign of the) Euler characteristic, and cost, as we will outline now.

4.2 L2 -Betti numbers of equivalence relations

Orbit equivalence is a notion that does not directly involve a group (action),
but only the orbit equivalence relations of standard actions. It is therefore



4.2. L2-Betti numbers of equivalence relations 41

natural to widen the context by studying equivalence relations in this mea-
sured setting. Gaboriau discovered that one can define L2-Betti numbers
of such equivalence relations and how these relate to L2-Betti numbers of
groups [64].

4.2.1 Measured equivalence relations

Definition 4.2.1 (standard equivalence relation).

• A standard equivalence relation is an equivalence relation R ⊂X × X
on a standard Borel space X with the following properties:

– The subset R ⊂X × X is measurable.

– Each R-equivalence class is countable.

• If R is a standard equivalence relation on X and A ⊂X is a measurable
subset, then we define the restriction to A by

R|A :=
{
(x, y)

∣∣ x, y ∈ A, (x, y) ∈ R
}
⊂A × A.

• A measured standard equivalence relation is a standard equivalence re-
lationR on a standard Borel probability space (X,µ) with the following
property: Every partial R-automorphism of X is µ-preserving. A partial
R-automorphism is a Borel automorphism A −→ B between measur-
able subsets A,B ⊂X whose graph is contained in R. The groupoid of
partial automorphisms of R is denoted by !R".

Example 4.2.2 (orbit relations). Let Γ ! X be a standard action. Then the
orbit relation

RΓ!X :=
{
(x, γ · x)

∣∣ x ∈ X, γ ∈ Γ
}
⊂X × X

is a measured standard equivalence relation. Conversely, every standard
equivalence relation arises in this way, as shown by the Feldman–Moore the-
orem [56].

4.2.2 L2-Betti numbers of equivalence relations

We now introduce L2-Betti numbers of measured standard equivalence rela-
tions, following Sauer’s “algebraic” approach [123] (and we will also add the
references for proofs in this language). The original construction is due to Ga-
boriau and has a more simplicial/geometric flavour [64]; both constructions
are known to result in the same numbers [112].

For the definition of L2-Betti numbers of a group Γ (of finite type), we
used the following ingredients:
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• Base ring: The field C.

• Extension by the group: The group ring CΓ.

• Completion of scalars: The group von Neumann algebra NΓ.

• The trace/dimension on NΓ.

• Modules with a projectivity condition: Hilbert Γ-modules.

• A suitable model of the classifying space of Γ.

If R is a measured standard equivalence relation on (X,µ), we will use the
corresponding replacements listed below; for the definition of the dimension
function, we will work in the extended algebraic setting, which we sketched
in Outlook 1.2.4 for the group case.

• Base ring: The function space L∞(X) := L∞(X,C).

• Extension by the equivalence relation: The ring

CR :=
{
f ∈ L∞(R, ν)

∣∣ sup
x∈X

|{y | f(x, y) ̸= 0}| <∞,

sup
y∈X

|{x | f(x, y) ̸= 0}| <∞
}

with the “convolution” product (f · g)(x, y) :=
∑

z∈[x]R
f(x, z) · g(z, y).

Here, we use the following measure on R:

ν : Borel σ-algebra on R −→ R≥0

A %−→
∫

X

∣∣A ∩ ({x} × X)
∣∣ dµ(x, y).

• Completion of scalars: The von Neumann algebra NR is the weak clo-
sure of CR in B(L2(R, ν)) with respect to the right convolution action
of CR.

• The von Neumann algebra NR also admits a trace:

trR : NR −→ C
a %−→

〈
χ∆, a(χ∆)

〉

• Dimension function: If P is a finitely generated projective NR-module,
we set

pdimNR P := trR p = trR A =
n∑

j=1

trR Ajj ∈ R≥0,
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where p : (NR)n −→ (NR)n is a projection with P ∼=NR im p and asso-
ciated matrix A ∈ Mn×n(NR). More generally, for an NR-module V ,
one sets

dimNR V := sup
{
pdimNR P

∣∣ P is a finitely generated projective

NR-submodule of V
}
∈ R≥0 ∪ {∞}.

As in Outlook 1.2.4, this leads to a reasonable notion of dimension
because the module theory of NR is well-behaved: the ring NR is
semi-hereditary.

• Instead of a classifying space (as in Gaboriau’s work), we use the alge-
braic description of group homology as a Tor-functor.

Definition 4.2.3 (L2-Betti numbers of equivalence relations). Let R be a mea-
sured standard equivalence relation on (X,µ) and let n ∈ N. Then the n-th
L2-Betti number of R is defined by

b(2)n (R) := dimNR TorCRn
(
NR, L∞(X)

)
∈ R≥0 ∪ {∞}.

The spatial restriction of measured equivalence relations leads to scaled
L2-Betti numbers:

Theorem 4.2.4 (restriction formula [64, Corollaire 5.5][123]). Let R be a mea-
sured standard equivalence relation on (X,µ) and let A ⊂X be a measurable
subset with µ(A) > 0. Then, for all n ∈ N,

b(2)n (R|A) =
1

µ(A)
· b(2)n (R).

4.2.3 Comparison with L2-Betti numbers of groups

The key observation is that L2-Betti numbers of orbit relations coincide with
the L2-Betti numbers of the group:

Theorem 4.2.5 (L2-Betti numbers of groups vs. equivalence relations [64, Corol-
laire 3.16]). Let Γ be a group of finite type and let Γ ! X be an essentially
free standard action of Γ. Then, for all n ∈ N,

b(2)n (Γ) = b(2)n (RΓ!X).

For the proof, we will follow Sauer’s approach [123]. As a first step, we
introduce an intermediate object:

Remark 4.2.6 (the crossed product ring). Let Γ be a countable group and
let Γ ! X be an essentially free standard action. In addition to the group
ring CΓ and the equivalence relation ring CRΓ!X , we also have the algebraic
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crossed product L∞(X) "Γ, where g ∈ Γ acts by f %→ (x %→ f(g−1 · x))
on L∞(X). More explicitly, the underlying C-vector space is

⊕
Γ L

∞(X);
we denote the element in the summand indexed by γ ∈ Γ corresponding
to f ∈ L∞(X) by f [γ]. Then the multiplication on L∞(X)"Γ is given by

f [γ] · f ′[γ′] :=
(
x %→ f(x) · f ′(γ−1 · x)

)
[γ · γ′]

for all f, f ′ ∈ L∞(X) and all γ, γ′ ∈ Γ.
On the one hand, the inclusion of C into L∞(X) via constant functions

leads to a ring inclusion CΓ ↪→ L∞(X) "Γ. The ring L∞(X) "Γ is flat
as a right CΓ-module, because for all CΓ-modules V , we have a canonical
isomorphism (check!)

(L∞(X)"Γ)⊗CΓ V ∼=C L∞(X)⊗C V

and the tensor product L∞(X)⊗C · is exact.
On the other hand, we can view L∞(X) "Γ as a subring of CRΓ!X

(check!):

L∞(X)"Γ −→ CRΓ!X

f [γ] %−→
(
(x, y) %→

{
f(x) if y = γ−1 · x
0 otherwise

)

Moreover, we will need some algebraic facts on finite von Neumann alge-
bras and trace-preserving ∗-homomorphisms:

Remark 4.2.7 (trace-preserving ∗-homomorphisms). A finite von Neumann al-
gebra is a von Neumann algebra that admits a faithful finite normal trace [57,
Chapter 4.8]. Examples are the group von Neumann algebras of countable
groups, the group von Neumann algebras of measured standard equivalence
relations or the spaces L∞(X) of standard Borel probability spaces X (with
the trace given by integration).

If f : A −→ B is a trace-preserving ∗-homomorphism between finite
von Neumann algebras, then we have [123]:

• The ring homomorphism f is faithfully flat and

• dimension-preserving: For all left A-modules V , we obtain

dimB(B ⊗A V ) = dimA V,

where the right A-module structure on B is defined via f .

An example of such a trace-preserving ∗-homomorphism between finite
von Neumann algebras is the canonical inclusion NΓ −→ NRΓ!X induced
by an essentially free standard action Γ ! X (check!).
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Proof of Theorem 4.2.5. We abbreviateR := RΓ!X . In view of Remark 4.2.6
and Remark 4.2.7, we have the following commutative diagram of rings (where
all unmarked arrows denote canonical inclusions).

C ""

!!

L∞(X)

!!

L∞(X)

!!

CΓ ""

!!

L∞(X)"Γ "" CR

!!

NΓ
trace-preserving ∗-homomorphism

"" NR

We can then perform the following computation [123]:

b(2)n (Γ) = dimNΓ (reduced n-th ℓ2Γ-homology of a finite type model of BΓ)

(by definition)

= dimNΓ (algebraic n-th NΓ-homology of a finite type model of BΓ)

(by the properties of the extended dimension [105, Lemma 6.53])

= dimNΓ Tor
CΓ
n (NΓ,C)

(by the geometric computation of Tor)

= dimNR
(
NR⊗NΓ TorCΓn (NΓ,C)

)

(trace-pres. ∗-homs are dimension-preserving; Remark 4.2.7)

= dimNR TorCΓn (NR,C)
(trace-pres. ∗-homs are faithfully flat; Remark 4.2.7)

= dimNR TorL
∞(X)"Γ

n

(
NR, (L∞(X)"Γ)⊗CΓ C

)

(L∞(X)"Γ is flat as right CΓ-module; Remark 4.2.6)

= dimNR TorL
∞(X)"Γ

n

(
NR, L∞(X)

)

(Remark 4.2.6)

We now need to replace TorL
∞(X)"Γ

n with TorCRn . Indeed, both Tor-terms
have the same NR-dimension: The inclusion L∞(X) "Γ ↪→ CR is a
dimL∞(X)-isomorphism and CR is a so-called L∞(X)-L∞(X)-dimension
compatible bimodule [123]. Carefully stepping through the homological alge-
bra shows dimNR TorL

∞(X)"Γ
n

(
NR, L∞(X)

)
= dimNR TorCRn

(
NR, L∞(X)

)

[123]. Therefore, we obtain

b(2)n (Γ) = dimNR TorCRn
(
NR, L∞(X)

)

= b(2)n (R),

as claimed.
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4.2.4 Applications to orbit equivalence

Corollary 4.2.8 (OE/ME-invariants [64, Corollaire 5.6]). Let Γ and Λ be infinite
groups of finite type and let n ∈ N.

1. If Γ ! X and Λ ! Y are orbit equivalent (essentially) free standard

actions, then b(2)n (Γ) = b(2)n (Λ).

2. If Γ and Λ are measure equivalent (with index c), then

b(2)n (Γ) = c · b(2)n (Λ).

In particular, b(2)n (Γ) and b(2)n (Λ) have the same vanishing behaviour.

Proof. This follows from Theorem 4.2.5 and 4.2.4 (Exercise 4.E.2).

Corollary 4.2.9 (non-orbit equivalence of free groups). Let n,m ∈ N and let
Fn and Fm be free groups of rank n and m, respectively. Then Fn and Fm

admit orbit equivalent standard actions if and only if n = m.

Proof. If Fn and Fm admit orbit equivalent standard actions, then b(2)1 (Fn) =

b(2)1 (Fm) (Corollary 4.2.8). Because of b(2)1 (Fn) = n−1 and b(2)1 (Fm) = m−1
(Example 2.2.6), we obtain n = m.

4.2.5 Applications to L2-Betti numbers of groups

Corollary 4.2.10 (L2-Betti numbers of amenable groups). Let Γ be an amenable
group of finite type and let n ∈ N. Then

b(2)n (Γ) =

{
1
|G| if n = 0

0 if n > 0.

In particular: If Γ admits a finite classifying space, then χ(Γ) = 0.

Proof. This can be deduced from our previous computations, Theorem 4.1.10,
and Corollary 4.2.8 (Exercise 4.E.4). The original proof of Cheeger and Gro-
mov is based on a Følner-type argument [36].

Corollary 4.2.11 (proportionality principle for L2-Betti numbers [64, Corol-
laire 0.2, Théorème 6.3]). Let Γ, Λ be lattices in a locally compact second
countable topological group G (with a given Haar measure) and let n ∈ N.
Then

b(2)n (Γ)

vol(Γ \G)
=

b(2)n (Λ)

vol(Λ \G)
.

This common quotient is denoted by b(2)n (G).
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Proof. Lattices in the same group are measure equivalent (Example 4.1.6)
and the index is the ratio of covolumes. We then apply Corollary 4.2.8.

In the locally symmetric case, this kind of proportionality can also be
obtained analytically via the heat kernel.

It should be noted that L2-Betti numbers for locally compact second count-
able groups can also be defined directly [119] and that the values depend on
the choice of a Haar measure. Usually, in applications, such L2-Betti numbers
appear together with the covolume of a lattice (and so the dependence on
the Haar measure is irrelevant).

4.3 Cost of groups

Cost of measured equivalence relations is a measure theoretic version of “min-
imal size of a generating set”. More precisely:

Definition 4.3.1 (graphing, cost [96]). Let R be a measured equivalence rela-
tion on (X,µ).

• A graphing of R is a family Φ = (ϕi)i∈I of partial R-automorphisms
of (X,µ) such that

⟨Φ⟩ = R,

where ⟨Φ⟩ denotes the minimal (with respect to inclusion) equivalence
relation on X that contains the graphs of all ϕi with i ∈ I.

• The cost of a graphing Φ of R is

costΦ :=
∑

ϕ∈Φ

µ(domain of ϕ) ∈ R≥0 ∪ {∞}.

• The cost of R is

costR := inf
{
costΦ

∣∣ Φ is a graphing of R
}
∈ R≥0 ∪ {∞}.

More geometrically, one can also introduce graphings in the language of
Borel graphs.

Definition 4.3.2 (cost of a group [63]). Let Γ be a countable group.

• If Γ ! X is a standard action, we write cost(Γ ! X) := cost(RΓ!X).

• The cost of Γ is defined as

costΓ := inf
{
cost(Γ ! X)

∣∣ Γ ! X is a standard action
}
∈ R≥0∪{∞}.
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Remark 4.3.3 (on the definition of cost). The term on the right-hand side in
the above definition can indeed be formalised as a proper set (every standard
Borel space can be modelled on [0, 1] and thus we can form a set of rep-
resentatives of all isomorphism classes of all standard Γ-actions). Moreover,
taking products with an essentially free standard Γ-action shows that it suf-
fices to consider essentially free actions and that the infimum is attained [89,
Proposition 29.1]. Ergodic decomposition shows that, alternatively, it suffices
to consider ergodic standard actions [89, Remark 29.2].

Remark 4.3.4 (the (trivial) rank estimate). If Γ is a group, then cost(Γ) ≤
d(Γ): In each orbit equivalence relation, group elements yield (total) auto-
morphisms and the automorphisms associated with a generating set clearly
also generate the orbit equivalence relation.

4.3.1 Rank gradients via cost

The residually finite view and the dynamical view on the minimal number of
generators are unified through the profinite completion (Example 4.1.4):

Theorem 4.3.5 (cost of the profinite completion [7]). Let Γ be a finitely gen-
erated residually finite infinite group. Then

rgΓ = cost(Γ ! Γ̂)− 1.

Furthermore, if Γ∗ is a residual chain in Γ, then (where Γ̂∗ := lim←−n∈N Γ/Γn)

rg(Γ,Γ∗) = cost(Γ ! Γ̂∗)− 1.

The original statement by Abért and Nikolov is slightly more general (the
arguments work for Farber chains as well) and the original proof is formulated
in terms of product cost.

Setup 4.3.6. Let Γ be a finitely generated residually finite infinite group. We
write F for the family of subgroups of Γ in question (the family of all normal
finite index subgroups of Γ or the given chain Γ∗), we write X := lim←−Λ∈F

Γ/Λ
for the corresponding profinite completion with probability measure µ, and
for Λ ∈ F , we write πΛ : X −→ Γ/Λ for the associated structure map.

Proof. We assume the notation from Setup 4.3.6 and begin the proof with the
(simple) estimate “≥”: Let Λ ∈ F , let d := d(Λ), and n := [Γ : Λ]. Then, we
choose a generating set {λ1, . . . ,λd} of Λ and coset representatives γ1, . . . , γn
for Γ/Λ. Moreover, we consider the “cylinder”

A := π−1
Λ (e · Λ) ⊂X,

which has measure µ(A) = 1/[Γ : Λ], as well as the translation maps
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ϕj := λj · : A −→ λj ·A = A

ψk := γk · : A −→ γk ·A

for j ∈ {1, . . . , d} and k ∈ {1, . . . , n}. Then

Φ := (ϕj)j∈{1,...,d} ∪ (ψk)k∈{1,...,n}

is a subfamily of !RΓ!X" and a straightforward computation shows that Φ
is a graphing of RΓ!X (check!). Therefore, we obtain

cost(Γ ! X) ≤ cost(Φ) = d · µ(A) + n · µ(A)

= d(Λ) · 1

[Γ : Λ]
+ [Γ : Λ] · 1

[Γ : Λ]
=

d(Λ)

[Γ : Λ]
+ 1.

Taking the infimum over all Λ in F shows that cost(Γ ! X)− 1 ≤ rg(Γ, F ).

We will now establish the converse estimate “≤”: Let Φ be a graphing
of RΓ!X ; as rg(Γ, F ) is finite, we may assume that costΦ is finite as well.
Let ε ∈ R>0. It suffices to show that there exists a subgroup Λ ∈ F with

d(Λ)− 1

[Γ : Λ]
≤ cost(Φ) + ε− 1.

In order to find such a subgroup, we will first replace Φ by a finitary ap-
proximation: First of all, by decomposing the domains of the partial R-
automorphisms in Φ according to the group elements acting, we may assume
that every element of Φ is of the form γi · : Ai −→ γi ·Ai for some measurable
subset Ai ⊂X and some γi ∈ Γ, and that Φ is countable.

Enumerating these partial R-automorphisms and approximating their do-
mains with exponential accuracy by open supersets (which is possible because
µ is regular [87, Theorem 17.10]), we may replace Φ with a graphing consist-
ing of partial translations with open domains and cost less than costΦ+ ε.

By Lemma 4.3.7 below, because X is compact, the Γ-action on X is
continuous, and

{
π−1
Λ (Z)

∣∣ Λ ∈ F, Z ⊂ Γ/Λ
}

is a countable basis of
the topology on X that is closed under finite unions (as F is closed un-
der finite intersections), we can replace this graphing by a finite graph-
ing Ψ = (γi · : Ai −→ γi · Ai)i∈I with costΨ ≤ costΦ+ ε and such that for
each i ∈ I there exists a Λi ∈ F and a gi ∈ Γ with Ai = π−1

Λi
(gi · Λi). Con-

sidering the finite intersection Λ :=
⋂

i∈I Λi ⊂ Γ, which also lies in F (and
decomposing the partial automorphisms once more), we may furthermore
assume that Λi = Λ holds for all i ∈ I.

We will now show that Λ has the desired property: To this end, we consider
the directed Γ-labelled multi-graph Y with vertex set V := Γ/Λ and the
labelled directed edges

E :=
{
(γi · gi · Λ, gi · Λ, γi)

∣∣ i ∈ I} ⊂ V × V × Γ.
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Then

costΨ =
1

[Γ : Λ]
· |E|

and it remains to establish a suitable lower bound for |E| in terms of d(Λ).
We choose i ∈ I; let v := gi · Λ ∈ V and let π1(Y, v) be the combinatorial

fundamental group of Y . Then the map ϕ : π1(Y, v) −→ Γ, defined on v-based
cycles by the corresponding product of the edge-labels (or their inverses, if
traversed in the opposite direction), is a well-defined group homomorphism
(check!). Because Ψ is a graphing of R, we obtain that Y is connected (check!)
and that imϕ = Λ (Lemma 4.3.8 below). In particular,

d(Λ) ≤ d
(
π1(Y, v)

)
.

The group π1(Y, v) (which is isomorphic to the usual fundamental group of
the geometric realisation of Y ) is free; a free basis can be obtained by choosing
an undirected spanning tree T of Y , collapsing this spanning tree T , and then
taking the loops given by the edges of Y not contained in T . Hence,

d
(
π1(Y, v)

)
= |E|−#edges of T = |E|−

(
|V |− 1

)

= |E|− [Γ : Λ] + 1;

for this, alternatively, one could have used χ(Y ). Therefore, we obtain

costΦ+ ε− 1 ≥ costΨ− 1 =
|E|

[Γ : Λ]
− 1 =

d(π1(Y, v))− 1 + [Γ : Λ]

[Γ : Λ]
− 1

≥ d(Λ)− 1

[Γ : Λ]
.

Lemma 4.3.7. Let Γ ! X be a free continuous action of a finitely gener-
ated group on a compact second countable topological space, let µ be a Γ-
invariant Borel probability measure on X. Let Φ be a countable graphing
of RΓ!X consisting of partial translations on open subsets of X and let O be
a countable basis of the topology on X. Then there exists a finite graphing Ψ
of RΓ!X consisting of partial translations on finite unions of elements of O
with costΨ ≤ costΦ.

Proof. In this proof, it will be more convenient to work with subsets of the
topological space X × Γ (where Γ carries the discrete topology) than with
subfamilies of !RΓ!X". For subsets U, V ⊂X×Γ, n ∈ N, we use the following
notation:

U · V :=
{
(x, η · γ)

∣∣ x ∈ X, γ, η ∈ Γ, (x, γ) ∈ V, (γ · x, η) ∈ U
}

Un+1 := Un · U and U0 := X × {e}

Let S ⊂ Γ be a finite generating set of Γ and let S̃ := X×S ⊂X×Γ, which
is compact (because X is compact and S is finite). By hypothesis, we may
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write Φ = (γj · : Aj −→ γj · Aj)j∈N with γj ∈ Γ and open subsets Aj ⊂ X.
Moreover, we can write each Aj as an ascending union Aj =

⋃
m∈N Aj,m of

finite unions of elements of O. For n,m ∈ N, we set

Φ̃n,m :=
n⋃

j=0

Aj,m × {γj} ∪
n⋃

j=0

(γj ·Aj,m) × {γ−1
j }.

Because Φ is a graphing of RΓ!X , we obtain (check!)

⋃

n,m∈N

⋃

k∈N
Φ̃k

n,m =
⋃

k∈N

⋃

n,m∈N
Φ̃k

n,m = X × Γ.

Moreover, each Φ̃k
n,m is open and as S̃ is compact and the (Φ̃n,m)(n,m)∈N×N are

nested, there exist n,m ∈ N with
⋃

k∈N Φ̃k
n,m ⊃ S̃. Because S is a generating

set of Γ, we conclude that (γj · : Aj,m −→ γj · Aj,m)j∈{0,...,n} is a graphing
of RΓ!X .

Lemma 4.3.8. Let Y = (V,E) be the Γ-labelled graph constructed in the
proof of Theorem 4.3.5, let v ∈ V , and let ϕ : π1(Y, v) −→ Γ be the labelling
homomorphism. Then imϕ = Λ.

Proof. We have imϕ ⊂ Λ: Let c = (v = v0, v1, . . . , vn+1 = v) be a v-based
cycle in Y . Then there exist i0, . . . , in+1 ∈ I and ε1, . . . , εn+1 ∈ {−1, 1} such
that

vj = gij · Λ and gij · Λ = γ
εj+1

ij+1
· gij+1 · Λ

for all j ∈ {0, . . . , n}. Then ϕ([c]) = γε1
i1

· · · · · γεn+1

in+1
lies in Λ because Λ is

normal in Γ and

γε1
i1

· · · · · γεn+1

in+1
· gi0 · Λ = γε1

i1
· · · · · γεn+1

in+1
· gin+1 · Λ = · · · = gi0 · Λ.

Conversely, let λ ∈ Λ and let g ∈ Γ with g · Λ = v. Because Ψ is a
graphing of R, we can reach the element (λ · g)∆∈F = λ · e0 ∈ X from e0 :=
(g)∆∈F through Ψ. In other words, there exist n ∈ N, i0, . . . , in+1 ∈ I, and
ε1, . . . , εn+1 ∈ {−1, 1} such that

λ = γε1
i1

· · · · · γεn+1

in+1

and gin+1 · Λ = g · Λ = v as well as

∀j∈{0,...,n} γ
εj+1

ij+1
· · · · · γεn+1

in+1
· (g)∆∈F ∈ π−1

Λ (gij · Λ).

Inductively, we obtain γ
εj+1

ij+1
· gij+1 · Λ = gij · Λ. Because λ ∈ Λ, we have

gi0 ·Λ = λ · g ·Λ = g ·Λ = v. Therefore, the sequence (gi0 ·Λ, . . . , gin+1 ·Λ) is
a v-based cycle c in Y and ϕ([c]) = γε1

i1
· · · · · γεn+1

in+1
= λ.
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Example 4.3.9 (rank gradients of amalgamated free products and HNN-exten-
sions). Let Γ = Λ1∗AΛ2 be a residually finite finitely generated amalgamated
free product over an amenable group A. If Γ∗ is a residual chain of Γ, then

rg(Γ,Γ∗) = rg
(
Λ1, (Λ1 ∩ Γn)n∈N

)
+ rg

(
Λ2, (Λ2 ∩ Γn)n∈N

)
+

1

|A| .

If A is finite, then this statement can be shown through Bass–Serre theory [6,
86]. If A is infinite, then Pappas [116] showed how to combine Theorem 4.3.5
with Gaboriau’s computations of cost of free products [63] to compute the
rank gradients of Γ.

Similarly, if Γ = Λ∗A is a residually finite finitely generated HNN-extension
over an amenable group A and if Γ∗ is a residual chain of Γ, then [116]

rg(Γ,Γ∗) = rg
(
Λ, (Λ ∩ Γn)n∈N

)
+

1

|A| .

A related application of Theorem 4.3.5 is Corollary 4.3.16.

4.3.2 The cost estimate for the first L2-Betti number

There is a dynamical version of the rank gradient estimate (Corollary 3.3.5):

Theorem 4.3.10 (cost estimate [64, Corollaire 3.23]). Let Γ be a group of finite
type. Then

b(2)1 (Γ)− b(2)0 (Γ) ≤ costΓ− 1.

In particular: If Γ is infinite, then b(2)1 (Γ) ≤ costΓ− 1 and costΓ ≥ 1.

Gaboriau’s original proof is in terms of simplicial complexes over mea-
sured equivalence relations and covers the analogous estimate for measured
equivalence relations. In the following, we will translate the proof of the rank
estimate b1(Γ) ≤ d(Γ) via projective resolutions into the setting of cost:

Proof. Let Γ ! X be an essentially free standard action of Γ (if Γ is finite, we
can take the translation action on Γ; if Γ is infinite, we can take the Bernoulli
shift). It suffices to show that every graphing Φ of R := RΓ!X satisfies

b(2)1 (Γ)− b(2)0 (Γ) ≤ costΦ− 1.

For this, we will use Φ to construct a suitable partial projective resolution
and apply a basic Morse inequality (Exercise 4.E.7).

We may assume that Φ = (ϕi = λi · : Ai −→ Bi)i∈I and that costΦ =∑
i∈I µ(Ai) < ∞; moreover, we set L := L∞(X) "Γ and we equip L∞(X)

with the left L-module structure given by f [γ] · f ′ := f · (γ · f ′) for all f, f ′ ∈
L∞(X) and all γ ∈ Γ. Analogously to the classical proof of the rank estimate,
we consider the left L-modules
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P0 := L and Q :=
⊕

i∈I

L · χAi [e]

and the L-homomorphisms

ε : P0 −→ L∞(X)

f [γ] %−→ f

∂Q
1 : Q −→ P0

x · χAi [e] %−→ x · χAi [e] ·
(
1[e]− 1[λi]

)
= x · χAi [e]− x · χAi [λi].

Then im ∂Q
1 ⊂ ker ε. Unfortunately, in general, it is not clear that im ∂Q

1 is
all of ker ε. Therefore, we extend Q by a correction term to construct the
module in degree 1: Let δ ∈ R>0 and let (γn)n∈N be an enumeration of Γ.
For k, n ∈ N, we set

A(k, n) :=
{
x ∈ X

∣∣ ∃i1,...,in∈I ∃ε1,...,εn∈{−1,1} γk · x = ϕεn
in
◦ · · · ◦ ϕε1

i1
(x)
}
,

which is a measurable subset of X. Because Φ is a graphing of R, we obtain
for all k ∈ N that

⋃
n∈N A(k, n) = X. Hence, there exists an nk ∈ N such

that Ck := X \
⋃nk

n=0 A(k, n) satisfies µ(Ck) ≤ δ · 1/2k+1. We then consider
the left L-module

M :=
⊕

k∈N
L · χCk [e]

and the L-homomorphism

∂M
1 : M −→ P0

x · χCk [e] %−→ x · χCk [e] ·
(
1[e]− 1[γk]

)
.

Finally, we set P1 := Q⊕M and ∂1 := ∂Q
1 ⊕∂M

1 : P1 −→ P0. By construction,
we have im ∂1 ⊂ ker ε and also ker ε ⊂ im ∂1 (Lemma 4.3.11 below). Moreover,
P0 and P1 are projective L-modules. In other words, we constructed a par-

tial L-projective resolution of L∞(X): 0 L∞(X)$$ P0
ε$$ P1

∂1$$

Thus, the Morse inequality (Exercise 4.E.7), the additivity of dimNR, and
Lemma 4.3.12 below imply that

b(2)1 (Γ)− b(2)0 (Γ) ≤ dimNR(NR⊗L P1)− dimNR(NR⊗L P0)

= dimNR NR− dimNR(NR⊗L Q)− dimNR(NR⊗L M)

= 1−
∑

i∈I

µ(Ai)−
∑

k∈N
µ(Ck)

≤ 1− costΦ− δ.

Taking δ −→ 0 gives the desired estimate.
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Lemma 4.3.11. In the situation of the proof of Theorem 4.3.10, we have the
inclusion ker ε ⊂ im ∂1.

Proof. Let f =
∑

γ∈Γ fγ [γ] ∈ ker ε. Then

f =
∑

γ∈Γ

fγ [γ]− ε(f)[e] =
∑

γ∈Γ

fγ [e] ·
(
1[γ]− 1[e]

)
.

In view of L-linearity, it therefore suffices to show that 1[γ]− 1[e] ∈ im ∂1 for
each γ ∈ Γ. Let γ ∈ Γ. Then γ = γk for some k ∈ N and (in L∞(X))

1 = χCk +
nk∑

n=0

χB(k,n),

where we set B(k, n) := A(k, n) \
⋃n−1

m=0 A(k,m). Therefore, we obtain

1[γ]− 1[e] = χCk [γk]− χCk [e] +
nk∑

n=0

(
χB(k,n)[γk]− χB(k,n)[e]

)
.

The first difference lies in im ∂M
1 . Therefore, it suffices to show that all other

summands lie in ∂Q
1 . This in turn follows inductively (over the decomposition

of the action of γk into the λi on appropriate subsets) from the construction
of the B(k, n) and the following observations (check!): For all i ∈ I, all
measurable subsets A ⊂X with λ∓1

i ·A ⊂B(k, n−1), and all η ∈ Γ, we have

χA[λ
± 1
i · η]− χA[e] = χA[e] ·

(
1[λ± 1

i ] · (1[η]− 1[e]) + 1[λ± 1
i ]− 1[e]

)

= −1[λ± 1
i ] · χλ∓1

i ·A[e] ·
(
1[η]− 1[e]

)

+ χA[e] ·
(
1[λ± 1

i ]− 1[e]
)
.

By induction, we may assume that the first summand lies in im ∂Q
1 . Moreover,

if A ⊂Ai, we have

χA[e] ·
(
1[λi]− 1[e]

)
= −∂Q

1

(
χA[e] · χAi [e]

)

and if λi ·A ⊂Ai, we have

χA[e] ·
(
1[λ−1

i ]− 1[e]
)
= −1[λ−1

i ] · χλi·A[e] ·
(
1[λi]− 1[e]

)
;

both of these elements lie in im ∂Q
1 .

Lemma 4.3.12. In the situation of the proof of Theorem 4.3.10, let A ⊂ X
be a measurable subset. Then P := L ·χA[e] is a projective left L-module and

dimNR(NR⊗L P ) = µ(A).
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Proof. The element χA[e] ∈ L is idempotent. Therefore, P is a projective
left L-module. For the same reason, NR ⊗L P ∼=NR NR · χA[e] (where we
implicitly use the canonical inclusion L ↪→ CR ⊂ NR) is also a projective
left NR-module. Therefore, we obtain

dimNR(NR⊗L P ) = pdimNR(NR · χA[e]) = trR χA[e] = µ(A).

4.3.3 Fixed price

By construction, cost of countable group actions is an orbit equivalence in-
variant. However, in general, cost of groups is hard to compute and the de-
pendence on the underlying dynamical system remains a mystery:

Outlook 4.3.13 (fixed price problem). The fixed price problem asks for the
(in)dependence of cost on the action:

Let Γ be a countable group and let Γ ! X, Γ ! Y be essentially free
standard actions. Do we then have

cost(Γ ! X) = cost(Γ ! Y ) (?!)

This problem is wide open. In fact, for finitely presented residually finite

infinite groups Γ, in all known examples, one has b(2)1 (Γ) = costRΓ!X − 1 =
rg(Γ,Γ∗) for all essentially free ergodic standard actions Γ ! X and all
residual chains Γ∗ of Γ; this includes infinite amenable groups, free groups,
surface groups . . . [63].

Abért and Nikolov proved that the following (bold) conjectures exclude
each other [7]:

• The [stable] rank vs. Heegaard genus conjecture for orientable compact
hyperbolic 3-manifolds (the Heegaard genus of M equals d(π1(M))).

• The fixed price conjecture.

Remark 4.3.14 (inner amenability). A group is inner amenable if it admits a
conjugation invariant mean that has no atoms. Examples of inner amenable
groups include all infinite amenable groups and all groups that have infi-
nite centre. Similarly to infinite amenable groups, inner amenable countable
groups have fixed price 1 [133] and thus vanishing first L2-Betti number [37,
Corollary D][133]. However, in contrast with amenability, inner amenability
is not an ME invariant [81, p. 4].

Remark 4.3.15 (property (T)). An antagonist of amenability is property (T)
(Remark 5.1.10). Countable infinite groups with property (T) are known to
have cost 1 [80]; however, it remains an open problem whether they are of
fixed price or not.
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We conclude this chapter with a simple application to rank gradients:

Corollary 4.3.16. Let Γ be a finitely generated residually finite infinite group
of fixed price. Then, for every residual chain Γ∗ of Γ, we have

rg(Γ,Γ∗) = rgΓ.

In other words: In this case, the rank gradient does not depend on the chosen
residual chain.

Proof. Applying Theorem 4.3.5 (twice) and the fixed price hypothesis shows
that

rg(Γ,Γ∗) = cost(Γ ! Γ̂∗)− 1 = cost(Γ ! Γ̂)− 1 = rgΓ.
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4.E Exercises

Exercise 4.E.1 (characterisations of residual finiteness). Let Γ be a finitely
generated group. Show that the following are equivalent:

1. The group Γ is residually finite (i.e., it admits a residual chain).

2. For each g ∈ Γ \ {e}, there exists a finite group F and a group homo-
morphism ϕ : Γ −→ F with ϕ(g) ̸= e.

3. The diagonal homomorphism Γ −→ Γ̂ = lim←−Λ∈NF(Γ)
Γ/Λ into the profi-

nite completion of Γ is injective.

4. The diagonal action of Γ on the profinite completion Γ̂ is free.

Exercise 4.E.2 ((stable) orbit equivalence via equivalence relations). Reformu-
late the notion of (stable) orbit equivalence of standard actions in terms
of the orbit relations (without using the group actions directly) and prove
Corollary 4.2.8.

Exercise 4.E.3 (non-orbit equivalence of groups). Let m,n ∈ N and let
r1, . . . , rm, s1, . . . , sn ∈ N≥2. Prove the following: If m ̸= n, then

∏m
j=1 Frj

and
∏k

j=1 Fsj are not orbit equivalent.

Hints. L2-Betti numbers . . . This is a very special case of an ME rigidity result
of Monod and Shalom [109].

Exercise 4.E.4 (L2-Betti numbers of amenable groups). Compute the L2-Betti
numbers of amenable groups of finite type, i.e., prove Corollary 4.2.10.

Exercise 4.E.5 (L2-Betti numbers of topological groups). Compute the L2-
Betti numbers (in the sense of Corollary 4.2.11) of the following topological
groups:

1. R2019

2. PSL(2,R)

3. R2019 × PSL(2,R)

4. PSL(2,R) × PSL(2,R)

5. the three-dimensional real Heisenberg group
⎧
⎨

⎩

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠

∣∣∣∣∣∣
x, y, z ∈ R

⎫
⎬

⎭ ⊂ SL(3,R).
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Exercise 4.E.6 (an arithmetic lattice). For which k ∈ N is b(2)k (SL(2,Z[
√
2]))

non-trivial?
Hints. The group SL(2,R) × SL(2,R) might help.

Exercise 4.E.7 (a Morse inequality). Let Γ ! X be an essentially free standard
action of a countable group Γ, let R := RΓ!X , and let

0 L∞(X)$$ P0
ε$$ P1

∂1$$

be an exact sequence of (left) L∞(X) "Γ-modules, where P0 and P1 are
projective over L∞(X)"Γ. Show that

b(2)1 (Γ)− b(2)0 (Γ) ≤ dimNR(NR⊗L∞(X)"Γ P1)− dimNR(NR⊗L∞(X)"Γ P0).

Hints. By (the proof of) Theorem 4.2.5, for all k ∈ N, we have b(2)k (Γ) =

b(2)k (R) = dimNR TorL
∞(X)"Γ

k

(
NR, L∞(X)

)
. We can compute this Tor-term

by extending the given exact sequence to a projective resolution. Finally, we
apply suitable monotonicity and additivity properties of dimNR.

Exercise 4.E.8 (cost of finite groups). Let Γ be a finite group. Compute cost(Γ)
and compare this result with the cost estimate for the first L2-Betti number
(Theorem 4.3.10).

Exercise 4.E.9 (cost of Z). Use the Rokhlin lemma [90, Lemma 4.77] to com-
pute the cost of every essentially free standard Z-action.

Exercise 4.E.10 (ME cocycles [61, Section 2]). Let (Ω, µ) be an ME coupling
between the countable groups Γ and Λ and let Y,X ⊂ Ω be corresponding
finite measure fundamental domains for Γ and Λ, respectively. We consider
the map

α : Γ × X −→ Λ

(γ, x) %−→ λ ∈ Λ with λ · γ · x ∈ X.

Moreover, we equip X with the Γ-action

• : Γ × X −→ X

(γ, x) %−→ x′ ∈ X with Λ · x′ = Λ · γ · x.

Strictly speaking, the maps α and • are only well-defined almost everywhere.

1. Show that α is a cocycle, i.e., that for all γ1, γ2 ∈ Γ and almost all x ∈
X, we have

α(γ1 · γ2, x) = α(γ1, γ2 • x) · α(γ2, y).

2. What happens if we replace X by a different Λ-fundamental domain?
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Invariant random subgroups

We will now consider an approximation theorem for covolume-normalised
Betti numbers of uniform lattices in semi-simple Lie groups. We will first
explain the statement of the theorem and give two instructive examples.

We will then sketch how ergodic theory, in the incarnation of invariant
random subgroups, helps to handle such homology gradients and outline the
structure of the proof of the theorem.
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5.1 Generalised approximation for lattices

In the classical approximation theorem (Theorem 3.1.3), we looked at the
limit behaviour of normalised ordinary Betti numbers of the form

bk(Γn)

[Γ : Γn]
−→ ?

If (Γn)n∈N is a residual chain in an ambient group Γ of finite type, then this

sequence indeed converges and the limit is b(2)k (Γ) (Theorem 3.1.3).
We will now consider a version of the approximation theorem, where the

conditions on the sequence (Γn)n∈N are substantially relaxed, provided that
these groups lie as lattices in a joint ambient group G. In view of Corol-

lary 4.2.11, one might expect that the limit in this case is b(2)k (G):

Remark 5.1.1 (classical approximation for lattices). Let G be a second count-
able locally compact topological group (with a given Haar measure), let
Γ ⊂ G be a lattice of finite type, and let (Γn)n∈N be a residual chain in Γ
(provided it exists). Then, for all k ∈ N, we have

lim
n→∞

bk(Γn)

vol(Γn \G)
= lim

n→∞

bk(Γn)

[Γ : Γn]
· [Γ : Γn]

vol(Γn \G)

=
b(2)k (Γ)

vol(Γ \G)
(approximation theorem; Theorem 3.1.3)

= b(2)k (G). (by definition of b(2)k (G); Corollary 4.2.11)

5.1.1 Statement of the approximation theorem

We now state a selection of the approximation results of the “seven samurai”
Abért, Bergeron, Biringer, Gelander, Nikolov, Raimbault, Samet [2, 3].

The terminology used in these results will be explained in Chapter 5.1.2,
the proofs of Theorem 5.1.3 and Theorem 5.1.4 will be sketched in Chap-
ter 5.3. Moreover, basic notions for lattices are recalled in Appendix A.3.

Setup 5.1.2. Let G be a connected centre-free semi-simple Lie group without
compact factors with a chosen Haar measure, let K ⊂ G be a maximal
compact subgroup, and let X := G/K be the associated symmetric space.

Theorem 5.1.3 (BS-approximation for lattices [2, Corollary 1.4]). In the situa-
tion of Setup 5.1.2, let (Γn)n∈N be a uniformly discrete sequence of uniform
lattices in G such that (Γn \X)n∈N BS-converges to X and let k ∈ N. Then
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lim
n→∞

bk(Γn)

vol(Γn \G)
= b(2)k (G).

Theorem 5.1.4 (a sufficient condition for BS-convergence [2, Theorem 1.5]). In
the situation of Setup 5.1.2, let G have property (T) and rkRG ≥ 2. Moreover,
let (Γn)n∈N be a sequence of pairwise non-conjugate irreducible lattices in G.
Then (Γn \X)n∈N BS-converges to X.

Combining these two theorems gives the following approximation result
for lattices:

Corollary 5.1.5 (an approximation theorem for uniformly discrete lattices [2,
Corollary 1.6]). In the situation of Setup 5.1.2, let G have property (T) and
rkRG ≥ 2. Moreover, let (Γn)n∈N be a uniformly discrete sequence of pairwise
non-conjugate irreducible lattices in G. Then

lim
n→∞

bk(Γn)

vol(Γn \G)
= b(2)k (G).

In order to use Theorem 5.1.3 or Corollary 5.1.5 in concrete situations, it is
useful to know the values on the right-hand side, which have been computed
through locally symmetric spaces by analytic means.

Remark 5.1.6 (L2-Betti numbers of locally symmetric spaces/semi-simple Lie
groups). In the situation of Setup 5.1.2, the L2-Betti numbers of G can be
computed as follows [105, Theorem 5.12] (this goes back to Borel [25]): Let
frkG := rkC(G)− rkC(K) be the fundamental rank of G. Then:

• If frkG ̸= 0, then b(2)k (G) = 0 for all k ∈ N.

• If frkG = 0, then, for all k ∈ N

b(2)k (G) =

{
0 if 2 · k ̸= dimX

̸= 0 if 2 · k = dimX.

In particular, all (closed) locally symmetric spaces satisfy the Singer conjec-
ture (Outlook 2.2.9).

5.1.2 Terminology

Benjamini–Schramm convergence is a probabilistic geometric notion of con-
vergence, which has its origin in graph theory [18].

Definition 5.1.7 (BS-convergence [2]). In the situation of Setup 5.1.2, let
(Γn)n∈N be a sequence of lattices in G. Then the X-orbifolds (Γn \ X)n∈N
BS-converge (Benjamini–Schramm converge) to X if for every R ∈ R>0, the
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probability that the R-ball around a random point in Γn \X is isometric to
the R-ball in X tends to 1, i.e., if

∀R∈R>0 lim
n→∞

vol(R-thin part of Γn \X)

vol(Γn \X)
= 0.

The R-thin part of a Riemannian manifold M is {x ∈M | injradM (x) < R}.

Definition 5.1.8 (uniform discreteness). In the situation of Setup 5.1.2, a fam-
ily (Γi)i∈I of lattices in G is uniformly discrete, if there exists an open neigh-
bourhood U ⊂G of e ∈ G with the property that

∀i∈I ∀g∈G g · Γi · g−1 ∩ U = {e}.

Example 5.1.9. In the situation of Setup 5.1.2, let Γ ⊂ G be a uniform
lattice and let (Γn)n∈N be a family of finite index subgroups of Γ. Then
(Exercise 5.E.1):

• The family (Γn)n∈N is uniformly discrete in G.

• If (Γn)n∈N is a residual chain of Γ, then (Γn\X)n∈N BS-converges to X.

Remark 5.1.10 (property (T)). A locally compact second countable topolog-
ical group G has (Kazhdan’s) property (T), if the trivial representation of G
is an isolated point in the unitary dual of G (with respect to the Fell topol-
ogy); equivalently, such groups can also be characterised in terms of (almost)
invariant vectors in unitary representations [15].

• If n ∈ N≥3, then SL(n,R) has property (T). More generally, every
simple Lie group G with rkRG ≥ 2 has property (T).

• The group SL(2,R) does not have property (T).

• Property (T) is an antagonist of amenability: If a group both is amen-
able and has property (T), then it is compact. This fact is beautifully
exploited in the proof of the Margulis normal subgroup theorem [108].

5.2 Two instructive examples

As in the original paper [2], we will discuss two examples for Corollary 5.1.5.

5.2.1 Lattices in SL(n,R)

Example 5.2.1 ([2, Example 1.7]). Let d ∈ N≥3, let Γ ⊂ SL(d,R) be a uniform
lattice, and let (Γn)n∈N be a sequence of distinct, finite index subgroups of Γ.
Moreover, let k ∈ N. Then
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lim
n→∞

bk(Γn)

[Γ : Γn]
= 0.

To apply Corollary 5.1.5, we verify that the hypotheses are satisfied:

• Because d ≥ 3, we know that rkR SL(d,R) ≥ 2 and that SL(d,R) has
property (T) (Remark 5.1.10).

• As SL(d,R) is sufficiently irreducible, its lattices are also irreducible.

• The family (Γn)n∈N is uniformly discrete (Example 5.1.9).

• Moreover, the sequence (Γn)n∈N can, for each conjugacy class, contain
at most finitely many members (this can be seen from the covolumes).

Hence, we obtain (from Corollary 5.1.5 and the argument in Remark 5.1.1)

lim
n→∞

bk(Γn)

[Γ : Γn]
= b(2)k

(
SL(d,R)

)
· vol

(
Γ \ SL(d,R)

)
.

Moreover, the fundamental rank of SL(d,R) for n ≥ 3 is non-zero. Hence, the
right-hand side is 0 (Remark 5.1.6).

5.2.2 Why doesn’t it work in rank 1 ?!

Example 5.2.2 (generalised approximation fails in rank 1 [2, p. 716]). There
exist closed connected hyperbolic manifolds M with d := dimM ≥ 3 and
the following property (Exercise 5.E.2): There exists a surjective group ho-
momorphism π : π1(M) −→ F2.

We now consider the uniform lattice Γ := π1(M) in SO(d, 1) and the
following sequence of subgroups: For each n ∈ N≥1, let Λn ⊂ F2 be a subgroup
of index n (these exist), and let

Γn := π−1(Λn) ⊂ Γ := π1(M).

Then [Γ : Γn] = [F2 : Λn] = n.
In this situation, we have (which shows that the conclusion of Corol-

lary 5.1.5 does not hold in this rank 1-situation):

• For each n ∈ N≥1,

b1(Γn) = dimQ H1(Γn;Q) = rkZ H1(Γn;Z) = rkZ(Γn)Ab

≥ rkZ(Λn)Ab = rank of the free group Λn

= n · (2− 1) + 1 (Nielsen–Schreier)

and so lim infn→∞
b1(Γn)
[Γ:Γn]

= lim infn→∞
n+1
n ≥ 1.

• In contrast, b(2)1 (SO(d, 1)) = 0 (Remark 5.1.6 or Outlook 2.2.8).
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5.3 Convergence via invariant random subgroups

To prove the sufficient condition for BS-convergence (Theorem 5.1.4) and
the convergence of Betti numbers in the presence of BS-convergence (Theo-
rem 5.1.3), one can make use of invariant random subgroups.

We will recall some basic terminology for invariant random subgroups
(Chapter 5.3.1) and reinterpret BS-convergence in terms of invariant ran-
dom subgroups (Chapter 5.3.2). We then sketch proofs of Theorem 5.1.4 and
Theorem 5.1.3.

5.3.1 Invariant random subgroups

Invariant random subgroups are a probabilistic version of normal subgroups,
defined on the Borel space of closed subgroups.

Definition 5.3.1 (the space of subgroups). Let G be a locally compact second
countable topological group.

• We write Sub(G) for the set of all closed subgroups of G, endowed
with the subspace topology of the space of closed subsets of G with the
Chabauty topology.

• The Chabauty topology [35] on Sub(G) is the topology generated by the
basis

{
O1(C)

∣∣ C ⊂G is compact
}
∪
{
O2(U)

∣∣ U ⊂G is open
}
,

where for all compact C ⊂G and all open U ⊂G, we set

O1(C) :=
{
H ∈ Sub(G)

∣∣ H ∩ C = ∅
}

O2(U) :=
{
H ∈ Sub(G)

∣∣ H ∩ U ̸= ∅
}
.

Remark 5.3.2 (convergence in the Chabauty topology). Let G be a locally
compact second countable topological group, let (Hn)n∈N be a sequence
in Sub(G), and let H ∈ Sub(G). Then, by definition, (Hn)n∈N converges
to H with respect to the Chabauty topology if and only if the following
conditions both hold (check!):

• For every x ∈ H, there exists a sequence (xn)n∈N in G with xn ∈ Hn

for all n ∈ N and limn→∞ xn = x in G.

• If (xn)n∈N is a sequence in G with xn ∈ Hn for all n ∈ N, then every
accumulation point of (xn)n∈N lies in H.
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Definition 5.3.3 (invariant random subgroup). Let G be a locally compact
second countable topological group.

• An invariant random subgroup is a Borel probability measure on Sub(G)
that is invariant under the conjugation action of G on Sub(G).

• Let IRS(G) be the space of all invariant random subgroups on G (with
the weak topology).

Example 5.3.4 (invariant random subgroups). Let G be a locally compact
second countable group.

• If N is a closed normal subgroup of G, then the Dirac measure δN
concentrated in N ∈ Sub(G) is an invariant random subgroup on G.

• If Γ ⊂ G is a lattice, then the push-forward of the normalised Haar
measure on Γ \G via

Γ \G −→ Sub(G)

Γ · g %−→ g−1 · Γ · g

is an invariant random subgroup on G (check!), which we will denote
by µΓ. In particular, each sequence of lattices gives rise to a sequence
of corresponding invariant random subgroups.

• If G ! (X, ν) is an action of G on a standard Borel probability space by
measure preserving Borel automorphisms, then the push-forward of ν
under the stabiliser map

X −→ Sub(G)

x %−→ Gx

is an invariant random subgroup on G; the stabiliser subgroups are
almost everywhere closed by a result of Varadarajan [138, Corol-
lary 2.1.20]. Conversely, every invariant random subgroup on G arises
in this way [5][2, Theorem 2.6].

Moreover, many exotic examples of invariant random subgroups exist [3,
27, 1]. However, we will focus on invariant random subgroups induced by
normal subgroups or lattices.

Remark 5.3.5 (roots of invariant random subgroups). The idea of invariant
random subgroups seems to be already implicitly present in Zimmer’s work,
in particular, in the Stück–Zimmer theorem. The name “invariant random
subgroup” was first introduced by Abért, Glasner, and Virág [5], but sim-
ilar notions appeared at the same time in the work of Vershik [134] and
Bowen [26].

In the form of stabilisers of probability measure preserving actions, invari-
ant random subgroups also occured in the work of Bergeron and Gaboriau
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on the first L2-Betti number [19]. Moreover, in the graph-theoretic setting,
invariant random subgroups of discrete countable groups correspond to uni-
modular random networks of Schreier graphs, as investigated by Aldous and
Lyons [10]. More details on the history of invariant random subgroups are
explained by Gelander [67, Section 10].

We will apply invariant random subgroups in order to prove approxima-
tion results for normalised Betti numbers. Another prominent application of
invariant random subgroups is that they provide a means to reorganise and
generalise rigidity results for lattices [95, 69, 70, 68].

5.3.2 Benjamini–Schramm convergence

In our setting, Benjamini–Schramm convergence can be translated into weak
convergence of the corresponding invariant random subgroups:

Theorem 5.3.6 (BS-convergence and IRS-convergence [2, Corollary 3.8]). In
the situation of Setup 5.1.2, let (Γn)n∈N be a sequence of lattices in G. Then
the following are equivalent:

1. The sequence (Γn \X)n∈N BS-converges to X.

2. The sequence (µΓn)n∈N of invariant random subgroups on G weakly con-
verges to δ1, the Dirac measure concentrated on the trivial subgroup 1.

Proof. We show that each of theses conditions is equivalent to

3. For all R ∈ R>0, we have

lim
n→∞

µΓn

(
{H ∈ Sub(G) | injradH\X(H · e ·K) ≤ R}

)
= 0.

For n ∈ N, we will use the following notation: Let Pn := vol( · )/vol(Γn \X)
be the normalised Riemannian measure on Γn \ X and let µn be the G-
invariant probability measure on Γn \G induced by the Haar measure on G.
Then we can rewrite our measures as

µΓn = sn∗µn and Pn = pn∗µn,

where pn : Γn \G −→ Γn \X is the canonical projection and sn : Γn \G −→
Sub(G) denotes the stabiliser map Γn · g %−→ g−1 · Γn · g. Therefore, for
all R ∈ R>0, we obtain

Pn

(
{x ∈ Γn \X | injradΓn\X(x) ≤ R}

)

= µn

(
{Γn · g ∈ Γn \G | injradΓn\X(Γn · g ·K) ≤ R}

)

= µΓn

(
{g−1 · Γn · g ∈ Sub(G) | injradg−1Γng\X(g−1 · Γn · g · e ·K) ≤ R}

)

= µΓn

(
{H ∈ Sub(G) | injradH\X(H · e ·K) ≤ R}

)
.



5.3. Convergence via invariant random subgroups 67

Now the definition of BS-convergence shows that the first and the third prop-
erty are equivalent.

It remains to show that the second and the third property are equivalent:
By the portmanteau theorem, we have that (µΓn)n∈N weakly converges to δ1
if and only if we have for all open subsets U ⊂ Sub(G) that

lim inf
n→∞

µΓn(U) ≥ δ1(U).

By Lemma 5.3.7, this is equivalent to the third property.

Lemma 5.3.7 (more on the topology of Sub(G)). In the situation of Setup 5.1.2,
the set {UR | R ∈ R>0} with

UR :=
{
H ∈ Sub(G)

∣∣ #γ∈H\{e} dX(e ·K, γ ·K) ≤ R
}

is a basis of open sets around the trivial subgroup 1 in Sub(G).

Proof. By definition, for all R ∈ R>0, we have 1 ∈ UR.
Moreover, UR is open: We show that Sub(G) \ UR is closed. In view of

Remark 5.3.2, we take a sequence (Hn)n∈N in Sub(G) \UR that converges to
some H ∈ Sub(G) and show that H ̸∈ UR.

Because Hn ̸∈ UR, there exists a γn ∈ Hn \ {e} with dX(e ·K, γn ·K) ≤
R. Without loss of generality, we may assume that there exists an open
neighbourhood U ⊂G of e with

∀n∈N γn ̸∈ U.

This can be seen as follows: The set D := {g ∈ G | dX(e ·K, g ·K) ≤ R} is a
compact neighbourhood of e in G. Therefore, via the exponential map of G,
we can find an open neighbourhood U of e in G with U ⊂D and

∀g∈U\{e} ∃k∈N gk ∈ D \ U.

Passing to such powers shows that we may assume without loss of generality
that γn ̸∈ U for all n ∈ N.

Because D is compact, (γn)n∈N has an accumulation point γ ∈ D. As U
is open, we know that γ ̸∈ U ; in particular, γ ̸= e. Then, by definition of the
topology on Sub(G), we have γ ∈ H and γ witnesses that H ̸∈ UR.

It remains to show that every open neighbourhood of 1 in Sub(G) contains
a UR for a suitable R ∈ R>0: By definition of the Chabauty topology, we only
need to consider sets of the form O1(C) and O2(U) for compact sets C ⊂G
with 1 ̸∈ K and open sets U ⊂G with 1 ∈ U , respectively.

• If U ⊂G is open and 1 ∈ U , then O2(U) = Sub(G) and so every choice
of R ∈ R>0 works.

• If C ⊂ G is compact and 1 ̸∈ C, then we can just take R bigger than
the finite number supγ∈C dX(e ·K, γ ·K).
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5.3.3 The accumulation point

We now prove Theorem 5.1.4. In view of Theorem 5.3.6, it suffices to establish
the following:

Theorem 5.3.8 (the IRS accumulation point [2, Theorem 4.4]). Let G be a
connected centre-free semi-simple Lie group with property (T) and rkRG ≥ 2.
Then the set

{µΓ | Γ is an irreducible lattice in G}

has exactly one accumulation point in IRS(G), namely δ1.

Sketch of proof. Clearly, δ1 is an accumulation point of this set: The group G
admits a lattice Γ. In particular, Γ is residually finite and thus contains a
residual chain Γ∗. Then, (µΓn)n∈N converges to δ1, as can be seen through
BS-convergence of the associated locally symmetric spaces (Exercise 5.E.1)
and Theorem 5.3.6.

Why is δ1 the only accumulation point? Using the Nevo–Stück–Zimmer
theorem [130, 95], which is formulated in terms of actions and stabilisers, one
can derive the following restriction on invariant random subgroups in higher
rank [2, Theorem 4.1]:

• If G is a connected centre-free semi-simple Lie group with rkRG ≥ 2
and property (T), then every non-atomic irreducible invariant random
subgroup of G is of the form µΓ for some irreducible lattice Γ in G.

Here an invariant random subgroup of G is irreducible, if it is ergodic
with respect to the action of every simple factor of G.

Let (Γn)n∈N be a sequence of distinct irreducible lattices in G with the prop-
erty that (µΓn)n∈N converges in IRS(G), say to µ∞. We show that µ∞ = δ1:

Because the Γn are irreducible, the simple factors of G act ergodically
on Γn \ G (by the Moore ergodicity theorem [16, Theorem III.2.1]), whence
on µΓn . By the Glasner–Weiss theorem [71], then µ∞ is also ergodic with
respect to the simple factors of G. By the above version of Nevo–Stück–
Zimmer theorem, we are reduced to the following cases:

• Lattice case: µ∞ = µΛ for an irreducedible lattice Λ ⊂G or

• atomic case: µ∞ = δN for a closed normal subgroup N ⊂G.

The lattice case can be ruled out by Leuzinger’s uniform lower bound of the
first non-zero eigenvalue of the Laplacian on Γn \X, a volume estimate, and
Wang’s finiteness theorem [2, p. 737f].

Regarding the atomic case, assume for a contradiction that µ∞ = δN for
some normal subgroup N ⊂ G of non-zero dimension. Then one can show
that there exists a neighbourhood U of N in Sub(G) that contains no lattice.
By the portmanteau theorem, we therefore obtain
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0 = lim inf
n→∞

µΓn(U) ≥ µ∞(U) = δN (U) = 1,

which is a contradiction. Therefore, the only remaining option is µ∞ = δN ,
where N is a discrete normal subgroup of G. As G is connected, N is central,
and as G is centre-free, N must be trivial; thus, µ∞ = δN = δ1.

This completes the proof of Theorem 5.1.4.

5.3.4 Reduction to Plancherel measures

We now turn to the proof of the Betti number approximation theorem, Theo-
rem 5.1.3. As in the proof of the classical approximation theorem, the proof is
based on a convergence of measures, the corresponding Plancherel measures:

In the situation of Theorem 5.1.3, we introduce the following notation:

• Let ν be the Plancherel measure on the unitary dual Ĝ of G.

• For n ∈ N, let νn be the relative Plancherel measure on Ĝ of Γn in G,
i.e.,

νn :=
1

vol(Γn \G)
·
∑

π∈Ĝ

m(π,Γn) · δπ,

where m(π,Γn) denotes the multiplicity of π in the right regular repre-
sentation L2(Γn \G) of G.

Similarly to the case of the classical approximation theorem (or the approx-
imation theorem of DeGeorge–Wallach [42]), one can now express L2-Betti
numbers and covolume-normalised Betti numbers in terms of such measures,
using eigenspace representations of the geometric Laplacian on (locally) sym-
metric spaces [2, Section 6.23] (this geometric approach leads to the same
L2-Betti numbers for the ambient group G [119, 120]): For the contributions
of the Laplacian on k-forms, we obtain

b(2)k (G) = νk
(
{0}
)

and
bk(Γn)

vol(Γn \G)
= νkn

(
{0}
)

for all n ∈ N, where the superscript k denotes a suitable push-forward mea-
sure.

Therefore, it suffices to prove a corresponding convergence result for the
Plancherel measures.

5.3.5 Convergence of Plancherel measures

Theorem 5.3.9 (convergence of Plancherel measures [2, Theorem 6.7]). In the
situation of Setup 5.1.2, let (Γn)n∈N be a uniformly discrete sequence of lat-
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tices in G such that (Γn\X)n∈N BS-converges to X. Then, for every relatively
compact ν-regular open subset A ⊂ Ĝ, we have

lim
n→∞

νn(A) = ν(A).

The same conclusion also holds for relatively compact ν-regular open subsets
of the tempered unitary dual of G.

Sketch of proof. Instead of working directly on the (complicated) space of
all Borel measures on the unitary dual Ĝ, one shows that the (relative)
Plancherel measures in question are reflected through continuous linear forms
(given by integration) on a space F(Ĝ) of sufficiently continuous bounded
functions on Ĝ.

Because the locally symmetric spaces BS-converge to X, the corresponding
invariant random subgroups (µΓn)n∈N weakly converge to δ1 (Theorem 5.3.6).
The convergence of the invariant random subgroups, uniform discreteness,
and the Plancherel formula by Harish–Chandra then show that the integra-
tion functionals on F(Ĝ) of the (Γn)n∈N converge to that of G.

Then Sauvageot’s density principle can be applied to conclude that the
Plancherel measures converge as stated [2, Section 6].

Corollary 5.3.10 (pointwise convergence of Plancherel measures [2, Corol-
lary 6.9]). In the situation of Setup 5.1.2, let (Γn)n∈N be a uniformly discrete
sequence of lattices in G such that (Γn \ X)n∈N BS-converges to X. Then,
for every π ∈ Ĝ, we have

lim
n→∞

νn
(
{π}
)
= ν
(
{π}
)
.

Proof. We distinguish two cases:

• If ν({π}) = 0, we take a sequence (Ak)k∈N of relatively compact ν-
regular open subsets of Ĝ with {π} =

⋂
k∈N Ak. Then the convergence

in Theorem 5.3.9 shows that

0 ≤ lim
n→∞

νn
(
{π}
)
≤ lim sup

n→∞
νn

(⋂

k∈N
Ak

)
≤ ν

(⋂

k∈N
Ak

)
= ν
(
{π}
)
= 0.

• If ν({π}) ̸= 0, then π is a discrete series representation of G and thus
an isolated point in the tempered unitary dual of G. Therefore, we can
apply Theorem 5.3.9 directly to {π}.

Alternatively, one can also give a more direct proof of this corollary [2, Sec-
tion 6.10].

This finishes the proof outline of Theorem 5.1.3.
The BS-convergence results for Betti number gradients have been extended

and generalised in many ways [3, 58, 49, 4, 22, 27, 111, 69, 1, 127, 92, 43].



5.E. Exercises 71

5.E Exercises

Exercise 5.E.1 (BS-convergence, uniform discreteness). In the situation of
Setup 5.1.2, let Γ ⊂ G be a uniform lattice and let (Γn)n∈N be a family
of finite index subgroups of Γ. Show the following:

1. There exists an open neighbourhood U of e in G with

∀g∈G g · Γ · g−1 ∩ U = {e}.

2. The family (Γn)n∈N is uniformly discrete in G.

3. If (Γn)n∈N is a residual chain of Γ, then (Γn\X)n∈N BS-converges to X.
Hints. Given R ∈ R>0, what happens with the R-thin part of Γn \ X
for large n ?

Exercise 5.E.2 (fundamental groups of hyperbolic manifolds). Why are there
closed hyperbolic manifolds of dimension at least 3, whose fundamental group
surjects onto the free group of rank 2 ?
Hints. You will need some (non-trivial) tool to do this, e.g., virtual properties
of hyperbolic 3-manifolds [9].

Exercise 5.E.3 (lattices in rank 1). In Example 5.2.2 (generalised approxima-
tion fails in rank 1), (why) is it important to work in dimension at least 3 ?

Exercise 5.E.4 (isolated subgroups [66, Exercise 3]).

1. Let Γ be a discrete group. Show that Γ is an isolated point of Sub(Γ)
if and only if Γ is finitely generated.

2. Show that S1 (with the standard topology) is not an isolated point
of Sub(S1).

Exercise 5.E.5 (convergence of measures?). Let (µn)n∈N be a sequence of
Borel probability measures on [0, 1] and let µ be a Borel probability measure
on [0, 1] with the property that

lim
n→∞

µn(U) = µ(U)

holds for all open subsets U ⊂ [0, 1]. Moreover, let (Uk)k∈N be a nested
decreasing sequence of open subsets of [0, 1] and let V :=

⋂
k∈N Uk.

1. Do we always have lim supn→∞ µn(V ) ≤ µ(V ) ?

2. Do we always have lim infn→∞ µn(V ) ≥ µ(V ) ?
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Simplicial volume

In the past chapters, we explored the interaction between different views on
L2-Betti numbers. We will now consider a similar interaction for simplicial
volume.

Simplicial volume is a numerical topological invariant of manifolds, mea-
suring the “size” of manifolds in terms of the “number” of singular simplices.
Simplicial volume is also related to Riemannian volume and geometric struc-
tures on manifolds and therefore is a suitable invariant for certain geometric
rigidity phenomena.

We quickly survey basic properties of simplicial volume and its similari-
ties/differences with L2-Betti numbers and related invariants. In particular,
we will discuss the residually finite and the dynamical view on simplicial vol-
ume. After this survey, we will sketch some of the prototypical arguments for
simplicial volume that involve ergodic theory.

Overview of this chapter.

6.1 Simplicial volume 74
6.2 The residually finite view 75
6.3 The dynamical view 77
6.4 Basic proof techniques 79
6.E Exercises 92
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6.1 Simplicial volume

Simplicial volume was first introduced by Gromov in his proof of Mostow
rigidity [110, 73]. Simplicial volume is the ℓ1-semi-norm of the R-fundamental
class, defined in terms of singular chains:

Definition 6.1.1 (simplicial volume). Let M be an oriented closed connected
n-manifold.

• If R is a commutative ring with unit, then Z(M ;R) ⊂ Csing
n (M ;R)

denotes the set of all singular R-fundamental cycles of M .

• The simplicial volume of M is defined by

∥M∥ := inf
{
|c|1
∣∣ c ∈ Z(M ;R)

}
∈ R≥0,

where |
∑

σ∈map(∆n,M) aσ · σ|1 :=
∑

σ∈map(∆n,M) |aσ|.

The main tools to compute simplicial volume are concrete geometric con-
structions on the singular chain complex and bounded cohomology. By now,
simplicial volume has been computed in a rich class of examples [73, 137,
94, 31, 76, 39, 33, 32, 97, 77, 78]. For simplicity, we will only consider a se-
lection of properties that fit in the context of L2-Betti numbers and related
invariants:

• Multiplicativity. If M is an oriented closed connected manifold and
N −→M is a d-sheeted covering, then [73] (Exercise 6.E.1)

∥N∥ = d · ∥M∥.

• Hyperbolicity. If M is an oriented closed connected hyperbolic n-man-
ifold, then [73, 132, 17]

∥M∥ = vol(M)

volume of the ideal regular n-simplex in H n .

• Amenability. If M is an oriented closed connected manifold of non-zero
dimension with amenable fundamental group, then [73, 82]

∥M∥ = 0.

• Proportionality principle. If M and N are oriented closed connected
Riemannian manifolds with isometric Riemannian universal covering,
then [73, 132, 129]

∥M∥
vol(M)

=
∥N∥

vol(N)
.
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• Low dimensions. Simplicial volume is known in dimension ≤ 3 [73, 128].

In view of these striking similarities with L2-Betti numbers, Gromov asked
the following question.

Question 6.1.2 ([74, p. 232]). Let M be an oriented closed connected aspher-
ical manifold with ∥M∥ = 0.

• Does this imply that χ(M) = 0 ?!

• Does this imply that b(2)n (M) = 0 for all n ∈ N ?!

In general, these questions are wide open. Betti number estimates become
available when one passes to a more integral setting, as in the residually finite
view (Chapter 6.2) or the dynamical view (Chapter 6.3).

6.2 The residually finite view

Taking integral instead of real coefficients leads to integral simplicial volume.
In the residually finite view, we then stabilise along finite-sheeted coverings:

Definition 6.2.1 (stable integral simplicial volume). Let M be an oriented
closed connected n-manifold.

• The integral simplicial volume of M is defined by

∥M∥Z := inf
{
|c|1
∣∣ c ∈ Z(M ;Z)

}
∈ N.

• The stable integral simplicial volume of M is defined by

∥M∥∞Z := inf
(p:N→M)∈F(M)

∥N∥Z
|deg(p)| ∈ R≥0,

where F(M) denotes the class of all finite-sheeted coverings of M .

Stable integral simplicial volume has the following properties:

• Multiplicativity. If M is an oriented closed connected manifold and
N −→M is a d-sheeted covering, then a straightforward transfer argu-
ment (Exercise 6.E.1) shows that

∥N∥∞Z = d · ∥M∥∞Z .

• Hyperbolicity. Let M be an oriented closed connected hyperbolic n-
manifold.

– If n = 2, then ∥M∥∞Z = ∥M∥, by direct computation [73].



76 6. Simplicial volume

– If n = 3, then also ∥M∥∞Z = ∥M∥, by indirect computation [60];
indeed, the only known proof requires passage through the dy-
namical view and non-trivial results from ergodic theory! We will
sketch this argument in Chapter 6.4.5.

– If n ≥ 4, then the ratio ∥M∥∞Z / ∥M∥ is uniformly bounded away
from 1 [59]. In particular, approximation fails in general for sim-
plicial volume of aspherical manifolds.

• Amenability. Let M be an oriented closed connected aspherical mani-
fold of non-zero dimension with amenable residually finite fundamental
group. Then [60] (Chapter 6.4.4)

∥M∥∞Z = 0.

• Betti number estimate. If M is an oriented closed connected manifold,
then the explicit description of Poincaré duality on the singular chain
complex shows that, for all k ∈ N, we have [75]

bk(M) ≤ ∥M∥Z;

we will explain this in Chapter 6.4.2. Stabilisation therefore leads to
an L2-Betti number bound. In addition, log-torsion-homology [gradi-
ent] bounds in terms of [stable] integral simplicial volume are also
known [125].

• Rank gradient estimate. If M is an oriented closed connected manifold
with residually finite (infinite) fundamental group, then [98] (Chap-
ter 6.4.3)

rg
(
π1(M)

)
≤ ∥M∥∞Z .

• Low dimensions. Stable integral simplicial volume of oriented closed
connected aspherical manifolds coincides with ordinary simplicial vol-
ume up to dimension 3. For dimensions 1 and 2, this follows from the
previous results; for dimension 3, again ergodic theory is helpful [55]
(we will sketch the argument in Chapter 6.4.6).

In connection with Question 6.1.2 and the approximation results for Betti
numbers, it is therefore natural to consider the following (open) problems:

Question 6.2.2 ([60, Question 1.12]). Let M be an oriented closed connected
aspherical manifold with ∥M∥ = 0 and residually finite fundamental group.
Does this imply that ∥M∥∞Z = 0 ?!

Question 6.2.3. Let M be an oriented closed connected locally symmetric
space of non-compact type of higher rank. Do we then have ∥M∥ = ∥M∥∞Z ?!

Question 6.2.4. For which (contractible) Riemannian universal covering
manifolds does stable integral simplicial volume satisfy the proportionality
principle?
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Furthermore, as in the case of the rank gradient, it is not clear how/whether
the choice of specific residual chains of subgroups/finite coverings affects the
limit of the normalised integral simplicial volumes.

6.3 The dynamical view

In the dynamical view, we use twisted coefficients, based on standard actions
of the fundamental group.

Definition 6.3.1 (integral foliated simplicial volume [126]). Let M be an
oriented closed connected n-manifold with fundamental group Γ and let
α = (Γ ! (X,µ)) be a standard action.

• Let Z(M ;α) be the set of all singular n-cycles of M in the twisted chain

complex Csing
∗ (M ;L∞(X,µ;Z)) = L∞(X;Z)⊗ZΓ Csing

∗ (M̃ ;Z) that are
homologous (in this twisted chain complex) to ordinary integral funda-
mental cycles of M .

• The α-parametrised simplicial volume of M is defined by

⎪⎪⎪M
⎪⎪⎪α := inf

{ n∑

j=1

∫

X
|fj | dµ

∣∣∣∣
n∑

j=1

fj ⊗σj ∈ Z(M ;α)

}
∈ R≥0.

• The integral foliated simplicial volume of M is then defined by

⎪⎪⎪M
⎪⎪⎪ := inf

α∈S(Γ)

⎪⎪⎪M
⎪⎪⎪α ,

where S(Γ) denotes the class of all standard actions of Γ.

Remark 6.3.2 (comparing/combining the different views). These simplicial vol-
umes are related as follows: For all oriented closed connected manifolds M ,
we have [100]

∥M∥ ≤
⎪⎪⎪M
⎪⎪⎪≤ ∥M∥∞Z

and (if the fundamental group Γ of M is residually finite) [60] (Chapter 6.4.1)

⎪⎪⎪M
⎪⎪⎪Γ!Γ̂ = ∥M∥∞Z .

This relation between the stable integral simplicial volume and the para-
metrised simplicial volume has recently proved useful to compute stable inte-
gral simplicial volume in cases where direct approaches failed, such as the case
of hyperbolic/aspherical 3-manifolds [60, 55], manifolds with S1-actions [52],
or higher-dimensional graph-manifolds [53]. We will explain this in more de-
tail in Chapter 6.4.
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Integral foliated simplicial volume has the following properties:

• Multiplicativity. If M is an oriented closed connected manifold and
N −→M is a d-sheeted covering, then a transfer argument [100] shows
that ⎪⎪⎪N

⎪⎪⎪= d ·
⎪⎪⎪M
⎪⎪⎪.

• Hyperbolicity. Let M be an oriented closed connected hyperbolic n-
manifold.

– If n = 2, then
⎪⎪⎪M
⎪⎪⎪= ∥M∥, by direct computation [100].

– If n = 3, then
⎪⎪⎪M
⎪⎪⎪= ∥M∥, using an argument involving measure

equivalence [100] (Chapter 6.4.5).

– If n ≥ 4, then
⎪⎪⎪M
⎪⎪⎪/ ∥M∥ is uniformly bounded away from 1 [60].

• Amenability. If M is an oriented closed connected aspherical mani-
fold of non-zero dimension with amenable fundamental group, then [60]
(Chapter 6.4.4) ⎪⎪⎪M

⎪⎪⎪= 0.

• L2-Betti number estimate. If M is an oriented closed connected man-
ifold, then a parametrised Poincaré duality argument shows that, for
all k ∈ N, we have [126] (Chapter 6.4.2)

b(2)k (M) ≤
⎪⎪⎪M
⎪⎪⎪.

• Cost estimate. If M is an oriented closed connected manifold, then [99]
(Chapter 6.4.3)

cost
(
π1(M)

)
− 1 ≤

⎪⎪⎪M
⎪⎪⎪.

• Low dimensions. Integral foliated simplicial volume of oriented closed
connected aspherical manifolds coincides with ordinary simplicial vol-
ume up to dimension 3. For dimensions 1 and 2, this follows from
the previous results; for dimension 3, geometrisation, the computation
of the hyperbolic case, and amenable additivity is used [55] (Chap-
ter 6.4.6).

As in the case of cost, it is not clear how/whether the choice of specific
essentially free standard actions affects the corresponding parametrised sim-
plicial volume [60, Section 1.5].

While simplicial volume and integral foliated simplicial volume are differ-
ent for general aspherical manifolds (e.g., for hyperbolic manifolds in high
dimensions), they might still have the same vanishing behaviour. In the con-
text of Question 6.1.2 it is therefore natural ask the following:

Question 6.3.3 ([60, Question 1.12]). Let M be an oriented closed connected
aspherical manifold with ∥M∥ = 0. Does this imply that

⎪⎪⎪M
⎪⎪⎪= 0 ?!
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Question 6.3.4 ([99, Question 1.5]). Let M be an oriented closed connected
aspherical manifold with ∥M∥ = 0. Does this imply that cost π1(M) = 1 ?!

Question 6.3.5. Let M and N be oriented closed connected aspherical man-
ifolds with

⎪⎪⎪M
⎪⎪⎪ = 0 and π1(M) ∼ME π1(N). Does this imply that⎪⎪⎪N

⎪⎪⎪ = 0 ?! What about ordinary simplicial volume? [14, Question 1.14]
What about quasi-isometry instead of measure equivalence?

Outlook 6.3.6 (further connections). In addition, the various simplicial vol-
umes and L2-Betti numbers also show similar behaviour with respect to:

• S1-actions [105, 73, 137, 52] and circle foliations [105, 73, 34]

• graph manifolds [105, 53]

• amenable covers [124, 28, 73, 82, 101]

• (minimal) volume estimates [124, 28]

• (certain) mapping tori [105, 33]

6.4 Basic proof techniques

In the following, we collect (sketch) proofs of some of the above results for
stable integral simplicial volume and integral foliated simplicial volume. We
will focus on arguments that are related to (L2-)Betti numbers or ergodic the-
ory and explain the synergy between the residually finite and the dynamical
view.

6.4.1 The role of the profinite completion

Similar to the rank gradient (Theorem 4.3.5), stable integral simplicial volume
can also be expressed in terms of its ergodic theoretic companion:

Theorem 6.4.1 (parametrised simplicial volume of the profinite completion [100,
Theorem 6.6, Remark 6.7]). Let M be an oriented closed connected manifold
with residually finite fundamental group Γ. Then

∥M∥∞Z =
⎪⎪⎪M
⎪⎪⎪Γ!Γ̂ .

Proof. We begin with the estimate “≥”: Let Λ ⊂ Γ be a finite index sub-
group. Then the translation action Γ ! Γ/Λ and the normalised counting
measure on Γ/Λ provide an example of a standard Γ-space. A straightforward
computation shows that [100, Corollary 4.27]
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⎪⎪⎪M
⎪⎪⎪Γ!Γ̂ ≤

⎪⎪⎪M
⎪⎪⎪Γ!Γ/Λ =

1

[Γ : Λ]
· ∥Λ \ M̃∥Z.

Taking the infimum over all finite index subgroups of Γ (and the fundamental

correspondence of covering theory) shows that
⎪⎪⎪M
⎪⎪⎪Γ!Γ̂ ≤ ∥M∥∞Z .

We now establish the converse estimate “≤”: Let ĉ ∈ Z(M ;L∞(Γ̂,Z)) and
let ε ∈ R>0. Then it suffices to show that ∥M∥∞Z ≤ |ĉ|1 + (n + 2) · ε, where
| · |1 denotes the “norm” used in the definition of

⎪⎪⎪M
⎪⎪⎪Γ!Γ̂. Because ĉ is a

fundamental cycle, there exist z ∈ Z(M ;Z) and b̂ ∈ Csing
n+1(M ;L∞(Γ̂,Z)) with

ĉ = z + ∂b̂.

As in the proof for the rank gradient (Theorem 4.3.5), we will now use ap-
proximation by cylinder sets: We consider the ZΓ-submodule

L := SpanZ
{
χπ−1

Λ (A)

∣∣ Λ ∈ F(Γ), A ⊂ Γ/Λ
}

of L∞(Γ̂,Z), where πΛ : Γ̂ −→ Γ/Λ denotes the canonical projection. Approx-
imating the supports of the finitely many steps of the coefficient functions
of b̂ by cylinder sets (Lemma 6.4.2), we find b ∈ Csing

n+1(M ;L) with |b− b̂|1 ≤ ε.

Then c := z + ∂b is a cycle in Csing
∗ (M ;L) that is homologous to z (whence

a fundamental cycle) and satisfies

|c|1 ≤ |z + ∂b̂|1 +
∣∣∂(b− b̂)

∣∣
1
≤ |ĉ|1 + (n+ 2) · ε.

Taking the (finite!) intersection Λ of the finite index subgroups appearing in
the coefficient functions of c and b shows that (check!)

|c|1 ≥
⎪⎪⎪M
⎪⎪⎪Γ!Γ/Λ =

1

[Γ : Λ]
· ∥Λ \ M̃∥Z.

Therefore, ∥M∥∞Z ≤ |c|1 ≤ |ĉ|1 + (n+ 2) · ε.

Lemma 6.4.2. Let Γ be a finitely generated residually finite group, let A ⊂ Γ̂
be a measurable subset, and let ε ∈ R>0. Then there exists a finite index
subgroup Λ ⊂ Γ and a subset Z ⊂ Γ/Λ with

µ
(
A △ π−1

Λ (Z)
)
≤ ε,

where πΛ : Γ̂ −→ Γ/Λ denotes the canonical projection.

Proof. The set {π−1
Λ (Z) | Λ ∈ F(Γ), Z ⊂ Γ/Λ} is a basis of the topology

on Γ̂ and the probability measure µ on Γ̂ is regular [87, Theorem 17.10].
Hence, there exist sequences (Λn)n∈N in F(Γ) and (Zn ⊂ Γ/Λn)n∈N such
that B :=

⋃
n∈N π−1

Λn
(Zn) satisfies
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A ⊂B and µ(B \A) ≤ ε

2
.

Then there exists an N ∈ N such that the initial part BN :=
⋃N

n=0 π
−1
Λn

(Zn)

satisfies µ(A△BN ) ≤ ε. Because Λ :=
⋂N

n=0 Λn has finite index in Γ, we can
rewrite BN in the desired form.

More generally, similar arguments also work for all residual chains and the
associated profinite completions.

6.4.2 Betti number estimates

Betti number estimates for (stable) integral simplicial volume and integral
foliated simplicial volume can be obtained through Poincaré duality:

Proposition 6.4.3 (integral Betti number estimate [75]). Let M be an oriented
closed connected manifold and let k ∈ N. Then

bk(M) ≤ ∥M∥Z.

Proof. Let c =
∑m

j=1 aj ·σj ∈ Z(M ;Z) (in reduced form). Then, by Poincaré
duality, the cap product

· ∩ [M ]Z : H
n−k(M ;Q) −→ Hk(M ;Q)

[f ] %−→ (−1)(n−k)·k ·
[ m∑

j=1

aj · f(n−k⌊σj) · σj⌋k
]

is an isomorphism of Q-vector spaces. In particular, Hk(M ;Q) is a quotient
of a subspace of a Q-vector space that is generated by m elements (namely,
σ1⌋k, . . . ,σm⌋k). Because the coefficients of c are integral, we obtain

bk(M) = dimQ Hk(M ;Q) ≤ m ≤ |c|1.

Taking the infimum over all c in Z(M ;Z), we obtain bk(M) ≤ ∥M∥Z.

Corollary 6.4.4 (L2-Betti number estimate, residually finite case). Let M be an
oriented closed connected manifold with residually finite fundamental group
and let k ∈ N. Then

b(2)k (M) ≤ ∥M∥∞Z .

Proof. If Γ∗ is a residual chain of Γ := π1(M), then (check!)

inf
n∈N

∥Mn∥Z
[Γ : Γn]

= lim
n→∞

∥Mn∥Z
[Γ : Γn]

,
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where Mn denotes the finite cover associated with the subgroup Γn ⊂ Γ.
Hence, the previous Betti number estimate (Proposition 6.4.3) and the ap-
proximation theorem (Theorem 3.1.3) show that

b(2)k (M) ≤ inf
n∈N

∥Mn∥Z
[Γ : Γn]

.

Taking the infimum over all residual chains of Γ finishes the proof.

Theorem 6.4.5 (L2-Betti number estimate, general case [126, Corollary 5.28]).
Let M be an oriented closed connected manifold and let k ∈ N. Then

b(2)k (M) ≤
⎪⎪⎪M
⎪⎪⎪.

Proof. We will proceed as in the proof of Proposition 6.4.3, replacing the
ring Z with its ergodic theoretic analogue. Let Γ ! X be an essentially
free standard Γ-space and let R := RΓ!X be the associated orbit relation;
such an action exists, as discussed in the proof of Theorem 4.3.10. The trace-
preserving ∗-homomorphism NΓ ↪→ NR shows that NR is a flat NΓ-module
(Remark 4.2.7) and hence that

b(2)k (M) = dimNΓ Hk(M ;NΓ) ([105, Lemma 6.53])

= dimNR NR⊗NΓ Hk(M ;NΓ) (Remark 4.2.7)

= dimNR Hk(M ;NR). (NR is flat over NΓ)

We now make use of twisted Poincaré duality: Let c ∈ Z(M ;L∞(X;Z)),
say c =

∑m
j=1 fj ⊗σj (in reduced form). Then

· ∩ [c] : Hn−k(M ;NR) −→ Hk(M ;NR)

[f ] %−→ (−1)(n−k)·k ·
[ m∑

j=1

f(n−k⌊σj) · fj ⊗σj⌋k
]

is an isomorphism of NR-modules [126, Corollary 5.17], where denotes
the involution on NR. Then Hk(M ;NR) is isomorphic to a quotient of a
submodule of the NR-module

⊕m
j=1 NR · χsupp fj

=
⊕m

j=1 NR · χsupp fj .
Therefore, the additivity properties of dimNR and Lemma 4.3.12 show that

b(2)k (M) = dimNR Hk(M ;NR)

≤ dimNR

( m⊕

j=1

NR · χsupp fj

)
=

m∑

j=1

µ(supp fj)

≤ |c|1;

again, it is essential that the coefficient functions are Z-valued. Taking the
infimum over all c in Z(M ;L∞(X,Z)), we obtain the desired estimate.



6.4. Basic proof techniques 83

Similar estimates for L2-Betti numbers via parametrised norms have been
combined with randomised covers and nerve retracts to establish upper
bounds for L2-Betti numbers in terms of the volume and in the case of
amenable covers with controlled multiplicity [124].

6.4.3 The rank gradient/cost estimate

In degree 1, the (L2-)Betti number estimates admit the following non-com-
mutative refinements:

Theorem 6.4.6 (rank gradient estimate [98]). Let M be an oriented closed
connected manifold with residually finite (infinite) fundamental group. Then

rg
(
π1(M)

)
≤ ∥M∥∞Z .

Proof. In view of stabilisation along finite index subgroups/finite coverings,
it suffices to prove the following estimate:

d
(
π1(M)

)
≤ ∥M∥Z.

Let c ∈ Z(M ;Z), let Γ := π1(M), and let n := dimM . We then take the

lift c̃ =
∑m

j=1 aj · σ̃j ∈ Csing
n (M̃ ;Z) (in reduced form) of c to the univer-

sal covering M̃ that satisfies a1, . . . , am ∈ Z and σ̃1(v0), . . . , σ̃m(v0) ∈ D,
where D is a chosen strict fundamental domain of the deck transformation
action Γ ! M̃ and v0 is the 0-vertex of ∆n. For j ∈ {1, . . . ,m}, let γj ∈ Γ be
the unique group element with γj ·σj(v1) ∈ D; we then consider the subgroup

Λ := ⟨γ1, . . . , γm⟩Γ ⊂ Γ.

By construction, d(Λ) ≤ m ≤ |c|1 and it suffices to show that Λ = Γ.

Let πΛ : M := Λ \ M̃ −→ M be the covering of M associated with Λ and

let pΛ : M̃ −→ Λ\M̃ = M be the corresponding “upper” covering map. Then
the chain

c := Csing
n (pΛ;Z)(c̃) ∈ Csing

n (M ;Z)

is a cycle in Csing
∗ (M ;Z) (check!) and

Hn(πΛ;Z)
(
[c]
)
= [c] = [M ]Z ∈ Hn(M ;Z).

Therefore, Hn(M ;Z) ̸∼= 0 and we obtain [Γ : Λ] = |deg πΛ| = 1.
Alternatively, there is also a geometric argument via combinatorial models

of cycles and covering theory that proves the slightly weaker bound rgΓ ≤
dimM · ∥M∥∞Z [98, Lemma 4.1].

By Theorem 4.3.5 and Theorem 6.4.1, this rank gradient estimate could
also be derived from the dynamical version of Theorem 6.4.6:
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Theorem 6.4.7 (cost esimate [99]). Let M be an oriented closed connected
manifold with fundamental group Γ and let Γ ! X be an essentially free
ergodic standard Γ-action. Then

cost(Γ ! X)− 1 ≤
⎪⎪⎪M
⎪⎪⎪Γ!X .

In particular, costΓ− 1 ≤
⎪⎪⎪M
⎪⎪⎪ (Remark 4.3.3).

Proof. If Γ is finite, then the left-hand side is non-positive (Exercise 4.E.8).
Therefore, it suffices to consider the case when Γ is infinite.

Let c ∈ Z(M ;L∞(X,Z)); decomposing the coefficient functions of c
into their finitely many steps, we may write c in the (reduced) form c =∑m

j=1 aj · χAj ⊗ σj , where a1, . . . , am ∈ Z \ {0}, A1, . . . , Am ⊂ X are mea-

surable subsets and σ1, . . . ,σm are singular simplices on M̃ with the prop-
erty that σ1(v0), . . . ,σm(v0) lie in the same (strict) fundamental domain D

of Γ ! M̃ . We then consider for j ∈ {1, . . . ,m} the unique element γj ∈ Γ
with γj · σj(v1) ∈ D and the associated partial translation automorphism

ϕj := γj · : Aj −→ γj ·Aj

of R := RΓ!X . Let R := ⟨ϕ1, . . . ,ϕm⟩ ⊂ R be the subrelation generated
by these partial automorphisms; this is a dynamical version of the subgroup
considered in the proof of Theorem 6.4.6.

In general, R will not necessarily be a finite index subrelation of R [99,
Remark 4.2], but the inclusion R ⊂R will always be a so-called translation
finite extension [99, Definition 2.9, Lemma 4.5]. Therefore, we obtain

costR− 1 ≤ costR (by translation finiteness [99, Lemma 2.11])

≤
m∑

j=1

µ(Aj) ((ϕj)j∈{1,...,m} is a graphing of R)

≤ |c|1.

We can now take the infimum over all c ∈ Z(M ;L∞(X,Z)).

6.4.4 Amenable fundamental group

Theorem 6.4.8 (amenable fundamental group, residually finite case [60, Theo-
rem 1.10]). Let M be an oriented closed connected aspherical manifold of non-
zero dimension whose fundamental group is residually finite and amenable.
Then

∥M∥∞Z = 0.

The classical proof of vanishing of ordinary simplicial volume of manifolds
with amenable fundamental group relies on invariant means and bounded
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cohomology. These cohomological methods are not available in the residually
finite or the dynamical view, but for aspherical manifolds we can replace the
cohomological averaging by a Følner argument on the chain level.

Remark 6.4.9 (amenability via Følner sequences). Let Γ be a finitely generated
group with finite generating set S. If Γ is residually finite and amenable, then
there exists a Følner sequence (with respect to S), i.e., a sequence (Fk)k∈N
of non-empty finite subsets of Γ with

lim
k→∞

|∂SFk|
|Fk|

= 0.

Here, ∂SF := {γ ∈ F | ∃s∈S γ · s ̸∈ F} denotes the S-boundary of a
subset F ⊂ Γ.

Moreover, this sequence can be chosen in such a way that there is a residual
chain (Γk)k∈N of Γ with the property that, for each k ∈ N, the set Fk is a set
of coset representatives for Γk in Γ [45, Proposition 5.5].

Proof of Theorem 6.4.8. Let Γ be the fundamental group of M , let n :=
dimM , and let c ∈ Z(M ;Z). We proceed as follows:

• We lift c to a chain c̃ ∈ Csing
n (M̃ ;Z). This chain will not be a cycle; the

defect of c̃ of being a cycle is measured by a subset S ⊂ Γ.

• We choose a Følner sequence (Fk)k∈N of Γ for S as in Remark 6.4.9.

• For each k ∈ N, we bound |∂(Fk · c̃)|1 linearly in terms of |∂SFk|.

• We then efficiently fill ∂(Fk · c̃) by a new chain z̃k (using that M̃ is
contractible).

• Pushing down z̃k to the finite covering manifold Mk := Γk \ M̃ of M
leads to a cycle zk ∈ Z(Mk;Z) with |zk|1 ≤ const ·|∂SFk|/|Fk| · |c|1.

• Taking k →∞ then shows that ∥M∥∞Z = 0.

We now add details: We write c =
∑m

j=1 aj · σj with a1, . . . , am ∈ {−1, 1}
and m = |c|1. Let c̃ =

∑m
j=1 aj · σ̃j ∈ Csing

n (M̃ ;Z) be a lift of c. As c is a cycle,
there is a matching of the set of faces of σ1, . . . ,σm that appear with positive
sign in the expression ∂c and the set of faces of σ1, . . . ,σm that appear with
negative sign. Let Σ = Σ+ @Σ− be a corresponding splitting of the set of all
faces of σ1, . . . ,σm. For τ ∈ Σ, we denote the matched face by τ− and the
corresponding face in the lift c̃ by τ̃ . By the cancellation, for each τ ∈ Σ+,
there exists a γτ ∈ Γ with τ̃− = γτ · τ̃ . Hence,

∂c̃ =
∑

τ∈Σ+

(τ̃ − γτ · τ̃).

Let S ⊂ Γ be a symmetric finite generating set that contains {γτ | τ ∈ Σ+}.
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Because Γ is amenable, there exists a Følner sequence (Fk)k∈N of Γ with
respect to S as in Remark 6.4.9. For k ∈ N, let Fk · c̃ :=

∑
γ∈Fk

γ · c̃. By
construction, for each k ∈ N, we have

∣∣∂(Fk · c̃)
∣∣
1
≤
∑

τ∈Σ+

∣∣∣∣
∑

γ∈Fk

γ · τ̃ −
∑

γ∈Fk

γ · γk · τ̃
∣∣∣∣ ≤ |Σ+| · 2 · |∂SFk|

≤ |c|1 · |∂SFk|.

Because M̃ is contractible, a cone construction shows that there exists a
chain z̃k ∈ Csing

n (M̃ ;Z) that satisfies [54, Lemma 4.1][60, Lemma 6.3]

∂z̃k = ∂(Fk · c̃) and |z̃k|1 ≤
∣∣∂(Fk · c̃)

∣∣
1
≤ |c|1 · |∂SFk|.

We write qk : M̃ −→ Mk = Γk \ M̃ for the “upper” covering associated
with Γk. Then

zk := Csing
n (qk;Z)(z̃k) ∈ Csing

n (Mk;Z)

is a cycle: The chain z̃k − Fk · c̃ is an n-cycle on the contractible space M̃ ,
whence null-homologous; moreover, Fk is a set of coset representatives for Γk

in Γ. The cycle zk is even a fundamental cycle of Mk (because it pushes down
to [Γ : Γk]-times c on M). We then conclude that

∥M∥∞Z ≤ 1

[Γ : Γk]
· ∥Mk∥Z ≤

1

[Γ : Γk]
· |zk|1 ≤

1

|Fk|
· |∂SFk| · |c|1.

As (Fk)k∈N is a Følner sequence, the right-hand side tends to 0.

Theorem 6.4.10 (amenable fundamental group, general case [60, Theorem 1.9]).
Let M be an oriented closed connected aspherical manifold of non-zero di-
mension with amenable fundamental group. Then M is cheap, i.e., for every
essentially free standard π1(M)-space α, we have

⎪⎪⎪M
⎪⎪⎪α = 0.

In particular,
⎪⎪⎪M
⎪⎪⎪= 0.

Proof. The proof is a dynamical version of the proof of Theorem 6.4.8; we
use the same notation as in that proof and modify the construction of the
improved cycles as follows. Instead of passage to finite coverings and division
by the covering degree in the stabilisation step, we perform division inside the
probability space via the following version of the Rokhlin lemma by Ornstein
and Weiss [124, Theorem 5.2]:

Let α = (Γ ! (X,µ)) and let ε ∈ R>0. Then there exists an N ∈ N, finite
subsets F1, . . . , FN ⊂ Γ, and measurable sets A1, . . . , AN ⊂X such that

• for each j ∈ {1, . . . , N}, the set Fj satisfies |∂SFj |/|Fj | ≤ ε;
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• for each j ∈ {1, . . . , N}, the sets γ ·Aj with γ ∈ Fj are pairwise disjoint
and the sets Fj ·Aj with j ∈ {1, . . . , N} are pairwise disjoint;

• the rest R := X \
⋃N

j=1 Fj ·Aj satisfies µ(R) < ε.

For j ∈ {1, . . . , N}, we set c̃j := F−1
j · c̃ ∈ Csing

n (M̃ ;Z). We then choose a

filling z̃j ∈ Csing
n (M̃ ;Z) with ∂z̃j = ∂c̃j and |z̃j |1 ≤ |c|1 · |∂SFj |. Finally, we

set

z :=
N∑

j=1

χAj ⊗ z̃j +
m∑

j=1

aj · χR ⊗ σ̃j ∈ Csing
n (M ;L∞(X,Z)).

Then a straightforward calculation shows that z ∈ Z(M ;L∞(X,Z)) [60,
Lemma 6.4] and that

|z|1 ≤
N∑

j=1

µ(Aj) · |z̃j |1 + µ(R) ·m ≤
N∑

j=1

µ(Aj) · |c|1 · ε · |Fj |+ µ(R) · |c|1

≤ 1 · ε · |c|1 + ε · |c|1.

Taking ε→ 0 proves the claim.

In combination with the (L2)-Betti number estimates (Chapter 6.4.2) and
rank gradient estimates (Chapter 6.4.3), the vanishing results Theorem 6.4.8
and Theorem 6.4.10 give alternative and unified proofs for vanishing results
for L2-Betti numbers, Betti number gradients, rank gradients, cost, and log-
torsion homology gradients of closed aspherical manifolds with (residually
finite) amenable fundamental group [60].

6.4.5 Hyperbolic 3 -manifolds

Theorem 6.4.11 (hyperbolic 3-manifolds [60, Theorem 1.7]). Let M be an ori-
ented closed connected hyperbolic 3-manifold. Then

∥M∥∞Z = ∥M∥ = vol(M)

v3
,

where v3 is the volume of a (whence every) ideal regular tetrahedron in H 3.

The proof uses concrete geometric examples, a version of Thurston’s smear-
ing construction, and ergodic theory:

Remark 6.4.12 (concrete examples). Let (Mn)n∈N be a sequence of (distinct)
oriented closed connected hyperbolic 3-manifolds obtained by Dehn surgery
on the 5-chain link complement M(5). Then Thurston’s Dehn filling theo-
rem, a concrete ideal triangulation of M(5), and estimates in terms of the
complexity show that [100, Theorem 1.6]
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lim
n→∞

∥Mn∥∞Z
∥Mn∥

= 1.

Proposition 6.4.13 (a weak proportionality principle [55, Theorem 4.1]). Let
M be an oriented closed connected hyperbolic n-manifold. Then, for every
oriented closed connected hyperbolic n-manifold N , we obtain

⎪⎪⎪M
⎪⎪⎪

vol(M)
≤
∥N∥∞Z
vol(N)

.

Sketch of proof. By definition of ∥ · ∥∞Z and the multiplicativity of Rieman-
nian volume with respect to finite coverings, it suffices to show that

⎪⎪⎪M
⎪⎪⎪

vol(M)
≤ ∥N∥Z

vol(N)
.

We use a dynamical version of the discrete smearing map: Let πM : H n −→M
be the universal covering map of M .

Let Γ and Λ be the fundamental groups of M and N , respectively. These
groups are lattices in G := Isom+(H n). We consider the standard Γ-space α
given by the left translation action on G/Λ and the normalised Haar measure.
We choose a sufficiently fine Γ-equivariant Borel partition of H n and a Γ-net
of points in these sets. Let Sk ⊂map(∆k,M) be the set of singular simplices
that lift to geodesic simplices on H n with vertices in this net. Moreover, we
choose a πM -lift ϱ̃ for each ϱ ∈ Sk.

For a singular k-simplex τ on H n, we write snap(τ) for the geodesic k-
simplex in Γ · S̃k on H n that is obtained by “snapping” the vertices of τ to
the points in the Γ-net that lie in the same Borel set and subsequent geodesic
straightening of the simplex. We then consider the map (where σ̃ is any choice
of a lift of σ to H n)

ϕk : C
sing
k (N ;Z) −→ Csing

k

(
M ;L∞(G/Λ,Z)

)

map(∆k, N) ∋ σ %−→
∑

ϱ∈Sk

(
x · Λ %→

∣∣{λ ∈ Λ | snap(x · λ · σ̃ = ϱ̃}
∣∣)⊗ ϱ

that “smears” simplices over H n via G. Integration and comparison with
the classical smearing map shows [55, Section 4]: For all c ∈ Z(N ;Z), we
have ϕn(c) ∈ Z(M ;L∞(G/Λ,Z)) and

∣∣ϕn(c)
∣∣
1
≤ vol(M)

vol(N)
· |c|1.

Therefore, ⎪⎪⎪M
⎪⎪⎪

vol(M)
≤
⎪⎪⎪M
⎪⎪⎪αM

vol(M)
≤ ∥N∥Z

vol(N)
.
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Remark 6.4.14 (monotonicity with respect to weak containment). Let Γ be a
countable group and let α = Γ ! (X,µ) and β = Γ ! (Y, ν) be standard
Γ-spaces. Then α is weakly contained in β, in symbols α ≺ β, if: For ev-
ery ε ∈ R>0, every finite subset F ⊂ Γ, every m ∈ N, and all measurable
sets A1, . . . , Am ⊂X, there exist measurable sets B1, . . . , Bm ⊂ Y with

∀γ∈F ∀j,k∈{1,...,m}
∣∣µ(γα(Aj) ∩Ak)− µ(γβ(Bj) ∩Bk)

∣∣ < ε.

If Γ is infinite, then every essentially free standard Γ-space weakly contains
the Bernoulli shift of Γ [8]. Moreover, an infinite finitely generated residually
finite group Γ is said to have property EMD*, if every standard Γ-space is
weakly contained in the profinite completion Γ ! Γ̂ of Γ [88].

If M is an oriented closed connected manifold with fundamental group Γ
and if α and β are essentially free non-atomic standard Γ-spaces with α ≺ β,
then [60, Theorem 3.3] ⎪⎪⎪M

⎪⎪⎪β ≤
⎪⎪⎪M
⎪⎪⎪α .

In particular: If Γ satisfies EMD*, then ∥M∥∞Z =
⎪⎪⎪M
⎪⎪⎪.

Proof of Theorem 6.4.11. We already know that ∥M∥∞Z ≥ ∥M∥ and ∥M∥ =
vol(M)/v3 (by the computation of Gromov and Thurston); hence, it remains
to show that ∥M∥∞Z ≤ ∥M∥.

As observed by Kechris, Bowen, and Tucker-Drob, in the hyperbolic case,
π1(M) satisfies EMD* [60, Proposition 3.10]. Therefore, it suffices to show
that

⎪⎪⎪M
⎪⎪⎪≤ ∥M∥ (Remark 6.4.14). Let (Mn)n∈N be a sequence of oriented

closed connected 3-manifolds as in Remark 6.4.12. In combination with the
weak proportionality principle (Proposition 6.4.13) and the proportionality
principle for ordinary simplicial volume, we obtain

⎪⎪⎪M
⎪⎪⎪≤ lim

n→∞
vol(M) ·

∥Mn∥∞Z
vol(Mn)

= lim
n→∞

∥M∥ ·
∥Mn∥∞Z
∥Mn∥

= ∥M∥,

as desired.

Outlook 6.4.15 (profinite rigidity). A prominent open problem in 3-manifold
topology is to decide whether two oriented closed connected hyperbolic 3-
manifolds M and N with fundamental group Γ and Λ, respectively, sat-
isfy Γ̂ ∼= Λ̂ if and only if vol(M) = vol(N).

By Theorem 6.4.1 and Theorem 6.4.11, we have
⎪⎪⎪M
⎪⎪⎪Γ!Γ̂ = vol(M)/v3.

However, it is not clear whether
⎪⎪⎪M
⎪⎪⎪Γ!Γ̂ can be recovered from the profinite

completion Γ̂ alone. In this context, it should be noted that the first L2-
Betti number is a profinite invariant for finitely presented residually finite
groups [29], but that the higher L2-Betti numbers, in general, are not profinite
invariants [85].

The proportionality principle in Proposition 6.4.13 can be refined as fol-
lows [100, Corollary 1.3]: Let X be an aspherical symmetric space of non-
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compact type and let Γ,Λ ⊂ Isom0(X) be uniform torsion-free lattices. Then

⎪⎪⎪⎪Γ \X
⎪⎪⎪⎪

covol(Γ)
=

⎪⎪⎪⎪Λ \X
⎪⎪⎪⎪

covol(Λ)
.

The proof uses the bounded mixing measure equivalence given by Isom0(X)
between Γ and Λ and a suitable version of the associated ME-cocycle, similar
to work of Bader, Furman, and Sauer [14] (Exercise 4.E.10).

6.4.6 Aspherical 3 -manifolds

Theorem 6.4.16 (aspherical 3-manifolds [55, Theorem 1]). Let M be an ori-
ented closed connected aspherical 3-manifold. Then (where hypvol is the sum
of volumes of hyperbolic pieces in the JSJ-decomposition of M)

∥M∥∞Z = ∥M∥ = hypvol(M)

v3
.

Sketch of proof. Work of Soma (and geometrisation) shows that ∥M∥ =
hypvol(M)/v3 [128]. Moreover, we always have ∥M∥ ≤ ∥M∥∞Z ; therefore,
it suffices to show that ∥M∥∞Z ≤ hypvol(M)/v3. We first decompose M
via geometrisation. Because M is closed and aspherical, M admits a JSJ-
decomposition, i.e., we can dissect M along π1-injective tori into Seifert fibred
pieces and hyperbolic pieces.

The proof of Theorem 6.4.11 generalises to the case with toroidal bound-
ary [55, Corollary 5.3]: If (W, ∂W ) is an oriented compact connected 3-
manifold with empty or toroidal boundary, whose interior admits a hyperbolic
structure, then

⎪⎪⎪W, ∂W
⎪⎪⎪π̂1(W )

∂ =
vol(W ◦)

v3
.

Here,
⎪⎪⎪W, ∂W

⎪⎪⎪∂ is a relative version of integral foliated simplicial volume
that includes control on the norm of the boundaries of relative fundamental
cycles. This boundary control, together with a Følner type argument, allows
us to establish sub-additivity along JSJ-tori [55, Proposition 6.4/6.5] (this
phenomenon is similar to Example 4.3.9). Therefore, we obtain:

∥M∥∞Z =
⎪⎪⎪M
⎪⎪⎪π̂1(M) (Theorem 6.4.1)

≤
∑

W JSJ-piece of M

⎪⎪⎪W, ∂W
⎪⎪⎪π̂1(M)

∂ (additivity along JSJ-tori)

If (W, ∂W ) is a JSJ-piece of M , then it is known from 3-manifold theory that
π̂1(W ) is weakly contained in π̂1(M) [55, Section 6.3]. Hence, the relative
version of Remark 6.4.14 [55, Proposition A.1] shows that
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⎪⎪⎪W, ∂W
⎪⎪⎪π̂1(M)

∂ ≤
⎪⎪⎪W, ∂W

⎪⎪⎪π̂1(W )
∂ .

If (W, ∂W ) is Seifert fibred, then
⎪⎪⎪W, ∂W

⎪⎪⎪π̂1(W )
∂ = ∥W, ∂W∥∞Z = 0 [100,

Section 8]. Hence, it follows that

∥M∥∞Z ≤
∑

W hyp. JSJ-piece of M

⎪⎪⎪W, ∂W
⎪⎪⎪π̂1(W )

∂

=
∑

W hyp. JSJ-piece of M

vol(W ◦)

v3
=

hypvol(M)

v3
.

Remark 6.4.17 (non-approximation for non-aspherical 3-manifolds [55, Sec-
tion 1.3]). General closed 3-manifolds (with infinite fundamental group) do
not satisfy approximation for simplicial volume. For example, the first L2-
Betti number can be used to detect this:

Let N be an oriented closed connected hyperbolic 3-manifold and let
k ∈ N with k > vol(N)/v3. Then the oriented closed connected 3-manifold
M := N ##k(S1)3 satisfies ∥M∥ < ∥M∥∞Z : On the one hand, the additiv-
ity of simplicial volume with respect to connected sums in dimension bigger
than 2 [73, p. 10] and the computation of simplicial volume of hyperbolic
3-manifolds show that

∥M∥ = ∥N∥+ k · ∥(S1)3∥ = vol(N)

v3
< k.

On the other hand, we obtain from the additivity properties of the first L2-
Betti number [105, Theorem 1.35] and from the L2-Betti number estimate
(Corollary 6.4.4) that

∥M∥∞Z ≥ b(2)1 (M) = b(2)1 (N) + k = k > ∥M∥.
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6.E Exercises

Exercise 6.E.1 (multiplicativity of simplicial volumes). Let M be an oriented
closed connected manifold and let N −→ M be a d-sheeted (finite) covering
of M .

1. Show that ∥M∥ ≤ 1/d·∥N∥ (using push-forwards of fundamental cycles
of N).

2. Show that ∥N∥ ≤ d · ∥M∥ and ∥N∥Z ≤ d · ∥M∥Z (using the transfer of
fundamental cycles of M).

3. Conclude that ∥N∥∞Z = d · ∥M∥∞Z .

Exercise 6.E.2 (simplicial volume of spheres and tori). Use self-maps of non-
trivial degree to show that spheres and tori in non-zero dimension have sim-
plicial volume equal to 0. What about stable integral simplicial volume?

Exercise 6.E.3 (simplicial volumes of surfaces [73]). Let g ∈ N≥2 and let Σg

be “the” oriented closed connected surface of genus g.

1. Use explicit (singular) triangulations of surfaces and covering theory to
prove that

∥Σg∥ ≤ ∥Σg∥∞Z ≤ 4 · (g − 1) = 2 ·
∣∣χ(Σg)

∣∣.

2. Use integration of (smooth, geodesically straightened) singular sim-
plices and hyperbolic geometry to prove that

2 ·
∣∣χ(Σg)

∣∣ ≤ ∥Σg∥.

Exercise 6.E.4 (vanishing stable integral simplicial volume?!).

1. Does there exist an oriented closed connected manifold M satisfy-
ing π1(M) ∼= F2 and ∥M∥∞Z = 0 ?!

2. Does there exist an oriented closed connected manifold M satisfy-
ing π1(M) ∼= F2 × F2 and ∥M∥∞Z = 0 ?!

Hints. (L2-)Betti numbers might help . . .

Exercise 6.E.5 (simplicial volume, L2-Betti numbers, and the Singer conjec-
ture). Let M be an oriented closed connected aspherical manifold. How are
Question 6.1.2 and the Singer conjecture (Outlook 2.2.9) related?
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We collect basic terminology on some objects used in the main text.

Overview of this chapter.
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A.1 Von Neumann algebras

If H is a complex Hilbert space, then B(H) denotes the space of all bounded
linear operators H −→ H. Then B(H) is a C-algebra with respect to the
pointwise linear structure and the multiplication given by composition. More-
over, B(H) carries an involution, given by taking adjoints. This turns B(H)
into a ∗-algebra. There are several topologies on B(H):

• A net (Ti)i∈I in B(H) converges in operator norm to T ∈ B(H) if the
net (∥T − Ti∥)i∈I of operator norms converges to 0.

• A net (Ti)i∈I in B(H) converges strongly to T ∈ B(H) if for each x ∈ H,
the net (Ti(x))i∈I converges in H (in norm).

• A net (Ti)i∈I in B(H) converges weakly to T ∈ B(H) if for each x ∈ H,
the net (Ti(x))i∈I converges weakly in H.

Definition A.1.1 (von Neumann algebra). A von Neumann algebra is a unital
weakly closed ∗-subalgebra of B(H) for some complex Hilbert space H.

Theorem A.1.2 (von Neumann bicommutant theorem [57, Corollary 4.2.2]). Let
H be a complex Hilbert space. If A ⊂B(H) is a unital ∗-subalgebra of B(H),
then the bicommutant of A coincides both with the weak and the strong closure
of A in B(H).

Theorem A.1.3 (Abelian von Neumann algebras [24, Corollary III.1.5.18]). Let
N be an Abelian von Neumann algebra on a separable Hilbert space. Then
there exists a standard Borel measure space (X,µ) with σ-finite measure µ
such that N is isomorphic to the von Neumann algebra L∞(X,µ) ⊂ L2(X,µ).

Further information on von Neumann algebras and their traces can be
found, e.g., in the books by Fillmore [57] and Blackadar [24].

A.2 Weak convergence of measures

Weak convergence of measures combines topological and measure theoretic
properties; for simplicity, we formulate everything for probability measures,
but the same theory also applies via scaling to finite measures (with the same
total measure).

Definition A.2.1 (weak convergence of measures). Let X be a separable
metrisable topological space and let µ, µ0, µ1, . . . be Borel probability mea-
sures on X. Then the sequence (µn)n∈N weakly converges to µ if
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lim
n→∞

∫

X
f dµn =

∫

X
f dµ

holds for all bounded continuous functions f : X −→ C.

Theorem A.2.2 (portmanteau theorem [87, Theorem 17.20][21]). Let X be a
separable metrisable topological space and let µ, µ0, µ1, . . . be Borel probability
measures on X. Then the following are equivalent:

1. The sequence (µn)n∈N converges weakly to µ.

2. For all continuous bounded functions f : X −→ C, we have

lim
n→∞

∫

X
f dµn =

∫

X
f dµ.

3. For all closed subsets K ⊂X, we have lim supn→∞ µn(K) ≤ µ(K).

4. For all open subsets U ⊂X, we have lim infn→∞ µn(U) ≥ µ(U).

5. For all µ-regular Borel sets A ⊂X, we have limn→∞ µn(A) = µ(A). A
Borel set A is µ-regular if µ(A \A◦) = 0.

More information on the convergence of measures can be found in the book
by Billingsley [21].

A.3 Lattices

Definition A.3.1 (lattice). Let G be a locally compact second countable topo-
logical group.

• A lattice in G is a discrete subgroup Γ of G with finite covolume, i.e.,
the measure on G/Γ induced by the Haar measure on G is finite. A
lattice Γ in G is uniform if the quotient space G/Γ is compact.

• A lattice Γ in G is irreducible if for every closed non-discrete normal
subgroup H of G the image of Γ in G/H under the canonical projec-
tion G −→ G/H is dense.

Definition A.3.2 (semi-simple Lie group). A connected Lie group is semi-
simple if it does not contain a non-trivial connected normal Abelian subgroup.

If G is a semi-simple Lie group, then the centre C(G) of G is discrete
and the quotient G/C(G) is a centre-free (!) semi-simple Lie group. Every
centre-free semi-simple Lie group can (essentially uniquely) be decomposed
into a finite direct product of connected simple Lie groups.
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Definition A.3.3 (R-rank). Let G be a semi-simple Lie group that is (for
some n ∈ N) a closed subgroup of SL(n,R). The R-rank of G is the maximal
number k ∈ N such that G contains a k-dimensional Abelian subgroup that
is conjugate to a subgroup of the diagonal matrices in SL(n,R). The R-rank
of G is denoted by rkRG.

This definition indeed does not depend on the chosen embedding of the
Lie group in question into a special linear group [79, Section 21.3].

Standard examples of lattices include the following:

lattice ambient group uniform? irreducible? R-rank

Zn Rn + iff n ≤ 1 n

SL(2,Z) SL(2,R) − + 1

Z ∗ Z SL(2,R) − + 1

SL(2,Z) × SL(2,Z) SL(2,R) × SL(2,R) − − 2

SL(2,Z[
√
2]) SL(2,R) × SL(2,R) − + 2

SL(3,Z) SL(3,R) − + 2

Moreover, if M is a closed Riemannian manifold, then π1(M) is a uni-

form lattice in Isom+(M̃). If M is a locally symmetric space of non-compact
type, then the irreducibility properties as well as the R-rank correspond to
geometric properties of M [48, Chapter 3.11].

A comprehensive introduction to lattices and their arithmeticity properties
is the book by Witte Morris [136].
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Symbols

1 the trivial group,
| · | cardinality, absolute

value,
∥ · ∥ operator norm,
⟨ · , · ⟩ inner product,
∩ intersection of sets,
∪ union of sets,
@ disjoint union of sets,
⊂ subset relation

(equality is
permitted),

∥M∥ simplicial volume
of M , 74

∥M∥Z integral simplicial
volume of M , 75

∥M∥∞Z stable integral
simplicial volume
of M , 75⎪⎪⎪M

⎪⎪⎪ integral foliated
simplicial volume, 77⎪⎪⎪M

⎪⎪⎪α parametrised
simplicial volume
of M with respect to
the standard action α,
77

∼ME measure equivalent, 39

∼OE orbit equivalent, 39
∼SOE stably orbit

equivalent, 39
× cartesian product,
· × set of units,

B

b(2)n n-th L2-Betti number,
19, 20, 43

B(ℓ2Γ) algebra of bounded
operators on ℓ2Γ, 9

C

C set of complex
numbers,

C(2)
∗ L2-chain complex, 19

CΓ complex group ring
of Γ, 6

χ Euler characteristic,
22

χA characteristic
function,

cost cost, 47
CR equivalence relation

ring, 42
Csing

∗ singular chain
complex,
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D

d minimal rank, 33
dimNΓ von Neumann

dimension over NΓ,
11

dimNR von Neumann
dimension over NR,
42

∂SF S-boundary of a
set F , 85

E

e the neutral element,

F

Fn free group of rank n,
frk fundamental rank, 61

G

Γ̂ profinite completion
of Γ, 38

H

H n hyperbolic n-space,
H∗ (singular/cellular)

homology,

H(2)
∗ (reduced)

L2-homology, 19

I

IRS(G) space of all invariant
random subgroups
of G, 65

L

ℓ2Γ ℓ2-algebra of Γ
(over C), 8

N

N set of natural
numbers: {0, 1, 2, . . . },

NΓ group von Neumann
algebra of Γ, 9

NR von Neumann algebra
of the relation R, 42

P

pdimNΓ von Neumann
dimension over NΓ for
projectives, 13

pdimNR von Neumann
dimension over NR
for projectives, 43

Q

Q set of rational
numbers,

R

R set of real numbers,
rg rank gradient, 33
RΓ!X orbit relation

of Γ ! X, 41
rkR real rank, 61

S

Σg oriented closed
connected surface of
genus g,

Sub(G) space of closed
subgroups of G, 64

T

trΓ von Neumann trace,
9, 10

trR von Neumann trace,
42

V

v3 volume of ideal
regular simplices
in H 3, 87

Z

Z set of integers,
Z(M ;R) set of R-fundamental

cycles of M , 74



Index

A

absolute rank gradient, 33
amenable, 40

L2-Betti number, 46
dynamical characterisation, 40
Følner sequence, 85
inner amenable, 55
integral foliated simplicial vol-

ume, 86
simplicial volume, 74, 84

approximation theorem, 28, 29, 60,
61

lattices, 60, 61
simplicial volume, 90

Atiyah conjecture, 14

B

Benjamini–Schramm convergence,
61, 66

Bernoulli shift, 38
weak containment, 88

Betti number estimate, 81, 82
Betti number gradient, 33, 81, 87
bicommutant theorem, 94
BS-approximation for lattices, 60,

61
BS-convergence, 61, 66

C

Chabauty topology, 64
conjecture

Atiyah, 14
fixed price, 55
Gromov, 75
Kaplansky, 7
Singer, 24

cost, 47
finite group, 58
fixed price, 55
inner amenable, 55
L2-Betti number estimate, 52
of Z, 58
profinite completion, 48
property (T), 55
simplicial volume, 84

cost estimate, 52, 84
crossed product, 43
CW-complex

finite type, 18

D

deficiency, 26
dimension

via trace, 9
von Neumann, 11, 13, 42
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dynamical characterisation of amen-
able groups, 40

dynamical view, 37, 77

E

EMD*, 89
equivalence relation

cost, 47
graphing, 47
L2-Betti number, 43
measured standard, 41
ring, 42
standard, 41
von Neumann algebra, 42

ergodic, 38
essentially free, 38
Euler characteristic, 22, 75
extended von Neumann dimension,

13

F

faithfulness, 9
Feldman–Moore theorem, 41
finite type, 18

Γ-CW-complex, 18
CW-complex, 18
group, 18

finite von Neumann algebra, 44
fixed price problem, 55
Følner sequence, 85
free Γ-CW-complex, 18

finite type, 18
free group, 23, 35, 46, 92
fundamental rank, 61

G

Γ-CW-complex, 18
gradient invariant, 32, 34, 87
graphing, 47

cost, 47
Gromov norm, see simplicial vol-

ume
group

amenable, 40, 85
cost, 47

deficiency, 26
finite type, 18
Heisenberg, 57
Hopfian, 35
inner amenable, 55
L2-Betti number, 20
property (T), 55
property (T), 62
rank gradient, 33
residually finite, 28, 38, 57

group ring, 6
universal property, 7

group von Neumann algebra, 9

H

Heisenberg group, 57
Hilbert module, 8, 15

morphism, 8
weak isomorphism, 12

homological gradient invariant, 32,
87

homotopy invariance, 20
Hopfian, 35
hyperbolic manifold, 24, 63, 71, 87

simplicial volume, 74, 75, 78,
87

stable integral simplicial vol-
ume, 87

I

index
of an ME coupling, 39
of an SOE, 39

inner amenable, 55
integral foliated simplicial volume,

77
amenable, 86
aspherical 3-manifold, 90
cost estimate, 84
gradient invariants, 87
L2-Betti number estimate, 82
locally symmetric space, 89
profinite completion, 79
proportionality principle, 88,

89
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weak containment, 88
invariant random subgroup, 59, 65
irreducible lattice, 95
IRS, see invariant random subgroup

K

Kaplansky conjecture, 7
Kazhdan inequality, 31
Kazhdan’s property (T), 62
Künneth formula, 21

L

L2-Betti number
amenable groups, 46
approximation, 28, 60, 61
cost, 52
degree 0, 21
equivalence relations, 43
generalisations, 24
groups, 20
homotopy invariance, 20
inner amenable, 55
integral foliated simplicial vol-

ume, 82
Künneth formula, 21
locally symmetric space, 61
Morse inequality, 58
OE-invariant, 46
Poincaré duality, 21
property (T), 55
proportionality principle, 46
QI?, 26
rank gradient, 34
restriction formula, 21, 43
self-map, 35
simple examples, 23
simplicial volume, 75
spaces, 19, 20
stable integral simplicial vol-

ume, 81
topological group, 46, 57

L2-chain complex, 19
L2-homology, 19
Laplacian, 35
lattice, 39, 40, 95

irreducible, 95
locally symmetric space, 61, 89
Lück approximation, 28

M

measure equivalence, 39, 40
measured group theory, 38
measured standard equivalence re-

lation, see equivalence re-
lation

ME coupling, 39
cocycle, 58
index, 39

Morse inequality, 58

N

Nevo–Stück–Zimmer theorem, 68

O

orbit equivalence, 39, 40
orbit relation, 41
Ornstein–Weiss theorem, 40

P

parametrised simplicial volume, 77
Plancherel measure, 69
Poincaré duality, 21, 81, 82
polar decomposition, 13
portmanteau theorem, 31, 95
positivity, 9
profinite completion, 38, 57

cost, 48
simplicial volume, 79, 89

property (T), 62
cost, 55

proportionality principle
L2-Betti number, 46
simplicial volume, 74, 88, 89

Q

QI-invariance, 26

R

R-rank, 96
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rank gradient, 33
of products, 35
stable integral simplicial vol-

ume, 83
via cost, 48, 56

reduced L2-homology, 19
residual chain, 28
residually finite group, 28, 38, 57
residually finite view, 28, 75
restriction formula, 12, 21, 43
Rokhlin lemma, 86

S

S-boundary, 85
self-map, 35
semi-simple, 95
seven samurai, 60
simplicial volume, 73, 74

amenable, 74
cost, 79
hyperbolic manifold, 74
integral foliated, 77
L2-Betti number, 75
low dimensions, 75
multiplicativity, 74, 92
parametrised, 77
sphere, 92
stable integral, 75
surface, 92
torus, 92

Singer conjecture, 24, 92
spectral measure, 30
stable integral simplicial volume,

75
amenable, 84
hyperbolic manifold, 87
L2-Betti number, 81
rank gradient, 83

stable orbit equivalence, 39, 40
index, 39

standard action, 38
ergodic, 38
essentially free, 38

standard Borel space, 38

standard equivalence relation, see
equivalence relation

surface
simplicial volume, 92

surface group, 23, 35

T

theorem
approximation, 28, 29, 60, 61
bicommutant, 94
BS-approximation, 60, 61
Feldman–Moore, 41
Lück approximation, 28
Nevo–Stück–Zimmer, 68
Ornstein–Weiss, 40
portmanteau, 31, 95
Rokhlin lemma, 86

thin part, 61
trace

von Neumann, 9, 10
trace property, 9

U

uniform discreteness, 62
universal property

group ring, 7

V

view
dynamical, 37, 77
residually finite, 28, 75

von Neumann algebra, 94
finite, 44
of a group, 9
of a measured equivalence re-

lation, 42
von Neumann dimension, 11, 13,

42
von Neumann trace, 9, 10, 42

W

weak containment, 88
weak convergence, 30, 35, 94
weak isomorphism, 12
weakly exact, 12


