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Abstract

Measured group theory is an area of research that studies infinite groups

using measure-theoretic tools, and studies the restrictions that group struc-

ture imposes on ergodic-theoretic properties of their actions. This paper is a

survey of recent developments focused on the notion of measure equivalence

between groups, and orbit equivalence between group actions.
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1. Introduction

This survey concerns an area of mathematics that studies infinite countable
groups using measure-theoretic tools, and studies ergodic theory of group
actions, emphasizing the impact of group structure on the actions. Measured
group theory is a particularly fitting title as it suggests an analogy with geo-
metric group theory. The origins of measured group theory go back to the
seminal paper of Robert Zimmer [139], which established a deep connection
between questions on orbit equivalence in ergodic theory to Margulis’s cele-
brated superrigidity theorem for lattices in semisimple groups. The notion of
amenable actions, introduced by Zimmer in an earlier work [138], became an
indispensable tool in the field. Zimmer continued to study orbit structures of
actions of large groups in [32, 41, 140–144, 146, 147] and [135]. The mono-
graph [146] had a particularly big impact on both ergodic theorists and people
studying big groups, as well as researchers in other areas, such as operator
algebras and descriptive set theory.1

In recent years several new layers of results have been added to what we
called measured group theory, and this paper aims to give an overview of the
current state of the subject. Such a goal is unattainable—any survey is doomed
to be partial, biased, and outdated before it appears. Nevertheless, we shall try
our best, hoping to encourage further interest in this topic. The reader is also
referred to Gaboriau’s paper [58], which contains a very nice overview of some
of the results discussed here, and to Shalom’s survey [133], which is even closer
to the present paper (hence the similarity of the titles). The monographs by
Kechris andMiller [81] and the forthcoming one [80] by Kechris include topics

1. Zimmer’s cocycle superrigidity proved in [139] plays a central role in another area of
research, vigorously pursued by Zimmer and others, concerning actions of large groups on
manifolds. David Fisher surveys this direction in [42] in this volume.
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in descriptive set theory related to measured group theory. Readers interested
in connections to von Neumann algebras are referred to Vaes’s [136], Popa’s
[114], and references therein.

The scope of this paper is restricted to interaction of infinite groups
with ergodic theory, leaving out the connections to the theory of von Neu-
mann algebras and descriptive set theory. When possible, we try to indicate
proofs or ideas of proofs for the stated results. In particular, we chose to
include a proof of one cocycle superrigidity theorem (Theorem 5.21), which
enables a self-contained presentation of a number of important results:
a very rigid equivalence relation (Theorem 4.19) with trivial fundamental
group and outer automorphism group (Theorem 4.15), an equivalence rela-
tion that cannot be generated by an essentially free action of any group
(§4.3.1).

disclaimer. As usual, the quoted results are often presented not in the full
possible generality, so the reader should consult the original papers for full
details. The responsibility for inaccuracies, misquotes, and other flaws lies
solely with the author of these notes.

acknowledgments: I would like to express my deep appreciation to Bob
Zimmer for his singular contribution to the subject. I would also like to thank
Miklos Abert, Aurélien Alvarez, Uri Bader, Damien Gaboriau, Alexander
Kechris, Sorin Popa, Yehuda Shalom, and the referee for the corrections and
comments on the earlier drafts of the paper.

organization of the paper. The paper is organized as follows: the
next section is devoted to a general introduction that emphasizes the rela-
tions among measure equivalence, quasi-isometry, and orbit equivalence in
ergodic theory. One may choose to skip most of this, but read Definition 2.1
and the following remarks. Section 3 concerns groups considered up to mea-
sure equivalence. Section 4 focuses on the notion of equivalence relations with
orbit relations as a prime (but not only) example. In both of these sections we
consider separately the invariants of the studied objects (groups and relations)
and rigidity results, which pertain to questions of classification. Section 5
describes the main techniques used in these theories (mostly for rigidity): a
discussion of superrigidity phenomena and some of the ad hoc tools used in
the subject; generalities on cocycles appear in Appendix A.
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2. Preliminary Discussion and Remarks

This section contains an introduction to measure equivalence and related top-
ics and contains a discussion of this framework. Readers familiar with the
subject (especially Definition 2.1 and the following remarks) may skip to the
next section in the first reading.

There are two natural entry points to Measured group theory, correspond-
ing to the ergodic-theoretic and group-theoretic perspectives. Let us start from
the latter.

2.1. Lattices and Other Countable Groups

When should two infinite discrete groups be viewed as closely related? Iso-
morphism of abstract groups is an obvious, maybe trivial, answer. The next
degree of closeness would be commensurability: two groups are commen-
surable if they contain isomorphic subgroups of finite index. This relation
might be relaxed a bit further, by allowing to pass to a quotient modulo finite
normal subgroups. The algebraic notion of being commensurable, modulo
finite kernels, can be vastly generalized in two directions: measure equivalence
(measured group theory) and quasi-isometry (geometric group theory).

The key notion discussed in this paper is that of measure equivalence of
groups, introduced by Gromov in [66, 0.5.E].

definition 2.1. Two infinite discrete countable groups !, " aremeasure

equivalent (abbreviated as ME, and denoted !
ME∼ ") if there exists an infi-

nite measure space (#,m) with a measurable, measure-preserving action of
!×", so that both actions ! ! (#,m) and" ! (#,m) admit finite-measure
fundamental domains Y ,X ⊂ #:

# =
⊔

γ∈!
γY =

⊔

λ∈"
λX .

The space (#,m) is called a (!,")-coupling or ME-coupling. The index of !
to " in # is the ratio of the measures of the fundamental domains

[! : "]# = m(X )
m(Y )

(
= meas(#/")

meas(#/!)

)
.

We shall motivate this definition after making a few immediate comments.

a) The index [! : "]# is well defined—it does not depend on the choice
of the fundamental domains X , Y for #/", #/! respectively, because
their measures are determined by the group actions on (#,m). However,
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a given pair (!,") might have ME-couplings with different indices (the
set {[! : "]#} is a coset of a subgroup of R∗+ corresponding to possible
indices [! : !]# of self-!-couplings. Here it makes sense to focus on
ergodic couplings only).

b)Any ME-coupling can be decomposed into an integral over a probability
space of ergodic ME-couplings, that is, ones for which the !×"-action
is ergodic.

c) measure equivalence is indeed an equivalence relation between groups:
for any countable! the action of!×! on# = ! with the countingmea-
sure m! by (γ1, γ2) : γ &→ γ1γ γ

−1
2 provides the trivial self-ME-coupling,

giving reflexivity; symmetry is obvious from the definition;2 while transi-
tivity follows from the following construction of composition, or fusion,
of ME-couplings. If (#,m) is a (!1,!2) coupling and (#′,m′) is a (!2,!3)
coupling, then the quotient#′′ = #× !2#

′ of#×#′ under the diagonal
action γ2 : (ω,ω′) &→ (γ2ω, γ−12 ω′) inherits ameasurem′′ = m× !2m

′ so
that (#′′,m′′) becomes a (!1,!3) coupling structure. The indices satisfy:

[!1 : !3]#′′ = [!1 : !2]# · [!2 : !3]#′ .

d)The notion of ME can be extended to the broader class of all unimodular
locally compact second countable groups: a ME-coupling of G and H is a
measure space (#,m) with measure space isomorphisms

i : (G,mG)× (Y , ν) ∼= (#,m), j : (H,mH )× (X ,µ) ∼= (#,m)

with (X ,µ), (Y , ν) being finite measure spaces, so that the actions G !
(#,m), H ! (#,m) given by g : i(g ′, y) &→ i(gg ′, y), h : j(h′, x) &→ j(hh′, x)
commute. The index is defined by [G : H]# = µ(X )/ν(Y ).

e)Measure equivalence between countable groups can be viewed as a cat-
egory, whose objects are countable groups and morphisms between, say
! and ", are possible (!,") couplings. Composition of morphisms is
the operation of composition of ME-couplings as in (c). The trivial
ME-coupling (!,m!) is nothing but the identity of the object !. It is
also useful to consider quotient maps ( : (#1,m1)→ (#2,m2) between
(!,")-couplings (these are 2-morphisms in the category), which are
assumed to be !×" nonsingular maps, that is, (∗[m1] ∼ m2. Since

2. One should formally distinguish between (#,m) as a (!,") coupling, and the same
space with the same actions as a (",!) coupling; hereafter we shall denote the latter by
(#̌, m̌). Example 2.2 illustrates the need to do so.
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preimage of a fundamental domain is a fundamental domain, it follows
(under the ergodicity assumption) that m1((−1(E)) = c · m2(E), E ⊂ #2,
where 0 < c <∞. ME self-couplings of! that have the trivial!-coupling
are especially useful, their cocycles are conjugate to isomorphisms.
Similarly, (!,")-couplings, which have a discrete coupling as a quotient,
correspond to virtual isomorphisms (see Lemma 4.18).

f )Finally, one might relax the definition of quotients by considering
equivariant maps( : #1 → #2 between (!i,"i)-couplings (#i,mi) with
respect to homomorphisms !1 → !2, "1 → "2 with finite kernels and
cokernels.

Gromov’s motivation for ME comes from the theory of lattices. Recall that
a subgroup ! of a locally compact second countable (lcsc for short) group G
is a lattice if ! is discrete in G and the quotient space G/! carries a finite
G-invariant Borel regular measure (necessarily unique up to normalization);
equivalently, if the !-action on G by left (equivalently, right) translations
admits a Borel fundamental domain of finite positive Haar measure. A dis-
crete subgroup! < GwithG/! being compact is automatically a lattice. Such
lattices are called uniform or cocompact; others are nonuniform. The standard
example of a nonuniform lattice is ! = SLn (Z) in G = SLn (R). Recall that a
lcsc group that admits a lattice is necessarily unimodular.

A common theme in the study of lattices (say in Lie, or algebraic groups
over local fields) is that certain properties of the ambient group are inherited
by its lattices. From this perspective it is desirable to have a general frame-
work in which lattices in the same group are considered equivalent. Measure
equivalence provides such a framework.

example 2.2. If ! and" are lattices in the same lcsc group G, then !
ME∼ ";

the group G with the Haar measure mG is a (!,") coupling where

(γ , λ) : g &→ γ gλ−1.

(In fact, !
ME∼ G

ME∼ " if ME is considered in the broader context of unimodular
lcsc groups: G× {pt} ∼= !×G/!). This example also illustrates the fact that
the dual (",!)-coupling Ǧ is better related to the original (!,")-coupling G
via g &→ g−1 rather than the identity map.

In geometric group theory the basic notion of equivalence is quasi-isometry

(QI). Two metric spaces (Xi, di), i = 1, 2 are quasi-isometric (notation: X1
QI∼

X2) if there exist maps f : X1 → X2, g : X2 → X1, and constants M,A so that
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d2( f (x), f (x′)) < M · d1(x, x′)+ A (x, x′ ∈ X1)

d2(g(y), g(y′)) < M · d2(y, y′)+ A (y, y′ ∈ X2)

d1(g ◦ f (x), x) < A (x ∈ X1)

d2( f ◦ g(y), y) < A (y ∈ X2).

Two finitely generated groups are QI if their Cayley graphs (with respect
to some/any finite sets of generators) are QI as metric spaces. It is easy
to see that finitely generated groups commensurable modulo finite groups
are QI.

Gromov observes that QI between groups can be characterized as topolog-
ical equivalence (TE) defined in the following statement.

theorem 2.3. (gromov [66, theorem0.2.C′2])Two finitely generated groups
! and " are quasi-isometric iff there exists a locally compact space ) with a con-
tinuous action of !×", where both actions ! ! ) and " ! ) are properly
discontinuous and cocompact.

The space X in the above statement is called a TE-coupling. Here is an
idea for the proof. Given a TE-coupling ) one obtains a quasi-isometry from
any point p ∈ ) by choosing f : !→ ", g : "→ ! so that γ p ∈ f (γ )X and
λp ∈ g(λ)Y , where X ,Y ⊂ ) are open sets with compact closures and ) =⋃
γ∈! γY = ⋃

λ∈" λX . To construct a TE-coupling ) from a quasi-isometry
f : !→ ", consider the pointwise closure of the !×"-orbit of f in the space
of all maps !→ " where ! acts by precomposition on the domain and " by
postcomposition on the image. Formore details see the guided exercise in [67,
p. 98].

A nice instance of QI between groups is a situation where the groups admit
a common geometric model. Here a geometric model for a finitely generated
group ! is a (complete) separable metric space (X , d) with a properly discon-
tinuous and cocompact action of ! on X by isometries. If X is a common

geometric model for !1 and !2, then !1
QI∼ X

QI∼ !2. For example, fundamen-
tal groups !i = π1(Mi) of compact locally symmetric manifolds M1 and M2

with the same universal cover M̃1 ∼= M̃2 = X have X as a common geometric
model. Notice that the common geometric model X itself does not serve as a
TE-coupling because the actions of the two groups do not commute. However,
a TE-coupling can be explicitly constructed from the group G = Isom (X , d),
which is a locally compact (in fact, compactly generated due to finite genera-
tion assumption on !i) second countable group. Indeed, the isometric actions
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!i ! (X , d) define homomorphisms !i → G with finite kernels and images
being uniform lattices. Moreover, the converse is also true: if !1,!2 admit
homomorphisms with finite kernels and images being uniform lattices in
the same compactly generated second countable group G, then they have a
common geometric mode—take G with a (pseudo-)metric arising from an
analogue of a word metric using compact sets.

Hence all uniform lattices in the same group G are QI to each other. Yet,
typically, nonuniform lattices in G are not QI to uniform ones—see Farb’s
survey [37] for the QI classification for lattices in semisimple Lie groups.

To summarize this discussion: the notion ofmeasure equivalence is an equiv-
alence relation between countable groups, an important instance of which is
given by groups that can be embedded as lattices (uniform or not) in the same
lcsc group. It can be viewed as ameasure-theoretic analogue of the equivalence
relation of being quasi-isometric (for finitely generated groups) by taking Gro-
mov’s topological equivalence point of view. An important instance of QI/TE
is given by groups that can be embedded as uniform lattices in the same lcsc
group. In this situation one has bothME and QI. However, we should empha-
size that this is merely an analogy: the notions of QI andME do not imply each
other.

2.2. Orbit Equivalence in Ergodic Theory

Ergodic theory investigates dynamical systems from a measure-theoretic
point of view. Hereafter we shall be interested in measurable, measure-
preserving group actions on a standard nonatomic probability measure space,
and will refer to such actions as probability measure preserving (p.m.p.). It
is often convenient to assume the action to be ergodic, that is, to require
all measurable !-invariant sets to be null or conull (that is, µ(E) = 0 or
µ(X \ E) = 0).

A basic question in this context concerns possible orbit structures of
actions. Equivalence of orbit structures is captured by the following notions
of orbit equivalence (the notion of an orbit structure itself is discussed
in §4.1).

definition 2.4. Two p.m.p. actions ! ! (X ,µ) and " ! (Y , ν) are orbit

equivalent (abbreviated OE, denoted ! ! (X ,µ)
OE∼ " ! (Y , ν)) if there exists

a measure space isomorphism T : (X ,µ) ∼= (Y , ν) which takes !-orbits onto
"-orbits. More precisely, an orbit equivalence is a Borel isomorphismT : X ′ ∼=
Y ′ between conull subsets X ′ ⊂ X and Y ′ ⊂ Y with T∗µ(E) = µ(T−1E) =
ν(E), E ⊂ Y ′ and T (!.x ∩X ′) = ".T (x)∩Y ′ for x ∈ X ′.
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AweakOE, or stableOE (SOE) is a Borel isomorphismT : X ′ ∼= Y ′ between
positive measure subsets X ′ ⊂ X and Y ′ ⊂ Y with T∗µX ′ = νY ′ , where µX ′ =
µ(X ′)−1 · µ|X ′ , νY ′ = ν(Y ′)−1 · ν|Y ′ , so that T (!.x ∩X ′) = ".T (x)∩Y ′ for all
x ∈ X ′. The index of such an SOE-map T is µ(Y ′)/ν(X ′).

In the study of orbit structure of dynamical systems in the topological
or smooth category, one often looks at such objects as fixed or periodic
points/orbits. Despite the important role these notions play in the underly-
ing dynamical system, periodic orbits have zero measure and therefore are
invisible from the purely measure-theoretic standpoint. Hence OE in ergodic
theory is a study of the global orbit structure. This point of view is consistent
with the general philosophy of “noncommutativemeasure theory,” that is, von
Neumann algebras. Specifically, OE in ergodic theory is closely related to the
theory of II1 factors as follows.

In the 1940s Murray and von Neumann introduced the so-called “group-
measure space” construction to provide interesting examples of vonNeumann
factors:3 given a probabilitymeasure preserving (ormore generally, nonsingu-
lar) group action ! ! (X ,µ) the associated von Neumann algebra M!!X is a
cross-product of! with the abelian algebra L∞(X ,µ), namely the weak closure
in bounded operators on L2(!×X ) of the algebra generated by the operators{

f (g , x) &→ f (γ g , γ .x) : γ ∈ !
}
and

{
f (g , x) &→ φ(x)f (g , x) : φ ∈ L∞(X ,µ)

}
.

Ergodicity of! ! (X ,µ) is equivalent toM!!X being a factor. It turns out that

(for essentially free) OE actions ! ! X
OE∼ " ! Y the associated algebras are

isomorphic M!!X ∼= M"!Y , with the isomorphism identifying the abelian
subalgebras L∞(X ) and L∞(Y ). The converse is also true (one has to specify,
in addition, an element in H1(! ! X ,T))—see Feldman-Moore [39, 40]. So
orbit equivalence of (essentially free p.m.p. group actions) fits into the study of
II1 factors M!!X with a special focus on the so-called Cartan subalgebra given
by L∞(X ,µ). We refer the reader to Popa’s 2006 ICM lecture [114] and Vaes’s
Seminar Bourbaki paper [136] for some more recent reports on this rapidly
developing area.

The above-mentioned assumption of essential freeness of an action ! !
(X ,µ) means that, up to a null set, the action is free; equivalently, for µ-a.e.
x ∈ X the stabilizer {γ ∈ ! : γ .x = x} is trivial. This is a natural assumption,
when one wants the acting group ! to “fully reveal itself” in a.e. orbit of the
action. Let us now link the notions of OE and ME.

3. von Neumann algebras whose center consists only of scalars.
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theorem 2.5. Two countable groups ! and " are measure equivalent iff they
admit essentially free (ergodic) probability measure-preserving actions ! ! (X ,µ)
and " ! (Y , ν) that are stably orbit equivalent.

(SOE) =⇒ (ME) direction is more transparent in the special case of orbit
equivalence, that is, index 1. Let α : !×X → " be the cocycle associated
to an orbit equivalence T : (X ,µ)→ (Y , ν) defined by T (g .x) = α(g , x).T (x)
(here freeness of " ! Y is used). Consider (#,m) = (X ×",µ×m") with
the actions

2.1 g : (x, h) &→ (gx,α(g , x)h), h : (x, k) &→ (x, hk−1) (g ∈ !, h ∈ ").
Then X × {1} is a common fundamental domain for both actions (note that
here freeness of ! ! X is used). Of course, the same coupling (#,m) can
be viewed as (Y ×!, ν×m!) with the "-action defined using β : "×Y → !

given by T−1(h.y) = β(h, y).T−1(y). In the more general setting of stable OE
one needs to adjust the definition for the cocycles (see [45]) to carry out a
similar construction.

Alternative packaging for the (OE) =⇒ (ME) argument uses the language
of equivalence relations (see §4.1). Identifying Y with X via T−1, one views
R"!Y and R!!X as a single relation R. Taking # = R equipped with the
measure µ̃ (§4.1) consider the actions

g : (x, y) &→ (g .x, y), h : (x, y) &→ (x, h.y) (g ∈ !, h ∈ ").
Here the diagonal embedding X &→ R, x &→ (x, x), gives the fundamental
domain for both actions.

(ME) =⇒ (SOE). Given an ergodic (!,") coupling (#,m), let X ,Y ⊂ #
be fundamental domains for the ", ! actions; these may be chosen so that
m(X ∩Y ) > 0. The finite measure-preserving actions

2.2 ! ! X ∼= #/", " ! Y ∼= #/!

have weakly isomorphic orbit relations, since they appear as the restrictions
to X and Y of the relation R!×"!# (of type II∞); these restrictions coincide
on X ∩Y . The index of this SOE coincides with the ME-index [! : "]# (if
[! : "]# = 1 one can find a common fundamental domain X = Y ). The only
remaining issue is that the actions ! ! X ∼= #/", " ! Y ∼= #/! may not
be essential free. This can be fixed (see [56]) by passing to an extension ( :
(#̄, m̄)→ (#,m) where ! ! #̄/" and" ! #̄/! are essentially free. Indeed,
take #̄ = #×Z×W , where " ! Z and " ! W are free probability measure-
preserving actions and let

g : (ω, z,w) &→ (gω, gz,w), h : (ω, z,w) &→ (hω, z, hw) (g ∈ !, h ∈ ").
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remark 2.6. Freeness of actions is mostly used in order to define the rearrange-
ment cocycles for a (stable) orbit equivalence between actions. However, if SOE
comes from a ME-coupling, the well-defined ME-cocycles satisfy the desired rear-
rangement property (such as T (g .x) = α(g , x).T (x)) and freeness becomes super-
fluous.

If( : #̄→ # is as above and X̄ , Ȳ denote the preimages of X ,Y, then X̄ , Ȳ are

",! fundamental domains and the OE-cocycles ! ! X̄
SOE∼ " ! Ȳ coincide with

the ME-cocycles associated with X ,Y ⊂ #.
Another, essentially equivalent, point of view is that ME-coupling defines a

weak isomorphism between the groupoids ! ! #/" and " ! #/!. In case
of free actions these groupoids reduce to their relations groupoids, but in general the
information about stabilizers is carried by the ME-cocycles.

2.3. Further Comments on QI, ME, and Related Topics

Let ) be Gromov’s topological equivalence between ! and". Then any point
x ∈ ) defines a quasi-isometry qx : !→ " (see the sketch of proof of The-
orem 2.3). In ME the maps α(−, x) : !→ " defined for a.e. x ∈ X play a
similar role. However, due to their measure-theoretic nature, such maps are
insignificant taken individually, and are studied as ameasured family with the
additional structure given by the cocycle equation.

Topological and measure equivalences are related to the following inter-
esting notion, introduced by Nicolas Monod in [98] under the appealing term
“randomorphisms.” Consider the Polish space"! of all maps f : !→ "with
the product uniform topology, and let

[!,"] =
{
f : !→ " : f (e!) = e"

}
.

Then ! acts on [!,"] by g : f (x) &→ f (xg)f (g)−1, x ∈ !. The basic obser-
vation is that homomorphisms !→ " are precisely !-fixed points of this
action.

definition 2.7. A randomorphism is a !-invariant probability measure
on [!,"].

A measurable cocycle c : !×X → " over a p.m.p. action ! ! (X ,µ)
defines a randomorphism by pushing forward the measure µ by the cocycle
x &→ c(−, x). Thus orbit equivalence cocycles (see Appendix A.2) correspond
to randomorphisms supported on bijections in [!,"]. Also note that the
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natural composition operation for randomorphisms, given by the push-
forward of the measures under the natural map

[!1,!2]× [!2,!3]→ [!1,!3], ( f , g) &→ g ◦ f

corresponds to the composition of couplings. The viewpoint of topological
dynamics of the !-action on [!,"] may be related to quasi-isometries and
topological equivalence. For example, points in [!,"] with precompact !-
orbits correspond to Lipschitz embeddings !→ ".

2.3.1. using me for qi Although measure equivalence and quasi-isometry
are parallel inmany ways, these concepts are different and neither one implies
the other. Yet, Yehuda Shalom has shown [132] how one can use ME ideas
to study QI of amenable groups. The basic observation is that a topological
coupling ) of amenable groups ! and " carries a !×"-invariant measure
m (coming from a !-invariant probability measure on )/"), which gives a
measure equivalence. It can be thought of as an invariant distribution on
quasi-isometries !→ ", and can be used to induce unitary representations,
cohomology with unitary coefficients, and so on from" to !. Using such con-
structions, Shalom [132] was able to obtain a list of new QI invariants in the
class of amenable groups, such as (co)homology over Q, ordinary Betti num-
bersβi(!) amongnilpotent groups, and others. Shalomalso studied the notion
of uniform embedding (UE) between groups and obtained group invariants,
which are monotonic with respect to UE.

In [125] Roman Sauer obtains further QI-invariants and UE-monotonic
invariants using a combination of QI, ME, and homological methods.

In another work [126] Sauer used ME point of view to attack problems of
purely topological nature related to the work of Gromov.

2.3.2. .p-measure equivalence Let ! and " be finitely generated groups,
equipped with some word metrics | · |! , | · |". We say that a (!,") coupling
(#,m) is .p for some 1 ≤ p ≤ ∞ if there exist fundamental domains X ,Y ⊂ #
so that the associated ME-cocycles (see Appendix A.3) α : !×X → " and
β : "×Y → ! satisfy

∀g ∈ ! : |α(g ,−)|" ∈ Lp(X ,µ), ∀h ∈ " : |β(h,−)|! ∈ Lp(Y , ν).

If an .p-ME-coupling exists, say that ! and " are .p-ME. Clearly any .p-
ME-coupling is .q for all q ≤ p. So .1-ME is the weakest and .∞-ME is
the most stringent among these relations. One can check that .p-ME is an
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equivalence relation on groups (the .p condition is preserved under com-
position of couplings), so we obtain a hierarchy of .p-ME categories with
.1-ME being the weakest (largest classes) and at p =∞ one arrives at ME +
QI. Thus .p-ME amounts to measure equivalence with some geometric
flavor.

The setting of .1-ME is considered in [13, 14] by Uri Bader, Roman Sauer,
and the author to analyze rigidity of the least rigid family of lattices—lattices in
SOn,1(R) 0 Isom (Hn

R), n ≥ 3, and fundamental groups of general negatively
curved manifolds. It should be noted that examples of non amenable ME
groups that arenot .1-MEseemtobe rare (surface groups and free groups seem
to be the main culprits). In particular, it follows from Shalom’s computations
in [131] that for n ≥ 3 all lattices in SOn,1(R) are mutually .1-ME. We shall
return to invariants and rigidity in the .1-ME framework in Sections 3.1.8 and
3.2.4.

3. Measure Equivalence Between Groups

This section is concerned with the notion of measure equivalence between

countable groups!
ME∼ " (Definition 2.1). First recall the following deep result

(extending previous work of Dye [33, 34] on some amenable groups, and fol-
lowed by Connes-Feldman-Weiss [27] concerning all nonsingular actions of
all amenable groups).

theorem 3.1. (ornstein-weiss [105]) Any two ergodic probability
measure-preserving actions of any two infinite countable amenable groups are orbit
equivalent.

This result implies that all infinite countable amenable groups are ME; more-
over, for any two infinite amenable groups ! and " there exists an ergodic
ME-coupling # with index [! : "]# = 1 (hereafter we shall denote this situa-

tion by!
OE∼ "). Measure equivalence of all amenable groups shows that many

QI-invariants are notME-invariants; these include growth type, being virtually
nilpotent, (virtual) cohomological dimension, finite generations/presentation,
and so on.

The following are basic constructions and examples of measure equivalent
groups:

1) If ! and " can be embedded as lattices in the same lcsc group, then

!
ME∼ ".
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2) If !i
ME∼ "i for i = 1, . . . , n, then !1× · · ·×!n

ME∼ "1× · · ·×"n.

3) If !i
OE∼ "i for i ∈ I (i.e. the groups admit an ergodic ME-coupling with

index 1), then ( ∗i∈I !i)
OE∼ ( ∗i∈I "i).4

For 2 2= n,m <∞ the freegroupsFn andFm are commensurable, and there-

fore areME (however, F∞ 2
ME∼ F2). Themeasure equivalence classME(F2≤n<∞)

is very rich and remains mysterious (see [58]). For example, it includes
surface groups π1()g ), g ≥ 2, nonuniform (infinitely generated) lattices in
SL2 (Fp[[X ]]), the automorphism group of a regular tree, free products ∗ni=1Ai

of arbitrary infinite amenable groups, more complicated free products such
as F2 ∗π1()g ) ∗Q, and so on. In the aforementioned paper by Gaboriau he
constructs interesting geometric examples of the form ∗nc F2g , which are funda-
mental groups of certain “branched surfaces.” Bridson, Tweedale, andWilton
[19] prove that a large class of limit groups, namely all elementarily free groups,
are ME to F2. Notice that ME(F2≤n<∞) contains uncountably many groups.

The fact that some ME classes are so rich and complicated should
emphasize the impressive list of ME invariants and rigidity results below.

3.1. Measure Equivalence Invariants

ByME-invariantswemean properties of groups that are preserved undermea-
sure equivalence, and numerical invariants that are preserved or predictably
transformed as a function of the ME index.

3.1.1. amenability, kazhdan’s property (t), and a-t-menability These
properties are defined using the language of unitary representations. Let π :
!→ U(H ) be a unitary representation of a (topological) group. Given a finite
(respectively compact) subset K ⊂ G and ε > 0, we say that a unit vector v ∈
H is (K , ε)-almost invariant if ‖v−π (g)v‖ < ε for all g ∈ K . A unitary !-
representation π that has (K , ε)-almost invariant vectors for all K ⊂ ! and
ε > 0 is said to weakly contain the trivial representation 1! , denoted 1! ≺ π .
The trivial representation 1! is (strongly) contained in π , denoted 1! < π , if
there exist non-zero π (G)-invariant vectors, that is, H π (!) 2= {0}. Of course
1! < π trivially implies 1! ≺ π . We recall:

Amenability:! is amenable if the trivial representation isweakly contained
in the regular representation ρ : !→ U(.2(!)), ρ(g)f (x) = f (g−1x).

4. The appearance of the sharper condition
OE∼ in (2) is analogous to the one in the QI

context: if groups !i and "i are bi-Lipschitz, then ∗i∈I!i
QI∼ ∗i∈I"i .
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Property (T):! has property (T) (Kazhdan [79]) if for every unitary !-
representation π : 1! ≺ π implies 1! < π . This is equivalent to an exis-
tence of a compactK ⊂ ! and ε > 0 so that any unitary !-representation
π with (K , ε)-almost invariant vectors has nontrivial invariant vectors.
For compactly generated groups, another equivalent characterization
(Delorme and Guichardet) is that any affine isometric !-action on
a Hilbert space has a fixed point, that is, if H1(!,π ) = {0} for any
(orthogonal) !-representation π . We refer to [17] for the details.

(HAP):! is a-T-menable (or has Haagerup approximation property) if the
following equivalent conditions hold: (i)! has amixing!-representation
weakly containing the trivial one, or (ii) ! has a proper affine isometric
action on a (real) Hilbert space. The class of infinite a-T-menable groups
contains amenable groups, free groups but is disjoint from infinite
groups with property (T). See [24] as a reference.

Measure equivalence allowsus to relate unitary representations of one group to
another. More concretely, let (#,m) be a (!,") coupling, and π : "→ U(H )
be a unitary "-representation. Denote by H̃ the Hilbert space consisting of
equivalence classes (mod null sets) of all measurable, "-equivariant maps
#→H with square-integrable norm over a "-fundamental domain:

H̃ =
{

f : #→H : f (λx) = π (λ)f (x),
∫

#/"
‖f ‖2 <∞

}
mod null sets.

The action of ! on such functions by translation of the argument defines
a unitary !-representation π̃ : !→ U(H̃ ). This representation is said to be
induced fromπ : "→ U(H ) via#. (In Example 2.2 this is precisely the usual
Mackey inductionof aunitary representations, of a lattice to the ambient group,
followed by a restriction to another lattice).

The ME invariance of the properties above (amenability, property (T),
Haagerup approximation property) can be deduced from the following obser-
vations. Let (#,m) be a (!,") ME-coupling, π : "→ U(H ) a unitary rep-
resentation, and π̃ : !→ U(H̃ ) the corresponding induced representation.
Then

1) If π is the regular "-representation on H = .2("), then π̃ on H̃ can
be identified with the !-representation on L2(#,m) ∼= n · .2(!), where
n = dim L2(#/") ∈ {1, 2, . . . ,∞}.

2) If 1" ≺ π , then 1! ≺ π̃ .
3) If (#,m) is !×" ergodic and π is weakly mixing (i.e., 1" 2< π ⊗π∗),
then 1! 2< π̃ .
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4) If (#,m) is!×" ergodic andπ ismixing (i.e., for all v ∈H : 〈π (h)v, v〉 →
0 as h→∞ in "), then π̃ is a mixing !-representation.

Combining (1) and (2) we obtain that being amenable is an ME-invariant.
The deep result of Ornstein-Weiss [105] and Theorem 2.5 imply that any two
infinite countable amenable groups are ME. This gives

corollary 3.2. The measure equivalence class of Z is the class of all infinite
countable amenable groups

ME(Z) = Amen.

Bachir Bekka andAlainValette [16] showed that if"does not have property (T),
then it admits a weakly mixing representation π weakly containing the trivial
one. By (2) and (3) this implies that property (T) is an ME-invariant (this is the
argument in [44, corollary 1.4]; see also Zimmer [146, theorem 9.1.7(b)]). The
ME-invariance of amenability and Kazhdan’s property for groups indicates
that it should be possible to define these properties for equivalence relations
and then relate them to groups. This was done by Zimmer in [138, 141] and
was recently further studied in the context of measured groupoids in [8, 9].
We return to this discussion in §4.2.1. The ME-invariance of a-T-menability
follows from (2) and (4); see [24, 76].

3.1.2. cost of groups The notion of the cost of an action/relation was
introduced by Levitt [90] and developed by Damien Gaboriau [53, 54, 56];
the monographs [81] and [80] also contain an extensive discussion of this
topic.

The cost of an essentially free p.m.p. action ! ! (X ,µ), denoted cost (! !
X ), is the cost of the corresponding orbit relations cost (R!!X ) as defined in
§4.2.4 (it is the infimum of the weights of generating systems for the groupoid
where the “weight” is the sum of the measures of the domain/image sets
of the generating system). The cost of an action can be turned into a group
invariant/(s) by setting

C ∗ (!) = inf
X

cost (! ! X ), C ∗ (!) = sup
X

cost (! ! X )

where the infimum/supremum are taken over all essentially free p.m.p.
actions of ! (we drop ergodicity assumption here; in the definition of C ∗ (!)
essential freeness is also superfluous). Groups ! for which C ∗ (!) = C ∗ (!)
are said to have fixed price, or prix fixe (abbreviated P.F.). For general groups,
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Gaboriau defined the cost of a group to be the lower one:

C (!) = C ∗ (!).

To avoid confusion, we shall use here the notation C ∗ (!) for general groups,
and reserve C (!) for P.F. groups only.

question 3.3. Do all countable groups have property P.F.?

The importance of this question will be illustrated in §4.2.4; for example, a
positive answer to an apparentlyweakerQuestion 4.11wouldhave applications
to groups theory and 3-manifold (Abert-Nikolov [1]).

The properties C ∗ = 1, 1 < C ∗ <∞, and C ∗ =∞ are ME-invariants.
More precisely:

theorem 3.4. If !
ME∼ ", then C ∗ (")− 1 = [! : "]# ·

(
C ∗ (!)− 1

)
for

some/any (!,")-coupling #.

We do not know whether the same holds for C ∗. Note that in [54] this ME-
invariance is stated for P.F. groups only.

Proof. Let # be a (!,")-coupling with ! ! X = #/" and " ! Y = #/!

being free, whereX ,Y ⊂ # are"-, !- fundamental domains. Given any essen-
tially free p.m.p. action" ! Z, consider the (!,")-coupling #̄ = #×Z with
the actions

g : (ω, z) &→ (gω, z), h : (ω, z) &→ (hω, hz) (g ∈ !, h ∈ ").

The actions! ! X̄ = #̄/" and" ! Ȳ = #̄/! are stably orbit equivalentwith
index [! : "]#̄ = [! : "]# = c. Hence (using Theorem 4.7 below) we have

c · ( cost (R!!X̄ )− 1) = cost (R"!Ȳ )− 1.

While ! ! X̄ is a skew product over ! ! X , the action" ! Ȳ is the diagonal
action on Ȳ = Y ×Z. Since Ȳ = Y ×Z has Z as a "-equivariant quotient, it
follows (by considering preimages of any “graphing system”) that

cost (" ! Ȳ ) ≤ cost (" ! Z).

Since " ! Z was arbitrary, we deduce C ∗ (")− 1 ≥ c ·
(
C ∗ (!)− 1

)
. A

symmetric argument completes the proof. !

theorem 3.5. (gaboriau [53,54,56])The following classes of groups have P.F.:

   You are reading copyrighted material published by University of Chicago Press. 
   Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal

   and injures the author and publisher.



a survey of measured group theory / 313

1)Any finite group ! has C ∗ (!) = C ∗ (!) = 1− 1
|!| .

2) Infinite amenable groups have C ∗ (!) = C ∗ (!) = 1.
3)Free group Fn, 1 ≤ n ≤ ∞, have C ∗ (Fn) = C ∗ (Fn) = n.
4)Surface groups ! = π1()g ) where )g is a closed orientable surface of genus

g ≥ 2 have C ∗ (!) = C ∗ (!) = 2g − 1.
5)Amalgamated products ! = A ∗C B of finite groups have P.F. with

C ∗ (!) = C ∗ (!) = 1− (
1

|A| + 1
|B| −

1
|C| ).

In particular, C ∗ ( SL2 (Z)) = C ∗ ( SL2 (Z)) = 1+ 1
12 .

6)Assume !1, !2 have P.F., then the free product !1 ∗!2 and more general
amalgamated free products " = !1 ∗A !2 over an amenable group A, has
P.F. with

C (!1 ∗!2) = C (!1)+ C (!2), C (!1 ∗A !2) = C (!1)+ C (!2)−C (A).

7)Products! = !1×!2 of infinite nontorsion groups have C ∗ (!) = C ∗ (!) =
1.

8)Finitely generated groups! containing an infinite amenable normal subgroup
have C ∗ (!) = C ∗ (!) = 1.

9)Arithmetic lattices ! of higher Q-rank (e.g., SLn≥3 (Z)) have C ∗ (!) =
C ∗ (!) = 1.

Note that for an infinite groupC ∗ (!) = 1 iff! has P.F. of cost 1. So the content
of cases (2), (7), (8), and (9) is that C ∗ (!) = 1.

question 3.6. Is it true that for all (irreducible) lattices ! in a (semi)simple Lie
group G of higher rank have P.F. of C ∗ (!) = 1? Is it true that any infinite group
! with Kazhdan’s property (T) has P.F. with C ∗ (!) = 1?

Item (9) in Theorem 3.5 provides a positive answer to the first question for
some nonuniform lattices in higher-rank Lie groups, but the proof relies on the
internal structure of such lattices (chains of pairwise commuting elements),
rather than on its relation to the ambient Lie group G (which also has a lot
of commuting elements). Note also that Theorem 3.4 implies that C ∗ (!) = 1
for all higher-rank lattices. The motivation for the second question is that
property (T) implies vanishing of the first .2-Betti number, β(2)1 (!) = 0; while
for infinite groups it was shown by Gaboriau that

3.1 β
(2)
1 (!) = β

(2)
1 (R!!X ) ≤ cost (R!!X )− 1.

   You are reading copyrighted material published by University of Chicago Press. 
   Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal

   and injures the author and publisher.



314 / a. furman

Furthermore, there are no known examples of strict inequality. Lattices ! in
higher-rank semisimpleLie groupswithout property (T) still satisfyβ(2)1 (!) = 0
(an argument in the spirit of the current discussion is β(2)1 for ME groups
are positively proportional by Gaboriau’s theorem 3.8, an irreducible lattice
in a product is ME to a product of lattices and products of infinite groups
have β(2)1 = 0 by the Küneth formula. Shalom’s [130] provides a completely
geometric explanation).

To give the flavor of the proofs let us indicate the argument for (8) in Theo-
rem 3.5. Let ! be a group generated by a finite set {g1, . . . , gn} and containing
an infinite normal amenable subgroup A and ! ! (X ,µ) be an essentially
free (ergodic) p.m.p. action. Since A is amenable, there is aZ-action on X with
RA!X = RZ!X (mod null sets), and we let φ0 : X → X denote the action of
the generator ofZ. Given ε > 0 one can find a subsetE ⊂ X with 0 < µ(E) < ε

so that
⋃

a∈A aE = ⋃
φn
0E = X mod null sets (if A-action is ergodic, any posi-

tive measure set works; in general, one uses the ergodic decomposition). For
i = 1, . . . , n let φi be the restriction of gi to E. Now one easily checks that
the normality assumption implies that( = {φ0,φ1, . . . ,φn} generates R!!X ,
while cost (() = 1+ nε.

For general (not necessarily P.F.) groups !i a version of (6) still holds:

C ∗ (!1 ∗!2) = C ∗ (!1)+ C ∗ (!2),

C ∗ (!1 ∗A !2) = C ∗ (!1)+ C ∗ (!2)−C (A)

where A is finite or, more generally, amenable.
Very recently Miklos Abert and Benjamin Weiss [2] showed:

theorem 3.7. (abert-weiss [2]) For any discrete countable group !, the
highest cost C ∗ (!) is attained by nontrivial Bernoulli actions ! ! (X0,µ0)! and
their essentially free quotients.

Some comments are in order. Kechris [80] introduced the following notion:
for probability measure-preserving actions of a fixed group ! say that ! !
(X ,µ) weakly contains ! ! Y if given any finite measurable partition Y =⊔n

i=1 Yi, a finite set F ⊂ ! and an ε > 0, there is a finite measurable partition
X = ⊔n

i=1 Xi so that
∣∣µ(gXi ∩Xj)− ν(gYi ∩Yj)

∣∣ < ε (1 ≤ i, j ≤ n, g ∈ F).

Themotivation for the terminology is the fact thatweak containment of actions
implies (but not equivalent to) weak containment of the corresponding unitary
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representations: L2(Y ) 8 L2(X ). It is clear that a quotient is (weakly) con-
tained in the larger action. It is also easy to see that the cost of a quotient
action is no less than that of the original (because one can lift any graphing
from a quotient to the larger action maintaining the cost of the graphing).
Kechris [80] proves that this (anti)monotonicity still holds in the context of
weak containment of essentially free actions of finitely generated groups,
namely:

! ! Y 8 ! ! X =⇒ cost (! ! Y ) ≥ cost (! ! X ).

In fact, it follows from the more general fact that cost is upper semicon-
tinuous in the topology of actions. Abert and Weiss prove that Bernoulli
actions (and their quotients) are weakly contained in any essentially free
action of a group. Thus Theorem 3.7 follows from the monotonicity of the
cost.

3.1.3. .2-betti numbers The .2-Betti numbers of (coverings of) manifolds
were introduced by Atiyah in [11]. Cheeger and Gromov [23] defined .2-Betti
numbers β(2)i (!) ∈ [0,∞], i ∈ N, for arbitrary countable group ! as dimen-
sions (in the sense of Murray von Neumann) of certain homology groups
(which are Hilbert !-modules). For reference we suggest [35], [92]. Here let
us just point out the following facts:

1) If ! is infinite amenable, then β(2)i (!) = 0, i ∈ N.

2) For free groups β(2)1 (Fn) = n− 1 and β(2)i (Fn) = 0 for i > 1.

3)For groups with property (T), β(2)1 (!) = 0.
4)Küneth formula: β (2)k (!1×!2) = ∑

i+j=k β
(2)
i (!1) ·β(2)j (!2).

5)Kazhdan’s conjecture, proved by Lück, states that for residually finite
groups satisfying appropriate finiteness properties (e.g., finite K (pi, 1))
the .2-Betti numbers are the stable limit of Betti numbers of finite-index
subgroupsnormalizedby the index: β (2)i (!) = lim βi(!n)

[!:!n] where! > !1 >

. . . is a chain of normal subgroups of finite index.
6)The .2 Euler characteristic χ (2)(!) = ∑

(− 1)i ·β(2)i (!) coincides with
the usual Euler characteristic χ (!) = ∑

(− 1)i ·βi(!), provided both are
defined, as is the case for fundamental group ! = π1(M) of a compact
aspherical manifold.

7)According to the Hopf-Singer conjecture the .2-Betti numbers for a fun-
damental group ! = π1(M), of a compact aspherical manifold M vanish
except, possibly, in the middle dimension n. Atiyah’s conjecture states
that .2-Betti numbers are integers.

   You are reading copyrighted material published by University of Chicago Press. 
   Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal

   and injures the author and publisher.



316 / a. furman

The following remarkable result ofDamienGaboriau states that these intricate
numeric invariants of groups are preserved under measure equivalence, after
a rescaling by the coupling index.

theorem 3.8. (gaboriau [55], [57]) Let !
ME∼ " be ME-countable groups.

Then

β
(2)
i (") = c ·β(2)i (!) (i ∈ N)

where c = [! : "]# is an/the index of some/any (!,")-coupling.

In fact, Gaboriau introduced thenotion of .2-Betti numbers for II1-relations
and related them to .2-Betti numbers of groups in case of the orbit relation
for an essentially free p.m.p. action—see more comments in §4.2.5 below.

Thus the geometric information encoded in the .2-Betti numbers for fun-
damental groups of aspherical manifolds, such as Euler characteristic and
sometimes the dimension, pass through measure equivalence. In particular,
if lattices !i (i = 1, 2) (uniform or not) in SUni ,1(R) are ME, then n1 = n2; the
same applies to Spni ,1(R) and SO2ni ,1(R). (The higher-rank lattices are covered
by stronger rigidity statements—see §3.2.1 below). Furthermore, it follows
from Gaboriau’s result that in general the set

D(2)(!) =
{
i ∈ N : 0 < β

(2)
i (!) <∞

}

is anME-invariant. Conjecture (7) relates this to thedimensionof amanifoldM
in the case of ! = π1(M). One shouldn’t expect dim (M) to be anME-invariant
of π1(M), as the examples of tori show; note also that for any manifold M one

has π1(M×Tn)
ME∼ π1(M×Tk). However, among negatively curvedmanifolds

Theorem 3.13 below shows that dim (M) is an invariant of .1-ME.
For closed asphericalmanifoldsM the dimension dim (M) is a QI-invariant

of π1(M). Pansu proved that the whole set D(2)(!) is a QI-invariant of !.
However, positive proportionality of .2-Betti numbers for ME fails under QI;
in fact, there are QI groups whose Euler characteristics have opposite signs.
Yet

corollary 3.9. For ME groups ! and" with well-defined Euler characteristic,
say fundamental groups of compact manifolds, one has

χ (") = c ·χ (!), where c = [! : "]# ∈ (0,∞).

In particular, the sign (positive, zero, negative) of the Euler characteristic is an
ME-invariant.
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3.1.4. cowling-haagerup"-invariant This numeric invariant"G, taking
values in [1,∞], is defined for any lcsc group G in terms of norm bounds on
unit approximation in the Fourier algebra A(G) (see Cowling and Haagerup
[31]). The "-invariant coincides for a lcsc group and its lattices. Moreover,

Cowling and Zimmer [32] proved that !1
OE∼ !2 implies "!1 = "!2 . In fact,

their proof implies the invariance under measure equivalence (see [76]). So,
"! is an ME-invariant.

Cowling andHaagerup [31] computed the"-invariant for simple Lie groups
and their lattices: in particular, proving that "G = 1 for G 0 SOn,1(R) and
SUn,1(R), "G = 2n− 1 for G 0 Spn,1(R), and "G = 21 for the exceptional
rank-1 group G = F4(−20).

One may observe that simple Lie groups split into two classes: (1) SOn,1(R)
and SUn,1(R) family, and (2) G 0 Spn,1(R), F4(−20) and higher rank. Groups
in the first class have haagerup approximation property (HAP, a.k.a. a-T-
menability) and "G = 1, while groups in the second class have Kazhdan’s
property (T) and"G > 1. Cowling conjectured that"G = 1 and (HAP) might
be equivalent. Recently one implication of this conjecture has been disproved:
Cornulier, Stalder, and Valette [30] proved that the wreath product H 9F2 of a
finite group H by the free group F2 has (HAP), while Ozawa and Popa [108]
prove that "H9F2 > 1. The question whether "! = 1 implies (HAP) is still
open.

One may deduce now that if ! is a lattice in G 0 Spn,1(R) or in F4(−20) and

" is a lattice in a simple Lie group H, then !
ME∼ " iff G 0 H. Indeed, higher-

rank H are ruled out by Zimmer’s theorem 3.15; H cannot be in the families
SOn,1(R) and SUn,1(R) by property (T) or Haagerup property; and within the
family of Spn,1(R) and F4(−20) the"-invariant detects G (.2-Betti numbers can
also be used for this purpose).

3.1.5. treeability, antitreeability, and ergodic dimension In [4] Scott
Adams introduced the notion of treeable equivalence relations (see §4.2.3).
Following [81], a group ! is

Treeable: if there exists an essentially free p.m.p. !-action with a treeable
orbit relation.

Strongly treeable: if every essentially free p.m.p. !-action gives a treeable
orbit relation.

Antitreeable: if there are no essentially free p.m.p. !-actions with a treeable
orbit relation.
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Amenable groups and free groups are strongly treeable. It seems to be still
unknown whether there exist treeable but not strongly treeable groups; in
particular, it is not clear whether surface groups (that are treeable) are strongly
treeable.

The properties of being treeable or antitreeable are ME-invariants. More-

over, ! is treeable iff ! is amenable (i.e.,
ME∼ F1 = Z), or is ME to either F2

or F∞ (this fact uses Hjorth’s [69]; see [81, theorems 28.2 and 28.5]). Groups
with Kazhdan’s property (T) are antitreeable [6]. More generally, it follows
from the recent work of Alvarez and Gaboriau [7] that a nonamenable group
! with β(2)1 (!) = 0 is antitreeable (in view of Equation (3.1) this also strength-
ens [54, corollaire VI.22], where Gaboriau showed that a nonamenable ! with
C ∗ (!) = 1 is antitreeable).

A treeing of a relation can be seen as a !-invariant assignment of pointed
trees with ! as the set of vertices. One may view the relation acting on this
measurable family of pointed trees by moving the marked point. More gener-
ally, one might define actions by relations, or measured groupoids, on fields
of simplicial complexes. Gaboriau defines (see [57]) the geometric dimension
of a relation R to be the smallest possible dimension of such a field of con-
tractible simplicial complexes; the ergodic dimension of a group ! will be the
minimal geometric dimension over orbit relations R!!X of all essentially
free p.m.p. !-actions. In this terminology R is treeable iff it has geometric
dimension 1, and a group ! is treeable if its ergodic dimension is 1. There
is also a notion of an approximate geometric/ergodic dimension [57] describ-
ing the dimensions of a sequence of subrelations approximating a given orbit
relation.

theorem 3.10. (gaboriau [57]) Ergodic dimensionandapproximate ergodic
dimension are ME-invariants.

This notion can be used to obtain some information about ME of lattices
in the family of rank-1 groups SOn,1(R). If !i < SOni ,1(R), i = 1, 2 are lattices

and !1
ME∼ !2, then Gaboriau’s result on .2-Betti numbers shows that if one

of ni is even, then n1 = n2. However, for ni = 2ki + 1 all β(2)i vanish. In this
case Gaboriau shows, using the above ergodic dimension, that k1 ≤ k2 ≤ 2k1
or k2 ≤ k1 ≤ 2k2.

3.1.6. free products It was mentioned above that if !i
OE∼ ", then ∗i∈I!i

OE∼
∗i∈I"i (here !

OE∼ "means that the two groups admit an ergodic ME-coupling
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with index 1, and equivalently admit essentially free actions that are orbit
equivalent). To what extent does the converse hold? Namely, when can one
recognize the free factors on the level of measure equivalence?

This problem was extensively studied by Ioana, Peterson, and Popa in
[75] where strong rigidity results were obtained for orbit relations under cer-
tain assumptions on the actions (see §4.2.8). Here let us formulate a recent
result from Alvarez and Gaboriau [7] that can be stated in purely group the-
oretic terms. In [7] a notion of measurably freely indecomposable groups
(MFI) is introduced, and it is shown that this class includes all nonamenable
groups with β(2)1 = 0. Thus, infinite property (T) groups, nonamenable direct
products, are examples of MFI groups.

theorem 3.11. (alvarez-gaboriau [7]) Suppose that ∗ni=1!i
ME∼ ∗mj=1"j ,

where {!i}n
i=1 and {"j}m

j=1 are two sets of MFI groups with !i 2
ME∼ !i′ for 1 ≤ i 2=

i′ ≤ n, and "j 2
ME∼ "j′ for 1 ≤ j 2= j′ ≤ m. Then n = m and, up to a permutation

of indices, !i
ME∼ "i .

Another result from [7] concerning decompositions of equivalence relations
as free products of subrelations is discussed in §4.2.8.

Let us also mention recent works of Kida [88] and Popa and Vaes [120] that
describe extremely strong rigidity properties for certain amalgamated products
of various rigid groups.

3.1.7. the classes Creg and C In §3.2.2 belowwe shall discuss rigidity results
obtained by Nicolas Monod and Yehuda Shalom in [101] (see also [99, 100]
and jointly with Mineyev [96]). These results involve second-bounded coho-
mology with unitary coefficients: H2

b (!,π )—a certain vector space associated
to a countable group ! and a unitary representation π : !→ U(Hπ ). (Some
background on bounded cohomology can be found in [101, §3] or [98]; for
more details see [21, 97]). Monod and Shalom define the class Creg of groups
characterized by the property that

H2
b (!, .

2(!)) 2= {0}

and (potentially larger) class C of groups ! with nonvanishing H2
b (!,π ) for

some mixing !-representation π . Known examples of groups in Creg ⊂ C
include groups admitting “hyperboliclike” actions of the following types (see
[100], [96]):
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i) nonelementary simplicial action on some simplicial tree, proper on the
set of edges;

ii) nonelementary proper isometric action on some proper CAT(-1) space;
and

iii) nonelementary proper isometric action on some Gromov-hyperbolic
graph of bounded valency.

Hence Creg includes free groups, free products of arbitrary countable groups,
and freeproducts amalgamatedover afinite group (with theusual exceptionsof
order 2), fundamental groups of negatively curved manifolds, Gromov hyper-
bolic groups, and nonelementary subgroups of the above families. Examples
of groups not in C include amenable groups, products of at least two infinite
groups, lattices in higher-rank simple Lie groups (over any local field), and
irreducible lattices in products of general compactly generated nonamenable
groups (see [101, §7]).

theorem 3.12. (monod-shalom [101])

1)Membership in Creg or C is an ME-invariant.
2)For direct products ! = !1× · · ·×!n where !i ∈ Creg are torsion free, the

number of factors and their ME types are ME-invariants.

3)For ! as above, if "
ME∼ !, then " cannot be written as a product of m > n

infinite torsion-free factors.

3.1.8. dimension and simplicial volume (.1-me) Geometric properties
are hard to capture with the notion of measure equivalence. The .2-Betti num-
bers is an exception, but this invariant benefits from itsHilbert spacenature. In
[13, 14] Uri Bader, Roman Sauer, and the author consider a restricted version
of measure equivalence, namely, .1-ME (see §2.3.2 for a definition). Being .1-
ME is an equivalence relation between finitely generated groups, in which any
two integrable lattices in the same lcsc group are .1-ME. All uniform lattices
are integrable, and so are all lattices in SOn,1(R) 0 Isom (Hn

R) (see §3.2.4).

theorem 3.13. (bader-furman-sauer [14]) Let !i = π1(Mi) where Mi

are closed manifolds that admit a Riemannian metric of negative sectional curvature.
Assume that !1 and !2 admit an .1-ME-coupling #. Then

dim (M1) = dim (M2) and ‖M1‖ = [!2 : !1]# · ‖M2‖,

where ‖Mi‖ denotes the simplicial volume of Mi.
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The simplicial volume ‖M‖ of a closed manifold M, introduced by Gromov in
[65], is the norm of the image of the fundamental class under the comparison
map Hn(M)→ H.1

n (M) into the .1-homology, which is an .1-completion of
the usual homology. This is a homotopy invariant of manifolds. Manifolds
carrying a Riemannian metric of negative curvature have ‖M‖ > 0 (Gromov
[65]).

3.2. Orbit/Measure Equivalence Rigidity

Let us now turn to measure equivalence rigidity results, that is, classifi-
cation results in the ME category. In the introduction to this section we
mentioned that the ME class ME(Z) is precisely all infinite amenable groups.
The (distinct) classes ME(F2≤n<∞) and ME(F∞) are very rich and resist pre-
cise description. However, much is known about more rigid families of
groups.

3.2.1. higher-rank-lattices

theorem 3.14. (zimmer [139]) Let G and G′ be center-free simple Lie groups

with rkR(G) ≥ 2, let! < G, !′ < G′ be lattices, and! ! (X ,µ)
OE∼ !′ ! (X ′,µ′)

be orbit equivalence between essentially free probability measure-preserving actions.
Then G ∼= G′. Moreover, the induced actions G ! (G×! X ), G′ ! (G′ ×!′ Y ) are
isomorphic up to a choice of the isomorphism G ∼= G′.

In other words ergodic (infinite) p.m.p. actions of lattices in distinct higher-
rank semisimple Lie groups alwayshave distinct orbit structures,5 for example,

2 ≤ n < m =⇒ SLn (Z) ! Tn 2OE∼ SLm (Z) ! Tm .

This remarkable result (a contemporary of Ornstein-Weiss Theorem 3.1) not
only showed that the variety of orbit structures of nonamenable groups is very
rich, but more importantly established a link between OE in ergodic theory
and the theory of algebraic groups and their lattices; in particular, introducing
Margulis’s superrigidity phenomena into ergodic theory. This seminal result
can be considered as the birth of the subject discussed in this survey. Let us
record an ME conclusion of the above.

5. There is no need here to assume that the actions are essentially free. Stuck and
Zimmer [135] showed that all non-atomic ergodic p.m.p. actions of higher-rank lattices are
essentially free; this is based on and generalizes the famous factor theorem of Margulis [94];
see [95].
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corollary 3.15. (zimmer) Let G, G′ be connected center-free simple Lie

groups with rkR(G) ≥ 2, ! < G and !′ < G′ lattices. Then !
ME∼ !′ iff G ∼= G′.

The picture of ME classes of lattices in higher-rank simple Lie groups can
be sharpened as follows.

theorem 3.16. ([44]) Let G be a center-free simple Lie group with rkR(G) ≥ 2,
! < G a lattice, " some group measure equivalent to !.

Then " is commensurable up to finite kernels to a lattice in G. Moreover, any
ergodic (!,")-coupling has a quotient that is either an atomic coupling (in which
case ! and " are commensurable), or G, or Aut (G) with the Haar measure.

(Recall that Aut (G) contains Ad (G) ∼= G as a finite-index subgroup). The
main point of this result is a construction of a representation ρ : "→ Aut (G)
for the unknown group"usingME to a higher-rank lattice!. It uses Zimmer’s
cocycle superrigidity theorem and a construction involving a bi-!-equivariant
measurable map#×" #̌→ Aut (G). An updated version of this construction
is stated in §5.5. The by-product of this construction is amap( : #→ Aut (G)
satisfying

((γω) = γ ((ω), ((λω) = ((ω)ρ(λ)−1.

It defines the above quotients (the push-forward measure (∗m is identified
as either atomic or Haar measure on G ∼= Ad (G) or on all of Aut (G), using
Ratner’s theorem [121]). This additional information is useful to derive OE
rigidity results (see Theorem 4.19).

3.2.2. products of hyperboliclike groups The results above use in an
essential way the cocycle superrigidity theorem of Zimmer, which exploits
higher-rank phenomena as in Margulis’s superrigidity. A particular situation
where such phenomena take place are irreducible lattices in products of
(semi)simple groups, starting from SL2 (R)×SL2 (R); or cocycles over irre-
ducible actions of a product of n ≥ 2 simple groups. Here irreducibility of
an action G1× · · ·×Gn ! (X ,µ) means ergodicity of Gi ! (X ,µ) for each
1 ≤ i ≤ n.6 It recently became clear that higher-rank phenomena occur also
for irreducible lattices in products of n ≥ 2 of rather general lcsc groups; and
in the cocycle setting, for cocycles over irreducible actions of products of n ≥ 2
of rather general groups (see the introduction to [101]). This is to say that the

6. Sometimes this can be relaxed to ergodicity of G′i ! (X ,µ) where G′i = ∏
j 2=i Gj .
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product structure alone seems to provide sufficient “higher-rank thrust” to the
situation. The following breakthrough results of Nicolas Monod and Yehuda
Shalom is an excellent illustration of this fact (see §5.2). Similar phenomena
were independently discovered by Greg Hjorth and Alexander Kechris in [70].

theorem 3.17. (monod-shalom [101, theorem 1.16]) Let ! = !1

× · · ·×!n and " = "1× · · ·×"m be products of torsion-free countable groups,

where !i ∈ Creg. Assume that !
ME∼ ".

Then n ≥ m. If n = m, then, after a permutation of the indices, !i
ME∼ "i . In

the latter case (n = m) any ergodic ME-coupling of ! ∼= " has the trivial coupling
as a quotient.

theorem 3.18. (monod-shalom [101]) Let ! = !1× · · ·×!n where
n ≥ 2 and !i are torsion-free groups in class C, and ! ! (X ,µ) be an irreducible
action (i.e., every !i ! (X ,µ) is ergodic); let " be a torsion free countable group

and " ! (Y , ν) be a mildly mixing action. If ! ! X
SOE∼ " ! Y, then this SOE

has index 1, and " ∼= ! and the actions are isomorphic.

theorem 3.19. (monod-shalom [101]) For i = 1, 2 let 1→ Ai →
!̄i → !i → 1 be a short exact sequence of groups with Ai amenable and !i are

in Creg and are torsion free. Then !̄1
ME∼ !̄2 implies !1

ME∼ !2.

A key tool in the proofs of these results is a cocycle superrigidity Theorem
5.5, which involves second-bounded cohomology H2

b of groups. In [12] (see also
[15]) Uri Bader and the author develop a different approach to higher-rank
phenomena, in particular showing an analogue of Monod-Shalom Theorem
5.5, as stated in Theorem 5.6. This result concerns a class of groups that admit
convergence action on a compact metrizable space (i.e., a continuous action
H ! M where the action H ! M3 \Diag on the locally compact space of
distinct triples is proper). Following Furstenberg [50] we denote this class asD,
and distinguish a subclassDea of groups admitting convergent action H ! M
with amenable stabilizers. As a consequence of this superrigidity theorem it
follows that Theorems 3.17–3.19 remain valid if class Creg is replaced by Dea.
Recently Hiroki Sako [122, 123] has obtained similar results for groups in
Ozawa’s class S (see [107]).

Let us point out that each of the classes Creg, Dea, S include all Gromov
hyperbolic groups (and many relatively hyperbolic ones), are closed undertak-
ing subgroups, and exclude direct products of two infinite groups. These are
key features of what one would like to call a “hyperboliclike” group.
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3.2.3. mapping class groups The following remarkable result of Yoshikata
Kida concerns mapping class groups of surfaces. Given a compact orientable
surface )g ,p of genus g with p boundary components the extended mapping
class group !()g ,p): is the group of isotopy components of diffeomorphisms
of )g ,p (the mapping class group itself is the index 2 subgroup of isotopy
classes of orientation-preserving diffeomorphisms). In the following assume
3g + p > 0, that is, rule out the torus )1,0, once-punctured torus )1,1, and
spheres )0,p with p ≤ 4 punctures.

theorem 3.20. (kida [86]) Let ! be a finite-index subgroup in !()g ,p): with
3g + p− 4 > 0, or in a finite product of such mapping class groups

∏n
i=1 !()g ,p):.

Then any group"
ME∼ ! is commensurable up to finite kernels to !, and ergodic

ME-coupling has a discrete (!,")-coupling as a quotient.

This work (spanning [83, 85, 86]) is a real tour de force. Mapping class
groups !()) are often compared to a lattice in a semisimple Lie group G: the
Teichmüller space T ()) is analogous to the symmetric space G/K , Thurston
boundary PML()) analogous to Furstenberg boundary B(G) = G/P, and
the curve complex C()) to the spherical Tits’s building of G. The MCG has
been extensively studied as a geometric object, while Kida’s work provides a
new ergodic-theoretic perspective. For example, Kida proves that Thurston
boundary PML()) with the Lebesgue measure class is !-boundary in the
sense of Burger-Monod for the mapping class group, that is, the action of
the latter is amenable and doubly ergodic with unitary coefficients. Properties
of the MCG action on PML()) allow Kida to characterize certain subrela-
tions/subgroupoids arising in self-measure equivalence of a MCG; leading to
the proof of a cocycle (strong) rigidity Theorem 5.7, which can be viewed as
a groupoid version of Ivanov’s rigidity theorem. This strong rigidity theorem
can be used with §5.5 to recognize arbitrary groups ME to an MCG.

Note that a mapping class group behaves like a “lattice without ambient
Lie group”—all its ME-couplings have discrete quotients. Moreover, Kida’s
ME rigidity results extend to products of MCGs without any irreducibility
assumptions. From this point of view MCGs are more ME rigid than higher-
rank lattices, despite the fact that they lackmany other rigidity attributes, such
as property (T) (see Andersen [10]).

Added in proof. Very recently additional extremely strong ME rigidity
results were obtained in Kida [88] and Popa and Vaes [120] for certain amal-
gamated products of higher-rank lattices and also mapping class groups. The
latter paper also establishes W∗-rigidity.
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3.2.4. hyperbolic lattices and .1-me Measure equivalence ismotivated by
the theory of lattices, with ME-couplings generalizing the situation of groups
embedded as lattices in the same ambient lcsc group. Thus, in the context of
semisimple groups, one wonders whether ME rigidity results would parallel
Mostow rigidity; and in particular would apply to (lattices in) all simple groups
with the usual exception of SL2 (R) 0 SO2,1(R) 0 SU1,1(R). The higher-rank
situation (at least that of simple groups) is well understood (§3.2.1). In the rank
1 case (consisting of the families SOn,1(R), SUm,1(R), Spk,1(R), and F4(−20))
known ME-invariants discussed above (namely: property (T), .2-Betti num-
bers, "-invariant, ergodic dimension) allow to distinguish lattices among
most rank 1 groups. This refers to statements of the form: if !i < Gi are

lattices, then !1
ME∼ !2 iff G1 0 G2. However, ME classification such as in

Theorems 3.16, 3.17, and 3.20 are not known for rank 1 cases. The ingredient
that is missing in the existing approach is an appropriate cocycle superrigidity
theorem.7

In a joint work with Uri Bader and Roman Sauer a cocycle strong rigidity
theorem is proved forME-cocycles for lattices in SOn,1(R) 0 Isom (Hn

R), n ≥ 3,
under a certain .1-assumption (see §2.3.2). It is used to obtain the following:

theorem 3.21. (bader-furman-sauer [13]) Let ! is a lattice in G =
Isom (Hn), n ≥ 3, and " is some finitely generated group .1-ME to ! then "
is a lattice in G modulo a finite normal subgroup. Moreover, any ergodic (!,")-
coupling has a quotient, which is either discrete, or G = Aut (G), or G0 with the
Haar measure.

Recently Sorin Popa has introduced a new set of ideas for studying orbit
equivalence. These results, rather than relying on rigidity of the acting groups
alone, exploit rigidity aspects of groups actions of certain type. We shall discuss
them in §Sections 5.4, and 5.6, and 5.7.

3.3. How Many Orbit Structures Does a Given Group Have?

Theorem 3.1 of Ornstein andWeiss [105] implies that for an infinite amenable
countable group ! all ergodic probability measure preserving actions ! !
(X ,µ) define the same orbit structure, namely, Ramen. What happens for
non-amenable groups !?

7. For Spn,1(R) and F4(−20) a cocycle superrigidity theorem was proved by Corlette and
Zimmer [29] (see also Fisher and Hitchman [43]), but these results require boundness
assumptions that preclude them from being used for ME-cocycles.
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theorem 3.22. (epstein [36], after ioana [73] and gabotiau-
lyons [60]) Any nonamenable countable group ! has a continuum of essentially
free ergodic probability measure-preserving actions ! ! (X ,µ), no two of which are
stably orbit equivalent.

Letusbrieflydiscuss theproblemand its solution. SinceCard( Aut (X ,µ)!) =
ℵ = 2ℵ0 there are at most continuummany actions for a fixed countable group
!. In fact, this upper bound on the cardinality of isomorphism classes of
actions is achieved, using the corresponding fact about unitary representa-
tions and the Gaussian construction. Hence onemight expect at most ℵ-many
non-OE actions for any given !. OE rigidity results showed that some specific
classes of groups indeed have many mutually non-OE actions; this includes
higher-rank lattices [64], products of hyperboliclike groups [101, theorem
1.7], and some other classes of groups [110, 113]). But the general question,
regarding an arbitrary nonamenable !, remained open.

Most invariants of equivalence relations depend on the acting group rather
than the action, and thus could not be used to distinguish actions of the fixed
group !. The notable exception to this metamathematical statement appears
for nonamenable groups that do not have property (T). For such groups two
non-SOE actions can easily be constructed: (1) a strongly ergodic action (using
Schmidt’s [129]), and (2) an ergodic action that is not strongly ergodic (using
Connes-Weiss [28]). Taking a product with an essentially free weakly mixing
strongly ergodic !-actions (e.g., the Bernoulli action (X0,µ0)!) makes the
above two actions essentially free and distinct.

In [68]GregHjorth showed that if! hasproperty (T), the set of isomorphism
classes of orbit structures for essentially free !-actions has cardinality ℵ, by
proving that the natural map from the isomorphism classes of essentially free
ergodic !-actions to the isomorphism classes of !-orbit structures is at most
countable-to-one. More precisely, the space of !-actions producing a fixed-
orbit structure is equipped with a structure of a Polish space (separability)
where any two nearby actions are shown to be conjugate. This is an example
of proving rigidity up to countable classes combining separability of the ambient
space with a local rigidity phenomenon (stemming from property (T); see §5.6
below). These ideas can be traced back to Connes [26] and Popa [106], and play
a central role in the most recent developments—see [114] §4].

The challenge now became to show that other nonamenable groups have
infinitely, or even ℵ-many, non-OE essentially free ergodic actions. Damien
Gaboriau and Sorin Popa [59] achieved this goal for the quintessential repre-
sentative of a nonamenable group without property (T), namely for the free
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group F2. Using a sophisticated rigidity vs. separability argument they showed
that within a certain rich family of F2-actions the map from isomorphism
classes of actions to orbit structures is countable-to-one. The rigidity com-
ponent of the argument was this time provided by Popa’s notion of w-rigid
actions such as SL2 (Z) ! T2, with the rigidity related to the relative property
(T) for the semidirect product SL2 (Z)"Z2 viewing Z2 as the Pontryagin dual
of T2.

In [73] Adrian Ioana obtained a sweeping result showing that any ! con-
taining a copy of F2 has ℵ-many mutually non-SOE essentially free actions.
The basic idea of the construction being to use a family of non-SOE of F2-
actions F2 ! Xt to construct co-induced !-actions ! ! X!/F2

t and pushing
the solution of F2-problem to the analysis of the co-induced actions. The class
of groups containing F2 covers “most of” the class of nonamenable groups
with few, very hard to obtain, exceptions. The ultimate solution to the prob-
lem, covering all nonamenable groups, was shortly obtained by Inessa Epstein
[36] using a result by Damien Gaboriau and Russel Lyons [60], who proved
that any nonamenable ! contains an F2 in a sort of measure-theoretical sense.
Epstein was able to show that this sort of containment suffices to carry out an
analogue of Ioana’s co-induction argument [73] to prove Theorem 3.22.

Furthermore, in [74] Ioana, Kechris, and Tsankov, jointly with Epstein,
show that for any nonamenable ! the space of all ergodic-free p.m.p. actions
taken up to OE not only has cardinality of the continuum, but is also impossi-
ble to classify in a very strong sense. Onemay also add thatmost of the general
resultsmentioned above show thatwithin certain families of actions the group-
ing intoSOE-oneshas countable classes, therefore givingonly implicit families
of non-SOE actions. In [71] Ioana provided an explicit list of a continuum of
mutually non-SOE actions of F2.

4. Measured Equivalence Relations

4.1. Basic Definitions

Westart with the notion of countable equivalence relations in the Borel setting.
It consists of a standard Borel space (X ,X ) (cf. [39] for definitions) and a
Borel subset R ⊂ X ×X , an equivalence relation whose equivalence classes
R[x] =

{
y ∈ X : (x, y) ∈ R

}
are all countable.

To construct such relations choose a countable collection ( = {φi}i∈I of
Borel bijections φi : Ai → Bi between Borel subsets Ai,Bi ∈ X , i ∈ I; and let
R( be the smallest equivalence relation including the graphs of all φi, i ∈ I.
More precisely, (x, y) ∈ R( iff there exists a finite sequence i1, . . . , ik ∈ I and
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ε1, . . . , εk ∈ {−1, 1} so that

y = φ
εk
ik
◦ · · · ◦φε2i2

◦φε1i1
(x).

We shall say that the family ( generates the relation R(. The particular case
of a collection( = {φi} of Borel isomorphisms of the whole space X generates
a countable group ! = 〈(〉 and

R( = R!!X =
{
(x, y) : !x = !y

}
=
{
(x, γ .x) : x ∈ X , γ ∈ !

}
.

Feldman and Moore [39] proved that any countable Borel equivalence relation
admits a generating set whose elements are defined on all ofX ; in other words,
any equivalence relation appears as the orbit relation R!!X of a Borel action
! ! X of some countable group ! (see §4.3.1).

Given a countable Borel equivalence relation R the full group [R] is
defined by

[R] =
{
φ ∈ Aut (X ,X ) : ∀x ∈ X : (x,φ(x)) ∈ R

}
.

The full pseudogroup [[R]] consists of partially defined Borel isomorphisms

ψ : Dom(ψ)→Im(ψ), so that Graph(ψ)=
{
(x,ψ(x)) : x ∈Dom(ψ)

}
⊂R.

If R is the orbit relation R!!X of a group action ! ! (X ,X ), then any φ ∈
[R] has the following “piecewise !-structure”: there exist countable partitions⊔

Ai = X = ⊔
Bi into Borel sets and elements γi ∈ ! with γi(Ai) = Bi so

that φ(x) = γix for x ∈ Ai. Elements ψ of the full pseudogroup [[R!]] have a
similar “piecewise !-structure” with

⊔
Ai = Dom(ψ) and

⊔
Bi = Im(ψ).

Let R be a countable Borel equivalence relation on a standard Borel
space (X ,X ). A measure µ on (X ,X ) is R-invariant (respectively, R-quasi-
invariant) if for all φ ∈ [R], φ∗µ = µ (respectively, φ∗µ ∼ µ). Note that if
( = {φi : Ai → Bi} is a generating set for R, then µ is R-invariant iff µ is
invariant under each φi, that is,µ(φ

−1
i (E)∩Ai) = µ(E ∩Bi) for all E ∈ X . Sim-

ilarly, quasi-invariance of a measure can be tested on a generating set. The
R-saturation of E ∈ X is R[E] =

{
x ∈ X : ∃y ∈ E, (x, y) ∈ R

}
. A R (quasi-)

invariant measure µ is ergodic if R[E] is either µ-null or µ-conull for any
E ∈ X . In this section we shall focus on countable Borel equivalence relations
R on (X ,X ) equipped with an ergodic, invariant, nonatomic, probability mea-
sure µ on (X ,X ). Such a quadruple (X ,X ,µ,R) is called type II1-relation.
These are precisely the orbit relations of ergodic measure-preserving actions
of countable groups on nonatomic standard probability measure spaces (the
nontrivial implication follows from the above-mentioned theorem of Feldman
and Moore).
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Given a countable Borel relation R on (X ,X ) and an R-quasi-invariant
probability measure µ, define infinite measures µ̃L, µ̃R on R by

µ̃L(E) =
∫

X
#
{
y : (x, y) ∈ E ∩R

}
dµ(x),

µ̃R(E) =
∫

X
#
{
x : (x, y) ∈ E ∩R

}
dµ(y).

These measures are equivalent, and coincide if µ is R-invariant, which is our
main focus. In this case we shall denote

4.1 µ̃ = µ̃L = µ̃R.

Hereafter, saying that some property holds a.e. onR would refer to µ̃-a.e. (this
makes sense even if µ is only R-quasi-invariant).

remark 4.1. In some situations a Borel equivalence relation R on (X ,X ) has
only one (nonatomic) invariant probability measure. For example, this is the case
for the orbit relation of the standard action of a finite-index subgroup8 ! < SLn (Z)
on the torus Tn = Rn/Zn, or for a lattice ! in a simple center-free Lie group G
acting on H/", where H is a simple Lie group, " < H is a lattice, and ! acts by
left translations via an embedding j : G→ H with j(G) having trivial centralizer in
H. In such situations one may gain understanding of the countable Borel equivalence
relation R via the study of the II1-relation corresponding to the unique R-invariant
probability measure.

As always in the measure-theoretic setting null sets should be consid-
ered negligible. So an isomorphism T between (complete) measure spaces
(Xi,Xi,µi), i = 1, 2, is a Borel isomorphism between µi-conull sets T : X ′1 →
X ′2 with T∗(µ1) = µ2. In the context of II1-relations, we declare two relations
(Xi,Xi,µi,Ri), i = 1, 2 to be isomorphic, if there exists a measure space iso-
morphism T : (X1,µ1) ∼= (X2,µ2) so that T ×T : (R1, µ̃1)→ (R2, µ̃2) is an
isomorphism. In other words, after a restriction to conull sets, T satisfies

(x, y) ∈ R1 ⇐⇒ (T (x),T (y)) ∈ R2.

Let us also adapt the notions of the full group and the full pseudogroup to the
measure-theoretic setting, by passing to a quotient Aut (X ,X )→ Aut (X ,X ,µ)
where two Borel isomorphisms φ and φ′ that agree µ-a.e. are identified. This
allows us to focus on the essential measure-theoretic issues. The following
easy but useful Lemma illustrates the advantage of this framework.

8. Or just Zariski dense subgroup; see [18].
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lemma 4.2. Let (X ,X ,µ,R) be a II1-relation. Then for A,B ∈ X one has
µ(φ(A)>B) = 0 for some φ ∈ [R] iff µ(A) = µ(B).

4.1.1. restriction and weak isomorphisms Equivalence relations admit
a natural operation of restriction, sometimes called induction, to a subset:
given a relation R on X and a measurable subset A ⊂ X the restriction RA to
A is

RA = R ∩ (A×A).

In the presence of, say, R-invariant, measure µ on (X ,X ) the restriction to
a subset A ⊂ X with µ(A) > 0 preserves the restricted measure µ|A, defined
by µ|A(E) = µ(A∩E). If µ is a probability measure, we shall denote by µA

the normalized restriction µA = µ(A)−1 · µ|A. It is easy to see that ergodicity
is preserved, so a restriction of a II1-relation (X ,µ,R) to a positive measure
subset A ⊂ X is a II1-relation (A,µA,RA).

remark 4.3. Note that it follows from Lemma 4.2 that the isomorphism class
of RA depends only on R and on the size µ(A), so RA may be denoted R t where
t = µ(A) is 0 < t ≤ 1. One may also define Rt for t > 1. For an integer k > 1
let Rk denote the product of R with the full relation on the finite set {1, . . . , k},
namely the relation on X × {1, . . . , k} with ((x, i), (y, j)) ∈ Rk iff (x, y) ∈ R. So
(Rk)1/k ∼= R1 ∼= R. The definition of R t can now be extended to all 0 < t <∞
using an easily verified formula (Rt)s ∼= R ts. This construction is closely related to
the notion of an amplification in von Neumann algebras: the Murray von Neumann
group-measure space construction MR satisfies MRt = (MR )t .

The operation of restriction/induction allows one to relax the notion of
isomorphism of II1-relations as follows:

definition 4.4. Two II1-relations R1 and R2 are weakly isomorphic if
R1 ∼= R t

2 for some t ∈ R×+ . Equivalently, there exist positive measurable
subsets Ai ⊂ Xi with µ2(A2) = t · µ1(A1) and an isomorphism between the
restrictions of Ri to Ai.

Observe that two ergodic probability measure-preserving actions !i !
(Xi,Xi,µi) of countable groups are orbit equivalent iff the corresponding orbit
relations R!i!Xi are isomorphic.
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4.2. Invariants of Equivalence Relations

Let us now discuss in some detail several qualitative and numerical properties
of II1 equivalence relations that are preserved under isomorphisms and often
preserved or rescaled by the index underweak isomorphisms.We refer to such
properties as invariants of equivalence relations. Many of these properties
are motivated by properties of groups, and often an orbit relation R!!X of
an essentially free action of a countable group would be a reflection of the
corresponding property of !.

4.2.1. amenability, strong ergodicity, and property (t) Amenability
of an equivalence relation can be defined in anumber ofways. In [138] Zimmer
introduced the notion of amenability for a group action on a space with quasi-
invariantmeasure. Thisnotionplays a central role in the theory. This definition
is parallel to the fixed-point characterization of amenability for groups. For
equivalence relation R on (X ,X ) with a quasi-invariant measure µ it reads as
follows.

Let E be a separable Banach space, and c : R → Isom (E) be a measurable
1-cocycle, that is, a measurable (with respect to the weak topology on E) map,
satisfying µ̃-a.e.:

c(x, z) = c(x, y) ◦ c(y, z).

Let X ? x &→ Qx ⊂ E∗ be a measurable family of nonempty convex compact
subsets of the dual space E∗ taken with the ∗-topology, so that c(x, y)∗(Qx ) =
Qy . The relation R is amenable if any such family contains a measurable
invariant section, that is, a measurable assignment X ? x &→ p(x) ∈ Qx , so
that a.e.:

c(x, y)∗p(x) = p(y).

The (original) definition of amenability for group actions concerned general
cocycles c : G×X → Isom (E) rather than the ones depending only on the
orbit relationR!!X . The languageofmeasuredgroupoidsprovides a common
framework for both settings (see [9]).

Any nonsingular action of an amenable group is amenable, because any
cocycle c : !×X → Isom (E) can be used to define an affine !-action on the
closed convex subset of L∞(X ,E∗) = L1(X ,E)∗ consisting of all measurable
sections x → p(x) ∈ Qx ; the fixed-point property of ! provides the desired c∗-
invariant section. The converse is not true: any (countable or lcsc) group admits
essentially free amenable action with a quasi-invariant measure—this is the
main use of the notion of amenable actions. However, for essentially free,
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probability measure-preserving actions, amenability of the II1-relation R!!X

implies (hence is equivalent to) amenability of !. Indeed, given an affine !
action α on a convex compact Q ⊂ E∗, one can take Qx = Q for all x ∈ X
and set c(gx, x) = α(g); amenability of R!!X provides an invariant section
p : X → Q whose barycenter q =

∫
X p(x) dµ(x) would be an α(!)-fixed point

in Q .
Connes, Feldman, andWeiss [27] proved that amenable relations arehyper-

finite in the sense that they can be viewed as an increasing union of finite
subrelations; they also showed that such a relation can be generated by an
action of Z (see also [78] by Kaimanovich for a nice exposition and several
other nice characterizations of amenability). It follows that there is only one
amenable II1-relation, which we denote hereafter by

Ramen.

In [141] Zimmer introduced the notion of property (T) for group actions on
measure spaces with quasi-invariant measure. The equivalence relation ver-
sion can be stated as follows. Let H be a separable Hilbert space and let
c : R → U(H ) be a measurable 1-cocycle, that is, c satisfies

c(x, z) = c(x, y) ◦ c(y, z).

Then R has property (T) if any such cocycle for which there exists a sequence
vn : X → S(H ) of measurable maps into the unit sphere S(H ) with

‖vn(y)− c(x, y)vn‖ → 0 [µ̃]-a.e.

admits a measurable map u : X → S(H ) with u(y) = c(x, y)u(x) for µ̃-a.e.
(x, y) ∈ R. For an essentially free probability measure-preserving action ! !
(X ,µ) the orbit relation R!!X has property (T) if and only if the group ! has
Kazhdan’s property (T) (in [141] weak mixing of the action was assumed for
the “only if ” implication, but this can be removed as in §3.1.1 relying on Bekka
- Valette [16]). In [8] Anantharaman-Delaroche studied the notion of property
(T) in the context of general measured groupoids.

LetR bea II1-equivalence relationon (X ,µ). A sequence {An}ofmeasurable
subsets of X is asymptotically R-invariant, if µ(φ(An)>An)→ 0 for every φ ∈
[R]. This is satisfied trivially ifµ(An) · (1−µ(An))→ 0. RelationR is strongly
ergodic if any asymptoticallyR-invariant sequence of sets is trivial in the above
sense. (Note that the condition of asymptotic invariance may be checked on
elements φi of any generating system ( of R.)

The amenable relationRamen is not strongly ergodic. If an action! ! (X ,µ)
has a spectral gap (i.e., does not have almost-invariant vectors) in the Koopman
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representation on L2(X ,µ)@C, then R!!X is strongly ergodic. Using the
fact that the Koopman representation of a Bernoulli action ! ! (X0,µ0)! is
contained in a multiple of the regular representation∞ · .2(!), Schmidt [128]
characterized nonamenable groups by the property that they admit p.m.p.
actions with strongly ergodic orbit relation. If R is not strongly ergodic, then
it has an amenable relation as a nonsingular quotient (Jones and Schmidt
[77]). Connes and Weiss [28] showed that all p.m.p. actions of a group ! have
strongly ergodic orbit relations if and only if ! has Kazhdan’s property (T). In
this short elegant paper they introduced the idea of Gaussian actions as a way
of constructing a p.m.p. action from a given unitary representation.

In general, strong ergodicity of the orbit relation R!!X does not imply
a spectral gap for the action ! ! (X ,µ) ([128], [70]). However, this impli-
cation does hold for generalized Bernoulli actions (Kechris and Tsankov
[82]), and when the action has an ergodic centralizer (Chifan and Ioana
[25, lemma 10]).

4.2.2. fundamental group-index values of self-similarity The term
“fundamental group” of a II1-relation R refers to a subgroup of R×+
defined by

F (R) =
{
t ∈ R×+ : R ∼= Rt} .

Equivalently, for R on (X ,µ), the fundamental group F (R) consists of all
ratios µ(A)/µ(B) where A,B ⊂ X are positive measure subsets with RA ∼=
RB (here one can take one of the sets to be X without loss of generality).
The notion is borrowed from a similarly defined concept of the fundamental
group of a von Neumann algebra, introduced by Murray and von Neumann
[104]: F (M) =

{
t ∈ R×+ : Mt ∼= M

}
. However, the connection is not direct:

even for group space construction M = !" L∞(X ) isomorphisms M ∼= Mt

(or even automorphisms of M) need not respect the Cartan subalgebra L∞(X )
in general.

Since the restriction of the amenable relationRamen to any positivemeasure
subset A ⊂ X is amenable, it follows

F (Ramen) = R×+ .

The same obviously applies to the product of any relation with an amenable
one.

On another extreme are orbit relations R!!X of essentially free ergodic
action of ICC groups ! with property (T): for such relations the fundamental
groupF (R!!X ) is atmost countable (Gefter andGolodets [64, Corollary 1.8]).
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Many relations have a trivial fundamental group. This includes all II1
relations with a nontrivial numeric invariant that scales under restriction:

1)Relations with 1 < cost (R) <∞; in particular, orbit relation R!!X for
essentially free actions of Fn, 1 < n <∞, or surface groups.

2)Relations with some nontrivial .2-Betti number 0 < β
(2)
i (R) <∞ for

some i ∈ N; in particular, orbit relationR!!X for essentially free actions
of a group ! with 0 < β

(2)
i (!) <∞ for some i ∈ N, such as lattices in

SO2n,1(R), SUm,1(R), and Spk,1(R).

Triviality of the fundamental group often appears as a by-product of rigidity
of groups and group actions. For example, F (R!!X ) = {1} in the following
situations:

1)Any (essentially free) action of a lattice ! in a simple Lie group of higher
rank ([64]);

2)Any essentially free action of (finite-index subgroups of products)
mapping class groups ([86]);

3)Actions of ! = !1× · · ·×!n, n ≥ 2, of hyperboliclike groups !i where
each of them acts ergodically ([101]); and

4)Gdsc-cocycle superrigid actions ! ! X such as Bernoulli actions of
groups with property (T) ([111, 112, 117]).

What are other possibilities for the fundamental group beyond the two
extreme cases F (R) = R×+ and F (R) = {1}? The most comprehensive
answer (to date) to this question is contained in the following result of S.
Popa and S. Vaes (see [118] for further references):

theorem 4.5. (popa-vaes, [118, thm 1.1]) There exists a family S of
additive subgroups of R that contains all countable groups, and (uncountable)
groups of arbitrary Hausdorff dimension in (0, 1), so that for any F ∈ S and any
totally disconnected locally compact unimodular group G there exists uncountably
many mutually non-SOE essentially free p.m.p. actions of F∞ whose orbit relations
R = RF∞!X have F (R) ∼= exp (F) and Out (R) ∼= G.

Moreover, in these examples the Murray von Neumann group space fac-
tor M = !# L∞(X ) has F (M) ∼= F (R) ∼= exp (F) and Out (M) ∼= Out (R)"
H1(R,T), where H1(R,T) is the first cohomology with coefficients in the
1-torus.

4.2.3. treeability An equivalence relation R is said treeable (Adams [4]) if
it admits a generating set ( = {φi} so that the corresponding (nonoriented)
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graph on a.e. R-class is a tree. Basic examples of treeable relations include:
Ramen viewing the amenable II1-relation as the orbit relation of some/any
action of Z = F1, and more generally, RFn!X where Fn ! X is an essentially
free action of the free group Fn, 1 ≤ n ≤ ∞. Any restriction of a treeable
relation is treeable, and R is treeable iff Rt is.

If R1 → R2 is a (weak) injective relation morphism and R2 is treeable, then
so is R1—the idea is to lift a treeing graphing from R2 to R1 piece by piece.
This way, one shows that if a group" admits an essentially free action" ! Z
with treeableR"!Z , and ! and" admit (S)OE essentially free actions ! ! X
and " ! Y , then the !-action on X ×Z, g : (x, z) &→ (gx,α(g , x)z) via the
(S)OE cocycle α : !×X → " has a treeable orbit structure R!!X×Z . Since
surface groups ! = π1()g ), g ≥ 2, and F2 are lattices in PSL2(R), hence ME,
the former groups have free actions with treeable orbit relations. Are all orbit
relations of free actions of a surface group treeable?

4.2.4. cost The notion of cost for II1-relations corresponds to the notion of
rank for discrete countable groups. The notion of cost was introduced by G.
Levitt [90] and extensively studied by D. Gaboriau [53, 54, 60].

definition 4.6. Given a generating system ( = {φi : Ai → Bi}i∈N for a
II1-equivalence relation R on (X ,µ) the cost of the graphing ( is

cost (() =
∑

i

µ(Ai) =
∑

i

µ(Bi)

and the cost of the relation is

cost (R) = inf
{
cost (() : ( generates R

}
.

A generating system ( defines a graph structure on every R-class and
cost (() is half of the average valency of this graph over the space (X ,µ).

The cost of a II1-relation takes values in [1,∞]. In the definition of the cost
of a relation it is important that the relation is probability measure preserving,
but ergodicity is not essential. The broader context includes relations with
finite classes; such relations can have values less than 1. For instance, from
the orbit relation of a (nonergodic) probability measure-preserving action of a
finite group ! ! (X ,µ) one gets

cost (R!!X ) = 1− 1
|!| .
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IfR is the orbit relation of some (not necessarily free) action ! ! (X ,µ), then
cost (R) ≤ rank(!), where the latter stands for the minimal number of gen-
erators for !. Indeed, any generating set {g1, . . . , gk} for ! gives a generating
system( = {γi : X → X }k

i=1 for R!!X . Recall that the amenable II1-relation
Ramen can be generated by (any) action of Z. Hence

cost (Ramen) = 1.

The cost behaves nicely with respect to restriction:

theorem 4.7. (gaboriau [54]) For a II1-relation R:

t · ( cost (Rt)− 1) = cost (R)− 1 (t ∈ R×+ ).

The following is a key tool for computations of the cost:

theorem 4.8. (gaboriau [54]) Let R be a treeable equivalence relation, and
( be a graphing of R giving a tree structure to R-classes. Then

cost (R) = cost (().

Conversely, for a relation R with cost (R) <∞, if the cost is attained by some
graphing 3, then 3 is a treeing of R.

The above result (the first part) implies that for any essentially free action
Fn ! (X ,µ) one has cost (RFn!X ) = n. This allowed Gaboriau to prove the
following fact, answering a long-standing question:

corollary 4.9. (gaboriau [53], [54]) If essentially free probabilitymeasure-
preserving actions of Fn and Fm are orbit equivalent, then n = m.

Note that Fn and Fm are commensurable for 2 ≤ n,m <∞, hence they
have essentially free actions that are weakly isomorphic. The index of such
weak isomorphism will necessarily be n−1

m−1 , or
m−1
n−1 (these free groups have

P.F.-fixed price). It should be pointed out that one of themajor open problems
in the theory of von Neumann algebras is whether it is possible for the factors
L(Fn) and L(Fm) to be isomorphic for n 2= m (it is known that either all L(Fn),
2 ≤ n <∞, are isomorphic, or all distinct).

The following powerful result of Greg Hjorth provides a link from treeable
relations back to actions of free groups:
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theorem 4.10. (hjorth [69]) Let R be a treeable equivalence relation with
n = cost (R) in {1, 2, . . . ,∞}. Then R can be generated by an essentially free action
of Fn.

The point of the proof is to show that a relation R that has a treeing graphing
with average valency 2n admits a (treeing) graphing with a.e. constant valency
2n.

The behavior of the cost under passing to a subrelation of finite index is
quite subtle—the following question is still open (to the best of the author’s
knowledge).

question 4.11. (gaboriau) Let !′ be a subgroup of finite index in !, and
! ! (X ,µ) be an essentially free p.m.p. action. Is it true that the costs of the orbit
relations of ! and !′ are related by the index [! : !′]

cost (R!′!X )− 1 = [! : !′] · ( cost (R!!X )− 1)?

In general !′ has at most [! : !′]-many ergodic components. The extreme
case where the number of !′-ergodic components is maximal: [! : !′] corre-
sponds to ! ! (X ,µ) being a co-induction from an ergodic !′-action. In this
case the above formula easily holds. The real question lies in the other extreme
where !′ is ergodic.

Recall that the notion of the cost is analogous to the notion of rank for
groups, where rank (!) = inf

{
n ∈ N : ∃ epimorphism Fn → !

}
. Schreier’s

theorem states that for n ∈ N any subgroup F < Fn of finite-index [Fn : F] = k
is itself free: F ∼= Fk(n−1)+1. This implies that for any finitely generated ! and
any finite-index subgroup of !′ < ! one has

rank (!′)− 1 ≤ [! : !′] · ( rank (!)− 1)

with equality in the case of free groups. Let ! > !1 > . . . be a chain of sub-
groups of finite index. One defines the rank gradient (Lackenby [89]) of the
chain {!n} as the limit of the monotonic (!) sequence:

RG (!, {!n}) = lim
n→∞

rank (!n)− 1
[! : !n]

.

It is an intriguing question whether (or when) is it true that RG (!, {!n})
depends only on! andnot on a particular chain of finite-index subgroups. One
should, of course, assume that the chains in question have trivial intersection,
andonemight require the chains to consist of normal subgroups in the original
group. In the case of free groups RG is indeed independent of the chain.
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In [1] Abert and Nikolov prove that the rank gradient of a chain of finite-
index subgroups of ! is given by the cost of a certain associated ergodic p.m.p.
!-action. Let us formulate a special case of this relation where the chain
{!n} consists of normal subgroups !n with

⋂
!n = {1}. Let K = lim←−!/!n

denote the profinite completion corresponding to the chain. The !-action
by left translations on the compact totally disconnected group K preserves
the Haar measure mK and ! ! (K ,mK ) is a free ergodic p.m.p. action.
(Let us point out in passing that this action has a spectral gap, implying
strong ergodicity, iff the chain has property (τ ) introduced by Lubotzky and
Zimmer [91]).

theorem 4.12. (abert-nikolov [1]) With the above notations:

RG (!, {!n}) = cost (R!!K )− 1.

One direction (≥) is easy to explain. Let Kn be the closure of !n in K .
Then Kn is an open normal subgroup of K of index m = [! : !n]. Let 1 =
g1, g2, . . . , gn ∈ ! be representatives of !n-cosets, and h1, . . . , hk generators of
!n with k = rank (!n). Consider the graphing ( = {φ2, . . . ,φm ,ψ1, . . . ,ψk},
where φi : Kn → giKn are restrictions of gi (2 ≤ i ≤ m), and ψj : Kn → Kn are
restrictions of hj (1 ≤ j ≤ k). These maps are easily seen to generate R!!K ,
with the cost of

cost (() = k · mK (Kn)+ (m− 1) · mK (Kn) = k− 1
m

+ 1 = 1+ rank (!n)− 1
[! : !n]

.

Abert and Nikolov observed that a positive answer to Question 4.11 com-
bined with the above result shows that RG (!) is independent of the choice
of a (normal) chain, and therefore is a numeric invariant associated to any
residually finite finitely generated group. Surprisingly, this turns out to be
related to a problem in the theory of compact hyperbolic 3-manifolds concern-
ing rank versus Heegard genus [89]—see [1] for the connection and further
discussions.

The above result has an application, independent of Question 4.11. Since
amenable groups have P.F. with C = 1, it follows that a finitely generated,
residually finite amenable group ! has sublinear rank growth for finite-index
normal subgroups with trivial intersection, that is, RG (!) = 0 for any such
chain.

4.2.5. .2-betti numbers I have already mentioned the .2-Betti numbers
β
(2)
i (!) associatedwith a discrete group! andGaboriau’s proportionality result
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in Theorem 3.8 for measure equivalence between groups. In fact, rather than
relating the .2-Betti numbers of groups via ME, in [57] Gaboriau

- defines the notion of .2-Betti numbers β(2)i (R) for a II1-equivalence
relation R;

- proves that β(2)i (!) = β
(2)
i (R!!X ) for essentially free ergodic action ! !

(X ,µ); and
- observes that β(2)i (R t) = t ·β(2)i (R) for any II1-relation.

The definition of β(2)i (R) is inspired by the definition of β(2)i (!) by Cheeger
and Gromov [23]: it usesR-action (or groupoid action) on pointed contractible
simplicial complexes, corresponding complexes of Hilbert modules with R-
action, and von Neumann dimension with respect to the algebra MR .

In the late 1990s Wolgang Lück developed an algebraic notion of dimen-
sion for arbitrary modules over von Neumann algebras, in particular giving
an alternative approach to .2-Betti numbers for groups (see [92]). In [124]
Roman Sauer used Lück’s notion of dimension to define .2-Betti numbers of
equivalence relations, and more general measured groupoids, providing an
alternative approach to Gaboriau’s results. In [127] Sauer and Thom develop
further homological tools (including a spectral sequence associated to strongly
normal subrelations) to study .2-Betti numbers for groups, relations, and
measured groupoids.

4.2.6. outer automorphism group Given an equivalence relation R on
(X ,µ) define the corresponding automorphism group as the group of self-
isomorphisms:

Aut (R) =
{
T ∈ Aut (X ,µ) : T ×T (R) = R (modulo null sets)

}
.

The subgroup Inn (R) of inner automorphisms is

Inn (R) =
{
T ∈ Aut (X ,µ) : (x,T (x)) ∈ R for a.e. x ∈ X

}
.

This is just the full group [R], but the above notation emphasizes the fact
that it is normal in Aut (R) and suggests to consider the outer automorphism
group

Out (R) = Aut (R)/ Inn (R).

One might think of Out (R) as the group of all measurable permutations of
the R-classes on X . Recall (Lemma 4.2) that Inn (R) is a huge group as it acts
transitively on (classes mod null sets of) measurable subsets of any given size
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in X . Yet the quotient Out (R) might be small (even finite or trivial), and can
sometimes be explicitly computed.

remark 4.13. As an abstract group H = Inn (R) is simple, and its auto-
morphisms come from automorphisms of R; in particular Out (H) = Out (R).
Moreover, Dye’s reconstruction theorem states that (the isomorphism type of) R is
determined by the structure of Inn (R) as an abstract group (see [80, §I.4] for proofs
and further facts).

Let us also note that the operation of restriction/amplification of the relation
does not alter the outer automorphism group (cf. [47, lemma 2.2]):

Out (Rt) ∼= Out (R) (t ∈ R×+ ).

The group Aut (R) has a natural structure of a Polish group [62, 64].
First, recall that if (Y , ν) is a finite- or infinite-measure Lebesgue space, then
Aut (Y , ν) is a Polish group with respect to the weak topology induced from
the weak (=strong) operator topology of the unitary group of L2(Y , ν). This
defines a Polish topology on Aut (R) when the latter is viewed as acting on
the infinite-measure space (R, µ̃). 9 However, Inn (R) is not always closed in
Aut (R), so the topology on Out (R) might be complicated. Alexander Kechris
recently found the following surprising connection:

theorem 4.14. (kechris [80, theorem 8.1]) If Out (R)fails to be a Pol-
ish group, then cost (R) = 1.

Now assume that R can be presented as the orbit relation of an essen-
tially free action ! ! (X ,µ), so Aut (R) is the group of self-orbit equivalences
of ! ! X . The centralizer Aut! (X ,µ) of ! in Aut (X ,µ) embeds in Aut (R)
and if ! is ICC (i.e., has infinite conjugacy classes), then the quotient map

Aut (R)
out−→Out (R) is injective onAut! (X ,µ) (cf. [62, lemma 2.6]). SoOut (R)

has a copy of Aut! (X ,µ), and the latter might be very big. For example, in the
Bernoulli action ! ! (X ,µ) = (X0,µ0)! , it contains Aut (X0,µ0) acting diag-
onally on the factors. Yet, if ! has property (T), then Aut! (X ,µ) · Inn (R!!X )
is open in the Polish group Aut (R!!X ). In this case the image of Aut! (X ,µ)
has finite or countable index in Out (R!!X ). This fact was observed by Gefter
and Golodets in [64, §2], and can be deduced from Proposition 5.14.

9. This topology coincides with the restriction to Aut (R) of the uniform topology on
Aut (X ,µ) given by the metric d(T ,S) = µ

{
x ∈ X : T (x) 2= S(x)

}
. On all of Aut (X ,µ) the

uniform topology is complete but not separable; but its restriction to Aut (R) is separable.
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To get a handle on Out (R!!X ) one looks at OE-cocycles cT : !×X → !

corresponding to elements T ∈ Aut (R!!X ). It is not difficult to see that cT

is conjugate in ! to the identity (i.e., cT (g , x) = f (gx)−1gf (x) for f : X → !)
iff T is in Aut! (X ,µ) · Inn (R). Thus, starting from a group ! or action ! !
X with strong rigidity properties for cocycles, one controls Out (R!!X ) via
Aut! (X ,µ). This general scheme (somewhat implicitly) is behind the first
example of an equivalence relation with trivial Out (R) constructed by Gefter
[61, 62]. Here is a variant of this construction:

theorem 4.15. Let ! be a torsion-free group with property (T), K a compact
connected Lie group without outer automorphisms, and τ : !→ K a dense embed-
ding. Let L < K be a closed subgroup and consider the ergodic actions ! ! (K ,mK )
and ! ! (K/L,mK/L) by left translations. Then

Out (R!!K ) ∼= K , Out (R!!K/L) ∼= NK (L)/L.

In particular, taking K = POn(R) and L ∼= POn−1(R) < K to be the stabilizer
of a line in Rn, the space K/L is the projective space Pn−1, and we get

Out (R!!Pn−1 ) = {1}

for any property (T) dense subgroup ! < POn(R). Such a group ! exists iff
n ≥ 5, Zimmer [145, theorem 7]. The preceding discussion, combined with
the cocycles superrigidity Theorem 5.21 below, and an easy observation that
Aut! (K/L,mK/L) is naturally isomorphic to NK (L)/L, provide a self contained
sketch of the proof of the theorem.

In the above statement Out (K ) is assumed to be trivial and ! to be tor-
sion free just to simplify the statement. However, the assumption that K is
connected is essential. Indeed, the dense embedding of ! = PSLn(Z) in the
compact profinite group K = PSLn(Zp) where p is a prime, gives

Out (RPSLn(Z)!PSLn(Zp)) ∼= PSLn(Qp)#Z/2Z

where the Z/2-extension is given by the transpose g &→ gtr . The inclusion ⊃
was found in [62], and the equality is proved in [47, theorem 1.6], where many
other computations of Out (R!!X ) are carried out for actions of lattices in
higher-rank Lie groups.

Finally, we recall that the recent preprint [117] of Popa and Vaes quoted
above (Theorem 4.5) shows that an arbitrary totally disconnected lcsc group G
can arise as Out (R!!X ) for an essentially free action of a free group F∞.
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4.2.7. cohomology Equivalence relations have groups of cohomology asso-
ciated to them similar to cohomology of groups. These were introduced by
Singer [134] and largely emphasized by Feldman and Moore [40]. Given, say,
a type II1 equivalence relation R on (X ,µ) consider

R(n) =
{
(x0, . . . , xn) ∈ Xn+1 : (xi, xi+1) ∈ R

}

equipped with the infinite Lebesgue measure µ̃(n) defined by

µ̃(n)(A) =
∫

X
#
{
(x1, . . . , xn) : (x0, . . . , xn) ∈ R(n)} dµ(x0).

Take (R(0), µ̃0) to be (X ,µ). Note that (R(1),µ(1)) is just (R, µ̃) from §4.1.
Since µ is assumed to be R-invariant, the above formula is invariant under
permutations of x0, . . . , xn.

Fix a Polish abelian group A written multiplicatively (usually A = T). The
spaceCn(R,A) of n-cochains consists of equivalence classes (modulo µ̃(n)-null
sets) of measurable maps R(n) → A, linked by the operators dn : Cn(R,A)→
Cn+1(R,A)

dn( f )(x0, . . . , xn+1) =
n+1∏

i=0

f (x0, . . . , x̂i, . . . , x0)
(−1)i .

Call Zn(R) = Ker(dn) the n-cocycles, and Bn(R) = Im(dn−1) the n-
coboundaries; the cohomology groups are defined byHn(R) = Zn(R)/Bn(R).
In degree n = 1 the 1-cocycles are measurable maps c : (R,µ)→ A such that

c(x, y)c(y, x) = c(x, z)

and 1-coboundaries have the form b(x, y) = f (x)/f (y) for some measurable
f : X → A.

If A is a compact abelian group, such as T, then C1(R,A) is a Polish
group (with respect to convergence in measure). Being a closed subgroup in
C1(R,A), the 1-cocycles Z1(R,A) form a Polish group. Schmidt [129] showed
that B1(R,A) is closed in Z1(R,A) iff R is strongly ergodic.

There are only few cases where H1(R,T) were computed: C.C. Moore
[102] constructed a relation with trivial H1(R,T). Gefter [63] considered
H1(R!!G,T) for actions of property (T) group ! densely embedded in
a semisimple Lie group G. More recently Popa and Sasyk [116] studied
H1(R!!X ,T) for property (T) groups ! with Bernoulli actions (X ,µ) =
(X0,µ0)! . In both cases H1(R!!X ,T) is shown to coincide with the group
of characters Hom(!,T). Higher cohomology groups remain mysterious.
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The fact thatA is abelian is essential to the definition ofHn(R,A) for n > 1.
However, in degree n = 1 one can define H1(R,") as a set for a general target
group"10. In fact, this notion is commonly used in this theory under the name
ofmeasurable cocycles (see Appendix A and §5.1 below). For the definition in
terms of equivalence relations let Z1(R,") denote the set of all measurable
maps (mod µ̃-null sets)

c : (R, µ̃)→ " s.t. c(x, z) = c(x, y)c(y, z)

and let H1(R,") = Z1(R,")/ ∼ where the equivalence ∼ between c, c′ ∈
Z1(R,") is declared if c(x, y) = f (x)−1c′(x, y)f (y) for some measurable f :
(X ,µ)→ ".

If R = R!!X is the orbit relation of an essentially free action, then
Z1(R!!X ,") coincides with the set ofmeasurable cocycles α : !×X → " by
α(g , x) = c(x, gx). Note that Hom(!,")/"maps into H1(R,"), via cπ (x, y) =
π (g) for the unique g ∈ ! with x = gy. The point of cocycles superrigidity
theorems is to show that under favorable conditions this map is surjective.

4.2.8. free decompositions Group theoretic notions such as free products,
amalgamated products, and HNN-extensions can be defined in the context
of equivalence relations—see Gaboriau [54, section IV]. For example, a II1-
relation R is said to split as a free product of subrelations {Ri}i∈I , denoted
R = ∗i∈IRi, if

1)R is generated by {Ri}i∈I , that is, R is the smallest equivalence relation
containing the latter family; and

2) almost every chain x = x0, . . . , xn = y, where xj−1 2= xj , (xj−1, xj) ∈ Ri(j)

and i(j + 1) 2= i(j), has x 2= y.

If S is yet another subrelation, one says that R splits as a free product of Ri

amalgamated over S , R = ∗S Ri, if in condition (2) one replaces xj−1 2= xj

by (xj−1, xj) 2∈ S .
The obvious example of the situation above is an essentially free action

of a free product of groups !3 = !1 ∗!2 (respectively amalgamated product
!5 = !1 ∗!4 !2) on a probability space (X ,µ); in this case the orbit relations
Ri = R!i!X satisfy R3 = R1 ∗R2 (respectively R5 = R1 ∗R4 R2).

Another useful construction (see Ioana, Peterson, Popa [75]) is as follows.
Givenmeasure preserving (possibly ergodic) relationsR1, R2 on a probability

10. In order to define the notion of measurability " should have a Borel structure, and
better be a Polish group; often it is a discrete countable group, or a Lie group.
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space (X ,µ) for T ∈ Aut (X ,µ) consider the relation generated by R1 and
T (R2). It can be shown that for a residual set of T ∈ Aut (X ,µ) the resulting
relation is a free product of R1 and T (R2). A similar construction can be
carried out for amalgamated products. Note that in contrast with the category
of groups the isomorphism type of the free product is not determined by the
free factors alone.

Ioana, Peterson, and Popa [75] obtained strong rigidity results for free
and amalgamated products of ergodic measured equivalence relations and
II1-factors with certain rigidity properties. Here let us describe some results
obtained by Alvarez and Gaboriau [7], which are easier to state; they may be
viewed as an analogue of Bass-Serre theory in the context of equivalence rela-
tions. Say that a II1-relation R is freely indecomposable (FI) if R is not a free
product of its subrelations. A group ! is said to be measurably freely inde-
composable (MFI) if all its essentially free action give freely indecomposable
orbit relations. A group may fail to be MFI even if it is freely indecomposable
in the group theoretic sense (surface groups provide an example). Not sur-
prisingly, groups with property (T) are MFI (cf. Adams Spatzier [6]); but more
generally

theorem 4.16. (alvarez-gaboriau [7]) If ! is nonamenable and β(2)1 (!)
= 0, then ! is MFI.

theorem 4.17. (alvarez-gaboriau [7]) Let I, J be two finite or countable-
index sets, {!i}i∈I and {"j}j∈J be two families of MFI groups, ! = ∗i∈I!i ,
" = ∗j∈J"j , and ! ! (X ,µ), " ! (Y , ν) be essentially free p.m.p. actions

where each !i ! (X ,µ) and "j ! (Y , ν) are ergodic. Assume that ! ! X
SOE∼

" ! Y.
Then |I| = |J| and there is a bijection θ : I → J so that !i ! X

SOE∼ "θ (i) ! Y.

The assumption that each free factor is ergodic is important here; Alvarez and
Gaboriau also give an analysis of the general situation (where this assumption
is dropped).

4.3. Rigidity of Equivalence Relations

The close relation between ME and SOE allows us to deduce that certain orbit
relationsR!!X remember the acting group! and the action! ! (X ,µ) up to
isomorphism, or up to a virtual isomorphism. This slightly technical concept
is described in the following:
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lemma 4.18. Suppose an ergodic ME-coupling (#,m) of ! with " corresponds

to an SOE between ergodic actions T : ! ! (X ,µ)
SOE∼ " ! (Y , ν). Then the

following are equivalent:

1)There exist short exact sequences

1→ !0 → !→ !1 → 1, 1→ "0 → "→ "1 → 1

where !0 and "0 are finite, a discrete (!1,"1)-coupling (#1,m1), and an
equivariant map ( : (#,m)→ (#1,m1); and

2)There exist isomorphism between finite-index subgroups

!1 > !2 ∼= "2 < "1,

so that !1 ! X1 = X/!0 and "1 ! Y1 = Y/"0 are induced from some
isomorphic ergodic actions !2 ! X2 ∼= "2 ! Y2.

3)The SOE (or ME) cocycle !×X → " is conjugate in " to a cocycle whose
restriction to some finite-index subgroup!1 is a homomorphism!1 → " (the
image is necessarily of finite index).

Let us now state two general forms of relation rigidity. Here is one form

theorem 4.19. Let ! ! (X ,µ) be an ergodic essentially free action of one of the
types below," an arbitrary group, and" ! (Y , ν) as essentially free p.m.p. action
whose orbit relation R"!Y is weakly isomorphic to R!!X .

Then " is commensurable up to finite kernels to ! and the actions ! ! X
and " ! Y are virtually isomorphic; in particular, the SEO-index is necessarily
rational.

The list of actions ! ! X with this SOE-rigidity property includes:

1)! is a lattice in a connected, center-free, simple Lie group G of higher rank, and
! ! X has no equivariant quotients of the form ! ! G/!′ where !′ < G is
a lattice ([45, theorem A]);

2)! = !1× · · ·×!n where n ≥ 2, !i ∈ Creg, and !i ! (X ,µ) are ergodic; in
addition assume that " ! (Y , ν) is mildly mixing (Monod-Shalom [101]);
and

3)! is a finite-index subgroup in a (product of) mapping class groups as in
Theorem 3.20 (Kida [85]).

a) For a concrete example for (1)–(3) one might take Bernoulli actions ! !
(X0,µ0)! . In (1) one might also take SLn (Z) ! Tn or SLn (Z) ! SLn (Zp) with
n ≥ 3. In (2) one might look at Fn×Fm acting on a compact Lie group K , for
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example SO3(R), by (g , h) : k &→ gkh−1 where Fn, Fm are embedded densely
in K .

b) In (1) the assumption that there are no !-equivariant quotient maps
X → G/!′ is necessary, since given such a quotient there is a !′-action on

some (X ′,µ′) with !′ ! X ′
SOE∼ ! ! X . The rigidity statement in this case is

that this is a complete list of groups and their essentially free actions up to
virtual isomorphism ([45, theorem C]). The appearance of these factors has to
do with (G,mG) appearing as a quotient of a (!,")-coupling.

c) The basic technique for establishing the stated rigidity in cases (1)–(3) is
to establish condition (1) in Lemma 4.18. This is done by analyzing a self-!-
coupling of the form #×" #̌ (where X = #/" and Y = #/!) and invoking
an analogue of the construction in §5.5.

d) In all cases one can sharpen the results (eliminate the “virtual”) by impos-
ing some benign additional assumptions: rule out torsion in the acting groups,
and impose ergodicity for actions of finite-index subgroups.

The second stronger formof relation rigidity refers to rigidity of relationmor-
phisms that are obtained from Gdsc-cocycle superrigid actions discovered by
Sorin Popa (see §5.4). We illustrate this framework by the following particular
statement (see [113, theorem 0.4] and [48, theorem 1.8]).

theorem 4.20. Let ! ! (X ,µ) be a mixing Gdsc-cocycle superrigid action,
such as:

1)A Bernoulli!-action on (X0,µ0)! , where! has property (T), or! = !1×!2
with !1 nonamenable and !2 being infinite; and

2)! ! K/L where !→ K is a homomorphism with dense image in a simple
compact Lie group K with trivial π1(K ), L < K is a closed subgroup, and !
has (T).

Let " be some group with an ergodic essentially free measure-preserving action
" ! (Y , ν),11 X ′ ⊂ X a positive measure subset, and T : X ′ → Y a measurable
map with T∗µ ≺ ν and

(x1, x2) ∈ R!!X ∩ (X ′ ×X ′) =⇒ (T (x1),T (x2)) ∈ R"!Y .

Then there exists

• an exact sequence !0−→!
ρ−→"1 with finite !0 and "1 < "; and

• a "1-ergodic subset Y1 ⊂ Y with 0 < ν(Y1) <∞; and

11. The space (Y , ν) might be finite- or infinite-measure Lebesgue space.
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• denoting (X1,µ1) = (X ,µ)/!0 and ν1 = ν(Y1)−1 · ν|Y1 , there is an isomor-
phism T1 : (X1,µ1) ∼= (Y1, ν1) of "1-actions.

Moreover, µ-a.e. T (x) and T1(!0x) are in the same "-orbit.

4.3.1. a question of feldman and moore Feldman and Moore showed
[39] that any countableBorel equivalence relationR canbegeneratedby aBorel
action of a countable group. They asked whether one can find a free action of
some group, so that R-classes would be in one-to-one correspondence with
the acting group. This question was answered in the negative by Adams [3].
In the context of measured relations, say of type II1, the question is whether it
is possible to generate R (up to null sets) by an essentially free action of some
group. This question was also settled in the negative in [45, theorem D], using
the following basic constructions:

1)Start with an essentially free action ! ! (X ,µ) that is rigid as in
Theorem 4.19 or 4.20, and let R = (R!!X )t with an irrational t.

2)Consider a proper embedding G ↪→ H of higher-rank simple Lie groups
and choose a lattice ! < H, say G = SL3 (R) ⊂ H = SL4 (R) with ! =
SL4 (Z). Such actions always admit a Borel cross-section X ⊂ H/! for
the G-action, equipped with a holonomy-invariant probability measure
µ. Take R on (X ,µ) to be the relation of being in the same G-orbit.

In case (1) one argues as follows: if some group " has an essentially free
action" ! (Y , ν) with (R!!X )t = R ∼= R"!Y , then the rigidity implies that
! and " are commensurable up to finite kernel, and ! ! X is virtually iso-
morphic to " ! Y . But this would imply that the index t is rational, contrary
to the assumption. This strategy can be carried out in other cases of very rigid
actions as in [72, 85, 101, 113]. Theorem 5.21 provides an example of this
type R = (R!!K )t where ! is a Kazhdan group densely embedded in a com-
pact connected Lie group K . So the reader has a sketch of the full proof for a
II1-relation that cannot be generated by an essentially free action of any group.

Example of type (2) was introduced byZimmer in [147], where it was proved
that the relation R on such a cross-section cannot be essentially freely gen-
erated by a group ", which admits a linear representation with an infinite
image. The linearity assumption was removed in [45]. This example is partic-
ularly interesting since it cannot be “repaired” by restriction/amplification; as
any R t can be realized as a cross-section of the same G-flow on H/!.

question 4.21. (vershik) Let R on (X ,µ) be a II1-relation that cannot be
generated by an essentially free action of a group; and let ! ! (X ,µ) be some action
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producing R. One may assume that the action is faithful, that is, !→ Aut (X ,µ)
is an embedding. What can be said about ! and the structure of the measurable
family {!x}x∈X of the stabilizers of points in X?

In [119] S. Popa and S. Vaes give an example of a II1-relation R (which is a
restriction of the II∞-relation RSL5 (Z)!R5 to a subset A ⊂ R5 of positive finite
measure), which has property (T) but cannot be generated by an action (not
necessarily free) of any group with property (T).

5. Techniques

5.1. Superrigidity in Semisimple Lie Groups

The term “superrigidity” refers to a number of phenomena originated and
inspired by the following celebrated discovery of G. A. Margulis.

theorem 5.1. (margulis [93]) Let G and G′ be (semi)simple connected real
center-free Lie groups without compact factors with rk(G) ≥ 2, ! < G be an irre-
ducible lattice, and π : !→ G′ a homomorphism with π (!) being Zariski dense in
G′ and not precompact. Then π extends to a (rational) epimorphism π̄ : G→ G′.

The actual result is more general than stated, as it applies to products of
semisimple algebraic groupsover general local fields.We refer the reader to the
comprehensivemonograph (Margulis [95]) for the general statements, proofs,
and further results and applications, including the famous arithmeticity
theorem.

The core of (some of the available) proofs of Margulis’s superrigidity
theorem is a combination of the theory of algebraic groups and purely ergodic-
theoretic arguments. The result applies to uniform and nonuniform lattices
alike, and it also covers irreducible lattices in higher-rank Lie groups such as
SL2 (R)×SL2 (R). Let us also note that the assumption that π (!) is not pre-
compact in G′ is redundant if π (!) is Zariski dense in a real Lie group G′

(since compact groups over R are algebraic), but is important in general (cf.
SLn (Z) < SLn (Qp) is Zariski dense but precompact).

In [139] R. J. Zimmer has obtained a far-reaching generalization of Mar-
gulis’s superrigidity, passing from the context of representations of lattices to
the framework of measurable cocycles over probability measure-preserving
actions (representations of “virtual subgroups” in Mackey’s terminology).
The connection can be briefly summarized as follows: given a transitive
action G ! X = G/! and some topological group H, there is a bijection
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betweenmeasurable cocyclesG×G/!→ H modulo cocycle conjugation and
homomorphisms !→ H modulo conjugation in H

H1(G ! G/!,H) ∼= Hom(!,H)/H

(see §A.1, and [52, 146]). In this correspondence, a representation π : !→ H
extends to a homomorphism G→ H iff the corresponding cocycle π ◦ c :
G×G/!→ H is conjugate to a homomorphism G→ H. Zimmer’s cocycle
superrigidity theorem states that under appropriate nondegeneracy assump-
tions a measurable cocycle over an arbitrary p.m.p. ergodic action G ! (X ,µ)
is conjugate to a homomorphism.

theorem 5.2. (zimmer [139], see also [146]) Let G, G′ be a semisim-
ple Lie group as in Theorem 5.1, in particular rkR(G) ≥ 2, let G ! (X ,µ)
be an irreducible probability measure-preserving action and c : G×X → G′ be
a measurable cocycle that is Zariski dense and not compact. Then there exist
a (rational) epimorphism π : G→ G′ and a measurable f : X → G′ so that
c(g , x) = f (gx)−1π (g)f (x).

In the above statement irreducibility of G ! (X ,µ) means mere ergodicity
if G is a simple group, and ergodicity of the action Gi ! (X ,µ) for each factor
Gi in the case of a semisimple group G = ∏n

i=1 Gi with n ≥ 2 factors. For a
lattice ! < G = ∏

Gi in a semisimple group the transitive action G ! G/!

is irreducible precisely iff ! is an irreducible lattice in G. The notion of being
Zariski dense (respectively not compact) for a cocycle c : G×X → H means
that c is not conjugate to a cocycle cf taking values in a proper algebraic
(respectively compact) subgroup of H.

The setting of cocycles over p.m.p. actions adds a great deal of generality to
the superrigidity phenomena. The first illustration of this is the fact that once
cocycle superrigidity is known for actions of G it passes to actions of lattices
in G: given an action ! ! (X ,µ) of a lattice ! < G one obtains a G-action
on X̄ = G×! X by acting on the first coordinate (just like the composition
operation of ME-coupling in §2.1). A cocycle c : !×X → H has a natural lift
to c̄ : G× X̄ → H and its cohomology is directly related to that of the original
cocycle. So cocycle superrigidity theorems have an almost automatic bootstrap
from lcsc groups to their lattices. The induced action G ! X̄ is ergodic iff
! ! X is ergodic; however, irreducibility is more subtle. Yet, if ! ! (X ,µ) is
mixing, then G ! X̄ is mixing and therefore is irreducible.

Theorem3.14was thefirst applicationofZimmer’s cocycle superrigidity 5.2
(Theorem; see [139]). Indeed, if α : !×X → !′ is the rearrangement cocycle
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associated to an Orbit Equivalence T : ! ! (X ,µ)
OE∼ !′ ! (X ′,µ′) where ! <

G,!′ < G′ are lattices, then, viewingα as taking values inG′, Zimmerobserves
that α is Zariski dense using a form of Borel’s density theorem and deduces
thatG ∼= G′ (here for simplicity the ambient groups are assumed to be simple,
connected, center free, and rkR(G) ≥ 2). Moreover, there is a homomorphism
π : !→ G′ and f : X → G′ so that α(γ , x) = f (γ x)π (γ )f (x)−1 with π : !→
π (!) < G′ being an isomorphism of lattices.

remark 5.3. At this point it is not clear whether π (!) should be (conjugate to)
!′, and even assuming π (!) = !′ whether f takes values in!′. In fact, the self orbit
equivalence of the ! action on G/! given by g! &→ g−1! gives a rearrangement
cocycle c : !×G/!→ !, which is conjugate to the identity !→ ! by a unique
map f : G/!→ G with f∗(mG/!) ≺ mG. However, if π (!) = !′ and f takes
values in !′, it follows that the original actions ! ! (X ,µ) and !′ ! (X ′,µ′) are
isomorphic via the identification π : ! ∼= !′. We return to this point below.

5.1.1. superrigidity and me-couplings Zimmer’s cocycle superrigidity
theorem applied to OE- orME-cocycles (see SectionsA.2 and A.3) has a natural
interpretation in terms of ME-couplings. Let G be a higher-rank simple Lie
group (hereafter implicitly, connected, and center free) and, denote by i : G→
Aut (G) the adjoint homomorphism (which is an embedding since G is center
free).

theorem 5.4. ([44, theorem 4.1]) Let G be a higher-rank simple Lie
group, !1,!2 < G lattices, and (#,m) an ergodic (!1,!2)-coupling. Then there
exists a unique measurable map ( : #→ Aut (G) so that m-a.e. on #

((γ1ω) = i(γ1)((ω), ((γ2ω) = ((ω)i(γ2)−1 (γi ∈ !i).

Moreover, (∗m is either the Haar measure on a group G ∼= Ad (G) ≤ G′ ≤
Aut (G) or is atomic, in which case !1 and !2 are commensurable.

Sketch of the proof. To construct such a(, choose a fundamental domain X ⊂
# for the !2-action and look at the ME-cocycle c : !1×X → !2 < G. Apply
Zimmer’s cocycle superrigidity theorem to find π : !1 → G and φ : X → G.
Viewing G as a subgroup in Aut (G), one may adjust π and φ : X → Aut (G)
by some α ∈ Aut (G), so that π is the isomorphism i : !1 → !1 to get

c(γ1, x) = φ(γ1.x)−1i(γ1)φ(x).
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Define( : #→ Aut (G) by((γ2x) = φ(x)i(γ2)−1 and check that it satisfies the
required relation. To identify the measure (∗m on Aut (G) one uses Ratner’s
theorem, which provides the classification of !1-ergodic finite measures on
Ḡ/!2. !

Theorem 3.16 is then proved using this fact with !1 = !2 plugged into the
construction in §5.5 that describes an unknown group" essentially as a lattice
in G.

Note that there are two distinct cases in Theorem 5.4: either(∗m is atomic,
in which case (#,m) has a discrete ME-coupling as a quotient, or (∗m is a
Haar measure on a Lie group. The former case leads to a virtual isomorphism
between the groups and the actions (this is case (1) in Theorem 4.19); in the
latter, !1 ! X ∼= #/!2 has a quotient of the form !1 ! Ḡ/!2 (which is [45,
theorem C]). This dichotomy clarifies the situation in Remark 5.3 above.

5.2. Superrigidity for Product Groups

Let us now turn to a brief discussion of Monod-Shalom rigidity (see Sections
3.1.7 and 3.2.2). Consider a special case of Margulis-Zimmer superrigidity
results where the target group G′ has rank 1 (say G′ = PSL2(R)), while G has
higher rank. The conclusion of the superrigidity Theorem 5.1 (respectively
Theorem 5.2) is that either a representation (respectively cocycle) is degener-
ate,12 or there is an epimorphismπ : G→ G′. The latter case occurs if and only
if G is semisimpleG = ∏

Gi, with one of the factorsGi 0 G′, andπ : G→ G′

factoring through the projection π : G
pri−→Gi 0 G′. In this case the given rep-

resentation of the lattice extends to π (respectively the cocycle is conjugate to
the epimorphism π ).

This special case of Margulis-Zimmer superrigidity, that is, from higher-
rankG to rank 1G′, was generalized by a number of authors [5, 6, 22] replacing
the assumption that the target groupG′ has rank 1 bymore geometric notions,
such as G′ = Isom (X ) where X is a proper CAT(-1) space. In the setting
considered by Monod and Shalom the target group is “hyperboliclike” in a
very general way, while the source group G rather than being a higher-rank
semisimple Lie group, is just a product G = G1× · · ·×Gn of n ≥ 2 arbitrary
compactly generated (in fact, just lcsc) groups. The philosophy is that the
number n ≥ 2 of direct factors provides enough higher-rank properties for
such statements.

12. Here precompact, or contained in a parabilic.
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theorem 5.5. (monod-shalom [100]) Let G = G1× · · ·×Gn be a prod-
uct of n ≥ 2 lcsc groups, G ! (X ,µ) an irreducible p.m.p. action, H is a hyper-
boliclike group, and c : G×X → H is a nonelementary measurable cocycle.

Then there is a nonelementary closed subgroup H1 < H, a compact normal sub-
group K CH1, a measurable f : X → H, and a homomorphism ρ : Gi → H1/K
from one of the factors Gi of G, so that the conjugate cocycle cf takes values in H1

and G×X → H1 → H1/K is the homomorphism π : G
pri−→Gi

ρ−→H1/K.

This beautiful theorem is proved using the technology of second-bounded
cohomology (developed in [20, 21, 97] and applied in this setting in [96, 100])
with the notions of hyperboliclike and nonelementary interpreted in the context
of the class Creg.

Suppose ! = !1× · · ·×!n, n ≥ 2, is a product of “hyperboliclike” groups.
Let (#,m) be a self-ME-coupling of !. Consider an ME-cocycle !×X → !,
which can be viewed as a combination of n cocycles

ci : !×X
c−→! pri−→!i (i = 1, . . . , n)

and assume that ! ! #/! is an irreducible action. Viewing the source group
! as a product of n ≥ 2 factors acting irreducibly, and recalling that the target
groups !i are “hyperboliclike,” Monod and Shalom apply Theorem 5.5. The
cocycles arising from ME-coupling turn out to be nonelementary, leading
to the conclusion that each cocycle ci is conjugate to a homomorphism ρi :
!j(i) → !′i , modulo some reductions and finite kernels. Since !i commute,
the conjugations can be performed independently and simultaneously on all
the cocycles ci. After some intricate analysis of the map i→ j(i), kernels and
cokernels of ρi, Monod and Shalom show that in the setting of ME-couplings
as above the map, i→ j(i) is a permutation and ρi are isomorphisms. Thus
the original cocycle c can be conjugate to an automorphism of !.

This ME-cocycle superrigidity can now be plugged into an analogue of
Theorem 5.4 to give a measurable bi-!-equivariant map#→ !, which can be
used as an input to a construction like Theorem 5.13. This allows us to identify
unknown groups"measure equivalent to! = !1× · · ·×!n. The only delicate

point is that starting from a ! ! X
SOE∼ " ! Y and the corresponding (!,")-

coupling # one needs to look at the self-!-coupling ) = #×" #̌ and apply
the cocycle superrigidity result to ! ! )/!. In order to guarantee that the
latter action is irreducible, Monod andShalom require! ! X to be irreducible
and " ! Y to be mildly mixing. They also show that the assumption on mild
mixing is necessary for the result.
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In [12]UriBader and the author proposed to studyhigher-rank superrigidity
phenomena using a notion of a (generalized)Weyl group, whichworkswell for
higher-rank simple Lie groups, arbitrary products G = G1× · · ·×Gn of n ≥ 2
factors, and exotic Ã2 groups, which are close relatives to lattices in SL3 (Qp).
In particular:

theorem 5.6. (bader-furman [12]) Theorem 5.5 holds for target groups
from class Dea.

Here Dea is a class of hyperboliclike groups that include many of the examples
in Creg. Plugging this into the Monod-Shalom machine one obtains the same
results of products of groups in class Dea.

5.3. Strong Rigidity for Cocycles

In the proof of Theorem 5.4 Zimmer’s cocycle superrigidity was applied to
a measure equivalence cocycle. This is a rather special class of cocycles (see
§A.3). If cocycles are analogous to representations of lattices, thenME-cocycles
are analogous to isomorphisms between lattices; in particular, they have an
“inverse.” Kida’s work on ME for mapping class groups focuses on rigidity
results for such cocycles. We shall not attempt to explain the ingredients used
in this work, but will just formulate the main technical result analogous to
Theorem 5.4. Let ! be a subgroup of finite index in !()g ,p): with 3g + p−
4 > 0, C = C()g ,p) denoting its curve complex, and Aut (C) the group of its
automorphisms; this is a countable group commensurable to !.

theorem 5.7. (kida [86]) Let (#,m) be a self-ME-coupling of !. Then there
exists a measurable map !×!-equivariant map ( : #→ Aut (C).

Returning to the point that ME-cocycles are analogous to isomorphism
between lattices, onemightwonderwhether Theorem5.4 holds in caseswhere
Mostow rigidity applies, specifically for G of rank 1 with PSL2(R) excluded. In
[13] this is proved for G 0 Isom (Hn

R), n ≥ 3, and a restricted ME.

theorem 5.8. (bader-furman-sauer [13]) Theorem 5.4 applies to .1-
ME-couplings of lattices in G = SOn,1(R), n ≥ 3.

The proof of this result uses homological methods (.1 and other comple-
tions of the usual homology) combinedwith a version of theGromov-Thurston
proof of Mostow rigidity (for Isom (Hn

R), n ≥ 3) adapted to this setting.
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5.4. Cocycle Superrigid Actions

In all the previous examples the structure of the acting group was the sole
source for (super)rigidity. Recently Sorin Popa has developed a number of
remarkable cocycle superrigidity results of a completely different nature [109–
115]. These results exhibit an extreme form of cocycle superrigidity and rather
than relying only on the properties of the acting group !, take advantage of
the action ! ! (X ,µ).

definition 5.9. An action ! ! (X ,µ) is C -cocycle superrigid, where
C is some class of topological groups, if for every " ∈ C every measur-
able cocycle c : ! ! X → " has the form c(g , x) = f (gx)−1ρ(g)f (x) for some
homomorphism ρ : !→ " and some measurable f : X → ".

Here we shall focus on the class Gdsc of all countable groups; however,
the following results hold for all cocycles taking values in a broader class
Ufin, which contains Gdsc and Gcpt—separable compact groups. Note that the
concept of Gdsc-cocycle superrigidity is unprecedentedly strong: there is no
assumption on the cocycle, the assumption on the target group is extremely
weak, and the “untwisting” takes place in the same target group.

theorem 5.10. (popa [113]) Let ! be a group with property (T) and ! !
(X ,µ) = (X0,µ0)! be the Bernoulli action. Then ! ! (X ,µ) is Gdsc-cocycle
superrigid.

In fact, the result is stronger: it suffices to assume that ! has relative
property (T) with respect to a w-normal subgroup !0, and ! ! (X ,µ) has
a relatively weakly mixing extension ! ! (X̄ , µ̄) that is s-malleable, while
!0 ! (X̄ , µ̄) is weakly mixing. Under these conditions ! ! (X ,µ) is Ufin-
cocycle superrigid. See [113] and [48] for the relevant definitions and more
details. We indicate the proof (of the special case above) in §5.8. Vaguely
speaking, Popa’s approach exploits the tension between certain (local) rigid-
ity provided by the acting group and deformations supplied by the action.
In the following remarkable result, Popa further relaxed the property (T)
assumption.

theorem 5.11. (popa [115]) Let ! be a group containing a product !1×!2
where !1 is nonamenable, !2 is infinite, and !1×!2 is w-normal in !. Then any
Bernoulli action ! ! (X ,µ) is Ufin-cocycle superrigid.
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The deformations alluded to above take place for the diagonal !-action on the
square (X ×X ,µ×µ). This action is supposed to be ergodic; equivalently, the
original action should beweaklymixing and satisfy addition properties. Isomet-
ric actions, or staying within the ergodic-theoretic terminology, actions with
discrete spectrum provide the opposite type of dynamics. These actions have
the form ! ! K/L where L < K are compact groups, !→ K a homomor-
phism with dense image, and ! acts by left translations. Totally disconnected
K corresponds to profinite completion lim←−!/!n with respect to a chain of
normal subgroups of finite index. Isometric actions ! ! K/L with profinite
K , can be called profinite ergodic actions of !—these are precisely inverse
limits X = lim←−Xn of transitive !-actions on finite spaces. Adrian Ioana found
the following “virtually Gdsc-cocycle superrigidity” phenomenon for profinite
actions of Kazhdan groups.

theorem 5.12. (ioana [72]) Let ! ! X = K/L be an ergodic profinite
action. Assume that ! has property (T), or a relative property (T) with respect
to a normal subgroup !0, which acts ergodically on X . Then any measurable cocycle
c : ! ! X → " into a discrete group, is conjugate to a cocycle coming from a finite
quotient X → Xn, that is, c is conjugate to a cocycle induced from a homomorphism
!n → " of a finite-index subgroup.

In §5.8.2 a similar result is proven for all discrete spectrum actions (not
necessarily profinite ones).

5.5. Constructing Representations

In Geometric group theory many QI-rigidity results are proved using the
following trick. Given a metric space X one declares self-quasi-isometries
f , g : X → X to be equivalent if

sup
x∈X

d( f (x), g(x)) <∞.

Then equivalence classes of quasi-isometries (hereafter q.i.) form a group,
denoted QI(X ). This group contains (a quotient of) Isom (X ), which can some-
times be identified within QI(X ) in coarse geometric terms. If ! is a group
with well-understood QI(!) and " is an unknown group q.i. to !, then one
gets a homomorphism

ρ : "→ Isom (")→ QI(") ∼= QI(!)

whose kernel and image can then be analyzed.

   You are reading copyrighted material published by University of Chicago Press. 
   Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal

   and injures the author and publisher.



356 / a. furman

Facing a similar problem in the measure equivalence category, there is a
difficulty in defining an analogue for QI(!). Let us describe a construction
that allows us to analyze the class of all groups ME to a given group ! from
an information about self-ME-couplings of !.

Let G be a lcsc unimodular group. Let us assume that G has the strong
ICC property, by which we mean that the only regular Borel conjugation-
invariant probability measure on G is the trivial one, namely the Dirac mass
δe at the origin. For countable groups this is equivalent to the condition that
all nontrivial conjugacy classes are infinite, that is, the usual ICC property.
Connected, (semi) simple Lie groupswith trivial center and no compact factors
provide other examples of strongly ICC groups.

Theorems 5.4, 5.7 and 5.8 are instances where a strongly ICC group G has
the property that for any13 ME-self-coupling (#,m) of a lattice ! in G there
exists a bi-!-equivariantmeasurablemap toG, that is, a Borelmap( : #→ G
satisfying m-a.e.:

(((γ1, γ2)ω) = γ1((ω)γ−12 (γ1, γ2 ∈ !).

It is not difficult to see that the strong ICC property implies that such a map is
also unique. (It should also be pointed out that the existence of such maps for
self-couplings of lattices is equivalent to the same property for self-couplings
of the lcsc group G itself; but here we shall stay in the framework of countable
groups). The following general tool shows how these properties of G can be
used to classify all groupsME to a lattice ! < G; up to finite kernels these turn
out to be lattices in G.

theorem 5.13. (bader-furman-sauer [13]) Let G be a strongly ICC lcsc
unimodular group, ! < G a lattice, and " some group ME to ! and (#,m) be
a (!,")-coupling. Assume that the self-ME-coupling ) = #×" #̌ of ! admits a
Borel map ( : )→ G, satisfying a.e.:

(([γ1x, γ2y]) = γ1 ·(([x, y]) · γ−12 (γ1, γ2 ∈ !).

Then there exists a short exact sequence K−→"−→"̄ with K finite and "̄ being
a lattice in G, and a Borel map 3 : #→ G so that a.e.:

(([x, y]) = 3(x) ·3(y)−1, 3(γ z) = γ ·3(z), 3(λz) = 3(z) · λ̄−1.

13. In the case of G = Isom (Hn) we restrict to all .1-ME-couplings.
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Moreover, the push-forward of 3∗m is a Radon measure on G-invariant under the
maps

g &→ γ g λ̄, (γ ∈ !, λ̄ ∈ "̄).

If G is a (semi)simple Lie group, the last condition on the push-forward
measure canbe analyzedusingRatner’s theorem (as inTheorem5.4) to deduce
that assuming ergodicity 3∗m is either a Haar measure on G, or on a coset of
its finite-index subgroup, or it is (proportional to) countingmeasure on a coset
of a lattice !′ containing ! and a conjugate of "̄ as finite-index subgroups.

Theorem 5.13 is a streamlined and improved version of similar statements
obtained in [44] for higher-rank lattices, in [101] for products, and in [86] for
mapping class groups.

5.6. Local Rigidity for Measurable Cocycles

The rigidity vs. deformations approach to rigidity results developedbySorinPopa
led to a number of striking results in von Neumann algebras and in Ergodic
theory (some have been mentioned in §5.4). Let us illustrate the rigidity side
of this approach by the following simple purely ergodic-theoretic statement,
which is a variant of Hjorth’s [68, lemma 2.5].

Recall that one of the several equivalent forms of property (T) is the follow-
ing statement: a lcsc groupG has (T) if there exists a compactK ⊂ G and ε > 0
so that for any unitary G-representation π and any (K , ε)-almost invariant unit
vector v there exists a G-invariant unit vector w with ‖v−w‖ < 1

4 .

proposition 5.14. Let G be a group with property (T) and (K , ε), as above.
Then for any ergodic probability measure-preserving action G ! (X ,µ), any
countable group " and any pair of cocycles α,β : G×X → " with

µ
{
x ∈ X : α(g , x) = β(g , x)

}
> 1− ε

2

2
(∀g ∈ K )

there exists a measurable map f : X → " so that β = αf . Moreover, one can
assume that

µ
{
x : f (x) = e

}
>

3
4
.

Proof. Let X̃ = X ×" be equipped with the infinite measure µ̃ = µ×m"

where m" stands for the counting measure on ". Then G acts on (X̃ , µ̃) by

g : (x, λ) &→ (g .x,α(g , x)λβ(g , x)−1).
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This action preserves µ̃ and we denote by π the corresponding unitary G-
representation on L2(X̃ , µ̃). The characteristic function v = 1X×{e} satisfies

‖v−π (g)v‖2 = 2− 2Re〈π (g)v, v〉 < 2− 2
(
1− ε

2

2

)
= ε2 (g ∈ !)

and therefore there exists a π (G)-invariant unit vector w ∈ L2(X̃ , "̃) with
‖v−w‖ < 1

4 . Since 1 = ‖w‖2 =
∫

X
∑
λ |w(x, λ)|2 we may define

p(x) = max
λ

|w(x, λ)|, "(x) =
{
λ : |w(x, λ)| = p(x)

}

and observe that p(x) and the cardinality k(x) of the finite set"(x) are measur-
able !-invariant functions on (X ,µ); hence are a.e. constants p(x) = p ∈ (0, 1],
k(x) = k ∈ {1, 2, . . . }. Since 1

16 > ‖v−w‖2 ≥ (1− p)2 we have p > 3
4 . It fol-

lows that k = 1 because 1 = ‖w‖2 ≥ kp2. Therefore "(x) = {f (x)} for some
measurable map f : X → ". The π (G)-invariance of w gives π (G)-invariance
of the characteristic function of

{
(x, f (x)) ∈ X̃ : x ∈ X

}
, which is equi-

valent to

5.1 f (gx) = α(g , x)f (x)β(g , x)−1 and β = αf .

Let A = f −1({e}) and a = µ(A). Since
∑
λ |w(x, λ)|2 is a G-invariant func-

tion it is a.e. constant ‖w‖2 = 1. Hence for x /∈ A we have |w(x, e)|2 ≤
1− |w(x, f (x))|2 = 1− p2, and

1
16

> ‖v−w‖2 ≥ a · (1− p2)+ (1− a) · (1− (1− p2)) ≥ (1− a) · p2 >
9(1− a)

16
.

Thus a = µ
{
x ∈ X : f (x) = e

}
> 8

9 > 3
4 , as required. !

5.7. Cohomology of Cocycles

Let us fix two groups ! and ". There is no real assumption on !, it may be
any lcsc group, but we shall impose an assumption on ". One might focus
on the case where " is a countable group (class Gdsc), but versions of the
statements below would apply also to separable compact groups, or groups in
a larger class Ufin of all Polish groups, which embed in the unitary group of a
von Neumann algebra with finite faithful trace,14 or a potentially even larger
class Gbinv of groups with a bi-invariant metric, and the class Galg of connected
algebraic groups over local fields, say of zero characteristic.

14. This class, introducedbyPopa, containsbothdiscrete countable groups andseparable
compact ones.
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Given a (not necessarily free) p.m.p. action ! ! (X ,µ) let Z1(X ,") or
Z1(! ! X ,") denote the space of all measurable cocycles c : !×X → " and
by H1(X ,"), or H1(! ! X ,"), the space of equivalence classes of cocycles up
to conjugation by measurable maps f : X → ". If" ∈ Galg, we shall focus on
a subset H1

ss(X ,") of (classes of) cocycles whose algebraic hull is connected,
semisimple, center free, and has no compact factors.

Any !-equivariant quotient map π : X → Y defines a pull-back Z1(Y ,
")→ Z1(X ,") by cπ (g , x) = c(g ,π (x)), which descends to

H1(Y ,")
π∗−→H1(X ,").

Group inclusions i : " < "̄, and j : !′ < ! give rise to push-forward maps

H1(X ,")
i∗−→H1(X , "̄), H1(! ! X ,")

j∗−→H1(!′ ! X ,").

question 5.15. What can be said about these maps of the cohomology ?

The discussion here is inspired and informed by Popa’s [113]. In particular,
the following statements Propositions 5.16(2), 5.17, and 5.18(1), and Corollary
5.20 are variations onPopa’s original [113, lemma2.11, proposition3.5, lemma
3.6, theorem 3.1]. Workingwith classGbinv makes the proofsmore transparent
than in Ufin—this was done in [48, §3]. Proposition 5.16(3) for semisimple
target is implicit in [45, lemma 3.5]. The full treatment of the statements
below, including Theorem 5.19, will appear in [49].

proposition 5.16. Let π : X → Y be a !-equivariant quotient map. Then

H1(Y ,")
π∗−→H1(X ,")

is injective in the following cases:

1)" is discrete and torsion free.
2)" ∈ Gbinv and π : X → Y is relatively weakly mixing.
3)" ∈ Galg and H1(−,") is replaced by H1

ss(−,").

The notion of relative weakly mixing was introduced independently by
Zimmer [137] and Furstenberg [51]: a !-equivariant map π : X → Y is rel-
atively weakly mixing if the !-action on the fibered product X ×Y X is ergodic
(or ergodic relatively to Y ); this turns out to be equivalent to the condition that
! ! X contains no intermediate isometric extensions of ! ! Y .
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proposition 5.17. Let i : " < "̄ ∈ Gbinv be a closed subgroup, and ! !
(X ,µ) some p.m.p. action. Then

H1(X ,")
i∗−→H1(X , "̄)

is injective.

This useful property fails in the Galg setting: if ! < G is a lattice in a (semi)
simple Lie group and c : !×G/!→ ! in the canonical class, then viewed as
a cocycle intoG > !, c is conjugate to the identity embedding ! ∼= ! < G, but
as a !-valued cocycle it cannot be “untwisted.”

proposition 5.18. Letπ : X → Y be a quotient map of ergodic actions, and j :
!′ < ! be a normal, or sub-normal, or w-normal closed subgroup acting ergodically
on X . Assume that either

1)" ∈ Gbinv and π is relatively weakly mixing, or
2)" ∈ Galg and one considers H1

ss(−,").

Then H1(! ! Y ,") is the push-out of the rest of the following diagram:

H1(! ! X ,")
j∗

!! H1(!′ ! X ,")

H1(! ! Y ,")

π∗

""

j∗
!! H1(!′ ! Y ,").

π∗

""

In other words, if the restriction to !′ ! X of a cocycle c : !×X → " is conjugate
to one descending to !′ ×Y → ", then c has a conjugate that descends to !×
X → ".

The condition !′ < ! is w-normal (weakly normal), which means that there
exists a well-ordered chain !i of subgroups starting from !′ and ending with
!, so that !i C!i+1 and for limit ordinals !j = ⋃

i<j !i (Popa).
Let πi : X → Yi is a collection of !-equivariant quotient maps. Then X has

a unique !-equivariant quotient p : X → Z = ∧
Yi, which is maximal among

all common quotients pi : Yi → Z. Identifying !-equivariant quotients with
!-equivariant complete sub-σ -algebras of X , one has p−1(Z) = ⋂

i π
−1
i (Yi);

or in the operator algebra formalism p−1(L∞(Z)) = ⋂
i π
−1
i (L∞(Yi)).
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theorem 5.19. Let πi : X → Yi, 1 ≤ i ≤ n, be a finite collection of !-
equivariant quotients, and Z = ∧n

i=1 Yi. Then H1(Z,") is the push-out of
H1(Yi,") under conditions (1)–(3) of Proposition 5.16:

H1(X ,")

H1(Y1,")

π∗1
##!!!!!!!!!!!

· · · H1(Yi,") · · ·

π∗i

""

H1(Yn,")

π∗n
$$"""""""""""

H1(Z,")

p∗1
##!!!!!!!!!!!

p∗i

""p∗n
$$"""""""""""

More precisely, if ci : !×X → " are cocycles (in case (3) assume [ci] ∈
H1

ss(Yi,")), whose pullbacks ci(g ,πi(x)) are conjugate over X , then there exists
a unique class [c] ∈ H1(Z,"), so that c(g , pi(y)) ∼ ci(g , y) in Z1(Yi,") for all
1 ≤ i ≤ n.

The proof of this Theorem relies on Proposition 5.16 and contains it as a
special case n = 1.

This result can be useful to push cocycles to deeper and deeper quotients;
if π : X → Y is a minimal quotient to which a cocycle or a family of cocy-
cles can descend up to conjugacy, then it is the minimal or characteristic
quotient for these cocycles: if they descend to any quotient X → Y ′, then
necessarily X → Y ′ → Y . For example if ! < G is a higher-rank lattice, " is
a discrete group and c : !×X → " is an OE (or ME) cocycle, then either
c descends to a !-action on a finite set (virtual isomorphism case), or to
X

π−→G/"′ with" 0 "′ lattice inG, whereπ is uniquely defined by c (initial OE
or ME).

An important special (and motivating) case of Theorem 5.19 is that of
X = Y ×Y where ! ! Y is a weakly mixing action. Then the projections
πi : X → Yi = Y , i = 1, 2, give Z = Y1 ∧Y2 = {pt} and H1(! ! {pt},") =
Hom(!,"). So

corollary 5.20. (popa [113, theorem 3.1], see also [48, theo-
rem 3.4]) Let ! ! Y be a weakly mixing action and c : !×Y → " a cocycle
into" ∈ Gbinv. Let X = Y ×Y with the diagonal!-action, c1, c2 : !×X → " the
cocycles ci(g , (y1, y2)) = c(g , yi). If c1 ∼ c2 over X , then there exists homomorphism
ρ : !→ " and a measurable f : Y → ", so that c(g , y) = f (gy)−1ρ(g) f (y).
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5.8. Proofs of Some Results

In this section we shall give relatively self-contained proofs of some of the
results mentioned above.

5.8.1. sketch of a proof for popa’s cocycle superrigidity theorem
5.10 First note that without loss of generality the base space (X0,µ0) of the
Bernoulli actionmay be assumed to be nonatomic. Indeed, Proposition 5.16(2)
implies that for each of the classes Gdsc ⊂ Ufin ⊆ Gbinv the corresponding
cocycle superrigidity descends through relativelyweaklymixing quotients, and
([0, 1], dx)! → (X0,µ0)! is such.

Given any action! ! (X ,µ) consider the diagonal!-action on (X ×X ,µ×
µ) and its centralizer Aut! (X ×X ) in the Polish group Aut (X ×X ,µ×µ). It
always contain the flip F : (x, y) &→ (y, x). Bernoulli actions ! ! X = [0, 1]!
have the special property (called s-malleability by Popa) that there is a
path

p : [1, 2]→ Aut! (X ×X ), with p1 = Id, p2 = F.

Indeed, the diagonal component-wise action of Aut ([0, 1]× [0, 1]) onX ×X =
([0, 1]× [0, 1])! embeds into Aut! (X ×X ) and can be used to connect Id to F.

Fix a cocycle c : ! ! X → ". Consider the two lifts to X ×X → X :

ci : ! ! X ×X → ", ci(g , (x1, x2)) = c(g , xi), (i = 1, 2).

Observe that they are connected by the continuous path of cocycles
ct(g , (x, y)) = c1(g , pt(x, y)), 1 ≤ t ≤ 2. Local rigidity inProposition5.14 implies
that c1 and c2 are conjugate over X ×X , and the proof is completed invoking
Corollary 5.20. Under the weaker assumption of relative property (T) with
respect to a w-normal subgroup, Popa uses Proposition 5.18.

5.8.2. a cocycle superrigidity theorem We state and prove a co-
cycle superrigidity theorem, inspired and generalizing Adrian Ioana’s Theo-
rem5.12. Thus a number of statements (Theorems 4.15 and 4.20(2) and §4.3.1)
in this survey get a relatively full treatment. The proof is a good illustration of
Popa’s deformation vs. rigidity approach.

Recall that an ergodic p.m.p. action ! ! (X ,µ) is said to have a discrete
spectrum if the Koopman !-representation on L2(X ,µ) is a Hilbert sum
of finite-dimensional subrepresentations. Mackey proved (generalizing the
Halmos–von Neumann theorem for Z, and using Peter-Weyl ideas) that dis-
crete spectrum action is measurably isomorphic to the isometric !-action on
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(K/L,mK/L), g : kL &→ τ (g)kL, where L < K are compact separable groups and
τ : !→ K is a homomorphism with dense image.

theorem 5.21. (after ioana’s theorem 5.12, [72]) Let ! ! (X ,µ)
be an ergodic p.m.p. action with discrete spectrum. Assume that ! has property (T),
or contains a w-normal subgroup !0 with property (T) acting ergodically on (X ,µ).
Let " be an arbitrary torsion-free discrete countable group and c : !×X → " be
a measurable cocycle.

Then there is a finite-index subgroup !1 < !, a !1-ergodic component X1 ⊂ X
(of measure µ(X1) = [! : !1]−1), a homomorphism ρ : !1 → ", and a measur-
able map φ : X → ", so that the conjugate cocycle cφ restricted to !1 ! X1 →
", is the homomorphism ρ : !1 → ". The cocycle cφ : !×X → " is induced
from ρ.

The assumption that " is torsion free is not essential; in general, one
might need to lift the action to a finite cover X̂1 → X1 via a finite group that
embeds in". If K is a connected Lie group, then !1 = ! and X1 = X = K/L.
The stated result is deduced from the case where L is trivial, that is, X = K ,
using Proposition 5.16(1). We shallmake this simplification and assume! has
property (T) (the modification for the more general case uses an appropriate
version of Propositions 5.14 and 5.17). An appropriate modification of the
result handles compact groups as a possible target group " for the cocycle.

Proof. The K -action by right translations: t : x &→ xt−1 commutes with the !-
action on K ; in fact, K is precisely the centralizer of ! in Aut (K ,mK ). This
allows us to deform the initial cocycle c : !×X → ", setting

ct(g , x) = c(g , xt−1) (t ∈ K ).

Let F ⊂ ! and ε > 0 be as in the “local rigidity” Proposition 5.14. Then
for some open neighborhood U of e ∈ K for every t ∈ U there is a unique
measurable ft : K → " with

ct(g , x) = c(g , xt−1) = ft(gx)c(g , x)ft(x)−1 µ
{
x : ft(x) = e

}
>

3
4
.

Suppose t, s ∈ U , and ts ∈ U . Then

fts(gx) c(g , x) fts(x)−1 = cts(g , x) = c(g , xs−1t−1)

= ft(gxs−1) c(g , xs−1) ft(xs−1)−1

= ft(gxs−1)fs(gx) c(g , x) [ft(xs−1)fs(x)−1]−1.
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This can be rewritten as

F(gx) = c(g , x)F(x) c(g , x)−1, where F(x) = fts(x)−1ft(xs−1)fs(x).

Since ft , fs, fts takes value e with probability > 3/4, it follows that A = F−1({e})
has µ(A) > 0. The equation implies !-invariance of A. Thus µ(A) = 1 by
ergodicity. Hence, whenever t, s, ts ∈ U

5.2 fts(x) = ft(xs−1)fs(x).

If K is a totally disconnected group, that is, a profinite completion of ! as in
Ioana’s Theorem 5.12, then U contains an open subgroup K1 < K . In this
case one can skip the following paragraph.

In general, let V be a symmetric neighborhood of e ∈ K so that V2 ⊂ U ,
and letK1 = ⋃∞

n=1 Vn. ThenK1 is an open (hence, also closed) subgroup ofK ;
in the connected case K1 = K . We shall extend the family {ft : K → "}t∈V to
be defined for all t ∈ K1 while satisfying Equation (5.2), using a “cocycle con-
tinuation” procedure akin to analytic continuation. For t, t′ ∈ K1 aV -quasipath
pt→t′ from t to t′ is a sequence t = t0, t1, . . . , tn = t′ where ti ∈ ti−1V . Two V -
quasipaths from t to t′ are V -close if they are within V -neighborhoods from
each other. Two V -quasipaths pt→t′ and qt→t′ are V -homotopic if there is a
chain pt→t′ = p(0)t→t′ , . . . , p

(k)
t→t′ = qt→t′ of V -quasipaths where p(i−1) and p(i)

are V -close, 1 ≤ i ≤ k. Iterating Equation (5.2) one may continue the defini-
tion of f· from t to t′ along a V -quasipath; the continuation being the same
for V -close quasipaths, and therefore for V -homotopic quasipaths as well (all
from t to t′). The possible ambiguity of this cocycle continuation procedure
is encoded in the homotopy group π (V )

1 (K1) consisting of equivalence classes
of V -quasipaths from e→ e modulo V -homotopy. We claim that this group
is finite. In the case of a connected Lie group K1, π

(V )
1 (K1) is a quotient of

π1(K1) that is finite since K1, contains a dense property (T) group and can-
not have torus factors. This covers the general case as well since π (V )

1 (K1)
“feels” only finitely many factors when K1 is written as an inverse limit of con-
nected Lie groups and finite groups. Considering the continuations of f along
V -quasipaths e→ e we get a homomorphism π

(V )
1 (K1)→ ", which must be

trivial since"was assumed to be torsion free. Therefore, we obtain a family of
measurable maps ft : K1 → " indexed by t ∈ K1 and still satisfying Equation
(5.2).

Let !1 = τ−1(K1). Then the index [! : !1] = [K : K1] is finite. We shall
focus on the restriction c1 of c to !1 ! K1. Note that Equation (5.2) is a cocycle
equation for the simply transitive action K1 on itself. It follows by a standard
argument that it is a coboundary. Indeed, for a.e. x0 ∈ K1 Equation (5.2) holds
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for a.e. t, s ∈ K1. In particular, for a.e. t, x ∈ K1, using s = x−1x0, one obtains
ftx−1x0 (x0) = ft(x)fx−1x0 (x0). This gives

ft(x) = φ(xt−1)φ(x)−1, where φ(x) = fx−1x0 (x0).

Equation ct = cft translates into the fact that the cocycle cφ(g , x) = φ(gx)−1

c(g , x)φ(x) satisfies for a.e. x, t

cφ(g , xt−1) = cφ(g , x).

Thus c(g , x) does not depend on the space variable. Hence, it is a homomor-
phism

cφ(g , x) = ρ(g).

Finally, the fact that cφ is induced from cφ1 is straightforward. !

Appendix A. Cocycles

Let G ! (X ,µ) be a measurable, measure-preserving (sometimes just mea-
sure class preserving) action of a topological group G on a standard Lebesgue
space (X ,µ), and H be a topological group. A Borel measurable map c :
G×X → H forms a cocycle if for every g1, g2 ∈ G for µ-a.e. x ∈ X one has

c(g2g1, x) = c(g2, g1.x) · c(g1, x).

If f : X → H is ameasurablemap and c : G×X → H is ameasurable cocycle,
define the f -conjugate cf of c to be

cf (g , x) = f (g .x)−1 c(g , x) f (x).

It is straightforward to see that cf is also a cocycle. One says that c and cf

are (measurably) conjugate, or cohomologous cocycles. The space of all mea-
surable cocycles !×X → " is denoted by Z1(! ! X ,") and the space of
equivalence classes by H1(! ! X ,").

Cocycles that do not depend on the space variable c(g , x) = c(g) are pre-
cisely homomorphisms c : G→ H. So cocycles may be viewed as generalized
homomorphisms. In fact, any group action G ! (X ,µ) defines a measured
groupoid G with G(0) = X , and G(1) =

{
(x, gx) : x ∈ X , g ∈ G

}
(see [9] for

the background). In this context cocycles can be viewed as homomorphisms
G → H.

If π : (X ,µ)→ (Y , ν) is an equivariant quotient map between !-actions (so
π∗µ = ν and π ◦ γ = γ for γ ∈ !), then for any target group " any cocycle
c : !×Y → " lifts to c̄ : !×X → " by
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c̄(g , x) = c(g ,π (x)).

Moreover, if c′ = cf ∼ c in Z1(! ! Y ,"), then the lifts c̄′ = c̄f ◦π ∼ c̄ in
Z1(! ! X ,"); so X

π−→Y induces

H1(! ! X ,")
π:←−H1(! ! Y ,").

Note that Hom(!,") is Z1(! ! {pt},") and classes of cocycles on !×X →
" cohomologous to homomorphisms is precisely the pull-back of H1(! !
{pt},").

A.1. The Canonical Class of a Lattice, (Co)induction

Let ! < G be a lattice in a lcsc group. By definition the transitive G-action on
X = G/! has an invariant Borel regular probabilitymeasureµ. LetF ⊂ G be a
Borel fundamental domain for the right!-action onG (i.e., F is a Borel subset
of G set that meets every coset g! precisely once). Fundamental domains
correspond to Borel cross-section σ : G/!→ G of the projection G→ G/!.
Define

cσ : G×G/!→ ! by cσ (g , h!) = σ (gh!)−1 g σ (h!).

Clearly, this is a cocycle (a conjugate of the identity homomorphism G→ G);
however, cσ takes values in the subgroup ! of G. This cocycle is associated
to a choice of the cross-section σ (equivalently, the choice of the fundamental
domain); starting from another Borel cross-section σ ′ : G/!→ G results in
a cohomologous cocycle:

cσ ′ = cf
σ where f : G/!→ ! is defined by σ (x) = f (x)σ ′(x).

Let ! be a lattice in G. Then any action ! ! (X ,µ) gives rise to the induced
G-action (a.k.a. suspension) on X̄ = G×! X where G acts on the first coordi-
nate. Equivalently, X̄ = G/!×X and g : (g ′!, x) &→ (gg ′!, c(g , g ′!)x) where
c : G×G/!→ ! is in the canonical class. Here the G-invariant finite mea-
sure µ̄ = mG/! ×µ is ergodic iffµ is!-ergodic. If α : !×X → H is a cocycle,
the induced cocycle ᾱ : G× X̄ → H is given by ᾱ(g , (g ′!, x)) = α(c(g , g ′!), x).
The cohomology of ᾱ is the same as that of α (one relates maps F : X̄ → H
to f : X → H by f (x) = F(e!, x) taking instead of e! a generic point in G/!).
In particular, ᾱ is cohomologous to a homomorpism π̄ : G→ H iff α is
cohomologous to a homomorphism !→ H; see [146] for details.

Cocycles appear quite naturally in a number of situations such as (volume-
preserving) smooth actions on manifolds, where choosing a measurable
trivialization of the tangent bundle, the derivative becomes a matrix-valued
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cocycle. We refer the reader to David Fisher’s survey [42] where this type of
cocycle is extensively discussed in the context of Zimmer’s program. Here
we shall be interested in a different type of cocycles: “rearrangement” co-
cycles associated to orbit equivalence, measure equivalence, and so on. as
follows.

A.2. OE-Cocycles

Let ! ! (X ,µ) and " ! (Y , ν) be two measurable, measure-preserving
ergodic actions on probability spaces, and T : (X ,µ)→ (Y , ν) be an Orbit
Equivalence. Assume that the "-action is essentially free, that is, for ν-.a.e
y ∈ Y , the stabilizer "y =

{
h ∈ " : h.y = y

}
is trivial. Then for every g ∈ !

and µ-a.e. x ∈ X , the points T (g .x),T (x) ∈ Y lie on the same "-orbit. Let
α(g , x) ∈ " denote the (a.e. unique) element of " with

T (g .x) = α(g , x).T (x).

Considering x, g .x, g ′g .x one checks thatα is actually a cocycleα : !×X → ".
We shall refer to such α as the OE-cocycle, or the rearrangement cocycle,
corresponding to T .

Note that for µ-a.e. x, the map α(−, x) : !→ " is a bijection; it describes
how the !-names of points x′ ∈ !.x translate into the"-names of y′ ∈ ".T (x)
under the map T . The inverse map T−1 : (Y , ν)→ (X ,µ) defines an OE-
cocycle β : "×Y → !, which serves as an “inverse” to α in the sense
that a.e.:

β(α(g , x),T (X )) = g (g ∈ !).

A.3. ME-Cocycles

Let (#,m) be an ME-coupling of two groups ! and " and let Y ,X ⊂ # be
fundamental domains for!," actions, respectively. The natural identification
#/" ∼= X , "ω &→ "ω∩X , translates the !-action on #/" to ! ! X by

γ : X ? x &→ gα(g , x)x ∈ X

where α(γ , x) is the unique element in" taking γ x ∈ # into X ⊂ #. It is easy
to see that α : !×X → " is a cocycle with respect to the above !-action on
X , which we denote by a dot γ · x to distinguish it from the !-action on #.
(If ! and " are lattices in G, then α : !×G/"→ " is the restriction of the
canonical cocycle G×G/"→ "). Similarly we get a cocycle β : "×Y → !.
So the (!,") ME-coupling# and a choice of fundamental domains Y ∼= #/!,
X ∼= #/" define a pair of cocycles
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A.1 α : !×#/"→ ", β : "×#/!→ !.

Changing the fundamental domains amounts to conjugating the cocycles and
vice versa.

remark 5.22. One can characterize ME-cocycles among all measurable cocycles
α : !×X → " as discrete ones with finite covolume. These concepts refer to the
following construction: let (X̃ , µ̃) = (X ×",µ×m") and let ! act by g : (x, h) &→
(g .x,α(g , x)h). Say that the cocycle is discrete and has finite covolume if the action
! ! (X̃ , µ̃) admits a finite-measure fundamental domain.
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