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Abstract
We prove the existence of positive lower bounds on the Cheeger constants of manifolds
of the form X=� where X is a contractible Riemannian manifold and � < Isom.X/
is a discrete subgroup, typically with infinite covolume. The existence depends on
the L2-Betti numbers of � , its subgroups, and a uniform lattice of Isom.X/. As an
application, we show the existence of a uniform positive lower bound on the Cheeger
constant of any manifold of the form H4=� where H4 is real hyperbolic 4-space and
� < Isom.H4/ is discrete and isomorphic to a subgroup of the fundamental group of
a complete finite-volume hyperbolic 3-manifold. Via Patterson–Sullivan theory, this
implies the existence of a uniform positive upper bound on the Hausdorff dimension
of the conical limit set of such a � when � is geometrically finite. Another application
shows the existence of a uniform positive lower bound on the zeroth eigenvalue of the
Laplacian of Hn=� over all discrete free groups � < Isom.Hn/ whenever n � 4 is
even. (The bound depends on n.) This extends results of Phillips–Sarnak and Doyle,
who obtained such bounds for n� 3 when � is a finitely generated Schottky group.

1. Introduction
The Cheeger constant of a smooth Riemannian manifold M is defined by

h.M/ WD inf
area.@M0/

vol.M0/
;

where the infimum is over all smooth compact submanifoldsM0 �M with vol.M0/�

vol.M/=2. For most of the paper we will be applying the Cheeger constant to infinite-
volume manifolds, in which case the infimum in the formula above is over all smooth
compact submanifolds. In this case, we could call h.M/ the Følner constant instead
of the Cheeger constant. For example, ifM has infinite volume, then h.M/D 0 if and
only if M is amenable. This paper is motivated by the following general problem.

Problem 1.1
Given a contractible smooth Riemannian manifold X and a family F of abstract
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groups let I.X jF /D inf� h.X=�/ where the infimum is over all � < Isom.X/ such
that
� � acts freely and properly discontinuously on X ;
� � is isomorphic to a group in F .
Compute I.X j F / for interesting special cases (e.g., when X is real hyperbolic
n-space Hn and F is the class of free groups). We are especially interested in knowing
whether I.X jF /D 0.

For example, let Free denote the class of free groups. For every � > 0 there is
a free group � < Isom.H2/ such that the compact core of H2=� is a pair of pants
with geodesic boundary components each of length �. The compact core has area 2�
but H2=� has infinite area. It follows that h.H2=�/� 3�=.2�/. Since � is arbitrary,
I.H2 j Free/D 0. Likewise, Isom.H3/ admits a nonuniform lattice isomorphic to the
fundamental group of a fiber bundle over the circle so that the fundamental group
of the fiber surface is a rank 2 free subgroup ƒ of Isom.H3/ with h.H3=ƒ/D 0. So
I.H3 j Free/D 0. The exact value of I.Hn j Free/ is unknown for n > 3. It is not even
known whether I.Hn j Free/ is monotone in n.

To explain our main result it is convenient to introduce the following definitions.

Definition 1
Given a Riemannian manifold X and � < Isom.X/, we say that � is geometric if
the action of � on X is free and properly discontinuous. This ensures that X=� is a
manifold and the quotient map X!X=� is a cover.

Definition 2
Let us say that a residually finite countable group � has asymptotically vanishing
lower d th Betti number if

lim inf
N

bd .N /

Œ� WN�
D 0;

where the lim inf is with respect to the net of finite-index normal subgroups N � �

ordered by reverse inclusion. Equivalently, this holds if, for every � > 0, for every
finite-index normal subgroup N � � there exists a subgroup N 0 <N such that N 0 is
normal and has finite index in � and bd .N 0/=.Œ� WN 0�/ < �. For example, if � has a
finite classifying space, then � has asymptotically vanishing lower d th Betti number
if and only if b.2/

d
.�/D 0 by Lück’s approximation theorem [25, Theorem 0.1] (where

b
.2/

d
.�/ denotes the d -dimensional L2-Betti number of �).

Our main result is the following.
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THEOREM 1.2
Let X be a smooth contractible complete Riemannian manifold. Let Gd be the class
of all residually finite countable groups � such that every finitely generated subgroup
� 0 < � has asymptotically vanishing lower d th Betti number. Suppose there is a
residually finite geometric subgroup ƒ < Isom.X/ such that X=ƒ is compact and
b
.2/

d
.ƒ/ > 0. Then I.X j Gd / > 0.

This is derived from a more general result (Theorem 7.1) concerning metric-
measure spaces (mm-spaces) in place of manifolds. In general, it appears to be a
difficult problem to determine whether a given group is in Gd . However, we show
in Proposition 8.2 below that if � is the fundamental group of a complete finite-
volume hyperbolic 3-manifold, then � 2 Gd for all d > 1 (and the same holds for
every subgroup of �). Using this we obtain the following.

COROLLARY 1.3
If � < Isom.Hn/ is geometric and isomorphic with a subgroup of the fundamental
group of a complete finite-volume hyperbolic 3-manifold and n� 4 is an even integer,
then h.Hn=�/ � I.Hn j Gn=2/ > 0. In particular, I.Hn j Free/ > 0 for every even
integer n� 4.

Observe that we do not require the group � to be finitely generated in the result
above.

Instead of the Cheeger constant, one might be interested in the bottom of the
spectrum of the Laplace operator of a smooth Riemannian manifold M , which we
denote by �0.M/. By [9],

h.M/2=4� �0.M/: (1)

More precisely, Cheeger proved (1) when M is compact, but it is well known that it
generalizes to the noncompact case.

In order to compare Corollary 1.3 with previous results, recall that a classi-
cal Schottky group is a subgroup of Isom.Hn/ generated by elements g1; : : : ; gm
such that there exist pairwise disjoint conformally round balls B1;B2; : : : ;Bm and
B 01;B

0
2; : : : ;B

0
m in the sphere at infinitySn�1 D @Hn such that gi .Sn�1=B 0i /D int.Bi /

for every i . Phillips and Sarnak [30, Theorem 5.4] showed that for every n� 4 there
is a constant fn > 0 such that if � is any classical Schottky subgroup of Isom.Hn/,
then �0.Hn=�/ � fn where �0 denotes the bottom of the spectrum of the Laplace
operator. This result was extended by Doyle [12] to nD 3. No such bound exists for
nD 2.



572 LEWIS BOWEN

Classical Schottky groups are free groups so it makes sense to ask whether these
results hold for free groups more generally. Corollary 1.3 and (1) show that indeed
�0.H

n=�/� I.Hn j Gn=2/
2=4 > 0 whenever n� 4 is even and � is a free group.

Instead of the Cheeger constant or �0, one might be interested in the Haus-
dorff dimension of the limit set. The limit set L� of a subgroup � < Isom.Hn/ is
the intersection of the sphere at infinity Sn�1 D @Hn with the closure of �x for
any x 2 Hn. Let HD.L�/ denote the Hausdorff dimension of L� . In [33, Theo-
rem 2.21], Sullivan shows that if � < Isom.Hn/ is geometrically finite without cusps
and HD.L�/� .n� 1/=2, then

�0.H
n=�/D

�
n� 1�HD.L�/

�
HD.L�/: (2)

(Our definition of �0 differs from the definition in [33] by a sign.) If � is merely geo-
metrically finite, then this result holds with the limit set replaced by the conical limit
set by [5, Corollary 2.6] and [33, Theorem 2.17]. These results have been generalized
to other rank 1 symmetric spaces in [11]. From Corollary 1.3 and (1) we now obtain
the following.

COROLLARY 1.4
For every integern� 2, there exists a numberd2n < 2n�1 such that ifƒ< Isom.H2n/
is a geometrically finite discrete group isomorphic to a subgroup of the fundamental
group of a finite-volume complete hyperbolic 3-manifold, then the Hausdorff dimen-
sion of the conical limit set of ƒ is at most d2n.

In the opposite direction, it is shown in [20] and [21] that any Kleinian group
whose limit set has sufficiently small Hausdorff dimension is a classical Schottky
group.

The corollary above partially solves [23, Problem 10.27, p. 530]. Let us mention
in passing that the survey [23] is a rich source for examples and open problems about
Kleinian groups in higher dimensions.

It is a long-standing open problem to determine whether there exists a closed real
hyperbolic 4-manifold M that fibers over a surface with fiber a surface. Recently U.
Hamenstädt [18] has proven that no such manifold exists if both base and fiber are
closed. However, the other cases remain open. If there is such a manifold, then the
universal cover fM is naturally identifiable with hyperbolic space H4 and therefore
the fundamental group �1.M/ can be represented as a lattice in Isom.H4/. More-
over, the fundamental group of a fiber surface can be represented as a discrete group
ƒ < Isom.H4/. This group is isomorphic to the fundamental group of a surface. So
Corollary 1.3 implies that h.H4=ƒ/ > 0. Becauseƒ is a normal subgroup of a lattice,
its limit set is the entire 3-sphere boundary of H4. However, it is not geometrically
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finite. It might seem reasonable, by analogy with the 3-dimensional case, to suspect
that by deforming ƒ slightly (or by passing to a subgroup), it should be possible to
find, for every � > 0, a geometrically finite discrete group ƒ0 < SO.4; 1/ such that
the Hausdorff dimension of the conical limit set of ƒ0 is at least 3� � and ƒ0 is iso-
morphic to the fundamental group of a compact surface. Corollary 1.4 implies this
intuition is incorrect.

Question 1
Let Surface denote the class of fundamental groups of closed surfaces of genus g � 2.
Is I.H4 j Surface/ realized? In other words, does there exist a geometric surface group
� < Isom.H4/ such that h.H4=�/ D I.H4 j Surface/? Suppose that there exists a
closed hyperbolic 4-manifold which fibers over a surface and � is the fundamental
group of the fiber surface. Then is it true that h.H4=�/D I.H4 j Surface/? This ques-
tion admits natural variations by replacing the Cheeger constant with �0 or HD.L�/
for example.

Question 2
Is I.Hn j Free/ > 0 when n is odd? Does the limit limn!1 I.H

n j Free/ exist? If so,
is it positive?

Remark 1
Corollaries 1.3 and 1.4 can be generalized to complex-hyperbolic space (by using [26,
Theorem 5.12] and Proposition 8.2 below). In fact, complex-hyperbolic manifolds are
always even-dimensional and it is known that the L2-Betti number of a lattice acting
complex-hyperbolic space does not vanish in the middle dimension. Therefore, we
obtain I.CHn j Gn/ > 0 for all n� 2.

Remark 2
There are stronger results for quaternionic hyperbolic space and the octonionic hyper-
bolic plane because the isometry groups of these spaces have property (T) (see [10],
[11]). In fact it is known that if � is a geometrically finite subgroup of the isom-
etry group of one of these spaces but � is not a lattice, then there is a nontrivial
lower bound on the codimension of the Hausdorff dimension of the limit set of �
which does not depend on � . The analogous statement for real or complex hyperbolic
n-space is false (see [23]) essentially because there exist lattices which surject onto
infinite amenable groups.

Remark 3
It is an open question whether Theorem 1.2 holds without the residual finiteness
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assumptions (either on ƒ or Gd ). However, in many interesting cases Isom.X/ is lin-
ear, and therefore, by Malćev’s theorem, every finitely generated subgroup of Isom.X/
is residually finite.

Remark 4
It might be possible to obtain an explicit bound on I.H2n j Gn/ from the proof of
Theorem 1.2 and the results of [13], which show that Betti numbers are testable.

1.1. Outline
We begin by explaining the Benjamini–Schramm convergence of simplicial com-
plexes in Section 2. The highlight of this section is G. Elek’s result: if ¹Kiº1iD1 is a
Benjamini–Schramm-convergent (BS-convergent) sequence of finite connected sim-
plicial complexes, then the normalized Betti numbers of ¹Kiº1iD1 converge as i!1.
This result is the key to the whole proof. In Section 3 we review mm-spaces, deferring
the proofs to the appendices. We generalize G. Elek’s result in Section 4 to sequences
of mm-spaces following an outline provided by G. Elek [14] in the closed Rieman-
nian manifold case. Section 5 reviews L2-Betti numbers and Section 6 provides some
tools for proving Benjamini–Schramm convergence.

The proof of Theorem 1.2 is in Section 7. Here is a brief and rough outline.
It suffices to prove the contrapositive: if ¹�iº1iD1 is a sequence of residually finite
geometric subgroups of Isom.X/ and limi!1 h.X=�i /! 0, then for all but finitely
many i there exist subgroups � 0i < �i such that

bb .2/
d
.� 0i / WD lim inf

N

bd .N /

Œ� 0 WN�
> 0;

where the limit is over the net of finite-index normal subgroups of � ordered by
reverse inclusion.

We are assuming the existence of a residually finite uniform latticeƒ< Isom.X/
with b.2/

d
.ƒ/ > 0. We use a lemma due to Buser (see Lemma 7.3 below) to find com-

pact smooth submanifolds Mi � X=�i such that for every r > 0 the ratio
vol.Nr.@Mi //=.vol.Mi // tends to zero as i!1 where Nr.@Mi / denotes the radius
r neighborhood of the boundary ofMi . After passing to a subgroup of �i if necessary,
we can also require thatMi has no short homotopically nontrivial loops (meaning that
every homotopically nontrivial loop in Mi has length at least ri where limi!1 ri D

C1). From these results we conclude that ¹Miº
1
iD1 Benjamini–Schramm converges

toX . So our generalization of Elek’s result implies that limi!1 bd .Mi /=.vol.Mi //D

b
.2/

d
.ƒ/=.vol.X=ƒ// where bd .Mi / denotes the ordinary d th Betti number of Mi .
The Mayer–Vietoris sequence is employed to show (roughly speaking) that the

normalized Betti numbers bd .Mi /=.vol.Mi // are asymptotically bounded by the nor-
malized Betti numbers of �i . Lück approximation and residual finiteness allow us to
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replace ordinary Betti numbers with L2-Betti numbers and to compare these limits
with the L2-Betti numbers of the lattice ƒ, proving Theorem 1.2. In Section 8, we
use treeability, almost treeability, and well-known results about L2-Betti numbers of
hyperbolic lattices to obtain Corollaries 1.4 and 1.3 from Theorem 1.2.

2. Benjamini–Schramm convergence of simplicial complexes
A rooted simplicial complex is a pair .K;v/ where K is a simplicial complex and
v is a vertex of K . We say .K1; v1/ and .K2; v2/ are root-isomorphic if there is an
isomorphism from K1 to K2 which takes v1 to v2. We let ŒK; v� denote the root-
isomorphism class of .K;v/.

Let RSC denote the set of all root-isomorphism classes of connected rooted
locally finite simplicial complexes.

We define a topology on RSC as follows. Given a finite rooted simplicial complex
.L;w/ and an integer r > 0, let Ur.L;w/� RSC be the set of all ŒK; v� 2 RSC such
that the closed ball of radius r centered at v in K is root-isomorphic to .L;w/. Here
we are employing a standard convention: the closed ball of radius r is the subcomplex
consisting of all simplices � in K with the property that every vertex v0 of � is of
distance at most r from v with respect to the path metric on the 1-skeleton of K .

We give RSC a topology by declaring eachUr.L;w/ to be a closed set. For�> 0
let RSC.�/� RSC denote the set of all root-isomorphism classes of connected rooted
simplicial complexes ŒK; v� so that every vertex of K has degree at most �. With the
subspace topology, RSC.�/ is compact and metrizable. Moreover, each Ur.L;w/\
RSC.�/ is a clopen subset of RSC.�/.

Definition 3
In general, ifX is a topological space, then we let M.X/ denote the space of all Borel
measures on X with the weak* topology. Therefore a sequence ¹�iº1iD1 �M.X/

converges to an element �1 2M.X/ if and only if, for every compactly supported
continuous function f 2 C.X/,

R
fd�i converges to

R
fd�1 as i !1. Also let

M1.X/ denote the subspace of Borel probability measures on X .

Given a finite connected simplicial complex K , let 	K 2M1.RSC/ denote

	K D
1

jV.K/j

X
v2V.K/

ıŒK;v�;

where V.K/ denotes the set of vertices of K and ıŒK;v� denotes the Dirac probability
measure concentrated on ŒK; v� 2 RSC.

A sequence of finite connected simplicial complexes ¹Kiº1iD1 is BS-convergent
if the sequence ¹	Ki º

1
iD1 converges in the weak* topology on M1.RSC/. In the spe-
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cial case in which there is a uniform degree bound � on the Ki ’s, this means that,
for every finite .L;w/ 2 RSC and every r > 0, limi!1	Ki .Ur.L;w// exists. The
graph-theoretic version of this notion was introduced in [4]. The next lemma is crucial
to our entire approach.

LEMMA 2.1
Let � > 0, and let ¹Kiº1iD1 be a sequence of finite connected simplicial complexes
such that every vertex of everyKi has degree at most�. If ¹Kiº1iD1 is BS-convergent,
then limi!1 bd .Ki /=jV.Ki /j exists for any d � 0 where bd .Ki / denotes the ordi-
nary d th Betti number of Ki .

Proof
This is [13, Lemma 6.1].

The next lemma is a generalization of the above to convex sums of finite con-
nected simplicial complexes.

LEMMA 2.2
Let ¹
iº1iD1 2M1.RSC.�// be a convergent sequence in the weak* topology. In
addition, assume that for each i there exist finite connected simplicial complexes
Ki;1; : : : ;Ki;mi and positive real numbers ti;1; : : : ; ti;mi such that


i D

miX
jD1

ti;j	Ki;j :

Suppose as well that there exist natural numbers Ni such that jV.Ki;j /j �Ni for all
i; j and limi!1Ni DC1. Then for any d � 1,

lim
i!1

Pmi
jD1 ti;j bd .Ki;j /Pmi
jD1 ti;j jV.Ki;j /j

exists.

Proof
By approximating the coefficients ti;j by rational numbers, we see that it suffices to
prove the special case in which each ti;j is a rational number, which we now assume.
Let Di > 0 be a natural number such that Di ti;j 2N for all i; j .

Let K.1/i;j ; : : : ;K
.Di ti;j /

i;j be disjoint complexes, each of which is isomorphic to

Ki;j . Let vki;j be a vertex of K.k/i;j . Let Li be the disjoint union of K.k/i;j over all
1� k �Di ti;j and 1 � j �mi . Let L0i be the smallest complex containing Li such
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that there is an edge in L0i from vki;j to vkC1i;j for all 1� k <Di ti;j , 1� j �mi , and

an edge from v
Di ti;j
i;j to v1i;jC1 for all 1 � j < mi . Then L0i is a connected complex

with vertex degree bound �C 2. Moreover,

bd .L
0
i /D

miX
jD1

Di ti;j bd .Ki;j /;
ˇ̌
V.L0i /

ˇ̌
D

miX
jD1

Di ti;j
ˇ̌
V.Ki;j /

ˇ̌
;

which implies that

bd .L
0
i /=
ˇ̌
V.L0i /

ˇ̌
D

Pmi
jD1 ti;j bd .Ki;j /Pmi
jD1 ti;j jV.Ki;j /j

:

So it suffices to show that limi!1 bd .L
0
i /=jV.L

0
i /j exists. By Lemma 2.1, it suffices

to show that ¹L0iº
1
iD1 is BS-convergent.

Let .A;a/ be a finite rooted simplicial complex, let r 2 N, and as above, let
Ur.A;a/ � RSC be the set of all ŒK; v� 2 RSC such that the closed ball of radius r
centered at v inK is root-isomorphic to .A;a/. It suffices to show that 	L0

i
.Ur.A;a//

converges as i !1. However, we observe that j	L0
i
.Ur.A;a// � 
i .Ur.A;a//j �

2jXi j=jV.L
0
i /j where Xi � V.L0i / is the set of vertices at distance less than or equal

to r from the set ¹vki;j ºj;k � V.L
0
i /. Since ¹
iº1iD1 is convergent by hypothesis, it

suffices to show that limi!1 jXi j=jV.L
0
i /j D 0.

Because the vertex degrees of L0i are bounded by �C 2, it follows that

jXi j � .�C 2/
r
ˇ̌
¹vki;j ºj;k

ˇ̌
� .�C 2/r

miX
jD1

Di ti;j :

On the other hand,

ˇ̌
V.L0i /

ˇ̌
D

miX
jD1

Di ti;j
ˇ̌
V.Ki;j /

ˇ̌
�Ni

miX
jD1

Di ti;j :

So

jXi j

jV.L0i /j
� .�C 2/r=Ni ;

which implies that limi!1 jXi j=jV.L
0
i /j D 0 as required.

3. mm-spaces
In Section 4 we generalize Elek’s theorem (Lemma 2.1 above) by replacing the space
of rooted simplicial complexes with the space of pointed mm-spaces. In this section,
we present the basic definitions and results we will need. The standard reference for
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this subject is [17]. Our definition of mmn-spaces, given below, and the topology
on Mn appear to be nonstandard. (At least, we did not find them in the literature.)
We should also mention that the Benjamini–Schramm convergence of random-length
spaces first appeared in [1]. Our notion is similar, although not exactly the same.

Definition 4
An mm-space is a triple .M;distM ;volM / where .M;distM / is a complete separable
proper metric space and volM is a Radon measure onM . We will usually denote such
a space by M leaving distM and volM implicit. A pointed mm-space is a quadruple
.M;p;distM ;volM / where .M;distM ;volM / is an mm-space and p 2M . More gen-
erally, a pointed mmn-space is an .nC3/-tuple .M;p;distM ;vol.1/M ; : : : ;vol.n/M /where

.M;distM / is a complete separable proper metric space, p 2M , and vol.i/M is a Radon
measure on M for every i . We will often denote a pointed mmn-space by .M;p/
leaving the rest of the data implicit. Two pointed mmn-spaces .M;p/; .M 0; p0/ are
isomorphic if there is an isometry from M to M 0 that takes p to p0 and vol.i/M to

vol.i/M 0 for i D 1; : : : ; n. We let ŒM;p� denote the isomorphism class of .M;p/. Let
Mn denote the set of all isomorphism classes of pointed mmn-spaces. Let MDM1.

Definition 5 (A topology on Mn)
We define a topology on Mn by declaring that a sequence ¹ŒMi ; pi �º

1
iD1 converges to

ŒM1; p1� in Mn if and only if there exist a complete proper separable metric space
Z and isometric embeddings 'i WMi !Z such that
�

lim
i!1

�
'i .Mi /; 'i .pi /

�
D
�
'1.M1/; '1.p1/

�
in the pointed Hausdorff topology (see Definition 28 in Appendix A for the
definition of this topology);

� limi!1.'i /� vol.k/Mi D .'1/� vol.k/M1 (in the weak* topology on M.Z/) for
all k.

THEOREM 3.1
With the topology above, Mn is separable and metrizable.

The proof of this theorem is in Appendix B.

Definition 6
Every nonnull finite-volume mm-spaceM is associated with a measure	M 2M1.M/

obtained by pushing forward the probability measure volM=.volM .M// under the
map from M to M given by p 7! ŒM;p�. A sequence ¹Miº

1
iD1 of nonnull finite-
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volume mm-spaces Benjamini–Schramm converges if ¹	Mi º
1
iD1 converges in the

weak* topology on M1.M/.

4. A variant of Elek’s theorem
The purpose of this section is to prove a version of Lemma 2.1 for mm-spaces. We
first need some definitions to state the result properly.

Definition 7 (Special mm-spaces)
Let M be an mm-space. We say M is special if
� volM is nonatomic (i.e., volM .¹xº/D 0 for every x 2M );
� volM is fully supported (i.e., volM .O/ > 0 for every nonempty open set O �

M );
� spheres have measure zero (i.e., for all p 2 M , � > 0, volM .¹q 2 M W

distM .p; q/D �º/D 0);
� M is pathwise connected.
Let Msp �M denote the subspace of isomorphism classes of pointed special mm-
spaces.

Definition 8
Let M be a metric space. We say that m is a midpoint of x;y (for m;x;y 2M ) if
distM .x;m/D distM .m;y/D .1=2/distM .x; y/. We say a subset X �M is strongly
convex if every pair x;y 2X has a unique midpoint m 2X .

Definition 9
LetM be a metric space, and let � > 0. A set S �M is �-separated if distM .s; s0/ > �
for every s; s0 2 S with s ¤ s0. If Q�M , then S �-covers Q if for every q 2Q there
is an s 2 S such that distM .q; s/ < �.

Definition 10
Given a metric space M , p 2M , and R > 0, let BM .p;R/ denote the closed ball of
radius R centered at p. Let BoM .p;R/ denote the open ball of radius R centered at p.

The main result of this section is the following.

THEOREM 4.1
Let ¹Miº

1
iD1 be a sequence of finite-volume special mm-spaces. Suppose that

limi!1	Mi D 	1 2M1.Msp/ exists. We assume there are constants �; v0; v1 such
that for every p 2Mi (and every i D 1; 2; : : :)
� v1 > volMi .B

o
Mi
.p; 20�//� volMi .B

o
Mi
.p; �=2// > v0 > 0,
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� BoMi
.p; r/ is strongly convex for every r � 10�.

Then limi!1 bd .Mi /=.vol.Mi // exists for every d � 1 where bd .Mi / denotes the
d th ordinary Betti number of Mi .

The main ideas for the proof of Theorem 4.1 are due to G. Elek [14].

4.1. A brief outline
First we show how to construct for every rooted special mm-space .M;p/ a random
discrete subset S �M which is �-separated and 3�-covering. The main difficulty is
showing that this construction can be made to depend continuously on ŒM;p�. Second
we let �S W S ! Œ5�; 6�� be a random map and we consider the nerve complex K
of the open covering BoM .s; �

S .s//. To be precise, the vertex set of K is S and a
subset S 0 � S spans a simplex inK if

T
s2S 0 B

o
M .s; �

S .s//¤;. Considering the case
M DMi with Mi as in Theorem 4.1, we see that its random complex Ki has degree
bound �. Moreover, we show that ¹Kiº1iD1 is BS-convergent and Ki is homotopic to
Mi . (This uses a variant of Borsuk’s nerve theorem.) So we can use Lemma 2.1 to
finish the argument.

4.2. Pointed mm-spaces with a weighted discrete set
We will use the following definitions as technical tools for proving Theorem 4.1.

Definition 11
A pointed mm-space with a weighted discrete set is a quadruple .M;p;S;f / where
.M;p/ is a pointed mm-space, S �M is a locally finite set, and f W S ! Œ0; 1� is a
function. By locally finite we mean that BM .p;R/\S is finite for every R > 0. Two
such spaces .M;p;S;f /; .M 0; p0; S 0; f 0/ are isomorphic if there is an isomorphism
from .M;p/ to .M 0; p0/ which takes S to S 0 and f to f 0. Let MSF denote the set
of all isomorphism classes of pointed mm-spaces with a weighted discrete set. We let
ŒM;p;S;f � 2MSF denote the isomorphism class of .M;p;S;f /.

Definition 12 (A topology on MSF)
Given ŒM;p;S;f � 2MSF, define vol.2/M on M to be the counting measure on S , and

define vol.3/M on M to be the atomic measure corresponding to f . So

vol.2/M .E/D jE \ S j; vol.3/M .E/D
X

s2E\S

f .s/

for any E �M . This defines an embedding of MSF into M3. We give MSF the
induced topology.
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Definition 13 (Pointed mm-spaces with a discrete set)
A pointed mm-space with a discrete set is a triple .M;p;S/ where .M;p/ is a pointed
mm-space and S �M is locally finite. Two such spaces .M;p;S/; .M 0; p0; S 0/ are
isomorphic if there is an isomorphism from .M;p/ to .M 0; p0/ (as elements of M)
which maps S bijectively to S 0. Let MS denote the set of all pointed mm-spaces with
a discrete set up to isomorphism. We let ŒM;p;S� 2MS be the isomorphism class
of .M;p;S/. There is an obvious projection map MSF!MS. We endow MS with
the quotient topology. Alternatively, MS can be embedded into M2 by ŒM;p;S� 7!
ŒM;p;distM ;volM ;vol.2/M � where vol.2/M is the measure vol.2/M .E/D jE \ S j.

4.3. Random discrete subsets of mm-spaces
The first step in the proof of Theorem 4.1 is to associate to an mm-space a random
discrete subset in a natural way. First we need a few more definitions.

Notation 1
Given a random variable X , let Law.X/ denote the law of X . So Law.X/ is a proba-
bility measure on the space of all values of X .

Definition 14
If .Y;�/ is a purely nonatomic finite measure space and k � 1 is an integer, then
.Y k ; �k/ denotes the direct product of k-copies of .Y;�/ and .

�
Y
k

�
;
�
�
k

�
/ denotes the

projection of .Y k ; �k/ onto the space of all unordered subsets of Y of cardinality
k. Because � is purely nonatomic, this is well defined: the large diagonal in Y k has
measure zero with respect to �k . A uniformly random subset S � Y of cardinality
k is a random subset with law equal to

�
�
k

�
=j
�
�
k

�
j where j

�
�
k

�
j denotes the total mass

of
�
�
k

�
.

LEMMA 4.2
Let � > 0. There exists a continuous map F WMsp !M1.MS/ such that, for any
ŒM;p� 2Msp , if ŒM 0; p0; S 0� 2MS is random with Law.ŒM 0; p0; S 0�/D F .ŒM;p�/,
then ŒM 0; p0�D ŒM;p� and S 0 is �-separated and 3�-covers M almost surely. More-
over, F does not depend on the point p in the following sense. If ŒM;p�; ŒM;q� 2
Msp and ŒM;p;S�; ŒM;q;T � 2MS are random with Law.ŒM;p;S�/D F .ŒM;p�/;

Law.ŒM;q;T �/DF .ŒM;q�/, then Law.S/D Law.T /.

Proof
Fix .M;p/ to be a pointed special mm-space. For j 2 N, let SMj be a Poisson point
process onM of intensity 1. To be precise SMj is a random subset ofM characterized
by the following properties.
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1. If Q �M has finite volume, then SMj \Q is uniformly random with cardi-
nality 
j;Q where 
j;Q is a discrete Poisson random variable with parameter
� D volM .Q/. So Prob.
j;Q D n/ D ŒvolM .Q/n exp.�volM .Q//�=.nŠ/ for
nD 0; 1; 2; : : : .

2. If ¹Qiº1iD1 are pairwise disjoint Borel subsets of M of finite volume, then the
random variables ¹SMj \Qiº

1
iD1 are jointly independent.

Also let f Mj W S
M
j ! Œ0; 1� be a random function with law LebS

M
j where Leb denotes

the Lebesgue measure on the interval Œ0; 1�. We require that ¹SMj º
1
jD1 and ¹f Mj º

1
i;jD1

are jointly independent.

CLAIM 1
The map ŒM;p� 2 Msp 7! Law.ŒM;p;SMj ; f

M
j �/ 2 M1.MSF/ is continuous for

each j .

Proof
Let ¹ŒMi ; pi �º

1
iD1 �Msp be a sequence with limi!1ŒMi ; pi �D ŒM1; p1� 2Msp .

So there are a complete separable proper metric space Z and isometric embeddings
'i WMi !Z (for 1� i �1) such that

lim
i!1

'i .Mi ; pi /D '1.M1; p1/; lim
i!1

.'i /� volMi D .'1/� volM1 :

The first limit above is in the pointed Hausdorff topology, and the second is in the
weak* topology. These limits imply that the Poisson point process with intensity 1
with respect to the measure .'i /� volMi converges in law to the Poisson point pro-
cess with intensity 1 with respect to the measure .'1/� volM1 . Similarly, if f 0ij
is defined on 'i .S

Mi
j / by f 0ij .'i .s// D f

Mi
j .s/, then Law.'i .S

Mi
j /; f 0ij / converges

to Law.'1.S
M1
j /; f 01j /, which implies that Law.ŒMi ; p;S

Mi
j ; f

Mi
j �/ converges to

Law.ŒM1; p;S
M1
j ; f

M1
j �/ as i!1.

The idea behind the proof is to construct a random subset SM �
S
j2N S

M
j such

that the map ŒM;p� 7! Law.ŒM;p;SM �/ satisfies the conclusions of the lemma. We
build SM in stages. In the first stage, we identify a random subset TM1 � S

M
1 such

that UM1 WD S
M
1 n T

M
1 is �-separated. In the nth stage we identify a random subset

TMn � S
M
n such that if UMn WD S

M
n n T

M
n , then

S
j<nU

M
j is �-separated. Finally

we let SM D
S1
jD1U

M
j . Randomness is used in the construction of each TMj in

order to ensure continuity of the map ŒM;p� 7! Law.ŒM;p;SM �/. Next we present
the details.

Let � W Œ0;1/! Œ0; 1� be a continuous function satisfying the following:
� �.t/D 1 if t � �,
� �.t/D 0 if t � 2�.
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For each pair s; t 2
S1
jD1 S

M
j , let X.s; t/ 2 Œ0; 1� be a random variable with

Lebesgue distribution. We require that the X.s; t/’s are jointly independent. Let TM1
consist of every s 2 SM1 such that there is some t 2 SM1 with f M1 .s/ � f M1 .t/ and
�.distM .s; t//�X.s; t/. Let UM1 D S

M
1 n T

M
1 . Note that UM1 is �-separated almost

surely.

CLAIM 2
The map ŒM;p� 2M 7! Law.ŒM;p;UM1 �/ 2M1.MS/ is continuous.

Proof
Let ¹ŒMi ; pi ; S

Mi
1 ; f

Mi
1 �º1iD1 �MSF be a (deterministic) sequence with limi!1ŒMi ;

pi ; S
Mi
1 ; f

Mi
1 �D ŒM1; p1; S

M1
1 ; f

M1
1 � 2MSF and such that f M11 is injective. So

there are a complete separable metric space Z and isometric embeddings 'i WMi !

Z such that

lim
i!1

'i .Mi ; pi /D '1.M1; p1/; lim
i!1

.'i /� vol.k/Mi D .'1/� vol.k/M1

for each k D 1; 2; 3 where vol.2/Mi ;vol.3/Mi are as in Definition 12. By Claim 1, it suffices

to show that Law.'i .T
Mi
1 // converges to Law.'1.T

M1
1 //.

Suppose that xi 2 S
Mi
1 and

lim
i!1

'i .xi /D '1.x1/

for some x1 2 S
M1
1 . Then f Mi1 .xi / converges to f M11 .x1/.

Let W.xi / be the set of all s 2 SMi1 \BMi .xi ; 2�/ such that f Mi1 .xi /� f
Mi
1 .s/.

The probability that xi 2 T
Mi
1 is the probability that �.distMi .xi ; s// � X.xi ; s/ for

some s 2W.xi /. Note that W.xi / is finite and 'i .W.xi // converges to '1.W.x1//
as i !1 in the Hausdorff topology because f M11 is injective. Also the values of
the functions f Mi1 converge in the sense that if yi 2 W.xi / and limi!1 'i .yi / D

'1.y1/, then f Mi1 .yi / converges to f M11 .y1/. Since � is continuous, the proba-

bility that xi 2 T
Mi
1 converges to the probability that x1 2 T

M1
1 as i!1. Because

¹xiº
1
iD1 is arbitrary, this implies the claim.

For .M;p/ 2M, we inductively define TMn ;UMn (for n� 2) by: TMn consists of
every x 2 SMn such that there exists y 2 SMn [

S
j<nU

M
j with f Mn .x/ � f Mn .y/

and �.distM .x; y//�X.x;y/. Let UMn D S
M
n nT

M
n . Note

S
j�nU

M
j is �-separated

almost surely.

CLAIM 3
The map ŒM;p� 7! Law.ŒM;p;UMn �/ 2M1.MS/ is continuous for every n.
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The proof of this is similar to the proof of Claim 2 so we will skip it. Let SM DS1
jD1U

M
j . Note that SM is �-separated almost surely. We claim that SM 3�-covers

M if M is special. To see this, let q 2M . Let n > 0 be an integer, and consider
the event that

S
j<nU

M
j has trivial intersection with BoM .q; 3�/. Conditioned on this

event, the probability that UMn has nontrivial intersection with BoM .q; 3�/ is bounded
below by the probability that SMn \B

o
M .q; 3�/ consists of a single point contained in

BM .q; �/. In particular, there is a positive lower bound on this probability (depending
on q) which is independent of n. This uses the hypothesis that volM is fully supported
because M is special. By the law of large numbers then, with probability 1, SM \
BoM .q; 3�/¤ ;. This proves that SM 3�-covers M as claimed. To finish the lemma,
define F .ŒM;p�/ WD Law.ŒM;p;SM �/. The continuity of F follows from Claim 3.

Proof of Theorem 4.1
Let MS0 be the set of all ŒM;p;S� 2 MS such that there is a unique s 2 S with
distM .p; s/� distM .p; s0/ for all s0 2 S . Given ŒM;p;S� 2MS0, let �S W S! Œ5�; 6��

be a random function defined by the following:
� for each t 2 S , Law.�S .t// is the normalized Lebesgue measure on the inter-

val Œ5�; 6��;
� the family ¹�S .t/ W t 2 Sº is jointly independent.
In other words, the law of �S is the product measure .LebŒ5�;6��/S where LebŒ5�;6��
denotes the Lebesgue measure on the interval Œ5�; 6�� normalized to have total mass 1.
Let †.M;S;�S / be the nerve complex of ¹BoM .s; �

S .s// W s 2 Sº. To be precise, the
vertex set of†.M;S;�S / is S and for every S 0 � S there is a simplex in†.M;S;�S /
spanning S 0 if and only if

T
s2S 0 B

o
M .s; �

S .s//¤;. Let v 2 S be the unique element
closest to p, let †.M;S;�S /v be the connected component of †.M;S;�S / contain-
ing v, and let M;p;S D Law.†.M;S;�S /v; v/ 2M.RSC/.

Let .K;v/ be a finite rooted simplicial complex, let r > 0 be an integer, and let
Ur.K;v/ be the set of all ŒK 0; v0� 2 RSC such that the ball of radius r centered at v0

is isomorphic to .K;v/ as rooted simplicial complexes.

CLAIM 1
The map ŒM;p;S� 2MS0 7! M;p;S .Ur.K;v// is continuous for every .K;v/, r > 0.

Note that the reason why we choose the radii �S randomly rather than determin-
istically is to make this claim true.

Proof of Claim 1
Let Wr .K;v/ be the union of all sets of the form Ur.K

0; v0/ where ŒK 0; v0� 2 RSC is
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such that there is a simplicial embedding � WK!K 0 which maps v to v0 and is bijec-
tive on the 0-skeleton. With the use of inclusion-exclusion, it is possible to express
M;p;S .Ur.K;v// as a finite linear combination of numbers of the form
M;p;S .Wr.K

0; v0//. So it suffices to show that the map .M;p;S/ 7! M;p;S .Wr.K;

v// is continuous.
So let ¹ŒMi ; pi ; Si �º

1
iD1 �MS0 be a sequence with limi!1ŒMi ; pi ; Si �D ŒM1;

p1; S1� 2MS0. Without loss of generality, we may assume that there is a complete
proper separable metric space Z containing Mi for 1� i �1 such that
� distMi is the restriction of distZ to Mi (for all i );
� .Mi ; pi / converges to .M1; p1/ in the pointed Hausdorff topology;
� .Si ; pi / converges to .S1; p1/ in the pointed Hausdorff topology.
Let RD 100�r . Since each Si is locally finite, there is an integer n > 0 and si;1; : : : ;
si;n 2 Si such that
� limi!1 si;j D s1;j for each j ,
� BZ.pi ;R/\ Si � ¹si;1; : : : ; si;nº for all i .
Let Ei be the set of all t D .t1; : : : ; tn/ 2 Œ5�; 6��n such that if � W Si ! Œ5�; 6��

is any function with �.si;j / D tj for all j , then .†.Mi ; Si ; �/vi ; vi / 2 Wr.K;v/

where vi 2 Si is the unique closest point to pi . By definition, Mi ;pi ;Si .Wr.K;v//D
LebnŒ5�;6��.Ei /.

Note that Ei is open (because the nerve complexes are defined in terms of open
sets). Also, the definition of Wr .K;v/ implies that Ei has the following monotone
property: if t 2 Ei and t 0 2 Œ5�; 6��n satisfies t 0j � tj for all j , then t 0 2 Ei . In
order to estimate the volume of Ei , let fi W Œ5�; 6��n�1 ! Œ5�; 6�� be the function
fi .t1; : : : ; tn�1/D tn where tn is the largest number in Œ5�; 6�� such that .t1; : : : ; tn/ …
Ei if such a number exists. Otherwise, set fi .t1; : : : ; tn�1/D 5�. Then the comple-
ment of Ei is the region below the graph of fi . So

Mi ;pi ;Si
�
Wr.K;v/

�
D LebnŒ5�;6��.Ei /

D 1�

Z
fi .t1; : : : ; tn�1/ d Lebn�1Œ5�;6��.t1; : : : ; tn�1/:

Because limi!1 si;j D s1;j for each j and .Mi ; p/ converges to .M1; p1/, it
follows that ¹fiº1iD1 converges pointwise to f1. The bounded convergence theo-
rem now implies that Mi ;pi ;Si .Wr .K;v// converges to M1;p1;S1.Wr.K;v// as
i!1.

Given a special mm-space M , s 2M , and r > 0, let �.s; r/ � 0 be the smallest
radius such that volM .BM .s; �.s; r/// D r if such a number exists. Let �.s; r/ D
C1 if no such number exists. Let MS.r/ be the set of all .M 0; p0; S 0/ 2MS such
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that distM 0.p0; s/ � �.s; r/ for some s 2 S 0. Similarly, let MSo.r/ be the set of all
.M 0; p0; S 0/ 2MS such that distM 0.p0; s/ < �.s; r/ for some s 2 S 0.

Let Mi be as in the statement of Theorem 4.1, let pi 2Mi be uniformly random,
let Si � Mi be such that Law.ŒMi ; pi ; Si �/ D F .ŒMi ; pi �/ as in Lemma 4.2, and
let �i D Law.ŒMi ; pi ; Si �/ for 1 � i <1. By the hypotheses of Theorem 4.1 and
Lemma 4.2, �i converges as i !1 to a measure �1 2M1.Msp/. Let ŒM1; p1;
S1� 2MS be random with law �1. By hypothesis,M1 is a special mm-space almost
surely.

CLAIM 2
(a) �1.@MS.v0=2//D 0 where @MS.v0=2/DMS.v0=2/\MS nMS.v0=2/;
(b) limi!1 �i .MS.v0=2//D �1.MS.v0=2//� v0=.2v1/.

Proof of Claim 2
Note that, for every s 2Mi ,

�.s; v0=2/ < �.s; v0/ < �=2

because volMi .B
o
Mi
.s; �=2// > v0 > 0 and because Mi is special, so spheres in Mi

have measure zero. Because �i converges to �1 and MS.r/ is closed in MS, the
portmanteau theorem implies that

lim sup
i!1

�i
�
MS.r/

�
� �1

�
MS.r/

�
8r > 0: (3)

Because MSo.r/ is open in MS,

lim inf
i!1

�i
�
MSo.r/

�
� �1

�
MSo.r/

�
8r > 0: (4)

Now observe that

�i
�
MSo.r/

�
D �i

�
MS.r/

�
D
jSi jr

vol.Mi /

if r � v0 because spheres in Mi have measure zero, �.s; v0/ < �=2, and Si is
�-separated. In particular, if 0 < r1; r2 < v0, then

�1.MSo.r1//

�1.MS.r2//
�

lim infi!1 �i .MSo.r1//

lim supi!1 �i .MS.r2//
� lim inf

i!1

�i .MSo.r1//

�i .MS.r2//
D
r1

r2
:

Similarly,

�1.MS.r1//

�1.MSo.r2//
�

lim supi!1 �i .MS.r1//

lim infi!1 �i .MSo.r2//
� lim sup

i!1

�i .MS.r1//

�i .MSo.r2//
D
r1

r2
:
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So for any sufficiently small ı > 0,

r1 � ı

r2C ı
�
�1.MS.r1 � ı//

�1.MSo.r2C ı//
�
�1.MSo.r1//

�1.MS.r2//

�
�1.MS.r1//

�1.MSo.r2//
�
�1.MSo.r1C ı//

�1.MS.r2 � ı//
�
r1C ı

r2 � ı
:

By sending ı& 0 we see that

r1

r2
D
�1.MS.r1//

�1.MSo.r2//
D
�1.MSo.r1//

�1.MS.r2//
:

In particular, �1.MS.v0=2//D �1.MSo.v0=2//, which implies that �1.@MS.v0=

2//D 0. By (3) and (4),

lim
i!1

�i
�
MS.v0=2/

�
D �1

�
MS.v0=2/

�
:

Because BMi .q; 3�/ < v1 (for any q 2Mi ) and Si is 3�-covering, it follows that

v1jSi j � volMi .Mi /:

Because �.s; v0=2/� �=2 and Si is �-separated it follows that the collection of balls
of radii �.s; v0=2/ centered at s 2 Si is pairwise disjoint. Therefore

�i
�
MS.v0=2/

�
D
jSi jv0=2

volMi .Mi /
�
v0

2v1
> 0:

So �1.MS.v0=2//� v0=.2v1/ > 0.

By Claim 2 and the portmanteau theorem, �0i converges to �01 in the weak*
topology as i !1 where �0i denotes the normalized restriction of �i to MS.v0=2/.
More precisely,

�0i .E/ WD
�i .E \MS.v0=2//

�i .MS.v0=2//

for every Borel E �MS.
If T �BMi .s; 20�/ is any �-separated subset, then because

v1 > volMi
�
BoMi .q; 20�/

�
� volMi

�
BoMi .q; �=2/

�
> v0 > 0

for every q 2Mi , we must have v0jT j � v1. So jT j � v1=v0. So setting � WD v1=v0,
we see that the degree of any vertex in †.Mi ; Si ; �

Si / is at most �. So if 0i WDR
Mi ;pi ;Si d�

0
i .Mi ; pi ; Si /, then 0i 2M1.RSC.�//. By Claim 1 and the fact that
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MS.v0=2/ �MS0, limi!1 
0
i .Ur.K;v// D 

0
1.Ur.K;v// for every finite .K;v/ 2

RSC.�/ and r > 0. Because each 0i 2M1.RSC.�// and the sets Ur.K;v/ generate
the Borel sigma-algebra of RSC.�/, it follows that 0i converges to 01 in the weak*
topology as i!1.

Let ŒKi ;wi � 2 RSC be random with law 0i . We claim that the law of wi given
Ki is uniform over the vertex set of Ki (for 1� i <1). Indeed, the set of vertices of
Ki is Si and wi 2 Si is the nearest point to pi when pi 2Mi is chosen uniformly at
random subject to the condition that distMi .pi ;wi / � �.wi ; v0=2/. The element wi
is uniquely determined by pi because Si is �-separated with �=2 � �.wi ; v0=2/. So
the balls BMi .s; �.s; v0=2// are pairwise disjoint for s 2 Si and each has the same
volume, namely, v0=2. Therefore wi is uniformly distributed over Si as required.

Because each Mi is special, each is pathwise connected. This implies that Ki is
connected. It now follows from Lemma 2.2 that

lim
i!1

EŒbk.Ki /�

EŒjV.Ki /j�
(5)

exists, where EŒ�� denotes the expected value.
Because BoMi .s; r/ is strongly convex for every r � 10�, for any subset S 0 � Si ,

either
T
s2S 0 B

o
Mi
.s; �Si .s// is empty or it is strongly convex. In the latter case, it

is contractible by [31]. This implies that Ki is homotopy equivalent to Mi by [19,
Corollary 4G.3]. (This is a slightly stronger version of Borsuk’s nerve theorem [6].)
So EŒbk.Ki /�D bk.Mi /. Because of (5) it now suffices to prove that

lim
i!1

EŒjV.Ki /j�

vol.Mi /

exists.
Note that jV.Ki /j D jSi j D vol.Mi .v0=2//.v0=2/

�1 where Mi .v0=2/ is the set
of all q 2Mi such that distMi .q; s/� �.s; v0=2/ for some s 2 Si . So

lim
i!1

EŒjV.Ki /j�

vol.Mi /
D .v0=2/

�1 lim
i!1

EŒvol.Mi .v0=2//�

vol.Mi /

D .v0=2/
�1 lim

i!1
�i
�
MS.v0=2/

�
D .v0=2/

�1�1
�
MS.v0=2/

�
:

The next result is not needed in the remainder of the paper. However, it seems
worth recording for the sake of future research. This result was first obtained by G.
Elek [14].

Definition 15
We consider any Riemannian manifold X as an mm-space with distance distX equal
to the Riemannian distance and measure volX equal to the Riemannian volume form.
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COROLLARY 4.3
Let ¹Miº

1
iD1 be a sequence of connected closed smooth Riemannian n-manifolds.

Suppose that ¹Miº
1
iD1 Benjamini–Schramm converges in the sense of Definition 6.

Suppose also that there are constants ı; � such that, for each Mi , all sectional curva-
tures are bounded from above by � and all Ricci curvatures are bounded from below
by ı. Suppose also that the injectivity radius of Mi tends to infinity as i !1. Then
the normalized limit

lim
i!1

bd .Mi /

vol.Mi /

exists for every d � 1.

Proof
It suffices to check that the conditions of Theorem 4.1 are met. The volume bounds
on balls follow from [8, Theorems 3.7 and 3.9]. The strong convexity of small balls
follows from [8, Theorem 7.9]. The other conditions are trivial to verify.

5. L2-Betti numbers
In this section, we quickly review facts about L2-invariants used in the proof of The-
orem 1.2. We refer the reader to [26] and [27] for background.

Given a topological space X with a continuous �-action (where � is a countable
discrete group), we may define the L2-Betti numbers b.2/

k
.X IN .�// (for k 2 N)

(where N .�/ denotes the von Neumann algebra of �). For simplicity, we let b.2/
k
.X/

denote b.2/
k
. QX IN .�1.X/// where QX is the universal cover ofX and �1.X/ acts on QX

in the usual way. These numbers are known to be homotopy invariants. Hence we may
define the L2-Betti numbers of a countable discrete group � by b.2/

k
.�/ WD b

.2/

k
.B�/

where B� is any classifying space for � (i.e., B� is a connected CW-complex with
�1.B�/ isomorphic to � and �n.B�/D 0 for all n� 2).

THEOREM 5.1
Let M be a finite connected CW-complex. Suppose there is a decreasing sequence
¹Niº

1
iD1 of finite-index normal subgroups Ni � �1.M/ such that

T1
iD1Ni D ¹eº. Let

Mi !M be the finite cover associated to Ni . Then for any integer k � 0,

lim
i!1

bk.Mi /

Œ�1.M/ WNi �
D b

.2/

k
.M/;

where b.2/
k
.M/ is the kth L2-Betti number ofM and bk.Mi / is the ordinary kth Betti

number of Mi (with real coefficients).
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Proof
This is [25, Theorem 0.1].

6. Unimodular measures
Measures of the form 	M (where M is a nonnull finite-volume mm-space) have a
special property called unimodularity, which is a kind of statistical homogeneity. We
will use this property to prove the convergence of certain sequences in M1.M/. To
begin we need a few definitions.

Definition 16
A doubly pointed mm-space is a quintuple .M;p; q;distM ;volM / where .M;distM ;
volM / is an mm-space andp;q 2M . We will usually denote such a space by .M;p; q/,
leaving the rest implicit. We say .M;p; q/ and .M 0; p0; q0/ are doubly pointed-
isomorphic if there is an isometry from M to M 0 which takes p to p0, q to q0, and
volM to volM 0 . Let DM denote the set of all isomorphism classes of doubly pointed
mm-spaces. We let ŒM;p; q� 2 DM denote the isomorphism class of .M;p; q/. We
can embed DM into M2 by ŒM;p; q;distM ;volM � 7! ŒM;p;distM ;volM ; ıq� where
ıq is the Dirac probability measure concentrated on ¹qº. We give DM the induced
topology.

Definition 17
Let � 2M1.M/. Define measures �l ; �r on DM by

d�l
�
ŒM;p; q�

�
D d volM .q/d�

�
ŒM;p�

�
;

d�r
�
ŒM;p; q�

�
D d volM .p/d�

�
ŒM;q�

�
:

For example, this means that if f is a positive Borel function on DM, thenZ
f
�
ŒM;p; q�

�
d�l

�
ŒM;p; q�

�
D

Z
f
�
ŒM;p; q�

�
d volM .q/d�

�
ŒM;p�

�
:

We say that � is unimodular if �l D �r . This term originally appeared in percolation
theory (see, e.g., [3] and the references therein).

Example 1
Let M be a nonnull finite-volume mm-space, and let p 2M be a uniformly random
point. Then Law.ŒM;p�/ D 	M 2M1.M/ is unimodular. Assume that M is con-
nected, let fM be the universal cover of M , and let Qp 2 fM be an inverse image of
p. The pointed-isometry class of .fM; Qp/ does not depend on the choice of Qp. Also
Law.ŒfM; Qp�/ is unimodular.
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LEMMA 6.1
The space of unimodular measures in M1.M/ is closed in M1.M/.

Proof
Let � WM1.M/!M.DM/�M.DM/ be the map �.�/D .�l ; �r/. This is a contin-
uous map. Since the space of unimodular measures is ��1.¹.�1; �2/ W �1 D �2º/, it
must be closed in M1.M/.

Remark 5
Let F �M1.M/ be the space of all measures of the form 	M where M is a finite-
volume mm-space and 	M D Law.ŒM;p�/ where p 2M is uniformly random. The
relative closure F \M1.M/ �M1.M/ is the space of sofic measures. Are all uni-
modular measures sofic? This question is a generalization of the well-known problem:
are all groups sofic? It is also a generalization of the problem: are all unimodular net-
works sofic? This was first asked in [3].

Definition 18
If X is an mm-space, then Isom.X/ denotes the group of all measure-preserving
isometries � W X ! X . To be precise, we require �� volX D volX . A subgroup ƒ <
Isom.X/ is a lattice if there exists a measurable subset � � X of positive finite-
volume such that ¹�� W � 2ƒº is a partition of X . Such a set is called a fundamental
domain for ƒ.

LEMMA 6.2
Let X be an mm-space. Suppose there is a lattice ƒ < Isom.X/. Then there is a
unique unimodular measure 	 2M1.M/ such that 	-almost every ŒM;p� 2M is
such that .M;distM ;volM / is isomorphic with .X;distX ;volX /.

Proof
Let ��X be a measurable fundamental domain for ƒ. Let � WX !M be the map
�.p/D ŒX;p�. Let  D ��Œ.volX /j�=.volX .�//� be the pushforward of the normal-
ized volume on X restricted to �. It is easy to check that  is a unimodular measure
on M. This shows existence.

Now suppose that 	 is as in the statement of the lemma. To be precise, 	 2
M1.M/ is a unimodular measure such that 	-almost every ŒM;p� 2M is such that
.M;distM ;volM / is isomorphic with .X;distX ;volX /. It suffices to show that 	D .
LetA�M be measurable. Suppose that .A/D 0. We will show that 	.A/D 0. Note
that volX .��1.A/\�/D 0. Since� is a fundamental domain of a lattice, this implies
that volX .��1.A//D 0. Define a function f on DM by f .ŒM;p; q�/D 1 if there is



592 LEWIS BOWEN

a doubly pointed-isomorphism from .M;p; q/ to .X;p0; q0/ and p0 2 ��1.A/ \�,
q0 2�. Let f .ŒM;p; q�/D 0 otherwise. Because 	 is unimodular,

volX .�/	.A/ �
“

f
�
ŒM;p; q�

�
d volM .q/d	

�
ŒM;p�

�

D

“
f
�
ŒM;p; q�

�
d volM .p/d	

�
ŒM;q�

�
D 0:

So 	.A/D 0. Because A is arbitrary, 	 is absolutely continuous to . So there exists
a nonnegative measurable function r 0 such that d	D r 0 d. By pulling back under �
we see that there is a nonnegative measurable function r on � such that

d	
�
ŒX;p�

�
D r.p/d

��� volX j�
volX .�/

�
.p/:

Because 	 is unimodular d volX .q/d	.ŒX;p�/D d volX .p/d	.ŒX;q�/. Therefore

r.p/d volX .q/d volX .p/D r.q/d volX .p/d volX .q/:

In particular, r.p/ D r.q/ for almost every p;q 2 �. This implies that 	 D  as
required.

Next, we determine conditions under which a sequence of mm-spaces Benjamini–
Schramm-converges to the unique unimodular measure concentrated on pointed-
isomorphism classes of mm-spaces that are isomorphic with X .

Definition 19
Given a metric space M and a subset M 0 �M , let @M 0 DM 0 \M nM 0. For r > 0,
let Nr.M 0/ be the closed radius-r neighborhood of M 0 in M .

Definition 20
If M is a path-connected metric space and M 0 �M , then covrad.M 0 jM/ is the
supremum over all r > 0 such that if � W fM !M is the universal cover and p 2
��1.M 0/�fM , then � restricted to BfM .p; r/ is an isometry onto its image.

LEMMA 6.3
Let X be a pathwise-connected mm-space with a cocompact subgroupƒ< Isom.X/.
Let ¹�iº1iD1 be a sequence of geometric subgroups of Isom.X/, and let Mi � X=�i
be a finite-volume closed subspace. Suppose that
� limi!1 covrad.Mi jX=�i /DC1 and
� limi!1 .vol.Nr.@Mi ///=.vol.Mi //D 0 for every r > 0.
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Then limi!1	Mi exists in M1.M/ and is the unique unimodular measure supported
on the set of pointed-isomorphism classes of mm-spaces that are isomorphic with X .

Proof
Let pi 2Mi be uniformly random. (So 	Mi D Law.ŒMi ; pi �/.) The two hypotheses
on ¹Miº

1
iD1 imply for every r > 0, the probability that BX=�i .pi ; r/�Mi tends to 1

as i !1. Moreover, the probability that BX=�i .pi ; r/ is isomorphic with a ball in
X tends to 1 as i !1. (The universal cover provides the isometry.) It follows that
if 	1 is any subsequential limit point of ¹	Mi º

1
iD1, then 	1-almost every ŒM;p� is

such that M is isomorphic with X . Lemma 6.1 implies that 	1 is unimodular, and
Lemma 6.2 implies that 	1 is the unique unimodular measure supported on pointed-
isomorphism classes of mm-spaces that are isomorphic with X .

It now suffices to show that ¹	Mi º
1
iD1 is precompact (so that a subsequential limit

exists). Let D � X be a compact set such that ƒD D X . Let p0i 2 X be a lift of pi
under the covering map X ! X=�i . Let p00i 2D be a point such that ƒp0i D ƒp

00
i .

Note that the pointed-isomorphism class of .X;p00i / depends only on pi . Therefore
Law.ŒX;p00i �/ 2M1.M/ is well defined. Because D is compact, ¹Law.ŒX;p00i �/º

1
iD1

is precompact. Fix r > 0. As noted before, with probability tending to 1 as i !1,
BMi .pi ; r/ is isomorphic with BX .p00i ; r/. So ¹Law.ŒBMi .pi ; r/;pi �/º

1
iD1 is precom-

pact in M1.M/, which implies, since r is arbitrary, that ¹	Mi º
1
iD1 is precompact.

7. Proof of Theorem 1.2
We will derive Theorem 1.2 from Theorem 7.1 below, which essentially is a version
of Theorem 1.2 for mm-spaces. First we need a few definitions.

Definition 21
Let X be an mm-space, and let r > 0. We define the radius-r Cheeger constant of X
by

hr.X/D inf
M

volX .Nr.@M//

volX .M/
;

where the infimum is over all pathwise-connected compact subsets M �X with pos-
itive volume such that volX .M/ � volX .X/=2. (Recall that @M DM \X nM and
Nr .@M/ is the closed radius-r neighborhood of M .)

Definition 22
For any class of groups F , mm-space X , and r > 0 let Ir.X j F /D inf� hr.X=�/
where the infimum is over all geometric � < Isom.X/ such that � is isomorphic to a
group in F .
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THEOREM 7.1
Let X be a contractible special mm-space (Definition 7). Suppose that
� there exists a residually finite geometric cocompact lattice ƒ< Isom.X/ and

b
.2/

d
.ƒ/ > 0;

� there exists an � > 0 such that every ball of radius less than or equal to 10� in
X is strongly convex.

Then there exists r > 0 such that Ir .X j Gd / > 0 where Gd is as in Theorem 1.2.

Example 2
Let d > 2, let Td denote the d -regular tree, and let Xd D Td �Td . We could consider
Td to be an mm-space by making each edge isomorphic with the unit interval. Then
let volXd D volTd �volTd , and set distXd equal to the sum of the distances of its
coordinate projections. This makes Xd into a CAT(0) space and therefore every ball
is strongly convex. Moreover, Isom.Xd / equals the automorphism group of Td � Td
as a cell-complex.

Because every lattice ƒ < Aut.Td � Td / has b.2/2 .ƒ/ > 0, it follows from The-
orem 7.1 that Ir.Xd j G2/ > 0 for some r > 0. The second L2-Betti numbers of free
groups vanish. So hr.Xd=�/� Ir.Xd j G2/ > 0 for any free group � < Isom.Xd /.

The next lemma shows that by passing to a subgroup � 00i < �i we may substan-
tially simplify the problem. We will need the following definition.

Definition 23 (Asymptotic lower Betti numbers)
Let � be a residually finite countable group, and let d � 1 be an integer. Let

bbd .�/D lim inf
N

bd .N /

Œ� WN�
;

where the limit is over the net of finite-index normal subgroups of � ordered by
reverse inclusion. Equivalently, bbd .�/ is the smallest number x such that for every
� > 0 and every finite-index normal subgroup N � � there exists a finite-index nor-
mal subgroup N 0 � � with N 0 <N andˇ̌̌

x �
bd .N

0/

Œ� WN 0�

ˇ̌̌
< �:

In the special case that � has a finite classifying space, bbd .�/ D b.2/d .�/ by Theo-
rem 5.1.

LEMMA 7.2
Let X be as in Theorem 7.1. Let ¹�iº1iD1 be a sequence of geometric residually finite
subgroups �i < Isom.X/ such that limi!1 hr.X=�i /D 0 for every r > 0.
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Then there exist subgroups � 00i < �
0
i < �i and positive-volume compact subsets

M 0i �X=�
0
i ;M

00
i �X=�

00
i such that

(a) M 00i is a pathwise connected compact subset of X=� 00i for each i ;
(b) limi!1.vol.Nr.@M 00i ///=.vol.M 00i //D 0 for every r ;
(c) limi!1 covrad.M 00i jX=�

00
i /D1;

(d)

lim inf
i!1

bbd .� 0i /
vol.M 0i /

D lim inf
i!1

bd .�
00
i /

vol.M 00i /
:

Proof
By hypothesis, there exist path-connected positive-volume compact sets Mi �X=�i
such that

lim
i!1

vol.Nr.@Mi //

vol.Mi /
D 0

for every r > 0 where we have dropped the subscript on volX=�i .�/ for simplicity.
Because X is contractible and �i acts freely and properly discontinuously, we

may identify �i with the fundamental group �1.X=�i /. Let � 0i < �i be the image
of �1.Mi / under the natural map from �1.Mi /! �1.X=�i / induced by inclusion
Mi ! X=�i . Let �i W X=� 0i ! X=�i be the covering map, and let M 0i be a path-
connected component of ��1i .Mi /. The choice of � 0i implies that �i restricted to M 0i
is a homeomorphism onto Mi . So M 0i is compact and

lim
i!1

vol.Nr.@M 0i //

vol.M 0i /
D 0 (6)

for every r > 0.
For each � 2 � 0i , let Li .�/ denote the infimum over all numbers r such that there

is a p 2 X whose image in X=� 0i is contained in M 0i and distX .p; �p/ � r . This
number depends only on the conjugacy class of � in � 0i . So we may think of Li as a
function on the set of conjugacy classes of � 0i .

Let r > 0. We claim that there are only a finite number of � 0i -conjugacy classes
Œ�� with Li .Œ��/ � r . To obtain a contradiction, suppose that �1; �2; : : : 2 � 0i is an
infinite sequence of pairwise nonconjugate elements with Li .�i /� r . Let pi 2X be
such that the image of pi in X=� 0i is in M 0i and distX .pi ; �ipi /� r . Let Yi �X be a
compact set which surjects ontoM 0i under the covering mapX 7!X=� 0i . After conju-
gating �i if necessary, we may assume that pi 2 Yi for all i . After passing to a subse-
quence if necessary, we may assume that limi!1pi D p1 and limi!1 �ipi D q1
exist. It follows that limi;j!1 �j �

�1
i q1 D q1. This contradicts the assumption that

�i acts properly discontinuously and freely on X . So there are only a finite number
of � 0i -conjugacy classes Œ�� with Li .Œ��/� r as claimed.
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Because �i is residually finite, � 0i is also residually finite. So there is a finite-
index normal subgroup � 00i < �

0
i such that � 00i does not contain any nontrivial element

� 2 � 0i with Li .�/� i . We may choose � 00i to also satisfy

ˇ̌̌ bd .� 00i /
Œ� 0i W �

00
i �
�bbd .� 0i /ˇ̌̌< vol.M 0i /

i
:

This implies that

lim inf
i!1

bbd .� 0i /
vol.M 0i /

D lim inf
i!1

bd .�
00
i /

Œ� 0i W �
00
i �vol.M 0i /

: (7)

Let  i W X=� 00i ! X=� 0i be the quotient map, and let M 00i D  
�1
i .M 0i /. Because

�1.Mi / surjects onto � 0i (under the natural map from �1.Mi /! �1.X=�i /), it fol-
lows that �1.M 0i / also surjects onto �1.X=� 0i /' �

0
i . This implies that M 00i is path-

connected.
Note that covrad.M 00i jX=�

00
i /� i=2. So limi!1 covrad.M 00i jX=�

00
i /D1.

The restriction of  i to Nr.M 00i / is a finite-degree covering map onto Nr.M 0i /.
So

vol
�
Nr.@M

00
i /
�
D Œ� 0i W �

00
i �vol

�
Nr.@M

0
i /
�
; vol.M 00i /D Œ�

0
i W �

00
i �vol.M 0i /:

Now (6) and (7) imply that limi!1.vol.Nr.@M 00i ///=.vol.M 00i //D 0 and

lim inf
i!1

bbd .� 0i /
vol.M 0i /

D lim inf
i!1

bd .�
00
i /

vol.M 00i /
:

Proof of Theorem 7.1
Let ¹�iº1iD1 be a sequence of geometric residually finite subgroups �i < Isom.X/
such that limi!1 hr.X=�i / D 0 for every r > 0. Let � 00i < �

0
i < �i , M

0
i � X=�

0
i ,

and M 00i � X=�
00
i be as in Lemma 7.2. It suffices to show that, for all but finitely

many i ,bbd .� 0i / > 0.
By hypothesis, there exists an � > 0 such that every ball of radius less than or

equal to 10� in X is strongly convex. For sufficiently large i , covrad.M 00i jX=�
00
i / >

10�, which implies that each ball of radius less than or equal to 10� with center in
N10�.M

00
i / is strongly convex. Moreover, for any p 2X there is some r > 0 such that

BX .p; r/ maps isometrically onto the ball of radius r centered at the image of p in
X=� 00i . This is because � 00i acts properly discontinuously and freely (because �i does
and � 00i < �i ). So for every q 2X=� 00i there is some number �.q/ such that every ball
of radius less than or equal to �.q/ centered at q is strongly convex.
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Let Si �X=� 00i be a set, and let � W Si ! .0;1/ be a function such that
� Si \M

00
i is �-separated and 10�-covers M 00i ;

� �.s/D 10� for every s 2 Si \M 00i ;
� �.s/� 10� for all s 2 Si ;
� BX=�00

i
.s; r/ is strongly convex for every s 2 Si and r � �.s/;

� ¹Bo
X=�00

i

.s; �.s// W s 2 Siº is locally finite and covers X=� 00i .

Let

Ui D
[®

Bo
X=�00

i

�
s; �.s/

�
W s 2 Si \M

00
i

¯
:

Observe that M 00i � Ui and Ui is pathwise connected (because M 00i is pathwise con-
nected). Because Si \M 00i is finite we can choose 0 < ıi < � so that if

U 0i WD
[®

BX=�00
i

�
s; �.s/� ıi

�
W s 2 Si \M

00
i

¯
;

then U 0i is homologically equivalent to Ui (in the sense that they have the same Betti
numbers), limi!1 vol.U 0i /=.vol.Ui // D 1, and M 00i � U

0
i . In particular, U 0i is path-

wise connected. Note that U 0i is closed while Ui is open. For simplicity we have
dropped the subscript on volX=�00

i
.�/D vol.�/.

Because M 00i � U
0
i �N10�.M

00
i / it follows that

� limi!1 covrad.U 0i jX=�i /DC1 and
� lim supi!1.vol.Nr.@U 0i ///=.vol.U 0i // � lim supi!1.vol.NrC10�.@M 00i ///=

.vol.M 00i //D 0 for every r > 0.
Let pi be a uniformly random point of U 0i , and let 	i D Law.U 0i ; pi / 2M1.M/.
By Lemma 6.3, limi!1	i D 	1 is the unique unimodular measure supported on
pointed-isomorphism classes of mm-spaces that are isomorphic with X .

To apply Theorem 4.1 (to U 0i ) we need to check a few more hypotheses. We claim
that there is a v0 > 0 such that for every p;q 2 X if distX .p; q/ � 10� � ıi , then
vol.BX .q; �=2/ \ BX .p; 10� � ıi // > v0. If this is false, then there are sequences
¹pj º

1
jD1; ¹qj º

1
jD1 � X and ¹ij º1jD1 � N such that distX .pj ; qj / � 10� � ıij and

limj!1 vol.BX .qj ; �=2/ \ BX .pj ; 10� � ıij // D 0. Let D � X be a compact set
that surjects onto X=ƒ. By replacing pj ; qj with gjpj ; gj qj for some gj 2 ƒ if
necessary, we may assume that each pj 2D. After passing to a subsequence if nec-
essary, we may assume that limj!1 pj D p1, limj!1 qj D q1, and limj!1 ıij D

ı1 2 Œ0; �� exist. Let 
 > 0. For all sufficiently large j ,

BX .q1; �=2� 
/\BX .p1; 10� � ı1 � 
/�BX .qj ; �=2/\BX .pj ; 10� � ıij /:

This implies that volX .BoX .q1; �=2/\B
o
X .p1; 10� � ı1//D 0. However, BX .p1;

10� � ı1/ is strongly convex and so there is a geodesic from p1 to q1 in BX .p1;
10� � ı1/. It follows that BoX .q1; �=2/ \ B

o
X .p1; 10� � ı1/ is a nonempty open
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set. Since volX is fully supported (because X is special), this is a contradiction. This
proves the claim. Note that v0 does not depend on i .

If i is sufficiently large, then covrad.U 0i jX=�
00
i / > 10�, which implies that every

.10� � ıi /-ball in X=� 00i which lies in U 0i is isometric with a .10� � ıi /-ball in X .
Therefore, for every qi 2 U 0i , vol.BX=�00

i
.qi ; �=2/ \ U

0
i / D vol.BU 0

i
.qi ; �=2// > v0.

Also because X=ƒ is compact, there is a v1 > 0 such that BX .x; 20�/ < v1 for
every x 2 X . This implies that BU 0

i
.qi ; 20�/ < v1 too. The hypotheses of Theo-

rem 4.1 have now been checked. That result implies that limi!1.bd .U
0
i //=.vol.U 0i //

exists.
Because ƒ is residually finite, there exists a decreasing sequence ¹ƒiº1iD1 of

finite-index normal subgroups of ƒ such that
T1
iD1ƒi D ¹eº. Note that the cov-

ering radius of X=ƒi tends to infinity as i ! 1. So Lemma 6.3 implies that
limi!1	X=ƒi D 	1. Theorem 4.1 now implies that

lim
i!1

bd .U
0
i /

vol.U 0i /
D lim
i!1

bd .X=ƒi /

vol.X=ƒi /
:

Because X is contractible, X=ƒi is a classifying space for ƒi , which implies that
bd .X=ƒi /D bd .ƒi /. Because X=ƒi is a Œƒ Wƒi �-fold cover of X=ƒ, it follows that
vol.X=ƒi /D Œƒ Wƒi �vol.X=ƒ/. By Theorem 5.1,

lim
i!1

bd .X=ƒi /

vol.X=ƒi /
D lim
i!1

bd .ƒi /

Œƒ Wƒi �vol.X=ƒ/
D

b
.2/

d
.ƒ/

vol.X=ƒ/
:

So we have established that

lim
i!1

bd .U
0
i /

vol.U 0i /
D

b
.2/

d
.ƒ/

vol.X=ƒ/
:

Because U 0i is homologically equivalent to Ui and limi!1 vol.U 0i /=.vol.Ui // D 1,
we have that

lim
i!1

bd .Ui /

vol.Ui /
D

b
.2/

d
.ƒ/

vol.X=ƒ/
: (8)

Let

Wi D
[®

Bo
X=�00

i

�
s; �.s/

�
W s 2 Si nM

00
i

¯
;

SVi D .Si nM
00
i /[

®
s 2 Si \M

00
i WB

o
X=�00

i

�
s; �.s/

�
\Wi ¤;

¯
;

Vi D
[®

Bo
X=�00

i

�
s; �.s/

�
W s 2 SVi

¯
:
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Let Ki be the nerve complex of ¹Bo
X=�00

i

.s; �.s// W s 2 Siº. Let KUi �Ki be the

nerve complex of ¹Bo
X=�00

i

.s; �.s// W s 2 Si \M
00
i º. Similarly, let KVi � Ki be the

nerve complex of ¹Bo
X=�00

i

.s; �.s// W s 2 SVi º.

Because each Bo
X=�00

i

.s; �.s// is strongly convex (for s 2 Si ), it follows that any

nonempty intersection of such balls is also strongly convex and is therefore con-
tractible (see [31]). By [19, Corollary 4G.3], this implies that Ki is homotopic to
X=� 00i , KUi is homotopic to Ui , and KVi is homotopic to Vi . Therefore, bd .Ki / D
bd .X=�

00
i / D bd .�

00
i / (since X=� 00i is a classifying space for � 00i since X is con-

tractible), bd .KUi /D bd .Ui /, and bd .KVi /D bd .Vi /.
We claim that KUi [K

V
i DKi . To see this, suppose that T � Si spans a simplex

in Ki . Then either T � KUi or there exists s 2 T nM 00i . For any t 2 T , Bo
X=�00

i

.t;

�.t// \ Bo
X=�00

i

.s; �.s// ¤ ;. Since Bo
X=�00

i

.s; �.s// � Wi , this implies that t 2 SVi .

Since t is arbitrary, the simplex spanning T is contained in KVi . Since T is arbitrary,
KUi [K

V
i DKi .

The Mayer–Vietoris sequence

� � � !Hd .K
U
i \K

V
i /!Hd .K

U
i /˚Hd .K

V
i /!Hd .Ki /! � � �

implies that

bd .Ui /D bd .K
U
i /� bd .Ki /C bd .K

U
i \K

V
i /D bd .�

00
i /C bd .K

U
i \K

V
i /: (9)

If s 2M 00i and Z �BM 00
i
.s; 20�/ is any �-separated subset, then because

v1 > vol
�
Bo
M 00
i

.q; 20�/
�
� vol

�
Bo
M 00
i

.q; �=2/
�
> v0 > 0

for every q 2M 00i , we must have v0jZj � v1. So jZj � v1=v0. So setting� WD v1=v0,
we see that the degree of any vertex of KUi is at most �. So bd .KUi \K

V
i / is at most

the number of d -simplices in KUi \K
V
i , which is at most the number of vertices of

KUi \K
V
i multiplied by

�
�
d

�
. The vertex set of KUi \K

V
i is S 0i D ¹s 2 Si \M

00
i W

Bo
X=�00

i

.s; �.s//\Wi ¤;º. So

bd .K
U
i \K

V
i /� jS

0
i j

�
�

d

�
:

Note that S 0i is contained in the 20�-neighborhood of @M 00i . Because S 0i is
�-separated and each .�=2/-ball has volume at least v0 (for some v0 > 0 indepen-
dent of i ), we have jS 0i jv0 � vol.N20�.@M 00i //. So

bd .K
U
i \K

V
i /� v

�1
0 vol

�
N20�.@M

00
i /
���
d

�
:
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Therefore,

lim sup
i!1

bd .K
U
i \K

V
i /

vol.Ui /
�

�
�

d

�
v�10 lim sup

i!1

vol.N20�.@M 00i //

vol.Ui /

�

�
�

d

�
v�10 lim sup

i!1

vol.N20�.@M 00i //

vol.M 00i /
D 0:

Lemma 7.2, the fact that M 00i � Ui , (8), and (9) now imply that

lim inf
i!1

bbd .� 0i /
vol.M 0i /

D lim inf
i!1

bd .�
00
i /

vol.M 00i /
� lim inf

i!1

bd .�
00
i /

vol.Ui /

� lim inf
i!1

bd .Ui /

vol.Ui /
�
bd .K

U
i \K

V
i /

vol.Ui /

D
b
.2/

d
.ƒ/

vol.X=ƒ/
> 0:

Sobbd .� 0i / > 0 for all but finitely many i . This implies the theorem.

We now turn to the proof of Theorem 1.2. We will need the following lemma to
smooth out the Cheeger submanifolds of X=� .

LEMMA 7.3 (Haircutting lemma)
LetM be an infinite-volume complete Riemannian n-manifold. Suppose there is a ı >
0 such that the Ricci curvature of M is at least �ı2.n� 1/ (everywhere). Suppose as
well that h.M/ < 1. Then there exist a pathwise connected compact subset M 00 �M
and a function f WR>0!R>0 such that for every R > 0

vol.NR.@M 00//

vol.M 00/
� f .R/h.M/: (10)

Moreover, f depends only on ı and dim.M/.

Proof
This is contained in [7, Lemma 7.2] except in one detail: M 00 is not required to be
pathwise connected. However, a small perturbation of the proof yields a pathwise
connected subset. To explain this, let us recall the construction of M 0 from [7]. Let
� > 0, and let A be a smooth compact submanifold of M with

area.@A/

vol.A/
� h.M/.1C �/:
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Let r > 0 be a sufficiently small constant (how small depends only on the dimen-
sion). Let

M 0 D
®
p 2M W vol

�
A\BM .p; r/

�
> .1=2/vol

�
BM .p; r/

�¯
:

Note that @M 0 D ¹p 2M W vol.A\BM .p; r//D .1=2/vol.BM .p; r//º.
(In Buser’s notation, BM .p; r/ is denoted by U.p; r/, M 0 is denoted by eA, @M 0

is denoted by eX , Nt .@M 0/ is denoted by eX t , and area.@A/=.vol.A// is denoted by
H .)

Let K1; : : : ;Km be the components of M 0. Observe that

area.@A/

vol.A\M 0/
D

mX
iD1

area.@A\Ki /

vol.Ki \A/

vol.Ki \A/

vol.A\M 0/
:

In particular, area.@A/=.vol.A\M 0// is a convex sum of area.@A\Ki /=.vol.Ki \
A//. So there exists a component Ki such that

area.@A\Ki /

vol.Ki \A/
�

area.@A/

vol.A\M 0/
� .1C �/h.M/

vol.A/

vol.A\M 0/
:

According to [7, equations 4.6 and 4.9], vol.A \M 0/ � c vol.A/ where c D 1 �
.4Hˇ.4r//=.j.r/ˇ.r//� 1=2 (in Buser’s notation). Therefore,

area.@A\Ki /

vol.Ki \A/
�

area.@A/

vol.A\M 0/
� 2.1C �/h.M/:

Let M 00 be the closure of Ki . It is now possible to replace M 0 with M 00 in the
proof of [7, Lemma 7.2] (which is mostly contained in [7, Section 4]) to conclude that
M 00 satisfies (10).

Proof of Theorem 1.2
BecauseX=ƒ is compact, [8, Theorem 7.9] implies that there exists an � > 0 such that
every ball of radius less than or equal to 10� in X is strongly convex. So Theorem 7.1
implies that Ir .X j Gd / > 0 for some r > 0. Lemma 7.3 implies that if I.X j Gd / < 1,
then Ir .X j Gd / � f .r/I.X j Gd / for some function f which depends only on the
dimension of X and a lower bound on its Ricci curvature. Thus I.X j Gd / > 0.

8. Applications
In this section we prove Corollary 1.3. The starting point is the following.

LEMMA 8.1
If ƒ is a lattice in Isom.H2n/ for some n� 1, then b.2/n .ƒ/ > 0.
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Proof
This is contained in [26, Theorem 5.12].

Remark 6
Theorem 5.12 of [26] also shows that if ƒ< Isom.Hn/ is a lattice, then b.2/

d
.ƒ/D 0

unless d D n=2 is an integer.

It now suffices to show the following.

PROPOSITION 8.2
If � is a torsion-free lattice in Isom.H3/, then � 2 Gd for all d > 1.

Proof
The fact that � is residually finite is well known: � is linear (since it is a subgroup
of SO.3; 1/) and all finitely generated linear groups are residually finite by [28]. Let
� 0 < � be finitely generated. Observe that � 0 is the fundamental group of a hyperbolic
3-manifold (namely, H3=� 0). By the Scott core theorem [32], � 0 has a finite classify-
ing space. By Lück’s approximation theorem (Theorem 5.1), it suffices to show that
b
.2/

d
.� 0/D 0 for all d > 1. This is handled in Lemma 8.9 below. In fact, we will prove

something stronger: that � is almost treeable, as defined next.

Definition 24 (Treeability and almost treeability)
Let � be a countable discrete group. Let

�
�
2

�
be the set of all unordered pairs of ele-

ments in � , and let G .�/D 2.
�
2/ be the set of all subsets of

�
�
2

�
with the product topol-

ogy. Because � is countable, this means that G .�/ is a compact metrizable space.
(In fact, it is homeomorphic to a Cantor set.) Associated to any element x 2 G .�/

is a graph Gx with vertex set � and edge set x. Observe that � acts on G .�/ by
gx D ¹¹ga;gbº W ¹a; bº 2 xº for g 2 � , x 2 G .�/.

Let F .�/ denote the set of all x 2 G .�/ such that Gx is a forest (i.e., every
connected component of Gx is simply connected). Let T .�/� F .�/ denote the set
of all x 2 F .�/ such that Gx is a tree. The action of � preserves both F .�/ and
T .�/.

We say that � is treeable if there is a �-invariant Borel probability measure on
T .�/. The group � is almost treeable if for every finite set F � � and every � > 0
there exists a �-invariant Borel probability measure 	 on F .�/ such that if x 2 F .�/

is random with law 	, then with probability greater than or equal to 1� � the set F
is contained in a connected component of Gx . In particular, if � is treeable, then � is
almost treeable.
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Treeability was introduced in [2] and almost treeability first appeared in [16].
The connection between almost treeability and L2-Betti numbers is furnished by the
following.

LEMMA 8.3
If � is almost treeable, then b.2/

k
.�/D 0 for every k � 2.

Proof
This is [16, Theorem 0.8].

It is technically easier to work in the realm of equivalence relations. So we intro-
duce the following definitions.

Definition 25
Let .X;	/ be a standard Borel probability space, and let E � X � X be a discrete
Borel equivalence relation. (Discrete means that every equivalence class is at most
countable.) We say that E is treeable (mod 	) if there exists a Borel subset H � E
such that H is symmetric (so .a; b/ 2 H ) .b; a/ 2 H ) and the graph GH with
vertex set X and edge set ¹¹a; bº W .a; b/ 2H º is such that for 	-almost every x 2X
the connected component of GH containing x is a tree spanning the E-class of x.

We say that E is almost treeable (mod 	) if there is a sequence ¹Hiº1iD1 of
symmetric Borel subsets Hi �E such that the corresponding graphs GHi are forests
and for almost every x 2 X and any y in the E-class of x we have that x and y are
contained in the same component of Hi for all but finitely many i .

The connection between equivalence relations and groups is given by the follow-
ing.

PROPOSITION 8.4
A group � is treeable if and only if there is a free probability-measure-preserving
(pmp) action�� .X;	/ such that ifE is the orbit-equivalence relationE D ¹.x;gx/ W
x 2X;g 2 �º, then E is treeable (mod 	). Similarly, � is almost treeable if and only
if there is a free pmp action �� .X;	/ such that the orbit-equivalence relation E is
almost treeable (mod 	).

Proof
In the case of treeability, this is [24, Proposition 30.1]. The almost treeable case is
similar (and an easy exercise).
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LEMMA 8.5
If � is treeable and � 0 < � , then � 0 is treeable. Similarly if � is almost treeable and
� 0 < � , then � 0 is almost treeable.

Proof
This is a consequence of Proposition 8.4 and [15, Propositions 5.8 and 5.16].

LEMMA 8.6
Treeability and almost treeability are measure-equivalence invariants. Therefore, if
�1; �2 are lattices in a locally compact group G and �1 is almost treeable, then �2
is almost treeable.

Proof
In the case of treeability this is [15, Proposition 6.5]. Almost treeability is similar.

LEMMA 8.7
If � is the fundamental group of a surface, then � is treeable.

Proof
If � is free, then this is obvious as the usual Cayley graph of � is a tree. If � is
amenable, then this is a well-known consequence of the fact that there is a unique
hyperfinite II1-equivalence relation [29] (see also [24, Chapter III, Proposition 30.1]
to see the connection). If � is the fundamental group of a closed surface of genus
greater than or equal to 2, then � is measure-equivalent to a free group since � can be
realized as a lattice in Isom.H2/ (and so can any finite-rank nonamenable free group).
Lemma 8.6 now implies that � is treeable.

LEMMA 8.8
Lattices in Isom.H3/ are almost treeable.

Proof
Letƒ< Isom.H3/ be a lattice such that H3=ƒ is a manifold which fibers over a circle
with the fiber being a noncompact surface. It is well known that such lattices exist
(see, e.g., [22]). Note that ƒ can be expressed as ƒ D Fr �� Z where Fr denotes
the free group of some rank r � 2 and � W Fr ! Fr is an automorphism. We can
therefore write elements of ƒ as pairs .f;n/ with f 2 Fr and n 2 Z subject to the
multiplication rule

.f;n/.g;m/D
�
f �n.g/; nCm

�
:

Now let p > 0 be an integer, and let i be a uniformly random integer in ¹0; : : : ; p�1º.
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Let S D ¹s1; : : : ; srº � Fr be a free generating set. Let Ei 2 G .ƒ/ be the set
containing
� ¹.f;m/; .f sj ;m/º for every f 2 Fr , 1� j � r , and m 2 Z with p j .m� i/;
� ¹.f;m/; .f;mC 1/º for every f 2 Fr and m 2 Z with p � .m� i � 1/.
Observe that the graph with vertex setƒ and edge setEi is a forest. Moreover, the law
ofEi is an invariant probability measure �p on G .ƒ/. Finally, for any .f;n/; .g;m/ 2
ƒ with n�m, .f;n/; .g;m/ are in the same connected component of .ƒ;Ei / if and
only if there does not exist an integer q with n� q <m such that p � .q� i � 1/. This
occurs with probability equal to .p � jm� nj/=p if jm � nj � p. In particular, this
probability tends to 1 as p!1. This implies that ƒ is almost treeable.

By Lemma 8.6, it follows that every lattice in Isom.H3/ is almost treeable.

LEMMA 8.9
If � 0 is a subgroup of the fundamental group � of a complete finite-volume hyperbolic
3-manifold, then b.2/

d
.� 0/D 0 for every d � 2.

Proof
This is true because � is almost treeable by Lemma 8.8, every subgroup of an almost
treeable group is almost treeable by Lemma 8.5, and any almost treeable groupƒ has
b
.2/

d
.ƒ/D 0 for every d � 2 by Lemma 8.3.

Proof of Corollary 1.3
This follows from Theorem 1.2 and Proposition 8.2.

Appendices

A. Pointed subsets and measures of a metric space
The purpose of this appendix is to prove Theorem 3.1. We begin by studying pointed
measures and pointed subspaces of a given metric space Z and their limits.

Definition 26
A pointed measure on a topological space Z is a pair .	;p/ where p 2Z and 	 is a
Borel measure on Z. A pointed subset of Z is a pair .X;p/ where X �Z and p 2Z.

Definition 27
Given a subset F of a metric space Z, let N o

Z.F; �/ denote the open �-neighborhood
of F in Z.
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Definition 28
We say that two pointed measures .	1; p1/; .	2; p2/ on a metric space Z are .�;R/-
related if, for every closed Fi �BZ.pi ;R/,

	1.F1/ < 	2
�
N o
Z.F1; �/

�
C �; 	2.F2/ < 	1

�
N o
Z.F2; �/

�
C �;

and distZ.p1; p2/ < �. We say two pointed subsets .X1; p1/; .X2; p2/ ofZ are .�;R/-
related if distZ.p1; p2/ < � and

BZ.p1;R/\X1 �N
o
Z.X2; �/; BZ.p2;R/\X2 �N

o
Z.X1; �/:

A sequence ¹.Xi ; pi /º1iD1 of pointed closed subsets of Z converges to .X1; p1/ in
the pointed Hausdorff topology if, for every �;R > 0, there is an I such that i > I
implies that .Xi ; pi / and .X1; p1/ are .�;R/-related.

LEMMA A.1
If pointed measures .	1; p1/; .	2; p2/ are .�1;R1/-related and .	2; p2/; .	3; p3/
are .�2;R2/-related, then .	1; p1/; .	3; p3/ are .�1 C �2;R3/-related where R3 D
min¹R1�2�2;R2�2�1º. Similarly, if .X1; p1/; .X2; p2/ are .�1;R1/-related pointed
subsets and .X2; p2/; .X3; p3/ are .�2;R2/-related pointed subsets, then .X1; p1/,
.X3; p3/ are .�1C �2;R3/-related.

Proof
Let F �BZ.p1;R3/�BZ.p1;R1/ be closed. Then

N o
Z.F; �1/�BZ.p1;R3C �1/�BZ.p2;R3C 2�1/�BZ.p2;R2/:

Therefore,

	1.F / < 	2
�
N o
Z.F; �1/

�
C �1 <	3

�
N o
Z

�
N o
Z.F; �1/; �2

��
C �1C �2

� 	3
�
N o
Z.F; �1C �2/

�
C �1C �2:

The other inequality is similar. The result for pointed subsets is similar.

LEMMA A.2
Let Z be a proper metric space. Let .	i ; pi / (for 1 � i � 1) be pointed Radon
measures ofZ with limi!1pi D p1. Then limi!1	i D 	1 in the weak* topology
if and only if for every �;R > 0 there exists I such that i > I implies that .	i ; pi /
and .	1; p1/ are .�;R/-related.

Proof
Suppose that limi!1	i D 	1 in the weak* topology. Let �;R > 0. Let F � Cc.Z/
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be a finite set such that for every compact subset F � BZ.p1;R C �/ there exists
g 2 F such that gD 1 on F , gD 0 on the complement ofN o

Z.F; �/, and 0� g � 1 on
all ofZ. To see that such a set exists, let O be any finite open cover of BZ.p1;RC�/
by open balls of radius less than �. Let F 0 D ¹gU W U 2 Oº be a partition of unity
subordinate to O. Let F be the set of all sums of the form

P
¹gU W U 2O0º over all

subsets O0 � O. If F � BZ.p1;R C �/ is compact and g D
P
¹gU W U 2 O;U \

F ¤ ;º, then g D 1 on F , 0� g � 1, and g D 0 on the complement of N o
Z.F; �/ as

required.
Let I be large enough so that i > I implies that distZ.pi ; p1/ < � and j	i .g/�

	1.g/j< � for all g 2 F . Let F �BZ.pi ;R/ be closed. Then F �BZ.p1;RC �/.
So there exists g 2 F as above. Observe that

	i .F / �

Z
g d	i < �C

Z
g d	1 � �C	1

�
N o
Z.F; �/

�
:

Similarly, if F �BZ.p1;R/, then

	1.F / �

Z
g d	1 < �C

Z
g d	i � �C	i

�
N o
Z.F; �/

�
:

This shows that 	i ;	1 are .�;R/-related.
Now suppose that for every �;R > 0 there exists I such that i > I implies that

.	i ; pi / and .	1; p1/ are .�;R/-related. Then there exist sequences ¹�iº1iD1; ¹Riº
1
iD1

such that limi!1 �i D 0, limi!1Ri DC1, and .	i ; pi / and .	1;R1/ are .�i ;Ri /-
related.

CLAIM 1
For any compact S �Z,

lim
i!1

	i
�
N o
Z.S; �i /

�
D 	1.S/:

Proof
For all sufficiently large i , S �BZ.pi ;Ri � �i /\BZ.p1;Ri � �i /. So

	1.S/ � 	i
�
N o
Z.S; �i /

�
C �i � 	1

�
N o
Z.S; 2�i /

�
C 2�i :

By taking the limit as i !1, the claim follows. This uses the fact that 	1.N o
Z.S;

2�i // is finite for all sufficiently large i , which is true because 	1 is Radon and Z is
proper.

Now let f be a real-valued compactly supported continuous function on Z. It
suffices to show that limi!1	i .f /D 	1.f /. Let S denote the support of f , and
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for ˛ < ˇ let

F.˛;ˇ/D
®
x 2Z W ˛ � f .x/� ˇ

¯
\ S:

Let ¹˛tºrtD1 be a sequence of real numbers such that ˛1 <min¹f .x/ W x 2Zº< ˛2 <
� � �<max¹f .x/ W x 2Zº< ˛r and 	1.F.˛t ; ˛t //D 0 for every t D 1; : : : ; r .

By Claim 1,

lim sup
i!1

Z
f d	i � lim sup

i!1

r�1X
tD1

˛tC1	i
�
N o
Z

�
F.˛t ; ˛tC1/; �i

��

D

r�1X
tD1

˛tC1	1
�
F.˛t ; ˛tC1/

�

�
�

sup
1�t<r

˛tC1 � ˛t
�
	1.S/C

Z
f d	1:

We now minimize over all such sequences ¹˛tºrtD1 to obtain lim supi!1
R
f d	i �R

f d	1. Similarly,

lim inf
i!1

Z
f d	i

� lim inf
i!1

r�1X
tD1

Z
No
Z
.F .˛t ;˛tC1/;�i /

f d	i � 2kf k1

rX
tD1

	i
�
N o
Z

�
F.˛t ; ˛t /; �i

��

D lim inf
i!1

r�1X
tD1

Z
No
Z
.F .˛t ;˛tC1/;�i /

f d	i

� lim inf
i!1

r�1X
tD1

˛t	i
�
N o
Z

�
F.˛t ; ˛tC1/; �i

��
D

r�1X
tD1

˛t	1
�
F.˛t ; ˛tC1/

�

��
�

sup
1�t<r

˛tC1 � ˛t
�
	1.S/C

Z
f d	1:

Maximizing over all such sequences ¹˛tºrtD1 and combining with the previous inequal-
ity, we obtain limi!1

R
f d	i D

R
f d	1. Because f is arbitrary, this implies that

limi!1	i D 	1 as required.

B. mm-spaces
We can now define .�;R/-related pointed mmn-spaces. This will allow us to define
open neighborhoods in Mn.
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Definition 29 (.�;R/-related mmn-spaces)
We say that mmn-spaces .M1; p1/; .M2; p2/ are .�;R/-related if there exist a metric
space Z and isometric embeddings 'i WMi !Z such that
� .'1.M1/; '1.p1//, .'2.M2/; '2.p2// are .�;R/-related as pointed subsets of

Z;
� for every k D 1; : : : ; n, ..'1/� vol.k/M1 ; '1.p1// and ..'2/� vol.k/M2 ; '2.p2// are

.�;R/-related as pointed measures of Z.
Let N�;R.M;p/ denote the set of all ŒM 0; p0� 2Mn such that .M 0; p0/ is .�0;R0/-
related to .M;p/ for some �0 < � and R0 > R. We show below that this is an open
set.

Definition 30
A pseudometric d on a set X is a function d W X � X ! Œ0;1/ satisfying all the
properties of a metric with one exception: it may happen that d.x;y/ D 0 even if
x ¤ y.

LEMMA B.1
Let Z be a set equal to a disjoint unionZ D

F1
iD1Mi of its subsetsMi . Suppose that

for each i there is a metric distMi on Mi , suppose that there is a collection ¹Lj ºj2J
of subsets Lj � Z, and suppose that for each j there is a pseudometric distLj
on Lj . Suppose as well that if x;y 2 Lj \Mi for some i; j , then distMi .x; y/ D
distLj .x; y/. Lastly, we assume that for any x;y 2Z there is a sequence x D x1; x2;
: : : ; xn D y such that for each i either xi ; xiC1 2Mk for some k or xi ; xiC1 2Lj for
some j . Then there is a pseudometric distZ on Z such that
� distZ.x; y/D distMi .x; y/ for any x;y 2Mi , for any i ;
� distZ.x; y/� distLj .x; y/ for any x;y 2Lj for any j .

Proof
For each x;y 2Z we define distZ.x; y/D inf

Pr
kD1 distNk .xk; xkC1/where the infi-

mum is over all sequences x D x1; : : : ; xr D y and choicesNk 2 ¹Miº
1
iD1[¹Lj ºj2J

such that xk ; xkC1 2 Nk for all 1 � k < r . It is easy to check that the conclusions
hold.

LEMMA B.2
Suppose that ¹.Mi ; pi /º

1
iD1 is a sequence of mmn spaces such that .Mi ; pi / and

.Mj ; pj / are .�ij ;Rij /-related for all i; j (where �ij ;Rij are positive real numbers).
Then there exist a complete separable metric space Z and isometric embeddings
'i WMi !Z such that for all i; j; k
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� .'i .Mi /; 'i .pi //, .'j .Mj /; 'j .pj // are .�ij ;Rij /-related as pointed subsets
of Z;

� ..'i /� vol.k/Mi ; 'i .pi // and ..'j /� vol.k/Mj ; 'j .pj // are .�ij ;Rij /-related as
pointed measures of Z.

Proof
For each i; j , there exist a complete separable metric space Yij and isometric embed-
dings �ij WMi ! Yij ; ij WMj ! Yij such that
� .�ij .Mi /; �ij .pi //, . ij .Mj /; ij .pj // are .�ij ;Rij /-related as pointed sub-

sets of Yij ;
� ..�ij /� vol.k/Mi ; �ij .pi // and .. j /� vol.k/Mj ; ij .pj // are .�ij ;Rij /-related as

pointed measures of Yij for every k.
Let Z0 be the disjoint union of Mi (i D 1; 2; : : :). By Lemma B.1 there exists a

pseudometric distZ0 on Z0 satisfying the following.
� If x;x0 2Mi �Z

0, then distZ0.x; x0/D distMi .x; x
0/.

� If xi 2Mi ; xj 2Mj , then distZ0.xi ; xj /� distYij .�ij .xi /; ij .xj //.
This induces an equivalence relation on Z0 by x � y if distZ0.x; y/D 0. Let Z00 D
Z0= � with the metric distZ00.Œx�; Œy�/ D distZ0.x; y/. Let .Z;distZ/ be the metric
completion of .Z00;distZ00/. For each i there is a canonical isometric embedding 'i W
Mi ! Z and the union of the images of these embeddings is dense in Z. So Z is
separable.

For any i; j , there is a map�ij W �ij .Mi /[ ij .Mj /!Z such that�ij .�ij .xi //D
'i .xi / if xi 2Mi and �ij . ij .xj //D 'j .xj / if xj 2Mj . This map is distance non-
increasing: distYij .x; y/ � distZ.�ij .x/;�ij .y//. Since ..�ij /� vol.k/Mi ; �ij .pi // and

.. j /� vol.k/Mj ; ij .pj // are .�ij ;Rij /-related this implies that ..'i /� vol.k/Mi ; 'i .pi //

and ..'j /� vol.k/Mj ; 'j .pj // are .�ij ;Rij /-related. Similarly, .'i .Mi /; 'i .pi //,
.'j .Mj /; 'j .pj // are .�ij ;Rij /-related as required.

LEMMA B.3
If .M1; p1/; .M2; p2/ are .�1;R1/-related and .M2; p2/; .M3; p3/ are .�2;R2/-
related, then .M1; p1/; .M3; p3/ are .�1 C �2;R3/-related where R3 D min.R1 �
2�2;R2 � 2�1/.

Proof
This follows from Lemmas B.2 and A.1.

PROPOSITION B.4
A sequence ¹ŒMi ; pi �º

1
iD1 �Mn converges to ŒM1; p1� 2Mn if and only if for every
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�;R > 0 there exists an I such that i > I implies that .Mi ; pi / is .�;R/-related to
.M1; p1/.

Proof
Suppose that ¹ŒMi ; pi �º

1
iD1 �Mn converges to ŒM1; p1� 2Mn. By definition, this

means that there exist a complete separable proper metric space Z and isometric
embeddings 'i W Mi ! Z such that .'i .Mi /; 'i .pi // converges to .'1.M1/;

'1.p1// in the pointed Hausdorff topology and .'i /� vol.k/Mi converges to

.'1/� vol.k/M1 as i!1. The proposition now follows from Lemma A.2.
Let us now assume for every �;R > 0 that there exists I such that i > I implies

.Mi ; pi / is .�;R/-related to .M1; p1/. By Lemma B.3 this implies that, for any
i; j > I , .Mi ; pi / and .Mj ; pj / are .2�;R � 2�/-related. So there exist positive real
numbers �i ;Ri such that
� limi!1 �i D 0, limi!1Ri DC1;
� .Mi ; pi /; .Mj ; pj / are .�i ;Ri /-related for every 1� i < j �1.
By Lemma B.2, there exist a complete separable metric spaceZ and isometric embed-
dings 'i WMi !Z such that for every 1� i < j �1
� .'i .Mi /; 'i .pi //; .'j .Mj /; 'j .pj // are .�i ;Ri /-related;
� for every k D 1; : : : ; n, ..'i /� vol.k/Mi ; 'i .pi //; ..'j /� vol.k/Mj ; 'j .pj // are .�i ;

Ri /-related.
By replacing Z with the closure of the images of the Mi ’s, we may assume, without
loss of generality, that the union

S1
iD1 'i .Mi / is dense in Z. Without loss of gener-

ality, we may also assume that each Mi �Z and 'i is the inclusion map. This helps
simplify notation.

We claim that Z is proper. It suffices to show that every ball centered at p1
is sequentially compact. So let R > 0, and let ¹xiº1iD1 � BZ.p1;R/. There is a
sequence ¹yiº1iD1 such that, for each i , distZ.xi ; yi / < 1=i and yi 2Mn.i/ for some
n.i/. It suffices to show that a subsequence of ¹yiº1iD1 is convergent. If there is some
j such that ¹yiº1iD1 \Mj is infinite, then, since Mj is proper, it follows that there is
a convergent subsequence. Otherwise, limi!1 n.i/DC1.

Observe that

distZ.pi ; yi /� distZ.pi ; p1/C distZ.p1; xi /C distZ.xi ; yi /� �n.i/CRC 1=i:

In other words, yi 2 BZ.pi ;R C 1=i C �n.i//. If i is large enough, then Rn.i/ >
RC 1=i C �n.i/. Because .Mn.i/; pn.i//; .M1; p1/ are .�n.i/;Rn.i//-related,

BZ.pi ;RC 1=i C �n.i//\Mn.i/ �N
o
Z.M1; �n.i//:

So there exists zi 2M1 with distZ.yi ; zi /� �n.i/. Note that
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distZ.zi ; p1/� distZ.zi ; yi /C distZ.yi ; xi /C distZ.xi ; p1/� �n.i/C 1=i CR:

BecauseM1 is proper, this implies that ¹ziº1iD1 has a convergent subsequence. Since
distZ.zi ; xi / � distZ.zi ; yi /C distZ.yi ; xi / � �n.i/ C 1=i tends to zero as i !1,
this implies that ¹xiº1iD1 has a convergent subsequence as required.

The proposition now follows from Lemma A.2.

LEMMA B.5
For any ŒM;p� 2Mn and �;R > 0, the set N�;R.M;p/�Mn is open.

Proof
Let ¹ŒMi ; pi �º

1
iD1 be a sequence in Mn nN�;R.M;p/ which converges to ŒM1; p1�.

If ŒM1; p1� 2N�;R.M;p/, then there exist an �0 < � andR0 >R such that .M1; p1/
and .M;p/ are .�0;R0/-related. Choose �00;R00 > 0 so that �00 C �0 < � and R <

min.R0 � 2�00;R00 � 2�0/. By Proposition B.4, there is an i such that .Mi ; pi / and
.M1; p1/ are .�00;R00/-related. Lemma B.3 now implies that ŒMi ; pi � 2N�;R.M;p/.
This contradiction proves that the complement of N�;R.M;p/ is closed.

We can now prove Theorem 3.1, which states that Mn is separable and metriz-
able.

Proof of Theorem 3.1
First we show that Mn is metrizable. For ŒM;p�; ŒM 0; p0� 2Mn, let

�
�
ŒM;p�; ŒM 0; p0�

�
D inf �C

1

RC 2�
;

where the infimum is over all �;R > 0 such that ŒM;p� and ŒM 0; p0� are .�;R/-
related. In order to check the triangle inequality, let ŒMi ; pi � 2M

n (for i D 1; 2; 3),
and suppose that .M1; p1/; .M2; p2/ are .�1;R1/-related and .M2; p2/; .M3; p3/ are
.�2;R2/-related for some �1; �2;R1;R2 > 0. By Lemma B.3,

�
�
ŒM1; p1�; ŒM3; p3�

�
� �1C �2C

1

min¹R1 � 2�2;R2 � 2�1º C 2�1C 2�2

D �1C �2C
1

min¹R1C 2�1;R2C 2�2º

�
�
�1C

1

R1C 2�1

�
C
�
�2C

1

R2C 2�2

�
:

By minimizing the right-hand side over all �1; �2;R1;R2 such that .M1; p1/; .M2; p2/

are .�1;R1/-related and .M2; p2/; .M3; p3/ are .�2;R2/-related, we see that � satis-
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fies the triangle inequality. It is therefore a metric on Mn. It is continuous by Lemma
B.5. So Mn is metrizable.

To show that Mn is separable, let FnQ be the set of all ŒM;p� 2Mn such thatM is

a finite set and distM ;vol.1/M ; : : : ;vol.n/M are rational-valued. Note that FnQ is countable.
We claim that FnQ is dense in Mn. Let Fn be the set of all ŒM;p� 2Mn such that M
is finite. An exercise shows that the closure of FnQ contains Fn. So it suffices to show
that Fn is dense in Mn. For this purpose, let ŒM;p� 2Mn. Let MF.M/ denote the set
of all measures 	 2M.M/ with finite support. It is well known that MF.M/ is dense
in the space of Radon measures onM in the weak* topology. So there exist measures
	
.k/
i 2MF.M/ such that limi!1	

.k/
i D vol.k/M for every k. Let Xi be a finite subset

of M containing ¹pº [
Sn
kD1 supp.	.k/i / such that

S1
iD1Xi is dense in M . We may

regard .Xi ; p/ as an mmn-space with distance distXi equal to the restriction of distM
to Xi and measures vol.k/Xi equal to 	.k/i . By definition ŒXi ; p� converges to ŒM;p� in
Mn as i!1. So Fn and therefore FnQ are dense in Mn as claimed.
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