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Preface

There is the general principle to consider a classical invariant of a closed
Riemannian manifold M and to define its analog for the universal covering
M taking the action of the fundamental group © = 71(M) on M into ac-
count. Prominent examples are the Euler characteristic and the signature of
M, which lead to Wall’s finiteness obstruction and to all kinds of surgery
obstructions such as the symmetric signature or higher signatures. The p-
th L2-Betti number bg)(Z\Aj ) arises from this principle applied to the p-th
Betti number b,(M). Some effort is necessary to define L?-Betti numbers in

the case where m is infinite. Typical problems for infinite 7 are that M is
not compact and that the complex group ring Cr is a complicated ring, in
general not Noetherian. Therefore some new technical input is needed from
operator theory, namely, the group von Neumann algebra and its trace. An-
alytically Atiyah defined L?-Betti numbers in terms of the heat kernel on
M. There also is an equivalent combinatorial approach based on the cellular
Cm-chain complex of M. It is one of the main important and useful features
of L?-invariants that they can be defined both analytically and combinato-
rially. There are two further types of L?-invariants. L?-torsion generalizes
the classical notion of Reidemeister torsion from finite to infinite m, whereas
Novikov-Shubin invariants do not have a classical counterpart.

A very intriguing and important property of L?-invariants is that they
have relations to many other fields. From their construction it is clear that
they have connections to operator theory, in particular to von Neumann
algebras, and to the spectral theory of the Laplacian on M. For instance
Atiyah’s motivation to consider L2-Betti numbers was to establish his L2-
index theorem.

More suprising is the appearance of algebraic K-theory. In all examples
where L2?-Betti numbers have been computed explicitly, the values turn out
to be rational numbers whose denominators are linked to the orders of finite
subgroups of 7. This is very suprising in view of the actual definition of
L?-Betti numbers. This phenomenon is linked to questions in algebraic K-
theory such as whether any finitely generated projective Cr-module M is
obtained by induction from a finitely generated projective CH-module for
a finite subgroup H C w. This leads to the version of the so called Atiyah
Conjecture that the L2-Betti numbers are always integers if 7 is torsionfree.
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It turns out that this conjecture implies the Kaplansky Conjecture that Crm
contains no non-trivial zero-divisors if 7 is torsionfree. For many groups
the Kaplansky Conjecture was not known until the Atiyah Conjecture was
proved. We will investigate interactions between L2-invariants and K-theory
and applications of them in both directions throughout this book.

Next we explain a connection to geometry. Provided that M is aspherical,
all computations lead to the result that b;,z)(ﬁ ) = 0 holds for 2p # dim(M)
and that bg)(M) = (=1)" - x(M) is true for the Euler characteristic x(M)
if dim(M) = 2n is even. In particular (—1)" - x(M) > 0 in the case
dim(M) = 2n, since each L2-Betti number is larger or equal to zero by
definition. This phenomenon seems to be typical and will be investigated
in this book. Recall that M is aspherical if it carries a Riemannian met-
ric with non-positive sectional curvature, but that the converse is not true.
If dim(M) = 2n and M carries a Riemannian metric with negative sec-
tional curvature, then all computations yield bg)(ﬁ) = (=) x(M) > 0.
Hence L2-Betti numbers are linked to the Hopf Conjecture which predicts
(=)™ - x(M) > 0 if the 2n-dimensional closed manifold M carries a Rieman-
nian metric with non-positive sectional curvature, and (—1)" - x(M) > 0 if
M carries a Riemannian metric with negative sectional curvature. Further
connections between L2-invariants and geometry and group theory will be
presented in this book.

Why Study L*-Invariants?

From the author’s point of view there are certain criteria which decide
whether a topic or an area in modern mathematics is worth studying or worth
further development. Among them are the following:

e The topic has relations to other fields. There is a fruitful exchange of results
and techniques with other areas which leads to solutions of problems and
to innovations in both the topic of focus and other topics;

e There are some hard open problems which are challenging and promising.
They create interesting activity and partial solutions and techniques for
their proof already have applications to other problems;

e The topic is accessible with a reasonable amount of effort. In particular
talented students are able to learn the basics of the topic within an ap-
propriate period of time and while doing so get a broad basic education in
mathematics.

The purpose of this book is to convince the reader that L?-invariants do
satisfy these criteria and to give a comprehensible and detailed approach to
them which includes the most recent developments.
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A User’s Guide

We have tried to write this book in a way which enables the reader to pick
out his favourite topic and to find the result she or he is interested in quickly
and without being forced to go through other material. The various chapters
are kept as independent of one another as possible. In the introduction of each
chapter we state what input is needed from the previous chapters, which is
in most cases not much, and how to browse through the chapter itself. It
may also be worthwhile to go through the last section “Miscellaneous” in
each chapter which contains some additional information. In general a first
impression can be gained by just reading through the definitions and theorems
themselves. Of course one can also read the book linearly.

Each chapter includes exercises. Some of them are easy, but some of them
are rather difficult. Hints to their solutions can be found in Chapter [16. The
exercises contain interesting additional material which could not be presented
in detail in the text. The text contains some (mini) surveys about input from
related material such as amenable groups, the Bass Conjecture, deficiency of
groups, Isomorphism Conjectures in K-theory, 3-manifolds, Ore localization,
residually finite groups, simplicial volume and bounded cohomology, sym-
metric spaces, unbounded operators, and von Neumann regular rings, which
may be useful by themselves. (They are listed in the index under “survey”.
One can also find a list of all conjectures, questions and main theorems in
the index.)

If one wants to run a seminar on the book, one should begin with Sec-
tions 1.1l and 1.2l Then one can continue depending on the own interest. For
instance if one is algebraically oriented and not interested in the analysis,
one may directly pass to Chapter (6, whereas an analyst may be interested
in the rest of Chapter [1/ and then pass to Chapter 2. Chapters (9, 10, 11} 12|
13/ and (14! are independent of one another. One may directly approach these
chapters and come back to the previous material when it is cited there.

We require that the reader is familiar with basic notions in topology
(CW-complexes, chain complexes, homology, manifolds, differential forms,
coverings), functional analysis (Hilbert spaces, bounded operators), differen-
tial geometry (Riemannian metric, sectional curvature) and algebra (groups,
modules, elementary homological algebra).
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0. Introduction

0.1 What are L2-Invariants?

There is the classical notion of the p-th Betti number b,(X) of a finite CW-
complex X, for instance a closed manifold, which is the dimension of the
complex vector space H,(X;C). Consider a G-covering p: X — X. If G
is infinite, the p-th Betti number of X may be infinite and hence useless.
Using some input from functional analysis involving Hilbert spaces, group
von Neumann algebras and traces one can define the p-th L?-Betti number
bg)(Y;N (@)) of the total space X as the non-negative real number given by
the von Neumann dimension of the (reduced) L2-homology of X. (Often we
briefly write b;gQ) (X) if G is clear from the context.) If G is finite, b,(,Q)(Y) =
|G|7t - bp(X) and we get nothing new. But L?-Betti numbers carry new
information and have interesting applications in the case where G is infinite.
In general b](f) (X) of the total space X and b,(X) of the base space X have
no relations except for the Euler-Poincaré formula, namely,

X(X) = Y- 1P b(X) = Y oo(-1P 00 (X),  (0.1)

where x(X) is the Euler characteristic of X (see Section [0.6).

The notion of the classical Reidemeister torsion of X for finite groups G
will be generalized to the notion of L?-torsion p® (X) € R in the case that
G is infinite.

There is a third class of L2-invariants, the Nowikov-Shubin invariants
a,(X), which carry no information if G is finite.

All these types of L?-invariants on the one hand have analytic definitions
in terms of the heat kernel on X, but on the other hand can be defined
combinatorially in terms of the cellular CG-chain complex of X. These two
approaches are equivalent. In the analytic context X must be a compact
Riemannian manifold. For the combinatorial definition of L?-Betti numbers
and Novikov-Shubin invariants it suffices to require that the base space X is of
finite type, i.e. each skeleton of X is finite, but X may be infinite-dimensional.
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0.2 Some Applications of L2-Invariants

In order to convince the reader about the potential of L2-invariants we state
some results which seem to have nothing to do with L2-invariants but whose
proofs — as we will see — use L?-methods. The selection below consists of
some easy to formulate examples and is not meant to represent the most
important results about L2-invariants. There are plenty of other very inter-
esting and important theorems about LZ?-invariants, a lot of which will be
presented in this book. For simplicity we often will not state the most gen-
eral formulations in this introduction. All notions appearing in the list of
theorems below will be explained in the relevant chapters. The results be-
low are due to Chang-Weinberger, Cheeger-Gromov, Cochran-Orr-Teichner,
Dodziuk, Gaboriau, Gromov and Liick.

Theorem 0.2 (see Theorem [1.35/ (2) and Corollary 6.75). Let G be a
group which contains a normal infinite amenable subgroup. Suppose that there
is a finite CW -model for its classifying space BG. Then its Euler character-
istic vanishes, i.e.

X(G) := x(BG) = 0.

Theorem 0.3 (see Theorem 1.62/ and Theorem [11.6). Let M be a closed
manifold of even dimension 2m. Suppose that M is hyperbolic, or more gen-
erally, that its sectional curvature satisfies —1 < sec(M) < —(1 — %)2 .Then

(—1)™ - (M) > 0.

Theorem 0.4 (see Theorem [11.14 and Theorem [11.15). Let M be a
closed Kdihler manifold of (real) dimension 2m. Suppose that M is homotopy
equivalent to a closed Riemannian manifold with negative sectional curvature.
Then

(=)™ - x(M) > 0.

Moreover, M is a projective algebraic variety and s Moishezon and Hodge.

Theorem 0.5 (see Theorem [7.25). Let 1 - H — G — K — 1 be an
extension of infinite groups such that H is finitely generated and G is finitely
presented. Then

(1) The deficiency of G satisfies def(G) < 1;
(2) If M is a closed connected oriented 4-manifold with w1 (M) = G, then we
get for its signature sign(M) and its Euler characteristic x(M)

| sign(M)] < x(M).
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Theorem 0.6 (see Theorem 9.38)). Let i: H — G be the inclusion of a
normal finite subgroup H into an arbitrary group G. Then the maps coming
from i and the conjugation action of G on H

Z ®zc Wh(H) — Wh(G);
Wh(H)Y — Wh(G)

have finite kernel, where Wh denotes the Whitehead group.

Theorem 0.7 (see Theorem [9.66)). Let G be a group and CG be its com-
plex group ring. Let Go(CG) be the Grothendieck group of finitely generated
(not necessarily projective) CG-modules. Then

(1) If G is amenable, the class [CG] € Go(CQG) is an element of infinite
order;
(2) If G contains the free group Z*7Z of rank two, then [CG] = 0 in Go(CQG).

Theorem 0.8 (see Section 15.4). There are non-slice knots in 3-space
whose Casson-Gordon invariants are all trivial.

Theorem 0.9 (see Section [7.5). There are finitely generated groups which
are quasi-isometric but not measurably equivalent.

Theorem 0.10 (see Section [15.1). Let M***+3 be a closed oriented smooth
manifold for k > 1 whose fundamental group has torsion. Then there are in-
finitely many smooth manifolds which are homotopy equivalent to M (and
even simply and tangentially homotopy equivalent to M ) but not homeomor-
phic to M.

0.3 Some Open Problems Concerning L2?-Invariants

The following conjectures will be treated in detail in Section 2.5 and Chapters
10, 11}, 12 13l and [14. They have created a lot of activity. This book contains
proofs of these conjectures in special cases which rely on general methods
and give some structural insight or consist of explicit computations. Recall
that a free G-CW-complex X is the same as the total space of a G-covering
X — G\X with a CW-complex G\X as base space, and that X is called
finite or of finite type if the CW-complex G\ X is finite or of finite type.

Conjecture 0.11 (Strong Atiyah Conjecture). Let X be a free G-CW -

complez of finite type. Denote by WZ the additive subgroup of R gen-

erated by the set of rational numbers |H|~1, where H runs through the finite
subgroups of G. Then we get for the L?-Betti numbers of X

1
(2)
by (X) € \fIN(G)|Z'
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In Subsection [10.1.4/ we will explain that there are counterexamples to the
strong Atiyah Conjecture 0.11 due to Grigorchuk and Zuk, but no counterex-
ample is known to the author at the time of writing if one replaces VTI(G)\Z
by Q or if one assumes that there is an upper bound for the orders of finite
subgroups of G. The author is not aware of a counterexample to the following
conjectures at the time of writing.

Conjecture 0.12. (Positivity and rationality of Novikov-Shubin in-
variants). Let X be a free G-CW -complex of finite type. Then its Novikov-

Shubin invariants o,(X) are positive rational numbers unless they are oo or

oo™

Conjecture 0.13 (Singer Conjecture). Let M be an aspherical closed
manifold. Then the L?-Betti numbers of the universal covering M satisfy

211 . .
b (M) = 0 if 2p # dim(M)
and (=1)™ - x(M) > 0 if dim(M) = 2m is even.
Let M be a closed connected Riemannian manifold with negative sectional
curvature. Then Fop 4 dim(M)
@) (77 =0 if 2p # dim(M);
%(M){>OQMp:&mw“
and (—1)™ - x(M) > 0 if dim(M) = 2m is even.
Conjecture 0.14 (L?-torsion for aspherical manifolds). If M is an as-

pherical closed manifold of odd dimension 2m + 1, then the L?-torsion of its
universal covering satisfies

(1) pD(M) = 0.

If M is a closed connected Riemannian manifold of odd dimension 2m + 1
with negative sectional curvature, then

(1™ oD (M) > 0.

If M is an aspherical closed manifold whose fundamental group contains an
amenable infinite normal subgroup, then

PP (M) = 0.

Conjecture 0.15 (Zero-in-the-spectrum Conjecture). Let M be the uni-
versal covering of an aspherical closed Riemannian manifold M. Then for
some p > 0 zero is in the spectrum of the minimal closure

(Ap)min: dom ((Ap)min) C L202P(M) — L2027 (M)

of the Laplacian acting on smooth p-forms on M.
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Conjecture 0.16 (Approximation Conjecture). Let G be a group. Let
{G; | i € I} be an inverse system of normal subgroups of G directed by
inclusion over the directed set I. Suppose that Nie;G; = {1}. Let X be a
free G-CW -complex of finite type. Then G\X is a free G/G;-CW -complex
of finite type and

bP(X;N(G)) = lim b (G\X; N (G/Gy)).

Conjecture 0.17 (Simplicial volume and L?-invariants). Let M be an
aspherical closed orientable manifold of dimension > 1. Suppose that its sim-
plicial volume ||M|| vanishes. Then all the L?-Betti numbers and the L*-

torsion of the universal covering M vanish, i.e.

VA(M)=0  forp>0;

0.4 L2-Invariants and Heat Kernels

The p-th L2-Betti number b§,2) (M) of a G-covering p: M — M of a closed
Riemannian manifold M was first defined by Atiyah [9, page 71] in connec-
tion with his L2-index theorem. By means of a Laplace transform, Atiyah’s
original definition agrees with the one given by the non-negative real number

bz(?)(ﬁ) = lim [ trc(e *r(z,z))dvol. (0.18)

t—o0 F

Here F is a fundamental domain for the G-action on M and e~*4 (z,y) is the

heat kernel on p-forms on M. The p-th L2-Betti number bl(yz)(ﬂ) measures
the size of the kernel of the Laplacian acting on smooth p-forms on M. If G is
trivial, then bz(,2)(ﬁ) is the same as the ordinary Betti number b,(M) which
is the real dimension of the p-th singular cohomology with real coefficients of
M . One important consequence of the L2-index theorem is the Euler-Poincaré
formula (0.1)) (see Theorem [1.35 (2))).

The p-th Nowikov-Shubin invariant aﬁ(ﬂ) measures how fast the ex-
pression [ tre(e™ 4 (x, z)) dvol approaches its limit b () for t — oo (see
(0.18)). The larger a3 (M) is, the “thinner” is the spectrum of the p-th Lapla-
cian on M at zero.

Notice that the L2-Betti numbers and the Novikov-Shubin invariants are
invariants of the large time asymptotics of the heat kernel and hence in-
variants of the global geometry, in contrast to invariants of the small time
asymptotics, such as indices of operators, which are of local nature. For in-
stance the Novikov-Shubin invariant associated to the Laplacian acting on
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0-forms of the universal covering of a closed Riemannian manifold M is de-
termined by group theoretic properties of the fundamental group 1 (M) such
as its growth rate or the question whether it is amenable (see Theorem [2.55
(5))-

In view of the definitions of the L2?-Betti numbers and Novikov-Shubin
invariants, the strong Atiyah Conjecture 0.11 and the Conjecture (0.12 about
the positivity and rationality of Novikov-Shubin invariants are very surpris-
ing. Some explanation for the strong Atiyah Conjecture 0.11 comes from
connections with algebraic K-theory, whereas the only evidence for the Con-
jecturel0.12/about the positivity and rationality of Novikov-Shubin invariants
is based on computations, and no conceptual reasons are known.

The third important L?-invariant is the L?-torsion p(?)(M) which was
introduced by Carey-Mathai, Lott, Liick-Rothenberg, Mathai and Novikov-
Shubin. It is only defined under a certain technical assumption, namely, that
M is of determinant class. This condition is conjecturally always satisfied and
we will suppress it in this discussion. If all L?-Betti numbers of M vanish,
the L2-torsion p(?) (M) is independent of the Riemannian metric and depends
only on the simple homotopy type. Actually, there is the conjecture that
it depends only on the homotopy type (see Conjecture [3.94). Its analytic
definition is complicated.

This analytic approach via the heat kernel is important in the following
situations. One can compute the L2-Betti numbers of the universal covering
M of a closed Riemannian manifold M if M is hyperbolic (see Theorem
1.62)), or, more generally, satisfies certain pinching conditions (see Theorem
11.4, Theorem 1.5/ and Theorem [11.6]). There are explicit computations of
the L2-Betti numbers, the Novikov-Shubin invariants and the L2-torsion of
the universal covering of a closed manifold M if M is a locally symmetric
space (see Theorem [5.12] and Section 5.4]). The proof of the Proportionality
Principle 3.183 relies on the analytic description. The proofs of these facts
do not have combinatorial counterparts.

0.5 L2-Invariants and Cellular Chain Complexes

One important feature of all these L2-invariants is that they can also be
defined for a G-covering p: X — X of a finite CW-complex X in terms of
the cellular ZG-chain complex C,(X). For L?-Betti numbers and Novikov-
Shubin invariants it suffices to require that X is of finite type. The associated

L2-chain complez C\* (X) is defined by 12(G) ®z¢ C.(X). Each chain module
c? (X) is a Hilbert space with isometric G-action of the special form ?(G)",

where [2(G)™ is the n-fold sum of the Hilbert space (?(G). Each differential

01(72) is a bounded G-equivariant operator. The p-th L?-homology H,(,2)(X) is

defined to be the quotient of the kernel of 0;2) by the closure of the image of

01(321. Dividing out the closure of the image has the effect that H1(72) (X) is again
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a Hilbert space with isometric G-action. It actually comes with the structure
of a finitely generated Hilbert N'(G)-module, where N'(G) denotes the von
Neumann algebra of the group G. This additional structure allows to define
the von Neumann dimension of ngz)(Y). Dodziuk has shown that this non-

negative real number agrees with b;Q) (X) as defined in (0.18) (see Theorem
1.59 and (1.60)). One can also read off the Novikov-Shubin invariants and

the L2-torsion from C? (X) by results of Efremov (see Theorem 2.68) and
Burghelea-Friedlander-Kappeler-McDonald (see Theorem [3.149). The p-th

Novikov-Shubin invariant o, (X) measures the difference between the image

of 01(12) and the closure of the image of cl(,z).

The point of this cellular description is that it is much easier to han-
dle and calculate than the analytic counterpart. For instance one can show
homotopy invariance of L?-Betti numbers, Novikov-Shubin invariants and
L?-torsion and prove some very useful formulas like sum formulas, product
formulas, fibration formulas and so on using the combinatorial approach (see
Theorem [1.35, Theorem 2.55, Theorem [3.93, Theorem 3.96/ and Theorem
3.100). The combinatorial approach allows to show for an aspherical closed
manifold M that all L2-Betti numbers and the L?-torsion of its universal cov-
ering vanish provided M carries a non-trivial S'-action (see Theorem [3.105).
There exists a combinatorial proof that all L2-Betti numbers of the universal
covering of a mapping torus of a self map of a C'W-complex of finite type
vanish (see Theorem [1.39)). No analytic proofs or no simpler analytic proofs
of these results are known to the author. The combination of the analytic
and combinatorial methods yields a computation of the L?-invariants of the
universal covering of a compact 3-manifold provided Thurston’s Geometriza-
tion Conjecture holds for the pieces appearing in the prime decomposition of
M (see Theorem 4.1, Theorem 4.2 and Theorem 4.3)).

For a kind of algorithmic computation of L?-invariants based on the com-
binatorial approach we refer to Theorem [3.172.

The possibility to take both an analytic and a combinatorial point of view
is one of the main reasons why L2-invariants are so powerful.

0.6 L2-Betti Numbers and Betti Numbers

Let X — X be the universal covering of a connected C'W-complex X of fi-
nite type. Then the L2-Betti numbers b;z) (X) of X and the (classical) Betti
numbers b, (X) share some basic properties such as homotopy invariance, the
Euler-Poincaré formula, Poincaré duality, Morse inequalities, Kiinneth for-
mulas and so on, just replace in the corresponding statement for the classical
Betti numbers b,(X) by bl(yz)()? ) everywhere (see Theorem [1.35). There is
also an L?-Hodge de Rham Theorem [1.59 which is one important input in
the proof of Theorem [0.3.
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But there are also differences. One important extra feature of the L?-Betti
numbers is that they are multiplicative under finite coverings in the following
sense. If p: Y — X is a finite d-sheeted covering, then bf) Y)=d- bz(,Q)()?)
(see Theorem [1.35! (9))). This implies for instance bz()z)(Sl) =0 forallp>0
since there is a d-sheeted covering S' — S! for d > 2. The corresponding
statement is not true for the Betti numbers. This is one reason why L2-Betti
numbers more often tend to be zero than the classical Betti numbers. Often
this is the key phenomenon for applications. Another reason for it is the fact
that béz)()?) is 0 if 71 (X) is infinite and is |7 (X)| 71 if 71(X) is finite (see
Theorem [1.35 (8))), whereas bo(X) is always 1.

If 7 (X) is finite, then b (X) = |y (X)|~1 - by(X). If w1 (X) is infinite,
the only general relation between the L2-Betti numbers of X and the Betti
numbers of X is the Euler-Poincaré formula (0.1)). Given an integer ! > 1 and
a sequence 11, Ta, ..., 7 of non-negative rational numbers, we construct in
Example [1.38 a group G such that BG is of finite type and

r, forl<p<lI;
b6 =B EC) = oyt < P;

by(G) =b,(BG) =0 for p > 1.

On the other hand we can construct for any sequence ni, ns, ... of non-
negative integers a CW-complex X of finite type such that b,(X) = n, and
bl(,2)()?) =0 hold for p > 1.

However, there is an asymptotic relation between the L?-Betti numbers
of X and the Betti numbers of X. Recall that the Betti numbers are not
multiplicative. One may try to force multiplicativity of the Betti numbers by
stabilizing under finite coverings as follows. Suppose that 71 (X) possesses a
nested sequence of normal subgroups of finite index

7T1(X)=G03G1DGQDG33...

with N2, G; = {1}. Then G;\X is a CW-complex of finite type and there is
a [G : G;]-sheeted covering Gl\)? — X. One may consider lim;_. o %
This expression is automatically multiplicative if the limit exists and is inde-

pendent of the nested sequence. Actually it turns out that this is true and
by (G \X
L By (GAK)
1—00 [G : Gl]
This result is a special case of the Approximation Conjecture [0.16/ which will
be investigated in Chapter 13l

.
= b2 (X).

0.7 L3-Invariants and Ring-Theory

A more algebraic approach will be presented in Chapter[6. It will enable us to
define L?-Betti numbers for arbitrary G-spaces and in particular for groups
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without any restrictions on BG. This allows to apply standard techniques
of algebraic topology and homological algebra directly to L2-Betti numbers.
The idea is to view the group von Neumann algebra N(G) just as a ring
forgetting the functional analysis and the topology. The von Neumann al-
gebra N(G) has zero-divisors and is not Noetherian unless G is finite. This
makes N (G) complicated as a ring. But it has one very nice property, it is
semihereditary, i.e. any finitely generated submodule of a projective module
is itself projective (see Theorem 6.5/ and Theorem 6.7 (1)). This justifies the
slogan that A (G) behaves like the ring Z if one ignores the facts that Z has
no zero-divisors and is Noetherian. The main input for the ring-theoretic ap-
proach is the construction of a dimension function for arbitrary modules over
the group von Neumann algebra A (G) (Theorem 6.7)). It is uniquely charac-
terized by the condition that it satisfies Additivity, Continuity and Cofinality
and extends the classical dimension function for finitely generated projective
modules which is defined in terms of the von Neumann trace of idempotents
in M,,(N(G)). One applies it to the N'(G)-modules H,(N(G) @zc C: "8 (X))
for a G-space X and gets an extension of the notion of L2-Betti numbers to
arbitrary G-spaces if one allows the value co. The second key result is that
for amenable G the von Neumann algebra N (G) looks like a flat CG-module
from the point of view of dimension theory (see Theorem [6.37).

In Chapter 8 we introduce the algebra U(G) of operators affiliated to the
group von Neumann algebra. From an algebraic point of view U(G) can be
described as the Ore localization of A/(G) with respect to the multiplicative
set of non-zero divisors. The main ring theoretic property of U(G) is that it
is von Neumann reqular (see Theorem [8.22] (3)) which is a stronger property
than to be semihereditary. The dimension theory of N (G) extends to U(G)
(see Theorem[8.29). The relation of U(G) to N'(G) is analogous to the relation
of Q to Z.

From the point of view of representation theory of finite groups the pas-
sage from CG to N(G) is the natural one for infinite groups. Namely, two
finitely generated projective N(G)-modules P and @ are N (G)-isomorphic
if and only if their center valued von Neumann dimensions dim}(/(G)(P) and
dimj; () (Q) agree (see Theorem [0.13). If G is finite, this reduces to the well-
known theorem that two complex finite-dimensional G-representations are
isomorphic if and only if they have the same character.

This algebraic approach may be preferred by algebraists who do not have
much background in (functional) analysis.

Linnell’s Theorem [10.19] says that the strong Atiyah Conjecture [0.11 is
true for a class of groups C which contains all extensions of free groups with
elementary amenable groups as quotients, provided that there is an upper
bound on the orders of finite subgroups. Its proof is based on techniques from
ring theory, in particular localization techniques, and from K-theory. The
following square of inclusions of rings plays an important role as explained
below
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G —— N@)

l l (0.19)

D(G) —— U(G)

where D(G) denotes the division closure of CG in U(G).

0.8 L2-Invariants and K-Theory

The strong Atiyah Conjecture 0.11] is related to K-theory in the following
way. It is equivalent to the statement that for any finitely presented CG-
module M the generalized dimension dimr(g) (N(G) ®ce M) (see Theorem
6.5/ and Theorem 6.7/ (1)) of the N(G)-module N (G) @cg M takes values
in WZ (see Lemma [10.7)). Notice that any non-negative real number
occurs as dims(g)(P) for a finitely generated projective N'(G)-module P, if
G contains Z as subgroup (see Example I.11, Theorem [6.24 (4) and Theorem
6.291 (2))). So the point is to understand the passage from CG to N (G), not
only to investigate modules over A (G).

One may first consider the weaker statement that for any finitely gener-
ated projective CG-module M the generalized dimension dimpr(q) (N (G) @ca
M) takes values in zzargyZ. This is equivalent to the statement that

the composition Ky(CG) 5 Ko(N(G)) R must have its image in
Wl(g)‘l, where 7 is the change of rings map. This is certainly true for the
composition

dimN(G)
—_—

D Ko(CH) > Ko(CG) S Ko(N (@) X R

HCG
|H|<oo

where a is the sum of the various change of rings maps. The Isomorphism
Conjecture 9.40 for Ky(CG) implies that a is surjective and hence that the

image of Ko(CG) & Ko(N(Q)) dmwee,

The proof of Linnell’s Theorem [10.19 can be split into two parts, a ring-
theoretic one and a K-theoretic one. Namely, one proves that any finitely
presented CG-module becomes finitely generated projective over the ring
D(G) (see (0.19)) and that the composition

R is contained in WI(GHZ

P Ko(CH) % Ko(CG) L Ko(D(G))
HCG
|H|<oo
for j the change of rings map is surjective (see Section [10.2)). Then the claim
follows from (0.19) and the facts that the change of rings homomorphism
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Ko(N(GQ)) — Ko(U(GQ)) is bijective (see Theorem [9.20/ (1)) and that the di-
mension function dimys(¢) for N'(G) extends to a dimension function dimg
for U(G) satisfying dimy ey (U(G) @pre) M) = dimprgy (M) for any N(G)-
module M (see Theorem [8.29).

The extension of the dimension function to arbitrary modules has some
applications to G-theory of CG as already mentioned in Theorem (0.7 (see
Subsection [9.5.3). Computations of the middle K-theory and of the L-theory
of von Neumann algebras and the associated algebras of affiliated opera-
tors are presented in Chapter [9. L?-methods also lead to results about the
Whitehead group Wh(G) (see Theorem [0.6) and some information about the
Bass Conjecture (see Subsection [9.5.2). The question whether the L2-torsion
in the L2-acyclic case is a homotopy invariant is equivalent to the question
whether the map induced by the Fuglede-Kadison determinant Wh(G) — R
is trivial (see Conjecture[3.94). This question is related to the Approximation
Conjecture [0.16] by the Determinant Conjecture 13.2 (see Lemma [13.6 and
Theorem [13.3] (1))). The Approximation Conjecture [0.16] also plays a role in
proving that the class of groups for which the strong Atiyah Conjecture [0.11
is true is closed under direct and inverse limits (see Theorem [10.20).

0.9 L2-Invariants and Aspherical Manifolds

Let M be an aspherical closed manifold, for instance a closed Riemannian
manifold with non-positive sectional curvature. Then the Singer Conjecture
0.13, Conjecture (0.14l about L2-torsion for aspherical manifolds and the zero-
in-the-spectrum Conjecture (.15 put some restrictions on the L?-invariants of
its universal covering. There are special cases where these conjectures have
been proved by computations. For instance if M is a compact 3-manifold
(see Chapter [4)), a locally symmetric space (see Corollary [5.16) or carries a
Riemannian metric whose sectional curvature satisfies certain pinching con-
ditions (see Theorem [11.4, Theorem [11.5/and Theorem [11.6)). They also have
been proved under additional assumptions like the existence of a non-trivial
Sl-action (see Theorem [3.105), the existence of the structure of a Kihler
hyperbolic manifold (see Theorem [11.14) or the existence of a normal in-
finite (elementary) amenable subgroup of 71(X) (see Theorem [3.113 and
Theorem [7.2)). But it is still very mysterious why Poincaré duality together
with asphericity may have such implications, or what kind of mechanism is
responsible for these phenomenons. The status of Conjecture 0.17 about sim-
plicial volume and L2-invariants is similar. Conjectures [0.13} (0.14} [0.15 and
0.17 become false if one drops the condition that M is aspherical. Without
this assumption it is easy to construct counterexamples to all but the zero-in-
the-spectrum Conjecturel0.15. Counterexamples in the non-aspherical case to
the zero-in-the-spectrum Conjecturel0.15/are presented by Farber-Weinberger
[187] (see also [258]). We will deal with them in Section [12.3
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0.10 L2-Invariants and Groups

L2-Betti numbers b,()Q)(G) (and also Novikov-Shubin invariants «,(G)) can be
defined for arbitrary (discrete) groups if one allows the value co. In Chapter
7 the L2-Betti numbers of groups are investigated and in particular the ques-
tion when they vanish is studied. The vanishing of all L2-Betti numbers of G
implies the vanishing of the L?-Euler characteristic x* (G) of G. The notion
of L?-Euler characteristic agrees with the classical notion of Euler character-
istic x(BG) (or more generally the virtual Euler characteristic) if the latter
is defined. Actually Theorem (0.2 is proved by showing that all L2-Betti num-
bers of a group G vanish if G contains a normal infinite amenable subgroup.
This example shows that it is important to extend the definition of L2-Betti
numbers from those groups for which BG is finite to arbitrary groups even
if one may only be interested in groups with finite BG. Namely, if G has a
finite model for BG, this does not mean that a normal subgroup H C G has
a model of finite type for BH. The vanishing of the first L2-Betti number
b(12)(G) has consequences for the deficiency of the group. The hard part of
the proof of Theorem (0.5 is to show the vanishing of bgz)(G)7 then the claim
follows by elementary considerations.

We show in Theorem [7.10/ that all L2-Betti numbers of Thompson’s group
F vanish. This is a necessary condition for F' to be amenable. The group F
cannot be elementary amenable and does not contain Z x Z as subgroup but
(at the time of writing) it is not known whether F' is amenable or not.

In Section [7.4/ a number p®)(f) € R is associated to an automorphism
f+ G — G of a group G provided that BG has a finite model. One also needs
the technical assumption of det > 1-class which is conjecturally always true
and proved for a large class of groups and will be suppressed in the follow-
ing discussion. This invariant has nice properties such as the trace property
pP(go f) = p?(fog) and multiplicativity p () = n-p®(f) and satisfies
a sum formula p@ (f1 #5, f2) = pP(f1) + p@(f2) — pP(fo) (see Theorem
7.27). If f = m1(g) for an automorphism g: FF — F of a compact orientable
2-dimensional manifold F' different from S2, D? and T2, then p(z)( f) is, up
to a constant, the sum of the volumes of the hyperbolic pieces appearing in
the Jaco-Shalen-Johannson-Thurston decomposition of the mapping torus of
g along tori into Seifert pieces and hyperbolic pieces (see Theorem [7.28)). If
F is closed and g is irreducible, then p(®(g) = 0 if and only if g is periodic,
and p®(g) # 0 if and only if g is pseudo-Anosov.

In Section (7.5 the question is discussed whether or not the L2-Betti num-
bers, Novikov-Shubin invariants and the L2-torsion are quasi-isometry invari-
ants or invariants of the measure equivalence class of a countable group G.
Theorem (0.9 is one of the main applications of L?-Betti numbers to measur-
able equivalence.



1. L?-Betti Numbers

Introduction

In this chapter we introduce and study L?-(co-)homology and L?-Betti num-
bers for Hilbert chain complexes and for regular coverings of CTW-complexes
of finite type or of compact manifolds.

We follow the general strategy that a good invariant for a finite CW-
complex X often has a refined version which is defined in terms of the uni-
versal covering X and the action of the fundamental group = = 71(X). For
instance the Euler characteristic yields Wall’s finiteness obstruction, and the
signature yields all kinds of surgery obstructions under this passage from X
to the m-space X. The L?-Betti numbers are derived from the Betti num-
bers in this way. Recall that the p-th Betti number b,(X) is defined by
dimc (H,(X; C)). In a naive approach one might try to define improved Betti
numbers for a reasonable notion of dimc, by dimc, (Hp()? ; C)), for instance
for dim@W(Hp()?; C)) := dime¢(C Qcr Hp()?; C)). The problem is that Cr is
in general not Noetherian and hence this number is not necessarily finite.
The basic idea is to pass to the group von Neumann algebra A (7) and use
its standard trace to define the notion of von Neumann dimension which is
better behaved than dimc,. Since one needs a Hilbert space setting, one com-
pletes the cellular Cr-chain complex of X to the cellular L?-chain complex
CiZ)()?) and defines the L?-homology HI()Q)()?) by the quotient of the kernel
of the p-th differential by the closure of the image of the (p+1)-th differential.
Then the p-th L?-Betti number bz(,Q) ()?) of the m-space X is the von Neumann
dimension of H,§2)()?).

We will introduce the necessary input about von Neumann algebras and
Hilbert modules in Section [I.1. The precise definitions of C,g)()?), HISQ)(X')

and b§,2) (5( ) and their main properties are given in Section 1.2l The standard
properties of Betti numbers such as homotopy invariance, the expression of
the Euler characteristic as alternating sum of Betti numbers, Poincaré duality,
Kiinneth formula, and Morse inequalities carry over to L2-Betti numbers. L2-
Betti numbers have additional interesting new properties which Betti num-
bers do not have. For instance they are multiplicative under finite coverings.
In general the values of b,(X) and béz) (X) are not related. A priori L2-Betti
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numbers can take any non-negative real number as value, but possibly they
are always rational. L2-Betti numbers tend to vanish more often than Betti
numbers. For instance 61(,2)()? ) vanishes for p > 0 if X is a mapping torus
of a selfmap of a CW-complex of finite type, if X is an aspherical closed
manifold with a non-trivial S'-action or if X is a hyperbolic closed manifold
of dimension n and 2p # n.

In Section [1.3] we extend the classical relation of Betti numbers and the
dimension of the space of harmonic forms given by the Hodge-de Rham de-
composition and the de Rham isomorphism to the L2-setting. Actually the
original definition of L2?-Betti numbers of Atiyah in the context of his L?-
Index Theorem is analytic, namely, by an expression in the Schwartz kernels
of the projections appearing in the spectral family of the Laplacian on the
universal covering of a closed Riemannian manifold. The fact, proved in Sec-
tion 1.4 that the analytic and the cellular version of the L?-Betti numbers
agree is one of the important features. It is also interesting to notice that some
of the properties of the L?-Betti numbers are proved analytically or topolog-
ically respectively, and often there are no topological or analytic respectively
proofs available.

If one wants to get a quick impression of L?-Betti numbers, one may
ignore their definition and pass directly to Subsections [1.2.3l and [1.3.2.

For the remainder of this chapter G is a discrete group with the exception
of Subsection [1.2.1. Manifolds are always smooth.

1.1 Group von Neumann Algebras and Hilbert Modules

In this section we deal with group von Neumann algebras and Hilbert mod-
ules. We defer the treatment of the more general notion of a finite von Neu-
mann algebra to Section [9.1] since for the next chapters we will only need
the concept of a group von Neumann algebra. We introduce the notions of
von Neumann trace and von Neumann dimension and use them to define and
study L2-Betti numbers for Hilbert chain complexes.

1.1.1 Group von Neumann Algebras

Let G be a discrete group. Denote by [?(G) the Hilbert space of square-
summable formal sums over G with complex coefficients. This is the same
as the Hilbert space completion of the complex group ring CG with respect
to the pre-Hilbert space structure for which G is an orthonormal basis. An
element in [2(G) is represented by a formal sum . gec Ag + g for complex

numbers A, such that > _,|Ag|? < co. The scalar product is defined by

geG

<Z)‘Q'Q»ZMI'9> ::ZAg'%-

geG geG geG



1.1 Group von Neumann Algebras and Hilbert Modules 15

Notice that left multiplication with elements in G induces an isometric G-
action on [?(G). Given a Hilbert space H, denote by B(H) the C*-algebra of
bounded (linear) operators from H to itself, where the norm is the operator
norm.

Definition 1.1 (Group von Neumann algebra). The group von Neu-
mann algebra N'(G) of the group G is defined as the algebra of G-equivariant
bounded operators from I12(G) to I?(G)

N(G) = B(I*(@))°.

An important feature of the group von Neumann algebra is its standard
trace.

Definition 1.2 (Von Neumann trace). The von Neumann trace on N'(G)
is defined by

trara): N(G) — C, f={fle),e)e@,

where e € G C I2(G) is the unit element.

Example 1.3. If G is finite, then CG = I*(G) = N(G). The trace try(q)
assigns to dec Ag - g the coefficient A, of the unit element e € G.

The next example is a key example. We recommend the reader to consider
and check all the results for group von Neumann algebras in the following
special case to get the right intuition.

Example 1.4. If G is Z", there is the following model for the group von
Neumann algebra N(Z"). Let L?(T™) be the Hilbert space of equivalence
classes of L2-integrable complex-valued functions on the n-dimensional torus
T™, where two such functions are called equivalent if they differ only on
a subset of measure zero. Define the Banach space L°°(T™) by equivalence
classes of essentially bounded measurable functions f: T™ — C][{oco}, where
essentially bounded means that there is a constant C' > 0 such that the set
{z € T" | |f(z)| > C} has measure zero. An element (ki,...,k,) in Z"
acts isometrically on L?(T™) by pointwise multiplication with the function

T"™ — C which maps (21, 22, . . ., zn) to 21" ... - 2¥n . Fourier transform yields

an isometric Z"-equivariant isomorphism [ (Z") =12 (T™). Hence N (Z") =
B(L*(T™))*". We obtain an isomorphism

L®(T™) = N(Z™)

by sending f € L*(T™) to the Z"-equivariant operator My: L*(T") —
L?(T™), g v+ g-f where g- f(z) is defined by g(z) - f(x). Under this
identification the trace becomes

trparzny: L°(T") — C, [ fdu.

Tn
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1.1.2 Hilbert Modules

Definition 1.5 (Hilbert module). A Hilbert N'(G)-module V is a Hilbert
space V' together with a linear isometric G-action such that there exists a
Hilbert space H and an isometric linear G-embedding of V into the tensor
product of Hilbert spaces H ® 1?(G) with the obvious G-action. A map of
Hilbert N (G)-modules f: V — W is a bounded G-equivariant operator. We
call a Hilbert N'(G)-module V finitely generated if there is a non-negative
integer n and a surjective map @, 1>(G) — V of Hilbert N'(G)-modules.

The embedding of V into H ® I2(G) is not part of the structure, only its
existence is required. We emphasize that a map of Hilbert A/(G)-modules is
not required to be isometric. A Hilbert A'(G)-module V is finitely generated
if and only if there is an isometric linear G-embedding of V' into @, I*(G)
for some non-negative integer n. If G is finite a finitely generated Hilbert
N (G)-module is the same as a finite dimensional unitary representation of

G.

Definition 1.6 (Weak exactness). We call a sequence of Hilbert N'(G)-

modules U -V 2 W weakly exact at V' if the kernel ker(p) of p and the
closure clos(im(i)) of the image im(i) of i agree. A map of Hilbert N (G)-
modules f: V — W is a weak isomorphism if it is injective and has dense
1mage.

The following assertions are equivalent for a map f: V — W of Hilbert

N (G)-modules: (1) f is a weak isomorphism; (2) 0 — V Lw—ois weakly
exact; (3) f and f* have dense image. An example of a weak isomorphism
of N(G)-modules which is not an isomorphism is M, ;: L?(S') — L?(S1)
given by multiplication with (z—1) € L>(S') = N(Z), where (2 —1) denotes
the function S' — C, 2+~ (2 — 1) (see Example 1.4). A map f: U — V of
Hilbert N (G)-modules is an isomorphism if and only if it is bijective. This
follows from the Inverse Mapping Theorem [434, Theorem III.11 on page
83] which ensures that f~! is continuous for a bijective bounded operator of
Hilbert spaces. If two Hilbert A/(G)-modules V and W are weakly isomorphic,
then they are even isometrically isomorphic by Polar Decomposition [434]
Theorem VI.10 on page 197]. Namely, if f: V — W is a weak isomorphism,
the unitary part of its polar decomposition is an isometric isomorphism of
Hilbert N (G)-modules V' — W. More generally, if 0 - U -V — W — 0 is
a weakly exact sequence of Hilbert N'(G)-modules, then there is an isometric
isomorphism of Hilbert N'(G)-modules U®W — V. Notice that a short exact
sequence of Hilbert N (G)-modules splits, but a weakly exact sequence does
not split in general.

1.1.3 Dimension Theory

A bounded operator f: H — H of Hilbert spaces is called positive if (f(v),v)
is a real number and > 0 for all v € H. This is equivalent to the condition
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that there is a bounded operator g: H — H with f = g*g since any positive
operator f has a square root fl/Q, i.e. a positive operator with f = fl/2 o
f/? |434, Theorem VI.9 on page 196]. In particular a positive operator is
selfadjoint. Given two bounded operators f1, fo: H — H, we write

f1 < fo & fo — f1is positive. (1.7)

Definition 1.8. Let f: V. — V be a positive endomorphism of a Hilbert
N(G)-module. Choose a Hilbert space H, a Hilbert basis {b; | i € I} for
H (sometimes also called complete orthonormal system, see [434, 11.3]), a
G-equivariant projection pr: H ®@ I>(G) — H ® I?(G) and an isometric G-
isomorphism u: im(pr) V. Ltf:He I1(G) — H ®12(G) be the positive
operator given by the composition

7 H®2(G) 2 im(pr) —>V—>V—>1m(pr)<—>H®l2(G)

Define the von Neumann trace of f: V — V by

trN(G)(f) = Z<?(bz ® 6), bz ® €> € [07 OO],
icl
where e € G C I?(G) is the unit element.

This definition is independent of the choices of H, {b; | i € I}, pr and u. At
least we give the proof for the independence of the Hilbert basis. If {¢; | j € J}
is a second Hilbert basis, it follows from the following calculation where all
terms in the sums are non-negative and hence interchanging is allowed.

S Fhiwe)biwe =S |7t o)

iel il

=2 > S tiee 0P
icl jed geG

=S 3 Y miwg LT G @e)P
el jeJ geG

LY ST g e b e g
JjeJ i€l gEG

= ZHf e)ll?
jeJ

—Z (c;®e),c; @e).
jedJ

A directed set I is a non-empty set with a partial ordering < such that for
two elements i and 7; there exists an element ¢ with ¢g < i and 7; < 7. A net
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(2;)ier in a topological space is a map from a directed set to the topological
space. The net (z;);er converges to x if for any neighborhood U of x there is
an index ¢(U) € I such that x; € U for each ¢ € I with i(U) < i. A net (f;)ier
in B(H) converges strongly to f € B(H) if for any v € H the net (f;(v))icr
converges to f(v) in H. A net (f;)ier in B(H) converges weakly to f € B(H)
if for any v,w € H the net ({f;(v),w))ier converges to (f(v),w) in C. A
net (fi)ier in B(H) converges ultra-weakly if for any two sequences (2 )n>0
and (yp)n>0 of elements in H with >~ [|z,|> < oo and > < [|yn|[* < 00

thenet >, ~ |(fi(zn), yn)| converges to 3 o [(f(zn), yn)|. Obviously norm-
convergence implies both ultra-weak convergence and strong convergence,

ultra-weak convergence implies weak convergence, strong convergence implies
weak convergence. In general these implications cannot be reversed and there

is no relation between ultra-weak convergence and strong convergence [144]
1.3.1 and 1.3.2].

Theorem 1.9 (Von Neumann trace). Let U, V and W be Hilbert N'(G)-
modules.

(1) If f,g: V — V are positive endomorphisms, then

[ <g=trae)(f) < tinve (9);

(2) If (fi)ier is a directed system of positive endomorphisms f;: V — V, di-
rected by the order relation < for positive operators, and the net converges
weakly to the endomorphism f:V — V then f is positive and

trare) (f) = sup{trn(e) (fi) [ i € T}
(3) We have for a positive endomorphism f: V —V
ey (f) =0 f =0;

(4) We have for positive endomorphisms f,g: V. — V and a real number
A>0

trara) (f + A+ g) = tiaa) (f) + A trare) (9);

(5) If the following diagram of endomorphisms of Hilbert N'(G)-modules com-
mutes, has exact rows and positive operators as vertical maps

0 U ——v 2. w 0
A
0 U ——v —Lt.w 0

then

trare) (9) = trae) (f) + trare) (h);
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(6) We get for a map f: V- W

trare) (7 f) = toaro) (FF7);

(7) Let Uy be a Hilbert N (G)-module and let Uy be a Hilbert N'(H)-module.
Let f;: U; — U; be a positive endomorphism fori = 1,2. Then the Hilbert
tensor product f1 ® fo: Uy ® Us — Uy ® Us is a positive endomorphism
of Hilbert N'(G x H)-modules and

traaxm) (fi @ f2) = tiae (fi) - trar) (f2),

where we use the convention that 0-00 =0 and r-o00 = oo for r € (0, 00];

(8) Let H C G be a subgroup of finite index [G : H]. Let f: V — V be
a positive endomorphism of a Hilbert N'(G)-module. Let res(V) be the
restriction of V to N(H) which is a Hilbert N'(H)-module. If V is finitely
generated, then resV is finitely generated. We have

trarcey(res(f)) = [G 2 H] - trara)(f),
where we use the convention [G : H] - 0o = 0.

Proof. (1)) follows directly from the definitions.

(2)) Since each f; is selfadjoint the same is true for f. We first show f; < f for
alli € I. Fix v € V and i € I. Given € > 0 there is an index i(e) with i < i(e)
and (f;(e)(v),v)—e < (f(v),v). Since f; < fi(e), we get (fi(v),v)—e < (f(v),v)
for all e > 0. This implies (f;(v),v) < (f(v),v) and hence f; < f. We conclude
that f is positive and from (1))

tra(ey (f) > sup{trarg)(fi) | 7 € T}

It remains to prove the reverse inequality. In the notation of Definition [1.8
the net (f;)ier converges weakly to f. Hence we can assume without loss of
generality V = H ® I?(G).

Let {bx | A € A} be a Hilbert basis for H. Fix ¢ > 0. Choose a finite
subset A(e) C A such that

trara) (f) < €/2+ Z (f(bx®e), by @e).
AEA(e)

Since the net (f;);cs converges weakly to f and A(e) is finite and I is directed,
there is an index i(¢) € I such that for all A € A(e)

(flba®e),by®e) < + (fite)(ba @ €), by @ €)

_ ¢
2-1A(e)|
holds. We conclude
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e (f) S €/2+ Y (fbra@e),br@e)
AEA(€)

<e/2+€¢/2+ > (figbr®e),br®e)
AEA(e)

< e+ trae) (fie)

< e+sup{trn()(fi) [ i € I}.

Since this holds for all € > 0, the claim follows.

(3) Suppose tras ) (f) =0 for f: V — V. Then we get for fHRPG) —
H ®1?(G) (using the notation of Definition 1.8)

0= S Fhioebhioed = S IF Gl

iel i€l

This implies ?1/2 (b; ®e) = 0 for all ¢ € I. Since ?1/2 is G-equivariant, we
get ?1/2(171- ®g) =0for all i € I and g € G. This implies ?1/2 = 0 and hence
f=0and f=0.

(4) follows directly from the definitions.

(5) By the Polar Decomposition and the Inverse Mapping Theorem we obtain

a unitary isomorphism U & W =, V which induces together with the identity
on U and W an isomorphism of the given exact sequence with the standard
exact sequence 0 - U — U @ W — W — 0. One easily checks for a positive
operator

<f“) UaW UaW
0g

that
u
trar() (‘5 g> = trara) (f) + trare (9)

holds. Hence it remains to show for a positive G-operator h: V. — V and
a unitary G-operator v: V. — W that try(g)(vhv™!) = trag)(h) holds.
This follows from the proof that Definition [1.8is independent of the various
choices.

(6) Let f = u|f| be the Polar Decomposition of f. We conclude

trae) (ffF) = toae @lfPu™) = teae (17 = trae (F ).

(7) Obviously 12(G) ®[2(H) is isometrically G' x H-isomorphic to I?(G x H).
Hence U; ® Uy is a Hilbert A(G x H)-module and f; ® fo is a positive
endomorphism. Because of assertion (5)) it suffices to treat the case where
Uy = Hi ®1*(G) and Uy = Hy ®1?(H) for appropriate Hilbert spaces H; and
Hs. Then the claim follows from the obvious formula
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(1 ® fo(ur @ u2),v1 @), = (fi(u1),v1)v, - (f2(u2),v2)v,

for uy,v; € Uy and ug, vy € Us.

(8) Tt suffices to treat the case V = [2(GQ). If s: G/H — G is a set-theoretic
section of the projection G — G/H, we obtain an isometric H-isomorphism

P PH) SresiP(G), {ugn |gH € G/H}Y — > gy - s(gH).
gHeG/H gHeEG/H
This finishes the proof of Theorem [1.9. 0O

Definition 1.10 (Von Neumann dimension). Define the von Neumann
dimension of a Hilbert N'(G)-module V

dimN(G)(V) = trN(G)(id: V—-V) € [0, 00].

If G is finite, then dimpr(g)(V) is ﬁ—times the complex dimension
of the underlying complex vector space V. The next example shows that
dim (@) (V) can take any non-negative real number or oo as value.

Example 1.11. Let X C 7™ be any measurable set and xx € L*®(T")
be its characteristic function. Denote by M, : L?(T™) — L*(T") the Z"-
equivariant unitary projection given by multiplication with x x. Its image V'
is a Hilbert N (Z")-module with dimzn)(V) = vol(X) (see Example 1.4).

Theorem 1.12 (von Neumann dimension). (1) We have for a Hilbert
N(G)-module V
V=0& dimN(G)(V) = 0;

(2) If0 - U -V — W — 0 is a weakly exact sequence of Hilbert N'(G)-
modules, then

dimN(G)(U) + dimN(G)(W) = dimN(G)(V);

(8) Let {V; | i € I} be a directed system of Hilbert N'(G)- submodules of V,
directed by C. Then

dim @) <Clos (U V;)) = sup{dimp; (Vi) | i € T}

icel

(4) LetV be an N(G)-Hilbert module with dimrc) (V) < oo and {V; | i € I}
be a directed system of Hilbert N'(G)-submodules, directed by D. Then

dimp () (ﬂ m) = inf{dimprq)(V;) | i € I};
el
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(5) Let Uy be a Hilbert N'(G)-module and let Uy be a Hilbert N'(H)-module.
Then the Hilbert tensor product Uy ® Us is a Hilbert N (G x H)-module
and

dimygxm) (U1 @ Us) = dimpy ) (Ur) - dimp ) (U2),

where we use the convention that 0-0o0 =0 and r-o00 = oo forr € (0,00];

(6) Let H C G be a subgroup of finite index [G : H]. Let V be Hilbert N'(G)-
module. Let res(V') be the restriction of V to N(H) which is a Hilbert
N (H)-module. If V is finitely generated, then resV is finitely generated.
We have

dimps gy (res(V)) = [G - H] - dimy ) (V),
where we use the convention [G : H] - 0o = 0.

Proof. (1) This follows from Theorem [1.9] (3).

(2) We conclude from the weak exactness and the Polar Decomposition that
U @ W is isometrically G-isomorphic to V. Now apply Theorem [1.9 (5)).

B) Let pr: V.— V and pr;: V. — V be the projections onto clos (Uiel Vi)
and V;. Next we show that the net (pr;);er, directed by the order relation for
positive operators, converges strongly (and hence in particular weakly) to pr.
Given v € V and € > 0, there is an index i(e) € I and v;(¢) € Vj(o) with

| pr(v) — vyl < €/2.
We conclude for i > i(e)
| pr(v) — pr;(v)] < [pr(v) — vie)| + |vie) — pr;(v)]
= |pr(v) = vig| + [ pr;(vi(e) — pr(v))|
< pr(v) = vigo| + [1prs [ - [ pr(v) = vige|
<e€/24+1-€¢/2
=e.
We conclude from Theorem 1.9/ (2)
trar () (pr) = sup{try(g)(pr;) | i € I}.

Since dimp(q) (clos (U;e; Vi) = trave) (pr) and dimpe (Vi) = trara) (pry),
the claim follows.

(4) We obtain a directed system (V;*);cr, directed by C. We have

3

1
clos (U Vf‘) = ﬂ Vis
i€l i€l

dimp (e (Vih) = dimpg) (V) — dimpya) (Vi);

L
dimpr(g) | clos <U Vf‘) = dimN(G)(V) — dimp (@) (CIOS (U VZJ‘>> .

el i€l
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Now the claim follows from (3).
(5) This follows from Theorem [1.9 (7).

(6) This follows from Theorem [1.9/ (8)). |
We conclude from Theorem [1.12! (1) and (2)

Lemma 1.13. Let f: U — V be a morphism of Hilbert N'(G)-modules whose
von Neumann dimension is finite. Then the following statements are equiva-
lent:

(1) f is a weak isomorphism;

(2) The unitary part of the polar decomposition of f is an isomorphism;
(3) f* is a weak isomorphism;

(4) [ is injective and dimy () (U) = dimprqy(V);

(5) [ has dense image and dimprq)(U) = dimpr(g) (V).

Example 1.14. In this example we present a Hilbert A/(Z)-module U which
is not finitely generated but has finite von Neumann dimension. In the sequel
we use the identification of Example [I.4. For an interval I C [0,1] let x; €
N(Z) = L>°(S') be the characteristic function of the subset {exp(2mit) | t €
I'}. Define two Hilbert A/(Z)-modules by the orthogonal Hilbert sums

o0
U @lm 0 2— n]
n=1

oo
V= @lm X[1/(n+1), l/n])
n=1

where im(x;) is the direct summand in ?(Z) = L?(S!) given by the projec-
tion x; € N(Z). Theorem 1.12l and Example 1.11] imply

dimN(Z)(U) = dimN(Z)(V) = 1.

We want to show that U is not finitely generated. This is not obvious, for
instance, V' is isomorphic to the Hilbert NV'(Z)-module [?(Z) and in particular
finitely generated, although it is defined as an infinite Hilbert sum of non-
trivial Hilbert A (Z)-modules.

To show that U is not finitely generated, we use the center valued dimen-
sion function which assigns to a finitely generated Hilbert N(Z)-module P

an element

Its definition is the same as the definition of dimy; () (P) with the excep-
tion that one replaces the standard trace try(z): N(Z) — C by the identity
id: N(Z) — N(Z). (More details will be given in Subsection 9.1.3 and 9.2.1.)
Suppose that U is finitely generated. Then U is a direct summand in [2(Z)"
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for some k > 0. Since @’:;i im(x[p,2-~]) is a direct summand in U and hence
in 12(Z)*, we conclude

k+1 k+1
Z X[0,2—n] = dimjc\/(z) (@ im(X[0,2"])> < dim/c\/(z)(ZQ(Z)k) = Ck,

n=1 n=1

where ¢, : ST — C is the constant function with value k. But this is a contra-
diction, since Zﬁii X[0,2-n] is equal to k + 1 on the subset {exp(2mit) | t €
[0,27%=1]} whose measure is different from zero.

1.1.4 Hilbert Chain Complexes

Definition 1.15 (Hilbert chain complex). A Hilbert N (G)-chain com-
plex C., is a sequence indezed by p € Z of maps of Hilbert N'(G)-modules

Cp+2 Cp+1 C Cp C Cp—1
L p—‘rlw_) p—> p_l‘——>,,,

such that cp o cpyr1 =0 for all p € Z. We call C, positive if C, vanishes for
p < 0. We say it is finitely generated if each Cp is a finitely generated Hilbert
N(G)-module.

It is d-dimensional if C), vanishes for |p| > d. It is finite dimensional if it
is d-dimensional for some d € N. We call C, finite if C, is finitely generated
and finite dimensional.

There are obvious notions of chain maps and chain homotopies.

Definition 1.16 (L?-homology and L?-Betti numbers). Define the (re-
duced) p-th L?-homology and the p-th L?-Betti number of a Hilbert N'(G)-
chain complex C, by

H?(C.) := ker(c,)/ clos(im(cpi1));

p

b2 (C.) = dimpya) (HP (CL)).

Notice that we divide by the closure of the image and not by the im-
age of cp41. This has the effect that HI(,Q)(C’*) inherits the structure of a
Hilbert space and a G-action from C,. This is indeed a Hilbert N(G)-
structure on H,(,Z)(C*). Namely, H,(,Q)(C*) is isometrically G-isomorphic to
ker(c,) Nim(cy41)*. The Laplace operator is defined by

Ay =cpricpig T 6pcp: Cp — Cp. (1.17)

We have the following “baby”-version of the L?-Hodge-de Rham Theorem
1.57.
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Lemma 1.18. Let C, be a Hilbert chain complex. Then we get the orthogonal
decomposition of Hilbert N'(G)-modules

Cp = ker(4,) @ clos(im(cy+1)) @ clos(im(c},))

and the natural map
it ker(c,) Nker(ch,,) = ker(4,) — H?(C,)
is an isometric G-isomorphism.

Proof. We have the obvious orthogonal decomposition

C, = (ker(cy) Nim(cyy1)™) @ clos(im(cyi1)) @ ker(c,) ™.

L = clos(im(c;;

Since ker(c,) >

)) and im(cp41)*" = ker(c} ), it remains to show
ker(4,) = ker(c,) Nker(c,q)-
This follows from the calculation

(Ap(v),0) = lep(W)]* + | ()7 O

One important tool in the theory of chain complexes is the long exact
homology sequence. This does not go through directly, but in a weak sense
under certain finiteness conditions. Let 0 — C, —» D, 2% E, — 0 be an
exact sequence of Hilbert /' (G)-chain complexes. The maps i, and p, induce
maps on the homology groups denoted by H,(LQ) (i) and H,(Zz)(p*). Next we
want to define a natural boundary operator

On: HP(B.) — HY(C.).

As a linear G-equivariant map it is defined in the usual way. Namely, let z €
ker(e,) be a representative of [z] € HT(LZ)(E*). Choose y € D,, and z € C,,_;
with the properties that p,(y) = z and i,,—1(2) = d,,(y). We can find such y
since p,, is surjective and such z since p,_10d,(y) = en o pn(y) = en(2) = 0.
We have x € ker(¢,—1) since i,_» is injective and

lp—2 0 cn—l(x) = dn—l o in—l(m) = dn—l © dn(y) =0.

We define
On([z]) = [z].

It is easy to check that this is independent of the choice of the representative
z for [z] and that this map is linear and G-equivariant. In order to prove that
it is a bounded operator, we give a different description. Notice for the sequel
that a bijective bounded operator of Hilbert spaces has a bounded inverse by
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the Inverse Mapping Theorem. Consider the following composition of maps
of Hilbert N'(G)-modules.

—1
(Pr lor(pp)L) )¢ Anlier(pn) L D

ker(e,) — Ey, ker(ps,

n—1

One easily checks that its image lies in ker(p,—1). Hence we can compose
it with the isomorphism of Hilbert A/(G)-modules i;il s ker(pp_1) — Cp_1.
Again one easily checks that the image of this map lies in ker(c,,—1) so that
we have defined a map of Hilbert A(G)-modules

d.,: ker(e,) — ker(cp—1).

Since it maps im(e, 1) to im(cy,), it induces a map on L2-homology which is
the desired map 0,,.

Although the boundary operator can always be defined and one gets a
long homology sequence, this long homology sequence does not have to be
weakly exact as the following example shows.

Example 1.19. Let G be the trivial group. Then a Hilbert A/(G)-module is
just a Hilbert space and a map of Hilbert A/(G)-modules is just a bounded
operator. Denote by H the Hilbert space {(a,, € C)pen | Y. |an|? < 0o} with
the inner product ((a,), (bn)) = > a,, - b,. Define a linear bounded operator
f+ H — H by sending (a,) to (1/n - a,). Obviously f is injective and has
dense image. But f is not surjective because u := (1/n), € H cannot have a
preimage. Let pr: H — spanc(u)® be the projection where spang(u) is the
one-dimensional subspace generated by w. Then prof is injective with dense
image. Hence f and prof are weak isomorphisms of Hilbert spaces but pr is
not. View the following diagram as a short exact sequence of Hilbert chain
complexes which are concentrated in dimensions 0 and 1

id

0 —— 0 H H — 0
L]
0 —— spang(u) H —— spanc(u)t —— 0

All the L?-homology groups are trivial except the zero-th L?-homology group
of the left Hilbert chain complex 0 — spane(u). Hence there cannot be a long
weakly exact homology sequence.

Notice that in the example above the dimension of the Hilbert space H
is infinite.
Definition 1.20. A morphism f: U — V of Hilbert N(G)-modules is called
Fredholm if for some A > 0 we have dimyr(q) (im(E{*f)) < 00, where {E{*f |
A € R} is the (right continuous) spectral family associated to the positive
operator f* f (see Definition|1.68). A Hilbert N'(G)-chain complex C. is called
Fredholm at p if the induced morphism ¢,: Cp/ clos(im(cpt1)) — Cp—1 is
Fredholm. We call C, Fredholm if it is Fredholm at p for all p € Z.



1.1 Group von Neumann Algebras and Hilbert Modules 27

For this chapter it suffices to know that a Hilbert N (G)-chain complex
C., for which C), is finitely generated or satisfies dimpr(g)(Cp) < 00, is au-
tomatically Fredholm at p. The next result is due to Cheeger and Gromov
[105, Theorem 2.1].

Theorem 1.21 (Weakly exact long L?-homology sequence). Let 0 —

C, D, 5 B, — 0 be an ezact sequence of Hilbert N'(G)-chain complezes
which are Fredholm. Then the long homology sequence

H7(L2421(p*) H® (i) (2)
P

HE, (B, 25 #P(C.) 1 5P (D))

(2)
A @), g@(p,) 2

is weakly exact.

Proof. We only prove weak exactness at HT(L2) (D), the other cases are similar.
Since py 01, = 0, we get clos(im(H,(LQ) (1)) C ker(H,(LQ) (p«)). It remains to
prove equality. Let U be the orthogonal complement of clos(im(Hff)(i*))) in

ker(Hy(Lz)(p*)). Let V' C ker(d;; , ;) Nker(d,) be the subspace corresponding to
U under the isomorphism of Lemma [1.18

ker(d 1) Nker(d,) — HP(D.).
In view of Theorem [1.12 (1)) it remains to show
dimprg)(V) = 0.

We have
pn(V) C clos(im(epy1))

since H,(f)(p*)(U) is zero. The operator e,q1 o€y, : E, — E, is positive.

Let {Ex | A € R} be its (right continuous) spectral family (see Definition
1.68)) of projections Ey: E, — E,. Since E) commutes with e, oe} , it
sends clos(im(e,41 0 €} 1)) to itself. We have

clos(im(ept10€,1)) = ker(enqi0es, i)™ = ker(es ;)™ = clos(im(en1)),

where the second equality follows from (e, +1 0 € (v),v) = |ef(v)|*. This
implies

Ey opp(V) C clos(im(epn+1))-
Next we show that Ey o p, is injective on V for A > 0. Consider an element
v € V with Ey op,(v) = 0. We get p,(v) € im(Ex)*. Notice that e,410€},
induces an invertible operator from im(Ey)~ to itself for A > 0, the inverse

is given by
oo
1
/ —dE,.
A M
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Hence we can find w € E, 11 satisfying

Pn(v) = eny1(w).

Since p,41 is surjective and ker(p,) = im(i,), we can find x € D, 11 and
y € C, satisfying
in(y) = dpt1(x) +v.

This implies that ¢, (y) = 0. Hence we get [y] € H(Q)(C) whose image under
Hy (2 )( ) is the element in U which corresponds to v € V. Since U is orthogonal

to 1m(H7(L )( )), we conclude v = 0. We have shown that E o p, is injective
on V for A > 0. Now we conclude from Theorem [1.12/ and the facts that E
is right continuous in A and F, is Fredholm by assumption

dimp () (V) = dimp(g) (clos(Ex o pa(V)))
= dimr (@) (clos(Ey o pn(V')) Nclos(im(ent1)))
= )\lirgJr dimp () (clos(Ex o pn(V')) Nclos(im(eny1)))

= dimp () (ﬂ clos(Ey o pp(V)) N clos(im(en+1))>

A>0

< dimN(G) (ﬂ im(E)\) N ClOS(im(€n+1))>
A>0
= dimpr(¢) (im(Ep) N clos(im(en1)))

= dimy(q) (ker(ent1 0 €}, 1) Nclos(im(en41)))
= dim(g) (ker(e) ;) N clos(im(ens1)))

= dlmN(G) (O)
= 0.

This finishes the proof of Theorem [1.21. a

Let G and H be groups. Let U be a Hilbert A (G)-module and V be
a Hilbert A/(H)-module. The Hilbert space tensor product U ® V with the
obvious G x H-operation is a Hilbert N'(G x H)-module because I2(G) ®
I2(H) is isometrically G' x H-isomorphic to I2(G x H). Let C, be a Hilbert
N(G)-chain complex and D, be a Hilbert N'(H)-chain complex. Their tensor
product is the Hilbert V(G x H )-chain complex C\, ® D, with n-th differential
en which is given by

(Cy @ Dy)p = @Ci ® Dps;

wleion, = ¢ @id+(=1)" - id @d,,_;.
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Lemma 1.22. Let C, be a Hilbert N(G)-chain complex and let D, be a
Hilbert N'(H)-chain complex. Then there is a natural isomorphism of Hilbert
N (G x H)-modules forn >0

K. P HP(C) e P (D) = HP(C. © D.).
ptg=n

Proof. Given an element u € ker(c,) and v € ker(d,), define K, ([u] ® [v])
by the class of u, ® v, € ker ((cx ® d.)y). Notice that the Laplacian A,, on
(Ci®Di)n =By 4=n Cp ® Dy is given by B, ., AY @idp, +ide, ®AD,
where Af and Af denote the Laplacians on C, and D,. To show that K, is
an isomorphism, it suffices to prove because of Lemma [1.18 that the kernel
of Ag ®idp, +idg, ®A5 is ker(Ag) ® ker(AqD). Because of the orthogonal
decompositions Cp = ker(AS) @ ker(AS)*+ and Dy = ker(ALP) & ker(AP)+
it remains to show that the three induced positive endomorphisms

(Ag)l ®1id: ker(Ag)J‘ ® ker(AqD) — ker(Ag)J‘ ® ker(AqD);
id®@(AD)*: ker(AY) @ ker(AD)* — ker(AS) @ ker(AP)*;
(Ag)l ®id +id ®(AqD)L: kelr(Ag)L ® ker(Af)L — ker(Ag)L ® ker(Ag’)L

are injective. But this follows from the facts that a selfadjoint endomorphism
is injective if and only if it has dense image, the sum of two injective positive
operators is injective again and from the injectivity of (AS)J- and (AqD . o

Of course everything in this section has an obvious analog for Hilbert
N (G)-cochain complexes.

1.1.5 Induction for Group von Neumann Algebras

Next we investigate how group von Neumann algebras and Hilbert modules
behave under induction.

Let i: H — G be an injective group homomorphism. Let M be a Hilbert
N (H)-module. There is an obvious pre-Hilbert structure on CG @cy M for
which G acts by isometries since CG ®cy M as a complex vector space can
be identified with @, M. Its Hilbert space completion is a Hilbert N(G)-
module and denoted by i.M. A map of Hilbert N (H)-modules f: M — N
induces a map of Hilbert A(G)-modules i, f: i, M — i, N. Thus we obtain a
covariant functor from the category of Hilbert A/( H)-modules to the category
of Hilbert A(G)-modules. Obviously i./?(H) = [2(G) and i, is compatible
with direct sums. If M is finitely generated, i, M is finitely generated.

Definition 1.23 (Induction). Leti: H — G be an injective group homo-
morphism. The Hilbert N'(G)-module i.M is called the induction with i of
M. In particular i induces a ring homomorphism

i N(H) — N(G).
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Lemma 1.24. Leti: H — G be an injective group homomorphism. Then

(1) We have trpr () = traq) oi: N(H) — C;
(2) We get for a Hilbert N'(H)-module M

dimys(g) (1.M) = dimp ) (M);

(8) If0 - U -V — W — 0 is a sequence of Hilbert N'(H)-modules
which is exact or weakly exact respectively, then the induced sequence
0 — iU — i,V — i,W — 0 is a sequence of Hilbert N'(G)-modules
which is exact or weakly exact respectively;

(4) Let C, be a Hilbert N'(H)-chain complex. Then i.Cy is a Hilbert N'(G)-
chain complex and for all p € Z

i HP(C,) = HP (i.C);
iy (HSP(CL)) = dimp (e (H? (i.C.)).

Proof. (1)) follows directly from the definitions.

(2) Let pr: V®[2(H) — V ® [>(H) be an H-equivariant unitary projection
describing M for some Hilbert space V. Then i, (pr) describes i, M.

(3) Since any exact sequence splits and 4, is compatible with direct sums,
the claim follows for exact sequences. In order to treat the weakly exact case
it suffices to show that for a weak isomorphism f: U — V of Hilbert N'(H)-
modules the induced map i, f: .U — i,V is a weak isomorphism. By the
Polar Decomposition we can assume without loss of generality that U =V
and f is positive. Since the kernel of a positive operator is the orthogonal
complement of its image and i, f is positive it remains to show that the image
of i, f is dense if the image of f is dense. This follows from the definition of
i f since CG is dense in I(G).

(4) This follows from (2)) and (3). |

1.2 Cellular L?-Betti Numbers

In this section we apply the material of Section [1.1] to regular coverings of
CW-complexes of finite type (i.e. all skeleta are finite) and thus define and
study cellular L2-Betti numbers for them.

Since regular coverings of CW-complexes are special cases of G-CW-
complexes and we will need the notion of a G-CW-complex in its full gener-
ality later, we collect some basic facts about G-C'W-complexes. However, in
order to read this and the next chapters one may skip subsection 1.2.1/ and
just keep in mind the following two facts: (1) A free finite G-CW-complex
X or free G-CW-complex X of finite type respectively is the same as a G-
space X such that the projection X — G\X is a regular covering and G\ X
is a finite CW-complex or CW-complex of finite type respectively. (2) The
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cellular ZG-chain complex of a free G-CW -complex is free and has a cellular
Z.G-basis which is unique up to permutation and multiplication with trivial
units £¢g € ZG for g € G.

1.2.1 Survey on G-CW-Complexes

In this subsection G can be any topological Hausdorff group. We recall some
basic facts about G-CW-complexes. More informations and proofs can be
found for instance in [495 Sections II.1 and II.2], [326, Sections 1 and 2],
[365]. Throughout this book we will always work in the category of compactly
generated spaces (see [482], [521, 1.4]).

Definition 1.25 (G-CW-complex). A G-CW-complex X is a G-space to-
gether with a G-invariant filtration

a):X,chochc...anc...UXn:X

n>0

such that X carries the colimit topology with respect to this filtration (i.e. a
set C' C X is closed if and only if CNX,, is closed in X,, for alln > 0) and X,
is obtained from X, _1 for each n > 0 by attaching equivariant n-dimensional
cells, i.e. there exists a G-pushout

Hie]n G/Hi x St M’ Xn—1

! l

[Lc;, G/H; x D" Alier, @1 X,

Provided that G is discrete, a G-CW-complex X is the same as a CW-
complex X with G-action such that for any open cell e C X and g € G with
ge Ne # () left multiplication with g induces the identity on e.

The space X, is called the n-skeleton of X. Notice that only the filtration
by skeleta belongs to the G-C'W-structure but not the G-pushouts, only
their existence is required. An equivariant open n-dimensional cell is a G-
component of X,, — X,,_1, i.e. the preimage of a path component of G\ (X,, —
Xy—1). The closure of an equivariant open n-dimensional cell is called an
equivariant closed n-dimensional cell. If one has chosen the G-pushouts in
Definition [1.25, then the equivariant closed n-dimensional cells are just the
G-subspaces Q;(G/H; x D™).

If X is a G-CW-complex, then G\X is a CW-complex. If G is discrete
or if G is a Lie group and H C G is compact, then the H-fixed point set X7
inherits a WH-CW -complex structure. Here and in the sequel NH = {g € G |
gHg~' = H} is the normalizer of H in G and WH denotes the Weyl group
NH/H of H in G. A G-space X is called proper if for each pair of points z
and y in X there are open neighborhoods V,, of x and W), of y in X such that
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the closure of the subset {g € G | gV, N W, # 0} of G is compact. There are
various slightly different definitions of proper G-space in the literature but
for all these notions of properness a G-CW-complex X is proper if and only
if all its isotropy groups are compact. In particular a free G-CW-complex
is always proper. However, not every free G-space is proper. A G-space is
called cocompact if G\X is compact. A G-CW-complex X is finite if X has
only finitely many equivariant cells. A G-CW-complex is finite if and only
if it is cocompact. A G-CW-complex X is of finite type if each n-skeleton is
finite. It is called of dimension < n if X = X, and finite dimensional if it is
of dimension < n for some integer n. A free G-CW-complex X is the same
as a regular covering X — Y of a CW-complex Y with G as group of deck
transformations.

A G-map f: X — Y of G-CW-complexes is a G-homotopy equivalence
if and only if for any subgroup H C G which occurs as isotropy group of X
or Y the induced map f¥: X" — YH is a weak homotopy equivalence, i.e.
induces a bijection on m, for all base points and n > 0. A G-map of G-CW-
complexes f: X — Y is cellular if f(X,) C Y, holds for all n > 0. There is
an equivariant version of the Cellular Approximation Theorem, namely, each
G-map of G-CW-complexes is G-homotopic to a cellular one. If X is a G-CW -
complex and Y is an H-C'W-complex, then X xY is a G x H-CW-complex.
Notice that one of the advantages of working in the category of compactly
generated spaces is that this is true without any further assumptions on the
topology of X or Y such as being locally compact.

Now suppose that G is discrete. The cellular ZG-chain complex C,(X) of a
G-CW-complex has as n-th chain group the singular homology H,, (X, X;,—1)
and its n-th differential is the boundary homomorphism associated to the
triple (X, Xn—1, Xn—2). If one has chosen a G-pushout as in Definition [1.25]
then there is a preferred ZG-isomorphism

P zic/H] = C.(X). (1.26)

icl,

If we choose a different G-pushout, we obtain another isomorphism, but the
two differ only by the composition of an automorphism which permutes the
summands appearing in the direct sum and an automorphism of the shape
@ieln €i'Tg;
P zic/H) —— P ZIG/H)] (1.27)

i€l, i€l,

where g; € G, ¢; € {£1} and ¢; - ¢, sends gH; to €; - gg; H;. In particular we
obtain for a free G-CW-complex X a cellular ZG-basis B, for Cy,(X) which
is unique up to permutation and multiplication with trivial units in ZG, i.e.
elements of the shape +¢g € ZG for g € G.

If G is a Lie group and M is a (smooth) proper G-manifold, then an equiv-
ariant smooth triangulation induces a G-C'W-structure on M. For equivariant
smooth triangulations we refer to [271], [272], [273]. There are obvious notions
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of pairs of G-CW-complexes (X, A) and of a relative G-CW-complex (X, A).
In the latter case replace X_1 = 0 by X_; = A for an arbitrary (compactly
generated) G-space A.

There are some special G-CW-complexes. A family of subgroups F is
a non-empty set of subgroups of G which is closed under conjugation and
taking finite intersections. Examples are the trivial family 7R consisting of
the trivial subgroup and the family FZN of finite subgroups.

Definition 1.28. A classifying space E(G,F) for F is a G-CW -complex
such that E(G,F)H is contractible for H € F and all isotropy groups of
E(G,F) belong to F.

If F is the family TR or FIN, we abbreviate

EG=E(G,TR);
BG = G\EG;
EG = E(G, FIN).

The existence of E(G,F) and proofs of their main property, namely, that
for any G-C'W-complex X whose isotropy groups belong to F there is up to
G-homotopy precisely one G-map from X to E(G,F) and thus that two such
classifying spaces are G-homotopy equivalent, are presented in [493],[495,
1.6]. A functorial “bar-type” construction is given in [128, section 7]. Notice
that G — EG — BG is a model for the universal G-principal bundle. If
L is a Lie group with finitely many components and K C L is a maximal
compact subgroup, then for any discrete subgroup G C L we get a model for
E(G;FIN) by L/K (see [1, Corollary 4.14]). The Rips complex of a word-
hyperbolic group G is also a model for E(G; FZIN) (see [370]). The space
E(G; FIN) for a discrete group G is also called the classifying space for
proper G-spaces since for any numerably proper G-space X there is up to G-
homotopy precisely one G-map from X to E(G, FIN). For more information
about F(G,FIN) we refer for instance to [27], [128, section 7], [495, section
1.6], [336] and [342].

1.2.2 The Cellular L2-Chain Complex

Definition 1.29. Let X be a free G-CW -complex of finite type. Define its
cellular L2-chain complex and its cellular L?-cochain complex by

CP(X) = 13(G) @z C.(X);
0?2) (X) = homZG(C* (X), lz(G))a

where C.(X) is the cellular ZG-chain complex.

If we fix a cellular basis for C,,(X) we obtain explicit isomorphisms
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k
O (X) = Cly (X) = P I*(@)

for some non-negative integer k£ and this induces the structure of a finitely
generated Hilbert A/(G)-module on C,(LQ)(X ) and C(y) (X). One easily checks
that the choice of cellular basis does not affect this structure. Hence the
cellular L2-chain complex and the cellular L2-cochain complex come with
preferred structures of finitely generated Hilbert A/(G)-chain complexes, pro-
vided that X is a free G-CW-complex of finite type.

Definition 1.30 (L?-homology and L?-Betti numbers). Let X be a free
G-CW -complex of finite type. Define its (reduced) p-th L2-homology, (re-
duced) p-th L2-cohomology and p-th L2-Betti number by the corresponding
notions of the cellular L*-(co)chain complezes (see Definition [1.16)

HP (XN (G)) = HP(CP(X));
Hf)?) (X5N(@)) = HEDQ)(C*Q) (X));
b2 (XN (G)) = b2 (CP (X))

If the group G and its action are clear from the context, we omit N'(G) in the
notation above. For instance for a connected CW -complex Y of finite type
we denote by Y its universal covering, G is understood to be 71 (Y) and we
abbreviate b1(,2)(1~/) = bé,z)(f/;./\/(m (Y))).

If M is a cocompact free proper G-manifold, define its p-th L?-Betti num-
ber by the corresponding notion for any equivariant smooth triangulation.

Remark 1.31. The Hilbert A/(G)-modules H1(72) (X) and Hf)z) (X) are iso-
metrically G-isomorphic because of Lemma 1.18| since the p-th Laplace oper-
ator of the chain complex and the cochain complex are the same. In particular

the cohomological and homological L?-Betti numbers are the same.

Since we will prove in Theorem [1.35/ (1)) that b}()z) (X) depends only on the
G-homotopy type of X and two equivariant smooth triangulations of a co-
compact free proper G-manifold M are G-homotopy equivalent, the definition
of the p-th L?-Betti number for M makes sense.

All these notions extend in the obvious way to pairs or more generally to
relative free G-C'W-complexes of finite type (X, A).

Example 1.32. If G is finite and X is a free G-CW-complex of finite type,

then b\ (X) is the classical p-th Betti number of X multiplied with Tcl:|

Let f.: Cy — D, be a chain map of Hilbert chain complexes or chain
complexes of modules over a ring. Define cyl, (f.) to be the chain complex
with n-th differential
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—Cp—1 00
—id ¢, O
fnfl 0 dn

Cn,1 EBCTL@DTL Cn72 @Cnfl @ank

Define cone,(fx) to be the quotient of cyl,(f.) by the obvious copy of C..
Hence the n-th differential of cone,(f,) is

—Cp—1 0
fnfl dn
—_—

Given a chain complex C., define XC, to be the quotient of cone,(id¢,) by
the obvious copy of D, i.e. the chain complex with n-th differential

Cn_1® D, Cno®Dy_1.

—Cn—1
Cnfl — Cn72~

Definition 1.33. We call cyl,(f.) the mapping cylinder, cone.(f.) the
mapping cone of the chain map f. and XC, the suspension of the chain
complex Cl.

Notice that with these definitions the cellular chain complex of a map-
ping cylinder of a cellular map f: X — Y of G-CW-complexes is the mapping
cylinder of the induced chain map C,(f): C.(X) — C.(Y). Analogous state-
ments holds for the mapping cone and the suspension (relative to the cone
and suspension points). For the next lemma see also [115] section 5], [152],
[169] and [331, Example 4.3].

Lemma 1.34. (1) Let C, be a free C[Z"]-chain complex of finite type with
some basis. Denote by C[Z"](®) the quotient field of the integral domain
C[Z"]. Then

b2 (12(Z") ®cpzn) C.) = dimgiznjo) ((C[Z”](O) ®cizn] Hp(c*)) :
(2) Let X be a free Z™-CW -complex of finite type. Then
b2 (X) = dimezyor (CIZ"]© @zize Hy(X))
Proof. (1) We abbreviate

Cio) = C[Zn](o) ®c[zn) Cy;
052) = ZQ(Z”) ®(C[Zn] C*.
We have to show

dimC[Zn](m (C[Zn](o) ®clzn] HP(C*)) = dimN(Zn) (HIEQ)(C,?))) .
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In the sequel we can assume without loss of generality that C, is finite
dimensional. We first treat the case where C\”) has trivial homology. Then
we can find a C[Z"](*)-chain contraction 7/, for C'”. Choose an element
u € C[Z"] and C[Z"]-homomorphisms 7,: C, — Cp41 such that u # 0 and
luony, = (7,)® holds for all p where I, is multiplication with u. Then -,
is a chain homotopy of C[Z"]-chain maps [, ~ 0: C. — C,. This induces
a chain homotopy of chain maps of finite Hilbert A (Z™)-chain complexes
ly ~0: CiQ) — C£2). Hence multiplication with u induces the zero map on the
L2-homology of Ciz). This is only possible if the L2-homology is trivial and
hence all L2-Betti numbers of C*) vanish because I, : [2(Z")* — 12(Z")* is
injective for any non-negative integer k (use the Fourier transform in Example
1.4).

)Next we treat the general case. Put

by, = dimC[Zn](O) (C[Zn](o) ®c[zn] Hp(C*)) .

Notice that C[Z"]®) is flat over C[Z"]. There is a C[Z"](®)-isomorphism

bP
Pz — B,(C) = Cz")® @iz Hy(C.).

=1

By composing it with a map given by multiplication with a suitable element
in C[Z"] one can construct a C[Z"]-map

by
ip: @CZ"] — H,y(CL)

i=1

such that (i,)(© is a C[Z"]®-isomorphism. Let D, be the finite free C[Z"]-
chain complex whose p-th chain module is D, = EB?QI(C[Z"] and whose
differentials are all trivial. Choose a C[Z"]-chain map j.: D. — C, which
induces on the p-th homology the map 4,. Let cone,(j.) be its mapping
cone. There is a canonical exact sequence of C[Z"]-chain complexes 0 —
C. — cone.(j.) — XD, — 0. Since it is split-exact in each dimension,
it remains exact under the passage from C, to Cio) or C’f). We conclude
from the long exact homology sequence that cone, (j*)(o) is acyclic since the
boundary operator can be identified with the map induced by jio). Hence the
L?-homology of cone, (j,)(?) is trivial by the first step. We conclude from the
long weakly exact L2-homology sequence (see Theorem [1.21) and additivity
of the von Neumann dimension (see Theorem [1.12] (2]))

P

b2 (CP) = bP(DP) = b, = dimggao (C[Z”](O) Sczn] Hp(c*)).

(2) This follows from (1)) applied to Ci(X) ®z C. O
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Notice that Example [1.32 and Lemma [1.34/ (2) imply that the L?-Betti
numbers of a free G-complex of finite type are always rational if G is finite
and integral if G is Z™. We will investigate the question, what values these
can take for general G, in detail in Chapter [10.

1.2.3 Basic Properties of Cellular L?-Betti Numbers

Theorem 1.35 (L2-Betti numbers). (1) Homotopy invariance

Let f: X — Y be a G-map of free G-CW -complexes of finite type If the
map induced on homology with complex coefficients H,(f; C): H,(X;C) —
H,(Y;C) is bijective for p < d — 1 and surjective for p = d, then

2 2 .
b](J)(X):bZ())(Y) forp < d;
2 2
b (X) 2 6P ().
In particular we get for all p > 0 if f is a weak homotopy equivalence
2 _ (2 .
b (X) = b2 (V);

(2) Euler-Poincaré formula

Let X be a free finite G-CW -complex. Let x(G\X) be the Fuler charac-
teristic of the finite CW -complex G\ X, i.e.

X(G\X) 1= (=1)7- B,(G\X) YA

p=>0

where 3,(G\X) is the number of p-cells of G\X. Then

X(G\X) = (=1)" - b (X);
p=0
(3) Poincaré duality

Let M be a cocompact free proper G-manifold of dimension n which is
ortentable. Then

b (M) = b2, (M, 0M);

(4) Kinneth formula

Let X be a free G-CW -complez of finite type and Y be a free H-CW -
complex of finite type. Then X XY is a free G x H-CW -complex of finite
type and we get for alln >0

BP(X xY)= > b(X)- b (Y);

pt+g=n
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(5) Wedges
Let X1, Xo, ..., X, be connected (pointed) CW -complezes of finite type
and X = \/;_, X; be their wedge. Then
2 2 2 2
b (X) = b (X) 1+Z(b” —P(X))
bA(X) =Y bA(X)  for2<p:
j=1
(6) Connected sums
Let My, Ms, ..., M, be compact connected m-dimensional manifolds
with m > 3. Let M be their connected sum Mq# ...#M,. Then
b (M) — bP (M) =7 — 1+ Z (6 (M5) — o (M) )+
2)(M):Zb§;2)(j/-7j) for2<p<m-2

(7) Morse inequalities

Let X be a free G-CW -complex of finite type. Let 8,(G\X) be the number
of p-cells in G\X. Then we get for n >0

n n

DD BD(X) <Y (=1 B(G\X);
p=0 p=0
(8) Zero-th L?-Betti number
Let X be a connected free G-CW -complex of finite type. Then

where I—é‘ is to be understood to be zero if the order |G| of G is infinite;
(9) Restriction

Let X be a free G-CW -complex ofﬁmte type and let H C G be a subgroup
of finite index |G : H]. Let resf X be the H-space obtained from X by
restricting the G-action to an H-action. This is a free H-CW -complex
of finite type. Then we get for p >0

(G H] - b2 (X5 N(G)) = b2 (restd X N (H));

(10) Induction

Let H be a subgroup of G and let X be a free H-CW -complex of finite
type. Then G xg X is a G-CW -complex of finite type and

V(G xy X;N(G)) = b (X N (H)).
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Proof. (1)) We can assume that f is cellular. Let C,(f;C) be the map induced
on the cellular CG-chain complexes. The homology H,(cone,(C.(f;C))) is
trivial for p < d. Since cone, (C.(f;C)) is a finitely generated free CG-chain
complex, it is CG-chain homotopy equivalent to a finitely generated free CG-
chain complex which is trivial in dimensions < d. Hence cone, (C’£2)( ) :
CiZ)(X) —c® (Y)) is chain homotopy equivalent to a Hilbert A/ (G)-chain
complex which is trivial in dimensions < d and in particular its L2-homology
is trivial in dimensions < d. Now the claim follows from the long weakly
exact L2-homology sequence associated to CiQ)( /) (see Theorem [1.21) and
additivity of the von Neumann dimension (see Theorem [1.12 (2)).

(2) Analogous to the classical situation where x(X) is expressed in terms of
(ordinary) Betti numbers the claim follows from the fact that the von Neu-
mann dimension is additive (see Theorem [1.12 (2))).

(3) There is a subgroup Go C G of finite index which acts orientation preserv-
ing on M. Since b( (res&O(M); N(Go)) = [G : Go] - b (M N(G)) follows
from assertion (9)) and similarly for (M,0M), we can assume without loss of
generality that G = Gy, i.e. G\ M is orientable. Then the Poincaré ZG-chain
homotopy equivalence [510, Theorem 2.1 on page 23]

N[G\M]: C"*(M,dM) — C\(M)

induces a homotopy equivalence of finitely generated Hilbert A(G)-chain
complexes C”f*(M oM) — C,S?)(M). Now the assertion follows because

dim(H,(Cly " (M, 0M))) = b ,(M; OM) holds by Lemma .18,

(4) The obvious isomorphism of Z[G x H]-chain complexes C,(X)®7C,(Y) —
C.(X xY) induces an isomorphism of Hilbert N (G x H)-chain complexes
CiQ)(X) ®C’£2)(Y) —c® (X xY). Now apply Theorem [1.12 (5) and Lemma
1.22. (see also [530} Corollary 2.36 on page 181]).

(5) We may assume without loss of generality that r = 2. We obtain an
exact sequence of Hilbert A (m)-chain complexes for m = m (X1 V Xa) =
m1(X1) *7m1(X2) and ig: 71 (Xy) — 7 and ig: {1} — 7 the obvious inclusions

0= (i0)-C ({x}) = (11).C (X1) & (12). O (X) — O (X V Xz) — 0.
Notice that (io)*C,gz)({*}) is concentrated in dimension zero. Now the claim

follows from Theorem [1.12! (2), Theorem [1.21] and Lemma [1.24! (2).

(6) We may assume without loss of generality that » = 2. The connected
sum Mj# My is obtained by glueing M7\ int(D™) and M\ int(D™) together
along 0D™. Since D™ — D™ is (m — 1)-connected the inclusion

Ml\ll'lt(Dm) Uapm Mg\lnt(Dm) — My Upm My

is d-connected for d = m — 1, i.e. induces an isomorphism on m,, forn < d—1
and an epimorphism on 74 for all base points. Obviously M; Upm My is ho-
motopy equivalent to the wedge M; V Ms. Because of assertion (1)) it suffices
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to prove the claims for M7 V My which has already been done.

(7) analogous to (2I).

(8) If G is finite, the claim follows from Example [1.32. It remains to show
b(()2)(X) = 0 if G is infinite. Since X — G\X is a covering with a path-
connected total space, there is a group epimorphism 71 (G\X) — G. Since
G\X is of finite type, G is finitely generated. Let S be a finite set of genera-
tors. Let D, be the ZG-chain complex which is concentrated in dimension 0
and 1 and has as first differential

@ZG 5€Srb 1 G,

seS

where rg_7 is right multiplication with s — 1. There is a ZG-chain map
fx: Dy — Cy(X) which is 0-connected. Hence it suffices because of the ar-
gument in the proof of (1)) to show béQ)(F(G) ®z¢ D) = 0. We have already
seen that this is the same as the zero-th L?-Betti number of the associated
Hilbert N(G)-cochain complex homgzg (D, [?(G)) which is the dimension of
12(G)€. Since 1?(G)¢ = 0 for infinite G, the claim follows.

(9) This follows from Lemma [1.9 (8).

(10) This follows from Lemma [1.24! (4) and i*(Cng) (X)) = CiQ)(G x g X) for
the inclusion ¢ : H — G. o

Example 1.36. We give the values of the L2-Betti numbers for the universal
coverings of all compact connected 1- and 2-manifolds.

In dimension 1 there are only S' and the unit interval I. We get from
Theorem [1.35 (9) or Lemma [1.34] (2)) that b,(,Z)(Sl) =0forallp>0. As T is

contractible, we have b( )( I) =by(I) =1 and b§,2)(~) =0forp>1.

A manifold is called closed if it is compact and has no boundary. Let Fy d
be the orientable closed surface of genus g with d embedded 2-disks removed
(As any nonorientable compact surface is finitely-covered by an orientable
surface, Theorem [1.35] (9) shows that it is enough to handle the orientable
case.) From Theorem [1.35/ (2)), (3) and (8) and the fact that a compact surface
with boundary is homotopy equivalent to a bouquet of circles, we conclude

b(g( ) 1 ifg=0,d=0,1
0 otherwise ’

d+2-(g—1) otherwise '

ng)(E;‘gj):{l 1fg=07d=O'

—~ 0 ifg=0d=0,1
2 = { ! -

0 otherwise

Of course b( )( Fd) =0 for p > 3.
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Example 1.37. Let X — Y be a finite covering with d sheets of connected
CW-complexes of finite type. Then Theorem [1.35/ (9) implies

b (X) =d-bP(Y).

In particular we get for a connected C'W-complex X of finite type for which
there is a selfcovering X — X with d sheets for some integer d > 2 that

b (X) =0 for all p > 0.

Example 1.38. The following examples show that in general there are
hardly any relations between the ordinary Betti numbers b,(X) and the L*-

Betti numbers b§,2)()? ) for a connected C'W-complex X of finite type.
Given a group G such that BG is of finite type, define its p-th L?-Betti
number and its p-th Betti number by
2 (2 . .
by(G) = by(BG).
We get from Theorem [1.35 (4), (5) and (9) for » > 2 and non-trivial groups
G1, Go, ..., G, whose classifying spaces BG; are of finite type

- 1
b (G = =143 (b?)(cm - IG,|> |

i=1

b (+-1Gi) = 0;
b (+1_,Gy) Zb@ for p > 2;

byp(i—1Gi) = Z bp(G) for p > 1;

p
b;(n2)(G1 X Gg) = Z b£2)(G1) . b;(oz—)z(GQ)’

P

bp(Gr x Ga) =Y bi(Gh) - bp—i(Ga);

0 (@/n) = =

2 .
bl())(Z/n)ZO for p > 1;
by(Z/n) =0 for p > 1.

From this one easily verifies for any integers m > 0, n > 1 and ¢ > 1 that for
the group
i—1
Gi(m,n) = Z/n x (sq2°2/2) x | [ #=12/2
j=1
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its classifying space BG;(m,n) is of finite type and

b2 (Gilm.m)) = =
2 _ .,
b]([,)(Gi(m,n)) =0 for p # 1i;
bp(Gi(m,n)) =0 forp>1
Given an integer [ > 1 and a sequence 71, 2, ..., 7; of non-negative rational

numbers, we can construct a group G such that BG is of finite type and

() oy for1<p<ly;
by (G)_{O for I +1 < p;

b(G) =0 forp>1

holds as follows. For [ = 1 we have already done this, so assume [ > 2 in the
sequel. Choose integers n > 1 and k > [ with r; = % Fix fori =2,3...,k
integers m; > 0 and n; > 1 such that 7% = r; holds for 1 < ¢ <[ and
m; = 0 holds for i > [. Put '

G = Z/TL X *§=2Gi(mi7ni)-

On the other hand we can construct for any sequence ny, no, ... of non-
negative integers a CW-complex X of finite type such that b,(X) = n, and

b§,2)()~() = 0 holds for p > 1, namely take

X = B(Z/2+7/2) x §7 (n SP) .

i=

Let f: X — X be a selfmap. Its mapping torus T is obtained from the
cylinder X x [0,1] by glueing the bottom of the cylinder X x [0, 1] to the top
by the identification (z,1) = (f(x),0). There is a canonical map p: Ty — S*
which sends (z,t) to exp(2it). It induces a canonical epimorphism 1 (T) —
Z = m(S') if X is path-connected.

The next theorem will be generalized in Theorem 6.63 and will play a
key role in the proof of the vanishing of all L?-Betti numbers of Thompson’s
group F in Subsection [7.1.2! (see also [329, Theorem 2.1], [331, Theorem 0.8]).
It has been conjectured in [237, page 229] for an aspherical closed manifold
M which fibers over the circle S*.

Theorem 1.39 (Vanishing of L?-Betti numbers of mapping tori).
Let f: X — X be a cellular selfmap of a connected CW -complex X of finite

type and w1 (Ty) %6 % Zbea factorization of the canonical epimorphism
into epimorphisms ¢ and . Let Ty be the covering of Ty associated to ¢
which is a free G-CW -complex of finite type. Then we get for all p > 0

b (Ty) = 0.
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Proof. Fix integers p > 0 and n > 1. Let G,, C G be the preimage of the
subgroup n - Z C Z under ¢: G — Z. This is a subgroup of index n. We get
from Theorem [1.35] (9))

1 .
bl()Q)(Tf) = bg)(resg" Ty).

There is a homotopy equivalence h: Tjn — Gn\ff, where f" is the n-
fold composition of f. Let Ty~ be the Gj,-space obtained by the pull-
back of Ty — G, \Ty with h. Then h induces a G,-homotopy equivalence
h: Tpn — resG" Tf From homotopy invariance of the L2-Betti numbers of
Theorem [1.35! (1) we conclude

b (resg Ty) = oY) (Ty).

Let 3, be the number of p-cells in X. Then T4~ has a CW-structure with
Bp + Bp—1 cells of dimension p. Hence the von Neumann dimension of the
cellular Hilbert N(G),)-chain module C,(Tyn) is B, + fp—1. This implies
by the additivity of the von Neumann dimension of Theorem [1.12 (2) that

51(72)(T7f”) < Bp + Bp—1. We have shown

0 < bP(Ty) < %.
Since 3, + B,—1 is independent of n, the claim follows by taking the limit for
n — 00. O

A map f: E — B is called a fibration if it has the homotopy lifting
property, i.e. for any homotopy h: X x [0,1] — B and map f: X — E with
po f = hg there is a homotopy H: X x[0,1] — E with Hy = f and poH = h
(see [488, Definition 4.2 on page 53]). This is a weaker notion than the notion
of a (locally trivial) fiber bundle with typical fiber F' [269, chapter 4, section
5]. For instance the fiber F' of a fibration is only well-defined up to homotopy
equivalence, the one of a fiber bundle up to homeomorphism. The notion of
a fibration is more general and more flexible than that of a fiber bundle. For
example a group extension 1 - A — I' — m — 1 such that Br and BA
are finite CW-complexes yields a fibration BI' — Bw with fiber BA such
that BI" has the homotopy type of a finite CW-complex but in general one
cannot expect the existence of a fiber bundle BA — BI' — Bm of finite
CW -complexes.

If f: F — F is a homotopy equivalence, Tt is homotopy equivalent to
the total space of a fibration over S! with fiber F. Conversely, the total
space of such a fibration is homotopy equivalent to the mapping torus of the
selfhomotopy equivalence of F' given by the fiber transport with a generator
of m1(S1). Therefore L2-Betti numbers are obstructions for a closed manifold
to fiber over the circle S'. This problem has been treated by Farrell [189].
The same idea of proof as in Theorem [1.39] yields Novikov-type inequalities
for Morse 1-forms [185].
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Theorem 1.40 (L2-Betti numbers and S'-actions). Let X be a con-
nected S1-CW -complex of finite type, for instance a connected compact man-
ifold with smooth S*-action. Suppose that for one orbit S'/H (and hence for
all orbits) the inclusion into X induces a map on 71 with infinite image. (In

particular the S*-action has no fized points.) Let X be the universal covering
of X with the canonical 71(X)-action. Then we get for allp > 0

2) (v —
b (X) = 0.

Proof. We show for any S'-CW-complex Y of finite type together with an
Sl-map f:Y — X that all the L2-Betti numbers b§,2)(f*)?;/\/(7r)) are trivial
where f*)? is the pullback of the universal covering of X and 7 = 71 (X).
Since the p-th L2-Betti number only depends on the (p + 1)-skeleton, we can
assume without loss of generality that Y is a finite S*-CW-complex. We use
induction over the dimension n of Y. The beginning n = —1 is trivial, the
induction step from n — 1 to n > 0 is done as follows.
Choose an equivariant S'-pushout with dim(Z) =n — 1.

L, S'/H; x gn—t et 7

| i|
Lo, S'/H; x pr Ler@y
This induces a m-equivariant pushout
[Lics i X —— X
Hie[ Q?f*)? - f*)?

It induces a short exact sequence of finitely generated Hilbert N (7)-chain
complexes

0—CPG X)) = P X) > PP Qi X, qfi fX) = 0.
el

Because of Theorem [1.21] and Theorem [1.12! (2) it suffices to prove

dimyr) (B (XN () ) = 0
i) (H(C(Q1 17X at 5 17%)) =

This follows for the first equation by the induction hypothesis. The pair
(Qr X, aitrXx ) is m-homeomorphic to 7 Xz ST x x (D™, S"~1) for an ap-
propriate subgroup Z C  since S'/H; is homeomorphic to S! and the in-
clusion of an orbit into X induces an injection on the fundamental groups
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by assumption. Hence C, (ij*)?, qu*f*)?) is Zm-isomorphic to the n-fold
suspension of C (7 xzS1) for a subgroup Z C 7. We conclude from Theorem
1.35/ (10)

i) (HP (CQ1F X a1 1 X)) = 82,(5D).

We conclude bl(,z)(Sl) = 0 for p > 0 from Theorem [1.35/ (9) or Lemma [1.34
(2)). O

Theorem [1.40/ will be generalized in Theorem [6.65 and a more general
version of Lemma [1.41] below will be proved in Lemma 6.66.

Lemma 1.41. Let F — E — B be a fibration of connected CW -complexes
of finite type such that the inclusion induces an injection m (F) — m (F).

Suppose that the L?-Betti numbers b,(,Z) (F) of the universal covering F (with
the canonical m (F)-action) vanish for all p > 0. Then the same is true for
the universal covering E (with the canonical m (E)-action) of E.

1.2.4 L2-Betti Numbers and Aspherical Spaces

A CW-complex X is aspherical if it is connected and its universal cover-
ing is contractible. This is equivalent to the condition that 7, (X, z) is triv-
ial for n # 1 and x € X. The universal covering X — X of an aspheri-
cal CW-complex X with fundamental group 7 is a model for the universal
principal 7w-bundle Ew — Bm. Given a group m, an aspherical CW-complex

X with base point £ € X together with an isomorphism (X, ) =
is called an Filenberg-MacLane space of type (mw,1). Examples for aspheri-
cal CW-complexes are closed Riemannian manifolds with non-positive sec-
tional curvature since their universal coverings are diffeomorphic to R™ by
the Hadamard-Cartan Theorem [218, Theorem 3.87 on page 134].

Assertion (1)) of the next Lemma [1.42 is a variation of [124, Lemma 5.1
on page 242] and assertion (2)) appears in [232 page 95|, where the result is
attributed to unpublished work of Sullivan.

Lemma 1.42. (1) Let X be a connected finite dimensional S*-CW -complex

with empty fized point set XS5, Suppose that the universal covering X of
X satisfies H*(X; Q) = H*({x}; Q). Then the inclusion of any orbit into
X induces an injection on the fundamental group.

(2) Let M be a connected closed oriented n-dimensional manifold with funda-
mental group m and fundamental class [M] € H,(M;Z). Let f: M — Bm

be the classifying map of the universal covering M — M . Suppose that M
carries a non-trivial (smooth) S*-action with M5 # (). Then the image
of the fundamental class in the homology of Bm with rational coefficients
f«[M] € Hy,(Bm; Q) is trivial.
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Proof. (1) We first show for any fixed point free S'-CW-complex Z that
the canonical projection p: ES! xg1 Z — S\ Z is a rational cohomology
equivalence where S! — ES' — BS! is a model for the universal prin-
cipal S'-bundle. Recall that ES! is a free S'-CW-complex which is (non-
equivariantly) contractible. It suffices to prove the claim for each k-skeleton
of Z because of the Five-Lemma and the short exact sequence due to Milnor
[521, Theorem XIII.1.3 on page 605] for Z

0 — limy_  H" " (Z4;Q) — H"(Z;Q) — limy, o H" (Z4;Q) — 0

and the corresponding one for ES! xg1 Z. We use induction over k. The
beginning £ = —1 is trivial, the induction step from k£ —1 to k > 0 is done as
follows. Suppose that the k-skeleton Zj, is obtained from the (k — 1)-skeleton
Z._1 by attaching equivariant cells

HiEI Sl/Hi x §k-1 1

| !

[I,c;S'/Hi x D¥Y —— 7,

where H; C S is a finite subgroup for each i € I. Then ES! xg1 Z}, is the
pushout

Hie[ ESt X g1 (Sl/I{Z X Sk_l) —— ES! Xgt k1

! l

Hie]ESl X g1 (Sl/Hl X Dk) — - ES! X g1 Zy,
and S*\Zj, is the pushout:

[Lic; S*' —— S"\Zx

l l

HieI DF —— Sl\Zk

The projections ES* xg1 Y — SNY for Y = Z;_1,][;c; S'/H; x S**
and [],.; S 1/H; x D* are rational cohomology equivalences by the induction
hypothesis and because BH; — {x} is one for each ¢ € I. By a Mayer-
Vietoris argument the projection for Y = Zj is also a rational cohomology
equivalence.

Let X be the universal covering of X and = = 71 (X). There is an extension
of Lie groups 1 - 7 — L — S! — 1 and an action of L on X such that the
L-action extends the m-action on X and covers the S I_action on X. Moreover,
there is an L-CW-structure on X such that the induced S*-CW-structure
on X = 7\ X is the given one [326, Theorem 8.1 on page 138, Lemma 8.9 on
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page 140]. The basic idea of this construction is to define L as the group of
pairs (f,g), where g is an element in S* and f: X — X is map which covers
the map l;: X — X given by multiplication with g.

The map 0 in the exact sequence of homotopy groups associated to the
regular 7-covering L — S*

{1} — m(L) - m(SY) & 7 — mo(L) — {1}

agrees with ev,: 71(S?) — 71 (X) induced by evaluating the S'-action at the
base point. We want to show that this map is injective. Suppose it is not true.
Then 71 (L) is an infinite cyclic group. As L is a 1-dimensional Lie group, its
component of the identity is just S1. Obviously each isotropy group under
the L-action on X is finite as the Sl-action on X has only finite isotropy
groups. Hence X carries a fixed point free S* -action. The Gysin sequence
[521, Theorem VIL.5.12 on page 356] of S' — ES! x X — ES' xg1 X looks
like: _ _
.— HP(ES! xg1 X;Q) — HPT2(ES! x¢1 X;Q) —
HPt2(ES' x X;Q) — HPTY(ES! x¢1 X;Q) —

We have HP(ES! x )Z';Q) = H”()Z';Q) = 0 for p # 0 by assumption.
Hence we get H*(ES! x g1 X’; Q) #{0} for p > 0. As the projection
ES!' x s XS 1\)2' induces an isomorphism on rational cohomology, S 1\)?
has non-trivial rational cohomology in all even dimensions. Since X has a
finite dimensional S'-C'W-structure, S*\X has a finite dimensional CW-
structure, a contradiction. This proves assertion (1)).
(2) Let p: St x M — M be the given S!-operation and let p: M — M be
the universal covering. Choose z € M* " with a lift Z € M. Notice that the
map induced by evaluation (S, . e) — m=m (M, ) is trivial. Hence there
is precisely one map p: S x M — M which satisfies pop=po (1d31 Xp)
and p(e,Z) = Z. One easily checks that p defines an S*-action on M which
commutes with the canonical 7 = m (M, z)-action on M with respect to ¥
and covers the S'-action on M. In particular S? \M inherits a m-action and
the projection pr: M — S\M is 7- -equivariant.

Next we want to show for y € M that the isotropy group under the 7-
action of S € Sl\M is finite. Let u be the projection to M of any path u

joining  and ¥ in M. Then w - y for w € 7 is by definition u~ * w * u(1) for

any path u~ % w * u with initial point § whose projection under p is the loop
u” *w*u in M. Suppose that w - S'y = S'7. Then we can find z € S* with
2.9 = w-y. Let v be any path in S! from e to z. Put y = p(y). Let vy and vy

be the paths obtained from v and the S'-actions. The paths u~ * w * u and
vy are homotopic relative endpoints. This implies z € Sy L for Sy 1 the isotropy
group of y € M under the S'-action and that vy and u~ *w+u are homotopic
relative endpoints. Hence the isotropy group of S'y under the = = (M, )
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action can be identified with the image of m;(S'/S},eS}) — m1(M,y) Ly
m = 71 (M, z) where ¢, is given by conjugation with u. The composition of
this map with the obvious map m1(S*,e) — m(S'/S},eS}) is trivial since
the obvious map 71 (S, e) — 71 (M, z) is trivial because of z € M5, Hence
all isotropy subgroups of the 7-action on S 1\]T/f are finite.

We have introduced Em = E(m; FZN') in Definition [1.28] Choose m-maps
f: M — En, g: En — E7 and h: Sl\M — Em. Then go fand Eoer are
m-homotopy equivalent. By passing to the quotients under the m-action we
obtain an up to homotopy commutative diagram

M 2 sh\M

/| d
Br —— m\Ex

where f: M — Bm is a classifying map. Hence it suffices to show that
H,(S'\M;Z) = 0 holds and that g.: H,(Bm;Q) — H,(m\Em;Q) is an iso-
morphism for each p > 0.

Since M is connected and closed and M # M s! by assumption and
cach component C of MS" is a connected closed submanifold [64, Corollary
VI.2.4 on page 308], the dimension of each component C' is < n — 1. Since
M is obtained from M5’ by attaching cells of the type S'/H x D* for finite
H c S' and k < n — 1, the dimension of the CW-complex Sl\M is<n-1
and hence H, (S'\M;Z) = 0.

Hence it remains to prove that H,(g;Q): H.(Bm;Q) — H,(m\Em; Q) is
bijective for all p > 0. Notice that C,(EG)®zQ is projective over QG for each
p > 0 since it is a direct sum of QG-modules of the shape Q[G/H] for finite
H C G. The canonical map FG — EG induces a homology equivalence of
projective QG-chain complexes C, (EFG) ®7z Q — C.(EG) ®z Q. We conclude
that this chain map is a QG-chain homotopy equivalence. Hence it induces a
chain homotopy equivalence C(EG) ®zc Q — C.(EG) ®z¢ Q which induces
on homology H.(g; Q). O

Corollary 1.43. Let M be an aspherical closed manifold with non-trivial
Sl-action. Then the action has no fized points and the inclusion of any orbit
into X induces an injection on the fundamental groups. All L?-Betti numbers
bl(,2)(M) are trivial and x(M) = 0.

Proof. This follows from Theorem [1.35! (2)), Theorem [1.40/ and Lemma [1.42
provided M is orientable. Recall that the orientation covering is the double
covering M = SAYM)TAT — M and has the property that its total space
M is orientable and it is trivial if and only if M is orientable. The non-
orientable case then follows from Theorem [1.35! (9) since M is orientable and
satisfies the same hypothesis as M. O
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We will show in Corollary [3.111! that under the conditions of Corollary
1.43! all Novikov-Shubin invariants of M are less or equal to 1 and that the
L2-torsion of M is trivial.

The next result will be a special case of a more general result, namely
Theorem [7.2] (1)) and (2)

Theorem 1.44 (L?-Betti numbers and aspherical CW-complexes).
Let X be an aspherical CW -complex of finite type. Suppose that w1 (X) con-

tains an amenable infinite normal subgroup. Then bg) )( X)=0 for allp > 0.

1.3 Analytic L2-Betti Numbers

In this section we state the L?-Hodge-de Rham Theorem [1.59 and give an
analytic interpretation of the L2-Betti numbers.

1.3.1 The Classical Hodge-de Rham Theorem

In this subsection we recall the classical Hodge-de Rham Theorem since we
need it and the necessary notations later and it motivates the L?-version.

Let M be a manifold without boundary (which is not necessarily com-
pact). Denote by £2P(M) the space of smooth p-forms on M, i.e. the space
of smooth sections of the bundle Alt’(C ®@g TM) of alternating p-linear
C-forms associated to the complexification C ®g T'M of the tangent bun-
dle T'M. Hence a p-form w assigns to each x € M an alternating p-linear
C-form w,: CQr T M x ... x C®r T, M — C on the complexified tan-
gent space C g T, M. ThlS is the same as an alternating p-linear R-form
wyt TpyM x ... x TyM — resk C. Notice that (2P(M) inherits the structure of
a complex Vector space. One can identify 2P(M) with the space of alternat-
ing p-forms on the C°°(M)-module C*°(C®rTM), where C>(M) = 2°(M)
is the C-algebra of smooth C-valued functions on M and C*°(C ®g TM) is
the C'*°(M)-module of smooth sections of the complexified tangent bundle
C ®gr T'M. Denote by

A QP(M)® QUM) — QPH(M) (1.45)

the A-product of smooth forms. Recall that the A-product is defined by the
corresponding notion for finite dimensional vector spaces applied fiberwise.
Denote by

dP: QP(M) — QPTH(M) (1.46)

the p-exterior differential. Recall that the exterior differentials are uniquely
determined by the following properties:

(1) dP is C-linear;
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(2) (d°f)(X) = X[ for f € Q°M) =C>®(M), X a vector field on M and
X f the derivative of f along X;

(3) dPTHwAnR) = (dPw)An+(=1)PwAdin for w € 2P(M) and n € 29(M);

(4) d"*od? = 0.

The cohomology of the de Rham cochain complex

qrti

T ey L rei o) 2

dar—2 1
e —— P (M) ——
is the de Rham cohomology of M and denoted by Hip (M).

Let C3™%(M) be the Z-chain complex given by singular simplices A, — M
which are continuous. Let C5"&:C" (M) be the Z-chain complex given by
singular simplices A, — M which are smooth. (Here A, is the standard
p-simplex and not the Laplace operator). We denote by C,,(M;C) and

ving,co< (M;C) the corresponding cochain complexes homgz (CE™8(M), C)
and homgz (CS™® ™ (M), C). Let H,,(M;C) := H*(Cl,,(M;C)) be the sin-
gular cohomology of M. The obvious inclusion induces a cochain map

i*: CL.(M;C) — C;ingcoo(M;C).

sing
There is a well-defined cochain map

I 27 (M) — Cly o (M C)
which sends w € 2P(M) to the cochain IP(w): C"C™ (M) — C which
maps o: A, — M to fA o*w. The proof of the de Rham Theorem [1.47 can
be found for instance in [63, Section V.9.], [134], [I56, Theorem 1.5 on page
11 and Theorem 2.4 on page 20|, [357, Theorem A.31 on page 413].

Theorem 1.47 (De Rham Isomorphism Theorem). Let M be a mani-
fold. Then the cochain maps i* and I* above induce a natural isomorphisms
forp>0

AP: HEL (M) — HE,

sing

(M;C).

They are compatible with the multiplicative structures given by the N-product
and the U-product.

Now suppose that M comes with a Riemannian metric and an orientation.
Let n be the dimension of M. Denote by

wP . QP(M) — Q" P(M) (1.48)

the Hodge star-operator which is defined by the corresponding notion for
oriented finite dimensional Hermitian vector spaces applied fiberwise. It is
uniquely characterized by the property
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/ w A xPn = / (Wzs M) Altp (1, 1) dVOL, (1.49)
M M

where w and 7 are p-forms and (ws,nz) e (7, M) 15 the inner product on
AWtP(T,M) which is induced by the inner product on T, M given by the
Riemannian metric.

Define the adjoint of the exterior differential

6P = (—1)PHntlyn=p L oqn=P o 4P OP(M) — 2P7H(M).  (1.50)

Notice that in the definition of ¢ the Hodge star-operator appears twice and
the definition is local. Hence we can define 6P without using an orientation of
M, only the Riemannian metric is needed. This is also true for the Laplace
operator which is defined by

A, =dP o P + 6P odl: QP (M) — 0P (M). (1.51)

Let 22(M) C 2°(M) be the space of smooth p-forms with compact sup-
port. There is the following inner product and norm on it

(w,n) L2 ::/ wA Py = /(wm,n@Altp(TﬂM) dvol, (1.52)
M M

[lw|lrz == V{w,w)e. (1.53)

Notice that dP and P are formally adjoint in the sense that we have for
we NP(M) and n € 20T M)

(dP(w),n) 2 = (w, 6P T (n)) 2. (1.54)

Let L20P(M) be the Hilbert space completion of £2?(M). Define the space
of L?-integrable harmonic smooth p-forms

Hipy (M) :={w € QP (M) | Ap(w) = 0,/Mw ANxw < oo} (1.55)
Recall that a Riemannian manifold M is complete if each path compo-
nent of M equipped with the metric induced by the Riemannian metric is a
complete metric space. By the Hopf-Rinow Theorem the following statements
are equivalent provided that M has no boundary: (1) M is complete, (2) the
exponential map is defined for any point « € M everywhere on T, M, (3) any
geodesic of M can be extended to a geodesic defined on R (see [218, page
94 and 95]). Completeness enters in a crucial way, namely, it will allow us to
integrate by parts [217].

Lemma 1.56. Let M be a complete Riemannian manifold. Let w € £2P(M)
andn € 2PTY(M) be smooth forms such that w, dPw, n and 6Pty are square-
integrable. Then

(dPw,n) 2 = (w, 6" n) L.
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Proof. Completeness ensures the existence of a sequence f,: M — [0,1] of
smooth functions with compact support such that M is the union of the
compact sets {x € M | fo(x) = 1} and ||dfulleoc = sup{||(dfn)zll= | = €
M} < L holds. With the help of the sequence (f,)n>1 one can reduce the
claim to the easy case, where w and 7 have compact support. 0O

Theorem 1.57 (Hodge-de Rham Theorem). Let M be a complete Rie-
mannian manifold without boundary. Then we obtain an orthogonal decom-
position, the so called Hodge-de Rham decomposition

L20P(M) = Hipy (M) & clos(dP~1 (2271 (M))) @ clos(62 1 (281 (M))).

1.3.2 Analytic Definition of L2-Betti Numbers

Suppose for a moment that M is a Riemannian manifold which is closed and
that we require no group action. Then in view of Theorem [1.57 the space
HP(M) = {w € 2P(M) | Ap(w) = 0} is isomorphic to the singular cohomol-
ogy H},.(M;C). In particular HP(M) is a finite dimensional C-vector space
and we can define the analytic p-th Betti number by its dimension. Of course
the analytic p-th Betti number agrees with the classical p-th Betti number
which is defined by the dimension of Hgng(M ;C). The analytic p-th Betti
number can be interpreted in terms of the heat kernel e~*4»(x,y), namely
by the following expression [220, 1.6.52 on page 56]

bp(M) = lim tre(e ' (2, x)) dvol . (1.58)

t—o0 M

Here (and elsewhere) e~*47(x,7) denotes the heat kernel. This is a smooth
section of the bundle hom(py Alt?(T'M), ps Alt?(TM)) over M x M for
pr: M x M — M the projection to the k-th factor. It is uniquely char-
acterized by the property that for w € L2£2P(M) and e *4» the operator
obtained from A, by spectral calculus (see (1.64))

A (W) (z) = e A (1 w VO
@) = [ e, dvl,

holds. The real number trc(e~*4# (z,z)) is the trace of the endomorphism of
finite dimensional vector spaces e *4» (x,z): Alt? (T, M) — Alt?(T,M).

We want to generalize these results and notions to the L?-setting. From
now on M is a cocompact free proper G-manifold without boundary and with
G-invariant Riemannian metric. Recall that an equivariant smooth triangu-
lation K of M consists of a simplicial complex K with simplicial G-action
such that for each open simplex o and g € G with go N o # () left multipli-
cation with g induces the identity on o, together with a G-homeomorphism

f+ K] =, M such that f restricted to each closed simplex is a smooth
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immersion of the simplex into M. This is the same as a lift of a smooth trian-
gulation of G\M to M. Notice that K is a free cocompact G-CW-complex.
In the sequel we will not distinguish between K and its realization |K]|.

The key result, which is due to Dodziuk [145] and whose proof we will
present in Section [1.4, is

Theorem 1.59 (L?-Hodge-de Rham Theorem). Let M be a cocompact
free proper G-manifold with G-invariant Riemannian metric and let K be
an equivariant smooth triangulation of M. Suppose that M has no bound-
ary. Let H?Q)(M) be the space of L?-integrable harmonic smooth p-forms on

M introduced in (1.55). Then integration defines an isomorphism of finitely
generated Hilbert N'(G)-modules

e

Ml (M) = HY ().

This allows us to define the analytic p-th L?-Betti number by the von
Neumann dimension of the finitely generated Hilbert N'(G)-module H{,, (M).
Obviously this is the same as the cellular p-th L2-Betti number. Moreover,
this can be interpreted in terms of the heat kernel by the following expression

[9, Proposition 4.16 on page 63] (or Theorem 3.136] (1))

b2 (M) = Jim }_trc(e’mp (z,2)) dvol . (1.60)
Here F is a fundamental domain for the G-action, i.e. an open subset F C M
such that M is the union J, . g-clos(F) and gF NF # 0 = g =1 and the
topological boundary of F is a set of measure zero. If one fixes a triangulation
of G\M and fixes for each open simplex o of dimension n = dim(M) a lift
G C M, then the union of the lifts & for all n-simplices o in G\M is a
fundamental domain.

Recall that a manifold is called hyperbolic if it is equipped with a Rie-
mannian metric whose sectional curvature is constant —1. This is equivalent
to the statement that M comes with a Riemannian metric such that the
universal covering M with the induced Riemannian metric is isometrically
diffeomorphic to the (real) hyperbolic space H™ for n = dim(M) [218, The-
orem 3.82 on page 131]. Recall that the Poincaré model for H" is the open
unit disk {z € R™ | |z| < 1} with the Riemannian metric which is given at a
point x € R™, |z| < 1 by

4

TIM X TxM — R, (U7U}) = m

. <v,w>Euc17 (161)

where (v, wW)gyq is the standard Euclidean metric on T,R™ = R™.

Theorem 1.62. Let M be a hyperbolic closed Riemannian manifold of di-
mension n. Then
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~ =0 if2p#n
béQ)(M) {>0 if2p=mn"

If n is even, then
(=12 x(M) > 0.

Proof. The statement about the Euler characteristic for M follows from the
statement about the L2-Betti numbers from Theorem [1.35 (2). Since the
von Neumann dimension is faithful by Theorem [1.12 (I]) it suffices to show,
because of Theorem [1.59, that

=0 if2p#n
P n
Hio) (H) {740 if2p=n

This is done in [146] (even for all rotationally symmetric Riemannian mani-
folds). The idea of the proof is summarized as follows.
An element w € H?Q)(H”) is written (outside 0) in polar coordinates

w = a(r,0) Adr+b(r,0) Ad

for (p — 1)-forms a(r,#) and b(r,0) on S™~! in the variable § which depend
on a parameter r € (0,00). Then the conditions dPw = 0, 6”(w) = 0 and
an w A xw < 0o are explicitly rewritten in terms of a and b and the function
f(r) for which the Riemannian metric with respect to the polar coordinates
looks like ds? = dr? + f(r)2d6?%. The function f satisfies f(0) = 0, f/(0) = 1,
f(r)>0forr>0,and [ f(r)~'dr < co. Then a further calculation shows
that ’H@) (H™) # 0 implies

/00 2P r) dr < .
1

Since the Hodge star operator yields an isomorphism {5 ” (H") = H{, (H"),
H{y (H") # 0 implies that both [ 2 (r)dr and [ f PP (r)dr are
finite. If 2p = n, these two integrals are equal and finite. However, if 2p # n,
then the exponents (n — 2p — 1) and (—n + 2p — 1) have different signs and
one of the integrals has to diverge. This shows HfQ)(H”) = 0 for 2p # n. One
can show explicitly that H]&)(H") is an infinite dimensional vector space if
2p =n. g

We will extend Theorem [1.62in Theorem [5.12/ (1), where the computation
of the L?-Betti numbers of the universal covering M of a closed Riemannian
manifold M is given provided that M is a symmetric space of non-compact

type.

1.4 Comparison of Analytic and Cellular L?-Betti
Numbers

In this section we give the proof of the L2-Hodge-de Rham Theorem [1.59.
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1.4.1 Survey on Unbounded Operators and Spectral Families

We have to explain some facts about unbounded densely defined operators
on Hilbert spaces and their domains, about spectral families and about the
Spectral Theorem. For a general discussion we refer for instance to [434]
Section VIIL.1 - 3|, [421, Chapter 5].

Let H be a Hilbert space and T: dom(T) — H be a (not necessarily
bounded) linear operator defined on a dense linear subspace dom(7) which
is called (initial) domain. We call T closed if its graph gr(T) := {(u, T(u)) |
u € dom(T)} C H x H is closed. We say that S: dom(S) — H is an
extension of T and write T C S if dom(7T) C dom(S) and S(u) = T'(u)
holds for all u € dom(7T). We write T = S if dom(T") = dom(S) and S(u) =
T'(u) holds for all u € dom(T'). We call T closable if and only if T has a
closed extension. Since the intersection of an arbitrary family of closed sets is
closed again, a closable unbounded densely defined operator 7" has a unique
minimal closure, also called minimal closed extension , i.e. a closed operator
Tinin: dom(Tnin) — H with T C Ty such that T),;, C S holds for any closed
extension S of T. Explicitly dom(T i) consists of elements u € H for which
there exists a sequence (uy,),>0 in dom(7") and an element v in H satisfying
lim,, o0 4y, = w and lim,_, T(u,) = v. Then v is uniquely determined by
this property and we put Trin(u) = v. Equivalently, dom (7T, ) is the Hilbert
space completion of dom(7T") with respect to the inner product

(u, V)gr = (w,v) i + (T(w), T(v)) b (1.63)

If not stated otherwise we always use the minimal closed extension as the
closed extension of a closable unbounded densely defined linear operator.

The adjoint of T is the operator T*: dom(7™*) — H whose domain con-
sists of elements v € H for which there is an element u in H such that
(v, u) = (T(u'),v) holds for all v’ € dom(T'). Then w is uniquely determined
by this property and we put T*(v) = u. Notice that 7* may not have a dense
domain in general. Its domain is dense if and only if T is closable. If T' is
closable, then T}, = T* and Twin = (T7)*. We call T' symmetric if T C T*
and selfadjoint if T = T*. Any selfadjoint operator is necessarily closed and
symmetric. A bounded operator T: H — H is always closed and is selfad-
joint if and only if it is symmetric. We call T essentially selfadjoint if Ty, is
selfadjoint.

A densely defined unbounded operator T': dom(f) C H — H for a Hilbert
space H is called positive if T is selfadjoint and the real number (T'(v),v)
is > 0 for all v € dom(7'). Notice that the Polar Decomposition T' = US
also exists for densely defined unbounded operators T': dom(T") C H; — Hs
[434, Theorem VIII.32 on page 297]. Here U and S are uniquely determined
by the properties that U is a partial isometry, i.e. U*U is a projection, S' is
a positive selfadjoint operator and ker(U) = ker(T') = ker(S). The operator
S is constructed by v.S*S in the sense of functional calculus as explained
below. We have U*US =S, U*T = S and U*UT =T.



56 1. L2-Betti Numbers

Let H be a Hilbert space and T': dom(T') C H — H be a densely defined
closed operator with domain dom(T"). Define its resolvent set resolv(T) as
the set of complex numbers A € C for which there is a bounded operator
S: H — H whose image is dom(T") and which satisfies (T'—\-id)oS = idy and
So (T —X-id) = idgom(r)- Define the spectrum spec(T) to be the complement
of resolv(T") C C. The spectrum of T' is always a closed subset of C. If T' is
selfadjoint, then spec(T) C R. If T is positive, then spec(T') C [0, 00). Notice
the elementary facts that 0 ¢ spec(T") implies injectivity of T', but that there
are everywhere defined bounded closed injective positive operators T with
0 € spec(T).

We call a family {E) | A € R} of orthogonal projections Ex: H — H a
spectral family if it satisfies for x € H and A, p € R

Alim Ex(z) =0
)\lim E\(z) = x;
I - :
im B (@) = By(x);
EAE, = EuEx = Buinpapy-

Denote by d{u, Ex(u)) the Borel measure on R which assigns to the half open
interval (A, p] the measure (u, E,(u)) — (u, Ex(u)). If g: R — R is a Borel
function, we obtain a selfadjoint operator on H

75 g(X) dEy (1.64)

with dense domain

dom (/_o;g()\)dE,\) = {u €H ‘ /_O; g(\)? d{u, Ex(u)) < oo} :

It is uniquely determined by the property that for all u € dom ( ffooo g(\)dE A)

(wo ([ oz ) @)= [~ aatw By 05)

If g is a complex valued Borel function on R, one defines | _Oooo g(A\)dE), using
the Polar Decomposition g = R(g) + i - 3(g).

Any selfadjoint operator T: dom(7T) — H determines a spectral family
{ET | X € R}. Tt is uniquely determined by the property

T:/ A\ dET. (1.66)
—o0
We often abbreviate for a Borel function g: R — R

g(T) = /OO g(\) dET. (1.67)

— 00



1.4 Comparison of Analytic and Cellular L?-Betti Numbers 57

We have EY = X(—oo N (T) = f_oooo X(_OOQ\]dEAT for X (—so,x the character-
istic function of (—oo, AJ.

Definition 1.68 (Spectral family). We call the spectral family associated
to a selfadjoint operator T by (1.66) the spectral family associated to T
The spectral family associated to an essentially selfadjoint operator T is the
spectral family associated to Ty -

Notation 1.69. Given two unbounded operators S,T: Hy — Hy with do-
mains dom(S) and dom(T) and complex numbers A, p, define the unbounded
operator A+ S+ - T: Hy — Hy with domain dom(A- S+ p-T) = dom(S) N
dom(T) by (A-S+pu-T)(x)=X-S(x)+p-T(x) for x € dom(S) Ndom(T).

Given two unbounded operators S: dom(S) C Hy — Hy andT: dom(T) C
Hs; — Hj, define the unbounded operator T o S with domain dom(T o S) =
S~Y(dom(T)) by T o S(z) := T(S(x)) for x € S~ (dom(T)).

Given a selfadjoint operator T' the functional calculus g — ¢(T') is an
essential homomorphism of C-algebras in the following sense. Given Borel
functions g1 and go and complex numbers A\; and Az, the minimal closure
of A\ - 1(T) + A2 - g2(T) is (A1 - g1 + A2 - g2)(T) and the minimal closure of
92(T) 0 g1(T) is (g1 - g2)(T), where (A1 - g1 + A2 - g2) and (g1 - g2) are the
obvious Borel functions given by pointwise addition and multiplication.

Let E and F' be Hermitian vector bundles over a complete Riemannian
manifold without boundary. Let D: C®(E) — C2°(F) be an elliptic differ-
ential operator where C2°(FE) is the space of smooth sections with compact
support. Our main examples are dP: QP(M) — QPTY(M), 67: QP(M) —
QP=1 (M) and A,: 22(M) — P(M). Notice that there is a formally ad-
joint operator D': C2°(F) — C°(F) which is uniquely determined by the
property that (D(u),v)r2 = (u, D'(v))r2 holds for all u,v € C*(E). It is
again an elliptic differential operator. For instance, 6?*! is the formal adjoint
of dP. The minimal closure Dy, of D: C®°(E) — L*C°(F) has been de-
fined above where L2C*°(F) is the Hilbert space completion of C2°(F). The
mazimal closure Dyay of D is defined by the adjoint of (D). Indeed, for
any closure D of D: C2°(E) — L>C°(F) we have Dyin C D C Dpax. One
can also describe dom(Dy.y) as the space of u € L2C°(FE) for which the
distribution D(u) actually lies in L2C°(F).

Lemma 1.70. (1) Let M be a complete Riemannian manifold without bound-
ary. Then the Laplacian Ay: 2P(M) — L?*QP(M) is essentially selfad-
joint. The minimal and mazimal closures of dP: 2P(M) — L2QPTL(M),
8P QP(M) — L2QP~Y(M) and A,: 2P(M) — L2QP (M) agree;

(2) Let M be a cocompact G-manifold without boundary and with G-invariant
Riemannian metric and let E and F' be G-vector bundles with G-invariant
Hermitian metrics. Let D: CX(E) — CX(F) be a G-equivariant el-
liptic operator. Then the minimal closure and the mazimal closure of
D: C®*(E) — L2C*(F) agree.
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Proof. (1) The Laplacian is essentially selfadjoint by [109, Section 3],[216].

The claims about the equality of the minimal and maximal domains follow

then from [73, Lemma 3.8 on page 113]

(2)) is proved in [9, Proposition 3.1 on page 53]. O
Notice that Lemma [1.70/ (1) allows us to talk about the spectral family

associated to the Laplace operator A,: 27(M) — L?Q2P(M) on a complete

Riemannian manifold without boundary.

1.4.2 L?-Hodge-de Rham Theorem

In this subsection we explain parts of the proof of the L2-Hodge-de Rham-
Theorem which we have already stated in Theorem [1.59. For more details we
refer to the original proof in [145] (see also [147]).

Definition 1.71 (L?>-de Rham cohomology). Let M be a complete Rie-
mannian manifold without boundary. Put

ZP(M) = ker ((d”: Q2P(M) — L*Q"T(M)) )
BP(M) :=im ((d"~': Q271 (M) — L*QP(M))

Define the unreduced L?-de Rham cohomology by

HP, (M) := ZP(M)/BP(M)

(2),unr
and the (reduced) L?-de Rham cohomology by the Hilbert space
Hé) (M) := ZP(M)/ clos(BP(M)).

Notice that this definition makes sense since ZP(M) C L2QP(M) is closed
and BP(M) lies in ZP(M). Because of Lemma [1.70 (1) we get the same if
we use the minimal closures instead of the maximal closures. The difference
of the unreduced and reduced L2-cohomology is measured by the Novikov-
Shubin invariants which we will introduce in Chapter [2.

Lemma 1.72. Let M be a complete Riemannian manifold without boundary.

The inclusion of H?Q)(M) into L?2Q2P(M) induces an isometric isomorphism

H2y (M) = HE

(2)(M)-

Proof. The following inequalities can easily be derived from Lemma [1.56

clos(B7(M)) = clos(d? (22~ (M)
ZP(M) = clos(6PTH (02T (M)))*.

Now apply Theorem [1.57. O
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Let M be a cocompact free proper G-manifold with G-invariant Rieman-
nian metric. Suppose that M has no boundary. Let H*$2?(M) for a non-
negative integer k be the k-th Sobolev space of p-forms on M, i.e. the Hilbert
space completion of £22(M) with respect to the inner product or norm

(wonhe = (L4 Ap) 2w, (1+ 2) 20) 2 = {w, (1+ Ap)*n) 12
lolle = /110 + Ap)H/20llze = 3/, (1+ Ay i)
using the L2-inner product (1.52) or L2-norm of (1.53). In particular we get
HOQP(M) = L202P(M). One can identify H2*2P(M) with {w € L2QP(M) |
(1+ Ap)kw € L202P(M)}, where (1+ A,)*w is to be understood in the sense

of distributions by Lemma [1.70/ (2). The operator (1 + A,)*/2: Q2(M) —
022(M) induces for k£ <! a G-equivariant isometric isomorphism

(1+ A2 H QP (M) = HZRQP (M) (1.73)

by the following argument. Obviously (1 + Ap)k/ 2 is well-defined and isomet-

ric. In particular its image is closed. It remains to show that it is surjective.
For this purpose it suffices to show that the orthogonal complement of the
image of (1+ A,)*: H**QP(M) — L20P(M) is trivial. Since this is the sub-
space of those elements w € L20QP(M) for which (w, (1 + A,)*(n))p2 = 0
holds for all n € 2P(M), w lies in the kernel of ((1 + A,)*)max. From
Lemma 1.70/ (2) we get ((1 + A,)")max = ((1 + Ap)¥)min. Hence there is
a sequence (wp)n>o of elements in 22(M) which converges in L202P(M)
to w and for which (1 + A,)¥(w,) converges in L202P(M) to zero. Since
llwnllzz < |[(1+ Ap)*(wy)||z2 holds, we get w = 0.

The definition of H*2P(R™) corresponds to the usual definition of Sobolev
space in the literature (see for instance [473, §7 in Chapter I]). In [145], only
Sobolev spaces H?*2P(M) are considered and denoted by HF.

Notice that using a fundamental domain of the G-action one obtains a
G-equivariant isometric isomorphism from L22P(M) to the tensor product
of Hilbert spaces [?(G) ® L202P(G\M) where G acts on [2(G) by left multi-
plication and on L202P(G\M) trivially [9, 4.1 on page 57 and page 65]. This
implies that H¥QP(M) is a Hilbert A/(G)-module in the sense of Definition
1L.5/for all k£, p > 0. The exterior differential induces a G-equivariant bounded
operator, denoted in the same way, d?: H*1QP(M) — H* QP+ (M) for all
k,p > 0. (To get bounded operators as differentials is the main reasons why
we have introduced the Sobolev spaces.) Thus we obtain for I > n with
n = dim(M) a Hilbert N(G)-cochain complex H'=*2*(M) in the sense of
Definition [1.15

= 0= HOOOM) S g o o) L w22 () L
LM M) - 0 — ... (174

We have introduced its (reduced) L?-cohomology H(Q)(Hl_*ﬂ* (M)) in Defi-
nition [I.16l The next lemma will show that it is independent of I > dim(M).
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Lemma 1.75. Let! > dim(M). Then the obvious inclusion ofoz)(M) with

the L?-norm into H'=PQP(M) is a G-equivariant isometric embedding and
induces a G-equivariant isometric isomorphism

HP

(o) (M) = H{

P (H* 0 (M),

Proof. Consider w € H%’Q) (M). Obviously ||w||x = [lw|lo < oo for all k& > 0.
This implies that dw, ddw, dw and ddw are square-integrable. We conclude
from Lemma [1.56

(wyw)o = (1+Apw,w)y = (w,w)o + (dPw, dPw)g + (0w, 6w)o.

This implies dw = dw = 0. For n € H"PT1QP=1(M) we get from Lemma
1.56

(W d oy = (w, (L4 Ap) Pd ) = (%w, (1+ A1) Pro = 0.

This shows that H‘&) (M) lies in ker(dP) and is orthogonal to clos(im(dP~!)) in
H'=PQP(M). It remains to show that the orthogonal complement of ’H’é) (M)
in ker(dP) is contained in clos(im(dP~1)).

Given p € ker(dP), we can decompose it orthogonally as u = w + n for
w e HI(’Q)(M) and 7 in the orthogonal complement of HPQ)(M) in ker(dP) C
H'=PQP(M). Put 7 = (1 + A,)4P)/2(5). Then d?, ' = 0 and for every
v € Hiy (M) we get

(')

(1+4, )“ 2, v)o
(14 4,) (=p)/2) (1+ Ap)(l—p)/2V>0

M V)i—p
0.

{
{
= {

From Theorem [1.57, we obtain a sequence of elements 1, € £22=(M) such
that ' = lim,,_. d?~'n, with respect to the L?-norm. Now we derive from
1.73in H'=P0P(M)

-1 -1
n = (04 2)002) Ty = dim a7 (14 4,02,
where we think of 7,, as an element in H'P~1(M). Hence 7 belongs to
clos(im(dP~1)) in H'=P0QP(M). O

Fix an equivariant smooth triangulation K of M. In particular K is a free
cocompact G-CW-complex and we have introduced its cellular L?-cochain
complex C(, (K) in Definition [1.29. Next we give a different model for it
in terms of the cellular cochain complex C*(K) = homgz(C.(K),C). Fix for
any simplex in K some (arbitrary) orientation. Then we obtain a basis for
Cp(K) for each p > 0 and an element in C?(K) is the same as a function f
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from the set S,(K) of p-dimensional simplices of K to C. We call f square-
summable if 30 o o) |f(0)]? < oo. Let I2CP(K) C CP(K) be the subspace
of square-summable cochains. One easily checks that we obtain a subcomplex
I2C*(K) C C*(K), the cochain complex of square-summable cochains. It be-
comes a finite Hilbert N (G)-chain complex with respect to the inner product

(f,9)L2 = ZJGSn(K) flo)g(o).

Lemma 1.76. There is a natural isometric G-chain isomorphism

f*1 Oy (K) = 1PCH(K).

Proof. The map f? sends u € homzg(Cp(K),I%(G)) to the element fP(u) €
map(S,(K),C) which assigns to a simplex o the coefficient A, of the unit
element e € G inu(o) = c5Ag - 9- O

If w € H*QP(M) for k > dim(M)/2 + 1, then w is a C'-form by the
Sobolev inequality. In particular we can integrate w over any oriented p-
simplex of K and thus obtain an element in CP(K). It turns out that this
element actually lies in [?CP(K). By this construction and the isomorphism
appearing in Lemma [1.76/ we obtain for large enough [ > 0 a cochain map of
Hilbert A/(G)-cochain complexes, the L?-de Rham cochain map

A*: H'7 27 (M) — Oy (K). (1.77)

Notice that C(,,(K), I2CP(K), f* and A* are independent of the choices
of orientations of the simplices. A change of the orientation of a simplex o
affects [ w and the basis for C,(K) in a way which cancels out.

Next we define a right inverse of A* as follows. The construction is due
to Whitney [522, VIL.11 on page 226]. Let {Us }ses, (k) be the open covering
given by the open stars of the 0-simplices. Recall that the closed star st(o) of a
simplex o consists of all simplices 7 which are faces of some simplex 7" which
has o as face. The open star is the interior of the closed star. Obviously
gUs = Uy for o € Sy(K) and g € G. Choose a G-invariant subordinate
smooth partition {es}ses,(x) of unity, i.e. smooth function e;: M — [0,1]
with support in U, such that ey, 0ly = e, for l;: M — M left multiplication
with g holds for all 0 € Sy(K) and g € G and that the (locally finite) sum
ZJESU(K) es is constant 1. Given a p-simplex 7 with vertices g, o1, ..., op,
let ¢, € I?CP(M) be the characteristic function associated to 7 and define a
smooth p-form W (e, ) with support in the star of 7 by

P
W(e,) := p! Z:(—l)ieo-icloeg0 Ao Ao, Aoy N . Ndes,
i=0

if p> 0 and by W(c;) = e, if p = 0. Using the isomorphism appearing in
Lemma [1.76/ we obtain a well-defined cochain map of Hilbert N (G)-cochain
complexes, the so called Whitney map.
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W*: Clyy (K) — H'™* 02" (M). (1.78)

Again W* does not depend on the choice of orientations of the simplices. It
satisfies

A* o W* =id. (1.79)
In particular we see that the map induced by A* on L?-cohomology
H{y)(A"): Hipy (H'™" 2% (M) — Hy)(Cly) (K)) (1.80)

is surjective. Next we explain why it is injective. This is not done by con-
structing a homotopy between W* o A* and id as it can be done for G\ K
and G\ M since the construction on the quotients is not local and cannot be
lifted to K and M. Instead one modifies the definition of W, namely one
uses the partition given by barycentric coordinate functions e, for a ver-
tex o instead of the smooth partition before. Then the image of this new
Whitney map consists of L?-integrable forms and yields a bounded operator
wer: C{’Q)(K) — L20QP(M) (see Lemma 2.79), but the image does not lie in
H'QP(M) for all [ > 0 anymore, since the barycentric coordinate functions
are not smooth and hence W (¢, ) is not smooth for a p-simplex 7. (We will see
in the proof of Lemma [2.79 that W (c,) is at least continuous.) The advantage
of this modified Whitney map lies in the following result [145, Lemma 3.9 on
page 164].

Lemma 1.81. Letw € HXQP(M) be a fired element and k > dim(M)/2+1.
For every e > 0 we can find an equivariant smooth triangulation K(€) which
is a subdivision of K such that

lw = Wi 0 Ao @)ll2 <€

holds for the L?-de Rham map Ai(e) and the modified Whitney map WIp((E)
associated to K (€). O

This Lemma [1.81! is the key ingredient in the proof of injectivity of the
map (1.80) as we explain next. Because of Lemma [1.72] and Lemma [1.75 it
suffices to show for an element w € H?Z)(M) with Hy) (A7)([w]) = 0 that its
class [w] € H{z)(M) vanishes.

Fix € > 0. Lemma [1.81] implies for an appropriate subdivision K (e)

llw = Wi (o 0 Ao @)llz < e/2.

There is a cochain map [2C*(K) — [?C*(K (¢€)) which induces an isomor-
phism on L2-cohomology and is compatible with the de Rham cochain maps
for K and K(e). We conclude H (A% )([w]) = 0. Hence we can find a

(2
cochain u € I2CP~1(K (¢)) with
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||A€((E) (W) - C];(_(i) (U)HL2 < .
W

This implies

HW_Wﬁ'(d C?((e)( )HL2

< lw = Wi © Ao @Iz + [WE (o © Af (@) = WE ) © i oy ()] 2
W20 AD @)z + W |- [[ A% o @) — el (w2

;
2 WE |

< jw -
<6/2+|| (E)”
= e

Now one checks that the image of W K() is contained in the domain of
(dr: Qp(M) — L2QPTY(M)) and that dh LoWi ) = Wi och L. Hence

for € > 0 there is v in the domain of (dP: £28(M ) — LZQP‘“(M))IHax such
that ||Jw — dPLL(v)||L2 < € holds. Hence the class represented by w in the re-

max

duced L?-de Rham cohomology H (2)(M ) is trivial. This shows that the map
appearing in (1.80)) is bijective. Now the map appearing in Theorem [1.59 is

bijective since it is the composition of the bijective maps appearing in Lemma
1.75l and (1.80). This finishes the proof of Theorem [1.59. O

1.5 L?-Betti Numbers of Manifolds with Boundary

We briefly discuss the case of a manifold with boundary. A useful discussion
what smooth means for a function or a section of a bundle on a manifold with
boundary is given in [467]. Lemma [1.56/ says that for a complete Riemannian
manifold with boundary and for smooth forms w € £2P(M) and n € 2P (M)
such that w, dPw, n and 6?71y are square-integrable, we get
@anhin — @ e = [ @Al (182
oM
The classical de Rham isomorphism is an isomorphism for any manifold re-
gardless whether it has a boundary or not (see Theorem [1.47).
Suppose that the boundary 0M of the complete Riemannian manifold M
is the disjoint union of JyM and 91 M where we allow that dgM, 01 M or
both are empty. A form w € 2P(M) satisfies Dirichlet boundary conditions

on OoM if wlg,mr = 0 holds. It satisfies Neumann boundary conditions on
O M if ¥Pw|s, pr = 0 holds. Define

Q5 (M, 0oM) = {w € QP(M) | w|gynmr = 0, (6"w)|g,ps = 0,
(#Pw)lo, i = 0, (" dPw)|g, a0 = 0};  (1.83)
OV (M, 00M) := {w € Q8(M) | wloom = 0, (¥Fw)|a, s = 0};  (1.84)
Q4(M,00M) = {w € QP(M) | wlg,m = 0}; (1.85)
Q5 (M,00M) == {w € QL(M) | (+"w)|o, s = 0}. (1.86)
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Define the space of L?-integrable harmonic smooth p-forms satisfying bound-
ary conditions

HP

(M, M) = {w € Q5(M, M) | Ap(w) = o,/ WA %w < oa}. (1.87)
M

We have the following version of the Hodge-de Rham Theorem [1.57.

Theorem 1.88. (Hodge-de Rham Theorem for manifolds with
boundary). Let M be a complete Riemannian manifold whose boundary OM
is the disjoint union OgM and 0y M. Then we have the so called Hodge-de
Rham decomposition

L2QP(M) = Hy (M, 80M) @ clos(d”~ (257 (M, 0o M))) &
clos(aPHH (20T (M, 8y M))).
We have the following version of the L2-Hodge-de Rham Theorem 1.59.

Theorem 1.89. (L?-Hodge-de Rham Theorem for manifolds with
boundary.) Let M be a cocompact free proper G-manifold with G-invariant
Riemannian metric whose boundary OM is the disjoint union of G-spaces
oM and M. Let (K; 00K, 01 K) be an equivariant smooth triangulation of
the triad (M; 0o M, 01 M). Then integration defines an isomorphism of finitely
generated Hilbert N'(G)-modules
Hie)

The detailed proof of Theorem [1.88 and of Theorem [1.89 in the more
general context of Riemannian manifolds with bounded geometry can be
found in [459, Theorem 5.10, Theorem 8.2 and Corollary 8.15] (see also [322),
Theorem 5.13]). Theorem [1.88 remains true if one replaces 247" (M, 9y M)
by Q2PH(M, 9 M) and Q2T (M, 9o M) by V(M 9y M).

The expression (1.60) in terms of the heat kernel on M for the analytic
L2-Betti numbers which are defined by

b3 (M, 00 M) := dimy(c)(H{y, (M, 0o M)) (1.90)

(M,00M) = Hp (K, K).

carries over to the situation studied in Theorem [1.89]if one uses {22 (M, 9y M)
as initial domain for A,.

There is also the following version of Lemmall.72 proved in [459, Theorem
6.2]. Define the (reduced) L2-cohomology Hf’z)(M ,00M) as in Definition [1.71
but now using d?: 28(M,00M) — L?>QPT1(M) instead of dP: 22(M) —
L20PHL(M).

Lemma 1.91. Let M be a complete Riemannian manifold whose bound-
ary OM s the disjoint union of OyM and O1M. Then the inclusion of
H?z)(M, doM) into L202,(M) induces an isomorphism

HEy, (M, 00M) = HY, (M, 0o M).
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Notice that we do not require here (nor later in the context of Novikov-
Shubin invariants) that the metric is a product near the boundary. However,
this will be crucial when we deal with torsion and L?-torsion in Remark[3.162.

1.6 Miscellaneous

The following result is sometimes useful since it gives a criterion for the
reduced L?-cohomology to be non-trivial.

Lemma 1.92. Let M be a complete Riemannian manifold without boundary.
Denote by i: HP(M;C) — HP(M;C) the natural map from the cohomology
with compact support to the cohomology of M. Then im(i) injects into the
reduced L?-cohomology H&)(M).

Proof. Let k: HP(M;C) — H(p2) (M) be the canonical map. Choose any linear
map s: im(i) — HP(M;C) with i o s = id. We want to show that ko s is
injective. It suffices to prove for a smooth closed p-form w with compact
support satisfying k([w]) = 0 that i([w]) = 0 holds.

Since k([w]) = 0, there is a sequence (1,)n>0 in 2°71(M) such that
w = lim,,_, o0 dP~1(n,,) with respect to the L?-norm holds. Suppose i([w]) # 0.
Let p: M — M be the orientation covering of M. This is a double covering
with orientable total space and the induced map p*: HP(M;C) — HP(M;C)
is injective. Hence p*w represents a non-zero element in H?(M;C). Put m =
dim(M). By Poincaré duality [57, (5.4) on page 44 and Remark 1.5.7 on page
46] there is a smooth (m — p)-form u with compact support on M such that
d"™Pu=0and fﬁ p*wAp is different from zero. This yields the contradiction

/7p*w Ap = lim [ @ 'pn,Ap = lim [ d"'(p'n.Ap) = 0.0
M n=oo M n=oo M

Cellular L?-Betti numbers and L?-(co-)homology can also be defined for
a cocompact proper G-CW-complex X. Recall that the isotropy group of
each point of a free G-CW-complex is trivial, whereas it is finite for a proper
G-CW-complex. The point is that the cellular L?-chain complex C* (X) =
12(G) ®z6 C«(X) is still defined as Hilbert N'(G)-chain complex for a proper
G-CW-complex. After a choice of a characteristic map (Q7F,q¢"): G/H; x
(D", S"7 1) — (X, X,,_1) for each element of the set I,, of equivariant n-
dimensional cells we obtain explicit isomorphisms

Cul(X) = @ Z(G/H):
i€l

P r@/m),

i€l

cP(X)

IR



66 1. L2-Betti Numbers

and we put on CT(LQ)(X ) the induced Hilbert A (G)-module structure. This is
independent of the choice of characteristic maps since for a different choice
the two identifications of C,,(X) differ by a direct sum of automorphisms of
the shape €; - Iy, : Z|G/H;] — Z|G/H;] for some ¢; € {£1} and ¢; € G.

Theorem [1.35] (1)), (3), (4), (8), (9) and (10) remain true if one replaces
free by proper. The basic observation is that C£2) (X) can be written as
I2(G) ®cg (C®z Cu(X)) and C ®z C,(X) is a finitely generated projective
C[G]-module for all n. Theorem [1.35 (2)) becomes

DEDPBI ) =Y ()P Y| T (1.93)

p>0 p>0 i€lp

since dimy () (1*(G/H;)) = |H;| ™. The space H{,) (M) of harmonic L*-forms
of a cocompact proper G-manifold M with G-invariant Riemannian metric
inherits the structure of a Hilbert A/(G)-module and Theorem [1.59 remains
true without the assumption that M is free.

We will give a combinatorial approach to the L?-Betti numbers in Section
3.7 which is useful for concrete calculations.

We will explain a proportionality principle for L2-Betti numbers in The-
orem [3.183, Theorem [7.34/ and Corollary [7.37.

We will compute the values of L2-Betti numbers of the universal coverings
of compact 3-manifolds in Theorem 4.1/ and of locally symmetric spaces in
Theorem [5.12] and (5.15).

A more algebraic treatment of Hilbert modules, dimension functions and
L2-Betti numbers and a definition of L2-Betti numbers for arbitrary topolog-
ical spaces with an arbitrary G-action will be given in Chapter [6. This will
apply in particular to EG for any (discrete) group G.

We will discuss the behaviour of L?-Betti numbers of groups under quasi-
isometry and measure equivalence in Section [7.5.

Lemma 1.94. Let B be the set of real numbers r, for which there exists a
CW -complex X of finite type and an integer p > 0 with b,(,z)(X) =r. Then
B is countable and contains {r | r € Q,r > 0}.

Proof. We get {r | r € Q,r > 0} C B from Example 1.38. Let B’ be the
set of real numbers r, for which there exists a finitely presented group G,
positive integers m and n and a matrix A € M(m,n,ZG) satistying

r o= dimp(g) (ker (rff): 2™ — lz(G)n>) ;

where rff) is given by right multiplication with A. The fundamental group 7

of a CW-complex of finite type X is finitely presented and

bz(?)(f() = dimN(,,)(ker(cl()Q))) + dims () (ker(cl(ﬁl)) — Npt1
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follows from Additivity (see Theorem [1.12] (2)), where n,41 is the number of
(p + 1)-cells of X. Hence it suffices to show that B’ is countable. Since there
are only countably many finite presentations and ZG is countable for any
finitely presented and hence countable group G, Lemma [1.94] follows. 0O

In Chapter 10/ we deal with the question how large the set B is. At the
time of writing no counterexample to the statement B = {¢g € Q | ¢ > 0} is
known to the author.

We will deal with the Singer Conjecture [11.1] that the L2-Betti numbers
of the universal covering of an aspherical closed manifold vanish outside the
middle dimension in Chapter 11.

We will relate the L2-Betti numbers of the universal covering of an aspher-
ical closed manifold to its simplicial and its minimal volume (see Conjecture
14.1 and Subsection [14.2.6).

Question 1.95. (Vanishing of L2-Betti numbers of the base and the
total space of a fibration).

Lt F - E L Bbea fibration of connected finite CW -complezes. Suppose
that all LQ—Bgtti numbers of B are trivial. Does this imply that all the L?-Betti
numbers of E are trivial?

The answer is yes if B = S* by Theorem [1.39. The answer is also known
to be affirmative if one of the following conditions is satisfied [61]: i.) B is
an S'-CW-complex such that the inclusion of one (and hence all) orbits
induces a map on the fundamental groups with infinite image. ii.) The map
m1(p): m(F) — m(B) is bijective and m(B) is virtually poly-cyclic. iii.)
The map 71 (p): m1(E) — 71 (B) is bijective and 71 (B) operates trivially on
H.(F). If B is aspherical, more information will be given in Theorem [7.4.

Using the center-valued trace (see Theorem [9.5) one can define a center-
valued von Neumann dimension and thus elements by (X; NV(G)), which take
values in the center Z(N(G)) of the von Neumann algebra N(G). Essen-
tially we get for any conjugacy class (g), which contains only finitely many
elements, a number. The value at (1) is the L?-Betti number. Lott [321] de-
fines analytically delocalized L?-Betti numbers for the universal covering M
of a closed Riemannian manifold M, which assigns to any conjugacy class a
number. The invariant is presently only defined under certain technical as-
sumptions. For example, the p-th delocalized Betti number is well-defined if
G is virtually abelian, or if G is virtually nilpotent or Gromov hyperbolic and
there is a gap away from zero in the spectrum of A, [321, Proposition 6].

Elek [171] defines an invariant b, (X) for a finite CW-complex X replacing

Cly)(X) by homz(Cy(X);Fz) for Fy the field of two elements and replacing
the von Neumann dimension by the topological entropy of linear subshifts,
provided that G is amenable. It has properties similar to the L2-Betti num-
bers.

Finally we give some further references. Survey articles on L?-cohomology
and L2-Betti numbers are [164], [168], [237, section 8], [332], [338], [341], [360]
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and [411]. More information about Morse inequalities in the L?-context can
be found for instance in [182], [363], [364], [401], [400], [475].

Exercises

1.1. Let H C G be a subgroup. Show that the Hilbert space [*(G/H) with
the obvious G-action is a Hilbert N'(G)-module if and only if H is finite, and
that in this case its von Neumann dimension is |H|!.

1.2. Show that Lemma(1.9 (5) remains true if one only requires that the rows
are weakly exact instead of exact, provided that all Hilbert N (G)-modules
have finite dimension.

1.3. Show by an example that Theorem [1.12 (4) becomes false if one drops
the condition dimy ) (V) < oo.

1.4. Consider the following diagram of Hilbert A (G)-modules of finite di-
mension with weakly exact rows

U —2— Uy —2— Uz —2 Uy —2— Us

S A |

Vi ——V, —— Vs —— V, —— V;

Suppose that f; has dense image, f> and f; are weak isomorphisms and f5
is injective. Show that then f3 is a weak isomorphism.

1.5.  The group von Neumann algebra A(G) carries an involution of rings
given by taking adjoints of bounded G-equivariant operators I2(G) — I?(G).
Show that the ring homomorphism i: N'(H) — N(G) given by induction (see
Definition [1.23)) is compatible with these involutions.

1.6. Find as many different proofs as possible for the fact that all the L2-
Betti numbers of the universal covering of the n-dimensional torus 7" for
n > 1 vanish.

1.7. Let X be an aspherical CW-complex of finite type. Suppose that its
fundamental group contains a normal infinite cyclic subgroup. Show that
then all L2-Betti numbers of X vanish.

1.8. Show that a symmetric densely defined linear operator 7': dom(T") — H
is selfadjoint if and only if the range of T'+i-id is H and that it is essentially
selfadjoint if and only if the range of 7'+ - id in H is dense.

1.9. Let f: H — H be a linear map of finite dimensional Hilbert spaces
which is symmetric. Show that the projection E{ of the associated spectral
family is the sum € u<x Py where pr), is the projection onto the eigenspace
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of p € R. Let u: H — C" be a unitary operator such that ufu=!: C* — C"
is given by a diagonal matrix D with real entries. Given a Borel function
g: R — C, let g(D) be the diagonal matrix obtained from D by applying
g to the diagonal entries. Show that [“° g(A\)dEj in the sense of (1.64) is

u~tg(D)u.
1.10. Let M be a complete Riemannian manifold without boundary. Show

that we obtain a Hilbert cochain complex (in the sense of Definition [1.15/ for
G=1) by

p—2 p—1 P
diin d dpf 1\ %min d dp diin
Om( min) Om( min) ce

if we equip dom(d? . ) with the Hilbert structure given by (1.63). Show that
its unreduced and reduced L2-cohomology in the sense of Definition [1.16

agrees with the notions of Definition [1.71l

1.11. Show by giving an example that Lemma [1.56/ does not hold without
the hypothesis that M is complete.

1.12.  Show for any free Z-CW-complex X of finite type that bz(,Q) (X) <
bp(Z\X) holds.

1.13.  Let M be an orientable closed 4-manifold with 7 (M) = Z/2 x Z/2.
Show b —
b7 (M) = x(M) = 2+ by(M).

1.14. Fix an integer n > 1. Show that for a sequence 7”@,7"%2)7 . 77“7(12) of
non-negative rational numbers and a sequence r1,7s,...,r, of non-negative

integers there is a finite (n 4 1)-dimensional CW-complex X with infinite

fundamental group satisfying bz(,2) ()~() = 7';(,2) and b,(X) =r,forp=1,...,n.






2. Novikov-Shubin Invariants

Introduction

In this chapter we introduce and study Novikov-Shubin invariants for Hilbert
chain complexes and for regular coverings of C'W-complexes of finite type or
of compact manifolds.

We will associate to the Laplacian A, of a cocompact free proper G-
manifold M with G-invariant Riemannian metric its spectral density function
FpA (M): [0,00) — [0, 00) which assigns to A the von Neumann dimension of
the image of E), where {E) | A > 0} is the spectral family of A,. We
rediscover the p-th L?-Betti number by (M) by FA(M)(0). If G is finite
FpA (M) measures how many eigenvalues < A, counted with multiplicity, A,
has, and this is the right intuition also for infinite G. FpA(M ) contains a lot
of information about the spectrum of A,.

The spectral density function is an example of a so called density function
F:[0,00) — [0,00], i.e. F is monotone non-decreasing and right-continuous.
Two density functions F' and G are called dilatationally equivalent if there
are C > 0 and € > 0 such that G(C~! - \) < F(\) < G(C - \) holds for all
A € [0,€¢]. The spectral density function itself depends on the Riemannian
structure. However, it turns out that its dilatational equivalence class only
depends on the G-homotopy type of M. Hence it becomes a very interesting
object because it is defined in terms of analytic data but is also a topological
invariant. The Novikov-Shubin invariant of a density function is defined by

a(F) = li}\niérifw €|

0,00},

provided that F'(A) > F'(0) holds for all A > 0. Otherwise, one puts formally
a(F) = oo™. It measures how fast F(\) approaches F(0) for A — 0% and
takes the value oot if and only if there is a gap in the spectrum at zero. It
only depends on the dilatational equivalence class of F'. Define the Novikov-
Shubin invariant apA(M ) of M by the one of FpA(M ). Novikov-Shubin in-
variants were originally defined in [400],[401]. In some sense Novikov-Shubin
invariants measure how “thin” the spectrum of A, at zero is. We will also in-
troduce a, (M) which is defined in terms of the differential d?~!. It measures



72 2. Novikov-Shubin Invariants

the difference between the unreduced and the reduced L?-de Rham cohomol-
ogy, the unreduced and the reduced one agree in dimension p if and only if
ap(M) = oo™, We have o (M) = 1/2 - min{oy, (M), agpy1 (M)}

Via the Laplace transform the dilatational equivalence class of the spec-
tral density function and the Novikov-Shubin invariants are invariants of the
asymptotic behaviour of the heat kernel for large times. Such invariants reflect
the global geometry but are in general very hard to study and to compute.
Notice that index theory yields invariants of the asymptotic behaviour of the
heat kernel for small times and hence local invariants in contrast to invariants
of the large time asymptotics which cannot be expressed locally.

We will introduce and study spectral density functions and Novikov-
Shubin invariants for Hilbert chain complexes and possibly unbounded op-
erators in Section 2.1. In particular we will show that the spectral density
function is a homotopy invariant and satisfies a subadditivity-relation for
short exact sequences. In Section 2.2 we apply this to the cellular L?-chain
complex and thus obtain the cellular spectral density function and Novikov-
Shubin invariants of a free G-CW-complex of finite type. We prove their main
properties such as homotopy invariance, Poincaré duality, product formula
and express the first Novikov-Shubin invariant in terms of the growth rate
of the fundamental group. We give an explicit formula in the case G = Z. In
Section 2.3 we introduce their analytic counterparts and show in Section 2.4
that the analytic and the cellular spectral density functions are dilatation-
ally equivalent and hence the analytic and cellular Novikov-Shubin invariants
agree [167], [240]. In Section [2.5 we discuss the conjecture that the Novikov-
Shubin invariants are either rational positive numbers, oo or co™. We briefly
treat the case of a manifold with boundary in Section [2.6.

To get a quick overview about Novikov-Shubin invariants one should read
through Sections 2.2) 2.3 and 2.5. The material of this chapter is rather
independent of the following chapters which can be read without studying
this chapter beforehand.

2.1 Spectral Density Functions

In this section we introduce and study the spectral density function associated
to morphisms of Hilbert modules and to Hilbert chain complexes.

2.1.1 Spectral Density Functions of Morphisms

We next deal with the spectral density function of a map of Hilbert modules.
We treat the more general case of an unbounded densely defined operator
since this setting will be needed when we deal with the analytic case. If one
only wants to investigate the cellular version it suffices to treat bounded
operators.



2.1 Spectral Density Functions 73

Definition 2.1 (Spectral density function). Let U andV be Hilbert N'(G)-
modules. Let f: dom(f) CU — V be a G-equivariant closed densely defined
operator. For A\ > 0 we define L(f,\) as the set of Hilbert N'(G)-submodules
L C U such that L C dom(f) and ||f(z)|| < A-||z|| holds for all z € L.
Define the spectral density function of f

F(f): [0,00) — [0, 00], A = sup{dimp) (L) | L € L(f, )}
Define the L?-Betti number of f by

VA (f) = dimyg)(ker(f)) = F(£)(0).
We call f Fredholm if there is € > 0 such that F(f)(e) < oo.

We will conclude from Lemma 2.3 that the definition of Fredholm for
a morphism of Hilbert A (G)-modules of Definition 1.20/ and Definition [2.1
agree.

Notice that ker(f) C U is closed and hence a Hilbert A (G)-module and
its von Neumann dimension is defined. The meaning of the spectral density
function becomes more evident if one expresses it in terms of the spectrum
of f*f, as we explain next.

Lemma 2.2. Let f: dom(f) C Hy — Hy be a closed densely defined opera-
tor of Hilbert spaces Hy and Hy. Define

dom(f*f) :={z € Hy | z € dom(f), f(x) € dom(f™*)}

and thus an operator f*f: dom(f*f) C Hy — Hy. Then

(1) The subspace dom(f* f) is dense and f*f is a selfadjoint operator. More-
over, dom(f*f) is a core for dom(f), i.e. dom(f*f) C dom(f) and
for any x € dom(f) there is a sequence x, € dom(f*f) such that
limy, 0o T, = = and lim,, o f(2,) = f(x) holds;

(2) Let A >0 and x € dom(f). Then

@) > A~ ||| if BL(x) =0, « #0;
If @) < X[l if BL. (x)

x?

where {E{f | A € R} denotes the spectral family of the selfadjoint operator
fef

Proof. (1) see [287, Theorem V.3.24 on page 275].

(2) Suppose that E/{;f(x) =0 and = # 0. Choose a sequence x,, € dom(f* f)
such that lim,,_, o, z, = z and lim, . f(z,) = f(z) holds. Since x # 0, and
0= Efzf(:c) =lim,_ y2y El{f(m) holds, we can find € > 0 with the property

(B (), 2) < 3 w,2).
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We get from the definition of the spectral family
f@a)l* = (f* f(@n), zn)
_ / i B (), )

0

> / 143 d<E;{*f(xn)vxn>
(A%,00)

:/ ,Ud<E£*f((En),l’n>+/ Md<E/]:*f(xn),$n>
(AZ,22+4¢€] (A2+€,00)

> M- (BT (@n) n) — (BL (20), 20))
(/\2 +e€)- (<$mxn> <E§2+5( n)Tn))

= (N4 6) (wm,2) — e (BLT (2n), 2n) = A2 (BL (2n), ).

Taking the limit n — oo yields

If @I > (A% +€) - (z,2) — e (BLT (2),2) = N2 (BL (2),2)

>\2+6
Nt e) - [lal? — '\|9C||2—O

= (M ) ]
>\ IISCH2

(X*
> (

and hence the desired inequality || f(x)|| > A-||x||. The easier analogous proof
of [|[f(z)|]| < \-||z]| for E/<2f(a:) = 1 is left to the reader. O

Lemma 2.3. Let U and V be Hilbert N'(G)-modules. Let f: dom(f) C U —
V be a G-equivariant closed densely defined operator. Then for A € R the
spectral projection Eizf is G-equivariant and

F(f)(N) = dimpc) (im(E{, ).

Proof. As f*f commutes with the unitary G-action, the same is true for its
spectral projections. Since im(Efgf) € L(f,\) for X > 0 holds by Lemma
2.2 (2)), we have dimN(G)(im(Eic;f)) < F(f)(A). From Lemma 2.2/ (2) and
Theorem [1.12] (2) we conclude that E e flp: L — im(Ef*f) is injective and
hence dimur(g) (L) < dlmN(G)(lm( D)) for Le £(f,)). O
Lemma 2.4. Let U and V be Hilbert N (G)-modules. Let f: dom(f) C U —
V be a G-equivariant closed densely defined operator. Let f = wul|f| be its
polar decomposition into a partial isometry u and a positive operator |f| with

dom(f) = dom(|f]). Suppose that f is Fredholm and b (f*) is finite. Then
|f| and f* are Fredholm,

b2 (f) = b@(f)



2.1 Spectral Density Functions 75

and

F(HN) =02 (f) = F(HN) =@ (f]) = F(f)(N) =02 (f).

Proof. We can assume without loss of generality that f and f* are injec-
tive, otherwise pass to the induced operator ker(f)* — clos(im(f)). Obvi-
ously F(ulf)(A) = F(f))(\) = F(flu"")(A) and f* = [flu~" where
dom (ulf]) = dom(|f]) and dom (| flu~1) = u(dom(f). 0

The intuitive meaning of the spectral density function becomes clear from
the next example, namely, F'(f)(\) counts with multiplicity the eigenvalues
wof | f] satisfying p < A.

Example 2.5. Let G be finite and f: U — V be a map of finitely generated
Hilbert A (G)-modules, i.e. of finite dimensional unitary G-representations.
Then F(f) is the right-continuous step function whose value at A is the sum
of the complex dimensions of the eigenspaces of f*f for eigenvalues p < A2
divided by the order of G, or, equivalently, the sum of the complex dimensions
of the eigenspaces of |f| for eigenvalues p < A divided by the order of G.

Example 2.6. Let G = Z". In the sequel we use the notation and the iden-
tification N (Z") = L>°(T™) of Example [1.4. For f € L°(T™) the spectral
density function F(My) of My: L*(T™) — L?(T™) sends A to the volume of
the set {z € T™ | |f(2)] < A} (see Example [1.11).

Definition 2.7. We say that a function F: [0,00) — [0,00] is a density
function if F' is monotone non-decreasing and right-continuous. If F' and G
are two density functions, we write F' <X G if there are C' > 0 and ¢ > 0
such that F(X\) < G(C - A) holds for all X € [0,¢]. We say that F' and G are
dilatationally equivalent (in signs F ~ G ) if F < G and G < F. We say that
F is Fredholm if there exists A > 0 such that F(\) < oo.

Of course, the spectral density function F(f) is a density function, and f
is Fredholm if and only if the density function F(f) is Fredholm. Recall that
for a function h: (0,00) — [0, 00) its limit inferior for A — 0+ is defined by

liAm(i)r}rf h(A) :=sup {inf{h(A\) |0 <X <p} | 0<pu} € [0, o0].

Definition 2.8 (Novikov-Shubin invariants). Let F' be a Fredholm den-
sity function. The L2-Betti number of F is

bV2(F) = F(0).

Its Novikov-Shubin invariant is

alF) = liminfM

T e € [0,00},
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provided that F(\) > b2 (F) holds for all A\ > 0. Otherwise, we put
a(F) = oo™. If f is a Fredholm morphism of Hilbert N'(G)-modules, we
write

a(f) = a(F(f))-

Here oo™ is a new formal symbol which should not be confused with
0o. We have a(F) = oot if and only if there is an € > 0 such that F(e) =
b3 (F). Notice that b (f) = b3 (F(f)) in the notation of Definition 2.1 and
Definition 2.8 The Novikov-Shubin invariant of a spectral density function
F measures how fast F'(\) approaches F(0) for A — 0+. It is independent
of the actual value F(0) and depends only on the germ of F'(A\) at zero. The
Novikov-Shubin invariant of a Fredholm map f: U — V of Hilbert NV (G)-
modules measures how “thick” the spectrum of |f| (or f*f) is at zero. It is
oo™ if and only if the spectrum of | f| (or f*f) has a gap at zero. In particular
a(f) = oo™ always holds if G is finite. This shows that the Novikov-Shubin
invariants are only interesting for infinite G.

Example 2.9. In this example we show that any possible value can occur as
Novikov-Shubin invariant of a map of Hilbert A/(G)-modules and in particular
of a spectral density function. Define spectral density functions F; for ¢ €
[0,00] [[{cc™} by F;(0) =0 and for A > 0 by

0 A=0;
Fo(A) = ﬁ 0<A<eh
1 et< )\
F(\) =\ t € (0, 00);
Foo(A) = exp(=A71);
Foor(A) =0.

Then one easily checks for ¢ € [0, 00] [[{cc™}
OZ(Ft) =t.

Using Example 2.6 it is not hard to construct for ¢ € [0, 00][[{oco™} maps
fi: 1?(Z) — I2(Z) of Hilbert N(Z)-modules such that F(f;)(A) = Fy(\) for
small A and hence «(f;) =t holds.

Notation 2.10. Define an ordering on [0, 00] [[{oco™} by the standard order-
ing on R along with r < oo < oot for allr € R. For all o, 3 € [0, 00] [[{co™}

we define
1 1
—<—-sa>f

o~ f

Given a, 3 € [0,00] [[{co™}, we give meaning to «y in the expression

1 1 1

a B v
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as follows: If ., 8 € (0,00), let v be the real number for which this arithmetic
expression of real numbers is true. If a =0 or 3 =0, puty=0. If o € (0,00)
and (3 € {00,000}, put v to be a. If B € (0,00) and o € {0, 00"}, put v to
be 8. If a and 3 belong to {co,00™} and are not both oot put v = oo. If
both o and 3 are oot put v = co™. For r,a € [0,00][[{oco™} we define

r-a€|0,00] H{oo+}

as follows. Given r € [0,00) and a € [0,00), we define r-a € [0,00) to be the
ordinary product of real numbers. For r € (0,00) we put r- 00 = 00 - T = 00.
Put 0-00 = 00-0 = 0. Define o™ -a = a-00t = oo™ fora € [0,00] [[{ocot}.

For example,

L1111 111111
oo 1w 7w oot 7w 7w oo oot oo oot oot ocot’
1 1 1 1 1 1 1
—<—+4-4-wa>4/3, - <—+—+4+—<=a>oc0and 5 00 =o00.
a oo 4 2 « oot o0

Lemma 2.11. Let F' and F' be density functions and f: U — V be a mor-
phism of N'(G)-Hilbert modules. Assume that F' is Fredholm. Then

(1) If F < F', then F is Fredholm and b® (F) < b (F');
(2) If F < F" and b (F) = b2 (F'), then o(F) > a(F');
(3) If F ~ F', then b (F) = b®)(F') and o(F) = o(F");
(4) a(F(A")) =71 -a(F(XN)) forr e (0,00);
(5) a(F) = a(F - b)(F));
(6) b@)(f) = dimys) (ker(f* f)) = dimp (e (ker(f));
(7) If f is zero and dimprcy(U) < oo, then f is Fredholm and a(f) = co™;
(8) Suppose that dimprc)(U) = dimprg) (V) < oo or that U =V and f
is selfadjoint. Then f: U — V is an isomorphism if and only if f is
Fredholm, b (f) =0 and a(f) = cot;
(9) Assume that i: V — V' is injective with closed image and p: U' — U is
surjective with dimpr(q)(ker(p)) < oo. Then f is Fredholm if and only if
io fop is Fredholm, and in this case a(io fop) = a(f);
(10) If F and F' are Fredholm then o(F + F') = min {a(F), a(F")};
(11) F(f*f)(N?) = F(f)(N), b (f*f) = bP(f) and a(f*f) =1/2- a(f);
(12) If F(0) = F'(0), then a(max{F, F'}) = min{a(F), a(F")}. |

Proof. (1)) to (7)) are easy and left to the reader.

(8) The map f*f of Hilbert N'(G)-modules is invertible if and only if there
is € > 0 such that Ef*f is zero for A < e. If such € > 0 exists, the inverse
is given by f[aHf*fH] )\*ldEf\c*f (see (1.64)). Provided that f is selfadjoint,

f*f = f% and f*f is invertible if and only if f is invertible. Provided that
dimp @y (U) = dimp () (V) < oo, Theorem [1.12/ (1)) and (2) imply that f is
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invertible if and only if f* f is invertible.
(9) The Inverse Mapping Theorem implies F(i o f o p)(A) ~ F(f)(\) —
dimy () (ker(p)).
(10) Since b (F 4 F') = b (F) + b (F’), we may assume without loss of
generality by assertion (5) that ) (F) = b2 (F') = bv@)(F + F') = 0. As
F,F' < F 4+ F’, assertion (2) implies that o(F + F’) < min{a(F),a(F")}.
To verify the reverse inequality, we may assume without loss of generality
that a(F) < a(F’). The cases a(F) = 0 and «(F) = oot are trivial, and
so we assume that 0 < a(F') < oco. Consider any real number « satisfying
0 < @ < a(F). Then there exists a constant K > 0 such that for small posi-
tive A we have F(A), F/(\) < KA%, and so F(\) + F'(\) < 2K - A%, implying
that o < «(F + F’). The assertion follows.
The elementary proof of the other assertions is left to the reader. O
In the rest of this Subsection 2.1.1 we state and prove some basic proper-
ties of spectral density functions and Novikov-Shubin invariants for compo-
sitions and exact sequences which will be needed for the proofs of the main
results in Subsection [2.1.2.

Lemma 2.12. Let f: U — V be a map of Hilbert N (G)-modules which is
Fredholm and a weak isomorphism. Let L C V be a Hilbert N'(G)-submodule.
Then f restricts to a weak isomorphism from f~Y(L) to L and

dim() (L) = dimp(g) (f 1 (L)).

Proof. From the Polar Decomposition of f, we can assume without loss of
generality that U = V and f is positive. Obviously the restriction of f to
f7Y(L) is injective. It remains to show that f(f~!(L)) is dense in L because
then f induces a weak isomorphism from f~!(L) to L and the claim about
the dimension follows from Theorem [1.12 (2)).

Fix an orthogonal decomposition L = clos(f(f~'(L))) & M, where M
is an Hilbert N(G)-submodule of L. It remains to prove dimpr(c)(M) = 0
because then M = 0 follows from Theorem [1.12/ (1). As f(f~1(M)) ¢ M
and f(f~*(M)) C f(f~1(L)), we get f(f~1(M)) = 0 and therefore M N
im(f) = 0. For A > 0 restriction defines a map Ef\c|M: M — E{(U) Iftme
ker(E{|M) then the Spectral Theorem shows that m € im(f), a preimage is

given by (fiml ,u_ldElJ:) (m). Thus ker(E{|M) = 0. Theorem [1.12! (2) shows
dimp gy (M) < dimN(G)(Ef(U)). As f is injective and Fredholm and E) is
right-continuous in A, Theorem [1.12] (4)) implies limy_, o4 dimN(G)(Ef(U)) =
dimpr(a) (B4 (U)) = 0. Thus dimy gy (M) = 0. O
Lemma 2.13. Let f: U — V and g: V — W be morphisms of Hilbert
N (G)-modules. Then

(1) ()N < Flgf)(lgll - A);
(2) F(g)(N) < F(gf)NfIl-A) if f is Fredholm and has dense image;
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(3) F(gf)(N) < F(g)(AN'7") + F(£)(N") for all v € (0,1).

Proof. (1) Consider L € L(f,A). For all x € L, |gf(z)] < |lgl| - |f(z)] <
llgl| - A - |z|. This implies that L € L(gf,||g]| - ), and the claim follows.

(2) Consider L € L(g,\). For all z € f~1(L), we have |gf(x)| < X-|f(x)| <
X f - |z, implying f~Y(L) € L(gf,||f||- A). Hence it remains to show
dimpcy (L) < dimpr)(fH(L)). Let p: U — U/ker f be the projection
and let f: U/ker(f) — V be the map induced by f. Clearly f is also Fred-
holm. Since p is surjective and f is a weak isomorphism, Theorem 1.12/ (2)
and Lemma 2.12/ imply that dim ) (ffl(L)) > dimpr(g) (p(ffl(L))) =

. ——1 .
dimpr(q) (f (L)) = dimpr(g) (L)
(3) Consider L € L(gf,\). Let Ly be the kernel of E{;f|L We have a

weakly exact sequence 0 — Ly — L — clos(Eip;f(L)) — 0. From Lemma

2.2 (2)) we get that |f(xz)] > A" -|z| for all nonzero € Lg. In particu-
lar, f|r,: Lo — clos(f(Lo)) is a weak isomorphism, and so Theorem [1.12 (2)
implies that dimpr(q)(Lo) = dimpr(g) (clos(f(Lo))). For x € Lo we have

9f@)| < Aclal < 2o lF@] = AT L))

Hence clos(f(Lo)) € £(g,A'™"). This shows that dimy (e (Lo) < F(g)(A' 7).
From Theorem [1.12 and Lemma [2.3| we conclude

dimy () (clos(BLY (1)) < dimye) (im(BLY)) = F(HO);
dimN(G)(L) = dimN(G)(LO) + dimN(G) (CIOS(Ef:f(L))) .

This implies that dimpy(q)(L) < F(g)(A™") + F(f)(A"). O

Lemma 2.14. Let f: U — V and g: V. — W be morphisms of Hilbert
N(G)-modules.

(1) If f and g are Fredholm, then the composition gf is Fredholm. If f and
g are Fredholm and ker(g) C clos(im(f)) then

L T O
algf) ~ alf)  alg)’
(2) If gf is Fredholm, then f is Fredholm. If gf is Fredholm and ker(g) N
im(f) =0, then

a(f) = a(gf).
If gf is Fredholm and f has dense image, then g is Fredholm and

alg) > a(gf).
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Proof. We can assume without loss of generality that f is injective by Lemma
2.111 (9), otherwise replace f by the induced map U/ ker(f) — V.

(I) We conclude from Lemma 2.13| (3) that gf is Fredholm. Now assume
ker(g) C clos(im(f)). As f: U — clos(im(f)) is a weak isomorphism, Lemma
2.12 implies that b3 (gf) = b3 (g) = bP (f) + b?(g). From Lemma 2.13 (3)
we conclude for 0 < r <1

F(gf,2) =b2(gf) S F(f;A7) =02 (f) + F(g, A7) = 02 (g).
Assertions (2), (4), (5) and (10) of Lemma [2.11] show
a(gf) Z min{r-a(f), (1 —7)-alg)}.

We only need to consider the case a(f),a(g) € (0,00), the other cases being
now obvious. Taking inverses gives

alof) = ma"{r-;m’ (1 —r;-c«g)}'

Since Tl(f) (resp. m) is a strictly monotone decreasing (resp. increas-
ing) function in r, the maximum on the right side, viewed as a function of
r, obtains its minimum precisely when the two functions of r have the same
value. One easily checks that this is the case if and only if r = #9;@), and
the claim follows.

(2) This follows from Lemma 2.13| (1)) and (2) and Lemma 2.11/ (2, (5) and
(9) since ker(g) Nim(f) =0 = b@ (gf) = b (f) and @ (gf) < b3 (g) if f
is injective. 0O
Lemma 2.15. Let u: U — U’ and v: V — V' be morphisms of Hilbert
N(G)-modules and let

0 U1 UO U2 0
fll fol f2l
0 | Vo Vs 0

be a commutative diagram of maps of Hilbert N'(G)-modules whose rows are
exact. Then

(1) w® v is Fredholm if and only if both w and v are Fredholm. In this case,
a(u® v) = min {a(u), a(v)};

(2) If f1 and fo are Fredholm, then fo is Fredholm. If f1 and fo are Fredholm
and fi1 has dense image or fo is injective, then

S SR O
a(fo) ~ alfi)  alf2)’
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(3) If fo is Fredholm, then fi is Fredholm. If fo is Fredholm and fo is injec-
tive, then a(f1) > a(fo). If fo is Fredholm and fi has dense image, then
f2 is Fredholm and a(f3) > a(fo)-

Proof. (1) This follows from Lemma 2.11] (10)) using F(u® v, ) = F(u, \) +
F(v,A).
(2) Since an exact sequence of Hilbert N (G)-modules always splits by the

Open Mapping Theorem we can assume without loss of generality by Lemma
2.111 (9) that Uy = Uy ® Uz and Vy = V3 @ V, and fy has the shape

_(N)fs
= (4%
for a morphism f3: Uy — Vi. We have fo = gf, where g = ((1) jis) and
2

f= <J;1 (1)> Since fi is Fredholm, f is Fredholm and «(f1) = a(f) by

assertion (). Since we can write

o= (02) (07)

we conclude from Lemma 2.11 (9) and assertion (1) that g is Fredholm and
a(g) = a(fz). If fy is injective then g is injective, and if f; has dense image
then f has dense image. In both cases we have ker(g) C clos(im(f)). Now
apply Lemma 2.14] ().

(3) follows analogously using Lemma [2.14 (2)). O

2.1.2 Spectral Density Functions of Hilbert Chain Complexes

Definition 2.16 (Spectral density function). Let C. be a Hilbert N'(G)-
chain complex. Define its p-th spectral density function to be the spectral
density function (see Definition [2.1) of its p-th differential c, restricted to
im(cpi1)*

)t — p—l) ‘

Suppose that C, is Fredholm, i.e. for p € Z there exists A, > 0 with F,(\,) <
oo (see Definition [1.20 and Lemma [2.3). Define its p-th Novikov-Shubin
invariant be the Novikov-Shubin invariant (see Definition|2.8) of F,(C.),

Fp(c*) =F (Cp|im(c,,+1)L: im(C;D+1

ap(Cy) == a(F,(CY)).
Recall that A,: Cp, — Cy, is the Laplacian of C, (see (1.17)). Put
F(CL) = F(4y);
a2 (CL) = a(4y).
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Define for a Hilbert N'(G)-cochain complex C* which is Fredholm
F(CT):=F (Cp|im(CP71)L: im(cpfl)l _ C’P+1) :
ap(C*) := a(F(C)).

The dual (C.)* of a Hilbert chain complex C, is the Hilbert cochain

complex whose p-th cochain module is C,, and whose p-th codifferential c? :=

cpy1: Cp — Cpya is the adjoint of ;1.

Lemma 2.17. Let C, and D, be Hilbert chain complexes. Then
(1) If C. is Fredholm, then A, is Fredholm and
02(C.) = 1/2- minfay(C.), apia(Co) )
(2) Suppose that C, is Fredholm. Then (Cy)* is Fredholm and
Fpia(C) = Fy((C.)");

b (Cx) = 0P ((C)");
ap+1(Cs) = ap((Ci)");

(3) Ci ® D, is Fredholm if and only if both C. and D, are Fredholm. In this

case

Fp(Ci ® Dy) = Fp(Cy) + Fp(Dy);
ap(Cy @ Dy) = min{ay(Cy), ap(Ds) -

Proof. (1) Lemma [1.18 and Lemma [2.15! (1)) imply
F(A,) —bP(A,) = F(chep: ker(cp)™ — ker(c,)t)
+F(cpr1cpiq: ker(c;+1)l — ker(c;+1)L);
a(4p) = min{a(cyep: ker(c,)™ — ker(c,)™h),
aCpr1Cpiy: ker(c;H)J‘ — ker(c;H)J‘)}.
We conclude from Lemma [2.11] (5)), (9) and (1))
1/2-0,(C.)
1/2 - a4 (Cy)

(2) This follows from Lemma [1.18 and Lemma 2.4.

(3) This follows from Lemma 2.15! (1)). O

We recall that a Hilbert N'(G)-chain complex C, is said to be contractible
if there exists a chain contraction ., i.e. a collection of morphisms ,: C, —
Cp41 for p € Z such that v,_1¢p + cp17p = id for all p.

= a(cyep: ker(c,)™ — ker(c,)™b);
= alcpricpyq: ker(c;+1)l — ker(c;_‘_l)L).
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Lemma 2.18. The following assertions are equivalent for a Hilbert N'(G)-
chain complex C:

(1) Cy is contractible;
(2) A, is invertible for all p;
(8) Cy is Fredholm, bz(,z)(C*) =0 and a,(Cy) = oo™ for all p.

Proof. (1) = (3) We can construct morphisms ¢,: C,/ clos(im(cp+1)) —
Cp—1 and Jp—1: Cp_1 — Cp/ clos(im(cp+1)), using ¢, and ,_1, such that
¥p—1 © ¢p = id. Hence ¢, induces an invertible operator onto its image.
Lemma 2.11] (8) and (9) imply that ¢, is Fredholm and hence C, is Fred-
holm at p, b2 (C,) = b® () = 0 and o, (C,) = a(cy) = oo™
3) = (2) From Lemma [1.18 and Lemma 2.17 (I)) we conclude that A, is
Fredholm, b (A,) = 0 and a(4,) = oot for all p. Now apply Lemma 2.11
(8).
(2) = (1) Suppose that A, is invertible for all p. Then v, with v, :=
A;jl o c;; 11 is a chain contraction of C,. O
Next we reprove the homotopy invariance of the Novikov-Shubin invari-
ants [240, Proposition 4.1].

Theorem 2.19. If f.: C. — D, is a chain homotopy equivalence of Hilbert
N(G)-chain complexes, then for all p € Z we have

Fp(C) = Fp(Ds).

In particular Cy is Fredholm at p if and only if D, is Fredholm at p. In this
case

ap(Cy) = ap(Ds).

Proof. There are exact sequences of chain complexes 0 — C, — cyl, (f.) —
cone,(fy) — 0 and 0 — D, — cyl,(f«) — cone,(Cy) — 0 with cone,(fx)
and cone,(C,) being contractible. We obtain chain isomorphisms C,. &
cone, (fy) 5 cyl, (f«) and D, @ cone,(C.) =N cyl,(f«) by the following

general construction for an exact sequence 0 — C, <5 D, &% E, — 0
with contractible F,: Choose a chain contraction ¢, for F, and for each p a
morphism ¢,: E, — D, such that g, ot, =id. Put

Sp=dpy10tpr10€p +1p0€p_1 06

This defines a chain map s.: E, — D, such that ¢, o s, = id. Define a chain
map u,: D, — C, by requiring that for z € D, its image u,(z) is the unique
y € Cp such that © = spq,(x) + jp(y). Then j, + s, is a chain isomorphism
C.®E, — D, with inverse u, @ g.. Since C, @ cone,(f,) and D, @ cone,(C)
are isomorphic and cone,(f,) and cone,(C\) are contractible, Lemma [2.11
(9), Lemma2.17 (3) and Lemma 2.18imply F,(C.) ~ F,(D.). Now the other
statements follow from Lemma 2.111 (3). O
The next result is taken from [322, Theorem 2.3 on page 27].
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Theorem 2.20. Let 0 — C, ELR D, LI E, — 0 be an exact sequence of
Hilbert N (G)-chain complexes. Suppose that two of the chain complexes are
Fredholm. Then all three chain complexes are Fredholm and we have

1 L S
ap(Ds) ~ ap(Ch)  ap(EL)  aldy)’
LR S 1
ap(Ex) — ap1(C)  ap(Dy) - alHp-1(js))’
1 1 1 1

(@) = ap(Dy) " apra(B)  alHy ()’

where §p: HISQ)(E*) — HI()ZJI(C*) is the boundary operator in the long weakly
exact homology sequence (see Theorem [1.21).

Proof. We first treat the case where C, and E, are Fredholm. Then D, is
Fredholm by Lemma 2.15 (2). We now show that

+ + . (2.21)

The given exact sequence 0 — C, . p, B - 0 induces the fol-

lowing commutative diagram with exact rows, where @, d, and €, are the
canonical homomorphisms induced by ¢,, d,, and e,, and 4 is the inclusion

0 —— kergq, SELAEN D,/ clos(im(dp+1)) %, E,/ker(e,) —— 0

apl @J *l (2.22)

0 —— Cpy —— D, —— E

p-1  —— 0
Jp—1 dp—1

We define 0, in the above diagram as follows. Let = € ker(epq,) represent
[z] € ker(q,). Then d,(x) = jp—1(y) for a unique y € Cp_1. We put 9,([z]) =
y. (In fact, y € ker(cp_1).)

Next we construct a sequence which we will show to be weakly exact

Cp 22 ker(y) 2 HO(E,) — 0 (2.23)

The map j, is induced by j, in the obvious way. To define g,, consider an
x € D, whose class [x] € D,/ clos(im(d,+1)) lies in ker(g,). Then g,(z) is in
the kernel of e, and determines a class [g(z)] in HI(,Q)(E*). Define ¢, ([z]) to
be [g,(z)]. One easily checks that g, o j, is zero and g, is surjective. We will
show that ker(g,) is contained in clos(im(j,)). Consider [z] € ker(g,) with
representative « € D,,. Since [g,(x)] € H,SQ)(E*) is zero, there is a sequence
(Yn)n>1 in Epyq such that in E,
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lim (gp(7) — ept1(yn)) = 0.

n—oo

As gpy1 is surjective, there is a sequence {up}n>1 in Dpiq such that
Yn = Gp+1(up). Thus

lim ¢, (z — dp+1(un)) = 0.

n—oo
We write @ — dpi1(un) = jp(wn) + rn, where w, € C, and 7, € im(j,)*.
Then we obtain lim, o g,(r,) = 0. As the restriction of g, to im(j,)* is
an isomorphism, we conclude lim,, o, 7, = 0. Thus

= nh_{[;o (Jp(wn) + dpt1(un))
and hence in D,/ clos(im(dp+1))

[z] = lim jp(wy).
n—oo
This finishes the proof of weak exactness of (2.23).
Next, we construct a commutative diagram with exact rows

0 ——  ker(q) LN ker(g,) &, HP(E,) —— 0

7| o | i | (2.24)

0 —— clos(im(cp)) — ker(cp—1) —— ngi)l(C*) — 0

2 pr
The maps [; and [z are the canonical inclusions and the map pr is the canon-
ical projection. The map J, is induced by 0,. One easily verifies that the
diagram commutes and has exact rows.

Let j,: C, — ker(¢,) be the morphism induced by j, whose image is
dense by the weak exactness of (2.23). One easily checks that 9, 0j, = c,. As

¢, is Fredholm by assumption, Lemma [2.14/ (2) implies that 0, is Fredholm
and

a(0p) > ap(Cy). (2.25)

As FEj is Fredholm and hence HI(,Q)(E*) is finite dimensional, ¢, is Fredholm.
As 0, has dense image, Lemma 2.15/ (2)) applied to (2.24) shows that 9, is
Fredholm and

1 1 1

(3y) < () + a(5,) (2.26)

From Lemma 2.11/ (9) €, is Fredholm and

a(ep) = ay(E). (2.27)
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As €, is injective, Lemma [2.15 (2)) applied to (2.22) shows

1 1 1
(D)) = a@) " ale) (2.28)

Now (2.21)) follows from (2.25)), (2.26), (2.27) and (2.28).

Next we show under the assumption that D, and C, are Fredholm that
FE, is Fredholm and that

t .t v 1 (2.29)
ap(B) ~ ap(C) T (D) T (1P, (5,)

There are an exact sequence 0 — D, — cyl,(¢.) — cone,(g.) — 0
and chain homotopy equivalences E, — cyl,(¢.) and YC, — cone,(gx).
We conclude from Theorem [2.19 and (2.21)) that E, is Fredholm and (2.29)

is true since the connecting map from Hz(,Q) (cone,(g)) — Hf_)1 (D.) agrees
under the identification HI()2)(c0ne* (gx)) = H;Z)(EC*) = HISQ_)l(C’*) with the
2) /. 2 2
map H?,(G.): H?,(C.) — H?\ (D).
Analogously one shows under the assumption that D, and F, are Fred-
holm that C., is Fredholm and

1 1 1 1
< + + : (2.30)
ap(Cy) = ap(Dy)  apya(Ey) a(HISQ)(q*))
This finishes the proof of Theorem 2.20. O

2.1.3 Product Formula for Novikov-Shubin Invariants

In this subsection we deal with the Novikov-Shubin invariants of a tensor
product of Hilbert chain complexes. We will only consider positive chain
complexes Cy, i.e. C,, = 0 for n < 0.

Lemma 2.31. Let G and H be discrete groups. Let f: U — U andg: V —V
be positive maps of Hilbert N'(G)-modules and N (H)-modules. Then f &
id4+id®g: UV — UV is a positive map of Hilbert N'(G x H)-modules
and

F(f®id+id®g) ~ F(f)- F(g),
where F' - G is defined in terms of Notation |2.10.

Proof. Notice for the sequel that dimpy(axm)(U ® V) = dimp(g)(U) -
dimp gy (V) (see Theorem 1.12/ (5))). For = € im(Ef\cm) and y € im(EY ,)
we compute using Lemma 2.2/ (2))
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I|(f ®@id+id®@g)(z @ y)|| < [|(f @ id)(z @ y)|| + ||(id ®g)(z @ y)||

= F @I -yl + [l - g ()l
S A2l -yl + A/2 - [l - [l
=A-[lz @yl

This shows im(E‘;/z) ® im(Ei/Q) € L(f ®id+id ®g, \). Lemma 2.3 implies
E()A/2) - F(9)(A/2) < F(f @ id+id@g)(A). (2.32)

Since 0 < f®id < f®id+id®g and f ®id and f ®id +id ®g commute, we
have Ef\c®1d+’d ®9 < Ef\c®1d. Analogously we get Ef\c®1d+ld ®9 < Ei\d ®9 This
implies

im (B9 499) ¢ im(B{) 1 im(E} ) = im(E])  im(EY).
Hence we get from Theorem [1.12] (5)
F(H() - Fg)(N) = F(f @id+id@g)(\). (2.33)
Now Lemma [2.31] follows from (2.32)) and (2.33)). O

Notation 2.34. Given a spectral density function F': [0,00) — [0, 00], define
FL:[0,00) — [0, 0]

by F-(\) = F(\) — F(0).
Define 6, for r € [0,00] by 6 := 00T and by 6, := 1 for r # 0.

Notice that (F) = a(F*) by definition. Recall Notation 2.10).

Lemma 2.35. Let G and H be groups. Let C, be a Hilbert N'(G)-chain com-
plex and D, be a Hilbert N'(H)-chain complex. Suppose that both C, and D,
are Fredholm and positive. Then the tensor product of Hilbert chain complexes
C. ® D, is a Fredholm Hilbert N (G x H)-chain complex and

(1) We have

FA(C.@D.) =~ S FA(CL) - F2A (D)

n—u

and

a}(C,®D,) = min {a (FiA(C*)l 'F’rLA—i(D*)L) )

1=0,1,...,n

5{,52)(0*) ’ arAsz(D*)vaﬁA(C*) '5bfli(D*)};
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(2) We have

3

Fu(Co@ D) = Y Fi(Co)Y - Foi(DO) +62(CL) - Fomi(Do):

+Fia(C)R b (D) (2.37)

and

a,(C, ®D,) = min n{oz (Fiy1(Co) - Fosi(DO)Y),

=U,1,...

a (F(C)* - Foey(D)F) L6

: O‘n—i(D*)v
(2.39)

b2 (Cu)
ORRIE

Proof. (1) The Laplace operator AS<®P-: (C, ® D,),, — (C. ® D.), is the
orthogonal sum

i=0 i=0 i=0
Now apply Lemma [2.11] (10) and Lemma [2.31.

2) Let ep,: (Ce®Dy)yy — (C ® D,y 1 be the n-th differential of the N (G x
H)-chain complex C, ® D,. Consider the maps of Hilbert modules
enl = en|ker(e;+1) s ker(ey, 1) = (Cy @ Dy)p—1;
Cil = Ci|ker(c7f+1): ker(c;‘+1) — Ci*l;
: ker(dy, ;1) = Dn—1-i-

dp—s1 == dnfi|kcr(d:7i+1)

The following diagram commutes

ker(e}, ) {ens)Tens, ker(e}, 1)

I I

@?:o ker(c;-‘H) ® ker<d;—i+l) T @?:o ker(ch) ® ker(d;kl—ml)
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where u is @) (¢;1)* ¢ ®id+id ®(dy—;1)*dp—i 1 and the vertical maps
are the canonical inclusions. Since (e, )*e, 1 is selfadjoint, it splits as the
orthogonal sum of @ ,(c;1)*c;1 ® id+id ®(dp—;1)*dn—;1 and some endo-
morphism of the orthogonal complement of @;"_, ker(c}, ;) ® ker(d}_, ) in
ker(ey ;). Now Lemma [2.11/ (11), Lemma 2.15 (1) and Lemma 2.31/ imply

eni)(A)
(ent) ens)(VA)

3

Fn(c* ® D*)(/\) = Fn(
:F(

> Zn: F((ein) e @id+id@(dp—i1)*dn—i1) (VA)

i=0

~ Y F((ein)"ein)(VA) - F((dn-in) dn—in) (V)
=0

=D Flein)N) - Fldu—in)(N)
i=0

(Ce)(A) - Fei(Ds)(A).-

[
[
=

i=0
Now equation (2.36) follows since b(Z)(C*) = F;(C.)(0) and analogously for

D,.
Analogously we prove (2.37). We define maps of Hilbert modules

e:u = e:z‘ker(enfl): ker(en_l) - (C oY D)n;
Cf+u = Cf+1|kcr(c,;)i ker(c;) — Ciy1;
:L—’Ll = d:—i|ker(dn,i,1): ker(dn_i_l) — Dn—i~

We obtain a commutative diagram with inclusions as vertical arrows

ker(e,—1) Lens)ens, ker(e,—1)

I I

Do ker(ci) @ ker(dn—i—1) —— @i ker(c;) ® ker(d,—i1)

where v is given by @ (¢}, ) cr,, ®id+id@(d;_;, )*dy_;, . We con-
clude (2.37), where we use additionally the conclusion of Lemma [1.18

b(”(c;&u) = bgz)(C*);
b)) = b (D)
b (e ) = b (B.)

and the conclusion of Lemma 2.4
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F(Cau)l = F(Cwu_)l;
F( Z-u)l F(dn—u)L;
Fey )" = Flen)*.

Next we prove (2.38). We have the orthogonal decomposition

C; = ker(c;) @ ker(c;)*;
Dy, = ker(d,,_;) ® ker(d,,_;)";
C; @ Dy_; = ker(c;) @ ker(dy,_;) @ ker(c;) @ ker(d,,—;)*t @
ker(c;)t @ ker(d,_;) @ ker(c;)* @ ker(d,,_;)*.
The summand ker(c;) ® ker(d,,—;) lies in the kernel of the n-th-differential

en of C, ® D,. Hence ker(e,)* lies in the direct sum of the other three
summands. Define maps by restricting the obvious maps

cir1n s ker(e) — Cigr;
dp—i1: ker(dy_;)* — Dp_1_4
Apy1—iy s ker(dn—i) = Dny1—i;

Ci| - ker(ci)J‘ — U1
Consider the following three maps

(ctir1) i) @id+id@(dp—i1)*dn—i1: ker(c;) ®ker(d,_;)* —
ker(c;) ® ker(d,,_;)™*;

(cin) e @id+id@(dy ;) dy g i) 0 ker(e)t @ker(dn—i) —
ker(c;)t @ ker(d,,—;);

(cin)*cit ®id+id@(dp_i1 ) dp_i1: ker(c))t @ ker(d,_;)* —
ker(c;)* @ ker(d,,_;)*.

The orthogonal sum of these three selfadjoint maps is the orthogonal sum of
the map
(eni)*ent: ker(e,)t — ker(en)t

and of an endomorphism of the orthogonal complement of ker(e,)® in

(ker(c;) @ ker(d,—;)*) @ (ker(c;)* @ ker(d,—;)) @ (ker(c;)* @ ker(d,—;)*).
Now Lemma 2.4, Lemma 2.11 (11)), Lemma 2.15 (1) and Lemma [2.31] im-
ply (2.38)) by the following calculation:
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+F((ci1) i ®id+id ®( Z+1-u)*d2+1—u)(ﬁ)
+F((cin) et @id+id @(dp—i1 ) dn_iil ) (V)

n

= F(C 1) ) (V) - F((dnmin)*dn-in ) (V)

i=0
+E((cin)"cin)(
+F((cin) ein)(

) F((dhpr i) i) (V)

VA
V) - F((dn—is)*dn—i1)(VX)

FF(ci)(A) - Fldyyyi1)(A) + Fein)(A) - Fdn—in)(A)
=3 (Finl )+ b7 (CL)) - Fai( DRV
i=0
FF(C)E ) - (Brpa—i( D) (V) + 82,(D.))
+Fi(C)E(A) - Fasi (D) (V).

Finally (2.39) follows from (2.36), (2.37), and (2.38) using Lemma [2.11
(2) and (10). 0
Example 2.40. Let F' and G be spectral density functions with F(0) =
G(0) = 0. It is not hard to check that then

a(F) 4+ a(G) < afF - G)

is true with respect to Notation [2.10. However, the other inequality is not
true in general as the following example shows. Define (continuous) density
functions F, G: [0, 00) — [0, o0] by

F()) =227 )3 Ae 272 92,
G(A) _ 2_22n+1 )\ c [2_22n+1’2_22n];
__92(n+1) 2(n+1) 2n+1

F()\):222 1 Ae 27 22 1 222 1],
G(\) = 227" )3 A e 2720 g-2r ),
F(0) = 0;

G(0) = 0;

F(\) =1/2 A>1/2;
G(\) =1/4 A>1/2.

One easily checks F(A) < A and G(A) < A for A > 0. Since
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F(2_22(n+1)) - 2_22(77,«#1)'

)

. _52(n+1)
lim 272 = 0;

n—oo
22n+1 .

Gy =27

lim 272" =0,
we get a(F) = a(G) =1 and o(F) + a(G) = 2. On the other hand F'(\) -
G(A\) = A3 and hence o(F - G) = 3.

Definition 2.41. A Fredholm spectral density function has the limit prop-
erty if either F(A) = F(0) for some A > 0 or if F'(X\) > F(0) for A > 0 and
the limit (FON — F(0

() — F(0)

A—0+ In(\)

exists. A Fredholm Hilbert chain complex C, has the limit property if F},(C)
has the limit property for all p € Z. A G-CW -complex X of finite type has
the limit property if its cellular L?-chain complex has the limit property.

Remark 2.42. To the author’s knowledge there is no example of a G-CW-
complex X of finite type which does not have the limit property. See also the
discussion in [240, page 381].

Lemma 2.43. Let F,G: [0,00) — [0,00] be density functions which are
Fredholm and have the limit property. Then F -G is a density function which
s Fredholm and has the limit property and

a(F - G) = min{a(F) + a(G), 6y (p) - (G), a(F) - Sy (o }-

Proof. Since F(\) = FX(\) + b®)(F), it suffices to treat the case F(0)
G(0) = 0 because of Lemma 2.11] (10). Since In(F(A) - G(N)) = In(F (X))
In(G(A)) holds and limy_,o4 is compatible with + (in contrast to lim infy_,o4
Lemma 2.43! follows.

We conclude from Lemma [2.35 and Lemma [2.43

+

~—

)

O

Corollary 2.44. Let G and H be groups. Let C, be a Hilbert N'(G)-chain
complexr and D, be a Hilbert N'(H)-chain complex. Suppose that both C.,
and D, are positive, Fredholm and have the limit property. Then the tensor
product of Hilbert chain complexes Cy ® D, is a Fredholm Hilbert N'(G x H)-
chain complex which has the limit property and we get

02(C.oD.) = min {af(C.)+al (D),

3Ly

cap (D), 0 (Ch) - 6,020 o. )

n—i

% )
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and

an(C* 24 D*) = . min {ai—i-l(c*) + an—i(D*)aai(O*) + Oén—i(D*)a

1=0,1,...,
o 'anfi(D*)7ai(C*) -0

b (Cy) bffl,i(D*)}‘

2.1.4 The Laplacian in Dimension Zero

In this subsection G is a finitely generated group and S denotes a finite set of
generators. We want to study the Novikov-Shubin invariant of the following
operator

cs: @) = 2 ),
ses

where r,_1 is right multiplication with s — 1 € Z[G]. This is motivated by
the following result.

Lemma 2.45. Let G be a finitely generated group and let X be a connected
free G-CW -complex of finite type. Then for any finite set S of generators of
G we have

a1(X) = afes).

Proof. The Cayley graph of G is the following connected one-dimensional free
G-CW-complex. Its 0-skeleton is G. For each element s € S we attach a free
equivariant G-cell G x D' by the attaching map G x S° — G which sends
(9,—1) to g and (g, 1) to gs. Since X and the Cayley graph C are connected
we an choose a G-map f: X; — C, where X; is 1-skeleton of X. Theorem
2.55] (1) implies that a1 (X) = a1(X1) agrees with a1 (C) = a(cs). O

If S is a finite set of generators for the group G, let bg(n) be the number
of elements in G which can be written as a word in n letters of SUS™tU{1}.
The group G has polynomial growth of degree mot greater than d if there is
C with bs(n) < Cn? for all n > 1. This property is a property of G' and
independent of the choice of the finite set S of generators. We say that G
has polynomial growth if it has polynomial growth of degree not greater than
d for some d > 0. A finitely generated group G is nilpotent if G possesses a
finite lower central series

G:GlDGQD...DGs:{l} G]H_l:[G,Gk].

If (P) is a property of groups, a group G is called virtually (P) if G contains
a subgroup H C G of finite index such that H has property (P). Hence
the notions of virtually finitely generated abelian, virtually free and virtually
nilpotent are clear. In particular a group is virtually trivial if and only if it is
finite. Let G be virtually nilpotent. Let G C G be a subgroup of finite index
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which is nilpotent and has the lower central series G = G; D G D ... D
Gs = {1}. Let d; be the rank of the finitely generated abelian group G;/G;+1
and let d be the integer 2121 id;. Then for any finite set S of generators

of G there is a constant C' > 0 such that C~1n? < bg(n) < Cn? holds for
any n > 1 and in particular G has polynomial growth precisely of degree d
[22, page 607 and Theorem 2 on page 608]. A famous result of Gromov [231]
says that a finitely generated group has polynomial growth if and only if it
is virtually nilpotent. The notion of an amenable group will be reviewed in
Subsection 6.4.1.

Lemma 2.46. (1) a(cs) = oo™ if and only if G is non-amenable or finite;

(2) a(cs) < oo if and only if G is infinite virtually nilpotent. If G is virtually
nilpotent, a(cg) is precisely the degree of the growth rate of G;

(3) alcs) = oo if and only if G is amenable and not virtually nilpotent.

Proof. Because of Lemma [2.45 a(cg) is independent of the choice of the finite
set S of generators. If G is finite, then obviously a(cs) = co™. Hence we can
assume in the sequel that G is infinite and that S is symmetric, i.e. s € S
implies s~ € S. Define
9 Y ees \féfrs 2
P:I°(G) ———— I*(G).
Thenid —P = ﬁcsocg. As G is infinite, dimpr() (1*(G)/ clos(im(cg))) = 0.
This has been shown in the proof of Theorem [1.35/ (8). Hence the kernel of
c% is trivial. The spectrum of the selfadjoint operator P is contained in [-1,1]
and we conclude from Lemma 2.3/ and Lemma 2.4

trar(a) (Xp-x1(P)) = Fles)(v/2ISIA) = b7 (cs), (2.47)
where x[1_» 1) is the characteristic function of [1 — A, 1].

(1) From (2.47) a(cs) has the value oo™ if and only if the spectrum of the
operator P does not contain 1. Since this operator is convolution with a
probability distribution whose support contains S, namely

_ IS|=t, ve S
G — [0,1], 'y|—>{07 vES

the spectrum of P contains 1 if and only if G is amenable by a result of
Kesten [290, page 150], [524, Theorem 3.2 on page 7].

(2) The recurrency probability of the natural random walk on G is defined
by

p(n) = trare) (P").

We will use the following result due to Varopoulos [502], which is also ex-
plained in [524, Theorem 6.5 and Theorem 6.6 on page 24]. (The assumption
below that n even is needed since the period of the natural random walk on
the Cayley graph with respect to symmetric set S of generators is 1 or 2.)
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Theorem 2.48. The finitely generated group G has polynomial growth pre-
cisely of degree 2a if and only if there is a constant C > 0 such that
C~In=% < p(n) < Cn= holds for all even positive integers n. If the finitely
generated group G does not have polynomial growth, then there is for each
a >0 a constant C(a) > 0 such that p(n) < C(a)n™* holds for alln > 1.

In the sequel let n be an even positive integer. Notice that then P is positive.
We have

(I =N"xp-ay(P) < P" < (1=XN)"xp01-N(P) + xp-r11(P)-
This implies because of ||xjo,1-x(P)|] <1
(1 =N"trae) (Xp-r1y(P) < p(n) < (1 =X)"+trye) (Xp-x1(P))-

In the sequel we consider A € (0,1/4) only. We conclude from (2.47))

In(F(cs)(v/2ISIN) = 0P (cs)) _ In(p(n)) (1 A)

n(\) 2Ty " Ty ¢ 249
In(F(es) (V2SN — b2 (c5)) _ In(p(n) — (1= A)")
Oy = Oy ' (2:50)
Next we show for a > 0
alcs) > 2a if p(n) < Cn™% for n > 1,n even; (2.51)
alcs) < 2a if p(n) > Cn™° for n > 1,n even, (2.52)

where C' > 0 is some constant independent of n. Suppose p(n) < Cn~* for
all even positive integers n. Let n be the largest even integer which satisfies
n < A7 Then n > 2 since A € (0,1/4). We estimate using (2.49)

In(F(cs)(+/2]S|\) — b3 (cs)) . In(Cn—?) In(1—))

n(\) =Ty )
B In(C) —aln(A-n) In(1—X)
et n(\) IO
In(C) —aln(A-n) In(1—-2A)
zat Oy T TAmy

Since | In(C) —aln(A-n)| is bounded by | In(C)|+ a1n(2) and ’'Hospital’s rule
implies limy_, o+ h;(llTZ)\)\) = 0, we conclude (2.51)) from Lemma 2.11] (4).
Suppose p(n) > Cn~“ for all even positive integers n. Fix € > 0. Put

o= 3791 Let [)\_(1"’5)] be the largest integer which is less or equal to
A~(+49) Then we get for all A € (0,1) and k € {1,2}

20 < (WU + kAT~ (2.53)



96 2. Novikov-Shubin Invariants

since 1 < ([A\"U+9] + k)M < 3 holds for A € (0,1) and k € {1,2}. From
I’Hospital’s rule we get

)\ 1+e
lim (In(Cp) +a(l+¢)In(A)) - AT 0.
A—0+ In(1— )
Hence we can choose A\ € (0, 1) such that for 0 < A < Ag

(In(Cp) + a(1 + €)In(A)) - AL+e
In(1—A)

1
< -
-2
Put n = [A\~(F9] + k, where we choose k € {1,2} such that n is even. Since
(1—X) <1and A=0+9/2 < [A~0+9] we get for 0 < X < Ao

)\*(1+€)]

(1—=2)" < (1= < Cp- A0+,

Equation (2.53) implies 0 < Cp < C(([A\~F9] + E)AT€) =% — Cp. We con-
clude from (2.50) for A € (0, \o)

In(F(cs)(y/2[S]A) — b (cs))
In(\)

< In(C-n=% — Cp - A@(1+9))

- In(\)

In(C((A=0+9] 4 KA = — )
In())

=a(l+e€) +

<a(l+e)+

Lemma [2.111 (4) implies a(cs) < 2a(1 + €). Since this is true for all € > 0,
(2.52) follows. Now assertion (2) follows from (2.51)), (2.52) and Theorem
2.48.

(3) This follows from (1)) and (2)). This finishes the proof of Lemma 2.46. O

2.2 Cellular Novikov-Shubin Invariants

In this section we apply the invariants of Subsection 2.1.2/ to the cellular
L2-chain complex and thus define Novikov-Shubin invariants for free G-CW -
complexes of finite type. We will describe and prove their main properties.

Definition 2.54 (Novikov-Shubin invariants). Let X be a free G-CW -
complez of finite type. Define its cellular p-th spectral density function and
its cellular p-th Novikov-Shubin invariant by the corresponding notions (see
Definition2.16) of the cellular L?-chain complex c? (X) of X (see Definition
1.29).
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Fy(X;N(G)) = Fp(C (X)),
(XN (G)) = 0y (C7 (X))
AP (XN (G)) = o (CP (X)),

If the group G and its action are clear from the context, we omit N'(G) in
the notation above.

If M is a cocompact free proper G-manifold, define its p-th cellular spec-
tral density function and its cellular p-th Novikov-Shubin invariant by the
corresponding notion for some equivariant smooth triangulation.

Since the Novikov-Shubin invariant will turn out to be homotopy invari-
ant, the definition of the p-th Novikov-Shubin invariant for a cocompact free
proper G-manifold is independent of the choice of equivariant smooth trian-
gulation. This is also true for the dilatational equivalence class of the spectral
density function. All these definitions extend in the obvious way to pairs.

Theorem 2.55 (Novikov-Shubin invariants).

(1) Homotopy invariance

Let f: X — Y be a G-map of free G-CW -complexes of finite type.
Suppose that the map induced on homology with complex coefficients
H,(f;C): Hy(X;C) — H,(Y;C) is an isomorphism for p < d—1. Then

F,(X)~ F,(Y) forp <d;
ap(X) = ap(Y) forp <d.

In particular, if f is a weak homotopy equivalence, we get for all p > 0

Fp(X) =~ Fp(Y);
ap(X) = ap(Y);

(2) Poincaré duality

Let M be a cocompact free proper G-manifold of dimension n which is
orientable. Then

Fo(M) ~ Fyy1-p(M,0M);
O‘P(M) = O‘nJrlfp(MaaM);

(3) Product formula

Let X be a free G-CW -complex of finite type and let Y be a free H-CW -
complex of finite type. Suppose that both X and Y have the limit property
(see Definition|2.41]). Then X XY has the limit property and c,(X xY)
is the minimum in [0,00] [[{oco™"} of the union of the following four sets
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(4)

(5)

(6)

(7)

2. Novikov-Shubin Invariants

{airi(X) +ap—s(Y) [i=0,1,....,(p— D}
{ai(X) +apei(Y) [i=1,....(p— };
{ap,z«Y)u:o,l,...,( > b (X) # 0};
{aa(X) i =1,2,...,p,03,(Y) # 0};

Connected sums

Let My, My, ..., M, be compact connected m-dimensional manifolds,
with m > 3. Let M be their connected sum Mi# ...#M,. Then

ap(M):min{ap(]\A/[;)nggr} for2<p<m-—1.

If w1 (M;) is trivial for all i except for i = ig, then al(ﬁ) = al(m). If

m1(M;) is trivial for all i except for i € {ig,i1}, i0 # 41 and m (M;,) =

m(M;,) =7/2, then al(M) = 1. In all other cases al(M) =o00T;

First Novikov-Shubin invariant

Let X be a connected free G-CW -complex of finite type. Then G is finitely

generated and

(a) a1(X) is finite if and only if G is infinite and virtually nilpotent. In
this case aq(X) is the growth rate of G;

(b) a1(X) is oot if and only if G is finite or non-amenable;

(c) a1(X) is 0o if and only if G is amenable and not virtually nilpotent;

Restriction

Let X be a free G-CW -complex ofﬁnite type and let H C G be a subgroup

of finite index |G : H]. Let res? X be the H-space obtained from X

by restricting the G-action to an H-action. Then this is a free H-CW -

complex of finite type and we get for p >0

1
[G: H|
ap(X;N(G)) = ap(resg X3 N (H));

Fp(X;N(G)) = - Fy(res¢ X3 N (H));

Induction

Let H be a subgroup of G and let X be a free H-CW -complex of finite
type. Then G xg X 1is a free G-CW -complex of finite type and

Fp(G xu X;N(G)) = Fp(X;N(H));
ap(G xu X;N(G)) = oy (X; N (H)).

Proof. (1) We can assume without loss of generality that f is cellular. We
have the canonical exact sequence of finitely generated free CG-chain com-
plexes 0 — C.(X) — cyl(Ci(f)) — cone(C.(f)) — 0, where C.(f) is the
CG-chain map induced by f on the cellular CG-chain complexes. Let C,, D,
and F, be the d-dimensional finitely generated CG-chain complexes which are
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obtained from C,(X), cyl(C«(f)) and cone(C,(f)) by truncating everything
in dimension d+ 1 and higher. We get an exact sequence of finitely generated
free CG-chain complexes 0 — C, 2 D, 2, FE,. — 0. Since the canonical in-
clusion C.(Y) — cyl(Ci(f)) is a CG-chain homotopy equivalence, it induces
a chain homotopy equivalence of finitely generated Hilbert AN'(G)-chain com-
plexes C\?) (V) — 1?(G) ®@cg cyl(Ci(f)). We conclude from Theorem 2.19
that F,(I*(Q) ®cg Ci) ~ F,(X) and F,(I*(G) ®@ce D) ~ F,(Y) holds for
p < d. Hence it remains to show

Fy(P(G) @ce Cv) = Fp(I*(G) @cg D.)  forp <d.

The map Hy(i.): Hy(C\) — Hy(D,) is bijective for p < d — 1 since H,(f;C)
is bijective for p < d—1. This implies that H,(E,) = 0 for p < d—1. Let P be
the kernel of eq: Fg — E4_1.Since0 - P - FE; — FEg 1 — Ej_9 — ... —
Ey — 0 is an exact CG-sequence and each E; is finitely generated free, there
is a finitely generated free CG-module F’ such that F' := P @ F’ is finitely
generated free and P is a direct summand in Fy;. For a CG-module W let
d[W], be the CG-chain complex concentrated in dimension d with W as d-th
chain module. Let D/, be the preimage of d[F]. = d[P]. ®d[F']. C E.®d[F'].
under p, @ idgp, : Dy @ d[F'], — E, @ d[F'],. We obtain a commutative
diagram of CG-chain complexes with exact rows

i «@Bid g,
0 C, —=— D, @d[F], U B, @dF]), — 0
idT jﬁ kT
0 c. = D! LN dFl, ——0

where j, and k. are the inclusions. Since id¢, and k., are CG-homotopy
equivalences, j,: D, — D, @ d[F'],. is a CG-chain homotopy equivalence.
Theorem 2.19] and Lemma 2.11] (9) imply for p < d

Fy(I*(G) @ce D) =~ F,(I*(G) ©co (Dx @ d[F'].)) =~ Fp(I*(G) @ca D.).
Hence it remains to show
FP(ZZ(G) ®cg Cy) =~ Fp(ZQ(G) ®&ca D.) for p <d.

There is a CG-chain complex C; such that C}, = C}, and ¢, = ¢, for p # d,
Cl, = Cq®F, d; = cqbu: CgdF — Cq_1 for some CG-map u: F — Cq_; and

a chain isomorphism g¢,: C! = D’ such that g, composed with the obvious
inclusion I, : Ci — C. is #,. Hence F,(I1*(G) ®@cq CL) ~ F,(I*(G) ®cg D.,) for
p<dand Hy_1(l.): Hg_1(Cy) — Hy_1(C%) is bijective. It remains to show

F (idiz(g) ®ca(ca ®u): P(G) @ce (Ca @ F) — 1*(G) @ca Ca-1)
~ I (idlz(G) Rcacd: l2<G) Rca Cq — l2<G) Rca Cdfl) . (2.56)
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Since Hq_1(l) is bijective, im(cq) = im(c;). This shows im(u) C im(cq). As
F is finitely generated free, we can find a CG-map v: F — Cy with u = ¢4owv.
The map id¢, @v: Cg ® F — Cy is split surjective. Hence the map

idlz(G) ®cq(ide, ®v): ZQ(G) ®cg (Ca® F) — lQ(G) Rca Cq

is a surjective map of finitely generated Hilbert A/ (G)-modules whose compo-
sition with idlz(G) Rcacd: ZQ(G) RcaCyq — ZQ(G) RcaCyq—1 18 idp(G) ®CG(CdEB
u): 1?(G) ®cag (Cq ® F) — 1?(G) ®@ca Cy_1. Now (2.56) and thus assertion
(1)) follow from Lemma 2.11/ (9).

(2)) is proved analogously to Theorem [1.35 (3) using Lemma 2.17 (2) and
Theorem 2.19.

(3)) This follows from Corollary 2.44 since the cellular chain complex of X xY
is the tensor product of the one of X and the one of Y.

(4) This is proved analogously to Theorem [1.35] (6) for 2 < p < m — 1. The
claim for oy follows from assertion (5)) and assertion (6) since a free product
G1 * G5 of non-trivial groups is amenable if and only if G; = Gy = Z/2, the
group Z/2 % 7,/2 contains Z as a subgroup of finite index and a4 (S1) =1 by
Lemma 2.58.

(5)) Since X is connected and X — G\ X is a regular covering, there is a short
exact sequence 1 — m1(X) — m(G\X) — G — 1. Since G\ X has finite 1-
skeleton by assumption, m (G\X) and hence G are finitely generated. Now
we can apply Lemma 2.45/ and Lemma [2.46.

(6) This follows from Theorem [1.12] (6).
(7) This follows from Lemma [1.24] (2)), since for each morphism f: U — V of
Hilbert N'(H)-modules i, E{ | = E/(\z*f) “J and hence

Fnmy(f) = Faqa (i f) (2.57)

holds. O

A more conceptual proof for Theorem 2.55 (I) can be given after we
have developed some theory in Section [6.7. We will see that F,(X) ~ F,(Y)
for p < d holds if HS(f;N(G)): HS(X;N(G)) — HS(Y;N(G)) is bi-
jective for p < d — 1. This will only use that the Novikov-Shubin invari-
ants of homotopy equivalent N'(G)-Hilbert chain complexes agree (see The-
orem 2.19). Here HS (X;N(G)) is the homology of the chain complex of
modules over the ring N (G) given by N(G) ®@cg C«(X), where only the
ring structure of N'(G) enters. The bijectivity of HS(f;N(G)) for p <
d — 1 follows from the universal coefficients spectral sequence [518, Theorem
5.6.4 on page 143] which converges to HS\ ,(X;N(G)) and has as E?-term
E2, = TorSG(N(G)7Hq(X;C)) since by assumption H,(f;C): H,(X;C) —
H,(Y;C) is bijective for p < d — 1.

We will see in Example [3.110 that the condition “orientable” in Theorem
2.55] (2) is necessary.
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Lemma 2.58. Let C, be a free C|[Z]-chain complez of finite type. Since C|Z]
is a principal ideal domain [15, Proposition V.5.8 on page 151 and Corollary
V.8.7 on page 162], we can write

Hy(C.) =Clz]™ & | P ClZ]/ (= — api,)™)

ip=1

foray i, € C and ny,sp,1pi, € Z with ny,sp >0 and rp;, > 1, where 2 is a
fixed generator of Z.
Then 1%(Z) ®cyz) C« has the limit property and

b](f)(ﬂ(Z) Ac[z] C*) = Nyp.
Ifsp>1 and {i, =1,2...,5,,|ap, | =1} #0, then
1

Psip

ap1(1*(Z) ®cpz) Cv) = min{

|ip:1,2...,sp,|ap,ip\ =1},

otherwise
ap11(1*(Z) ®cpz) C) = oot

Proof. The statement about the L?-Betti numbers has already been proved
in Lemma [1.34L

Let P(ny)s be the chain complex concentrated in dimension 0 whose 0-th
module is C[Z]"». Let Q(ap,,7p,i,)« be the C[Z]-chain complex concentrated
in dimensions 0 and 1 whose first differential M _, ) C[z] — C[zZ] is
multiplication with (z — ay;,) ™. Notice that its homology is trivial except
in dimension 0 where it is given by C[Z]/((z — a;) ). One easily constructs
a C[Z]-chain map

fu EBEP P(ny). @ @ Q(ap,i, Tpiy)« | — Cu

p=>0 ip=1

which induces an isomorphism on homology and is therefore a C[Z]-chain
equivalence. Because of Lemma [2.17 (3]) and Theorem 2.19/it suffices to show
foracC,rezZ,r>1

1 iflal =
(@) ={ v il 51

Because of Example 2.6/ we get
Fi(Q(a,r),)(A) =vol{z € S | |(z —a)"| < \}.

If |a|] # 1, then F1(Q(a,r)«)(A) = 0 for 0 < A < |1 — |a||” and hence
a1(Q(a,r),) = oo™ If [a| = 1 we conclude a1 (Q(a,).) = 1 from
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vol{z € S| |(z — a)"| < A} = vol{cos(¢) + isin(¢) | |2 — 2cos(d)|/? < A};

lim LCOS@) =1.
»—0 ¢2
This finishes the proof of Lemma 2.58. 0O

Example 2.59. For G = Z we conclude from Lemma 2.58 that al(Sl) =1
and ozp(Sl) = oo™ for p > 2 and that ST has the limit property. We get for
the n-torus T from Theorem [2.55| (3) that T™ has the limit property and

Ty o Jn 1<p<n
ap(1™) {oo+ otherwise

Example 2.60. Let t; and to be the generators of Z? and let f: [?(Z?) —
12(Z*) be given by right multiplication with (¢; — 1)(t2 — 1). Then we get
from Example 2.6/ for small A > 0

F(F)(N) = vol{(21,22) € T2 | |21 — 1] - |25 — 1] < A}
= vol{(u1,up) € [=m, 7] X [, 7] |
12 — 2 cos(ug)|/? - |2 — 2 cos(ur)|V/? < A}
=~ vol{(u1,uz) € [~m,m] x [=m, 7] | |u|lug| < A}

=4- / édu—|—)\7r
A/m W

=4 (Aln(r) = Aln(A/7) + A)
=4\ (—In(A) +2In(7) + 1)
~ —In(A) - A

This shows that «a(f) = 1 and that F(f) is not dilatationally equivalent to
A

Theorem 2.61 (Novikov-Shubin invariants and S!-actions). Let X

be a connected S*-CW -complex of finite type. Suppose that for one orbit
S1/H (and hence for all orbits) the inclusion into X induces a map on m
with infinite image. (In particular the S'-action has no fized points.) Let X

be the universal covering of X with the canonical 71(X)-action. Then we get
forallp >0

bl(,z)(X) = 0;
ap(X) > 1.

Proof. We show for any S'-CW-complex Y of finite type together with a
Slmap f: Y — X that b5 (f*X;N () = 0 and oy (f*X;N (7)) > 1 for
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all p > 0, where f*)z is the pullback of the universal covering of X and
7 = m(X). The statement about the L?-Betti numbers has already been
proved in Theorem [1.40. The proof of the statement about the Novikov-
Shubin invariants is analogous using Theorem 2.20, Theorem [2.55/ (7) and
the conclusion from Lemma [2.58 that

ap(gi){l itp=1;

. O
oot otherwise.

The notion of elementary amenable group will be explained in Definition
6.34. The next result is taken from [260, Corollary 2 on page 240]. Notice
that a group H, which has a finite-dimensional model for BH, is torsionfree.

Lemma 2.62. Let 1 - H — G — @ — 1 be an extension of groups such
that H is elementary amenable and BG has a finite-dimensional model. Then
G contains a normal torsionfree abelian subgroup.

Theorem 2.63. (Novikov Shubin invariants and aspherical CW-
complexes). Let X be an aspherical finite CW -complex. Suppose that its
fundamental group contains an elementary amenable infinite normal subgroup
H. Then

2) (v .
bP(X) =0 forp=>0;

ap(X)>1 forp>1.

Proof. The claim for the L?-Betti numbers is a special case of Theorem [1.44.
Since X is a finite-dimensional model for B (X), we can assume without
loss of generality by Lemma [2.62 that H is torsionfree abelian. In the case
H = 7", the claim follows from [343, Theorem 3.9 (6) on page 174]. In the
general case, one has to notice that any finitely generated subgroup of H is
isomorphic to Z™ for some n < dim(X). Now the claim follows from [343]
Theorem 3.7 on page 172]. More details can also be found in [515, section
4.5]. O

Theorem [2.63 still makes sense and still is true (by the same proof) if one
replaces finite by finite-dimensional and uses the extension of the definition
of Novikov-Shubin invariant to arbitrary spaces in [343].

2.3 Analytic Novikov-Shubin Invariants

In this section we introduce the analytic version of spectral density functions
and Novikov-Shubin invariants.

Definition 2.64 (Analytic spectral density function). Let M be a co-
compact free proper G-manifold without boundary and with G-invariant Rie-
mannian metric. Let d¥. and (Ap)min be the minimal closures of the densely

min
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defined operators dP: QP(M) — L2QPYY(M) and A,: QP(M) — L?Q2P(M).
Let d° - dom(dP,, ) Nim(d?; )t — im(6752) L be the operator induced by

d? . . Define the analytic p-th spectral density function of M by

min *

Fy(M) := F(d,): [0,00) — [0,00)

min

and define
FAM) = F((Ap)min): [0, 00) — [0, 00).
Define the analytic p-th Novikov-Shubin invariant of M by
ap(M) = a(Fy_1(M)).
Put

af (M) = a(F(M)).

Notice that here we define a,(M) to be a(F,—1(M)) and not to be
a(F,(M)) as in Definition [2.16/ and Definition [2.54! because here we are deal-
ing with cochain complexes whereas in the cellular context we use chain
complexes and we want to show later that both definitions agree (see Lemma

2.17 (2)).

Notation 2.65. Denote by (6PT1dP)L
of the operators

and (dP~16P)L. the minimal closure

min min

PHLgr . _Qf(M)ﬂurn(dfmr})l (dfnlr}) ;
dP=16P: QP (M) Nim (5L — im(625)*E.

Let dPL : dom(dP. ) N im(dP- Dt — im(0PT3)L and 6P+ : dom(6P.) N

min * min min min mln min

im (67T — im(dP5 )" be the closed densely defined operators induced by

min

d and ¥ . . Denote by E)\ (z,y) the smooth Schwartz kernel for the projec-

min

tion E)\ appearing in the spectral family of the selfadjoint operator (Ap)min-

The existence of the smooth Schwartz kernel Ef” (x,y) is for instance
proved in [9, Proposition 2.4]. It is a smooth section of the vector bundle
hom(pt AP (T M), p5 At (TM)) over M x M for pp: M x M — M the
projection to the k-th factor. It is uniquely characterized by the property
that for w € L20QP(M)

A, A,
EV?(w)(z) = y EYT (2, y)(wy) dvoly
holds.

Lemma 2.66. Let M be a cocompact free proper G-manifold without bound-
ary and with G-invariant Riemannian metric. Then



2.3 Analytic Novikov-Shubin Invariants 105

(1) The values of the functions F,(M)(X) and F2(M)(X) are finite for all
A € R. In particular Fy(M) and F2 (M) are Fredholm;
(2) We have

FR(M)(X) = b2 (M) = (Fpa (M)(N) = b, (M)
+H(F(M)(N) = b2 (M));
02(M) = 1/2  minfay (M), ape1 (M)}
(3) We have
FPA(M)()\) = / tr(EL (z,z)) dvoly,
f
where F is a fundamental domain of the G-action;
(4) If Fy(H'=*02*(M))()) is the p-th spectral density function of the Hilbert
N(G)-cochain complex H'=*2*(M) (see (1.74)), then
F,(M) =~ F,(H'™*Q*(M)).

Proof. We get from [9, Proposition 4.16 on page 63]

trne) (Br?) = /]:tl"(Efp(x,x))dvol$.

This and F2(M)(\)) = trN(G)(Efp) imply that F:*(M)())) is finite for all
A € R and satisfies

FA(M)(N) = / tr(EL? (2, 2)) dvol,, . (2.67)
].'

One easily checks the following equalities of densely defined operators
using Lemma [1.70 (1))

(Ap)mm‘lm(dfm})L - (5p+1dp)mm3

(Ap)rnin|im(51’+1)L (@ 15p)mm§
i = (i)

(8P i = (i) i

(P67 )imin = (Ohin) " O

We conclude from Theorem [1.57

ker((Ap)min) = ker(d’:) = ker((6P71dP):

min

mll’l) = ker((dp ldp)mln)

= ker(6"T) = Hioy (M).

min
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We conclude from Theorem [1.57, Lemma, 2.3 and Lemma, 2.4

FR(M)(A) + dimpa) (Hpy (M) = F((87dP )i (V) + F((d167) i) (V)5
F((0" 1 dP ) i) (X%) = Fp(M)(N);
F((@ 1 0)min) (A7) = 0 (M) = Fpa(M)(N) = b, (M),
This together with (2.67) proves assertions (1)), (2) and (3). We will prove
(4) in the next Section 2.4l O

The following result is due to Efremov [167]. We will prove it in the next
Section 2.4l

mln)(
b3 (

Theorem 2.68. (Analytic and combinatorial Novikov-Shubin in-
variants). Let M be a cocompact free proper G-manifold without boundary
and with G-invariant Riemannian metric. Then the cellular and the ana-
lytic spectral density functions (see Definition 2.5 and Definition [2.64) are
dilatationally equivalent and the cellular and analytic Novikov-Shubin invari-
ants agree in each dimension p.

Example 2.69. The Novikov-Shubin invariants of the universal covering M
of a closed hyperbolic manifold of dimension n have been computed [316),
Proposition 46 on page 499] using the analytic approach, namely

~ |1 1fnlsoddand2p—n:|:1
ap(M) = { oo™ otherwise

Moreover, the spectral density function has the limit property.

Example 2.70. In the notation of Example 1.36/ we get

2 ifg=1,d=0,p=1,2
ap(Fd) = {1 ifg=0d=2p=1
oot otherwise

This follows from Theorem [2.55 (1) and (5), Example 2.59, Example [2.69
and the facts that Fd is homotopy equivalent to \/29+d YS! for d > 1, FO is
hyperbolic for g > 2 F) =T?% 71(F)) =1 and a free group of rank > 2 is
not amenable.

2.4 Comparison of Analytic and Cellular
Novikov-Shubin Invariants

In this section we give the proofs of Lemma 2.66] (4) and of Theorem [2.68.
They will follow from Lemma 2.71, Lemma 2.72 and Lemma [2.80.
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Lemma 2.71. For any equivariant smooth triangulation K we have

Fy(K) < Fp(H'™* 2" (M)).
Proof. We have constructed cochain maps of Hilbert A/(G)-modules in (1.77)
and (1.78)

A H* /(M) — Cloy(K);

W*: Cly)(K) — H'™*2*(M)
such that A* o W* = id holds (see (1.79)). Now apply Lemma 2.17 (3). O
Lemma 2.72. We have

Fy(H'™ Q2" (M))) < Fy(M).
Proof. The following diagram commutes and the vertical maps are given by

the isometric isomorphisms of Hilbert N(G)-modules of (1.73)

P

H'=P QP (M) ﬂ HI=p=10r+i(p)

(1+Ap)(l—p—1)/2l (1+Ap)(l—p—1)/2J/
P

d
HYQP(M) —2  [20pt1(M)
where db, ,: H7PQP(M) — H'™P710QPTL(M) is the bounded operator
which is induced by dP: 2P(M) — P71 (M). Hence it remains to show

F(dyy) < F(dby;

min)a

(2.73)
where d%%: im(d¥,') — L202P1(M) is the operator which is induced by
dby s HUQP (M) — L2QPTH(M).
For w € 2P~Y(M) and n) € im(d’;{}l)L we conclude using the isomorphism
(1.73) and partial integration (see Lemma [1.56)
(W) mhre = ((1+4p) o dj’ o (1+4,) 7 (W), m) 1
= (1 +4y) P odjn’ o (1+4,)7 W), (1+4,) 2 ()12
= (dj (14 24p) 7 W),
= 0. (2.74)

One easily checks that for w € 2P(M) and hence for all w € H*(2P(M)
lwll} = [lwlf2 + [ldPw]|72 + ||67w]|Z (2.75)

holds. Now (2.74) and (2.75) imply that we obtain a well-defined injective
morphism of Hilbert A'(G)-modules induced by the inclusion H'QP(M) —
L2P (M)
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g im(dP,h)t — im(dh )t

Consider 0 < A< land L € E(d’;;,)\). For w € L we have j(w) € im(d”;})*
and hence 0P (w) = 0 and we get from (2.75)

[P @7 < A Jlwllf = A2 flwllfe + X3 - [|dP(w)][72.

This implies

[l (W)l|z= < NewllZa-

A
V1—X2

We conclude from Lemma [2.2] (2)) that the composition

(db)7din, o -1 : (dP) db,
Byt e im(df.' )" — Im(E,5055)")

is injective on L. This implies using Lemma 2.3

. . . dPL yxgrt
dimy(c)(L) < dimye)(m(BySaL3) = Fp(M)O/V1=32)

and hence
Fp(H'™* Q" (M))(N) < Fp(M)(A/V/1 = 2).

This finishes the proof of Lemma 2.72. 0O
The mesh of a triangulation is defined by

mesh(K) := sup{d(p, q) | p, ¢ vertices of a 1-simplex},

where d(p, q) is the metric on M induced by the Riemannian metric. The
fullness of a triangulation is defined by

vol(o)
dim (M) mesh(K)

full(K) = 1nf{ (S Sdim(M) (K)} .

The next result is taken from [145, page 165]. Its proof is based on [150,

Proposition 2.4 on page 8|. Notice that from now on W* is given in terms of
barycentric coordinate functions.

Lemma 2.76. Let M be a cocompact free proper G-manifold without bound-
ary and with G-invariant Riemannian metric. Fiz @ > 0, k > dim(M)/2+ 1
and an equivariant smooth triangulation K. Then there is a constant C > 0
such that for any equivariant barycentric subdivision K' of M with fullness
full(K’) > 6 and any p-form w € H*QP(M)

llw—WE, 0 AL (w)||z2 < C - mesh(K") - ||w||x

holds.
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dr+

min )

Fix € > 0. Lemma 2.2] (2) implies for w € 1m(E( o)

llwli = {w, (1 + 4p)" (@) 2
= (w, (1 + (dig) " ding)* (@) 12

min min

< (1 +€) - [wl[7a.

dPL Y gt
Hence the inclusion of 1m(E( min) d“‘i“) into L202P(M) induces a bounded
G-equivariant operator

Pt

(E(dmm) mm)_>Hl_pr(M>. (277)

Lemma 2.78. Fiz k > dim(M)/2+ 1 and € > 0. Then there is an equiv-

ariant smooth tm’angulation K and a constant C; > 0 such that for all
(drs)drh

pL
w € lm(E min mm)
lwllz2 < Cr - || proAP oic(w)|| L2

holds, where pr: I?CP(K) — I>CP(K) is the orthogonal projection onto
im (P~ PCPTHK) — ZQC”’(K))J_.

Proof. Given 6 > 0 and an equivariant smooth triangulation of M, we can
find an equivariant subdivision whose fullness is bounded from below by 6
and whose mesh is arbitrary small [522]. Hence we can find by Lemma [2.76

an equivariant smooth triangulation K and a constant 0 < Cy < 1 such that
for any p-form n € H* Q2P (M)

lln— WP o AP(n)|12 < Co - ||nl|L2

holds. Let pr’: L2QP(M) — L?2*(M) be the orthogonal projection onto
im(d?- ). Recall that W? sends im(c?~1) to im(d”> ') and hence pr’ oW?» o

min min
L yegrL
pr = pr’ oWP. Now we estimate for w € 1m(E( min) d"“‘“) using pr'(w) = w

lwllz2 < [[pr"oW? 0 AP 0ic(w)||z2 + [lw — pr’ oW 0 AP 0ic(w)]| 2
= ||pr' oWP o proA? o i (w)||p2 + ||w — pr’ o WP 0 AP 0 i (w)|| 12
< ||[WPoproAP oic(w)||rz + || pr'(w — WP o AP 0 i (w))]| L2
< |[WP[[ - || proAP oie(w)l[r2 + [[w = WP 0 AP 0 ic(w)|| L2
< |[WP|] - [l proAP oic(w)l[r2 + Co - [[w]| 2.

If we put C = max{ = ”W ” | p ..,dim(M)}, the claim follows. O

Lemma 2.79. Given an equivariant smooth triangulation K, there is a con-
stant Cy such that for all u € I?CP(M)

[lull2 < Co - |[Wi (w)]] 2.
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Proof. For an element u € [2CP(M) the element WP(u) € L?QP(M) is
smooth outside the (dim(M) — 1)-skeleton. The p-form W?(u), which is a
priori defined in the sense of distributions, restricted to the interior of a
dim (M )-simplex o is smooth and has a unique smooth extension to o itself
which we denote in the sequel by W(u)|,. If 7 is a p-dimensional face of
both the dim(M)-simplices oy and o1, then i§W(u)|s, = iW (u)|s, for the
inclusions iy : 7 — o for K = 0,1. Hence we can define for any p-simplex
7 a smooth p-form W(u)|, by i*W(u)|, for any dim(M)-simplex o which
contains 7 as face and i: 7 — o the inclusion. In particular W (¢, ) which
is a priori given in a distributional sense is a continuous (not necessarily
smooth) p-form. Since G acts cocompactly, there is a constant K > 0 such
that ||W (e, )||z2 < K holds for all p-simplices 7 and hence W (u) € L?2P(M)
for all uw € I2CP(M). If 7 and o are p-simplices, then we get for the charac-
teristic functions ¢,,c, € I?CP(K) of o and 7

e =0 if 7 # o

/ch )=1.

Recall that G acts freely and cocompactly. Hence there are numbers D > 0
and S > 0 such that for any p-simplex o

[ W (el vtz = 2. D

{7 |7 est(o}| < S;
{7 |oest(r} <8,

where 7 runs through all simplices.

Recall that the support of W(c,) lies in the star st(7) of 7. For any p-
simplex o we can choose an open neighborhood U(o) of the interior int(o)
which is obtained by thickening the interior of ¢ into the dim(M)-simplices
having o as faces such that

D
W(en)||? <
W iellz < 2 (4S5 —2)Svol(o)
(0) =Ulg-0);
Ul)nU(r)=0  for o #;
Wi(e)(x) =0 ifxeU(o) and o ¢ st(r).

if r#o0,2e€U(o);

D
[

holds. There is a number ¢ > 0 such that possibly by shrinking U (o) to some-
thing which is up to small error a product neighbourhood int(c) x (f%, %)

we can additionally achieve that for all g € G and p-simplices o and T

T=0

>0
[omwreiza, {2° .
U(o) > @s5—2y8 TF#FO
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holds. Then we get for u = > _wu, - ¢, in [2CP(M) using the inequality

1205 aall® < (2r = 1) - 320 flaal
lull7z =D lugl?

1
< u(,|2-/ W (c0)||2 dvol,
0 ZU:‘ o) |
2/
<L [ty - W ()| 2 dvol,
0 Zg: o)
1
< S'Z/ |\Zu7~ P+ ur - Wi(en)2 ] dvol,
o U(o) 4o
5
<< Iy ur - Wi(e)||2dvol, +
J LI”U( | zT: |
3 Z/U ur - W(ep)||? dvol,
(o) ‘r;éao'Est( )
1
<5 / \|Zu7- )2 dvol, +
5-2/ 5-1) Y [lur Wieo)|? dvol,
o JU) T#0,0€st(T)
1 25 -1
< 5 W (u)l|r2 + Z Z u-|? / [[W (¢,)||2 dvol,
o T#0,0€st(T) U(o)
1 25— 1 , 5
< -- 2 . R
< s W@l + > 2 P gs—gs
o T#0,0€st(T)
1 25 —1 ) 5
< = 2 . 9. -
1
< AW Ellze + 5 zw
1 1
< LWl + 1 -l

This implies
2
llullzz < 5 - 1IW (u)ll 2

and hence Lemma 2.79]is proved. a
Lemma 2.80. For any equivariant smooth triangulation K we have

Fp(M) 2 Fy(K).
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Proof. Because of Theorem [2.55 (1)) it suffices to show the claim for one
equivariant smooth triangulation. Let K be the equivariant smooth triangu-
lation and C7; > 0 be the constant appearing in Lemma 2.78. Recall that
pr: I2CP(K) — [2CP(K) is the orthogonal projection onto im(cP~1)+ and
pr': L2QP(M) — L2QP(M) is the orthogonal projection onto im(d”;})*.
Fix € > 0. Next we show that there is a constant C3 > 0 such that for all

( pL )*dpL

AM<eandw € im(E)g"‘in min )
[|c? oproAP oid (w)||pz < Cs- A+ ||prodP oi.(w)||r2 (2.81)

holds. We estimate using Lemma 2.2/ (2)), Lemma 2.78 and Lemma 2.79
[|c? o proAP o i (w)||L2

= ||cP o AP o i (w)]|2

<Oy [[WPTocl o AP 0 i (W)]| L2

= Cy - ||[WPT o APTL 6 dP o4 (w)]| 12

= Gy WP 0 AP 0o P ()1

< Gy (WPt o AP o] - ||di, (@) |2

< Oy [[WPH o AP o] - X ||wl| 2

<Oy [[WPTLo AP o || - X~ Cy - || proAP oic(w)|| 2.
If we put C3 := Cy - Cy - ||[WPTL o APTL o ||, then (2.81) follows.

pLl \% jpL
We conclude from (2.81) that clos(pr o AP oie(im(Eg""“) d))) belongs to
L(cP,C3\). Since proAP oi,. is injective by Lemma 2.78 we get from Theorem
1.12/ (2) and Lemma [2.2] (2) for A < e

. iy (5 in) " i
Fp(M)(A) = dimy() | im(E), )

. P (s ()" i,
= dimpr(g) | clos(proA? o (im(E), )))
< F(K)(C3).

This finishes the proof of Lemma 2.80. a

2.5 On the Positivity and Rationality of the
Novikov-Shubin Invariants

The following conjecture is taken from [322, Conjecture 7.1 on page 56].

Conjecture 2.82. (Positivity and rationality of Novikov-Shubin in-
variants). Let G be a group. Then for any free G-CW -complex X of finite
type its Novikov-Shubin invariants a,(X) are positive rational numbers unless

they are oo or co™.
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This conjecture is equivalent to the statement that for any matrix
A € M(m,n,ZQG) the Novikov-Shubin invariant of the induced morphism
of finitely generated Hilbert N (G)-modules I2(G)™ — [2(G)™ is a positive
rational number, oo or co™. It is also equivalent to the version where X is any
cocompact free proper G-manifold without boundary and with G-invariant
Riemannian metric. The proof of these equivalent formulations is analogous
to the proof of Lemma, [10.5.

Here is some evidence for Conjecture 2.82. Unfortunately, all the evidence
comes from computations, no convincing conceptual reason is known. Con-
jecture [2.82/ has been proved for G = Z in Lemma 2.58. Conjecture 2.82 is
true for virtually abelian G by [316], Proposition 39 on page 494]. (The author
of [316] informs us that his proof of this statement is correct when G = Z
but has a gap when G = ZF for k > 1. The nature of the gap is described
in [321), page 16]. The proof in this case can be completed by the same basic
method used in [316]. Moreover, the value oo does not occur for G = Z*.)
D. Voiculescu informs us that Conjecture 2.82 is also true for a free group
G. Details of the proof will appear in the Ph. D.thesis of Roman Sauer [456].
If Conjecture 2.82! is true for the free G-CW-complex X of finite type and
for the cocompact free H-CW-complex Y of finite type and both X and Y
have the limit property (see Definition 2.41)), then Conjecture [2.82 holds for
the G x H-CW-complex X x Y by Theorem 2.55 (3). In all examples, where
Novikov-Shubin invariants can be computed explicitly, the result confirms
Conjecture 2.82. For any finitely generated group G it is true for a;(X) by
Theorem [2.55/ (5). For 3-manifolds we refer to Theorem 4.2, for Heisenberg
groups to Theorem [2.85 and for symmetric spaces to Theorem [5.12 (2)).

Here is further evidence if one replaces positive rational number by posi-
tive number in Conjecture [2.82. If X is a finite aspherical CW-complex such
that its fundamental group contains an elementary amenable infinite nor-

mal subgroup, then «,(X) > 1 holds for p > 1 (see Theorem [2.63). We get

ap(X) > 1 for all p > 1if X is a connected S'-CW-complex of finite type
such that for one orbit S'/H the inclusion into X induces a map on 71 with
infinite image by Theorem 2.61. Let p: E — B be a fibration such that B
is a connected finite CW-complex and the fiber F' has the homotopy type
of a connected finite C'W-complex. Suppose that the inclusion of F' into F

induces an injection on the fundamental groups and that bl(jz)(ﬁ ) = 0 for all
p > 0. Then ap(E) >0 forallp > 1if ap(ﬁ) > 0 for all p > 1 (see Theo-
rem [3.100/ and Remark 3.184)). A similar statement for pushouts follows from
Theorem 3.96 (2) and Remark 3.184.

Conjecture [2.82! is related to the question whether a cocompact free G-
CW-complex is of determinant class (see Theorem [3.14/ (4)) and to Theorem
3.28. The question about determinant class arises in the construction of L2-
torsion in Subsection|3.3.1 and has a positive answer for the groups appearing
in the class G as explained in Chapter [13. Some evidence for Conjecture 2.82
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comes from Theorem [13.7, where an estimate of the shape Fj,(\) < 713()\) is

proved for small .
We do not know of an example of an aspherical closed manifold M such
that o, (M) < 1 holds for some p > 0.

2.6 Novikov-Shubin Invariants of Manifolds with
Boundary

In this section we briefly discuss the case of a manifold with boundary. Let M
be a cocompact free proper G-manifold with G-invariant Riemannian metric.
Suppose that the boundary M of the complete Riemannian manifold M is
the disjoint union dgM and 01 M where we allow that dgM, 01 M or both
are empty. Denote by d. : L2QP(M) — L2QP*1(M) the minimal closure
of the operator dP: Q28(M,0yM) — L2QPTY(M), where 2P(M,dyM) is the
subspace of £22(M) consisting of those p-forms w with compact support whose
restriction to 9pM vanishes. Then im(d”. ) is contained in the domain of
d”. and we obtain a closed densely defined operator d’= : im(d”; 1)L —
L20P(M). Define the p-th analytic spectral density function and the p-th
Novikov-Shubin invariant of (M, 0yM) by

Fy(M,8oM) := F(d"::);

min

Oép(M, 80M) = 04(pr1 ((%M))

This is consistent with [240} Definition 3.1 on page 387]. Let (K, oK, 1K) —
(M,00M,0, M) be any equivariant smooth triangulation. Then we have the
following version of Theorem [2.68

Fp(M, 80M) >~ FP(K, 80K); (283)
ap(M,8,M) = a, (K, 0o K). (2.84)

Analogously the notions and results for the Laplacian carry over to (M, 9y M)
if we use as initial domain the space 25 (M, 9o M) (see (1.83)).

We briefly explain the idea of the proof of F,(M,00M) ~ F,(K, 0y K).
Let go and g1 be two G-invariant Riemannian metrics on M. Since M is
cocompact the L?-norms on 2?(M) with respect to go and g; are equivalent.
This implies that we obtain a commutative square with invertible bounded
G-equivariant operators induced by the identity on 22 (M) as vertical arrows

Ain
L2QP(M) =i 12 oril(M)

gl %l

P

2 dinin 2 1
L2, 07(M) i, 12 Qe+l ()
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This implies that the spectral density functions of (M, 0y M) with respect to
go and g7 are dilatationally equivalent. Hence we can assume without loss
of generality that the G-invariant Riemannian metric on M is a product
near the boundary and hence induces a G-invariant Riemannian metric on
MUg, p M. Let 7: MUg, ;s M — M Up, pp M be the isometric involution given
by flipping the two copies of M inside M Ug, pr M. It induces an isometric
involution on all spaces L2§2P(M) and the operators d” . commute with this
involution. Hence the whole picture decomposes orthogonally into a +-part
where this involution is the identity and a —-part where this involution is
—id. So we can define (d¥, )*: L20QP(M Up, s M)* — L20QPHY(M Ug, i
M)* and F,(M Ug, ;s M)* and analogously Fj,(K U, K)*. One checks
that (d2. )T : L2QP(M Ug,pr M)+t — L2QPTY(M Up,py M)™T is the same as
dl. : L2QP(M) — L2QP+L(M) for the pair (M,9yM) and for — instead of

+ one gets it for the pair (M, 9, M). In particular
Fp(M Ua, M M)+ = Fp(M, 80M);
Fp(M Ug,pe M)~ = Fp(M, 00 M).

Similarly one gets

Fy(K Up, x K)T = F,(K,0K);
Fp(KUgk K)™ = F,(K, 01 K).

Put O1M = OM. Then M Ugp;s M has no boundary. The proof of Theorem
2.68| that F,(M Ugy M) = F,(K Upk K) can be easily modified to show

Fp(M U ]\4)+ = F,(K Upk K)+;
Fp(M Uamr M)7 = Fp(K Uak K)i,

because everything is compatible with the involution and ||w||} = [lw™||7 +
llw™||2 holds for all w € H¥QP(M). Hence the claim is true in the case
01 M = OM. Now repeating this doubling trick allows to conclude the general
case by inspecting M Ug, s M.

2.7 Miscellaneous

Let M be a closed Riemannian manifold. The analytic Laplace operator
Ay L2OP(M) — L?QP(M) on the universal covering of M has zero in its
spectrum if and only if bg)(j/[v) # 0 or af(ﬁ) # oo™. In Chapter [12 we will
deal with the conjecture that for an aspherical closed Riemannian manifold
M there is at least one p > 0 such that A, has zero in the spectrum. We
conclude from Theorem [1.35] (8), Theorem 2.55/ (5b) and Theorem [2.68 the
result of Brooks [68] that for a closed Riemannian manifold M the Laplacian
Ag: L2QO(M) — L202°(M) acting on functions on the universal covering has
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zero in its spectrum if and only if 71 (M) is amenable. Moreover, the result of
Brooks extends to the case where M is compact and has a boundary if one
uses Neumann boundary conditions on M.

We have interpreted the L2-Betti numbers in terms of the heat kernel
(see (1.60))). We will do this also for the Novikov-Shubin invariants aﬁ(M )
in Theorem [3.136 (3) and (4).

The notions of spectral density function and Novikov-Shubin invariants
make also sense for proper G-C'W-complexes of finite type because in this
setting the cellular L?-chain complex is still defined as a Hilbert A/(G)-chain
complex as explained in Section [1.6] Theorem 2.55 (1), (2), (3), (5), (6) and
(7) remain true word by word for proper G-C'W-complexes of finite type.
The L?-de Rham complex is also defined for a cocompact proper G-manifold
with G-invariant Riemannian metric. Hence the analytic versions of spectral
density function and Novikov-Shubin invariants are still well-defined in this
context and Theorem [2.68 remains true if one drops the condition free.

We will explain a proportionality principle for Novikov-Shubin invariants
in Theorem [3.183l

A combinatorial approach to the Novikov-Shubin invariants which is use-
ful for concrete calculations will be given in Section [3.7.

We will give further computations of Novikov-Shubin invariants for uni-
versal coverings of compact 3-manifolds in Theorem 4.2/ and for universal
coverings of closed locally symmetric spaces in Theorem [5.12] (2).

We will discuss the behaviour of L2-Betti numbers and Novikov-Shubin
invariants of groups under quasi-isometry and measure equivalence in Section
7.5).

Finally we mention the following computation due to Rumin [450), Corol-

lary 7.15 on page 449]. Notice that the invariants computed there corresponds
?(M ) and one can easily deduce the values of ay,(M)
from the relation 2 - o5 (M) = min{ap(]T/.lj)7 apH(JT/f)}.

in our notation to «

Theorem 2.85. Let M be a closed Riemannian manifold whose universal
covering M is the Heisenberg group H?"*1. Then M is a non-trivial S'-
bundle over a torus and

. n+1 ifp=n+1;
ap(M)=q2-(n+1) if1<p<dim(M),p#n+1;
oot otherwise.

In [343] the notion of Novikov-Shubin invariants for free G-CW-complexes
of finite type is extended to arbitrary G-spaces. In particular o,(G) can be
defined by o, (EG) for any group G.
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Exercises

2.1. Let f: U — V and g: V — W be morphisms of Hilbert A/(G)-modules.
Show: i.) if f and ¢ are weak isomorphisms, then g o f is a weak isomor-
phism and ii.) if two of the morphisms f, g and g o f are weak isomorphisms
and Fredholm, then all three are weak isomorphisms and Fredholm. Find
a counterexample to assertion ii.) if one replaces “weak isomorphisms and
Fredholm” by “weak isomorphisms”.

2.2. Let G be a group which contains an element of infinite order. Then for
any integer n > 1 there is an element u € CG such that «(r,) = 1/n and
b3 (r,) = 0 holds for the map r, : 1>(G) — 12(G) given by right multiplication
with u. Moreover, if we additionally assume that G is finitely presented we
can find for any sequence as, oy, ... of elements a, € {1/n | n € Z,n >
1} [[{cc™} a connected CW-complex X of finite type with m1(X) = G such
that bl()z)()?) =0 and ap()?) = o, holds for p > 3.

2.3. Let G be locally finite, i.e. any finitely generated subgroup is finite.
Let A € M(m,n,CG) be any matrix. It induces a map of Hilbert N (G)-
modules ra: @i~ 1*(G) — @i, I*(G). Then a(ra) = co™. If X is any free
G-CW-complex of finite type, then a,(X) = oo™ for all p > 1.

2.4.  Show that there is no connected C'W-complex X of finite type with
a1(X) =1 and as(X) # oot

2.5. Show for two connected closed 4-dimensional manifolds M and N with
isomorphic fundamental groups that o, (M) = a, (V) holds for all p > 1.
Show the analogous statement if M and N are connected compact 3-manifolds
possibly with boundary.

2.6. Let S' - E — B be a principal S'-bundle of CW-complexes of
finite type such that B is simply connected. Show that either ,(E) =1 or
a,(E) = oo™ for p > 1 holds.

2.7. Show that [2(Z") viewed as C[Z"]-module is flat if and only if n < 1.
2.8. Let M be a closed hyperbolic manifold. Compute the L2-Betti numbers
and the Novikov-Shubin invariants of the universal covering of T" x M.

29. Let M and N be two compact manifolds (possibly with boundary)
whose dimension is less or equal to 2. Compute the L2-Betti numbers and
Novikov-Shubin invariants of M x N.

2.10. Let X and Z be connected C'W-complexes of finite type. Suppose that
m1(Z) is finite and X has the limit property. Show

ap(X x Z) = min{ou(X) | i =1,....p, Hy_i(Z;C) # 0};

min{n + o (X) |i=p—n,...,p} ifbgz)()?):Ofor
ap(X xTm) = p-n<i<p-1;
n otherwise.
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2.11. Let F — E — B be a fibration of connected CTW-complexes such that
the inclusion induces an injection 71 (F) — m1(F). Suppose that b,(f) (F)=0
and a,(F) > 0 holds for all p > 0. Show that then the same is true for E.

2.12.  Let A be the set of real numbers r, for which there exists a CW-

complex X of finite type and an integer p > 0 with o, (X) = r. Then A is
countable and contains {r | r € Q,r > 0}.



3. L?-Torsion

Introduction

In this chapter we introduce and study L?-torsion for Hilbert chain complexes
and for regular coverings of finite CW-complexes or of compact manifolds.

There are various notions of torsion invariants, such as Reidemeister tor-
sion, Whitehead torsion and analytic Ray-Singer torsion, which have been
intensively studied since the twenties and have remained in the focus of at-
tention. They will be reviewed in Section [3.1. L2-torsion is the L?-analog of
Reidemeister torsion as L2-Betti numbers are the L2-analogs of the classical
Betti numbers. The situation for the classical Reidemeister torsion is best if
the homology vanishes, and the same is true in the L*-context. Therefore we
will consider in this introduction only the case of the universal covering X of
a finite CW-complex X for which all L?-Betti numbers are trivial. In many
interesting geometric situations this assumption will be satisfied.

For the construction of Reidemeister torsion the notion of a determinant is
crucial and we will define and investigate its L?-version, the Fuglede-Kadison
determinant, in Section [3.2. In the classical context of Reidemeister torsion
the vanishing of the homology implies that the chain complexes under con-
sideration are contractible. In the L2?-context the vanishing of the L2-Betti
numbers does not imply that the Hilbert chain complex under considera-
tion is contractible, the Novikov-Shubin invariants of Chapter 2/ measure the
difference. Notice that the zero-in-the-spectrum Conjecture [12.1] says in_the
aspherical case that the cellular Hilbert A (m(X))-chain complex of X is
never contractible so that it is too restrictive to demand contractibility. This
forces us to deal with Fuglede-Kadison determinants for weak automorphisms
and with the problem whether X is of determinant class, which means that
the Fuglede-Kadison determinant of each differential is different from zero
and hence the L?-torsion is defined as a real number. The universal covering
X is of determinant class, provided that all its Novikov-Shubin invariants are
positive or that m (X) belongs to the class G, which will be investigated in
Subsection [13.1.3. There is the Conjecture 3.94 that X is always of determi-
nant class. We will deal with it in Chapter [13.

In Section 3.3 we introduce L?-torsion for finite Hilbert A'(G)-chain com-

plexes and define p(2)()? ) in terms of these invariants applied to the cellular
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L2-chain complex in Section [3.4. It turns out that the L2-torsion p(2)()?)
has the same formal properties as the classical Euler characteristic x(X) if
one ensures that relevant maps induce injections on the fundamental groups.
For instance, p(® (X) depends only on the simple homotopy type of X and,
provided that a certain map in K-theory is always trivial, it depends on the
homotopy type of X only. There are sum formulas, product formulas and
fibration formulas and Poincaré duality holds. For a self map f: X — X
inducing an isomorphism on 71 (X) one can compute p® (T’ 'r) of the mapping
torus Ty in terms of the map induced on the L2-homology of X by f. If
X is an aspherical finite CW-complex such that 71 (X) contains an elemen-
tary amenable infinite normal subgroup and is of det > 1-class, then p(2)()? )
vanishes. There are explicit formulas in terms of Hp()? ;C) if m (X)) = Z.

In Section 3.5/ we introduce the analytic version of p(z)(ﬂ ) for a closed
Riemannian manifold M in terms of the Laplace operator on differential
forms on M following Lott and Mathai. The analytic and topological version
agree by a deep result of Burghelea, Friedlander, Kappeler and McDonald.
The L?-torsion p(Q)(M ) of an odd-dimensional closed hyperbolic manifold is
up to a dimension constant, which is computable and different from zero, the
volume of M. Manifolds with boundary are briefly discussed in Section 13.6.

In Section 3.7 we give a combinatorial approach for the computation of
L?-Betti numbers and L?-torsion. Namely, we give an algorithm to produce
monotone decreasing sequences of rational numbers which converge to the
L2-Betti numbers and the Fuglede-Kadison determinants respectively. It is
easier to compute than for instance the analytic versions which are defined in
terms of the heat kernel (and meromorphic extensions). In practice this yields
numerical upper bounds for the L?-Betti numbers and the Fuglede-Kadison
determinants. The speed of convergence is ~ n~%, where « is the relevant
Novikov-Shubin invariant.

In order to get a quick overview one should read through Sections 3.1}
(only if the reader is not familiar with the classical concept of torsion invari-
ants) 3.4/ and 3.5 and skip the very technical Sections [3.2] and [3.3.

3.1 Survey on Torsion Invariants

In this section we give a brief review of torsion invariants in order to motivate
the definition of L?-torsion.

3.1.1 Whitehead Groups

Let R be an associative ring with unit. Denote by GL(n,R) the group of
invertible (n,n)-matrices with entries in R. Define the group GL(R) by the
colimit of the system indexed by the natural numbers ... C GL(n,R) C
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GL(n+1,R) C ... where the inclusion GL(n, R) to GL(n+ 1, R) is given by
stabilization N
0
A <0 1) .

Define K7(R) by the abelianization GL(R)/[GL(R), GL(R)] of GL(R). De-
fine the Whitehead group Wh(G) of a group G to be the cokernel of the map
G x {£1} — K;1(ZG) which sends (g, £1) to the class of the invertible (1, 1)-
matrix (£g). This will be the group where Whitehead torsion will take its
values in.

The Whitehead group Wh(G) is known to be trivial if G is the free abelian
group Z" of rank n [25] or the free group *!'_;Z of rank n [481]. There is the
conjecture that it vanishes for any torsionfree group. This has been proved
by Farrell and Jones [190], [191], [193], [194], [196] for a large class of groups.
This class contains any subgroup G C G’ where G’ is a discrete cocompact
subgroup of a Lie group with finitely many path components and any group G
which is the fundamental group of a non-positively curved closed Riemannian
manifold or of a complete pinched negatively curved Riemannian manifold.
The Whitehead group satisfies Wh(G « H) = Wh(G) @ Wh(H) [48]1].

If G is finite, then Wh(G) is very well understood (see [406]). Namely,
Wh(G) is finitely generated, its rank as abelian group is the number of con-
jugacy classes of unordered pairs {g, g~*} in G minus the number of conjugacy
classes of cyclic subgroups and its torsion subgroup is isomorphic to the ker-
nel SK;(QG) of the change of coefficient homomorphism K;(ZG) — K1 (QG).
For a finite cyclic group G the Whitehead group Wh(G) is torsionfree. For
instance the Whitehead group Wh(Z/p) of a cyclic group of order p for an
odd prime p is the free abelian group of rank (p — 3)/2 and Wh(Z/2) = 0.
The Whitehead group of the symmetric group S, is trivial. The Whitehead
group of Z? x 7Z/4 is not finitely generated as abelian group.

3.1.2 Whitehead Torsion

Let R be an associative ring with unit. Let C, be a based free finite R-chain
complex, where based free means that each chain module C), is equipped with
an (ordered) basis. Suppose that C, is acyclic. Choose a chain contraction
i Cx — Ciq1. In the sequel we write :

Coad = @ 02n+1;

neZ

Then we obtain an isomorphism (¢ + 9)odd: Codd — Coy. Since we have a
basis for the source and target of this isomorphism, it determines an invertible
matrix and hence an element
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p(C.) € Ki(R). (3.1)

Let f: X — Y be a G-homotopy equivalence of finite free G-C'W-
complexes. It induces a chain homotopy equivalence C,(f): C(X) — C.(Y)
of the cellular ZG-chain complexes. Let cone,(Cy(f)) be its mapping cone
which is a contractible finite free ZG-chain complex. The G-CW-complex-
structure determines a cellular ZG-basis which is not quite unique, one may
permute the basis elements or multiply a basis element with an element of
the form +¢g € ZG. Hence we can define the Whitehead torsion

~(f) € Wh(G) (3.2)

by the image of the element p(cone,(C.(f))) defined in (3.1) under the canon-
ical projection K;(ZG) — Wh(G). The Whitehead torsion 7(f) depends
only on the G-homotopy class of f and satisfies 7(g o f) = 7(f) + 7(g) for
G-homotopy equivalences f: X — Y and g: Y — Z of finite free G-CW-
complexes [116, (22.4)]. There are sum and product formulas for Whitehead
torsion [116, (23.1) and (23.2)].

Given a homotopy equivalence f: X — Y of connected finite C'W-
complexes, we can pick a lift f: X — Y to the universal coverings and
obtain an element 7(f) € Wh(m(Y)). The vanishing of this element has
a specific meaning, namely it is zero if and only if f is a simple homotopy
equivalence, i.e. up to homotopy f can be written as a finite sequence of
combinatorial moves, so called elementary collapses and elementary expan-
sions [116, (22.2)]. If f is a homeomorphism, then it is a simple homotopy
equivalence, or equivalently T(f) = 0, by a result of Chapman [99], [100].
A map between finite polyhedra is a simple homotopy equivalence if and
only if there are regular neighbourhoods ix: X — Nx and iy: Y — Ny
in high dimensional Euclidean space and a homeomorphism g: Nx — Ny
such that g o ix and iy o f are homotopic [445, Chapter 3]. If Y is not
connected, we define Wh(m1(Y)) = Dceryyy) Whim(C)) and 7(f) by
{r(fls10): f7H(O) = C) | C €mp(Y)}.

The main importance of Whitehead torsion lies in the s-Cobordism The-
orem we will explain next. A (n + 1)-dimensional h-cobordism is a com-
pact (n + 1)-dimensional manifold W whose boundary is the disjoint union
OW = W ] 1W such that the inclusions iy: oW — W for k = 0,1
are homotopy equivalences. Given a closed n-dimensional manifold M, an
h-cobordism over M is a (n + 1)-dimensional h-cobordism W together with
a diffeomorphism f: M — 9yW. Two such h-cobordisms (W, f) and (W, /)
over M are diffeomorphic if there is a diffeomorphism F: W — W' with
Fo f = f'. The next result is due to Barden, Mazur, Stallings (for its proof
see for instance [288], [337, Section 1]), its topological version was proved by
Kirby and Siebenmann [292, Essay II].

Theorem 3.3 (S-Cobordism Theorem). Let M be a closed smooth n-
dimensional manifold. Suppose n > 5. Then the map from the set of
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diffeomorphism classes of h-cobordisms (W, f) over M to the Whitehead
group Wh(m(M)) which sends the class of (W, f) to the image of the
Whitehead torsion T(iNO: 5(:14// — W) under the inverse of the isomorphism
Wh(m(M)) — Wh(m (W) induced by ig o f, is a bijection. In particular
an h-cobordism (W, f) over M is trivial, i.e. diffeomorphic to the trivial h-
cobordism (M x [0,1],i0), if and only if 7(i: BoW — W) =0.

Notice that the Whitehead group of the trivial group vanishes. Hence
any h-cobordism over M is trivial if M is simply connected. This implies
the Poincaré Conjecture in dimensions > 5 which says that a closed n-
dimensional manifold is homeomorphic to S™ if it is homotopy equivalent
to S™. The s-Cobordism Theorem is known to be false in dimension n = 4
[151] but it is still true for “good” fundamental groups in the topological
category by results of Freedman [202], [203]. This implies that the Poincaré
Conjecture is true also in dimension 4. Counterexamples to the s-Cobordism
Theorem in dimension n = 3 are constructed by Cappell and Shaneson [90)].
The Poincaré Conjecture in dimension 3 is open at the time of writing.

The s-Cobordism Theorem is one key ingredient in surgery theory which is
designed to classify manifolds up to diffeomorphism. For instance, in order to
show that two closed manifolds M and N are diffeomorphic, the strategy is to
construct a cobordism W’ (with appropriate bundle data) between M and N,
then to modify W’ to an h-cobordism W over M via surgery on the interior
of W’ such that the Whitehead torsion is trivial, and finally to apply the s-
Cobordism Theorem to conclude that W is diffeomorphic to M x [0,1] and in
particular its two ends M and N are diffeomorphic. More information about
Whitehead torsion can be found for instance in [116], [375]. Generalizations
like bounded, controlled, equivariant or stratified versions can be found for
instance in [4], [270], [326], [424], [425], [426], [483], [519).

3.1.3 Reidemeister Torsion

Let X be a finite free G-CW-complex. Let V be an orthogonal finite di-
mensional G-representation. Suppose that HS (X;V) := H,(V ®z¢ C(X))
vanishes for all p > 0. After a choice of a cellular ZG-basis, we obtain an
isomorphism @i": .V =V e Cp(X). Now choose any orthonormal basis
of V and equip V ®z¢ Ci(X) with the induced basis. With these choices we
obtain a well-defined element p(V ®z¢ C.(X)) € K1(R) (see (3.1)). The de-
terminant induces an isomorphism detg: K3 (R) =, R, The Reidemeister
torsion of X with coefficients in V is defined to be the real number

p(X; V) = In (|deta(p(V @26 Cu(X)))]). (3.4)

It is independent of the choices of a cellular basis for X and an orthonormal
basis for V. If f: X’ — X is a G-homeomorphism, then p(X’; V) = p(X; V).
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Let V and W be two orthogonal Z/n-representations for some n > 3
such that Z/n acts freely on the unit spheres SV and SW. If U is any
orthogonal representation with trivial fixed point set, then one computes
Hg/"(SV;U) = HE/H(SW; U) = 0 for all p > 0 and hence p(SV;U) and
p(SW;U) are defined. Suppose that SV and SW are Z/n-homeomorphic.
Since then p(SV;U) = p(SW;U) holds for any such U, one can compute
using Franz’ Lemma [201] that V' and W are isomorphic as orthogonal
7 /n-representations. Reidemeister torsion was the first invariant in algebraic
topology which is not a homotopy invariant. Namely, for suitable choices of V'
and W, the associated lens spaces L(V') := (Z/n)\SV and L(W) are homo-
topy equivalent but not homeomorphic [436], [116, chapter V]. The difference
of the diffeomorphism type is detected by p(SV;U) for suitable U. On the
other hand Reidemeister torsion can be used to prove rigidity. Namely, one
can show using Reidemeister torsion that L(V') and L(W) are homeomorphic
if and only if they are isometrically diffeomorphic with respect to the Rieman-
nian metric induced by the orthogonal structure on V and W. Lens spaces
with this Riemannian metric have constant positive sectional curvature. A
closed Riemannian manifold with constant positive sectional curvature and
cyclic fundamental group is isometrically diffeomorphic to a lens space after
possibly rescaling the Riemannian metric with a constant [525]. The result
above for free representations is generalized by De Rham’s Theorem [133]
(see also [323], Proposition 3.2 on page 478], [327, page 317], [443, section 4])
as follows. It says for a finite group G and two orthogonal G-representations
V and W whose unit spheres SV and SW are G-diffeomorphic that V and
W are isomorphic as orthogonal G-representations. This remains true if one
replaces G-diffeomorphic by G-homeomorphic provided that G has odd or-
der (see [265], [353]), but not for any finite group G (see [89], [91], [244] and
[245]).

The Alexander polynomial of a knot can be interpreted as a kind of Rei-
demeister torsion of the canonical infinite cyclic covering of the knot com-
plement (see [374], [497]). Reidemeister torsion appears naturally in surgery
theory [352]. Counterexamples to the (polyhedral) Hauptvermutung that two
homeomorphic simplicial complexes are already PL-homeomorphic are given
by Milnor [373] (see also [431]) and detected by Reidemeister torsion. Seiberg-
Witten invariants for 3-manifolds are essentially given by torsion invariants
[498].

Definition (3.4) can be extended to the case where HI? (X; V) is not trivial,
provided a Hilbert space structure is specified on each Hf (X;V). Namely,
there is up to chain homotopy precisely one chain map i,: HE(X;V) —
V ®z¢ C«(X) which induces the identity on homology where we consider
HE(X;V) as a chain complex with trivial differentials. Its mapping cone
cone, (i,) is an acyclic R-chain complex whose chain modules are Hilbert
spaces. As above choose for each chain module an orthonormal basis and
define using (3.4)
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p(X; V) :=In(|detgr (p(cone,(ix)))]) . (3.5)

The real number p(X; V) is independent of the choice of i, and orthonormal
basis (see also [375), page 365]). There is one preferred Hilbert structure on
HE(X; V) which is induced by the one on V ®z¢ C,(X). However, with this
choice p(X;V) is not invariant under barycentric subdivision if X is a free
cocompact simplicial G-complex with non-trivial H& (X;V) so that we do
not get a useful invariant for manifolds (see [345, Example 5.1 on page 240]).

The situation is better in the presence of a G-invariant Riemannian metric
on the cocompact free proper G-manifold M. Let f: X — M be any equiv-
ariant smooth triangulation of M. Then we can use a variant of the Hodge-
de Rham isomorphism H?(M;V) = HY(X; f*V) (see Theorem [1.57), the
natural isomorphism HZ(X; f*V)* =N HpG(X; f*V) and the Hilbert space
structure on HP(M;V) coming from the Riemannian metric to put a pre-
ferred Hilbert space structure on HE (X; f*V). With respect to this preferred

Hilbert space structure on HE (X; f*V) we define the topological Reidemeis-
ter torsion

Prop(M; V) == p(X; f*V), (3.6)

where p(X; f*V) was defined in (3.5). The topological Reidemeister torsion
is independent of the choice of (X, f) and is invariant under isometric G-
diffeomorphisms. If H?(M;V) is trivial for all p > 0, then we are back in
the situation of (3.4)) and pyop(M; V') depends only on the G-diffeomorphism
type of M but not any more on the G-invariant Riemannian metric.

Ray-Singer [432] defined the analytic counterpart of topological Reide-
meister torsion using a regularization of the zeta-function as follows. The first
observation is that one can compute p(X; V), which was introduced in (3.5)
with respect to the Hilbert structure on HE(X;V) induced by the one on
V ®z¢ Cy(X), in terms of the cellular Laplace operator A,: V @zq Cp(X) —
V @za Cp(X) by

p(Cy) =—=- Z(—l)p -p- ln(detR(Alf)), (3.7)

pEL

where A ker(Ap)t — ker(A,)*t is the positive automorphism of finite
dimensional Hilbert spaces induced by A, (cf. Lemma [3.30). Let M be
a cocompact free proper G-manifold with G-invariant Riemannian metric.
Let A,: 2P(M;V) — 2P(M;V) be the Laplace operator acting on smooth
p-forms on M with coefficients in the orthogonal (finite dimensional) G-
representation V. The Laplacian above on M is an essentially selfadjoint
operator with discrete spectrum since M is cocompact. One wants to use the
expression (3.7) also for the analytic Laplace operator and has to take into ac-
count that it is defined on infinite-dimensional spaces and hence ln(detR(Aj;))
does not make sense a priori. This is done as follows. The zeta-function is
defined by
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Gpls) =D A%, (3.8)

A>0

where A runs through the positive eigenvalues of A, listed with multiplicity.
Since the eigenvalues grow fast enough, the zeta-function is holomorphic for
R(s) > dim(M)/2. Moreover it has a meromorphic extension to C with no
pole in 0 [468]. So its derivative for s = 0 is defined. The analytic Reidemeister
torsion or Ray-Singer torsion of M is defined by [432, Definition 1.6 on page
149]

pan(M5V) 1= 21 p 2 G(6)]- (39)
p=>0

The basic idea is that “£(,(s)|s=o is a generalization of the (logarithm of)
the ordinary determinant detg. Namely, if f: V — V is a positive linear
automorphism of the finite-dimensional real vector space V and the positive
real numbers A1, Aa, ..., A\, are the eigenvalues of f listed with multiplicity,
then we get

s=0

S () A,

i=1

- (HA>

= —In (detr(f)).

Ray and Singer conjectured that the analytic and topological Reidemeis-
ter torsion agree. This conjecture was proved independently by Cheeger [103]
and Miiller [390]. Manifolds with boundary and manifolds with symmetries,
sum (= glueing) formulas and fibration formulas are treated in [74], [82],
[126], [127], [323], [327], [348], [503], [504], [505]. Non-orthogonal coefficient
systems are studied in [49], [50], [80], [393]. Further references are [42], [44],
143], [45], [46], [47], [48], [62], [83], [136], [181], [198], [206], [207], [221], [295],
1296], [317), [387], [423], [433], [506).

d d —
— = — E A8
dS CP(5)|S:O dS Pt )

3.2 Fuglede-Kadison Determinant

In this section we extend the notion of the Fuglede-Kadison determinant for
invertible morphisms of finite dimensional Hilbert A/(G)-modules [208] to ar-
bitrary morphisms and study its main properties. It is not enough to consider
only invertible morphisms because then we could construct L2-torsion only
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for finite free G-CW-complexes whose L2-Betti numbers are all trivial and
whose Novikov-Shubin invariants are all co™. But this condition is in view of
the zero-in-the-spectrum Conjecture [12.1 much too restrictive.

Let f: U — V be a morphism of finite dimensional Hilbert N(G)-
modules, i.e. dimpr(g)(U),dimpr ) (V) < oo. Recall that {E{f | A € R}
is the spectral family of the positive operator f*f and that the spectral den-
sity function F' = F(f): [0,00) — [0, 00) sends A to dimus(¢) (1m(E£2f)) (see
Lemma 2.3)). Recall that F' is a monotone non-decreasing right-continuous
function. Denote by dF' the measure on the Borel o-algebra on R which is
uniquely determined by its values on the half open intervals (a,b] for a < b

dF((a,b]) = F(b) — F(a). (3.10)

Notice that the measure of the one point set {a} is lim,_o4+ F(a) — F(a — )
and is zero if and only if F' is left-continuous in a. We will use here and
in the sequel the convention that f:, f:+, [ and fao_i respectively means
integration over the interval [a, b], (a,b], [a,00) and (a, c0) respectively.

Definition 3.11 (Fuglede-Kadison determinant). Let f: U — V be a
morphism of finite dimensional Hilbert N'(G)-modules with spectral density
function F = F(f). Define its (generalized) Fuglede-Kadison determinant

det () (f) € 10,00)

by detye)(f) = exp (fooj In(\) dF) if fooiln(/\) dEF > —oo and by
detar)(f) == 0 if fooj In(\) dF = —co. We call f of determinant class if
and only if fOOj: In(\) dF > —co. Often we omit N'(G) from the notation.

Notice that for fooi In(\) dF there is only a problem of convergence at zero
where In()) goes to —oo but not at oo because we have F(A) = F(||f]|c0) for
all A > || f||oo and hence

/Ooln()\) dF:/a In(A\) dFF for a > ||f]]co-
0

+ 0+

The notion of determinant class and the first investigations of its basic prop-
erties are due to Burghelea-Friedlander-Kappeler-McDonald [84, Definition
4.1 on page 800, Definition 5.7 on page 817].

If 0: U — V is the zero homomorphism for finite-dimensional Hilbert
N (G)-modules U and V, then det(0: U — V) = 1 by definition.

Example 3.12. Let G be finite and f: U — V be a morphism of finite
dimensional Hilbert A (G)-modules, i.e. a linear G-equivariant map of finite-
dimensional unitary G-representations. Let A1, Ao, ..., A, be the positive
eigenvalues of the positive map f*f. Then we conclude from Example 2.5
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1

r 21G]
det(f) = (H /\) .

If f is an isomorphism det(f) is the |G|-th root of the classical determinant
of the positive automorphism of complex vector spaces |f|: U — U.

Example 3.13. Let G = Z". In the sequel we use the notation and the
identification NV (Z") = L (T™) of Example [1.4. We conclude from Example
2.6l for f € L>(T™)

n

det (Mfi Lz(Tn) — L2(Tn)) = exp (/ ln(|f(z)|) “ X{ueSt|f(u)£0} dV01z>

using the convention exp(—oo) = 0.

The next result says that the main important properties of the classical
determinant of endomorphisms of finite-dimensional complex vector spaces
carry over to the (generalized) Fuglede-Kadison determinant. But the proof
in our context is of course more complicated than the one in the classical
case.

Theorem 3.14 (Kadison-Fuglede determinant). (1) Let f: U — V and
g: V. — W be morphisms of finite dimensional Hilbert N'(G)-modules
such that f has dense image and g is injective. Then

det(go f) = det(f)- det(g);

(2) Let f1: Uy — Vi, fa: Us — Va and f3: Uy — Vi be morphisms of finite
dimensional Hilbert N'(G)-modules such that fi has dense image and fo
is injective. Then

det <f1 f3> = det(f1) - det(fs);
0 fo
(3) Let f: U — V be a morphism of finite dimensional Hilbert N(G)-
modules. Then

det(f) = det(f7);

(4) If the Novikov-Shubin invariant of the morphism f: U — V of finite
dimensional Hilbert N'(G)-modules satisfies a(f) > 0, then f is of deter-
minant class;

(5) Let H C G be a subgroup of finite index |G : H|. Letres f: resU — resV
be the morphism of finite dimensional Hilbert N'(H)-modules obtained
from f by restriction. Then

det () (res f) = detarq) (f)IH);
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(6) Leti: H— G be an injective group homomorphism and let f: U — V be
a morphism of finite dimensional Hilbert N'(H)-modules. Then

dety(a)(ixf) = detyrm (f)-
Before we can give the proof of Theorem 3.14, we need

Lemma 3.15. Let f: U — V be a morphism of finite dimensional Hilbert
N(G)-modules and let F: [0,00) — [0,00) be a density function. Then

(1) We have for 0 <e<a

/+ [ 5 - Fo) ax

+1n(a) - (F(a) = F(0)) = In(e) - (F(e) = F(0));

/ In(\) dF = lim In(\) dF;
0+ =0+ oy

a

@ A
/M 3 (FO) = FO) dv= Jim [ 5 (FO) = F(0) dA

We have [". In(A) dF > —oo if and only if [, 5 -(F(N)—F(0)) d\ < oo,
and in this case

Jim In(A) - (F(A) - F(0)) = 0;

a a 1
/O In(\) dF = 7/0 T (F() = F(0) dA

+

(2) If f is invertible, we get
derls) = e (5 u(r))s

(3) If f+: ker(f)* — clos(im(f)) is the weak isomorphism induced by f we
get
det(f) = det(f*);

(4) det(f) = det(J*) = /At F) = /det(FF)
(5) If f: U — U is an injective positive operator, then

11151+det(f+e~idU) = det(f);

(6) If f < g for injective positive morphisms f,g: U — U, then

det(f) < det(g);
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(7) If f and g are morphisms of finite dimensional Hilbert N'(G)-modules,
then
det(f @ g) = det(f) - det(g).

Proof. (1) The first equation follows from partial integration for a continu-
ously differentiable function g on (0, 00) for € < a (see for instance [330, page
95])

/z g\ dF = */ag'(k) F(A)-dX + g(a) - F(a) = g(e) - F(e) (3.16)

and the second and third from Levi’s Theorem of monotone convergence. We
conclude from the first three equations that

1 1
_/O+>\.(F(/\)_F(0))d)\§/ In(\) dF,

0+

and that it remains to show

1
/ In(A) dF > —oo = lim In(\) - (F(A) — F(0)) = 0. (3.17)
0+ A—0+

Suppose that limy_,o4 In(A) - (F(A) — F(0)) = 0 is not true. Then we can find
a number C' < 0 and a monotone decreasing sequence 1 > A\; > Ay > A3 > ...
of positive real numbers converging to zero such that In(\;) - (F(\;) — F(0)) <
C holds for all ¢ > 0. Since lim; .o F(\;) = F(0) holds we can assume
without loss of generality 2- (F'(A\j+1) — F(0)) < F(A;) — F(0), otherwise pass
to an appropriate subsequence of (A;);. We have for each natural number
n and each A € (0,1) that In(A) < 37" In(Ai) - X(a,,,,0,(A) holds, where
X(nii1,0](A) s the characteristic function of (/\H—la)\] This implies for all
n>1

1
/ dF</ Zln X (A) dF
( (

)+ )+ =1

D () - (F(A) = F(Xig1))

1

IN I
1 M: 0
i
=R
>
N
|
—
>
:—/
|
!
—
o
S~—

IN
3
elQ

We conclude f01+ In(A\) dF = —o0. Hence (3.17) and therefore assertion (1))
are proved.

(2) We conclude from (1.65) or the more general fact that the trace is linear
and ultra-weakly continuous
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o0

tr(In(f*f) = tr ( / "y dE;*f)

:/Ooln()\)d(tr(Ef\c*f»
0+

_ /0 ) n(\?) d ((BL))
:2./:111(@ dF(f).

(3) If F+ is the spectral density function of f*, then F(\) = F+(\) + F(0).

(4)) This follows from assertion (1)) and the conclusion from Lemma [2.4
E(HN) = F()0) = F(f)N) = F(F)(0)
= F(f* )N = F(f*f)(0) = F(ff)N) = F(££)(0).
(5) We have F(f + ¢-idy)(A) = F(f)(A —¢€). Since F(f)(0) = 0, we get

/Ooln()\) dF(f +e-idy) = /00 In(A +¢€) dF(f)
0+ (—e)+
0 o)
:/ In(A+¢€) dF(f)+/ In(A +€) dF(f)
(—e)+ 0+
= In(e) - F(f)(0) + / In(\ + €) dF(f)
0+
= / In(A +¢€) dF'(f).
0+
We conclude from Levi’s Theorem of monotone convergence
eli%l-s- . In(A+¢€) dF(f) = /0+ In(\) dF(f).
This shows
elir& det(f +e¢e-idy) = det(f).

(6) For u € U we get

This implies for the spectral density functions
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F(g"?)(0) < F(fY3)(0).

Next we give the proof of the claim under the additional hypothesis that
f and g are invertible. Then we can choose € > 0 such that F(f)(\) =
F(g)(A) = 0for X < e. Fix a > [|g|| > [|f]|. Since F(f/2)(\) = F(g"/*)(A) =
dimp (@) (U) for X > /a, we conclude from assertion (I

/Ooo In(\) dF(g*/?) > /OO In(\) dF(f1/?).

0

This implies det(f1/?) < det(g'/?). Now the claim for invertible f and g

follows from assertion (4). The general case follows now from assertion (5)

since f 4+ €-idy and g + € - idy are invertible and f +¢e-idy < g+ e€-idy

holds for all € > 0.

(7) Obviously F(f ®g) = F(f) + F(g). Now apply assertion (I). |
For the proof of Theorem [3.14] we will need the next lemma where we will

use holomorphic calculus [282] Theorem 3.3.5 on page 206].

Lemma 3.18. Let f: D — C be a holomorphic function defined on a domain
D in C whose boundary is a smooth closed curve v: S' — C. Let X(t) for
0 <t <1 be a differentiable family of morphisms X(t): U — U for a finite
dimensional Hilbert N'(G)-module U, where differentiable is to be understood
with respect to the operator norm. Suppose that the spectrum spec(X (t)) :=
{z € C| z— X(t) is not invertible} of each X (t) lies in the interior of D.
We define (motivated by the Cauchy integral formula)

f(X = 2m/f X))t dz.
Then f(X(t)) is differentiable with respect to t and
tr (GAOEE)) = w(r(x@) o X0,

where f'(z) = L f(2) and X'(t) = L X (t).
Proof. From
fX (t+h)) - f(X(®))

X(t+h)™ = (-X@)™"
2m/f h dz
2m/f X4~ XN ZXW o (et e

we conclude
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LHx) = 5 / F(2) (= X)) o X' (1) 0 (2 — X() " d=.
Since
d

SR E=XE) ) = () -XE) " = f2)- (2= X(1)

and ~ is closed, partial integration gives

FX0) = 5 / F(2) - (5 — X(0)2 de.

Since

— tr (f(2) - (= — X (1)) 20 X'(1))

holds and tr commutes with integration, Lemma |3.18 follows. 0O
Now we are ready to give the proof of Theorem [3.14l

Proof. (1) Next we show for positive invertible morphisms f,g: U — U

tr(In(gf?g)) = 2 (tr(In(g)) + tr(In(f))). (3.19)

Consider the families g(t - f2 4+ (1 — t) - id)g and t - f2 + (1 — t) - id. There
are real numbers 0 < a < b such that the spectrum of each member of these
families lies in [a, b]. Choose a domain D in the half plane of complex numbers
with positive real part which is bounded by a smooth curve and contains
[a,b]. Let In be a holomorphic extension of the logarithm (0,00) — R to a
holomorphic function on C with the negative real numbers removed. Notice
that D lies in the domain of In. Since the definition of In(h) of [1.64' and the
one by holomorphic calculus in Lemma [3.18 for invertible h agree, Lemma
3.18 implies

Dt (in((t- 12 + (1= 1) -id)g)

—ur(ulate 2+ (1-0) )

=tr((g(t-fP+1—1t)-i )9 “to(g(f* —id)g))
=tr((t-f2+ (1—1)-id)"" o (£ —id))

d 2 .
== tr(In(t- f2 4 (1—1t)-id)).

(
(

Now (3.19) follows since In(h?) = 2-In(h) for invertible positive h and In(id) =
0.
Next we show for injective positive morphisms f,g: U — U



134 3. L2-Torsion

det(gf?g) = det(f)? - det(g)*. (3.20)

Notice that (3.20) holds under the additional assumption that f and g are
invertible because of Lemma [3.15 (2), the equation In(h?) = 2 - In(h) for
invertible positive h and (3.19). The general case is reduced to this special
case as follows.

Choose a constant C such that for all 0 < e <1

9f?9 < g(f +e-idy)’g < gf?g + Ce - idy

holds. We conclude from Lemma [3.15/ (4), (5) and (6)

det(gf%g) = lim det(g(f + € -idu)*g);

det(f) = el—igl-s- det(f +€-idy);

det(g/2g) = det(fg*f)-

Since g + € and f + € for € > 0 are invertible, we get
det(gf?g) = lim det(g(f + ¢ -idu)’g)

Jim det((f +e- idy)g*(f + € idy))
= lim lim det((f +e-idy)(g+0-idy)*(f + € -idy))

e—0+4 0—0+

= lim lim det -idy)? - det 8 -idy)?
Ly oLy Aot/ e idu) - detlg + 0 idu)

= det(f)? - det(g)*.

Hence (3.20)) holds for all injective positive morphisms f and g.
Given morphisms f: U — V and g: V — W of finite dimensional Hilbert
N (G)-modules such that f has dense image and g is injective, it remains to
show
det(go f) = det(f) - det(g).

We can assume without loss of generality that both f and g are injective.
Otherwise replace f by the injective map f*: ker(f)* — V induced by f
and use the conclusion from Lemma [3.15 (7) that det(f*) = det(f) and
det(g o f*+) = det(g o f) holds.

If u is a unitary and v some morphism, then v~
spectral density function and hence

Lyu and v have the same

det(utou) = det(v). (3.21)

In order to prove assertion (1) we use the polar decomposition f = au
and g = vb where u and v are unitary isomorphisms and a and b are positive.
Notice that g is injective, f has dense image and hence f* is injective. There-
fore both a and b are injective. We compute using Lemma 3.15 (4)), (3.20)
and (3.21)
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det(gf) = det(vbau) = /det((vbau)* (vbau)) = /det(u—Lab2au)

= /det(ab2a) = \/det(a)? - det(b)2 = v/det(ff*) - det(g*g) = det(f)-det(g).

(2) The claim is already proved in Lemma 3.15/ (7)) if f3 is trivial. Because of

the equation
fufsy _ (10N (1fs\ (f0
0 fa 0 f2 01 01
assertion (IJ) implies that it suffices to prove
1f30
det {010 =1
001

Since this matrix can be written as a commutator,

1f50 100 101 1 oo\ " /101\ "

010)] = (010 010 010 {010

001 0—f51 001 0—f51 001
the claim follows from assertion (I)).
(3) has already been proved in Lemma [3.15 (4).
(4) Because of Lemma [3.15 (1)) it suffices to show:

. “1
Elirg1+ Y (F(X) — F(0)) - dX\ < 0.

Since a(f) is assumed to be positive, there is 0 < § and 0 < o < a(f) such
that
F(\) —F(0) < \®

holds for 0 < A < §. Now assertion (4) follows from
1 1
lim AN = lim = (a® =€) = = -a®.
e—0+ /. e—0+ (v o

(5) This follows from Theorem [1.12] (6).
(6) This follows from (2.57)). This finishes the proof of Theorem [3.14. O

Example 3.22. Consider a non-trivial element p € C[Z]. We want to com-
pute the Fuglede-Kadison determinant of the morphism R,: [*(Z) — [*(Z)
given by multiplication with p € C[Z]. We can write

!
p(z) = C-z”~H(z—ak)
k=1

for complex numbers C, ag, a1, ..., a; and integers n,l with C' # 0 and [ > 0.
We want to show
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In(det(Ry)) =In(|C)+ > In(lag|).

1<k<l,|ag|>1
We get from Theorem [3.14! (1))

!
det(R,) = det(R¢) - det(R Hdet Ri.—a))-
k=1

Hence it remains to show

_ fla] forla|>1
det(R(z—a)) - {1 for |a| <1

Because of Example 3.13! it suffices to show

2-1n(la]) for |a] > 1

/51 In((z — a)(z — a)) dvol = {0 for |a] < 1

(3.23)

(3.24)

(3.25)

for a € C, where we equip S* with the obvious measure Satisfying vol(S1) = 1.
Because fsl In( (z a)(z —a)) dvol = [¢, In((z—lal)(z~" —lal])) dvol we may

suppose a € RZ0 in the sequel.

We compute for a # 1 and the path ~: [0,1] — S1, ¢ — exp(2mit) using

the Residue Theorem

— ln (z—a)(z! = a)) dvol
Sl

1
—/ + 1dvol
s1a—z a— z
1
:2-/ dvol
S1 a—z
1 .
:2-/ ————— - 27iz - dvol
g1 (a—2) - 2miz

2 1
SR S B
2mi ), (@a—2)-2

_{(21 for a >1

0 fora<1l”
This implies for a € RZ% a # 1

d

2
da /s In((z —a)(z7! — a)) dvol = {6 fora>1

fora<1’
We conclude for an appropriate number C'

JsrIn((z —a)(z~" —a)) dvol = 2-In(a) + C' for a > 1

fs11 ((Z_CL)(Z —(l)) dvol =0 fora<1’
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We get from Levi’s Theorem of monotone convergence

/ In((z —1)(z~* = 1)) dvol = C.
S1

We get from Lebesgue’s Theorem of majorized convergence

/ In((z — 1)(2~* — 1)) dvol = 0.
S1
This proves (3.25) and hence (3.24) and (3.23).

Example 3.26. The following examples show that the conditions appearing
in Theorem [3.14] (I)) and (2) are necessary. We will use the same notation as
in Example 3.13. Let u € L*°(T™) be a given function such that {z € T" |
u(z) = 0} has measure zero. Put

g: LT — LX(T™)2, (a,b) — (a,0);

f: LQ(Tn)2 - LZ(TH)27 (a’a b) = (ua+b7b)7
o 2T -1, s

for LA(T™) — L2(T™), a—0;

fz: L2(T™) — L*(T™), a— a.

Then one easily checks using Lemma [3.15, Theorem [3.14' (2) and Example
3.13.

det(go f) = det (gé) = <det (75(1)) <8(1)>*>1/2
— (det(uu*0+18>)1/2 = exp (;./nln(l—l—u(zﬂz)dvol,z);

det(f) = det(ﬁ}) — det(u) = exp(/nln(|u(z)|)dvolz>;

n(51) = () - ool f o)

det(g) = 1;
det(f1) = exp (/ . 1H(|u(z)|)dvolz) :
det(fg) =1.

If we put for instance n = 1 and u(exp(2it)) = exp(=) for t € (0,1], then
we get [, In(Ju(z)]) dvol. = —oo and [, In(1+ |u(z)|?) dvol, > 0 and hence
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Notice that f has dense image and g is not injective and det(go f) # det(f)-
det(g). Moreover, f* is injective and ¢* has not dense image and det(f*og*) #
det(f*) - det(g*) because of Lemma 3.15/ (4). A similar statement holds for
N fs
0 fo

We have shown in Theorem [3.14] (4) for a morphisms f: U — V of finite
dimensional Hilbert N (G)-modules that a(f) > 0 implies det(f) > 0. The
converse is not true in general as the following example shows.

Example 3.27. We give an example of a morphism of finitely generated
Hilbert N (Z)-modules such that f is of determinant class but its Novikov
Shubin invariant is zero (cf Lemma 3.14! (4)). Fix € > 0. Define a monotone
non-decreasing continuous function F': [0, 00) — [0,00) by F(0) =0, F(\) =
[In(A/(1+¢€)|" 1= for 0 < A< 1and F(A) = |[In(1/(1 +¢€))|717¢ for 1 < A,
Since limy_o4 2 F(}\) = 0 holds for any « > 0, we get a(F) = 0. We conclude
from Levi’s Theorem of monotone convergence

YFON)-FO) (! 1
/o+ X dA‘/0+A-|1n<A/<1+e>>|l+f A

1
1
= 1.
ai%l+/5 X In(N/(1+ )|
1 1
= 1. —
bt e (/01 o] e m@/1+e)
1
Ce-In(1+e)
< 0.

X

Define f: S* — R by sending exp(2mit) to F(t) for 0 <t < 1. Then F is the
spectral density function of the morphism Mj: L?*(S') — L?(S?) of finitely
generated Hilbert N(Z)-modules (see Example 2.6). Lemma [3.15/ (1)) implies
det(f) > 0;
alf) = 0.

Hence det(f) > 0 does not imply «(f) > 0. But we can get from det(f) > 0
the following related conclusion for the asymptotic behaviour of the spectral
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density function of f at zero which of course is weaker than the condition

a(f) >0

Theorem 3.28. Let f: U — V be a morphism of finite dimensional Hilbert
N(G)-modules. Let F' be its spectral density function. Put K = max{1, || f||oc}-
Suppose that det(f) > 0. Then we get for all X € (0, 1]

1

FO) = F(O) < (In(K) - (dim(U) - dim(ker(/))) — Indet(£))) - =55

Proof. We conclude from Lemma 3.15/ (1) that foii wdf < oo and

K —_
In(det(f)) = In(K) - (dim(U) — dim(ker(f))) — /O ) F(f)gF(())dg_
We estimate for A € (0, 1]

(F'(A) = F(0)) - (In(K) = In(A))

This implies

In(K) - (dim(U) — dim(ker(f))) — In(det(f))
FQ) = F(0) < In(K) — In(\)

< (In(K) - (dim(U) — dim(ker(f))) — In(det(f)))

1

' —ln()\)'D

The obvious version of Theorem 13.28 for analytic spectral density func-
tions is stated in Theorem [13.7.

3.3 L2-Torsion of Hilbert Chain Complexes

In this section we introduce and study the L2-torsion of finite Hilbert A/(G)-
chain complexes.
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3.3.1 Basic Definitions and Properties of L2-Torsion

Definition 3.29 (L?-torsion). We call a Hilbert N'(G)-chain complex C,
dim-finite if dim(Cp) < oo for all p and C, = 0 for |p| > N for some
integer N. A dim-finite Hilbert N'(G)-chain complex C, is of determinant
class if the differential c¢,: Cp, — Cp—1 is of determinant class in the sense of
Definition [3.11) for each p € Z. A Hilbert N(G)-chain complex Cy is called
weakly acyclic or equivalently L2-acyclic if its L?-homology is trivial. It is
called det-L?-acyclic if C, is of determinant class and weakly acyclic.
If C, is of determinant class, define its L2-torsion by

pA(C,) = — Z )P -In(det(cp,)) €R.
PpEL

Notice that we prefer to take the logarithm of the determinant in order to
get later additive instead of multiplicative formulas and because this will fit
better with the analytic version. The next lemma expresses the L2-torsion in
terms of the Laplace operator A,: C, — C} (see (1.17)) which will motivate
the analytic definition later.

Lemma 3.30. A dim-finite Hilbert N (G)-chain complex C, is of determi-
nant class if and only if A, is of determinant class for all p € Z. In this
case

pA(C,) = — = Z -p-In(det(A,)).

pEL
Proof. From Lemma [1.18 we obtain an orthogonal decomposition
C, = ker(c,) ™ @ clos(im(cpy1)) © ker(A,);
Ay = ((Cé)* © C;) @ (Czirl © (C;irl)*) ® 0,

where ¢ : ker(c;)* — clos(im(c;)) is the weak isomorphism induced by c;.

Lemma 3.15 (4) and (7)) imply that C, is of determinant class if and only A,
is of determinant class for all p € Z and that in this case

1

-5 I;Z(fl)p -p-In(det(A,))

- ,% . Z(fl)p -p-In(det (((¢;)* o cp) ® (cppy © (cpy1)*) ®0))

PEZL

= =5 D=1 - (i (det ((c) 0 )

+In (det <C$+1 o (czfﬂ)*)) + ln(det(O)))

=~ S (-1)7p- (2 In(det () + 2 In (det (cp41)))
PEZL

—Z )P - 1n (det (¢p)) - O

PEZL



3.3 L2 Torsion of Hilbert Chain Complexes 141

Definition 3.31. Let f.: C, — D, be a chain map of dim-finite Hilbert
N (G)-chain complezes. We call it of determinant class if its mapping cone
cone, (f.) is of determinant class. In this case we define the L-torsion of f.
by

t@(f.) == p® (cone.(f.)).

Before we can state the main properties of these invariants p(?(C,) and

t@)(£,), we need some preparations. Let 0 — U — V 2 W — 0 be a weakly
exact sequence of finite dimensional Hilbert A(G)-modules. We call it of
determinant class if the 2-dimensional weakly acyclic chain complex which it
defines with W in dimension 0 is of determinant class, and we define in this
case

PA(U,V,IW) eR (3.32)

by the L2-torsion of this chain complex in the sense of Definition [3.29. If the
sequence is of determinant class we will later see in Lemma [3.41! or directly
from Theorem [3.14] that for any choice of map s: W — V for which po s is
a weak isomorphism of determinant class also ¢ & s: U @ W — V is a weak
isomorphism of determinant class and

p (U, V,W) = —In(det(i)) + In(det(p))
= —In(det(i ® s)) + In(det(p o 5)). (3.33)

Ifo—-US5V L W - 0is exact, then it is of determinant class. If
i is isometric and p induces an isometric isomorphism ker(p)* — W, then
p(2)(U,V7W) = 0. This applies to the canonical exact sequence 0 — U —
UpW —- W — 0.

If0—- C., - D, — E, — 0 is a weakly exact sequence of dim-finite
Hilbert N (G)-chain complexes, we call it of determinant class if each exact
sequence 0 — C, — D, — E, — 0 is of determinant class and define in this
case

pP(Cy, Dy EL) = (=1)7 - pP(Cy, Dy, Ep). (3.34)
pEL

Let LHS,(Cy, D., E,) be the weakly acyclic dim-finite Hilbert A/(G)-chain
complex given by the weakly exact long homology sequence associated to an
exact sequence 0 — C, — D, — FE, — 0 of dim-finite Hilbert A/(G)-chain
complexes (see Theorem [1.21), where we use the convention that H(SQ) (Ey)
sits in dimension zero. A chain map f.: Cy — D, is called a weak homology
equivalence if H]gQ)(f*) is a weak isomorphism for all p € Z.

The next result reflects the main properties of the torsion invariants de-
fined above. These properties are very similar to the one for the classical
notions for finite based free acyclic chain complexes over a field. However,
the proof, which will be given in Subsection [3.3.3| after some preliminaries
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in Subsection 3.3.2, is more complicated in our context. To understand the
basic properties of L2-torsion it suffices to study the next theorem, and the
reader may skip its proof and pass directly to Section 3.4. The main ideas of
its proof come from [345] Section 6]. A proof of Theorem [3.35/ (1)) can also be
found in [82, Theorem 2.7 on page 40].

Theorem 3.35 (L2-torsion of Hilbert chain complexes). (1) Let 0 —

C, = D, X% E, — 0 be an exact sequence of dim-finite Hilbert N'(G)-
chain complezes. Suppose that three of the Hilbert N'(G)-chain complezes
Cy, D, E, and LHS, are of determinant class.

Then all four are of determinant class and

pD(C,) — pP(D,) + p@(B,)

(2) Let
0 c, —=— D, - F, 0
S l g l R l
0 c = . p " g 0

be a commutative diagram of dim-finite Hilbert N'(G)-chain complexes
which are of determinant class. Suppose that two of the chain maps [y,
g« and hy are weak homology equivalences of determinant class and that
the rows are weakly exact and of determinant class.

Then all three chain maps f«, g« and hy are weak homology equivalences
of determinant class and

3 (f) =t (g2) + 1P (ha) = p®(CL DL EL) = o (Cu, Dy, Bu);

(3) Let fi,g«: Ci — D, be weak homology equivalences of dim-finite N'(G)-
chain complezes such that f. or g. is of determinant class. Suppose that
f+« and g, are homotopic. Then both are of determinant class and

(1) = 1%(g.);

(4) Let C., D, and E, be dim-finite Hilbert N'(G)-chain complexes and let
f+«: Cy — Dy and g.: D, — E, be chain maps. Suppose that two of the
chain maps f., g« and g. o f. are weak homology equivalences of determi-
nant class. Then all three are weak homology equivalences of determinant
class and

t®(gof) = t2(f) + 1t (g);
(5) Let Cy and D, be dim-finite Hilbert N'(G)-chain complexes of determi-
nant class and fy: Cy — D, be a weak homology equivalence. Then fy is

of determinant class if and only if HI(,Z)(f*) s of determinant class for
all p € Z and in this case
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1A(L) = p2(D,) = p®(C) + 3 (=1) I (det (HP (1)) )
PEZL
(6) Let f.: Cr — CL and g.: Dy — D! be chain maps of dim-finite Hilbert
N(G)-chain complexes and N'(H)-chain complexes. Denote by x?(C,) €
R the L*-Buler characteristic 3, (—1)P - b,()Q)(C*). Then
(a) If D, is det-L2-acyclic, then the dim-finite Hilbert N'(G x H)-chain
complez C,, ® D, is det-L?-acyclic and

p?(C. @ D,) = xP(C.) - pP(D.);

(b) If Cy and D, are of determinant class, then the dim-finite Hilbert
N(G x H)-chain complex Cy ® D, is of determinant class and

pP(C. @ D) = x(C) - pP(D) + XD (D) - pP(CL);

(c) If fi« and g. are weak homology equivalences of determinant class,
then the chain map fi« ® g« of Hilbert N(G x H)-chain complezxes is
a weak homology equivalence of determinant class and

(£ ®g.) = xP(C) - 1P (g.) + XD (D.) 1P ()

(7) Let H C G be a subgroup of finite index [G : H] and let Cy be a dim-
finite Hilbert N'(G)-chain complex. Then C, is det-L?-acyclic if and only
if the dim-finite Hilbert N'(H)-chain complex res C, obtained from C, by
restriction is det-L2-acyclic, and in this case

pP(resC.) = [G: H]- pP(C.);

(8) Leti: H — G be an inclusion of groups and let Cy be a dim-finite Hilbert
N(H)-chain complex. Then C, is det-L?-acyclic if and only if the dim-
finite Hilbert N'(G)-chain complez i.C, obtained by induction with i (see
Definition 1.23) is det-L?-acyclic, and in this case

p2(C.) = p?(iCL).

Example 3.36. We give an example that in Theorem [3.35/ (3) the condition
that f, and g, are weak homology equivalences is necessary. The same is
true for Theorem [3.35! (4) and (5). Let C, and D, respectively be the Hilbert
N (G)-chain complexes concentrated in dimensions 0 and 1 whose first dif-
ferentials are id: N(G) — N(G) and 0: N(G) — N(G) respectively. For
any morphism v: N(G) — N(G) we obtain a chain map f(v).: C. — D,
by putting f(v)1 = v and f(v)o = 0. The chain map f(v). is homotopic
to 0 : Cy, — D,, a chain homotopy is given by -~ itself. However, one easily
computes that t2)(f(7).) is not independent of -y, namely

(O(f(1).) = — 5 I (det(id44°7)).
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3.3.2 L2-Torsion and Chain Contractions

Before we give the proof of Theorem [3.35/ in Subsection 3.3.3, we reformu-
late the definition of L2-torsion in terms of weak chain contractions. This
formulation will be useful for the proofs since it is more flexible. Moreover, it
applies to more general situations and is closer to standard notions such as
Whitehead torsion.

Lemma 3.37. (1) Let f: U — V and g: V. — W be morphisms of finite
dimensional Hilbert N'(G)-modules. If two of the maps f, g and go f are
weak isomorphisms (of determinant class), then also the third;

(2) Let

0 U, ——— v, -2 U, 0
fll fOJ, le
0 Vi — v, — W 0

be a commutative diagram of maps of finite dimensional Hilbert N'(G)-
modules whose rows are weakly exact (and of determinant class). If two
of the three maps f1, fo and fo are weak isomorphisms (of determinant
class), then also the third;

(3) Let fi: Cix — Dy be a chain map of Hilbert N'(G)-chain complezes such
that C}, and D, have finite dimension for all p € Z. Then f,. is a weak
homology equivalence if and only if cone(f.) is weakly acyclic.

Proof. (1) This follows from Lemma 1.13 and Theorem [3.14' (1J).

(2) The given diagram induces the following commutative diagram with exact
rows

0 —— ker(p) Uy ker(p)t —— 0
7| 3 7|
0 —— ker(q) Vo ker(q)t —— 0.

The induced maps i: U; — ker(p), p-: ker(p)t — Us, j: Vi — ker(q), and
q*: ker(q)t — V4 are weak isomorphisms (of determinant class) by assump-
tion. Because of assertion (1)) f; and f} respectively are weak isomorphisms
(of determinant class) if and only if f; and fs respectively are weak isomor-
phisms (of determinant class.) We conclude from Theorem [1.21] and Theorem
3.14 (2) that already all three maps fi, fo and f4 are weak isomorphisms (of
determinant class) if two of them are weak isomorphisms (of determinant
class).
(3) follows from the long weakly exact homology equivalence (see Theorem
1.27)) associated to the exact sequence 0 — D, — cone(f,) — XC, — 0 since
the boundary map is Hiz)(f*). a
A chain map f.: C, — D, of Hilbert N(G)-chain complexes is called
weak chain isomorphism if f,: C, — D, is a weak isomorphism for all p.
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Definition 3.38. A weak chain contraction for a Hilbert N'(G)-chain com-
plex Cy is a pair (V«,us) which consists of a weak chain isomorphism
uy: Cy — Cy and a chain homotopy Vi : wx ~ 0 satisfying s 0 Ux = Uy O Vs

A chain contraction in the ordinary sense is just a weak chain contraction
(Vs us ) With u, = id.

Lemma 3.39. The following statements are equivalent for a dim-finite Hilbert
N(G)-chain complez.

(1) Cy is weakly acyclic (and of determinant class);

(2) A,: Cp — Cp is a weak isomorphism (of determinant class) for allp € Z;

(8) There is a weak chain contraction (Y, ux) with vy, oy, =0 (such that u,
is of determinant class);

(4) There is a weak chain contraction (Y., us) (such that u. is of determinant
class).

Proof. (1) = (2)) This follows from Lemma [1.18 and Lemma [3.30] since a
selfadjoint endomorphism of a Hilbert A (G)-module (such as A,) is a weak
isomorphism if and only if it is injective.

(2) = (3) Put v, = c;. Then (74, A) is the desired weak chain contraction.
3) = (4)) is trivial.

(4) = (1) Since 74 is a chain homotopy between u, and 0., we get H,@(u*) =
0 for p € Z. Since u, is a weak isomorphism, ng)(u*) is a weak isomorphism
for all p € Z by Lemma [3.44] which we will prove later. Hence C, is weakly
acyclic. We split

0,1
Up = (18) ZE) : O = ker(e,) ® ker(c,) " — Cp = ker(c,) @ ker(cp) ™
P

L
= (8 Cg ) : Cp = ker(cp) ® ker(cp)L — Cp1 = ker(cp—1) @ ker(cp—1);

0 A1

T = <::€ :;g) : Cp = ker(c,) @ ker(c,) " — Cpi1 = ker(cpp1) © ker(cpyn) ™
pIp

1L

P

with dense image, we conclude from Lemma [1.13 that uj; is a weak isomor-

1
P

cj and ué are weak isomorphisms, ’yg_l is a weak isomorphism by Lemma

3.37 (1). If u, is of determinant class, ¢, is of determinant class by Theorem

3.141 (1) and Lemma [3.15/ (3). Hence C, is of determinant class if u, is of

determinant class for all p € Z. 0O
The proof of the next lemma is a direct calculation.

Since uy- is an endomorphism of a finite dimensional Hilbert A/(G)-module

. _ 2 _ J_ .
phism. From ¢,41 07, + Yp—1 0 ¢, = up we conclude ~,_; o ¢, = u, . Since

Lemma 3.40. Let (7., us) and (0.,vs) be weak chain contractions for the
dim-finite Hilbert N'(G)-chain complex C. Define ©: Co, — Coy by
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.ou 0 0 ...

O = (VioUy + 0 07) = o 0you 0 ...
.0 dyvu ...
Then the composition
6 : Coga 2, Gy &5 Oy P, gy
is given by the lower triangle matrix
(v*u?)2, 1 0 0
* (U u2)2n+1 0

Lemma 3.41. Let C, be a weakly acyclic dim-finite Hilbert N (G)-chain
complezx of determinant class. Let (s, us) and (0x,v.) be weak chain con-
tractions such that u, and v, are of determinant class for p € Z.

Then the maps (uc 4 ¥)odd: Codd — Cev, (uc 4+ ¥)ev: Cov — Codd, Uodd
and ue, are weak isomorphisms and of determinant class and we get

In (det((uc + v)oad)) — In (det(uoqq)) = — In (det((ve + 6)ey)) + In (det(vey)) ;
In (det(uodd)) = In (det(uey)) ;
p(2)(C*) = In (det((uc + v¥)oda)) — In (det(uoga)) -

Proof. Since u, and v, are weak isomorphisms and of determinant class, we
conclude from Lemma [1.13, Theorem 3.14/ (1) and (2)), Lemma [3.37 (1)) and
(2) and Lemma [3.40] that the maps (uc + ¥)odd, (V¢ + §)ev, Uodds Vodd, Uey
and v., are weak isomorphisms and of determinant class and that

2 - (In (det(voda)) + In (det(uoda))) = In (det((ve + )ev)) + In (det(vey))
+In (det(uey)) + In (det((uc + ¥)oda)) -

We conclude In (det(uoqq)) = In (det(uey)) from Theorem [3.14 (1)) applied
t0 (uc 4+ Y¥)odd © Uodd = Uev © (UC + ¥)oda and analogously In (det(voqq)) =
In (det(vey)). This proves the first two equations.

The first equation shows that In (det((uc + ¥)oda)) — In (det(uoaq)) is in-
dependent of the choice of the weak chain contraction (7., u.) with u, a weak
isomorphism of determinant class for all p € Z. Hence it suffices to prove the
third equation for the special choice (v, ux) = ((cx)*, Ay).
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Let f,: Cp, — C} be the p-fold composition (A,)P = A,o0...0 A, Then
the following square commutes

(Ac+c™)oad
Oodd — CeV

foddl fevl

(Ac*+c¢)oad
Codd — Cev

We conclude from Theorem [3.14, Lemma [3.15 (4) and Lemma [3.30

2 1In (det ((Ac + ¢*)odq))

= In (det ((Ac+ ¢*)igq 0 (Ac+ ¢ )oda))

= In (det ((Ac+ ¢)5qq © fev 0 (Ac+ ¢ )oaa)) — In(det (fev))

= In (det ((Ac+ ¢*)iqq © (Ac® 4 €)odd © foad)) — In (det (foy))

= In (det ((Ac™ + ¢)ev © (A" + ¢)oaa)) + In (det (foaa)) — In (det (fev))

and

2 (In(det ((Ac+ ¢*)oda)) — In (det (Aoda)))
= In (det (foaa)) — In (det (fey)) + In (det ((Ac* + ¢)ev © (A" + €)odd))
—2 - In (det (Aoaa))
= — Z -p-In(det (A,)) + In (det ((Ac* + ¢)ev © (A" + ¢)odd))

—2-In (det (Aodd))

=2.p(C,) 4 In (det ((Ac* + ¢)ev)) + In (det ((Ac* + ¢)oaa))
—2-1n (det (Aodd)) .

Hence it remains to show
In (det ((Ac* + ¢)ev)) + In (det ((Ac* + ¢)oda)) = 2 - In (det (Apga)) -

The dual chain complex (C,)* has the chain contraction (c., Ay). If we
apply to it the first and second equation, which we have already proved, we
obtain

In (det ((Ac™ + ¢)oad)) — In (det (Apda)) = — In (det ((Ac* + ¢)ev))
+1In (det (Aev)) ;
In (det (Apga)) = In (det (Aey)) -

This finishes the proof of Lemma [3.41. O
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3.3.3 Proofs of the Basic Properties of L2-Torsion

This subsection is devoted to the proof of Theorem [3.35. We will need the
following lemmas.

Lemma 3.42. Let 0 — C, ~» D, X5 E, — 0 be an ezact sequence of
dim-finite N'(G)-chain complezes. Suppose that (€., w.) is a weak chain con-
traction for E, (such that w, is of determinant class for p € Z). Then there
is a chain map s.: Ey — D, such that q. o s, = wy: E, — E, and that
ip ® sp: Cp ® E, — D, is a weak isomorphism (of determinant class) for
pEZ.

Proof. For each p € Z choose a morphism o,: £, — D, with ¢, o o, = id.
Now define

Spi=dpt100pt1 06+ 0p0€p10€y: By — Dy

Then s,: D, — E, is a chain map with p, o s, = w, and the following
diagram commutes

0 C. C, & E. E, 0
idl i DSx l Wy l
0 c. —= D. ., E, 0
where the upper horizontal row is the canonical one. Now the claim follows
from Lemma [3.37 (2). O

Lemma 3.43. Let C, be a Hilbert N'(G)-chain complex with trivial differen-
tials. Let uy,v.: Cx — D, be chain maps to a dim-finite Hilbert N'(G)-chain
complex D, of determinant class with H,ﬁz) (uy) = Hiz) (vs). Then there is a
weak chain isomorphism g.: D, — D, such that each g, : D, — D, is of de-

terminant class, HI(,Q)(g*) =id and there is a chain homotopy g ous =~ g, 0V,.

Proof. Since dy : ker(d,)* — clos(im(dy)) is a weak isomorphism, we can

choose an isomorphism ,_1: clos(im(d,)) = ker(d,)* by the Polar De-
composition Theorem. Define g,: D, — D,, by the orthogonal sum of

dpt1lker(dy1)t © Yp : clos(im(dpy1)) — clos(im(dp1));
id: ker(d,) N clos(im(dpy1))* — ker(d,) N clos(im(dyi1))";
Pp_1 © d;: ker(d,)* — ker(d,)*.
Since D, is of determinant class, g, is a weak isomorphism of determinant
class by Lemma[3.15 (3) and (7) and Lemma [3.37/ (1). Define v,: Cp, — Dpt1
by the composition of u,—v,: C}, — clos(im(d,+1)) and ¢, : clos(im(dp4+1)) —
ker(dp+1)t C Dpy1. Now one easily checks using Lemma [1.18 that we obtain
a chain map g,: D, — D, with H,£2) (9+) = id and ~. defines a chain homo-
topy between g, o u, and g, o v,. a



3.3 L2 Torsion of Hilbert Chain Complexes 149

Lemma 3.44. Let C, and D, be dim-finite Hilbert N'(G)-chain complexes.
If fo: C — D, is a weak chain isomorphism (such that f, is of determinant
class for all p € Z), then H,(,Z)(f*) is a weak isomorphism (of determinant
class) for all p € Z. If f.: Cix — D, is a weak chain isomorphism (such that
fp is of determinant class for all p € Z) and C, or D, is of determinant
class, then both C, and D, are of determinant class and

PP (D.)=pP(C.) = (=) (det(f,)) = (~1)"n (det (HP (1))

PEZ PEZL

Proof. Fix ng € Z such that C, = D, = 0 for p < ng. We use induction over
n for which C}, = D, = 0 for p > n. The induction beginning n < ny is trivial
since then C, and D, are concentrated in dimension ng. The induction step
from n to n + 1 is done as follows.

Define € as the subchain complex of C. with C}, = C, for p > n + 1,
Cp = clos(im(cn11)) and C), = 0 for p < n — 1. Define CY as the quotient
chain complex of C, with CJ/ = 0 for p > n+1, C}] = im(¢y11)* and C} = C,
for p < n — 1. There is an obvious exact sequence 0 — C, — C, — C7 — 0.
Lemma 3.15/ (3) implies that both C, and CJ are of determinant class if and
only if C, is of determinant class and in this case

pA(Cy) = pP(CL) + pP(CY). (3.45)

We obtain a commutative diagram with exact rows

0 c Cy cr 0
al ] I (3.46)
0 D, D, D! 0

The map f),: C}, — D;, has dense image as its composition with ¢}, ,: C}, ,; —
C] is the composition of the maps which both have dense image f,+1: Cpy1 —
D41 and dy11: Dyy1 — clos(im(dy,+1)). Since the middle vertical arrow in
diagram (3.46)) is a weak isomorphism and the left vertical arrow in diagram
(3.46)) has dense image and hence is a weak isomorphism, all three vertical
arrows in diagram (3.46) are weak isomorphisms by Lemma [3.37 (2). Theo-
rem 3.14/ (2) applied to diagram (3.46) shows that for all p € Z the maps f,
and f; are weak isomorphisms of determinant class and

In(det(f,)) = In(det(f,)) + In(det(f,)), (3.47)

provided that f, is of determinant class for all p € Z.

Next we prove Lemma 3.44 for f/: C! — D’. Suppose that f.: C. — D!,
is a weak chain isomorphism. Since CZ’) = 0 for p > n + 2, we obtain a
commutative diagram with exact rows
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0 —— HZ(CL) —— Chyy —2— ker(cy)t —— 0

Hﬁl(f;)l f;wll fﬁll (3.48)
0 —— HZ (D) —— Dy — ker(d) ;) —— 0

and the commutative diagram

s
ker(c], 4 1)* S, cy,

f,,itll f,’tl (3.49)

1 d:ﬁrl !
ker( n+1) - Dn

Since the horizontal arrows and the right vertical arrow in diagram (3.49)
are weak isomorphisms, f/t 11 is a weak isomorphism by Lemma [3.37/ (1).

Lemma [3.37 (2) applied to diagram (3.48) shows that Hn+1(f*) is a weak
isomorphism.

Now suppose that f,: C;, — D, is a weak isomorphism of determinant
class for all p € Z Theorem [3.14 (2) applied to diagram (3.48) shows that

Hfil( fi) and fr; are of determinant class and satisfy

In(det(f, 1)) = In (det (H,(f))) +n (det (fiy,)) . (3.50)

If C, or D, is of determinant class, we conclude from Lemma [3.15/ (3) and
Lemma [3.37 (1) applied to diagram (3.49) that both CJ and D/, are of deter-
minant class. In this case Theorem [3.14] (1)) and Lemma [3.15/ (3) applied to
(3:49)) imply

(=1)" - In(det(£,)) + p®(CL) = (=1)" - In(det(f;51)) + o' (DL). (3.51)

We conclude from (3.50) and (3.51)) that H,41(f1) is a weak isomorphism of
determinant class and that both C, and D/, are of determinant class and

pP(DL) = pP(Cl) = (=1)P - In (det(f;))

pEL
> )Pt (det (Hﬁl(f;))). (3.52)
pEL

Notice that the induction hypothesis applies to f: C/ — D!. We con-

clude that CY and D’ are of determinant class and HISQ)( ) is a weak iso-
morphism of determinant class for all p € Z and

pP (DY) = pP(CY) =D (1) - In (det(f;))

PEZL

=1 (et (HP () - (3.53)

PEZ
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Now Lemma [3.44 follows from (3.45)), (3.47), (3.52) and (3.53). O
The next lemma contains a kind of rotation principle.

Lemma 3.54. Let 0 — C, L, D, X E, — 0 be an ezxact sequence of

dim-finite Hilbert N'(G)-chain complezes. Then there is an exact sequence of

dim-finite Hilbert N'(G)-chain complezes 0 — D, — E, — C, — 0 with the

following properties

(1) Cs, Ex and LHS,(C, Dy, E.) (defined in Theorem!3.35 (1)) respectively
are of determinant class if and only if Cy, E, and LHS, (D, *,C’*)

respectively are of determinant class;
(2) There is a chain isomorphism

o~

LHS.(C., Do, B.) = 8 (LHS.(D., B, C.))

(3) IfCy, Dy, E and LHS, (C’*,D*,E ) are of determinant class, then D,
E., C, and LHS,(D,,E.,C.) are of determinant class and

p?(C.) = pP(D.) + p®)(E.)
—p¥(C.,D,,E,) + p?(LHS,(C.,D,,E,))
= —p®(D.) + p®?(E.) - pP(C.)

Proof. The desired exact sequence is the canonical exact sequence 0 — D, —
cyl, (g«) — cone,(g«) — 0. It remains to show the various claims.

Notice for any dim-finite Hilbert A/'(G)-chain complex Fy, that cone, (F.) =
cone, (id: F, — F,) is contractible and satisfies

0 (cone, (F,)) = 0. (3.55)

This follows from the fact that

01
(O 0) tEp1 @ Fp = Fp ® Fpa
is an explicit chain contraction for cone,(F}). We have the canonical short

exact sequences 0 — X C, ELN cone, (q.) — cone,(E,) — 0 and 0 — E, LN
cyl,(g«) — cone(D,) — 0. From Lemma [3.42 we obtain chain isomorphisms
Uy XCy @ cone,(E,) =, cone,(q.) and vy : F, @ cone(D,) =N cyl, (g«) such
that under the obvious identifications HI(, (XC, @ cone.(E,)) = H,(XC,)
and HI(,Q)(E* @ cone(D,)) = HI(;Q)(E*)

HP () = HP (j.); (3.56)
HP (v,) = H? (k). (3.57)
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Moreover, we conclude from (3.33)

p(XC,, cone,(g«),cone,(Fy)) = — Z(—l)p -In(det(up));  (3.58)

pEL
p(Ey, cyl,(g«),cone(D,)) = — Z(—l)p -In(det(vp)). (3.59)
PEL
One easily checks using Theorem [3.14] (2)
p(XCy, coney(gs), cone, (Ey)) = —p(Cy, Dy, E,); (3.60)
p(Ey, cyl,(g«),cone(D,)) = 0; (3.61)
p P (D, cyl,(g.), cone,(g,)) = 0. (3.62)
We conclude from (3.58)), (3.59), (3.60) and (3.61)
> (=1)? - In(det(up)) = p(C4, Dy, E.); (3.63)
pEL
> (=1)7 - In(det(v,)) = 0. (3.64)
pEL

From Lemma [3.44] and equations (3.55), (3.56) and (3.57) we conclude that
cone,(gs) and cyl, (g.) respectively are of determinant class if and only if C.
and E, respectively are of determinant class and in this case

p'? (cone.(g.)) — p*(£C.)
= (=1 -In(det(uy)) — > (~1) - In (det (Hf,?)(j*))); (3.65)

PEZL pEL
p® (el () — p® (E)

= (=17 (det(vy)) = (=) - In (det (HP (K.)) ) . (3.66)

PEL PEZL

Recall that j,. and k. induce isomorphisms H,gz)(EC*) = H,(,z) (cone,(gs))
and H,(,Z) (Ey) = H,(,2) (cyl,(g+)) and we have the obvious isomorphisms
id: HI(,Q)(D*) = Hz(,z) (D.). They induce a chain isomorphism

LHS,(C,,D,,E,) = X (LHS,(D,,cyl,(q), cone,(gq.)))

and Lemma |3.44] shows

—p*(LHS.(D., cyl,(q.), cone,(q.))) — p? (LHS,(C., D, E.))

= Z(—l)p -In (det (H 2(5.) )
PEZL
—1—2(—1)” -ln (det (Hf)(k*))) . (3.67)

PEZL
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Now Lemma [3.54] follows from (3.62)), (3.63), (3.64), (3.65)), (3.66) and (3.67).

0

The next lemma is the decisive step in the proof of Theorem [3.35 (1)). It
proves additivity and all other properties are consequences.

Lemma 3.68. Let C,, D, and E. be dim-finite Hilbert N'(G)-chain com-

plezes. Let 0 — C, = D, B, —»0bea weakly exact sequence of deter-
minant class. Suppose that two of the chain complexes Cy, D, and E,. are
weakly acyclic and of determinant class. Then all three are weakly acyclic and
of determinant class and

p(C.) = pP (D) + PP (E) = pP(C, Dy, Es).

Proof. The given exact sequence induces weak isomorphisms iv: Cp —
ker(g.) and g, ker(¢g.)" — E. such that i, and g, are of determinant class
for all p € Z and

pP(C, D, Eu) = (=1)7 - (= In(det(ip)) + In(det(,))) . (3.69)
pEL

From Lemma [3.44 we conclude that ker(g.) and ker(g.)* respectively are
weakly acyclic of determinant class if and only if C, and E, respectively are
weakly acyclic of determinant class and in this case we get

P (ker(q.)) — pP(C.) = 3 (=1)7 - In(det(7,)); (3.70)
pEL

P (E.) — p® (ker(q.)") = S (~1)7 - In(det(7,) (3.71)
PEZ

respectively. Because of (3.69)), (3.70) and (3.71) it remains to show the claim
for 0 — ker(q.) — D, — ker(q*)L — 0. Because of Lemma [3.54! it suffices to
show under the assumption that ker(q.) and ker(q.)* are weakly acyclic and
of determinant class that D, is weakly acyclic and of determinant class and

p? (ker(q.)) — p® (D) + p® (ker(q.) ") = 0 (3.72)

holds.
We can write the differential d, of D, by

d, d
dp = ( Op d?’> : Dy = ker(gp) @ ker(qp)J‘ — Dp—1 =ker(gp—1) ® ker(qp_l)J‘7
P

where d;, and d]] are the differentials of ker(q.) and ker(g,)". By Lemma [3.39
we can choose weak chain contractions (v,,w}) and (v, u!) for ker(g,) and
ker(g.)® such that uy, and u; are weak isomorphism of determinant class for

p € Z. Define a chain homotopy 7, : u, >~ 0 for D, by
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/0
Tp = (7” ) t Dy = Dpya;

0 v,
Uy 1= (u; derlo’yIl?/—i_’yi:’lOdp)' D, — D
p - u;)/ - Up D

with respect to the orthogonal decomposition D, = ker(g,) & ker(gp)*. We

conclude from Theorem [3.14 (2), Lemma [3.37 (2) and Lemma 3.41 that

(74, ux) is a weak chain contraction such that u, is of determinant class for

all p € Z and that (3.72)) holds. This finishes the proof of Lemmal3.68. O
Now we are ready to give the proof of Theorem [3.35.

Proof. (1)) Step 1: If E, is weakly acyclic and of determinant class, then LH S,
is of determinant class and assertion (1)) is true.

We get from Lemma3.39/ and Lemma(3.42|a chain map s, : E, — D, such
that ¢, 0 s,: E, — E, and i, @ sp: C, @ E, — D, are weak isomorphisms
of determinant class for p € Z. Because of Lemma [3.44! the induced map
H,(,Q)(i* @ s,) is a weak isomorphism of determinant class for p € Z. Hence
the long weakly exact homology sequence LH S, is of determinant class since
H,()z)(E*) = 0 for p € Z by assumption and in particular Hz(,Q)(z'* D sy) =
H,Sz)(i*). Provided that C, or D, is of determinant class, we conclude from
Lemma [3.15 (7) and Lemma [3.44' that both C, and D, are of determinant
class and

PP (D.) = pP(CL) = pP(E) =D (—1)P - In(det(ip © 5,))
pEL
+p@(LHS,(C,, D, E,)). (3.73)

Since E, is weakly acyclic and of determinant class by assumption and ¢, o
s«: By — E, is a weak chain isomorphism such that each ¢, o s, is a weak
isomorphism of determinant class, Lemma [3.44] applied to ¢, o s, shows

> (=1)7 - In(det(qp 0 5,)) = 0.

pEL

Hence (3.33)) shows

p(Ce, Dy, Ey) = = (=1)7 - In(det (i, © 5p)). (3.74)
PEZ

Now Step 1 follows from (3.73) and (3.74).

Step 2: If one of the chain complexes C, D, and E, is weakly acyclic and of
determinant class, then LHS,(Cy, D, E,) is of determinant class and asser-
tion (1) is true.

This follows from Lemma [3.54' and Step 1.
Step 3: Assertion (1) is true provided that the differentials of C, and E, are
trivial.
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Since 4, and g, induce isomorphisms C, — ker(g.) and ker(g.) — FEi,
(3.33) and Lemma [3.44! shows that we can assume without loss of generality
that D, = Cp, © E, and i, and ¢, are the obvious inclusions and projections
for all p € Z. Obviously C, and E, are of determinant class and satisfy

p?(C.) = p?(E,) = 0. (3.75)

If we write
0z,
p = i Dp=Cp®Ep = Dp1 =Cp1® Ep_1,

then one easily checks that the associated long weakly exact homology se-
quence looks like

oL oy eker(a,) B E, 0y DL
where j is the canonical inclusion onto the first factor and pr is induced by the
projection onto the second factor. Hence LH S, (Cy, Dy, E,) is of determinant
class if and only if x,, is of determinant class for all p € Z and in this case

pP(LHS.(Cy, Dy, E)) = = > (=1)” - In(det(z,)). (3.76)
pEL

Lemma [3.15 (3) implies that D, is of determinant class if and only if ), is of
determinant class for all p € Z and in this case

pP (D) = =) (~1)" - In(det (). (3.77)

PEZL

Now the claim follows from (3.75)), (3.76) and (3.77).
Step 4: Assertion (1)) is true provided that C, is of determinant class and the
differentials of E, are trivial.

In the sequel we write C), = ker(4,) and Ep = ker(4A,)*. Denote by
ky: E* — (', the canonical inclusion and by pr,: C, — C, the canonical
projection. We conclude from Lemma [1.18| that we have an orthogonal de-
composition of Hilbert N (G)-chain complexes C, = C, @5*, the differentials

of C, are all trivial and C, is weakly acyclic. From Lemma 3.15! (7) we con-

clude that 6* is of determinant class and

PP (C.) = pP(C). (3.78)

Notice that the chain map pr, ®i.: Cx — C,oD,is injective and has closed
image since this is true for i,. Define a dim-finite Hilbert A/(G)-chain complex
ﬁ* by the orthogonal complement in C, @ D, of the image of pr, ®i.: Cy —
C.®D,. We obtain a commutative diagram of dim-finite Hilbert N'(G)-chain
complexes with exact rows and columns
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0 0 0
0 c., 4,7, 0 0
k. 140k l
0 c, —>—~ D, —*, E, 0
pr, pr, l id
0 c., =D, —* ., E 0
0 0 0

Since C, is weakly acyclic and of determinant class, Step 2 applied to the
middle column shows that the induced map H,(,2) (pr,): H,(,Q) (D) — HI(;Q) (ﬁ*)
is a weak isomorphism of determinant class for all p € Z. Moreover, D, is of
determinant class if and only if D, is of determinant class, and in this case

PP (C.) = pP (D) + pP (D)
= pD(C., Do, D.) = 3 (=1)7 - In (det (B (5r,))) . (3.79)

pEL

The map from the middle row to the lower row induces a weak chain iso-
morphism from LHS,(C., D, E.) to LHS.(C., 13*7 E,) which is in each di-
mension of determinant class. Lemma [3.44] implies that LHS,(Cy, D., E,) is
of determinant class if and only if LHS,(C,, D,, E,) is of determinant class,
and in this case

p®(LHS.(C., ., E.) = p® (LHS.(C., D., B.))
== Z(—l)l’ -In (det (HISQ) (pAr*)>) . (3.80)

PEZL

Step 3 applied to the lower row shows that ﬁ* is of determinant class if and
only if LHS,(C\, D, E,) is of determinant class, and in this case

- p(Q)(f)*) = p(2)(6*’ ﬁ*a E,) - 9(2)(LHS*(€*H ﬁ*v EJ).  (3.81)
One easily checks using Lemma [3.68

p?(C,,D,, E,) = p?(C,,D,, E.):; (3.82)
p(2) (6*7 D, ﬁ*) = 0. (3.83)

Now the claim follows from (3.78)), (3.79), (3.80), (3.81), (3.82)) and (3.83)).
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Step 5: Assertion (1) is true provided that C, and E, are of determinant
class. R

Define D, as the kernel of the chain map g, @ k.: D, & E, — E,. Then
we obtain a commutative diagram with exact rows and columns

0 0 0

1 0PT

*
o)
*

Q
&

=

=
—
)
*

T

F
&

[~}
*

o
Q
IS

PT, 0gx

*

kel
=

=

o
— o «—
ol
o — Ml &
o

0 0

Now we proceed analogously to Step 4 by applying Step 1 to the middle
column and Step 4 to the upper row.

Step 6: Assertion (1)) is true.
This follows from Lemma [3.54] and Step 5. This finishes the proof of
assertion (1)) of Theorem [3.35.

(2) follows from Lemma [3.37 (3) and Lemma 3.68 applied to the induced
exact sequence 0 — cone, (i) — cone,(g.) — cone,(hy) — 0.

(3) Let ys: f« ~ g« be a chain homotopy. Consider the isomorphism of dim-
finite A/(G)-chain complexes u,: cone,(fi) — cone,(g.) given by

id 0
Up = (’yp_l id> 1 Cp1® Dp — Cp1 & Dp.

We get from Lemma [3.37) (3) and Lemma [3.44] that both cone,(f.) and
cone, (g) are weakly acyclic and of determinant class and

t®(g.) = t?(f.) = p'? (cone.(g.)) — p'? (cone.(£.))
=3 (~1)? - In(det(uy))
PEZ

=0.
(4) Consider the chain map h.: X! cone,(g.) — cone,(f.) given by

0 0
P = <—id0) Dy & Ep1 — Cpo1 © Dy
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There are obvious exact sequences 0 — cone, (fx) — cone,(h,) — cone,(g.) —

0 and 0 — cone, (g« o f.) — cone,(h,) — cone,(D,) — 0, where i, is given

by

fp—10

. 0 1
ip = R E Cpo1®Dy = Dp 1 ®E, @ Cp_1 @D,

0 0

and the other maps are the canonical ones. Because of Lemma 3.68 f, h., g«
and g, o f, are weak homology equivalences of determinant class. One easily
checks

P (cone, (f.), cone, (hy), cone,(g.)) = 0;
p?) (cone, (gs o fi), cone, (hy), cone, (D,)) = 0.

Hence we get from Lemma [3.68

p® (cone, (£.)) — p (cone. (1)) + p (cone. (g.)) = 05 (3.84)
p? (cone. (g, o £.)) — p® (cone. (k) + p (cone. (D)) = 0.

Now assertion (4) follows from (3.55), (3.84) and (3.85).

(5) Consider HS)(C*) and H® (D.) as chain complexes with the trivial
differential. We get from Lemma [1.18| chain maps i, : HiQ)(C*) — (C, and
Ju H,@(D*) — D, such that i, and j, are isometric inclusions for p € Z
and in particular both 7, and j, are of determinant class, Hf) (ix) = id and

Hiz)(j*) = id. Moreover, we get from the definitions and Lemma [3.15! (3)
and (7)

PP (Ch) =P (i,); (3.86)
p(D,) =P (j.). (3.87)

We obtain from Lemma 3.43| applied to u, = fx o, and v, = j, o H£2)(f*) a
chain map g.: D, — D, such that H,@(g*) = id, each g, is a weak isomor-

phism of determinant class and g, o f, o i, and gy o j, o HS)( f«) are chain
homotopic. Because of assertion (3)) and (4) f. is of determinant class if and

only if H£2)( f+) is of determinant class and in this case
D (f) + @ (i) = D (HP (1)) + 1D (5). (3.88)

Since t@(HP(f,)) = > hez(—1)P - In (det (Héz)(f*)>> holds by assertion
(2)), assertion (5) follows from (3.806), (3.87) and (3.88).

(62) Fix ng with C, = 0 for p < ny. We use induction over n with C, =0
for p > n. For the induction beginning n = ng we have to show for a finite
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dimensional Hilbert N (G)-module U and a weak isomorphism of determi-
nant class f: V — W for finite dimensional N (H)-modules V' and W that
def: UV — U ®W is a weak isomorphism of determinant class and

In(det (g xa)(id @) = dim(U) - In(detyra) (f))-

This follows from the equation of spectral density functions

Fnaxm(id@f) = dim(U) - Fam)(f),
which is a consequence of the equality id ®E{*f = E/(\id ©NG4F) Next we
explain the induction step from n to n + 1. Notice that Theorem [1.12] (2)
implies

XP(C) =3 (1P - dim(Cy). (3.89)

pEZ

Let C.|n be obtained from C, by truncating in dimensions > n and let
(n+1)[C.] be the chain complex whose (n + 1)-th chain module is Cy, 41 and
whose other chain modules are all trivial. Then the induction step follows
from Lemma [3.68 applied to the short exact sequence 0 — Cyi|ln ® D, —
Cy® Dy — (n+ 1)[C.] ® D, — 0 and the induction beginning applied to
(n + 1)[C.] ® D, and the induction hypothesis applied to Ci|n ® D,. This
finishes the proof of assertion (6a).

(6b) Recall that we have introduced C, and C, before (see (3.78)). We con-
clude from (3.78)) and assertion (6a))

pP(C. ® D.) = p?(C. @ D.)+p?(C, ®D.) + p?(C. ®D.)

+p?(C. ® D.)
=0+ xP(C,) - pP(D.) + XP (D) - pP(Cy) + 0.

(6¢) Since fi ® g« = f« ®idoid ®g, holds, it suffices because of assertion (4)
to show

tB(id@g.) = xP(C.) - tP(gs).

This is done as above by induction over the dimension of C,.
(7) This follows from Theorem [3.14] (5)).

(8) This follows from Theorem [3.14 (6). This finishes the proof of Theorem
3.35. O

Remark 3.90. Theorem [3.35 remains true if one replaces “of determinant
class” everywhere by “with positive Novikov-Shubin invariant”. In view of
Theorem [3.14] (4) it remains to check that the property “with positive
Novikov-Shubin invariant” is inherited as claimed in all the lemmas and the-
orems. Notice that the proof of inheritance of the property “of determinant
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class” is a formal consequence of the following two facts: i.) given two weak
isomorphisms f: U — V and g: V — W of finite dimensional Hilbert A (G)-
modules, both f and g are of determinant class if and only if g o f is of
determinant class (see Theorem [3.14 (1)) and ii.) given a commutative di-
agram of maps of finite dimensional Hilbert N (G)-modules whose rows are
weakly exact and of determinant class and whose vertical arrows are weak
isomorphisms

0 U, —— Uy —2— U, 0
fi l fo l f2 l
0 vi 1w -2, 0

then fy is of determinant class if and only if both f; and f, are of deter-
minant class (see Theorem [3.14! (2)). The corresponding statements i.) and
ii.) remain true if one replaces “of determinant class” everywhere by “with
positive Novikov-Shubin invariant” because of Lemma 2.14 and Lemma 2.15.

3.4 Cellular L2-Torsion

In this section we introduce and study cellular L?-torsion. Essentially we
apply the material of Section 3.3/ to the cellular L?-chain complex of a finite
free G-CW-complex. There are two interesting cases, the case where the L2-
homology vanishes and the case where the underlying space is a cocompact
free proper G-manifold with a G-invariant Riemannian metric. Cellular L2-
torsion has been introduced in [93] and [345]. The definition of determinant
class is taken from [84, Definition 4.1 on page 800].

3.4.1 Cellular L2-Torsion in the Weakly-Acyclic Case

Definition 3.91 (L2-torsion). Let X be a finite free G-CW -complex. We
call it det-L%-acyclic if its cellular L?-chain complex C£2)(X) is det-L2-
acyclic (see Definition [3.29). In this case we define its cellular L*>-torsion

PPGN(G) = p(CP ()

by the L2-torsion of C£2)(X) (see Definition|3.29). Often we omit N'(G) from
the notation. O

Since for two equivariant smooth triangulations f: K — M and ¢g: L —
M of a cocompact free proper G-manifold M the Whitehead torsion of g~' o
f: K — Lin Wh(G) is trivial, K is det-L2-acyclic if and only if L is det-L?-
acyclic and in this case p® (K) = p(® (L) by Theorem [3.93/ (I). Hence we can

define M to be det-L2-acyclic if K is det-L?-acyclic for some (and hence each)
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equivariant smooth triangulation and put in this case p2 (M) = p(® (K). The
notions above extend in the obvious way to pairs.
We obtain a homomorphism

& =d%: Wh(G) - R (3.92)

by sending the class of an invertible (n,n) matrix A over ZG to the loga-
rithm of the Fuglede-Kadison determinant det(R4) (see Definition [3.11]) of
the morphism R4: [2(G)" — [2(G)" induced by A. This is well-defined by
Theorem [3.14. The next theorem presents the basic properties of L2-torsion.

Theorem 3.93 (Cellular L?-torsion). (1) Homotopy invariance

Let f: X — Y be a G-homotopy equivalence of finite free G-CW -
complezes. Let T(f) € Wh(G) be its Whitehead torsion (see (3.2)). Sup-
pose that X orY is det-L?-acyclic. Then both X andY are det-L?-acyclic
and

pY) = P (X) = #9(r(f));
(2) Sum formula

Consider the G-pushout of finite free G-CW -complexes such that j1 is an
inclusion of G-CW -complexes, jo is cellular and X inherits its G-CW -
complex structure from Xy, X1 and Xs

X()LX:L

jzl i1l
X, —2 . X
Assume that three of the G-CW -complexes Xo, X1, X2 and X are det-

L%-acyclic. Then all four G-CW -complezes Xo, X1, X2 and X are det-
L%-acyclic and

PP (X) = pP(X1) 4+ pP (X2) — p® (Xo);

(3) Poincaré duality

Let M be a cocompact free proper G-manifold without boundary of even
dimension which is orientable and det-L2-acyclic. Then

p(2)(M) = 0;

(4) Product formula

Let X be a finite free G-CW -complex and let Y be a finite free H-C'W -
complex. Suppose that X is det-L%-acyclic. Then the finite free G x H-
CW -complex X x Y is det-L?-acyclic and

PAX XY N(Gx H)) = x(H\Y) p?(X,N(G));
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(5) Restriction

Let X be a finite free G-CW -complex and let H C G be a subgroup of
finite index [G : H|. Let resZ X be the finite H-CW -complex obtained
from X by restricting the G-action to an H-action. Then X is det-L>-
acyclic if and only if resg X is det-L%-acyclic, and in this case

PP (X;N(G)) =[G : H] - p® (vesf X; N (H));

(6) Induction

Let H be a subgroup of G and let X be a finite free H-CW -complex. Then
the finite free G-CW -complex G x g X 1is det-L?-acyclic if and only if X
is det-L2-acyclic, and in this case

PP (G x i X N(G)) = o (X3 N (H));

(7) Positive Novikov-Shubin invariants and determinant class

If X is a finite free G-CW -complex with béz)(X) =0 and a,(X) > 0 for
all p >0, then X is det-L?-acyclic.

Proof. (1) This follows from Theorem [3.35/ (5) and Lemma [3.41.

(2) We obtain an exact sequence of Hilbert N (G)-chain complexes 0 —
C£2)(Xo) — C£2)(X1) @ O,EQ)(XQ) — C’iZ)(X) — 0. Now apply Theorem
3.35/ (1).

(3) There is a subgroup Gy C G of index 1 or 2 which acts orientation
preserving on M. Since p®) (M; N (Go)) = [G : Go] - p@(M; N (Gp)) by as-
sertion (5) we can assume without loss of generality that G = Gy, i.e. G\M
is orientable. Fix an equivariant smooth triangulation f: K — M of M. Put
7w = m(K) and n = dim(M). Let [G\K] be the image of the fundamental
class of [G\M] under the isomorphism H,(G\M) — H,(G\K) induced by
G\ f~!. The Poincaré ZG-chain homotopy equivalence

A[G\K]: C"*(K) — C.(K)

has trivial Whitehead torsion with respect to the cellular basis [510, Theorem
2.1 on page 23]. It induces a chain homotopy equivalence of finite Hilbert

N (G)-chain complexes f,: I*(G) ®zc C"*(K) — Ciz)(K) with t)(f,) = 0.
We get from Theorem 3.35 (5) and Lemma [3.41 that 1*(G) ®zg C"*(K) is
det-L?-acyclic and p) (12(G) @z C"*(K)) = p(2)(C’£2) (K)). We conclude
PP (M) = (=1)"*1 . p@) (M) from Theorem 3.35 (5). Since n is even by
assumption, assertion (3) follows.

(4) This follows from Theorem [3.35/ (6a).

(5) This follows from Theorem [3.35 (7).

(6) This follows from Theorem [3.35] (8).
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(7) This follows from Theorem [3.14 (4). This finishes the proof of Theorem
3.93. ]

Part (1) and (2) of the following conjecture is taken from [330, Conjecture
1.5]. We will later prove it for a large class of groups (see Lemma [13.6 and
Theorem [13.3]).

Conjecture 3.94 (Homotopy invariance of L2-torsion). We have for
any group G:

(1) The homomorphism
& =3% Wh(G) - R

sending the class [A] of an invertible matriz A € GL,(ZG) to ln(det(rff)))
(which we have already defined in (3.92))) is trivial;

(2) If X and Y are det-L*-acyclic finite G-CW -complexes, which are G-
homotopy equivalent, then their L?-torsion agree

PPXN(G)) = pP (Vs N(Q));

(3) Let A € M,(ZG) be a (n,n)-matriz over ZG. Then rff): 2G)r —
I2(G)™ is of determinant class (see Definition|3.11).

Conjecture 3.94 (1) is obviously true if Wh(G) vanishes. There is the
conjecture that the Whitehead group Wh(G) vanishes if G is torsionfree.

In most applications X will occur as the universal covering of a finite
CW-complex. Therefore we will discuss this special case here. Since we also
want to deal with non-connected CW-complexes, we introduce

Notation 3.95. Let X be a (not necessarily connected) ﬁmte CW -complez.
We say that X is det-L2- acyclic, if the universal covering C of each connected
component C of X is det-L?-acyclic in the sense of Definition|3.91. In this

case we write _ _
R =Y A0,
Cemp(X)

where p@(C) is the L2-torsion of the finite free m (C)-CW -complez C of
Definition [3.91.

The next theorem presents the basic properties of p(2) ()} ). It is a consequence
of Theorem [3.93. Notice the formal analogy between the behaviour of p(?)(X)
and the ordinary Euler characteristic x(X).

Theorem 3.96. (Cellular L?-torsion for universal coverings).

(1) Homotopy invariance

Let f: X — Y be a homotopy equivalence of finite CW -complexes. Let
7(f) € Wh(m(Y)) be its Whitehead torsion. Suppose that X or'Y is
det-L2-acyclic. Then both X and Y are det-L?-acyclic and
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(2)

(3)

(4)

(5)

(6)

3. L2-Torsion

PP (Y) = p?(X) = am(z(f)),

where @) : Wh(m(Y)) = Dcerovy) Whimi(C)) — R is the sum of
the maps ™) of (3.92);
Sum formula

Consider the pushout of finite CW -complexes such that jy is an inclusion
of CW -complezes, js is cellular and X inherits its CW -complex structure
from Xy, X7 and X5

Xoj—1>X1

jzl ’i1l

X, —2 . X
Assume )’(\'6, )E, and E are det-L?-acyclic and that for k = 0,1,2 the
map 71 (ix): m (Xg) — m(X) induced by the obvious map ix: X — X
is ingective for all base points in Xj,.
Then X is det-L%-acyclic and we get

POX) = pO(X) + 92 (Ka) — ) (Ko);
Poincaré duality

Let M be a closed manifold of even dimension such that M is det-L2-
acyclic. Then .
PP (M) = 0;

Product formula

Let X andY be finite CW -complexes. Suppose that X is det-L2-acyclic.
Then X x Y is det-L?-acyclic and

—_~—

PP (X xY) = x(Y) pP(X);

Multiplicativity
Let X — Y be a finite covering of finite CW -complexes with d sheets.
Then X is det-L2-acyclic if and only if Y is det-L2-acyclic and in this
case B B

PP (X) = d-pP(Y);
Positive Novikov-Shubin invariants and determinant class
If X is a finite CW-complex with bg)()?) =0 and ozp(f() > 0 for all
p >0, then X is det-L?-acyclic.

Next we want to deal with the behaviour of the cellular L?-torsion un-

der a fibration p: E — B with fiber F'. We begin with introducing simple
structures. A simple structure & = [(X, f)] on a topological space Z is an
equivalence class of pairs (X, f) consisting of a finite CTW-complex X and a
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homotopy equivalence f: X — Z, where we call two such pairs (X, f) and
(Y, g) equivalent if the Whitehead torsion 7(g~! o f) vanishes, i.e. g~ o f is
a simple homotopy equivalence. If g: Z; — Z5 is a homotopy equivalence of
topological spaces and we have specified simple structures &; = [(X;, fi)] on
Z;, we can still define the Whitehead torsion

7(9) € Wh(m(Z2))

by the image of 7(f; * 0 g o f1) under the isomorphism fo.: Wh(m (X2)) —
Wh(m1(Z2)). If for some representative (X1, f1) of & and a given G-covering
7, — Z the total space of the pullback X; — X; with f; is det-L?-acyclic
with respect to the action of the group of deck transformations, then this is
true for all representatives by Theorem [3.93 (1), and we say that (Z1,&;) is

det-L2-acyclic. In this case we can still define the cellular L?-torsion of Z;
with respect to &; by

PP (71, &1) == P (X0). (3.97)

This is independent of the choice of the representative (X7, f1) by Theorem
3.93 (1).

Let E 2 B be a fibration such that the fiber F has the homotopy type of
a finite CW-complex and B is a connected finite CW-complex. Recall that
F is only determined up to homotopy. We can associate to p an element

0(p) € H'(B; Wh(m (E))) (3.98)

by specifying a homomorphism 71 (B, b) — Wh(m(E)) for a fixed base point
b € B as follows. The fiber transport [488, 15.12 on page 343] of an ele-
ment w € (B, b) determines a homotopy class of selthomotopy equivalences
tw: By — Fy of Fyy := p~1(b). If we choose a simple structure £(Fy) on Fy, we
can take the Whitehead torsion 7(t,,) in Wh(m;(F})) and push it forward to
Wh(71(E)) using the map induced by the inclusion kp: Fp, — E. It turns out
that the class of 6(p) is independent of the base point b € B and the simple
structure on F,. We call p simple if 6(p) = 0.

Suppose that p is simple. If we fix a base point b € B and a simple
structure £(F,) on Fp, there is a preferred simple structure &, ¢(p,)(E) on E.
If we choose another base point o' and simple structure &(Fp) on Fy, we
obtain another simple structure on &y ¢(r,,)(E). If w is any path in B from
b’ to b, the fiber transport yields a homotopy class of homotopy equivalences
tw: Fy — Fp and we get

7 (id: (B, &) (E) = (B, &y g5, (E)))
= X(B) - ko (7 (tw: (Fy,§(Fp)) — (Fy, §(Fy)))) . (3.99)

Notice that the right side is independent of the choice of w because of the
assumption 6(p) = 0.
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Details of the construction of &, ¢(g,)(£) and the claims above can be
found in [325) section 2] or in the more general context of equivariant CTW-
complexes in [326] section 15]. It is based on the observation that over a
cell e in B there is an up to fiber homotopy unique (strong) fiber homo-
topy equivalence from the restriction of E to the cell e to the trivial fibra-
tion e x F, — e, provided we have fixed a homotopy class of paths from
b to some point in e. The point is that after a choice of b € B and sim-
ple structure £(F3) on F, we obtain uniquely a simple structure &, ¢(p,)(E)

on E and p@(E, &b,e(ry)(F)) is defined, and we can ask for the relation of
POE, b, (E)) and pt (Fy, &(F))-

Theorem 3.100 (L>-torsion and fibrations). Let p: E — B be a fibra-
tion with 0(p) = 0 such that B is a connected finite CW -complex and the
fiber has the homotopy type of a finite CW -complex. Suppose that the inclu-
sion of Iy, into E induces an injection on the fundamental groups for all base
points in Fy. Fix b € B and a simple structure £(Fy) on Fy. Suppose that Fy
is det-L%-acyclic.

Then E is det-L?-acyclic and

P DB, & e(r)(E)) = X(B) - p?(Fy, &(F)).

Before we give the proof of Theorem 3.100), we discuss some interesting special
cases.

Example 3.101. If we make the additional assumption that x(B) = 0, then
E has a preferred simple structure £(E) independent of the choices of b € B

and £(Fy) because of (3.99) and Theorem 3.100 says p(E,¢(E)) = 0.

Remark 3.102. Suppose for one (and hence) all base points b € B that the

1(B)
composition Wh(my (Fp)) LN Wh(rmi(E)) 2P R s trivial (cf. Conjecture

3.94 (1)). Then p® (E, &, ¢(r,)(E)) and x(B) - p? (Fy, £(Fy)) are independent
of the choice of b € B and £(F}) by Theorem 3.96/ (1)).

Let F — E 2 Bbea (locally trivial) fiber bundle of finite CTW-complexes
with connected base space B. Then 6(p) = 0 and p® (F) and p?(E) are
independent of the choice of a finite CW-structure on F' and E since the
Whitehead torsion of a homeomorphism of finite C'W-complexes is always
trivial [99], [100] and Theorem 3.96 (1)) holds. It turns out that &, ¢(g,)(E) is
the simple structure on F given by any finite CW-structure if £(Fyp) is the
simple structure on Fj given by any finite CW-structure. Hence Theorem
3.100) yields

Corollary 3.103. Suppose that F — E 2 B is a (locally trivial) fiber bun-
dle of finite CW -complexes with connected B. Suppose that for one (and
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hence all) b € B the inclusion of Fy, into E induces an injection on the fun-
damental groups for all base points in Fy and Fy is det-L%-acyclic. Then E
is det-L?-acyclic and

p@(E) = x(B)- o (F).
Next we give the proof of Theorem 3.100. Theorem [3.93 (6) implies that
E|F, is det-L?-acyclic if and only if F}, is det-L2-acyclic and in this case
PP (E|R,) = p(F,) since by assumption the inclusion of F into F induces an

injection on the fundamental groups for all base points in Fy,. Hence Theorem
3.100! is the special case E = E of the following slightly stronger statement.

Lemma 3.104. Let p: E — B be a fibration with 8(p) = 0 such that B
is a connected finite CW -complex and the fiber has the homotopy type of a
finite CW -complex. Let q: E — E be a G-covering and let [, — Fy be its
restriction to Fy, for some fized b € B. Suppose that F, is det-L?-acyclic.
Then E is det-L?-acyclic and

P(E, & er,)(E)) = x(B) - pP (Fy, &(Fy)).

Proof. We use induction over the number of cells of B. The induction begin-
ning B = () is trivial. We have to deal with the situation that B is obtained
from By by attaching a cell, i.e. there is a pushout

gn=t —1— By

T

D" —— B
The pullback construction applied to po ¢: E — B yields a G-pushout

Es —L . By

Ep —— F
Let Y be a finite CW-complex and g: Y — Fj be a homotopy equivalence
representing the given simple structure £(Fy) on Fy. The pullback of ¢: E —
E with g yields a G-covering Y — Y. By inspecting the construction of the
simple structure &, ¢ Fb)(E) on F and applying the induction hypothesis to
Ey|c — C for each component C of By taking (3.99) into account, one checks
that there is a commutative square of finite G-C'W-complexes

Yx st X,

ol

YxDr —2 ., X
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such that j; is an inclusion of G-C'W-complexes, jo is cellular and X inherits
its G-CW-complex structure from Y x S”;l, Y x D™ and Xj, the finite
G-CW-complexes Y x 8"~ 1, Y x D™ and X, are det-L?-acyclic and

PP (Xo) = x(Bo) - p'¥ (Fy, £(Fy));
PO (E, &,em)(E)) = p@ (X).

Theorem 3.93| (2) and (4) imply that X is det-L?-acyclic and

p(E, &e(r) (B)) =
(2) (70 (2) (Y % Dn) (2) (? % Sn—l)

pt?
p )+
= pP(X0) + x(D") - pP(Y) = x(S™ ) - pP (V)
=X P (Fy, &(Fy)) + x(D™) - p 2)(Fba§(Fb))
— x(8"7Y) - o (Fy, €(Fy))
= X(B) - p® (Fy, £(Fy)). 0

Theorem 3.105 (L*-torsion and S'-actions). Let X be a connected S*-
CW -complex of finite type. Suppose that for one orbit S'/H (and hence for
all orbits) the inclusion into X induces a map on w1 with infinite image. (In
particular the S*-action has no fized points.) Let X be the universal covering
of X with the canonical 71 (X)-action. Then X is det-L2-acyclic and

Oép()?) >1 for all p;
pP(X) =0.

Proof. Theorem [2.61 shows that bl(,2) (X) =0 for p > 0 and ap()?) > 1 for
p > 1. In particular X is det-L2-acyclic by Theorem [3.96 (6). The proof of
p@(X) = 0 is analogous to the one of Theorem [1.40 using Theorem 3.93/ (2)
and (4) and the conclusion p(2)(,Sv1) = 0 from (3.24) appearing in Example
3.22. 0O

Next we deal with the mapping torus Ty of a selfmap f: X — X of a
connected finite CW-complex. If p: Ty — S' is the canonical projection,

let w1 (1) 2, G % Z be a factorization of the epimorphism mq (T) ),

m1(S1) = Z into epimorphisms ¢ and . If i: X — T} is the obvious inclusion,

let L C G be the image of the composition m (X) KON w1 (Ty) 2, G. Let Ty

be the covering of T associated to ¢ which is a free G-CW-complex. Denote
by X — X the L-covering of X associated to the epimorphism ¢ := ¢ o
m1(i): m(X) — L. There is an automorphism p: L — L uniquely determined
by the property that com;(f) = pot. Then G is the semidirect product L, Z.
Let f: X — X bea (u: L — L)-equivariant lift of f. Then T} is the mapping
telescope of f infinite to both sides, i.e., the identification space



3.4 Cellular L2-Torsion 169

Ty = ny [n,n+1]/ ~,
nez

where the identification ~ is given by (z,n + 1) ~ (f(x),n). The group of
deck transformations G is the semidirect product L x, Z and acts in the
obvious way.

Let j: L — G be the inclusion. We obtain a ZG-chain map, a Hilbert
N (G)-chain map and a morphism of Hilbert N'(G)-modules

Ci(f),: ZG @71, Cu(X) — ZG @71, C(X);

C. - (G) @1 C.(X) — 12(G) @1, Cu(X):

HP (F): j.H® (X) = CG ®cr, Hy (X) — j.HP(X) = CG @ HY (X)

by sending g ® u to g ® u — gt ® C.(f)(u) or g ® u—gt® H,()z)(f)(u)
respectively. Then the cellular ZG-chain complex C,(T%) is the mapping
cone cone,(C,(f),). Under the obvious identification of j, Hy” (X) with
H,(,2)(12(G) ®z1, Co(X)) the map H,EZ) (f) becomes the endomorphism of

_ — (2
H? (12(G) @21 C.(X)) induced by C,(F),

Theorem 3.106 (L2-torsion of mapping tori). Let f: X — X and ¢,
Y be given as above. Suppose that the G-CW -complex T is of determinant
class. Then Ty is det-L*-acyclic, for any p > 0 the endomorphism of finitely
generated Hilbert N (m1(T))-modules HP(?): j*H,()Z) (X) — j*H,§2) (X) is a
weak isomorphism of determinant class and

pA(Ty) = (-1 (aet (HP(D)).

p=0

— — (2
Proof. We conclude from Theorem [1.39 that H,(,2)(Tf) = H,(,Q)(Cﬁk (f), ) van-
ishes for all p > 0. Hence the long weakly exact homology sequences asso-

ciated to 0 — I*(G) ®z1, Ci(X) — cone*(fiz)) — Y 1?(G) @z Cu(X) — 0
looks like

= 0= HP((G) @z Cu(X))
HO €.
s

HP(*(G) @71, Co(X)) = 0— ...

——=(2)
Now Theorem [3.35 (1) implies that H1(72)(C*( f), ) is a weak isomorphism of
determinant class and

PO = Yvrm (@ (HACT))

p=>0
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Since HI(,Q)(C’* (f)f)) and H,@(?) are conjugated by an isomorphism, the
claim follows from Theorem [3.14! (1)). O

The assumption in Theorem 13.106 that Tf is of determinant class is for
instance satisfied if ¢: m(Ty) — G is bijective and m;(X) belongs to the
class G (see Definition [13.9, Lemma [13.6, Lemma [13.11 (4) and Theorem
13.3) because m1(Ty) is the mapping torus group of the endomorphism of
m1(X) induced by f appearing in Lemma [13.111 (4)).

Example 3.107. Let f: X — X be a selfmap of a connected finite CW-
complex. Let TT: — T’ be the canonical infinite cyclic covering of the mapping
torus. It is the covering associated to the canonical epimorphism 71 (T) — Z
or, equivalently, the pullback of the universal covering of S' with respect to
the canonical map Ty — S*. Let H,(f;C): H,(X;C) — H,(X;C) be the
endomorphism of a finite dimensional complex vector space induced by f.
By the Jordan Normal Form Theorem it is conjugated by an isomorphism
H,(X;C) — C" to an automorphism of C™ which is a direct sum of auto-
morphisms of the form

0 A, 1 0
B()\ip,nip) = 0 0 /\110 0
0 0 0 ...x,

where the size of the block B(\;,,n;,) is n;,, i, € C and iy, = 1,2...,7,.
One easily checks that then H,(Ty;C) = @7, C[Z]/((t — N\;,)"*»). We

ip=1

conclude from Lemma 2.58 that Tf is of determinant class and
b Ty N(G)) = 0; (3.108)

apt1(THN(G)) = max{ ip €{1,2...,mp}, [N, | = 1} , (3.109)

ip

where the maximum over the empty set is defined to be co™. In the nota-

tion of Theorem [3.106 we see that H,(,z)(f) is conjugate to a direct sum of
automorphisms of the shape

1= M\t —t 0 ... 0
0 1-XN,t —t ... 0
0 0 T—=At ... 0 C2(Z)Me — 12(Z)M
0 0 0 1=t

We conclude from Theorem [3.14! (2)), (3.24) appearing in Example [3.22/ and
Theorem 3.106
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PO THN(G) = S (-1 ST oIl

p>0 1<ip<rp,|Ai, [>1

Example 3.110. We construct a 4-dimensional non-orientable cocompact
free proper Z-manifold M without boundary such that M is det-L2-acyclic,
ao(M;N(Z)) # as(M;N(Z)) and p® (M; N(Z)) # 0. This shows that the
condition that M is orientable is necessary in the statements about Poincaré
duality in Theorem 2.55/ (2)) and Theorem 13.93| (3).

Equip T3 with the orientation reversing free Z/2-action which sends
(21,22,23) € ST x ST x 81 to (z1, — 29, —23), where we think of S C C and

77 is the complex conjugate. The map f: T2 = T2, which sends (22, 23) to

12
has determinant 1. The automorphism id x f: T3 — T3 is Z/2-equivariant
and hence induces an automorphism g: (Z/2)\T° = (Z/2)\T*? of the non-
orientable closed 3-manifold (Z/2)\T3. Let M be T, for the infinite cyclic
covering T, — T, associated to the canonical epimorphism 71 (1) — Z. Obvi-
ously M is a 4-dimensional non-orientable cocompact free proper Z-manifold
without boundary. Let h: T2 — M be the composition of the map 7% — T3
sending (z2,23) to (1,22,23) and the projection T° — (Z/2)\T3. Then the
following diagram commutes and has isomorphisms as vertical maps

(2525, 2922), is an automorphism, since the integral (2,2)-matrix A = <4 7)

m(r%0) YD g
Hp<h;0>l H,,(h;ml
Hp( S(C)
H,((Z/2)\T?;C) —"= H,((Z/2)\T*C)

The vertical maps are isomorphisms by the following argument. The triv-
ial C[Z/2]-module C is C[Z/2]-projective and hence H,((Z/2)\T?;C) =
H,(T3;C) ®@c(z,/2)C holds. The map S1 to S! sending z to Z or —z respectively
induces — id or id respectively on H;(S';C) and id on Hy(S*; C). Now apply
the Kiinneth formula. The endomorphism H,(f;C) is the identity on C for
p = 0,2 and is the automorphism of C? given by the matrix A for p = 1.
Since the complex eigenvalues of the matrix A are 3 — /8 and 3 + /8, we
conclude from Example [3.107

ap(M;N(Z)) =1 for p=1,3;
ap(M;N(Z)) = oo™ otherwise;
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3.4.2 Cellular L2?-Torsion in the Weakly-Acyclic and Aspherical
Case

Theorem 3.111. Let M be an aspherical closed manifold with non-trivial
Sl-action. Then the action has no fized points and the inclusion of any orbit
into M induces an injection on the fundamental groups. Moreover, M is
det-L2-acyclic and

ap(M) >1 for all p;
PP (M) = 0.
Proof. This follows from Corollary [1.43/ and Theorem [3.105. 0O

Definition 3.112 (det > 1-class). A group G is of det > 1-class if for any
A € M(m,n,ZG) the Fuglede-Kadison determinant (see Definition|3.11) of

the induced morphism rff): I2(G)™ — I2(G)™ satisfies
det(rff)) > 1.

Schick [462] uses the phrase “has semi-integral determinant” instead of
the phrase “of det > 1-class” which we prefer. There is no group G known
which is not of det > 1-class. We will later present in Subsection 13.1.3 a class
of groups for which it is known that they are of det > 1-class. It includes
amenable groups and countable residually finite groups. The assertion for
the L2-torsion in the theorem below is the main result of [515] (see also
[616]). Its proof is interesting as it preshadows a more ring theoretic approach
to L2-Betti numbers, which we will present in Chapter [6, and localization
techniques for non-commutative rings, which will play a role in Chapter |8
and Chapter [10.

Theorem 3.113 (L?-torsion and aspherical CW-complexes). Let X be
an aspherical finite CW -complex. Suppose that its fundamental group m1(X)
contains an elementary amenable infinite normal subgroup H and 71 (X) is
of det > 1-class. Then

B(X)=0 forp=>0;
ap(X)>1 forp>1;
pP(X) =0.

The claims for the L?-Betti numbers and Novikov-Shubin invariants have
already been proved in Theorem 2.63l We conclude from Theorem [3.93 (7))
that X is det-L2-acyclic. The proof for the claim about the L2-torsion needs
some preparation.
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Lemma 3.114. Let G be a group which is of det > 1-class. Let Y be a
finite free G-CW -complex which is det-L?-acyclic. Let S C ZG be a mul-
tiplicatively closed subset such that for any s € S the induced morphism
r$ I2(G) — 13(G) sending u to us is a weak isomorphism and its Fuglede-
Kadison determinant satisfies det(r@) = 1. Assume that (ZG,S) satisfies

the Ore condition (see Definition 8.14]). Suppose that the Ore localization
(see Definition[8.14) ST H,(X) vanishes for all p > 0. Then

PA(YN(G) =0.

Proof. Let f: N(G)™ — N(G)™ be an N (G)-homomorphism of (left) N'(G)-
modules. Choose a (m,n)-matrix A € M (m,n, N'(G)) such that f sends z to
zA. Define
v(f): B(G)™ — B(G)",  y— (A%

where ' is obtained from y by transposing and applying elementwise the
involution I2(G) — I2(G) which sends > gecAg g to dec/\j.g, the matrix
A* is obtained from A by transposing and applying the involution x: N'(G) —
N(G) to each entry, and Ay’ is understood in the sense of matrices and
plugging y; into an element a: I?(G) — [*(G) in N(G). Notice that v(go f) =
v(g) o v(f) and that v is compatible with direct sums and, more generally,
with block decompositions of matrices. Moreover v(A- f) = A-v(f) for A € C
and v(f + g) = v(f) + v(g). (This construction will be analysed further and
be extended to finitely generated projective N'(G)-modules in Section [6.2).

Given a ZG-homomorphism f: ZG™ — ZG", define detzc(f) € [0, 00) by
the Fuglede-Kadison determinant of v(idy(q) ®zaf): I*(G)™ — 1*(G)™. We
call f a weak isomorphism or of determinant class if v(id-(q) ®za f) has this
property. A based free finite ZG-chain complex C, is called det-L2-acyclic,
if v(N(G) ®z¢ C.) is det-L?-acyclic, and in this case we define p®)(C.) by
PP (V(N(G) ®z6 C.)). The point is that these notions can be extended to
S~1ZG-modules and S~1ZG-chain complexes as follows.

Let f: S7'ZG™ — STZG™ be a S™'ZG-homomorphism. Then there
exist elements si,ss € S such that r,, o f o7, maps ZG™ C ST1ZG™ to
ZG™ C ST1ZG", where 1y, and rg, are given by right multiplication with
s1 and s2. (It is possible to choose s; = 1 or so = 1.) This follows from
the fact that any element in S™'ZG can be written as us™! or t~!v for
u,v € ZG and s,t € S. Fix such elements s; and so. We say that f is a
weak isomorphism resp. is of determinant class if the ZG-homomorphism
rs, © fors,: ZG™ — ZG™ has this property. If f is a weak isomorphism, we
define

detg-17¢(f) := detzg(rs, o fors,) € [0, 00). (3.115)

We conclude from Theorem [3.14! (1) that this is independent of the choice of
s1 and so and assertions (1)) and (2) of Theorem 3.14! for the Fuglede-Kadison
determinant carry over to both detzg and detg-174. Moreover, we get
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dets—lzc(f) > 1 (3116)

from the following argument. Choose s € S such that 7,0 f = S~!g holds for
an appropriate ZG-homomorphisms g: ZG™ — ZG". Since G is of det > 1-
class by assumption, we conclude from the definition (3.115])

detg-1z¢(f) = detza(g) > 1.

We call a based free finite S~!ZG-chain complex D, det-L?-acyclic if there
is a weak chain contraction (d.,v,) in the sense that . is a S~17G-chain
homotopy 4, : v, =~ 0 satisfying 6, o v, = v, 09, and vp: D, — D,, is a weak
S~1ZG-isomorphism of determinant class for all p € Z (cf. Definition [3.38).
In this case we define the L2-torsion of D,

PP (D,) = In(detg-17¢ (vd + 8)oad)) — In (detg-17¢ (Voaa)) € R.

This is independent of the choice of (d,v,) by the same argument as in
Subsection 3.3.2/ (cf. Definition [3.38, Lemma [3.40 and Lemma [3.41). If E, is
a det-L2-acyclic based free finite ZG-chain complex, then S™'E, is a det-L?2-
acyclic based free finite S~'ZG-chain complex and p) (E,) = p®) (S~'E,).

Now suppose that C, is a based free finite ZG-chain complex such that
S='H,(C.) = 0 for p € Z and C, is det-L3-acyclic. Lemma 8.15 (3) im-
plies that H,(S™'C.) = 0 for p € Z. Hence we can find a chain con-
traction v,.: S7!C, — S7'C.,;. Both compositions of the maps (S~lc +
Yodd: ST Coqqa — ST1Ce, and (S7lc+ Y)ey: ST1Ce, — S Csqq are given
by upper triangular automorphisms of S~1Cyqq or S~!C,, with identity maps
on the diagonal (cf. Lemma [3.40)). Hence both maps are isomorphisms and
satisfy

dets—IZG ((S_lc + ’Y)odd) . dets—IZG ((S_lc + ’Y)ev) = 1. (3117)

Since detg-17¢ ((S7'c+ 7)oad) = 1 and detg-176 ((S7 ¢+ 7)ev) = 1 holds
by (3.116), we get detg-17¢ ((S7 ¢+ 7)oaa) = 1. Since 7, is a chain con-
traction (and not only a weak chain contraction), we conclude

pP(C,) =In (detg-176 (S e+ 7)oaa)) = O.

Now apply this to C, = C,(Y) with a cellular ZG-basis and Lemma 3.114
follows. U

Remark 3.118. The assumption in Lemma [3.114] that Y is det-L2-acyclic
is not necessary. With a little effort and some additional knowledge it fol-
lows from the other assumptions by the following argument. Obviously it
suffices to show that bl()Q)(Y) = 0 for all p € Z since G is of det > 1-class
by assumption. We will introduce the algebra U(G) of affiliated operators
in Chapter 8. We only have to know that U(G) is the Ore localization of

N (G) with respect to the set of non-zero-divisors of N'(G) (see Theorem [8.22



3.4 Cellular L2-Torsion 175

(1)). Hence we get an embedding S™'ZG C U(G). Since S~1C.(Y) is con-
tractible, U(G) Rz C«(Y) is contractible and hence H,(U(G)RzcC«(Y)) =0
for p > 0. We will later show for an appropriate notion of dimension that
b,(,2)(Y) = dimy(q) (Hp (U(G) @z6 C«(Y))) (see Theorem 8.31). This implies
b2 (Y) = 0.

Lemma 3.119. Let G be a group and let A C G be a normal abelian infi-
nite torsionfree subgroup. Put S = {x € ZA | © # O,det(rf)) = 1}, where
i) I2(G) — I2(G) is given by right multiplication with .

Then for each element x € S the morphism ri?: 2(G) — I*(G) is a weak
isomorphism. The set S is multiplicatively closed. The pair (ZG, S) satisfies
the Ore condition (see Definition [8.14). The trivial ZG-module Z satisfies
S=17Z =0.

Proof. Consider x € ZA. There is a finitely generated subgroup B C A
with € ZB. Since B is a finitely generated torsionfree abelian group, it is
isomorphic to Z" for some n € Z. We conclude from Lemma [1.34 (1) that

dimp(p) (ker (r§;2): 1*(B) — ZQ(B))) € {0,1}. Since ker (1"552)) is a proper
closed subspace of I2(B) because of z # 0, its von Neumann dimension cannot
be dimr()(1?(B)) = 1. This implies that its dimension is zero. We conclude
from Lemma(1.24 (2) and (3) that dimpr(q) (ker (rf) (12(G) — l2(G)>) = 0.

Hence r{¥: I2(G) — I?(G) is a weak isomorphism by Lemma [1.13!

We conclude from Theorem [3.14/ (1)) that S is multiplicatively closed.

Next we show that (ZG, S) satisfies the right Ore condition. (Notice ZG
is a ring with involution which leaves S invariant so that then also the left
Ore condition is satisfied.) Since S contains no non-trivial zero-divisors, it
suffices to show for (r,s) € ZG x S that there exists (+',s') € ZG x S
satisfying rs’ = sr’. Let {g; | ¢ € I} be a complete system of representatives
for the cosets Ag € A\G. We can write r = >, fig; for f; € ZA, where
almost all f; are zero. Since A is normal in G, we get g~ 'sg € ZA for each
g € G. Obviously g~ 'sg # 0. We have

det (r(z) ) = det (rf) o 7“9) o r!(f)l)

g~lsg
= det (ng)) - det (r@) - det (rég_)l)
= det(r(?) = 1.

This shows g~ 'sg € S for all g € G. Since S is abelian, we can define
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= JI 95" s

{s€l|f;#0}

si= I 995 sgi0
(eI f,#0.5#}

= Z sifigi-

i€l

Since S is multiplicatively closed, we have s, s, € S. Since ZA is abelian, we
conclude

rs’ = Zfigi,g/ — Z figis/gi_lgi _ Z 9i5/gi_1fig¢

iel {i€l|f;70} {iel|fi#0}
= Z ssifigi = sr'.
{iellfi#0}

Consider a subgroup Z C A. Fix a generator ¢t € Z. We conclude from Lemma
3.141 (6) and Example 3.13

det (r@t;zz(G)Hﬂ(G)) = det (r@t:l2(Z)—>l2(Z)> = 1.

Hence 1 —t € S. If Z is the trivial ZG-module, then (1 —¢) acts by multi-
plication with zero on Z. Hence S™1'Z = 0. This finishes the proof of Lemma
3.119. O

Now we are ready to finish the proof of Theorem!3.113. By Lemma 2.62| we
can assume without loss of generality that 7 (X) contains a normal abelian
infinite torsionfree subgroup A C 71(X). Notice that Hp(f() is zero for p # 0
and is the trivial Z[m (X)]-module Z for p = 0. Now Theorem [3.113| follows
from Lemma [3.114 and Lemma [3.119. O

We refer to Conjecture [11.3, which deals with the L?-torsion of universal
coverings of aspherical closed manifolds.

3.4.3 Topological L2-Torsion for Riemannian Manifolds

In this subsection we introduce another variant of L2-torsion where we as-
sume that the underlying G-space is a cocompact free proper G-manifold
without boundary and with G-invariant Riemannian metric. The G-invariant
Riemannian metric together with the L?-Hodge-de Rham Theorem [1.59 will
allow us to drop the condition that all L?-Betti numbers vanish.

Definition 3.120 (Topological L2-torsion). Let M be a cocompact free
proper G-manifold without boundary and with G-invariant Riemannian met-
ric. Let f: K — M be an equivariant smooth triangulation. Assume that M
is of determinant class. Hence p®(K) = p@®(C'?(K)) € R is defined (see
Definition [3.29). Let
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Al Hﬁ(DQ)(M) — HfQ)(K)

be the L%-Hodge-de Rham isomorphism of Theorem [1.59, where we use on
H?Q)(M) the Hilbert N'(G)-structure coming from the Riemannian metric.
Define the topological L?-torsion

p2(M) = p?(K) =3 (~1)P -In (det (A’I}: Hy (M) = Hfz)(K)» .
p=>0

We have to check that this is independent of the choice of equivariant
smooth triangulation. Let g: L — M be another choice. Then the composi-

tion of Hf’z)(g_1 of): H(’)Q)(L) — Hg) (K) with A? is just A%.. Theorem [3.14

(1)) implies
In(det(A%)) = In(det(A?)) + In (det (Hg)(gfl o f))) . (3.121)

We conclude from Theorem [3.35/ (5)

pI(L) = p?(K) = =3 (1) -In (det (H152>(g—1 o f))) . (3.122)

p=>0

We obtain from Lemma [1.18 a commutative square of finitely generated
Hilbert NV (G)-modules with isometric isomorphisms as vertical arrows

HE, (g~ 'of)
HP, (L) ® HE (K)
2 (HP (g7 o))" 2
HP(L) ~——— HP(K)

We conclude from Theorem [3.14/ (1)) and Lemma [3.15/ (4)

In (det (H1<,2> (g-Lo f))) —In (det (Hfz)(g—l o f))) . (3.123)

We get from (3.121), (3.122)) and (3.123)

P (K) — Z det (Aii{: H{ay (M) = Hé)(K))
p=>0

= pD(L) = Xz det (A7 : Py (M)

L

Hg)(L)) . (3.124)
Hence Definition[3.120/ makes sense since pg;(M ) is independent of the choice
of equivariant smooth triangulation by (3.124). Notice that p(® (M) does
depend on the choice of Riemannian metric. If M happens to be det-L2-
acyclic, then p(®) (M) of Definition 3.91 and p(2) (M) of Definition [3.120) agree.

top
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There is an obvious analog of Theorem [3.93 for pgiz)(M) Iff:M—N
is a G-homotopy equivalence of cocompact free proper G manifolds without

boundary and with G-invariant Riemannian metrics, then we get

Pb(N) = plan (M) = ¢C(r(f)) = D (~1)-

p>0
In (det (Hg)( F): Hy (N) — Hfgz)(M))) . (3.125)

where H?z) (f) is obtained from Hfz) (f) by conjugating with the L2-Hodge-de

Rham isomorphism. We still have Poincaré duality, i.e. pgiz,(M )=0if M is

orientable and has even dimension. There is a product formula
2 2 2
Prap(M X N) = X(G\M) - pio (N) + X(H\N) - piGp (M), (3.126)

where M and N respectively are Riemannian manifolds without boundary
and with cocompact free proper actions by isometries of the group G and
H respectively. Restriction and induction also carry over in the obvious way.

() (3r

Given a closed Riemannian manifold M, pg,;,(M) has the obvious meaning

and properties.

3.5 Analytic L2-Torsion

In this section we introduce the analytic version of L2-torsion and compute
it for universal coverings of closed hyperbolic manifolds.

3.5.1 Definition of Analytic L?-Torsion

The next definition of analytic L?-torsion is taken from Lott [316] and
Mathai [358]. The notion of analytic determinant class is due to Burghelea-
Friedlander-Kappeler-McDonald [84, Definition 4.1 on page 800]. Recall the
definition of the I'-function as a holomorphic function

F(s):/ t5te™t dt (3.127)
0

for R(s) > 0, where R(s) denotes the real part of the complex number s. It
has a meromorphic extension to C whose set of poles is {n|n € Z,n < 0}
and which satisfies I'(s + 1) = s - I'(s). All poles have order one. We have
I'(z) 20 forall ze C—{0,-1,-2,...} and I'(n+1) =nl forn € Z,n > 0,
where we use the standard convention 0! = 1.

Definition 3.128 (Analytic L2-torsion). Let M be a cocompact free proper
G-manifold without boundary and with G-invariant Riemannian metric. De-

fine
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0,(M)(t) := / tre(e” 4 (2, 2)) dvol, (3.129)
F

where e 747 (x,y) denotes the heat kernel associated to the Laplacian acting

on p-forms and F is a fundamental domain for the G-action. We call M of

analytic determinant class if for any 0 < p < dim(M) and for some (and

hence all) € > 0

/mt—l : (ep(M)(t) - bf)(M)) dt < 0.

€

In this case we define the analytic L2-torsion of M for any choice of € > 0
by

p200 =5 X o (i [ o7 (G000 -2 00) d

p=>0
s [T (mono - i on) ).

Some comments are necessary in order to show that this definition makes
sense and how it is motivated.
The expression %ﬁ ot (OP(M)(t) - b,@(M)) dt’ is to be un-
s=0

s=0

derstood in the sense that ﬁ Jotot (OP(M)(t) — b;z)(M)) dt is holomor-
phic for R(s) > dim(M)/2 and has a meromorphic extension to C with no
pole in 0 [316], Section 3]. This fact is shown by comparing the heat kernel on
M with the heat kernel on G\ M [316], Lemma 4] and using the corresponding
statement for G\ M.

Definition [3.128 is independent of the choice of € by the following calcu-
lation. In the sequel we abbreviate

O (t) == 0,(M)(t) — b (M). (3.130)
We compute for 0 < e < 4§

d 1 [° .,
— 570k (t) dt
CZSF(S)/6 p() -
d 1 6571 1
d 1 63—1 1
—dSSSO'M'/Et Hp(t)dt
- s=0

4o. L 1 /6ts—1 O (t) dt
ds I'(s+1) P

€

= /675—1 -0 (t) dt. (3.131)
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We first explain the relation of the definition above to the classical Ray-
Singer torsion (3.9) for a closed manifold M. We have for s € C with £(s) > 0
and real number A > 0

1 /Oo —1 =X\t 1 /Oo -1 —1_-x(\71 -1
. T M dt = . (A lw) e MO TN gy
I'(s) Jo (s) Jo
1

AT / w$le ™ du
(s) 0
=\ (3.132)

!

~

From (3.132) we get in the setting of Ray-Singer torsion the following
equation, where A runs over the eigenvalues of the Laplace operator in di-
mension p listed with multiplicity.

s 1 a1
Z’\‘:Zr(s)'/o 5 le ™t dt

A>0 A>0
1 /°° —1 Xt
= . ts . (& dt
I'(s) Jo é
_ L/ 1571 (tre (e7*4) — dime (H,(M; V) dt. (3.133)
I'(s) Jo

Hence we can rewrite the analytic Ray-Singer torsion (3.9), where sz is
tre (e74%) — dimc(H,(M;V))

1 d 1 o
-V -_,.E —1)P.p. — . s—1,
Pan(M; V) 3 (=1)P-p /0 t 9p dt (3.134)

= s I'(s)

s=0

Notice that in the setting of Ray-Singer torsion one has only to deal with
convergence problems connected with the asymptotics of the large eigenvalues
of the Laplacian, whereas in the L?-setting there is an additional convergence
problem connected with small eigenvalues and which causes us to require the
condition to be of determinant class. Therefore one cannot define the L2-
torsion directly using expression (3.134) because there is no guarantee that
9; decays fast enough in the L2-setting. In the Ray-Singer situation or, more
generally, under the assumption that the Laplacian A, has a gap in the
spectrum at zero, 0;; decays exponentially as we will see in Lemma [3.139 (5).
If 0, decays exponentially, then (3.131) is also true for a real number € > 0
and 0 = co. Hence we can rewrite in the setting of Ray-Singer torsion

Pan(M;V) := % D (-1 p- <58F28) /06 0 (t) dt

p=>0

s=0

N /Eootl 0,()" dt > , (3.135)
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This expression (3.135) for the analytic Ray-Singer torsion is the one which
can be extended to the L2-setting.
Next we want to show

Theorem 3.136. Let M be a cocompact free proper G-manifold without
boundary with invariant Riemannian metric. Then

(1) We have
b (M) = F(0) = lim 6,(M)(®);

(2) M is of analytic determinant class in the sense of Definition|3.128 if and
only if it is of determinant class in the sense of Definition |3.120;
(3) The following statements are equivalent:
(a) The Laplace operator A, has a gap in its spectrum at zero;
() o (M) = oo
; A _ pA
(c) fhere exists € > 0 such that F,*(M)(\) = F;~(M)(0) holds for 0 <
< €,
(d) There exists € > 0 and a constant C(e) such that 6,(M)(t) < C(e) -
e~ holds fort > 0;
(4) Suppose that a5 (M) # oo, Then

o In(0,(M) (1) — by (M)
apA(M) = hglolgf n(t) .

We will prove Theorem [3.136/in Subsection 3.5.2 after we have dealt with
the Laplace transform of a density function. Theorem [3.136/ (2) has already
been proved in [84], Proposition 5.6 on page 815].

3.5.2 The Laplace Transform of a Density Function

Let F' : [0,00) — [0,00) be a density function (see Definition 2.7). Its Laplace
transform is defined by

Op(t) = /0 T e aF (), (3.137)

This definition is motivated by

Lemma 3.138. Let M be a cocompact free proper G-manifold without bound-
ary with invariant Riemannian metric. Then the Laplace transform in the
sense of (3.137)) of the spectral density function FpA (M) (see Definition|2.64))
is 0,(M) defined in (3.129).

Proof. We get from (1.65) and [9, Proposition 4.16 on page 63]
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Opa(t) = /O T et dF2(N)

- v (e

= 0,(M). 0

The asymptotic behaviour of the Laplace transform 6 (t) for ¢ — co can
be read of from the asymptotic behaviour of F(\) for A — 0 and vice versa
as explained in the next lemma (cf. [240, Appendix])

Lemma 3.139. Let F': [0,00) — [0,00) be a density function with Laplace
transform Op(t). Then

(1) We have for A >0
F(A) < 0p(t) - e

(2) Suppose that for all t > 0O there is a constant C(t) such that F(\) <
C(t) - et holds for all X\ > 0. Then we get for t > 0

Or(t) =t- /Ooo e F(N) dX;

(8) The Laplace transform 0p(t) is finite for all t > 0 if and only if for all
t > 0 there is a constant C(t) such that F(\) < C(t) - e** holds for all
A>0;

(4) Suppose that O (t) < oo for allt > 0. Then

F(0) = lim 0p(t)

(5) Suppose that Op(t) < 0o for allt > 0. Let € > 0 be a real number. Then
F(X) = F(0) for all A < € if and only if there is a constant C(e) such
that O (t) — F(0) < C(e) - e~ holds for t > 0;

(6) Suppose that F(A) > F(0) for all A > 0 and that Op(t) < oo for allt > 0.
Then

. FO)-F0) . . —In(0p(t) - F(0)
= R TOVR S T R

(7) Suppose that F and G are dilatationally equivalent density functions.
Then [y, In(X) dF(X) > —cc if and only if f,, In(A) dG(\) > —oo;

(8) Suppose that 0p(t) < oo for allt > 0. Then f01+ In(A\) dF(A) > —o0 if
and only if [t71 - (6p(t) — F(0)) dt < oo;

Proof. (1) Integration by part (see (3.16))) yields for 0 < e < K < o0

K K
/ e~ AP(N) = =K . F(K) — et P(e) + 1 - / e~ F(\) dA.
e+ €
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Since F is right continuous, Levi’s Theorem of Monotone Convergence implies

K K
/ e dF(\) = e K FP(K) — F(0) 4+t - / e”™ L F(N\) d), (3.140)
0+ 0

and hence
K K
/ e dF(\) = e F(K) +t- / e F(N) d (3.141)
0 0
We conclude F(A\) < 0p(t) - et for all t, A > 0 from (3.141).
(2) By assumption we have F(\) < C(t/2) - e=*/?*. This implies for t > 0
lim e~ - F()\) = 0. (3.142)

A—o0

Now assertion (2)) follows from (3.141), (3.142)) and Levi’s Theorem of Mono-
tone Convergence.

(3) Suppose that F(\) < C(t/2) - e~*/?*. Then 0p(t) < oo follows from the
following estimate based on assertion (2).

Op(t) =t- / e”™F(\) dA
0
§t~/ e~ C(t)2) - /2N dX
0

=2.0(t/2) - /OO /2 e dA
0
=2.0(t/2).

The other implication follows from assertion (I).
(4) This follows from Lebesgue’s Theorem of Majorized Convergence.

(5) Suppose that F(e) = F(0). Consider A < e. We conclude from assertions
(1) and (2) for t > 2
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This implies the existence of a constant C'(e) > 0 such that 6p(t) — F'(0) <
C(e€) - et holds for all ¢t > 0.

Now suppose that 0 (t) — F(0) < C(e)-e~t holds for t > 0. Fix u € (0,1).
Then we get for ¢t > 0

(F(p- €)= F(0)) - (71 1) e = (F(- ) = F(0)) - (¢ ! — ¢ ™)

:t~/e (F(p-€) — F(0)) - e~ dA

< t~/E(F()\) — F(0)) - e ™ dx

e

< t~/oo(F()\) ~F(0)) - e d)
0

_ <t./0°° F\) - e dA) ~ F(0).

(F(- ) = F(0)) - (7 = 1) - ™ < 0p(t) = F(0)
< Ce)-ete.

We conclude from assertion (2)

This implies for all t > 0
(F(u-e€) — F(0)) - (e<1—u>ft - 1) < Ofe).

Hence F(p-¢€) — F(0) =0 for all p € (0,1) and assertion (5)) is proved.
(6) We can assume without loss of generality that F'(0) = 0, otherwise con-
sider the new density function F(\) — F(0). We first show

Lo EQ)) L~ In(0R(1)
llf\njgf 0y < htrglor.}f ﬁ (3.143)

Obviously it suffices to treat the case, where the left-hand side is different

from zero. Consider 0 < « such that a < liminfy_, lnl(rig\))‘)). Then there is

€ > 0 such that F'(A\) < A“ for all A € (0,¢€). We get from assertions (1) and
(2) and (3.132) for t > 1

Gp(t):t~/ e MUF(\) d\ + t~/ e MF(N) dX
0 €

gt-/ e MY A\ + t-/ e M. 0p(1)- et dX
0 €

IN

t-/ e MY AN + Hp(l)-t-/ e (=D g\
0 €
L€ (=)

= D(a+ 1)t +0p(1) - ——
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We conclude @ < liminf; W' This proves (3.143)). It remains to
show
In(F —1
timinf BEN) S o i Z10OFD) (3.144)
A—0  In(A) t—oo In(¢)

Obviously it suffices to treat the case, where the right-hand side is greater

than zero. Fix 0 < « satisfying o < liminf;_, W. Then we can find

K > 0 such that 0p(t) < ¢t~ for ¢ > K holds. We conclude from assertion
(1) for t > K
F(\) < e -0p(t) < *-t7e.

If we take t = A71, we get F(\) < e- A This implies

«a < liminf M
A—0 ln()\

s

This finishes the proof of (3.144) and hence of assertion (6).
(7) We conclude from Lemma 3.15/ () that f01+ In(A) dF(A) > —o0 is equiv-
alent to f01+ M dX < oo and analogous for G.

(8) Obviously the claim is true for F' — F(0) if and only if it is true for F'.
Hence we can assume without loss of generality that F'(0) = 0 in the sequel.
Assertion (2) implies

/1oo t=t - Op(t) dt = /100 (/OOO e~ F()) d)\> it (3.145)
/100 (/100 e F(N dA) dt < oo (3.146)

from the inequality F(\) < C(1) - e* of assertion (I). Using the inequality
F(\) < C(t)- et of assertion (1) and the standard results about commuting
differentiation and integration we conclude

We get

d [re A Lo
4 () d = / e~ F(\) d).

This implies using Lebesgue’s Theorem of Majorized Convergence and Levi’s
Theorem of Monotone Convergence
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—K\ 1 ,—1A
= lim - F(X\) dh — F(X\) dA
K—oo 0 — 0 -
1 —K\ 1=
= li F(\) dX — - F(\) dX
) oy an= [Py
1A
= — - F(\) dA. (3.147)
0o A
We have
_ 1
et EX N < frel PO Ay <y PR an (3.148)

We conclude from Lemma [3.15! (1)), (3.145), (3.146), (3.147) and (3.148) that
[St710p(t) dt < oo is equivalent to f01+ In(A\) dF()\) > —oo. This finishes
the proof of Lemma [3.139. a

Now Theorem 3.136 follows from Theorem 2.68, Lemma 3.138 and Lemma,
3.139.

3.5.3 Comparison of Topological and Analytic L2-Torsion

Next we cite the deep result of Burghelea, Friedlander, Kappeler and McDon-

ald [84] that the topological and analytic L2-torsion pgz)(M ) (see Definition

3.120) and pgl)(M) (see Definition [3.128) agree. The main idea is to perform
the Witten deformation of the Laplacian with a suitable Morse function and
investigate the splitting of the de Rham complex according to small and large
eigenvalues. We do not give the long and complicated proof here. The main
technical tools are asymptotic expansions and a Mayer-Vietoris type formula
for determinants (see [79], [80]). A survey is given in [81]. See also [83].

Theorem 3.149 (Analytic and topological L2-torsion). Let M be a co-
compact free proper G-manifold without boundary and with G-invariant Rie-
mannian metric. Suppose that M is of analytic determinant class in the sense
of Definition|3.128, or equivalently, of determinant class in the sense of Def-
inition [3.120 (see Theorem[3.156/ (2)). Then

2
plop(M) = p3) (M).
3.5.4 Analytic L?-Torsion for Hyperbolic Manifolds

In general it is easier to work with topological L?-torsion because it has
nice properties as stated for instance in Theorem [3.96, Theorem [3.100 and
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Theorem [3.106/ and it can be computed combinatorially without investigat-
ing the spectral density functions of certain operators (see Theorem [3.172).
However, there are some special cases where it is easier to deal with analytic
L2-torsion because the Riemannian metrics have special properties and there
is a proportionality principle (see Theorem [3.183)). Examples are hyperbolic
manifolds which are treated in the next theorem due to Hess and Schick
[254], the special case of dimension 3 is proved in [316, Proposition 16] and
[358, Corollary 6.7]. Recall that the L?-torsion of the universal covering of a
closed even-dimensional Riemannian manifold is always trivial so that only
the odd-dimensional case is interesting.

Consider the polynomial with integer coefficients for j € {0,1,2,...,n—1}

n . 2n
H'fo(’/2 + 22) 2k
P == = E K. - . 3.150
;) V2 + (n — j)? k>0 kit ( :

Define

Cq = S(_l)n+j+l(27l;l!!.7ﬂl _ (2;1)

n (_1)k+1

DS KPR L (g — )2kt 3.151
kZ:O S Ay (n—1j) ( )

The first values of Cy are computed in [254, Theorem 2]

C3 =5~ 0.05305;
Cs = 125 ~ 0.06980;
Cr = 22; ~0.10182;

Clg ~ 2.4026 - 107,

and the constants Cy are positive, strictly increasing and grow very fast,
namely they satisfy [254, Proposition 6]

n
Cont1 > —

'Cnf;
= or 2n—1

Y

Can+t1 320

Theorem 3.152 (Analytic L?-torsion of hyperbolic manifolds).

Let M be a closed hyperbolic d-dimensional manifold for odd d = 2n + 1.
Let Cyq > 0 be the constant introduced in (3.151). It can be written as Cy =
=™ -rq for a rational number rq > 0. Then

pPB (M) = (1) Cq-vol(M).
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Proof. In the sequel we abbreviate

(4m)—n-1/2 n!

T T(n+1/2)  2-atl.(2n)

Notice that M can be identified with the hyperbolic space H? since M is
by assumption hyperbolic and that there are no harmonic L2-integrable
p-forms on H? for p > 0 by Theorem [1.62] Let A;|: &/~1(2J-1(HY))L —
=1 (2371 (H%))L be the operator induced by the Laplacian A;: L2(7(HY) —
L?0 (H?) (see Theorem [1.57) and e*?il(x,z) be the kernel of the operator
e!4il. Recall that H? is homogeneous, i.e. for two points x and y in H? there is
an isometry H? — H? mapping = to y. Hence trc(e!?il(z, x)) is independent
of x € He. Put

L= dl/lts—l.tr (e'%il(z, z)) dt
T ds I'(s) Jy C\e e

s=0
oo

—|—/ ¢t -trc(emfl(x,:z:)) dt,
1

where the first summand is to be understood as before, namely it is a holomor-
phic function for large R(s) and has a meromorphic extension to C without
pole in 0. Now a calculation analogous to the proof of Lemma [3.30/ and using
the Hodge-de Rham decomposition (see Theorem [1.57)) and the fact that the
Laplacian is compatible with the Hodge star-operator (1.48]) shows

(2) n
Pan (M) _ Z JH1T

The following equality is taken from [316, Proposition 15] where it is derived
as a special case of [371]

(o)
tre(et®l(z,2)) = D - (2;) /_ et (i) - Pl (v) dv,

where the polynomial P}'(v) and its coefficients Kj' ; are defined in (3.150).
We compute

tre (el (x ( ) ZK” —tn=0)* 4=h=1/2. P} 4 1/2).

Hence we can write

o (%),
(2

M:

S T(k+1/2)-

=

=0
1

1
/ e—t(n—j)2 Cp5Tk=3/2 gy
0

) s=0
N / omtn=3)? | y—k=3/2 dt), (3.154)
1
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A computation analogous to the one in (3.131) shows for (n — j) > 0

d 1 % _sni)?  ps—h-3/2
— " A dt
ds F(s)/l €

s=0
= / et n=i)*  4=k=3/2 gy (3.155)
1

One easily checks for j <n

d 1 /OO e t(n=0)* ys—k=3/2 p
0

£@ s=0
_ jsp(sil) S — )R (s — k= 1/2) .
= (n— ). I(—=k—1/2). (3.156)

We conclude from (3.154), (3.155) and (3.1506) for j # n
Li=D- (2;> 'ZKI?J T(k41/2)-T(—k —1/2) - (n — j)?**!
k=0

_ . [2n .n no vkl 2T okt
-D (j) S OKR; (1) o (n — )2+, (3.157)

We get
L,=0 (3.158)

from the following calculation for o > 0

d 1 /1 L /°° 1
— T dt + e dt
ds I'(s) Jo s=0 1

LA s 1] 1

CdsI(s+1) s—al,_, «o

11

 —a o«

=0.
We get from (3.153), (3.157) and (3.158)

B(M) = (=1)" - Cy - vol(M). (3.159)

This finishes the proof of Theorem 3.152. a

Theorem [3.152 will be extended to closed Riemannian manifolds whose
universal coverings are symmetric spaces of non-compact type in Theorem
5.12.
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3.6 L2-Torsion of Manifolds with Boundary

In this section we discuss what happens for a cocompact free proper G-
manifold M with G-invariant Riemannian metric whose boundary OM is
the disjoint union of the (possibly empty) G-spaces dgM and 9; M. Choose
an equivariant smooth triangulation (K; Ko, K1) — (M;00M,0,M). We
have introduced the L?-Hodge-de Rham isomorphism A% : Hé)(M ,0oM) =
H g’z)(K , Kp) in Theorem [1.89. We define analogously to the case where the
boundary is empty the notions of determinant class and of topological L?-
torsion

P2 (M, 80M) = p? (K, Ko) — 3 (1) -
p=>0

In <det (AII}: HEy) (M., 0 M) =5 HY (K. KO))) . (3.160)

We define the notions of analytic determinant class and of analytic L?-torsion
pgl)(M ,0oM) as in Definition 3.128 but now imposing Dirichlet boundary
conditions on 9yM and Neumann boundary conditions on 01 M, i.e. we use
the Laplacian A,: L22P(M) — L?02?(M) which is the closure of the op-
erator A,: 25(M) — QF(M) where 25(M) C 2P(M) was introduced in
1.83L Analogously we obtain the notions of topological Reidemeister torsion
Prop(M,00M; V) and of analytic Reidemeister torsion or Ray-Singer torsion
Pan(M, 0o M; V). We say that the G-invariant Riemannian metric is a product
near the boundary, if there are € > 0 and a G-invariant neighborhood U of
OM in M together with an isometric G-diffeomorphism OM x [0,e) — U
inducing the identity on OM, where M is equipped with the G-invariant
Riemannian metric induced from M, [0,¢) with the standard Riemannian
metric and M x [0, €) with the product Riemannian metric.

Theorem 3.161 (L>-torsion of manifolds with boundary). Let M be
a cocompact free proper G-manifold M with G-invariant Riemannian metric
whose boundary OM is the disjoint union of the (possibly empty) G-spaces
OoM and O, M. Suppose that the G-invariant Riemannian metric is a prod-
uct near the boundary. Suppose that (M,00M), (M,0M) and OM are of
determinant class. Then

In(2
pé(l?‘l)(M’ a0]\4) = pgii)(M? aOM) + 4(1 )

pan(G\M, G\a()M; V) = ptop(G\M7 G\a()M; V)

+¥ X (G\OM) - dimg (V).

“X(G\oM);

Proof. The first equation is proved by Burghelea, Friedlander and Kappeler
[82, Theorem 4.1 on page 34] and the second independently by Liick [327,
Theorem 4.5 on page 266] and Vishik [505]. O
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In the case of the analytic Ray-Singer-torsion the general boundary cor-
rection term (without the condition that the metric is a product near the
boundary) is given in [126]. One would expect to get the same correction
term in the L2-case.

Remark 3.162. We have seen in the context of L2-Betti numbers (see The-
orem [1.89) and of Novikov-Shubin invariants (see (2.84)) that the combina-~
torial and analytic versions also agree if M has a boundary. In the context
of L?-torsion there are two main differences, there is a correction term in-
volving the Euler characteristic of the boundary and the assumption that
the Riemannian metric is a product near the boundary. The additional Euler
characteristic term is related to the observation that the boundary 0M is a
zero set in M and hence on the analytical side certain integration processes
on the double M Ugys M cannot feel the boundary dM. On the other hand
equivariant cells sitting in the boundary OM do contribute to the cellular
chain complex of M Ugys M and affect therefore the topological side. The
condition that the metric is a product near the boundary cannot be dropped
for both Reidemeister torsion and L2-torsion because otherwise examples of
Liick and Schick [346, Appendix A] based on [60] show that the formulas be-
come wrong. The condition that the metric is a product near the boundary
ensures that the double M Ugys M inherits a G-invariant Riemannian metric
and that one can rediscover the information about (M,9M) by inspecting
the manifold without boundary M Ugas M but now with the obvious G X Z/2-
action induced by the flip map (see also Section 2.6).

The necessity of the condition that the Riemannian metric is a product
near the boundary also shows that the next result is rather delicate since one
has to chop the manifold into compact pieces with boundary and the relevant
comparison formulas and glueing formulas are not a priori true any more since
this chopping cannot be done such that metrics are product metrics near the
boundaries.

The next result is proved in [346, Theorem 0.5].

Theorem 3.163. L2-torsion of hyperbolic manifolds with boundary.
Let M be a compact connected manifold with boundary of odd dimension
d = 2n+1 such that the interior M comes with a complete hyperbolic metric

of finite volume. Then M is of determinant class and

2) r Y

Prop(AD) = pR(M) = (=1)" - Ca-vol(M),
where pgl) (M) is defined as in the cocompact case (which makes sense since M
is homogeneous and has some cocompact free proper action of some discrete
group by isometries and M has finite volume) and Cq > 0 is the dimension
constant of |3.151.

Poincaré duality still holds for manifolds with boundary provided that M
is orientable (cf. Theorem 3.93 (3)) i.e.
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PG (M, 90M) = (~1) D+ pB) (M, 9, M); (3.164)
P&(Mv BoM) = (—1)dim(M)+1 pEi;(M, M), (3.165)

and analogously for Reidemeister torsion. We mention the following glueing
formula. Define p(®(C*) of a finite Hilbert A(G)-cochain complex C* of
determinant class by

1

PI(CT) == -%(—1)17 -p - In(det(4,)
= Z 1)P - In(det(cP)). (3.166)
pEZL

Theorem 3.167 (Glueing formula for L2-torsion). Let M and N be co-
compact free proper G-manifolds with G-invariant Riemannian metrics which
are products near the boundary. Their boundaries come with decompositions
oM = 80MH81MH02M and ON = 80NH81NH(32N Let f: 82M —
02N be an isometric G-diffeomorphism. Let M Uy N be the cocompact free
proper G-manifold with G-invariant Riemannian metric obtained by glueing
M and N together along f. Suppose that (M,00M), (M,0M), (N,0yN),
(N,ON), OM and ON are of determinant class. Then (M Uy N,0oM [[OyN)
is of determinant class. We obtain a long weakly exact sequence of finitely
generated Hilbert N'(G)-modules

(M Us N, doM ]_[ doN)

-1
- Mgy (02M) = H,)

— H€2)(M, aoM) D Hé) (N, 80N) — Hé) (agM) —

where we use the Hilbert structures coming from the Riemannian metrics
and the maps are given by comparing the corresponding weakly exact L2-
cohomology sequence associated to equivariant smooth triangulations with the
various L%-Hodge-de Rham isomorphisms. We view it as a weakly acyclic
Hilbert N'(G)-cochain complex LHS* with H(Q)(M Us N,0oM [[OyN) in di-

mension zero. Then LHS* is weakly det-L?-acyclic and
Plop(M Uy N,0oM [T 80N) = (2 (M. 00M) + pioy (N, o) = pi2y,(9:M1)
p?(LHS);
P (M Up N.aoM [T 00N) = o3 (M, 0 M) + p3 (N, 0 N) — 3 (0:M)
~  In(2
o was) - 2 @aan),

The analogous result is true for the topological Reidemeister torsion and an-
alytic Reidemeister torsion.
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Proof. The claim about the analytic L2-torsion is proved in [82, Theo-
rem 4.4 on page 67]. The claim for the topological L?-torsion can also be
derived from Theorem [3.35 (I)) applied to the exact sequence of Hilbert
N (G)-chain complexes 0 — C.(9eM) — C.(M,00M) ® C.(N,0yN) —
Co(M Uy N,0oM [[8oN) — 0 and the fact that the L2-torsion of the weakly
exact long homology sequence is the negative of the torsion of the weakly
exact long cohomology sequence because p(?(C,) = p®)((C,)*) holds for a
finite Hilbert N (G)-chain complex C. The claim for the analytic L?-torsion
is then a consequence of Theorem [3.161.

The claim for the topological and analytical Reidemeister torsion is proved
in [327, Proposition 3.11 on page 290 and Proposition 5.9 on page 313]. O

3.7 Combinatorial Computations of L2-Invariants

In this section we want to give a more combinatorial approach to the L2-
invariants such as L?-Betti numbers, Novikov-Shubin invariants and LZ2-
torsion. The point is that it is in general very hard to compute the spec-
tral density function of some morphism of finitely generated Hilbert N (G)-
modules. However in the geometric situation these morphisms are induced by
matrices over the integral group ring ZG. We want to exploit this informa-
tion to get an algorithm which produces a sequence of rational numbers which
converges to the L?-Betti number or the L2-torsion and whose members are
computable in an algorithmic way.

Let A € M(n,m,CG) be a (n,m)-matrix over CG. It induces by right
multiplication a CG-homomorphism of left CG-modules

Ra: @CGﬁ@CG, T zA
i=1 i=1
and by completion a bounded G-equivariant operator
RY: @Pr@) — Pre).
i=1

=1

Notice for the sequel that Rap = Rp o R4 holds. We define an involution of
rings on CG by

D Agrg=> X9, (3.168)

geG geG

where )\79 is the complex conjugate of A;. Denote by A* the (m,n)-matrix

obtained from A by transposing and applying the involution above to each

entry. As the notation suggests, the bounded G-equivariant operator RP is
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the adjoint (Rf))* of the bounded G-equivariant operator Rf). Define the

CG-trace of an element u = deG Ag g € CG by

trcc;(u) =X €C (3.169)

for e the unit element in G. This extends to a square (n,n)-matrix A over
CG by

trc(;(A) = Ztrcg(ai,i). (3170)

We get directly from the definitions that the CG-trace trecg(A) agrees with

the von Neumann trace trN(G)(R(AQ)) introduced in Definition [1.2.
Let A € M(n,m,CG) be a (n, m)-matrix over CG. In the sequel let K be
any positive real number satisfying

2
K > ||RY |,

where HREf) ||oo is the operator norm of the bounded G-equivariant operator

Rff). Foru=73 cAg g€ CG define [[ul[1 by > cq |Ag]- Then a possible
choice for K is given by:

K=+(2n—-1)m- -max{||a; ;|| |1 <i<n,1<j<m}.

The bounded G-equivariant operator 1 — K2 - (R(AQ))*REZ): D, *(G) —
@, 1*(G) is positive. Let (1 — K~2- AA*)p be the p-fold product of matri-

P
ces and let (1 —K2. (R(AQ))*REE)) be the p-fold composition of operators.

Definition 3.171. The characteristic sequence of a matriz A € M(n, m,CG)

and a non-negative real number K satisfying K > HRE?HOO is the sequence
of real numbers

(A, K)p o= treg (1 - K72 A47)") =ty ((1- K72 (RY)RD)").

We have defined b(2)(R(Az)) in Definition 2.1 and det(R(Az)) in Definition
3.11.

Theorem 3.172. (Combinatorial computation of L?-invariants).

Let A € M(n,m,CG) be a (n,m)-matriz over CG. Denote by F the spectral

density function of Rf),

IR oo. Then

Let K be a positive real number satisfying K >

(1) The characteristic sequence c(A, K), is a monotone decreasing sequence
of non-negative real numbers;
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(2) We have
b (RP) = lim (A4, K),;

p—0o0

(3) Define B(A) € [0, 0] by
B(A) :=sup {5 € [0, 00) | pnjgopﬁ : (c(A7K)p _ b(z)(Rf>)) _ 0} .

If (R < oo, then a(RY) < B(A) and if (RY)) € {00, 00"}, then
B(A) = o0;

(4) The sum of positive real numbers

o

> - (el K, — 0 (RD))

p=1

converges if and only if Rf) is of determinant class and in this case

2In(det(RY)) = 2~(n—b(2)(Rf)))-ln(K)f§: %- (e(4, K), = b2(RD))

p=1
(5) Suppose a(Rf)) > 0. Then Rff) is of determinant class. Given a real

number a satisfying 0 < a < a(Rf)), there is a real number C such that
we have for all L > 1

0< e K) — b (RY) <

and

0< —2-In(det(R?)) +2- (n— b (RP)) - In(K)

L @) C
2
;p'(c(AvK%lb()(RA )) S o

Remark 3.173. Before we give the proof of Theorem [3.172, we discuss its
meaning. Let X be a finite free G-CW-complex. Describe the p-th differ-
ential ¢,: Cp(X) — Cp_1(X) of its cellular ZG-chain complex with respect

to a cellular basis by the matrix A4, € M(ny,np—1,ZG). Then R(AQZ is just

the p-th differential c,(?) of the cellular Hilbert M (G)-chain complex CE)(X )

and for the p-th Laplace operator A,: CZ(,Q)(X) — CZ(,Q)(X) of (1.17) we get
R This implies
ApAr+A%  Apia p
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b (X) = b RE) 4oy ae | ay); (3.174)
op(X) = a(RY); (3.175)
a(X) = (RS s ias ) (3.176)
PP (X)) = =D (1) - det(Ra,) (3.177)
p=>0
= N et (R e e 4 (BT9)
p>0

where p( (C(Q)( X)) is introduced in Definition 3.29 and agrees with p(?) (X)
if X is det-L2-acyclic (see Definition 3.91) and we have used Lemma .18 and
Lemma [3.30. Notice that in all cases the relevant L2-invariant is given by the
corresponding L2-invariant of a morphism of the shape Rg) for some matrix
over Z(G. Hence Theorem [3.172] applies to the geometric situation.

Each term of the characteristic sequences c¢(A, K), can be computed by
an algorithm as long as the word problem for G has a solution. Because
of Theorem 3.172 (1) and (2) one can use the following strategy to show
the vanishing of bz(;Q)(X ) provided one knows that there is an integer such
that n - bg) (X) € Z (see the Strong Atiyah Conjecture [10.2). One computes
c(A,K), for p = 1,2,3,... and hopes that for some p its value becomes

smaller than 1/n. This would imply béz) (X)=0.

Notice that the knowledge of the Novikov-Shubin invariants gives infor-
mation about the speed of convergence of the relevant sequences or sums
converging to the L?-Betti number or L?-torsion because of Theorem [3.172

().
We need the following lemma for the proof of Theorem |3.172.

Lemma 3.179. If F()) is the spectral density function of (R 2)) R(z) for

A€ M(n,m,CQG) and K satisfies K > ||R(2)HOO = |\(R(2)) (2)||00, then
we get for all X € [0, 1]

(1= NP (F(K?-\) = F(0) < (A K), —b@(RY)
< F(K?-)\) = F(0)+ (1= \P-(n— F(0)).

Proof. We have for u € [0, HRE?H?,O]

(L= xonE 2 p) < 1= K2 p)P < xponE 2 p)+ (1= NP

Hence we get by integrating over u
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RS 112,
A (1 =X xp (K2 p) dF
Jr
IR 12,
< (1- K- P dF
0+
RS 112, ,
< Xjoa (K77 ) + (1 = \)P dF.
0+
We have
RS |12
(L=XP X\ (K2 p) dF = (1= X\)P - (F(K*-X) — F(0)) ;
0+
1RSI ) 2 @k p2)\P
(1— K2 )P dF = trpe) ((1 — K2 (R®)*R( ) )
0+
— dim(ker((R)*RY));
RS2,
) Xjon (K72 ) + (L= NP dF = F(K?- \) — F(0)
+
+(1 = N7 (F([RP2) — F(0)).
This finishes the proof of Lemma [3.179. O

Now we can give the proof of Theorem [3.172.

Proof. (1) The bounded G-equivariant operator
1=K (RY)RY: PP©) - Pre)
i=1 i=1

is positive and satisfies
0<1-K 2 (RP)RY <1.
This implies for 0 < p < ¢
0<(1-x2 (ROYRY) < (1- k2 (8D RY) <1

and the first assertion follows as the trace is monotone.
(2) If we apply Lemma [3.179 to the value A = 1 — (/% we obtain for all
positive integers p

1

0<c(A K), - bRy < F (K2 : (1 - p)) — F(0) +

n — F(0)
—

We get lim, o4 - In(z) = 0 from "'Hospital’s rule. This implies
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. 1
lim 1 — </7: 0.
p—oo p

Since the spectral density function is right continuous, assertion (2) of The-
orem [3.172 follows.

(3) Let 8 and « be any real numbers satisfying
0<fB<a<alRY).

Choose a real number ~ satisfying

g

—<y<Ll
!
We conclude from Lemma [3.179 for A = p~”
0 < e(A K), — V(R < F(K? - p™) = F(0) + (1 —p~ )" - (n — F(0)).
By the definition of a(R(Az)) there is ¢ > 0 such that we have for 0 < A < ¢
F(\) — F(0) < A\°.
The last two inequalities imply for p satisfying K2p= < §

0<p’ (c(A,K), - bP(RY))
<7 (K- p )"+ (1L =p )P - (n = F(0))). (3.180)

We get using 'Hospital’s rule

lim z-In(l —277) = —o0;
In(z)

T—00 xln(l —x77)

i () =

T—00 xln(l —x7

lim Sln(z) + 2In(l —277) = —o0;

Y

lim 2°(1 —277)% = 0.

Since 3 — ya < 0 holds we have lim, .., 2% (K2 - 277)® = 0. Hence we get

lim p” - (K2 -p77)*+ (1 —p )P (n— F(0)) =0.

p—0o0

This implies using the inequality (3.180)

lim p? - (C(AK),, - b<2>(R<j))) _

p—00
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We have shown § < B(A). Since § was an arbitrary number satisfying 0 <
B8 < a(Rg))7 assertion (3)) follows.

(4) We get the chain of equations where a sum or integral is put to be —oo
if it does not converge, and {E) | A} is the spectral family of (Rf))*Rf)

2. (n—b@(RP)) - (K) - i % (e, K), — b (RD))

=2 (n—b(RY)) - n(K) -
2 (v (1= K2 (B RD)) - b2(RY)

1
=2-(n— b (RD)) - In(K)

RS2,

—Z* tryv(e) (/ (1-K2-))° dE,\>.

The trace is linear, monotone and ultra-weakly continuous.

IR,
=2 (n— b RP)) Z / (1= K22 dtraa)(Ex)

RS2,
=2 (n— b RD)) Z / (1-K72.\)" dF

We can put the sum under the integral sign because of Levi’s Theorem of
Monotone Convergence since (1 - K™2. )\)p is non-negative for 0 < A <

2
IRY|2, < K>

(2)
=2 (n - b (RY)) - (k) - [Ny 11 g2 )P aF

The Taylor series — % | +-(1 — u)” of In(y) about 1 converges for [1—p| < 1.

1,
P
IRDI1Z,

=2 (n— b RP)) - In(K) + / In(K~2-\) dF
0+

) IIRG |12 IR,
=2 (n— b RP)) - In(K) + / In(\) dF — / In(K?) dF
0 0

+ +
” IR )
=2 (n— b RP)) - In(K) + In(\) dF — In(K?) - (n — @ (RY)))
0+
IR 00
= In(\) dF = / In(\) dF
0+ 0+

= In(det(RY)*R?)) = 2-In(det(RD)),
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where the last equation follows from Lemma [3.15! (4). This finishes the proof
of assertion (4).

(5) Let o be any number satisfying o < a(Rf)). Then we conclude from
assertion (3) lim,_, o p® (c(A, K), - b(z)(Rf))) = 0. Let C be any positive
number such that p® (C(A, K), — b(2)(RE42))) < C holds for all p. We conclude

-y % : (c(A, K), — b® (R(Q)))
5 Lo, @ (R®
>, (eta. £, = b (&D))

I
i~
L
|
Q
—
S
Q
—
2
o~
=
S
I
S3
c
—
=y
=0
N
N
N

p=L+1
oo
< C. Z pflfa
p=L+1
< C-/ 7%y
L
C
= — . L*Oé
@
This finishes the proof of Theorem 3.172. a

Remark 3.181. We conjecture that the inequality a(Rf)) < B(A) of The-
orem [3.172.3 is an equality where we do not distinguish between oo and co™
as value for a(Rf)). If the spectral density function F' of Rf) has the limit
property (see Definition 2.41)), then this is true.

We will give more explicit calculations for 3-manifolds later which depend
only on a presentation of the fundamental group (see Theorem [4.9).

3.8 Miscellaneous

The following result is taken from [106, Proposition 6.4 on page 149].
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Lemma 3.182. Let M be a simply connected Riemannian manifold and
f: M — R be a function which is invariant under the isometries of M. Then
there is a constant C(f) with the property that for any cocompact free proper
action of a discrete group G by isometries and any fundamental domain F

/FfdvolM = C(f) - vol(G\M)
holds.

Lemmal3.182/is obvious if M is homogeneous since then G acts transitively
on M and hence any function on M which is invariant under the isometries of
M is constant. Lemma [3.182] implies the following proportionality principle.
Theorem 3.183 (Proportionality Principle for L -invariants). Let M
be a simply connected Riemannian manifold. Then there are constants B;(,2)(M)
forp >0, A](f) (M) for p > 1 and T® (M) depending only on the Rieman-
nian manifold M with the following property: For any discrete group G with
a cocomapct free proper action on M by isometries the following holds

B (MLN(G)) = BE (M) - vol(G\M);
ol (M;N(G)) = AP (M);
PP (M N(G)) = T®(M) - vol(G\M),

where for the third equality we assume that M with this G-action (and hence
for all cocompact free proper actions) is of determinant class.

Proof. Obviously the following function

M—R, oz tra(E (2, 0))

is invariant under isometries since d? and éP are compatible with isometries

. (5p+ldp)L_ (5p+1dp)L_
and hence the endomorphisms F min (g, x) and B min (h(x), d(x))
are conjugate for any isometry ¢: M — M and = € X. Let C,(M)(\) be
the constants associated to this function for each A > 0 in Lemma [3.182. We
conclude from Lemma [3.182 and Lemma 2.66

Fp(M; N(G))(A) = Cp(M)(A) - vol(G\M),

where F(M;N(G)) is the analytic spectral density function associated to
the cocompact free proper G-manifold M with G-invariant Riemannian met-
ric. Notice that C,(M)()) is independent of G. Now the claim for the L2-
Betti numbers and the Novikov-Shubin invariants follow. Analogously we con-
clude that there is also a function ©,(M)(t) depending only on M such that

/f e (e~ (2, 2)) dvol, = O, (M)(t) - vol(G\M)

holds. Now the claim for the L2-torsion follows. O
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Another proportionality principle for L2-Betti numbers will be given in
Theorem [7.34 and Corollary [7.37.

Remark 3.184. We call a finite free G-CW-complex X NS-L2-acyclic if
béQ)(X) =0 and a,(X) > 0 for all p > 0. Notice that NS-L?-acyclic implies
det-L2-acyclic because of Theorem [3.14! (4). We conclude from Remark [3.90
that all the results of Section [3.4 remain true if one replaces det-L2-acyclic
by NS-L2-acyclic. The point is that the property NS-L2-acyclic is enherited
like the property det-L2-acyclic.

The next result is well-known.

Lemma 3.185. A closed hyperbolic manifold does not carry a non-trivial
Sl-action.

Proof. Suppose that the closed hyperbolic manifold M carries a non-trivial
Sl-action. Since the umiversal covering of M is the hyperbolic space and
hence contractible, M is det-L?-acyclic and p(®)(M) = 0 by Corollary [3.111.
This contradicts Theorem [1.62] if dim(M) is even and Theorem 3.152! if n is
odd. O

One may ask whether Theorem [3.111 extends from S'-actions to S'-
foliations, namely

Question 3.186. (S!-foliations and L?-torsion for closed aspherical
manifolds).

Let M be an aspherical closed manifold which admits an S*-foliation. Is then
M of determinant class and

bz(f) (M =0 for all p;
Oép(M) >1 for all p;
PP (M) =07

If the answer is positive, one would get a negative answer to the (to the
author’s knowledge) open problem whether there is a S'-foliation on a closed
hyperbolic manifold.

The notion of spectral density function makes also sense for proper G-
CW-complexes of finite type because in this setting the cellular L2-chain
complex is still defined as a Hilbert A/(G)-chain complex as explained in Sec-
tion [1.6. Hence the notion of det-L2-acyclic and of L>-torsion p(®)(X) for a
proper finite G-CW-complex in the sense of Definition [3.91/ and the notion of
topological L2-torsion pg;(M ) for a cocompact proper G-manifold M with
G-invariant Riemannian metric in the sense of Definition 3.120) are defined.
Theorem [3.93] (1) remains true if one replaces Wh(G) by K;(QG)/T(G),
where T(G) is the subgroup generated by elements represented by automor-
phisms of the shape £Q[¢]: Q[|G/H] — Q[G/H] for finite subgroups H C G
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and G-maps ¢: G/H — G/H, and the Whitehead torsion 7(f) by the corre-
sponding element in K7 (QG)/T(G) given by the QG-chain homotopy equiva-
lence QRzC.(f): QRzCL(X) — Q®7C.(Y). Notice that the map induced by
the logarithm of the Fuglede-Kadison determinant < : K(QG)/T(G) — R
is definitely non-trivial. But it may still be true that ¢ (7(f)) is always trivial
for a G-homotopy equivalence f and hence that p(?)(X) is a G-homotopy in-
variant for det-L2-acyclic finite proper G-CW-complexes. This can be proved,
provided that G is of det > 1-class or if G belongs to the class G (see Defini-
tion [13.9). Theorem [3.93 (2)), (3), (4), (5) and (6) carry over word by word
for a det-L2-acyclic finite proper G-CW-complex. The proof of Poincaré du-
ality stated in Theorem [3.93 (3) is non-trivial because the Poincaré QG-
chain homotopy equivalence Q ®z C" *(M) — Q ®z C.(M) has in general
non-trivial Whitehead torsion in K;(QG)/T(G) [327, Definition 3.19 and
Example 3.25], but one can show that its image under the homomorphism
K1(QG)/T(G) — R given by the logarithm of the Fuglede-Kadison deter-
minant is trivial. The notion of analytic L2-torsion pgl)(M ) for a cocompact
proper G-manifold with G-invariant Riemannian metric introduced in Defi-
nition [3.128 still makes sense. Without having checked the details we claim
that Theorem [3.149/ of Burghela, Friedlander, Kappeler and McDonald [84]
is still true if one drops the assumption free.

One can try to get an improved L2-torsion working in K-theory, instead
of applying the Fuglede-Kadison determinant from the very beginning. Fix a
set W of morphisms of Hilbert A'(G)-modules f: [?(G)" — [?(G)"™ with the
following properties: (i) Any isomorphism [?(G)" — [?(G)™ belongs to W,
(ii) any element in W is a weak isomorphism. (iii) If two of the morphisms
f, g and g o f belong to W, then also the third. (iv) If both f o g and
g o f belong to W, then f and g belong to W. (v) If two of the morphisms
f1: P(G)™ = 2(G)™, fa: I2(G)" — I2(G)™ and (J;l é) belong to W, then
all three. Define K}V (N(G)) to be the abelian group whose generators are
classes [f] of endomorphisms f: [2(G)™ — [?(G)" belonging to W such that
the following relations are satisfied: (i) [id: (?(G) — [*(G)] =0, (ii) [go f] =

4ol for £.g5P(G)" = P(G) i W ana Gi) (1 2)| = (] + (7] o

f1, f2 € W. Let KYY(N(G)) be the quotient of K)Y(N(G)) by the subgroup
generated by [—id: I2(GQ) — I*(G)].

We call a finite Hilbert N (G)-chain complex C, W-acyclic if there is a
weak chain contraction (v, us) in the sense of Definition [3.38, where we
now require that u,: C, — C, belongs to W. Then we can associate to a
finite W-acyclic Hilbert V' (G)-chain complex C, analogously to the formulas
appearing in Lemma [3.41 an element

PV (CL) == [(uc+ 7)oad] — [Uoaa] € KTV (N(G)). (3.187)
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By the same arguments we used for the L?-torsion one shows that p"V(C,)
is well-defined, i.e. independent of the choice of (7., u,) and that a lot of the
good properties remain true. For instance, if 0 — Cy, — D, — E, — 0 is an
exact sequence of finite Hilbert A/(G)-chain complexes and two of them are
W-acyclic, then all three are W-acyclic and we get analogously to Lemma
3.68

P (C.) = P (D) + "V (EL) = p7V(C., D, E.). (3.188)

The problem is to find out how much information K}V(N(G)) contains
depending of the various choices of W. B

If we take for instance W to be the class of isomorphisms, K}V(N(G)) is
just the ordinary K;(N(G)) of the ring NV(G) which has been computed in
[344] (see also Subsection [9.2.2)). However, W-acyclic means in this situation
that C, is contractible and this condition is extremely restrictive as we will
see in Chapter 12 on the Zero-in-the-Spectrum-conjecture. If we take W to be
the class of weak isomorphisms of determinant class, then the logarithm of the
Fuglede-Kadison determinant gives a homomorphism det: K}V(NV(G)) — R
which maps p"V(C.) to p(?(C.). This homomorphism is split surjective but
we do not know whether it is bijective. Finally we discuss the case where W
consists of all weak isomorphisms. Then K}V (N(G)) can be identified with
KM (N(Q)) (see Definition[9.16). If G contains Z" as subgroup of finite index,
KV (N(G)) has been computed in [345] (see also Section 9.3) and there it is
shown that p"Y(C.) contains essentially the same information as the classical
Alexander polynomial. If G is finitely generated and does not contain Z™ as
subgroup of finite index, then K}Y(N(G)) = 0 [344] (see also Section 9.3)
and hence p"V(C,) carries no information. This shows why a condition such
as of determinant class has to appear to get a meaningful invariant.

Lott [321] defines analytically delocalized L?-torsion for the universal cov-
ering M of a closed Riemannian manifold M , which gives a number for each
conjugacy class of the fundamental group 1 (M). The value of the conjugacy
class of the unit element is the L?-torsion. This invariant is presently only
defined under certain technical convergence assumptions. At least for univer-
sal coverings of closed hyperbolic manifolds of odd dimension the delocalized
L?-torsion is defined and the marked length spectrum can be recovered from
it.

Formulas for the variation of the L2-torsion under varying the Riemannian
metric are given for instance in [316, page 480] and [346), section 7].

We will give further computations of L2-torsion for universal coverings of
compact 3-manifolds in Theorem 4.3, of knot complements in Section 4.3/ and
of closed locally symmetric spaces in Theorem [5.12 and in (5.13)).

We will discuss the behaviour of L2-Betti numbers, Novikov-Shubin invari-
ants and L2-torsion of groups under quasi-isometry and measure equivalence
in Section [7.5.
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In Chapter [11 we will deal with the Conjecture [11.3 which makes a pre-
diction about the parity of the L2-torsion of the universal covering of a closed
manifold M, provided M is aspherical or carries a Riemannian metric with
negative sectional curvature.

We will relate the L2-torsion of the universal covering of an aspherical
closed orientable manifold to its simplicial volume in Chapter [14.

Further references about L2-torsion are [92], [93], [137], [138], [139], [360],
[362], [363].

Exercises

3.1. Let C. be a finite free Z-chain complex. Choose a Z-basis for C,, and for
H,(C.)/ tors(H,(C,)) for each p € Z. They induce R-bases and thus Hilbert
space structures on C), ®zR and on H,(C, ®zR) = H,(C,)®@zR for all p € Z.
Let p%(C,) be the real number p(C, ®z R) whose definition is the obvious
variation of (3.5). Prove

(0 = SO(-1) - In(Jtors(H,(C.)))

PEZL

3.2. Let X and Y be finite CW-complexes. Let j;: X; - X and k;: Y; —» Y
be inclusions of C'W-subcomplexes for i = 0,1,2 such that X = X7 U X5,
Xo=X1NXs, Y=Y UY;5 and Yy = Y1 NY5 holds. Let f: X — Y be a map
which induces homotopy equivalences f;: X; — Y; for i = 0,1,2. Show that
f is a homotopy equivalence and

7(f) = k(7 (1)) + koo (7(J2)) = ou (7 (Jo)).

33. Let f: X — Y and g: Y — Z be homotopy equivalences of finite
CW -complexes. Prove

e ~

T(go f) =7(9) + g«(r(f))-

3.4. Let f: X' - X and g: Y’ — Y be homotopy equivalences of connected
finite CW-complexes. Denote by kx: X — X xY and ky: Y — X X Y the
canonical inclusions for some choice of base points in X and Y. Prove

—_—

(f X 9) = X(X) - by (7(@) + X(Y) - kxo (7 ().
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3.5. Show for S™ equipped with some Riemannian metric

1+ (=D

Prop(S™;R) = 5

- In(vol(S™)).

3.6. Equip R with the standard Riemannian metric and Z-operation. De-
note by V the trivial orthogonal 1-dimensional Z-representation whose un-
derlying vector space is R with the standard Hilbert space structure. Let
Cr(s) = > ,>1n"° be the Riemannian Zeta-function. Show for the Zeta-
function (1 (R; V')(s) defined in (3.8))

GR;V)(s) = 2-(2m)7% - (r(2s).

3.7. Define a function F': R — [0,00) by F()\) = m for 0 <
A<e ¢ F(A)=e!for \>e ¢ and F(\) =0 for A < 0. Show that F is a
density function with

)\lin&r In(\) - F(X\) = 0;

1
/ In(\) dF = —o0.
0+

3.8. Let A be a (k, k)-matrix over C[Z"]. Denote its determinant over C[Z"]
by detcyzn)(A) € C[Z"]. Let Ra: I2(Z™)% — 12(Z™)* and Ractepny(a): P(Z") —
I?(Z™) be the morphism given by right multiplication with A and detcz(A).
Show that the following statements are equivalent: i.) R4 is a weak isomor-
phism, ii.) Rietepny(4) 1s a weak isomorphism and iii.) detczni(A) # 0. Show
that in this case det(Ra) = det(Raetepn,(a))-

3.9. Let X be a finite free Z-CW-complex. Since C[Z] is a principal ideal
domain [15, Proposition V.5.8 on page 151 and Corollary V.8.7 on page 162],
we can write

Hy(X;C) = ClZ)™ & | D CIZI/ (= — api, )™ )

for ap;, € C and ny, sp, 7,4, € Z with ny, s, > 0 and 7,;, > 1 where z € Z
is a fixed generator.
Prove for p > 0

b;Q)(X) = Ny;
min{—rpl_ | i, =1,2...,5p, \apyip| =1}
Jip

ap+1(X) = if s, > 1and {i, =1,2...,8p,|ap; | =1} #0
oot otherwise
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Show that X is det-L?-acyclic if and only if n, = 0 for all p > 0.

Prove that p(®)(X) cannot be read off from the C[Z]-modules H,(X;C)
for all p € Z, but that p(?)(X) is determined by the Z[Z]-modules H,(X;C)
for p € Z and can be written as In(]a|) — In(]b|) for algebraic integers a,b € C
with |al, |b] > 1.

3.10.  Give an example of finite Hilbert A(G)-chain complexes C, and
D, which are both of determinant class and a weak homology equivalence
fv: Cx — D, such that f, is of determinant class for all p € Z, but neither
f« is of determinant class nor H ( f+) is of determinant class for all p € Z.
(cf. Theorem [3.35! (5) and Lemma [3.44).

3.11. Let (Ci.,ds ) be a bicomplex of finitely generated Hilbert N(G)-
chain modules such that C, , = 0 for |p|,|¢| > N holds for some number N
Suppose for p € Z that the chain complex C), . given by the p-th column and
the chain complex C., , given by the g-th row are det-L?-acyclic. Let T\ be

the associated total chain complex with T, = @p tg=n Cp.,q- Show that T is

det-L?-acyclic and

DU pB(C) = pPT) = Y (1)1 pP(Chy).

PEZ qEZ

3.12. Show that the following statements are equivalent:

(1) The map ¢%: Wh(G) — R of (3.92) is trivial for all groups G;

(2) For all finitely generated groups G and G-homotopy equivalences f: X —
Y of det-L?-acyclic free finite G-CTW-complexes p(?)(X) = p®(Y') holds;

(3) For all finitely generated groups G and G-homotopy equivalences f: M —

N of det-L?-acyclic cocompact free proper G-manifolds with G-invariant

Riemannian metric and without boundary p( )(M ) = pgl)(N ) holds.

3.13. Show that the composition of the obvious map given by induction
Drce <o Wh(H) — Wh(G) with #%: Wh(G) — R is trivial.

3.14. Let G be a countable group. Show that the following sets are countable
{b(Q) (X;N(@Q)) | X connected free G-CW-complex of finite type,p > 0};
{a(2 (X;N(GQ)) | X connected free G-CW-complex of finite type,p > 1};
{pP(X;N(Q)) | X det-L*acyclic connected finite free G-C'W-complex}.

Show that the first set is closed under addition in RZ°, and that the third
set is an additive subgroup of R provided that the third set is non-empty.

3.15. Show that the following sets are countable
b (X) | X connected C'W-complex of finite type,p > 0};
{b, p ype,p >
{ap(X X) | X connected CW-complex of finite type,p > 1};
{p?(X) | X det-L2-acyclic connected finite CW-complex}.
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3.16. Give an example of a fibration of connected finite C'W-complexes which
is not simple, i.e. 6(p) # 0.

3.17. Let f: X — X be a selfmap of a connected finite CW-complex and let
Tt be its mapping torus. Let L be the colimit of the system

m1(f) m1(f) 71 (f)

7T1(X)

7T1(X)

There is a canonical epimorphism ¢: 71(X) — L and an automorphism g :
L — L satisfying g ot = v om(f). Show that 7 (T}%) is isomorphic to the
semidirect product L, Z. Prove that ¢ is bijective and 7 (Tf) = m1 (X)X~ ()
Z, provided that 71 (f) is bijective.

3.18. Let p: E — S! be a fibration with fiber S™ v S™ for n > 2. Suppose
that m(S') = Z acts on H,(S™ V S™;Z) by an automorphism Hi(f) with
determinant 1. Let tr € Z be the trace of Hi(f). Show that all L*-Betti

numbers of Tf vanish, al(Tf) =1, ap(Tf) = oot for p # 1,n + 1 and that
precisely one of the followmg cases Occurs

(1) Hi(f) is periodic. Then tr € {—1,0,+1} or Hy(f) = *id and we have
an+1(Tf) =1 and p® (Tf) =0;

(2) Hi(f) is parabolic, i.e. H1(f) is not periodic and all complex eigenval-
ues have norm 1. Then we have tr € {—2,+2}, oznﬂ(i“;) = 1/2 and
p@(Ty) = 0;

(3) Hy(f) is hyperbolic, i.e. there is one (and hence two) complex eigenvalue
whose norm is not 1. Then |tr| > 2, anﬂ(?}) = oo™ and p(2)(ﬁ) =

1n<'32r+ tf—l).

3.19. Give examples of two fibrations F' — Ey — B and F — Ey — B of
connected finite CW-complexes with the same fiber and base space such that
the fiber is simply connected, Ey and E; are of determinant class and have
trivial L2-Betti numbers, but Ey and E; have both different Novikov-Shubin
invariants and different L2-torsion.

3.20. Let F': [0,00) — [0,00) be a density function with F'(0) = 0 for which
there is K > 0 with F(A\) = F(K). Let 0p be its Laplace transform. Fix
€ > 0. Show:

(1) We have
)= ant"
n>0
for a power series ) ., a,t" which converges for all t € R and satisfies
apg = F‘([()7 -
(2) The function

1 ‘ s—1
F(S)-/Ot Or(t) dt
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is holomorphic for £(s) > 0 and has a meromorphic extension to C which
has poles at s = —1,—2,—3, ..., all of order 1;
(3) Suppose 0 < a(F). The function

1 > s—1 |
F(S)/E 571 0p(t) dt

is holomorphic for R(s) < a(F'). We have

d 1 > s—1
B T0) /6 105 (t) dt

= / t71 Op(t) dt < oo;
s=0 €

(4) Suppose 0 < a(F). Then the function [;° A= dF(A) is holomorphic for
R(s) < a(F) and we get

d oo
— A5 dEF(\
ds/o )

(5) We have for 0 < R(s) < a(F)

= /Ooln()\) dF(X) < oo;
0

s=0

]‘ > sfl. _ > —s .
F(S)-/O t Gp(t)dtf/o A7 dF(\);

(6) If 0 < a(F), we get

d 1 ‘ s—1 > —1
DTF(S)/Ot 0p(t) du S_O+/E 1 () dt

d 1 > s—1

:/Ooln()\) dF(\) < oo.
0

3.21. Show directly using Definition 3.128| that pgi)(évl) =0.

3.22. Compute p,n([0,1]) = % and pyop([0,1]) = 0 for [0, 1] equipped with
the standard Riemannian metric directly from the definitions without using
Theorem 3.161] but using the facts for the Riemannian Zeta-function &r(s)
that g (0) = —1/2 and ££x(0) = —1In(2)/2.

3.23. Let M be a cocompact proper free G-manifold of even dimension which
is orientable. Suppose that M is det-L?-acyclic. Show that OM is det-L2-
acyclic and

p'? (OM)

@ (M) =
P (M) 5
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3.24. Compute the characteristic sequence ¢(A, K),, of the (1,1)-matrix (z —
A) over C[Z] for z € Z a fixed generator and real numbers A > 0 and K = A+1
and conclude

Sl S
p \ (1+ )% (p—2k)! - k! K!

p=1 k=0
2 In(A+1)—2-In(ADifA>1
“12-In(A+1) ifA<1



4. L?-Invariants of 3-Manifolds

Introduction

In this section we compute all L2-Betti numbers and the L2-torsion and give
some values and estimates for the Novikov-Shubin invariants for the universal
covering of a compact connected orientable 3-manifold. This will use both
the general properties of these L2-invariants which we have developed in
the preceding chapters and the geometry of 3-manifolds. In particular our
computations will be based on Thurston’s Geometrization Conjecture. The
necessary input of the theory of 3-manifolds will be given in Section 4.1
and the actual computations and sketches of their proofs in Section [4.2. In
our opinion they combine analytic, geometric and topological methods in a
beautiful way. Moreover, these computations will give evidence for various
general conjectures about L2-invariants such as Conjecture 2.82/ about the
positivity and rationality of Novikov-Shubin invariants, the Strong Atiyah
Conjecture10.2, the Singer Conjecture(11.1, Conjecture(11.3labout the parity
of the L2-torsion of the universal covering of an aspherical closed manifold
and the zero-in-the-spectrum Conjecture 12.1.

4.1 Survey on 3-Manifolds

In this section we give a brief survey about connected compact orientable
3-manifolds. For more information we refer for instance to [252], [466], [491],
[492].

In the sequel 3-manifold means connected compact orientable 3-manifold
possibly with boundary. A 3-manifold M is prime if for any decomposition
of M as a connected sum M;#Ms, M; or M, is homeomorphic to S3. It
is irreducible if every embedded 2-sphere bounds an embedded 3-disk. Any
prime 3-manifold is either irreducible or is homeomorphic to S* x S? [252,
Lemma 3.13]. A 3-manifold M has a prime decomposition, i.e. one can write
M as a connected sum

M = My#Ma# ... #M,,

where each M; is prime, and this prime decomposition is unique up to renum-
bering and orientation preserving homeomorphism [252, Theorems 3.15, 3.21].
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By the Sphere Theorem [252, Theorem 4.3], an irreducible 3-manifold is as-
pherical if and only if it is a 3-disk or has infinite fundamental group.

Given a 3-manifold M, a compact connnected orientable surface F' which
is properly embedded in M, i.e. 9M N F = OF, or embedded in OM, is called
incompressible if it is not a 2-sphere and the inclusion F' — M induces an
injection on the fundamental groups. One says that OM is incompressible in
M if and only if OM is empty or any component C' of OM is incompress-
ible in the sense above. An irreducible 3-manifold is Haken if it contains an
embedded orientable incompressible surface. If Hy (M) is infinite, which is
implied if OM contains a surface other than S2?, and M is irreducible, then
M is Haken [252, Lemma 6.6 and 6.7].

The fundamental group plays a dominant role in the theory of 3-manifolds,
as explained by the next results. Let M be a 3-manifold with incompressible
boundary whose fundamental group admits a splitting «: m (M) — Iy * 5.
Kneser’s Conjecture, whose proof can be found in [252, chapter 7], says that
there are manifolds My and Ms with I7 and I5 as fundamental groups and
a homeomorphism M — M;# M, inducing « on the fundamental groups.
Kneser’s conjecture fails even in the closed case in dimensions > 5 by results
of Cappell [87], [88] and remains true in dimension 4 stably but not unstably
[298], [299].

Let (f,0f): (M,0M) — (N,0N) is a map of (compact connected ori-
entable) Haken 3-manifolds such that =1 (f,z): 71 (M, z) — 71 (N, f(x)) and
m(0f,y): m(OM,y) — w1 (ON, f(y)) are isomorphisms for any choice of base
points x € M and y € OM, then f is homotopic to a homeomorphism. This
is a result of Waldhausen [252, Corollary 13.7 on page 148], [507]. One can
read off from the fundamental group of a 3-manifold M whether M is the
total space of a fiber bundle [252, Chapter 11]. One knows which finite groups
or abelian groups occur as fundamental groups of 3-manifolds [252, Chapter
9]. Notice that for n > 4 any finitely presented group is the fundamental
group of a closed connected orientable n-dimensional manifold but not any
finitely presented group occurs as the fundamental group of a compact con-
nected 3-manifold. For instance the fundamental group of a 3-manifold whose
prime factors are all non-exceptional is residually finite [253]. (The notion of
exceptional 3-manifold will be introduced in Section 4.2.)

Recall that a manifold (possible with boundary) is called hyperbolic if
its interior admits a complete Riemannian metric whose sectional curvature
is constant —1. We use the definition of Seifert fibered 3-manifold or briefly
Seifert manifold given in [466], which we recommend as a reference on Seifert
manifolds. If a 3-manifold M has infinite fundamental group and empty or
incompressible boundary, then it is Seifert if and only if it admits a finite
covering M which is the total space of a S'-principal bundle over a compact
orientable surface [466, page 436]. The work of Casson and Gabai shows that
an irreducible 3-manifold with infinite fundamental group 7 is Seifert if and
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only if 7 contains a normal infinite cyclic subgroup [213, Corollary 2 on page
395].

A geometry on a 3-manifold M is a complete locally homogeneous Rie-
mannian metric on its interior. The universal cover of the interior has a com-
plete homogeneous Riemannian metric, meaning that the isometry group acts
transitively [476]. Thurston has shown that there are precisely eight simply
connected 3-dimensional geometries having compact quotients, namely S3,

e~

R3, S?2 xR, H? xR, Nil, SLy(R), Sol and H3. If a closed 3-manifold admits
a geometric structure modelled on one of these eight geometries then the ge-
ometry involved is unique. In terms of the Euler class e of the Seifert bundle
and the Euler characteristic y of the base orbifold, the geometric structure
of a closed Seifert manifold M is determined as follows [466, Theorem 5.3]

‘X>O x=0 x<0
e=0[S?xR R® H?xR

—~—

e#0| S® Nil SLy(R)

If M has a S3-structure then 71 (M) is finite. In all other cases M is finitely
covered by the total space M of an S'-principal bundle over an orientable
closed surface F. Moreover, e(M) = 0 if and only if e(M) = 0, and the
Euler characteristic x of the base orbifold of M is negative, zero or positive
according to the same condition for (M /S*) [466, page 426, 427 and 436].

Next we summarize what is known about Thurston’s Geometrization Con-
jecture for irreducible 3-manifolds with infinite fundamental groups. (Again,
our 3-manifolds are understood to be compact, connected and orientable.)
Johannson [278] and Jaco and Shalen [276] have shown that given an irre-
ducible 3-manifold M with incompressible boundary, there is a finite family of
disjoint, pairwise-nonisotopic incompressible tori in M which are not isotopic
to boundary components and which split M into pieces that are Seifert man-
ifolds or are geometrically atoroidal, meaning that they admit no embedded
incompressible torus (except possibly parallel to the boundary). A minimal
family of such tori is unique up to isotopy, and we will say that it gives a toral
splitting of M. We will say that the toral splitting is a geometric toral splitting
if the geometrically atoroidal pieces which do not admit a Seifert structure are
hyperbolic. Thurston’s Geometrization Conjecture for irreducible 3-manifolds
with infinite fundamental groups states that such manifolds have geometric
toral splittings.

For completeness we mention that Thurston’s Geometrization Conjecture
says for a closed 3-manifold with finite fundamental group that its universal
covering is homeomorphic to S3, the fundamental group of M is a subgroup
of SO(4) and the action of it on the universal covering is conjugated by a
homeomorphism to the restriction of the obvious SO(4)-action on S3. This
implies, in particular, the Poincaré Conjecture that any homotopy 3-sphere
is homeomorphic to S3.
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Suppose that M is Haken. The pieces in its toral splitting are certainly
Haken. Let N be a geometrically atoroidal piece. The Torus Theorem says
that NV is a special Seifert manifold or is homotopically atoroidal, i.e. any sub-
group of 71 (N) which is isomorphic to Z x Z is conjugate to the fundamental
group of a boundary component. McMullen following Thurston has shown
that a homotopically atoroidal Haken manifold is a twisted I-bundle over the
Klein bottle (which is Seifert), or is hyperbolic [368]. Thus the only case in
which Thurston’s Geometrization Conjecture for an irreducible 3-manifold M
with infinite fundamental group is still open is when M is a closed non-Haken
irreducible 3-manifold with infinite fundamental group which is not Seifert.
The conjecture states that such a manifold is hyperbolic.

4.2 L2-Invariants of 3-Manifolds

In this section we state the values of the various L?-invariants for univer-
sal coverings of compact connected orientable 3-manifolds. Notice that the
assumption orientable is not a serious restriction, since any non-orientable
3-manifold has a connected two-sheeted covering which is orientable and we
know how the L2-invariants behave under finite coverings (see Theorem [1.35
(9), Theorem 2.55 (6) and Theorem 3.96 (5)). Recall that we have already
computed the L2-invariants for the universal covering of a compact connected
orientable surface F' (see Example [1.36, Example 2.70 and Theorem [3.105).
Notice in the context of L2-torsion that the universal covering of a compact
orientable surface F is L2-acyclic if and only if F is 7% or S! x D'.

Let us say that a prime 3-manifold is exceptional if it is closed and no
finite covering of it is homotopy equivalent to a Haken, Seifert or hyperbolic
3-manifold. No exceptional prime 3-manifolds are known, and Thurston’s
Geometrization Conjecture and Waldhausen’s Conjecture that any 3-manifold
is finitely covered by a Haken manifold imply that there are none. Notice that
any exceptional manifold has infinite fundamental group.

Theorem 4.1 (L?-Betti numbers of 3-manifolds). Let M be the con-
nected sum My# ... #M, of (compact connected orientable) prime 3-manifolds
M; which are non-exceptional. Assume that m (M) is infinite. Then the L?-

Betti numbers of the universal covering M are given by
b (M) = 0;

00 = (= 1) = 32 iy IO € mioan] 02 87| -
=1 !

b

b (M) = (r—1) —Zm +]{C € mo(M) | C = 5%}
i=1 j

b2 (M) = 0.
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In particular, M has trivial L2-cohomology if and only if M is homotopy
equivalent to RP3#RP? or o prime S-manifold with infinite fundamental
group whose boundary is empty or a union of tori.

Proof. We give a sketch of the strategy of proof. Details can be found in [322,

Sections 5 and 6]. Since the fundamental group is infinite, we get bgz) (M)=0

from Theorem|1.35/(8). If M is closed, we get bgf) (M) = 0 because of Poincaré
duality (see Theorem [1.35/(3)). If M has boundary, it is homotopy equivalent
to a 2-dimensional C'W-complex and hence bz(f)(ﬁ ) = 0. It remains to com-
pute the second L?-Betti number, because the first one is then determined
by the Euler-Poincaré formula of Theorem 1.35] (2)).

Using the formula for connected sums of Theorem [1.35 (6) we reduce the
claim to prime 3-manifolds. Since a prime 3-manifold is either irreducible or
S x S? it remains to treat the irreducible case. If the boundary is compress-
ible, we use the Loop Theorem [252, Theorem 4.2 on page 39] to reduce the
claim to the incompressible case. By doubling M we can reduce the claim fur-
ther to the case of an irreducible 3-manifold with infinite fundamental group
and incompressible torus boundary. Because of the toral splitting and the
assumptions about Thurston’s Geometrization Conjecture it suffices to show
that the L2-Betti numbers vanish if M is Seifert with infinite fundamental
group or is hyperbolic with incompressible torus boundary. All these steps
use the weakly exact Mayer-Vietoris sequence for L?-(co)homology (see The-
orem [1.21)). In the Seifert case we can assume by the multiplicative property
(see Theorem [1.35! (9)) that M is a S'-principal bundle over a 2-dimensional
manifold. Then we can apply Theorem [1.40.

The hyperbolic case follows directly from Theorem [1.62] provided that the
manifold has no boundary. One of the hard parts in the proof is to reduce
the case of a hyperbolic 3-manifold with incompressible torus boundary to
the closed case by a careful analysis of the manifold near its boundary using
explicit models and the fact that the volume is finite. O

Let Xvirs(m1(M)) be the Q-valued virtual group Euler characteristic of
the group m1 (M) in the sense of [69), IX.7], [509]. (This will be the same as
the L2-Euler characteristic of 71 (M) as explained in Remark 6.81). Then the
conclusion in Theorem 4.1/ is equivalent to

b§2)(ﬂ) = —Xvirs(T1(M));
b (M) = X(M) = Xeire (11 (M)).
This is proved in [322], page 53 - 54].
Next we state what is known about the values of the Novikov-Shubin

invariants of 3-manifolds (see [322, Theorem 0.1]).

Theorem 4.2 (Novikov-Shubin invariants of 3-manifolds). Let M be
the connected sum Mi# ...#M, of (compact connected orientable) prime
3-manifolds M; which are non-exceptional. Assume that mi (M) is infinite.
Then
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(1) We have ap(M) >0 forp>1;
(2) Let the Poincaré associate P(M) be the connected sum of the M;’s which

are not 3-disks or homotopy 3-spheres. Then ap(]%) = ap(M) for

p < 2. We have ay (M) = oot except for the following cases:

(a) al(ﬁ) =1 if P(M) is S* x D?, S' x S? or homotopy equivalent to
RP3#RP3;

(b) ar(M) =2 if P(M) is T? x I or a twisted I-bundle over the Klein
bottle K;

(c) a1(M) =3 if P(M) is a closed R®-manifold;

(d) a1 (M) =4 if P(M) is a closed Nil-manifold;

(e) ai1(M) = oo if P(M) is a closed Sol-manifold;

(8) If M is a closed hyperbolic 3-manifold then ao(M) = 1. If M is a closed
Seifert 3-manifold then as(M) is given in terms of the Euler class e of
the bundle and the Euler characteristic x of the base orbifold by

‘X>OX:OX<O
e=0[ oot 3 1
e#0| oot 2 1

If M is a Seifert 3-manifold with boundary then as(M) = oot if M =
St x D2, ag(M) =2 if M is T? x I or a twisted I-bundle over K, and
as(M) =1 otherwise. If M is a closed Sol-manifold then as(M) > 1.
(4) If OM contains an incompressible torus then ag(JT/f) < 2. If one of the
M;’s is closed with infinite fundamental group and does not admit an R3,

S? x R or Sol-structure, then ao(M) < 2.
(5) If M is closed then as(M) = ay(M). If M is not closed then az(M) =
+
oot.

Proof. The strategy of the proof is similar to the one of Theorem 4.1/ using
now Theorem 2.20, Theorem 2.55, Theorem 2.61, Theorem [2.68 and Theo-
rem 3.183| together with explicit computations of heat kernels on the various
spaces occuring in Thurston’s list of eight geometries with compact quotients
in dimension 3. Details can be found in [322] Sections 5 and 6]. O
Finally we state the values for the L?-torsion (see [346, Theorem 0.6]).

Theorem 4.3 (L?-torsion of 3-manifolds). Let M be a compact connected
orientable prime 3-manifold with infinite fundamental group such that the
boundary of M is empty or a disjoint union of incompressible tori. Suppose
that M satisfies Thurston’s Geometrization Conjecture, i.e. there is a geo-
metric toral splitting along disjoint incompressible 2-sided tori in M whose
pieces are Seifert manifolds or hyperbolic manifolds. Let My, Ms, ..., M, be
the hyperbolic pieces. They all have finite volume [385, Theorem B on page

52]. Then M is det-L*-acyclic and
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p(2)( Z vol(M,

In particular, p(2)(M) is 0 if and and only if there are no hyperbolic pieces.

Proof. The strategy of the proof is similar to the one of Theorem 4.1/ using
now Theorem [3.96, Theorem [3.105, Theorem [3.161] and Theorem [3.163. O

4.3 L2-Invariants of Knot Complements

Let K C S be a knot, i.e. a smooth embedding of S* into S®. Let N(K) be a
closed tubular neighboorhood. Notice that N(K) is diffeomorphic to S* x D?.
Define the knot complement M (K) to be the 3-manifold S —int(N (K)). The
complement of the trivial knot is S* x D?.

Lemma 4.4. The knot complement M(K) of a non-trivial knot is an irre-
ducible compact connected oriented 3-manifold whose boundary is an incom-
pressible torus T2.

Proof. Everything is obvious except for the fact that the boundary is incom-
pressible and M (K) is irreducible. Incompressibility is for instance proved
in [75, Proposition 3.17 on page 39]. Next we show irreducibility. Let S? C
M (K) be an embedded 2-sphere. In particular we can think of S? as embed-
ded in S3. By the Alexander-Schonflies Theorem [75, Theorem 1.8 on page
5], [381] there are embbeded balls D} and D3 in S® such that S® = D} U D3
and 0D3? = D3 = D3 N D} = S2. Since the knot is connected and does not
meet the embedded S e , it is contained in one of the balls, let us say D3. Then
D3 is a ball embedded in M (K) whose boundary is the given S2. ]

In particular M (K) is Haken and Theorem 4.3 applies to M (K) for a non-
trivial knot. If we choose a different tubular neighborhood, then the  corre-
sponding knot complements are diffeomorphic. This implies that p(2) (M (K))
is defined for all knots and depends only on the ambient isotopy class of the
knot.

Definition 4.5 (L?-torsion of a knot). Define the L2-torsion of a knot
K C S3 to be the real number

pO(K) = p®(M(K)).

Notice that p(z)(M) = 0 for the trivial knot by Theorem 3.96/ (5)). We get
from Theorem 4.3.

Theorem 4.6. Let K be a non-trivial knot. Then the boundary of M(K) is
incompressible and there is a geometric toral splitting of M (K) along disjoint
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incompressible 2-sided tori in M whose pieces are Seifert manifolds or hyper-
bolic manifolds. Let My, Ms, ..., M, be the hyperbolic pieces. They all have
finite volume. We have

pRK) = = o D vol(My);

The next result follows from [225, Corollary 4.2 on page 696], [395, Lemma
5.5 and Lemma 5.6 on page 102]. For the notions of connected sum (sometimes
also called product) of knots and cabling of knots were refer for instance to
[75, 2.7 on page 19 and 2.9 on page 20]. The Alexander polynomial A(K) of
a knot is explained for instance in [75, Definition 8.10 on page 109], [374],
1376], [497].

Theorem 4.7. (1) Let K be a knot. Then p®(K) = 0 if and only if K is
obtained from the trivial knot by applying a finite number of times the
operation “connected sum” and “cabling”; .

(2) A knot is trivial if and only if both its L*-torsion p?) (M) and its Alexan-
der polynomial A(K) are trivial.

This shows that invariants of Reidemeister torsion type, namely the L2-
torsion and the Alexander polynomial, detect whether a knot is trivial.

There is the following conjecture due to Kashaev [286] and H. and J.
Murakami [395, Conjecture 5.1 on page 102].

Conjecture 4.8 (Volume Conjecture). Let K be a knot and denote by
JN(K) the normalized colored Jones polynomial at the primitive N-th root of
unity as defined in (see [395]). Then
2 -1 . In([Jn(K)])
POK) = 5 - Jim ===

Kashaev states his conjecture in terms of the sum of the volumes of the
hyperbolic pieces in the geometric toral splitting and H. and J. Murakami in
terms of the simplicial volume. These lead to equivalent conjectures by The-
orem 4.6 and Theorem [14.18 (3)). Maybe there is a link between Conjecture
4.8 above and Question [13.73.

The Volume Conjecture 4.8 implies by Theorem 4.7 (2)) the version of Vas-
siliev’s conjecture that a knot K is trivial if and only if every Vassiliev finite
type invariant of K agrees with the one of the trivial knot. The point is that
the colored Jones polynomials and the Alexander polynomial are determined
by the Vassiliev finite type invariants.

4.4 Miscellaneous

The combinatorial computations of Theorem 3.172/and Remark 3.173/enables
us to compute the L2-torsion of the universal covering of a 3-manifold (and
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hence in view of Theorem 4.3 the sum of the volumes of its hyperbolic pieces
in its geometric toral splitting) directly from a presentation of its fundamental
group. Namely, we have (see [330, Theorem 2.4 on page 84])

Theorem 4.9. Let M be a compact connected orientable irreducible 3-manifold
with infinite fundamental group G. Let

G:<51,52,...59|R1,R27...Rr>

be a presentation of G. Let the (r,g)-matriz

8R1 8R1
Js1 7" Osy
Fo= D
IR, IR,
Js1 7" Osy

be the Fox matriz of the presentation (see [75, 9B on page 123/, [200], [330,
page 84]). Now there are two cases:

(1) Suppose OM is non-empty. We make the assumption that OM is a union
of incompressible tori and that g = r + 1. Then M is det-L?-acyclic. De-
fine A to be the (g—1, g—1)-matriz with entries in ZG obtained from the
Fox matriz F' by deleting one of the columns. Let o be any real number

2-a3(M) |

az(M)+2’

(2) Suppose OM is empty. We make the assumption that a finite covering of
M is homotopy equivalent to a hyperbolic, Seifert or Haken 3-manifold
and that the given presentation comes from a Heegaard decomposition.
Then M is det-L?-acyclic and g = r. Define A to be the (g — 1,9 — 1)-
matriz with entries in ZG obtained from the Fox matriz F' by deleting one
of the columns and one of the rows. Let o be any real number satisfying

2.z (M)
0<a< PIvINER

satisfying 0 < a <

Let K be any positive real number satisfying K > HREE) I. A possible choice
for K is the product of (g — 1)% and the mazimum over the word length of
those relations R; whose Fox derivatives appear in A.

Then the sum of non-negative rational numbers

L

Z% trzg (1 - K2 447)")

p=1
converges for L — oo to the real number 2 - p(®) (]T/[/) +2(g—1) - In(K). More
precisely, there is a constant C' > 0 such that we get for all L > 1

L
0<2-pP M) +2(g—1)-In(K) -y % iz ((1 ~ K2 AA*)p)

p=1

<Eh
_La'
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The case of an automorphism of a compact connected orientable surface,
which yields a 3-manifold by taking its mapping torus is discussed in Sub-
section [7.4.2

Exercises

4.1. Let M be a compact connected orientable 3-manifold. Show that it
is aspherical if and only its prime decompositions has precisely one factor
which is not a homotopy sphere and this factor is either D3 or an irreducible
3-manifold with infinite fundamental group.

4.2. Show that two connected closed 3-manifolds possessing the same geome-
try have the same L2-Betti numbers and Novikov-Shubin invariants, provided
their fundamental groups are infinite. Which of the eight geometries can be
distinguished from one another by the knowledge of all L?-Betti numbers and
Novikov-Shubin invariants of the universal coverings?

4.3. Let M be a closed connected orientable 3-manifold which possesses a
geometry. Show that the relevant geometry can be read off from the funda-
mental group 7 as follows:

(1) H3: 7 is not virtually cyclic and contains no subgroup isomorphic to

YAV A

(2) S3: 7 is finite;

(3) S? x R: 7 is virtually cyclic and infinite;

(4) R3: 7 is contains Z> as subgroup of finite index;

(5) Nil: 7 contains a subgroup of finite index G which can be written as an

extension 1 — Z — G — Z? — 1 but 7 does not contain Z3 as subgroup

of finite index;

(6) H?xR: 7 contains a subgroup of finite index which is isomorphic to Z x G
fgr_\s_gme group G and w is not solvable;

(7) Sl3(R): 7 is not solvable, contains Z @ Z as subgroup and contains no
subgroup of finite index which is isomorphic to Z x G for some group Gj;

(8) Sol: 7 is not virtually abelian and contains a subgroup G of finite index
which is an extension 0 — Z? — G — Z — 0.

4.4. Compute the L2-Betti numbers and the Novikov-Shubin invariants of
the universal covering of a compact connected 3-manifold whose fundamental
group is finite.

4.5. Let M be the connected sum M;#...#M, of compact connected
orientable 3-manifolds M; which are non-exceptional and prime. Show that
then for some p > 0 the Laplace operator (Ap)min of Definition [2.64 acting

on smooth p-forms on the universal covering M has zero in its spectrum.
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4.6. Give a proof of the conclusion which is stated in the last sentence of
Theorem 4.1.

4.7. Let f: I — F be a selfhomeomorphism of a closed orientable surface of
genus < 1. Show that T} is det-L2-acyclic and p()(T}) = 0.






5. L?-Invariants of Symmetric Spaces

Introduction

In this chapter we state the values of the L?-Betti numbers, the Novikov-
Shubin invariants and the L2-torsion for universal coverings of closed locally
symmetric spaces. We give a brief survey about locally symmetric and sym-
metric spaces in Section /5.1 and state the values in Section 5.2 and 5.3.
These computations will give evidence for various general conjectures about
L2-invariants such as Conjecture 2.82] about the positivity and rationality
of Novikov-Shubin invariants, the Strong Atiyah Conjecture 10.2), the Singer
Conjecture11.1, Conjecture11.3 about the parity of the L2-torsion of the uni-
versal covering of an aspherical closed manifold and the zero-in-the-spectrum
Conjecture 12.1.

5.1 Survey on Symmetric Spaces

In this section we collect some basic facts about symmetric spaces so that
the reader will be able to understand the results on the computations of L2-
invariants of Section [5.2| and [5.3. A reader who is familiar with symmetric
spaces should pass directly to Section [5.2.

Let M be a complete Riemannian manifold and let x € M be a point. A
normal neighborhood of M at x is an open neighborhood V of z in M such
that there is an open neighborhood U of 0 in the tangent space T, M with
the properties that for any v € U and ¢ € [—1, 1] also tu belongs to U and the
exponential map exp,: T, M — M induces a diffeomorphism U — V. The
geodesic symmetry of a normal neighborhood V at x is the diffeomorphism
sp: V' — V which sends exp,(u) to exp,(—u) for u € U.

Definition 5.1 (Locally symmetric space). A complete Riemannian man-
ifold M is called a locally symmetry space if for any @ € M there exists a
normal neighborhood V' of x© such that the geodesic symmetry is an isometry.

A complete Riemannian manifold is a locally symmetric space if and only
if the sectional curvature is invariant under parallel transports with respect
to the Levi-Civita connection [251, Theorem 1.3 in IV.1 on page 201].
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Definition 5.2 (Symmetric space). A complete Riemannian manifold is
called (globally) symmetric space if for each x € M there is an isometric
diffeomorphism t,: M — M which is an involution, i.e. t, ot, = id, and has
x as isolated fixved point, i.e. t,(x) = x and there is a neighborhood W of x
in M such that y € W,t,(y) =y implies x = y.

Examples of symmetric spaces are S™, RP™, CP™, R", H".

A symmetric space is always locally symmetric [251, Lemma 3.1 in IV.3 on
page 205]. On the other hand any simply connected locally symmetric space
is a symmetric space [251, Theorem 5.6. in IV.5 on page 222]. In particular
the universal covering of a locally symmetric space is a symmetric space.

Let M be a symmetric space. Denote by Isom(M) the group of isometries
M — M. This group inherits the structure of a topological group by the
compact-open topology coming from the topology of M. Denote for a Lie
group L its identity component by LY. We get from [251, Lemma 3.2 in IV.3
on page 205, Theorem 3.3 in IV.3 on page 208|

Theorem 5.3. The group Isom(M) has the unique structure of an (ana-
lytic) Lie group. Given a point x € M, let Isom(M)% be the stabilizer of
Isom(M)® at x, i.e. the subgroup of elements f € Isom(M)? with f(z) = .
Then Isom(M)° acts transitively on M, Isom(M)S is compact and we get a
(analytic) diffeomorphism

= M, f-Isom(M)? — f(x).

x

&V, Isom(M)°/Isom(M)

x

The Killing form of a Lie algebra g is defined by
B:gxg—R, (a,b)— trg(ad(a)ad(b)),

where ad(z): g — g denotes the adjoint representation sending z to [z, z] and
trg is the trace of an endomorphism of a finite dimensional real vector space.
The Lie algebra g is semisimple if the Killing form is non-degenerate. This
is equivalent to the condition that g contains no non-trivial solvable ideals,
where solvable means that the commutators series ends at {0} [293, page
668]. A Lie algebra g is simple if it is non-abelian and contains no proper
ideals.

The Killing form on a semisimple Lie algebra g is strictly negative-definite
if and only if there is a connected compact Lie group G whose Lie algebra is
g [251] Corollary 6.7 in IT.6 on page 133].

An involution of Lie algebras 0: g — g is a Cartan involution if for the
associated decomposition g = €@ p with ¢ = ker(f—id) and p = ker(6+id) the
Killing form B is strictly negative-definite on £ and strictly positive-definite
on p. In this context g = €®p is called Cartan decomposition. Any semisimple
Lie algebra g has a Cartan decomposition and two Cartan decompositions are
conjugate [251], IT1.7]. Notice that € is a subalgebra and p a vector subspace.
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Example 5.4. A connected linear reductive Lie group G is a closed con-
nected subgroup of GL(n,R) or GL(n,C), which is stable under taking trans-
pose conjugate matrices. Examples are SL(n,C) C GL(n,C) and SO(n) C
GL(n,R). Such a group G is a Lie group. It is semisimple if and only if its
center is finite. Taking inverse conjugate transpose matrices induces an invo-
lution of Lie groups ©: G — G. The group K = {g € G | O(g) = g} turns
out to be a maximal compact subgroup. Denote by g the Lie algebra of G and
by 6: g — g the differential of © at the identity matrix. Notice that gl,(R)
is M, (R) and gl,,(C) is M,,(C) and that g is a subalgebra. The involution of
Lie algebras 6 sends a matrix to its negative conjugate transpose. The Lie
bracket of g is given by taking commutators. The involution 6 is a Cartan
involution. In the Cartan decomposition g = €& p the subalgebra ¢ is the Lie
algebra of K C G.

Let M be a symmetric space. In the sequel we abbreviate G = Isom(M)°

and K = Isom(M)%. Let o: G — G be given by conjugation with the geodesic
symmetry s, € K. Let g be the Lie algebra of G. Put

t={acg|To(a) =a};
p={acg|Tio(a) = —a}.

We get a decomposition of Lie algebras g = € & p. Notice that £ is the kernel
of the differential at 1 € G of the evaluation map ev,: G — M which sends

f to f(x).

Definition 5.5 (Type of a symmetric space). The symmetric space M =
G/K is of compact type if g is semisimple and has strictly negative-definite

Killing form. It is of non-compact type if g is semisimple and o is a Cartan

inwvolution. It is called of Euclidean type if p is an abelian ideal in g.

A symmetric space M is of compact type if and only Isom(M) is com-
pact and semisimple. A symmetric space M of compact type is a compact
manifold.

If M = G/K for G = Isom(M)? and K = Isom(M)? is a symmetric
space of non-compact type, then K is connected and is a maximal compact
subgroup in G and M is diffeomorphic to R™ [251, Theorem 1. in Chaper
VI on page 252]. A symmetric space M is of non-compact type if and only
if the Lie algebra of Isom(M) is semisimple and has no compact ideal [157,
Proposition 2.1.1 on page 69|, [251) page 250]. On the other hand, given a
connected semisimple Lie group G with finite center such that its Lie algebra
has no compact ideal, the homogeneous space G/K for a maximal compact
subgroup K C G equipped with a G-invariant Riemannian metric is a sym-
metric space of non-compact type with G = Isom(M)? and K = Isom(M)?
[157, Section 2.2 on page 70].

A 0-stable Cartan subalgebra h C g of a semisimple Lie algebra g is a
maximal abelian 8-stable abelian subalgebra. All #-stable Cartan subalgebras
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have the same dimension. Hence we can define the complez rank rkc(g) by
the dimension of a f-stable Cartan subalgebra of g. [293, page 128f]. (This
should not be confused with the real rank which is the dimension of the term
a in the Iwasawa decomposition g = ¢ ® a @ n.) Recall that a Lie group G is
semisimple if its Lie algebra is semisimple. The complex rank of a semisimple
Lie group rkc(G) is defined to be the complex rank of its Lie algebra g. The
complex rank of a connected compact Lie group is the same as the dimension
of a maximal torus.

Definition 5.6. Let M = G/K be a symmetric space such that G =
Isom(M)? is semisimple. Define its fundamental rank

f-rk(M) = rke(G) — rke(K).

This is the notion of rank which will be relevant for our considerations.
It should not be confused with the following different notion.

A Riemannian submanifold N C M of a complete Riemannian manifold
M is totally geodesic if for any geodesic v: R — M, for which y(0) € N and
7/(0) lies in the tangent space T’y N, the image of «y lies in N. Recall that a
Riemannian manifold M is flat if the sectional curvature is identically zero.

Definition 5.7. Let M be a symmetric space. Its rank is the maximal di-
mension of a flat totally geodesic complete submanifold of M.

The rank of M in the sense of Definition 5.7 is always greater or equal
to the fundamental rank. This follows from [56, Formula (3) in III.4 on page
99].

The next two results are taken from [251), Proposition 4.2 in V.4 on page
244, Theorem 3.1 in V.3 on page 241].

Theorem 5.8. Let M be a simply connected symmetric space. Then it can
be written as a product

M = Mg, X Meua X Mycp,

where Mcp, is of compact type, Muya of Fuclidean type and My, of non-
compact type.

Theorem 5.9. Let M be a symmetric space. Then

(1) If M is of compact type, then the sectional curvature of M is non-
negative: sec(M) > 0;

(2) If M is of Euclidean type, then M is flat: sec(M) = 0;

(8) If M is of non-compact type, then the sectional curvature of M is non-
positive: sec(M) < 0;



5.2 L2-Invariants of Symmetric Spaces of Non-Compact Type 227

Lemma 5.10. A simply connected symmetric space M is contractible if and
only if in the decomposition M = M., X Mgyc X Mnep of Theorem 5.8 the
factor My, of compact type is trivial. In this case M is diffeomorphic to R™.

Proof. The factor M.y, is a closed manifold and hence contractible if and only
if M, is a point. Since Mgy and My, carry Riemannian metrics of non-
positive sectional curvature, they are diffeomorphic to R™ for appropriate n
by Hadamard’s Theorem. O

There is an important duality between symmetric spaces of non-compact
type and symmetric spaces of compact type [251, V.2]. Let M = G/K be a
symmetric space of non-compact type. Let g and £ be the Lie algebras of G
and K and let g = £ & p be the Cartan decomposition. The complexification
G of G is the simply connected Lie group with the complexification C®g g of
g as Lie algebra. Obviously g¢ = €@ i-p is a real subalgebra of C®p g. Let G¢
be the corresponding analytic subgroup of the complexification G¢ of G. Then
G?is a compact group. Let K/ C G be the subgroup corresponding to ¢ C g?.
The dual symmetric space is defined to be M% = G%/K’ with respect to the
GYinvariant Riemannian metric for which multiplication with i induces an
isometry Ty xG/K — TyxG%/K'. M. Olbricht pointed out to us that one can
assume without loss of generality that G is linear, i.e. G C GL(n,R). Put
G? to be the analytic subgroup in GL(n,C) corresponding to g?. Then K is
also a subgroup of G¢ and M? agrees with G¢/K. The symmetric space M¢
is of compact type. Analogously one can associate to a symmetric space of
compact type M a symmetric space of non-compact type M¢?. In both cases
(M®)? = M. The following example is taken from [251, Example 1 in V.2 on
page 238].

Example 5.11. Denote by by SO(p,q) the group of real (p + q)-(p + q)-
matrices of determinant 1 which leave the quadratic form —af — ... — z2 +
a2,y + ...x2,, invariant. Denote by SO(p,q)" the identity component of
SO(p,q). Let SO(n) be the Lie group {4 € GL(n,R) | AA* = I,det(A) =
1}. This agrees with SO(0,n). There are obvious embeddings of SO(p) x
SO(q) into both SO(p, q)° and SO(p + q). Equip SO(p, q)°/SO(p) x SO(q)
and SO(p + q)/SO(p) x SO(q) with a SO(p, q)%invariant and SO(p + q)-
invariant Riemannian metric. These are uniquely determined up to scaling
with a constant. Then SO(p, ¢)°/SO(p) x SO(q) is a symmetric space of non-
compact type and SO(p+q)/SO(p) x SO(q) is a symmetric space of compact
type. They are dual to one another possibly after scaling the Riemannian
metric with a constant.

5.2 L2-Invariants of Symmetric Spaces of Non-Compact
Type

In this section we state the values of the L?-Betti numbers, the Novikov-
Shubin invariants and the L2-torsion of the universal covering M of a closed
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Riemannian manifold M provided that M is a symmetric space of non-
compact type. Notice that a symmetric space comes with a preferred Rie-
mannian metric so that its L2-torsion is defined without the assumption that
all L2-Betti numbers of M vanish. Recall that it does not matter whether we
work with the topological version (see Definition 3.120) or with the analytic
version (see Definition [3.128) of L2-torsion because of Theorem [3.149.

Theorem 5.12 (L2-invariants of symmetric spaces). Let M be a closed
Riemannian manifold whose universal covering M is a symmetric space of
non-compact type. Let f-rk(M) = rkc(G) — rke(K) be the fundamental rank
of the universal covering M for G = Isom(M)O and K C G a mazimal
compact subgroup. Then

(1) We have bp ( ) £ 0 if and only if f-rk(M) = 0 and 2p = dim(M). Let
M be the to M dual symmetric space. If f-rk(M) = 0, then dim(M) is
even and for 2p = dim(M) we get

0 < M) = (1P -x(M) = 20 (A1),
p (M) = (=1)7- x(M) vol(37%) (M)

(2) We have O‘PLM) # oot if and only if f—rk(]T/f) > 0 and p belongs to
[dim(ﬁi);f-rk(M) + 1’dim(M)~2‘rf-rk(M)]‘ If Olp(M) # OO+, then O[p(M) _
f-rk(M).

The number dim(M) — f-rk(M) is even and positive if M is not the one-
point-space {*},

(3) We have p® (M ) # 0 if and only if f-rk(M )

(4) Suppose that f-rk(M) = 1. Then M = Xy x Xl, where Xo is a sym-

metric space of non-compact type with f-rk(Xo) = 0 and X1 = X, , =
SO(p,q)°/SO(p) x SO(q) forp,q odd or X; = SL(3,R)/SO(3). We have

p® (M) = vol(M) - T® (M),

where the number T (M) is given below.

(a) If X¢ is the symmetric space dual to Xo, then dim(Xy) is even,
(X&) > 0 and we have

— . Xd)
TO D = (—1)dimo)/2 . XXE)  me) vy,
(W) o= () 2O 10 )

(b) Let C, be the positive constant introduced in (3.151). Denote by
(H™)? the symmetric space dual to the hyperbolic space H"™. (Then

(H"™)4 is the sphere S™ with the Riemannian metric whose sectional
curvature is constant 1). We have
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vol ( (mPra-t)"
vol ((X,,0)")

7@ (Xp,q) = (*1)1”77')( ((Xp—lyq—l)d)' 'Cp+q—1

and
pt+q—2
d 2- 2 > ,qg>1
X((prl,qfl) ) = ( pTl b ;
1 p=1,q¢>1
(c) We have
21

T?(SL(3,R)/SO(3)) =

3vol (SL(3,R)/SO(3))%)

Here are some explanations. Of course M inherits its Riemannian metric
from the one on M. The symmetric spaces X, , = SO(p, q)°/SO(p) x SO(q)
and SL(3,R)/SO(3) are equipped with the Riemannian metrics coming
from M = Xo x X;. These Riemannian metrics are SO(p, q)’-invariant
and SL(3,R)-invariant. Two such invariant Riemannian metrics on X, , =
SO(p,q)°/SO(p) x SO(q) and SL(3,R)/SO(3) differ only by scaling with a
constant. Notice that X 4 is isometric to HY after possibly scaling the metric
with a constant. If we scale the Riemannian metric on M by a constant C,
then vol(M) is scaled by C4™(M) and T() (M) by C~4mM) Hence p) (M)
is unchanged.

The result for L?-Betti numbers has been proved in [54]. The computa-
tions for the Novikov-Shubin invariants have been carried out in [314], Section
11], [404, Theorem 1.1], partial results have already been obtained in [316,
VIL.B]. (The reader should be aware of the fact that range of the finiteness
of ap(M) is misprinted in [314, Section 11] and correct in [316, VIIL.B] and
[404, Theorem 1.1].) Notice that there is a shift by one in the range where

ap(M) # oo™ in Theorem 5.12/ (2) in comparison with [404, Theorem 1.1],

since the definition of «, (M) here and in [404, Theorem 1.1] differ by 1 con-
cerning the index p. The result about L2-torsion is proved in [404, Theorem
1.1, Proposition 1.3 and Proposition 1.4]. The basic input is the Harish-
Chandra Plancherel Theorem (see [248], [293, Theorem 3.11 in Chapter XIII
on page 511]) and (g, K)-cohomology.

5.3 L2?-Invariants of Symmetric Spaces

Let M be a simply connected symmetric space which is not necessarily of
noncompact type. We conclude from Theorem [3.183 that there are constants
B,()Q)(M) for p > 0, Ag)(M) for p > 1 and T (M) depending only on the
Riemannian structure on M such that for any cocompact free proper action
of a group G by isometries
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b (M;N(G)) = BSP (M) - vol(G\M);

afP (M N(G)) = AP (M);

PP (M N(G)) = T(M) - vol(G\M).

We want to compute these numbers explicitly. Recall that M splits as
a product M, X Myua X Mycp, where My, MEua and My, respectively
are symmetric spaces of compact type, Euclidean type and non-compact
type respectively (see Theorem [5.8). Notice that these numbers have al-
ready been computed for M., in Theorem [5.12| and that Mgy is isomet-
ric to R™ with the standard Euclidean Riemannian metric [218, Theorem
3.82 on page 131]. We want to extend these computations to M. Suppose
that Gy and G; respectively are groups with a cocompact free proper ac-
tion by isometries on Mgy and Mycp respectively. We conclude from the
product formula for L2-torsion (see Theorem [3.93 (4) and (3.126)) that
PP (Mep X Mpual X Muep; N({1} x Go x G1)) is given by

X(Mep) 'p(Q)(MnCD?N(Gl)) + X(G1\Mncp) -p(2)(MCp;N({1})),

if Mgy = * and by 0 if Mgy # *. Since by Hirzebruch’s proportionality

X(Gi\Mep) _ X(Mp)
vol(G1\Mncp) — vol(MZ,,

principle [262]. j» we conclude

(Mg,) .
@) vf)l(Mng) T® (Mcp) if Mgua = {*}7f'rk(Mncp) =0;
(M) = % T (Myep) if Miger = {5}, rk(Mpep) = 1;(5.13)
0 otherwise.

Notice that we have already given the value of T?(M,,) in Theorem [5.12
(4). Similar one gets from the product formula for the Novikov-Shubin in-
variants (see Theorem 2.55 (3))), where the necessary assumption about the
limit property follows from the computations in [404]

a  if by_;(Mcp) # O for some integer 4 satisfying
dim(Mpncp) —f-rk(Mncp) + 1 S ¢ and

.2
Ay (M) = i < dun(Mncp);rf-rk(Mncp) + dim(Mgua); (5.14)

oot otherwise.

where a = f-rk(Mnep) + dim(Mgua). We get from the product formula for
L2-Betti numbers (see Theorem [1.35 (4))

b if frk(Mpep) = 0 and Mpua = {*}

(2) _
By (M) = {0 otherwise (5.15)

d
(p—dim(Myucp)/2) (Mep) (—1)dim(Macp) /2 . x(Myep)

vol(Mcp) vol(Md.

b
where b = )
Sep
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Suppose that the closed locally symmetric space M has negative sectional
curvature. Then its universal covering M must be of non-compact type with
fundamental rank f-rk(M) < 1 since its rank in the sense of Definition [5.7 is
always greater or equal to the fundamental rank [56, Formula (3) in II1.4 on
page 99] and is equal to 1 for a Riemannian metric with negative sectional cur-
vature. We conclude from Lemma [5.10, Theorem [5.12] and equations (5.13),
(5.14) and (5.15)

Corollary 5.16. Let M be an aspherical closed Riemannian manifold whose
universal covering M is a symmetric space. Then

(1) We have b](gz)(]/\\j) = 0 if 2p # dim(M). If M has negative sectional
curvature and has even dimension, then b((izir)m(M)/2 (M) >0, frk(M) =0;
(2) One of the L?-Betti numbers bz(,Q)(M) is different from zero or one of the

Novikov Shubin invariants o, (M) is different from oo™ ;
(3) If p(z)(M) %0, then M is of non-compact type, dim(M) is odd and we
have dim(at) 1
)" = B > 0.

If M carries a metric of negative sectional curvature and has odd dimen-
sion, then

dim(M)—1
2 .

(-1) pD (M) > 0.
If M carries a metric of negative sectional curvature and has even di-
mension, then

ap(]T/f) =00t forp>1.

Corollary [5.16/ implies that various conjectures for aspherical closed man-
ifolds (see Section [11.1.3] and Subsection 12.2.2) turn out to be true in the
case that the universal covering is a symmetric space.

5.4 Miscellaneous

Consider a closed Riemannian manifold M with non-positive sectional cur-
vature such that M is det-L2-acyclic. Suppose that N is a closed manifold
which is homotopy equivalent to M. The Whitehead group of the funda-
mental group of a closed Riemannian manifold with non-positive sectional
curvature is known to be zero [192, page 61]. (Actually Farrell and Jones
prove the stronger statement that for any closed aspherical topological man-
ifold N with dim(N) # 3,4 and 7 (M) = 71 (N) any homotopy equivalence
M — N is homotopic to a homeomorphism [195, Theorem 0.1].) Hence also
N is det-L2-acyclic and p® (M) = p(N) by Theorem [3.96 ().
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Notice that this applies by Lemma 5.9, Lemma [5.10 and Theorem [5.12
(2) to the case, where M is an aspherical closed manifold which admits the
structure of a locally symmetric space and satisfies b](gz)(ﬂ ) =0 for p > 0.
In particular we conclude from Lemma 5.10, from Theorem [5.12| (1) and (3)
and from (5.13) that for two aspherical closed locally symmetric Riemannian
manifolds M and N with isomorphic fundamental groups p (M) = p(N)
holds.

Let M be a closed topological manifold with dim(M) # 3,4. Then M
carries the structure of a locally symmetric Riemannian manifold whose uni-
versal covering is a symmetric space of non-compact type if and only if M is
aspherical and 1 (M) is isomorphic to a cocompact discrete subgroup of a lin-
ear semisimple Lie group with finitely many path components [195, Theorem
0.2].

The famous rigidity result of Mostow [388] says that two closed locally
symmetric spaces M and N with non-positive sectional curvature are iso-
metrically diffeomorphic if and only if 71 (M) = 71 (N) and vol(M) = vol(N)
hold, provided that N is irreducible, i.e. not a product of two Riemannian
manifolds of positive dimension, and dim(N) > 3. The following rigidity re-
sult is proved in [20, Theorem 1 on page i]. Let M be a closed locally symmet-
ric space such that its rank (in the sense of Definition [5.7) is greater or equal
to 2 and its universal covering is irreducible. Let N be a closed Riemannian
manifold with non-positive sectional curvature. Suppose that 71 (M) = 71 (N)
and vol(M) = vol(N). Then M and N are isometrically diffeomorphic.

A classification of symmetric spaces is given in [251, Chapter X]. More
information about Lie groups, Lie algebras and symmetric spaces can be
found for instance in [17], [19], [20], [157], [158], [251], [268] and [293].

Exercises

5.1. Let M be a symmetric space and let x € M. Let t,: M — M be an
isometric involution which has x as isolated fixed point. Show that there is a

normal neighborhood U of x such that ¢ induces the geodesic symmetry on
U.

5.2. Show that the following groups are connected linear reductive Lie groups:

GL(n,C) = {4 € M,,(C) | A invertible};
SL(n,C) = {A € GL(n,C) | det(A) = 1};
U(n) = {A € GL(n,C) | AA" = 1};
SU(n) = {A € GL(n,C) | AA" =1,det(A) = 1};
SO(n,C) = {A € GL(n,C) | AA" = 1,det(A) = 1};
SO(n) = {A € GL(n,R) | AA* =1}.
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Show that their Lie algebras are given by

)
) (©€)
) (©€)
su(n) = {A € M,(C) | A+ A =0 and tr(A) = 0};
) (©)
) (R)

Show that GL(n,C) for n > 1 and SO(2) are not semisimple. Show that
SL(n,C), SO(n,C) and SU(n) for n > 2, and SO(n) for n > 3 are semisim-
ple. Prove that U(n), SU(n) and SO(n) is the group K = {g € G | O(g) = g}
for G = GL(n,C), SL(n,C) and SO(n,C) and is in particular a maximal
compact subgroup.

5.3. Let G be a connected linear reductive Lie group. Show that s: gxg — R
sending (A, B) to the real part R(tr(AB)) of tr(AB) is an inner product
on the real vector space g. Show for any a € g that the adjoint ad(A)* of
ad(A): g — g with respect to this inner product is —ad(A). Conclude for the
Killing form B that —B(A,0(A)) = tr(ad(A)ad(A)*) holds and that hence
the symmetric bilinear form B(A,0(A)) on g is strictly negative-definite,
where 6 is defined in Example [5.4. Conclude that 6 is a Cartan involution.

5.4. Show that a connected linear reductive Lie group is semisimple if and
only if its center is finite.

5.5. Let G and H be connected linear reductive Lie groups. Show that
G x H is again a connected linear reductive Lie group. Prove that G x H is
semisimple if and only if both G and H are semisimple.

5.6. Show that S™, RP™ and CP™ are symmetric spaces of compact type,
R™ is a symmetric space of Euclidean type and H" is a symmetric space of
non-compact type.

5.7. Let G,(RPTY) be the topological space of oriented p-dimensional linear
subspaces of RPT4. Show that it carries the structure of a symmetric space

of compact type. Determine its dual symmetric space.
5.8. Let M and N be closed Riemannian manifolds whose universal coverings

M and N are symmetric spaces of non-compact type. Suppose that m (M) =
m1(N). Show that then f-rk(M) = f-rk(V).

5.9. Let M be a closed locally symmetric Riemannian manifold. Show that
71 (M) is amenable if and only if M., = {*}.

5.10. Construct two closed Riemannian manifolds M and N whose universal
coverings are symmetric spaces of non-compact type such that 71 (M) and
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71(N) are not isomorphic but all L?-Betti numbers, all Novikov-Shubin in-

variants and the L2-torsion of M and N with respect to the m (M)- and
m1(N)-action agree.

5.11. Let M be an aspherical closed locally symmetric Riemannian manifold
of even dimension dim(M) = 2p. Show that (—1)? - x(M) > 0. Prove that

(=1)? - x(M) > 0 if and only if Mgyq = {*} and f—rk(ﬂncp) =0.

5.12. Let M be an aspherical closed locally symmetric Riemannian manifold.
Show_that scaling the Riemannian metric by a constant does not change

p@ (M) if and only if p@ (M) = p®(N) holds for any closed Riemannian
manifold N which is homotopy equivalent to M.



6. L?-Invariants for General Spaces with
Group Action

Introduction

In this chapter we will extend the definition of L?-Betti numbers for free
G-CW-complexes of finite type to arbitrary G-spaces. Of course then the
value may be infinite, but we will see that in surprisingly many interesting
situations the value will be finite or even zero. This will be applied to problems
in geometry, topology, group theory and K-theory.

The first elementary observation is that the C-category of finitely gener-
ated Hilbert N'(G)-modules is isomorphic to the C-category of finitely gen-
erated projective A(G)-modules. Notice that the second category does not
involve any functional analytic structure of A'(G), only the ring structure
comes in. The second observation is that the ring N (G) is semihereditary,
i.e. any finitely generated N (G)-submodule of a projective module is pro-
jective again. This implies that the C-category of finitely presented N(G)-
modules is abelian. Thus a finitely generated Hilbert N (G)-chain complex
C, defines a finitely generated projective N (G)-chain complex denoted by
v~1(C,) and the homology of »~1(C,) consists of finitely presented N (G)-
modules. Any finitely presented N'(G)-module M splits as TM $PM, where
P M is finitely generated projective. Then the L2-homology of C, corresponds
to PH,(v=1(C,)) = v~ (H®(C,)). These facts will be explained and proved
in Section [6.2 and we will compare them with the approach of Farber [182]
in Section 6.8l

Now the main technical result of Section 6.1 is that the von Neumann
dimension, which is a priori defined for finitely generated projective N(G)-
modules, has an extension to arbitrary A (G)-modules which takes values in
[0, 00] and is uniquely determined by three important and desired properties,
namely, Additivity, Cofinality and Continuity. This will allow us to define in
Section 6.5/ L2-Betti numbers for an arbitrary G-space X by the extended
von Neumann dimension of the N(G)-module HS(X;N(G)), which is the
homology of the N(G)-chain complex N(G) ®z¢ CS™8(X). This is the L2-
Betti number defined in Section [1.2/if X happens to be a free G-CW-complex
of finite type. Thus we can define the L2-Betti number of an arbitrary group
G by applying this construction to the classifying space EG. Notice that after
we have established Assumption 6.2/ for the von Neumann algebra and the
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von Neumann dimension, no more functional analysis will appear, the rest is
pure homological algebra and ring theory. We mention the slogan that the
von Neumann algebra N'(G) is very similar to the ring Z of integers with two
exceptions, namely, N'(G) is not Noetherian, unless G is finite, and N (G)
has non-trivial zero-divisors, unless G is finite. We recommend the reader to
test statements and results about modules and their dimensions over N'(G)
by the corresponding ones for modules over Z.

This algebraic approach is very convenient because it is very flexible and
constructions like taking kernels, cokernels, quotients and homology are of
course available. One may also try to extend the notion of L2-Betti numbers
within the category of Hilbert N (G)-modules, the von Neumann dimension
is defined for any Hilbert A(G)-module. The problem is that one would
have to take the Hilbert completion of the cellular chain complex. To get
Hilbert N(G)-chain modules one would have to restrict to proper G-CW-
complexes. More serious problems occur with the differentials. Only under
very restrictive conditions the differentials become bounded operators in the
case of a proper G-CW-complex (not necessarily of finite type), which for
instance are not satisfied for the bar-model of EG. If the differentials are
not bounded one could take their minimal closures, but then it becomes
very difficult or impossible to do certain constructions and establish certain
proofs. The same problems arise with the chain maps induced by G-maps of
G-spaces.

We show in Section 6.3] for an injective group homomorphism i: H — G
that induction with the induced ring homomorphism i: N(H) — N(G) is
faithfully flat and compatible with von Neumann dimension. This will be used
all over the place when one wants to pass from the universal covering of a
space X to a regular covering associated to an injective group homomorphism
71 (X) — G. We will also prove that N (G) ®c¢ C is non-trivial if and only if
G is amenable. This may be viewed as an extension of the result of Brooks
[68] that the Laplacian on functions on the universal covering of a closed
Riemannian manifold M has zero in its spectrum if and only if 71 (M) is
amenable.

In Section 6.4/ we investigate the von Neumann dimension for amenable
G. A survey of amenable groups is presented in Subsection [6.4.1. The von
Neumann algebra N'(G) is known to be flat over CG only for virtually cyclic
groups (and conjecturally these are the only ones), but from a dimension
point of view it looks like a flat module over CG, more precisely, the von
Neumann dimension of Tor;C)G(N (G), M) vanishes for all CG-modules and
p > 1, provided that G is amenable. This implies that the p-th L2-Betti
number of a G-space X for amenable G can be read off from the CG-module
H,(X;C), namely, it is the von Neumann dimension of N (G) ®cqe Hp(X; C).
Since H,(EG;C) vanishes for p > 1, one obtains the result of Cheeger and
Gromov [107] that all the L2-Betti numbers of an amenable group G van-
ish. The dimension-flatness of the von Neumann algebra N (G) over CG for
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amenable GG will play also an important role in applications to G-theory in
Subsection 9.5.3.

In Section 6.5 we will prove the basic properties of the L2-Betti num-
bers for arbitrary G-spaces such as homotopy or more generally homology
invariance, Kiinneth formula and behaviour under induction and restriction.
We will investigate its behaviour under fibrations and S'-actions. In Section
6.6/ we will introduce the L?-Euler characteristic and prove its basic prop-
erties like Euler-Poincaré formula, homology invariance, Kiinneth formula,
sum formula and behaviour under induction and restriction. We will com-
pare the various L2-Euler characteristics of the fixed point sets of a finite
proper G-C'W-complex with the equivariant Euler characteristic which takes
value in the so called Burnside group. This will be applied in particular to
the classifying space E(G,FZN). The definition of the Burnside group A(G)
of a group G, which should not be confused with the Burnside group B(m,n)
appearing in group theory, is analogous to the definition of the Burnside ring
of a finite group, but the Burnside group A(G) for infinite G does not inherit
an internal multiplication.

To get a quick overview one should read through Theorem 6.7, Theorem
6.24, Theorem [6.37| and then start immediately with Section 6.5. To under-
stand the basics of this Chapter 6/ only some knowledge about Section [1.1
from the preceding chapters is necessary.

We briefly will mention in Section 6.8. that a similar approach can be
used to extend the notion of Novikov-Shubin invariants to arbitray G-spaces.

This chapter is based on the papers [333] and [334] which have been
motivated by the paper of Cheeger and Gromov [107].

6.1 Dimension Theory for Arbitrary Modules

In this section we show that the von Neumann dimension for finitely gener-
ated projective N(G)-modules has a unique extension to all A'(G)-modules
which has nice properties like Additivity, Cofinality and Continuity. Ring
will always mean associative ring with unit and R-module will mean left
R-module unless explicitly stated differently.

Recall that the dual M™ of a left or right respectively R-module M is the
right or left respectively R-module hompg(M, R) where the R-multiplication
is given by (fr)(x) = f(x)r or (rf)(x) = rf(x) respectively for f € M*,
x € M and r € R.

Definition 6.1 (Closure of a submodule). Let M be an R-submodule of
N. Define the closure of M in N to be the R-submodule of N

M={xeN | f(z)=0 forall f € N* with M C ker(f)}.

For an R-module M define the R-submodule TM and the quotient R-module
PM by
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TM :={xeM | f(x)=0 forall f e M*};
PM := M/TM.

We call a sequence of R-modules L LML N weakly exact if im(i) = ker(q).

Notice that TM is the closure of the trivial submodule in M. It can also
be described as the kernel of the canonical map i(M): M — (M*)* which
sends © € M to the map M* — R, f — f(x). Notice that TPM = 0,
PPM =PM, M* = (PM)* and that PM = 0 is equivalent to M* = 0.

Assumption 6.2. We assume that there is a dimension function dim which
assigns to any finitely generated projective R-module P a non-negative real
number

dim(P) € [0, c0)

with the following properties:
(1) If P and Q are finitely generated projective R-modules, then

P=~pQ = dim(P) = dim(Q);
dim(P® Q) = dim(P) + dim(Q);

(2) Let K C Q be a submodule of the finitely generated projective R-module
Q. Then its closure K (see Definition|6.1) is a direct summand in Q and

dim(K) = sup{dim(P) | P C K finitely generated projective submodule}.

Let M (G) be the group von Neumann algebra of the discrete group G
(see Definition[1.1). Let P be any finitely generated projective N (G)-module.
(Here we view N(G) just as a ring, there is no Hilbert structure involved in
P). Choose any (n,n)-matrix A € M,(N(G)) such that A2 = A and the
image of the A/(G)-linear map induced by right multiplication with A

ra: N(G)" - N(G)", z+—zA

is isomorphic as an N (G)-module to P. (It is not necessary but possible to
require A = A*.) Define the von Neumann dimension

dimpy () (P) = try(e)(A), (6.3)

where try(g): Mn(N(G)) — C sends A to the sum of the von Neumann
traces (see Definition [1.2) of its diagonal entries. This is independent of the
choice of A by the following standard argument.

Suppose B € M,(N(G)) is a second square matrix with B2 = B and
im(rp) & P. By possibly taking the direct sum with a zero square-matrix we
can achieve without changing try(¢)(A4) and try-(g)(B) and the isomorphism
class of im(r4) and im(rpg) that n = p and that im(r1_4) and im(r1_pg) are
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isomorphic. Let C' € M, (N(G)) be an invertible matrix such that r¢ maps
im(r4) to im(rp) and im(r1—4) to im(ri_p). Then rgorg =rgporcory =
rc ora and hence CBC~! = A. This implies

tI‘N(G)(B) = tI‘N(G)(CFlOB) = trae) (CBCil) = tr_/\/(G) (A) (6.4)

We will explain in Theorem [6.24! that this notion is essentially the same as
the notion of the von Neumann dimension of a finitely generated Hilbert
N (G)-module of Definition [1.10.

The proof of the following Theorem 6.5 will be given in Section 6.2, Notice
that in the extension of the von Neumann dimension from finitely generated
projective N (G)-modules to arbitrary N (G)-modules the functional analytic
aspects only enter in the proof of Theorem 6.5 the rest is purely algebraic
ring and module theory.

Theorem 6.5. The pair (N(G),dimp(q)) satisfies Assumption [6.2.

Definition 6.6 (Extended dimension). If (R,dim) satisfies Assumption
0.2, we define for an R-module M its extended dimension

dim’ (M) := sup{dim(P) | P C M finitely generated projective submodule}
€ [0, ).
We will later drop the prime in dim’ (see Notation 6.11).
The next result is one of the basic results of this chapter.

Theorem 6.7. (Dimension function for arbitrary A (G)-modules).
Suppose that (R, dim) satisfies Assumption[6.2. Then

(1) R is semihereditary, i.e. any finitely generated submodule of a projective
module is projective;
(2) If K C M is a submodule of the finitely generated R-module M, then
M/K is finitely generated projective and K is a direct summand in M ;
(8) If M is a finitely generated R-module, then PM is finitely generated
projective and
M=>~=PM® TM;
(4) The dimension dim’ has the following properties:
(a) Extension Property
If M is a finitely generated projective R-module, then

dim'(M) = dim(M);
(b) Additivity
If0 — My = My & M, — 0 is an exact sequence of R-modules,

then
dim’'(M;) = dim’(Mp) + dim’(M,),

where for r,s € [0, 00] we define r+ s by the ordinary sum of two real
numbers if both r and s are not co, and by co otherwise;
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(¢) Cofinality
Let {M; | i € I} be a cofinal system of submodules of M, i.e. M =
Uier Mi and for two indices i and j there is an index k in I satisfying
MZ‘,MJ‘ C My.. Then

dim’ (M) = sup{dim’(M;) |i € I};
(d) Continuity
If K C M is a submodule of the finitely generated R-module M, then
dim'(K) = dim'(K);
(e) If M is a finitely generated R-module, then
dim’ (M) = dim(PM);
dim’(TM) = 0;

(f) The dimension dim’ is uniquely determined by the Extension Prop-
erty, Additivity, Cofinality and Continuwity.

Proof. (1) Let M C P be a finitely generated R-submodule of the projective
R-module P. Choose a homomorphism ¢: R" — P with im(q) = M. Then
ker(q) = ker(q). Hence ker(q) is by Assumption 6.2 a direct summand. This
shows that M is projective.

(2) Choose an epimorphism ¢: R" — M. One easily checks that ¢ YK) =
¢ '(K) and that R"/q~'(K) and M/K are R-isomorphic. By Assumption
6.2 R"/q~1(K) and hence M/K are finitely generated projective.

(3) This follows from (2)) by taking K = 0.

(4a)) If P C M is a finitely generated projective R-submodule of the finitely
generated projective R-module M, we conclude

dim(P) < dim(M) (6.8)

from the following calculation based on Assumption 6.2

dim(P) < dim(P) = dim(M) —dim(M/P) < dim(M).
This implies dim(M) = dim’(M).
(4b) Let P C M5 be a finitely generated projective submodule. We obtain an
exact sequence 0 — My — p~}(P) — P — 0. Since p~1(P) & My ® P, we
conclude
dim’(Mp) + dim(P) < dim’(p~(P)) < dim'(M;).

Since this holds for all finitely generated projective submodules P C Ms, we
get

dim’(Mo) + dim’ (Mz) < dim’ (M;). (6.9)
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Let @ C M; be finitely generated projective. Let i(My) N Q be the closure of
i(Mp) N @ in Q. We obtain exact sequences

0—iM)NQ—-Q— p@)  —0;
0—i(Mo)NQ — Q — Q/i(Mo) N Q — 0.

By Assumption 6.2 i(Mp) N Q is a direct summand in . We conclude
dim(Q) = dim(i(Mo) N Q) + dim(Q/7(Mo) 1 Q).

From Assumption 6.2 and the fact that there is an epimorphism from p(Q)
onto the finitely generated projective R-module Q/i(My) N Q, we conclude

dim(i(Mp) N Q) = dim/(i(Mp) N Q);
dim(Q/i(Mo) N Q) < dim’(p(Q)).

Since obviously dim’(M) < dim’(N) holds for R-modules M and N with
M C N, we get

dim(Q) = dim(i(Mo) N Q) + dim(Q/i(My) N Q)
dim’ (i(Mp) N Q) + dim’ (p(Q))

< dim’(
< dim’(Mp) + dim’(M5).

Since this holds for all finitely generated projective submodules Q@ C My, we
get

dim’ (M) < dim'(Mp) + dim’(My). (6.10)

Now assertion (4b) follows from (6.9) and (6.10).

(4c) If P C M is a finitely generated projective submodule, then there is an
index ¢ € I with P C M; by cofinality.

(4d) Choose an epimorphism ¢: R® — M. Since ¢~ }(K) = ¢ 1(K), we get
from Assumption [6.2] and assertion (4a)

dim'(¢"1(K)) = dim'(¢~1(K)) = dim'(¢”'(K)).
If L is the kernel of ¢, we conclude from assertions (4al) and (4b)

dim’(¢~*(K)) = dim’(L) + dim’(K);
dim’ (¢! (K)) = dim’(L) + dim/(K);
dim’ (¢! (K)) < dim(R"™) < 0.

This proves assertion (4d).

(4€) This follows from (4d)) applied to the special case K = 0 and assertions
3), (42) and (4b).
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(4f) Let dim” be another function satisfying Extension Property, Additivity,
Cofinality and Continuity. We want to show for an R-module M

dim” (M) = dim’(M).

Since assertion (4€) is a consequence of assertions (3), (4a)), (4b) and (4d),
it holds also for dim”. Hence we get dim’(M) = dim” (M) for any finitely
generated R-module. Since the system of finitely generated submodules of a
module is cofinal, the claim follows from Cofinality. This finishes the proof of
Theorem 6.7. 0O

Notation 6.11. In view of Theorem 6.7 we will not distinguish between dim’
and dim in the sequel. 0O

Example 6.12. Let R be a principal ideal domain. Then any finitely gener-
ated projective R-module P is isomorphic to R™ for a unique n > 0 and we
consider the dimension dim(P) := n. Notice that for a submodule M C R"™
we have

M = {x € R"|r-z € M for appropriate r € R,r # 0}.

One easily checks that Assumption 6.2 is satisfied. Let F' be the quotient
field of R. Then we get for any R-module M for the dimension defined in
Definition 6.6

dim(M) = dimp(F Qg M),

where dimp(F ®p M) is the dimension of the F-vector space F' @ M.

Notice that dim(P) is finite for a projective R-module P if and only if P is
finitely generated. This is the crucial difference to the case, where we consider
the von Neumann algebra N (G) and the extension dimyr(¢y of Definition 6.6
of the von Neumann dimension dimy () of (6.3)). If for instance Hy, H, ...
is a sequence of finite subgroups of G, then ;- N'(G)®cn, C is a projective
not finitely generated N (G)-module and

dlm/\/(G) (@N(G) ®(CH1~ C) = Z |H|’
i=1 """

i=1

and this infinite sum may converge to a finite real number.

Recall that a directed set I is a set with a partial ordering < such that
for two elements iy and ¢; there exists an element 7 with ¢og < 7 and i; < 7.
We can consider I as a category with I as set of objects, where the set
of morphisms from iy to ¢; consists of precisely one element, if i < iy,
and is empty otherwise. A directed system or an inverse system respectively
{M; | i € I} of R-modules indexed by I is a functor from I into the category
of R-modules which is covariant or contravariant respectively. We denote by
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colim;c; M; the colimit of the directed and by lim;ec; M; the limit of the
inverse system {M; | ¢ € I} which is again an R-module. We mention that
colimit is sometimes also called inductive limit or direct limit and that limit
is sometimes also called inverse limit or projective limit in the literature. The
colimit is characterized by the following property. For any ¢ € I there is an R-
homomorphism ; : M; — colim;c; M; such that for any two elements ig and
11 in I with 79 < 41 we have 9, 0 ¢, 5, = ¥4, Where ¢; 4, : M;, — M;, comes
from functoriality. For any R-module N together with R-homomorphisms
fi: M; — N such that for any two elements iy and ¢; in I with g < 7; we have
fir 00405 = fiy, thereis precisely one R-homomorphism f: colim;er M; — N
satisfying f o ; = f; for all i« € I. The limit of an inverse system has an
analogous characterization, one has to reverse all arrows.

Next we investigate the behaviour of dimension under colimits indexed
by a directed set.

Theorem 6.13 (Dimension and colimits). Let {M; | i € I} be a directed
system of R-modules over the directed set I. For i < j let ¢; j: My — M be
the associated morphism of R-modules. For i € I let v;: M; — colim;c; M;
be the canonical morphism of R-modules. Then

(1) We get for the dimension of the R-module given by the colimit colim;ec; M;
dim (colim;ey M;) = sup {dim(im(¢);)) | i € I};

(2) Suppose for each i € I that there is ig € I with i < iy such that
dim(im(¢; 4,)) < 0o holds. Then

dim (colim;ey M;)
= sup {inf {dim(im(¢; ;: M; — M;)) |jel,i<j}|iel}.

Proof. (1) Recall that the colimit colim;e; M; is [[,o; M;/ ~ for the equiv-
alence relation for which M; > * ~ y € M; holds precisely if there is
k € I with ¢ <k and j < k with the property ¢; () = ¢, 1(y). With this
description one easily checks

colim;e; M; = Uim(wi: M; — colimjer Mj).
icl
Now apply Cofinality (see Theorem 6.7 (4c)).

(2) It remains to show for ¢ € I
dim(im(v);)) = inf {dim(im(¢; ;: M; — M;)) | j € [,i < j}. (6.14)

By assumption there is ig € I with i < iy such that dim(im(¢;,)) is finite.
Let K, ; be the kernel of the map im(¢;;,) — im(¢; ;) induced by ¢, ; for
ip < j and K;, be the kernel of the map im(¢; ;,) — im(¢);) induced by ;.
Then K;, = Ujes,<j Kio.j and hence by Cofinality (see Theorem 6.7/ (4c))
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dim(K;,) = sup{dim(K;, ;) |j € I,io < j}.
Since dim(im(¢; 4, )) is finite, we get from Additivity (see Theorem [6.7/ (4b))

dim (im(q);))

= dim (im (’(/Jm Iim(¢i,i0): im(¢; ;,) — colim;er Ml))

= dim(im(¢i7i0)) - Sup{dim(KiM-) | jelig< j}

= inf {dim(im(¢;,q,)) — dim(K, ;) | j € 1,40 < j}

= inf {dlm (im(¢i0>j|im(¢i,i0) : im(qﬁi’io) — iIn(d)i,j))) | ] S I,io < j}

= inf {dim (im(¢s;)) | j € I,i0 < j}. (6.15)

Given jg € J with i < jg, there is j € I with ip < j and jy < j. We conclude
dim(im(¢; j,)) > dim(im(¢;, ;)) from Additivity (see Theorem[6.7/ (4b)). This

implies

inf{dim(im(¢; ;)) | j € J,i < j}
= inf{dim(im(¢; ;)) | j € J,i0 < j}. (6.16)

Now (6.14) follows from (6.15) and (6.16). This finishes the proof of Theorem
6.13. O

Example 6.17. The condition in Theorem [6.13] (2) above that for each
i € I there is i9p € I with i < iy and dim(im(¢;;,)) < oo is necessary
as the following example shows. Take I = N. Define M; = @, ;R and
bjk: @m—; B — @,,_x R to be the obvious projection for j < k. Then
dim(im(¢;x)) = oo for all j < k, but colim,c; M; is trivial and hence has
dimension zero.

Next we state the version of Theorem 6.13/ about dimension and colimits
for limits over inverse systems. Since we do not need it elsewhere, we do not
give its proof which is, however, much harder than the one of Theorem [6.13.

Theorem 6.18 (Dimension and limits). Let {M; | i € I} be an inverse
system of N'(G)-modules over the directed set I. Fori < j let ¢; j: M; — M,
be the associated morphism of N'(G)-modules. For i € I let ;: lim;ey M; —
M; be the canonical map. Suppose that there is a countable sequence i; <
ig < ... such that for each j € I there isn > 0 with j < i,. Let dimy (g
be the extension of Definition [6.6 of the von Neumann dimension of (6.3).
Then

(1)

iEI};
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(2) Suppose that for each index i € I there is an index ig € I with i < iy and
dimN(G)(im(qbi)io)) < 00. Then

dimy(q) <1lerrIlM) = sup {inf{dimp (e (im(¢s;))|j € I,i < j}|iel}.

Example 6.19. In this example we want to show that the condition that
there is a countable sequence i; < is < ... such that for each j € I there is
n > 0 with j < i, appearing in Theorem [6.18 is necessary. (Compare this
with the claim in [107, page 210] that equation (A1) in [107, page 210] holds
for arbitrary (not necessarily countable) intersections of I'-weakly closed sub-
modules.) Let G = Z. Then N (Z) = L*>°(S') by Example 1.4, For u € S* let
(2 —u) be the N'(Z)-ideal which is generated by the function S' — C sending
2z € 81 C C to z — u. Next we prove

ﬂ (z—u) =0.

ueS?t

Consider f € Nyegt(z — u). Define s € [0,1] to be the supremum over all
r € [0,1] such that |f(exp(2wit))] < 1 holds for almost all ¢t € [0,r]. For
almost all means for all elements with the exception of the elements of a
subset of Lebesgue measure zero. Notice that the definition of s makes sense,
its value does not change if we add to f a measurable function which van-
ishes outside a set of measure zero. We want to show s = 1 by contradiction.
Suppose s < 1. Put u = exp(2wis). Since f belongs to (z — u) there is
g € L*°(S1) with f(2) = (2 — u) - g(2). Choose ¢ > 0 with ||g||cc < €}
and s + € < 1. Then we have |f(z)] < 1 for almost all elements z in
{exp(27it) | s — e <t < s+ ¢}. This implies that |f(z)| < 1 holds for almost
all elements z in {exp(2wit) | 0 <¢ < s+ e}. We conclude s > s + ¢, a con-
tradiction. We get s = 1. Hence we have || f||oo <1 for all f € ,cq1(z —u).
This implies that (1, g1(z — u) is zero.

This shows that the obvious N/(Z)-map L>(S') — [],cq1 L(S1)/(z—u)
is injective. From Additivity (see Theorem 6.7 (4b)) we conclude

dimy(z) (H L>(SY /(2 — u>> > 1.

ueS?t

Notice that [],cq1 L°(S")/(2—wu) is the limit over the obvious inverse system
{ITues L>°(S")/(z —w)) | J € I}, where I is the set of finite subsets of S*
ordered by inclusion, and that dimprz) ([T,c; L>(S*)/(z —u)) = 0 holds
for all J € I.

Also the condition that for each index ¢ € I there is an index j € [
with dimszy(im(¢; j)) < oo appearing in Theorem [6.18 (2)) is necessary as
the following example shows. Take I = N. Define M; = [[;2; N(G) and
ik [ _  N(G) — H::j N(G) to be the canonical inclusion for j < k.

ueJ
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Then for all j < k we get dimpr(z)(im(¢;)) = oo, but lim;e; M; is trivial
and hence has dimension zero.

Theorem [6.18 (2)) has only been stated for R = N(G) and the extended
von Neumann dimension dimys(g), in contrast to Theorem 16.13 about di-
mension and colimits. Indeed Theorem 6.18|fails for R = Z with the ordinary
rank of abelian groups as dimension. For instance the limit of the inverse
system

75272522 72>522.2> ...

is zero and hence has dimension 0, but the image of any structure map 27-7Z —
2. Z has dimension 1.

Definition 6.20 (Extended von Neumann dimension). Let M be an
N(G)-module. Define its extended von Neumann dimension

dimpr ) (M) € [0,00]
by the extension of Definition 6.6 of the von Neumann dimension of (6.5).

We will extend in Theorem 8.29 the dimension function for N'(G)-modules
to U(G)-modules, where U(G) is the algebra of affiliated operators, or, equiv-
alently, the Ore localization of N(G) with respect to all non-zero-divisors in

N(G).

6.2 Comparison of Modules and Hilbert Modules

In this section we want to show that the category of finitely generated projec-
tive A/(G)-modules (with inner product) and the category of finitely gener-
ated Hilbert N (G)-modules are equivalent as C-categories (with involution)
and that this equivalence preserves weakly exact and exact sequences and
dimension (see Theorem [6.24). This will be the key step to come from the
operator theoretic approach to a purely algebraic approach to L?-Betti num-
bers. Recall that we use the convention that groups and rings act from the
left unless stated explicitly differently.

We need some notations to formulate the main result of this section. A
C-category C is a category such that for any two objects the set of morphisms
between them carries the structure of a complex vector space for which com-
position of morphisms is bilinear and C has a (strict) sum which is compatible
with the complex vector space structures above. A (strict) involution on a
C-category C is an assignment which associates to each morphism f: z — y
a morphism f*: y — = and has the following properties

f ) =r
A fHp-g =X f+a-g5
(fog) =g*of%
(feg) =fog,
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where f, g are morphisms, A and p complex numbers. There is a canonical
structure of a C-category with involution on the category of finitely gener-
ated Hilbert N'(G)-modules {fin. gen. Hilb. N'(G)-mod.} (see Definition [1.5)),
where the involution is given by taking adjoint operators. We call an endo-
morphism f in C selfadjoint if f = f*. We call an isomorphism f in C unitary
if f* = f=1. A functor of C-categories (with involution) is a functor com-
patible with the complex vector space structures on the set of morphisms
between two objects and the sums (and the involutions). A natural equiv-
alence T of functors of C-categories with involution is called wunitary if the
evaluation of T' at each object is a unitary isomorphism. An equivalence of
C-categories (with involution) is a functor of such categories such that there
is a functor of such categories in the other direction with the property that
both compositions are (unitarily) naturally equivalent to the identity. If a
functor F' of C-categories (with involution) induces a bijection on the sets of
(unitary) isomorphism classes of objects and for any two objects x and y it
induces a bijection between the set of morphisms from z to y to the set of
morphisms from F(z) to F(y), then it is an equivalence of C-categories (with
involution) and vice versa. (cf [351, Theorem 1 in IV.9 on page 91]).

Given a finitely generated projective (left) N (G)-module P, an inner
product on P is a map u: P x P — N(G) satisfying (cf. [514, Definition
15.1.1 on page 232])

(1) wis N(G)-linear in the first variable;

(2) p is symmetric in the sense p(x,y) = u(y, )*;

(3) w is positive-definite in the sense that u(p,p) is a positive element in
N(G), i.e. of the form a*a for some a € N (G), and u(p,p) =0 < p=0;

(4) The induced map 7i: P — P* = hom ) (P, N (G)), defined by 7i(y)(z) =
w(z,y), is bijective.

Notice that we have already introduced an A(G)-right module structure
on P* given by (fr)(z) = f(z)r for r € N(G). Using the involution on
N(G), we can define also a left N'(G)-module structure by rf(z) = f(z)r*.
Then 7 is an isomorphism of left N (G)-modules. Moreover, 11 agrees with
the composition P “B), (P*)* z, P*, where i(P): P — (P*)* is the
bijection which sends z € P to the map P* — N(G), f — f(z)*.
Let {fin. gen. proj. N(G)-mod. with ()} be the C-category with involution,
whose objects are finitely generated projective N(G)-modules with inner
product (P, ) and whose morphisms are N (G)-linear maps. We get an in-
volution on it if we specify f*: (Py,u1) — (Po, po) for f: (Po, o) — (Pr, 111)
by requiring p1(f(x),y) = po(z, f*(y)) for all z € Py and y € P;. In other
words, we define f* := Jig o f* ofiy where the second f* refers to the N'(G)-
map f* = homy ) (f,id): Pf — Py. In the sequel we will use the symbol
f* for both f*: P, — Py and f*: P — Fj.

Let {N(G)"} C {fin. gen. proj. N(G)-mod. with ()} be the full subcat-
egory whose objects are (N(G)™, ust), where the standard inner product is
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given by
pise: N(G)" x N(G)* = N(G),  (z,9) = 3 2yl (6.21)

Denote by {I?(G)"} C {fin. gen. Hilb. N'(G)-mod.} the full subcategory
whose objects are 1?(G)". We define an isomorphism of C-categories with
involution

v {AN(G)"} — {I?(G)"} (6.22)

as follows. It sends an object N'(G)™ to the object [*(G)™. Let f: N(G)™ —
N(G)™ be an N(G)-homomorphism of (left) N(G)-modules. Choose an
(m,n)-matrix A € M(m,n, N(G)) such that f sends = to zA. Define

v(f): @)™ = PG)",  y— (A%

where y® is obtained from y by transposing and applying elementwise the
involution I*(G) — 1*(G) which sends 3 Ag- g to deG)TQg, the matrix
A* is obtained from A by transposing and applying the involution x: N'(G) —
N(G) to each entry, and Ay' is understood in the sense of matrices and
plugging y; into an element a: [*(G) — [*(G) in N(G). The involutions
appearing in the definition above come from the fact that we have decided to
consider always left group actions and left module structures and have defined
N(G) to be B(I?(G))¢. We will extend v to finitely generated N'(G)-modules
with inner product by a completion process below.

Lemma 6.23. For any finitely generated projective N'(G)-module P there is
an N(G)-map p: N(G)" — N(G)™ with pop = p and p* = p such that im(p)
is N(GQ)-isomorphic to P. Any finitely generated projective N'(G)-module P
has an inner product. Two finitely generated projective N'(G)-modules with
inner product are unitarily N'(G)-isomorphic if and only if the underlying
N (G)-modules are N (G)-isomorphic.

Proof. If P is finitely generated projective, we can find an N(G)-map
q: N(G)™ — N(G)" with goq = q and an N'(G)-isomorphism f: P =N im(q).
Let p: N(G)" — N(G)™ be the N(G)-map for which v(p) is the orthogo-
nal projection onto the image of v(q). Then p satisfies pop = p, p* = p
and im(p) = im(q). The standard inner product ps; on N(G)™ defined in
(6.21)) restricts to an inner product on im(p), also denoted by s, and this
restriction can be pulled back to an inner product on P by the isomorphism
f: P — im(p). It remains to show for an N(G)-map p: N(G)" — N(G)"
with p op = p and p* = p that for any inner product p on im(p) there is a
unitary isomorphism g: (im(p), u) — (Am(p), pst)-

Let f: P — P be the N(G)-isomorphism (Jig;) ~! of. It satisfies u(z,y) =
ust(z, f(y)) for all z,y € P. Since pgt(z, f(z)) = p(x,2) > 0 holds, f is posi-
tive with respect to ps;. Consider the composition io fop: N(G)" — N(G)"
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where i: P — N(G)™ is the inclusion, which is the adjoint of p: N'(G)™ — P
with respect to ps¢. This composition is positive with respect to ps; on N (G)™.
Recall that we can consider CG as a dense subset of [*(G) in the obvi-
ous way and as a subset of N (G) if we identify g € G with the element
Ry-1: 13(G) — I*(G) in N(G) which is given by right multiplication with
g~ '. Under this identification one easily checks for u,v € CG™

tra(e) (st (wsio fop(v)) = (u,v(io fop)(v))erenr-

Hence (u,v(io fop)(u))p@n» > 0 for all u € CG™ and therefore for all
u € 1?(G)™. So v(io fop) is positive. Let ¢’': N(G)" — N(G)" be defined
by the property that v(g'): I?(G)" — [2(G)" is positive and v(g’) o v(g') =
v(io fop). Define g: P — P by pog' oi. Then g is invertible, is selfadjoint
with respect to us and g2 = f. Now the claim follows from

pst(9(x), 9(y) = pst(x, 9% (Y)) = pse(z, f(y)) = p(z,y).0

Given a finitely generated projective N'(G)-module (P, pt) with inner prod-
uct p, we obtain a pre-Hilbert structure on P by trar(g)ou: P x P — C for
trpr(e) the standard trace (see Definition 1.2). Let v(P, u) be the associated
Hilbert space. The group G acts from the left by unitary operators on P and
hence on v(P, u) by putting g -z := R,-1 -z for € P and R,-1: I*(G) —
12(G) € N(G) given by right multiplication with g—!. This is a finitely gener-
ated Hilbert N'(G)-module since one can find another finitely generated pro-
jective N (G)-module with inner product (Py, po) and a unitary isomorphism
(P, 1) (Po, pro) — (N(G)™, ust) (see Lemmal6.23)) which induces an isometric
G-isomorphism v(P, ) ®v(Py, o) — v(N(G)", ust) = 12(G)™. Let (P, u) and
(P', 1) be finitely generated projective N(G)-modules with inner product
and let f: P — P’ be an N(G)-homomorphism. Then f extends to a mor-
phism of finitely generated Hilbert A/ (G)-modules v(f) : v(P, u) — v(P', i').

Theorem 6.24 (Modules over N(G) and Hilbert NV (G)-modules).

(1) We obtain an equivalence of C-categories with involution
v: {fin. gen. proj. N(G)-mod. with { )} — {fin. gen. Hilb. N'(G)-mod.};
(2) The forgetful functor
F: {fin. gen. proj. N(G)-mod. with { )} — {fin. gen. proj. N(G)-mod.}
is an equivalence of C-categories. We obtain functors of C-categories

vo F~Y: {fin. gen. proj. N(G)-mod.} — {fin. gen. Hilb. N'(G)-mod.}
Fov™': {fin. gen. Hilb. N(G)-mod.} — {fin. gen. proj. N(G)-mod.}
which are unique up to natural equivalence of functors of C-categories

and inverse to one another up to natural equivalence. We will denote
voF L and Fov™! byv and v=! again;
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(3) The functors v and v~ preserve evact sequences and weakly evact se-
quences;
(4) If P is a finitely generated projective N'(G)-module, then

dimp(g)(P) = dimp(e)(v(P))
for the two notions of dimyr(y defined in Definition 1.10 and in (6.3).

Proof. (1) The idempotent completion Idem(C) of a C-category C with invo-
lution has as objects (V,p) selfadjoint idempotents p: V' — V. A morphism
from (Vh,po) to (V1,p1) is a morphism f: Vy — V; satisfying p; o fopg = f.
The identity on (V, p) is given by p: (V,p) — (V, p). The idempotent comple-
tion Idem(C) inherits from C the structure of a C-category with involution in
the obvious way. There are unitary equivalences of C-categories with involu-
tions

IM: Idem({NV(G)"
IM: Idem({I*(G)™

}) — {fin. gen. proj. N'(G)-mod. with ( )};

}) — {fin. gen. Hilb. N (G)-mod.},

which sends (N(G)",p) or (I*(G)",p) to the image of p where the inner
product ps on im(p) is given by restricting the standard inner product s
on N(G)™. The functor v defined in (6.22) induces an isomorphism

Idem(v): Idem({NV(G)"}) — Idem({I*(G)"}).
The following diagram commutes

Idem(v)
5

Idem({NV(G)"}) Idem({I?(G)"}
IMl IMJV
{fin. gen. proj. N'(G)-mod. with ()} —Z— {fin. gen. Hilb. N(G)-mod.}

up to unitary natural equivalence which is induced from the inclusion
N(G)" — I*(G)™ sending (ay,...,a,) to (aj(e),...,a}(e)), where for u =
Ygec g9 E 12(G) we put w := >_gec Ag - g- Now (1)) follows.

(2)) follows from Lemma [6.23] and assertion (IJ).

8) A sequence U Lv e wot finitely generated Hilbert N(G)-modules is
weakly exact at V' if and only if the following holds: g o f = 0 and for any
finitely generated Hilbert N'(G)-modules P and @ and morphisms u: V — P
and v: Q — V withuo f =0and gov =0 we get uov = 0. It is exact at
V if and only if the following holds: g o f = 0 and for any finitely generated
Hilbert N(G)-module P and morphism v: P — V with g o v = 0 there is
a morphism u: P — U satisfying f o u = v. The analogous statements are
true if one considers finitely generated projective N (G)-modules instead of
finitely generated Hilbert A/(G)-modules. Now v and v~! obviously preserve
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these criterions for weak exactness and exactness and the claim follows.

(4) This follows from the definitions. a
Next we can give the proof of Theorem 6.5l

Proof. Part (1)) of Assumption 6.2 is obvious, it remains to prove Part (2). In
the sequel we use Theorem [6.24/ and the functors v and v~! appearing there.

First we show that any finitely generated submodule M C P of a finitely
generated projective N (G)-module is finitely generated projective. Namely,
choose an NV (G)-map f: N(G)" — P with im(f) = M. Let p: N(G)" —
N(G)™ be the N (G)-map for which v(p): I2(G)™ — I?>(G)™ is the orthogonal
projection onto the kernel of v(f): v(N(G)") = I*(G)™ — v(P). Then p is
an idempotent with im(p) = ker(f) and hence M is projective.

Let P = {P; | i € I} be the directed system of finitely generated projec-
tive N'(G)-submodules of K. Notice that P is indeed directed by inclusion
since the submodule of P generated by two finitely generated projective sub-
modules is again finitely generated and hence finitely generated projective.
Let j;: P, — @ be the inclusion. Equip @ and each P; with a fixed inner
product (Lemma [6.23). Let pr,: v(Q) — v(Q) be the orthogonal projection
satisfying im(pr;) = im(v(j;)) and pr: v(Q) — v(Q) be the orthogonal pro-
jection satisfying im(pr) = (J,;; im(pr;). Next we show

im(v~(pr)) = K. (6.25)

Let f: @ — N(G) be an N(G)-map with K C ker(f). Then foj; =0 and
therefore v(f) o v(j;) = 0 for all i € I. We get im(pr;) C ker(v(f)) for all
i € I. Since the kernel of v(f) is closed we conclude im(pr) C ker(v(f)).
This shows im(r~*(pr)) C ker(f) and hence im(v~!(pr)) C K. As K C
ker(id —v~1(pr)) = im(v~*(pr)), we conclude K C im(v~*(pr)). This finishes
the proof of (6.25). In particular K is a direct summand in Q.

Next we prove

dimly g (K) = dimp(c (). (6.26)

The inclusion j; induces a weak isomorphism v(P;) — im(pr;) of finitely
generated Hilbert A/(G)-modules. If we apply the Polar Decomposition The-
orem to it we obtain a unitary N(G)-isomorphism from v(P;) to im(pr;).
This implies dimpr(g)(FP;) = trar(e)(pr;). Therefore it remains to prove

trar(a) (pr) = sup{trar(q)(pr;) | @ € I}. (6.27)

Let € > 0 and = € v(Q) be given. Choose i(€) € I and z;() € im(pr;(.)) with
|lpr(z) — zi0)|] < €/2. Since im(pr;()) C im(pr;) C im(pr) we get for all
1> 1i(e)
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— PTi(e) (@)l

= Prie) (@) + [ Prige) (Tige)) — Pri(e) ()]
— zio)| + |1 Pri(e) (wi(e) — pr(@))]|

=zl +1Iprie Il - [|wie) — pr(z)]]

< 2-[|pr(z) — 2ol

3
NN AN AN

Now (6.27) and hence (6.26) follow from Theorem [1.9 (2). This finishes the
proof of Theorem 6.5l 0O
We will sometimes use

Lemma 6.28. (1) Let f: P — Q be an N (G)-map of finitely generated pro-
jective N'(G)-modules. If f is a weak isomorphism, then P and Q are
N(G)-isomorphic;

(2) Let f: P — Q be an N(G)-map of finitely generated projective N'(G)-
modules with dim () (P) = dimpr(q)(Q). Then the following assertions
are equivalent:

(a) f is injective;

(b) f has dense image;

(c) f is a weak isomorphism;
(3) A projective N (G)-module P is trivial if and only if dimsg)y(P) = 0;
(4) Let M be a finitely presented N (G)-module. Then dimprcy(M) = 0 if

and only if there is an exact sequence 0 — N (G)" = N(G)* = M — 0
for some N(G)-map f which is positive, i.e. f = h*h for some N'(G)-map
h: N(G)" — N(G)".

Proof. (1) and (2) follow from Lemma [1.13 and Theorem [6.24.

(3) Since P is the colimit of its finitely generated submodules, it suffices to
prove the claim for a finitely generated projective N'(G)-module by Theorem
6.7 (1) and (4c). Now apply Theorem [1.12| (1) and Theorem [6.24.

(4) Suppose that dimp(g)(M) = 0. Since N(G) is semihereditary (see
Theorem 6.7 (1)) and M is finitely presented, there is an exact sequence
0— P L NG L M — 0 of N(G)-modules such that P is finitely
generated projective. We get from Additivity (see Theorem 6.7 (4b))) that
dimp gy (P) = dimps() (N (G)™). Since by assertion (2) g is a weak isomor-
phism, v(g) is a weak isomorphism by Theorem 6.24 (3)). Let f: N(G)" —
N(G)™ be the N(G)-homomorphism for which v(f) is the positive part in
the polar decomposition of v(g). Now 0 — N (G)" EN NG™ - M — 0 is
exact by Theorem [6.24 (3). The other implication follows from Additivity
(see Theorem 6.7/ (4D)). O
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6.3 Induction and the Extended von Neumann
Dimension

In this section we show that induction for the ring homomorphism N (H) —
N (G) induced by an inclusion of groups i: H — G is faithfully flat and com-
patible with the extended von Neumann dimension. This will be important
when we will compare L2-invariants of a regular covering with the ones of
the universal covering of a given space.

Recall from Theorem 6.5 and Theorem 6.7 that dima/ () introduced in
Definition 16.20 satisfies Cofinality, Additivity and Continuity and that for
a finitely generated N(G)-module M we get a finitely generated projec-
tive N(G)-module PM such that M = PM © TM and dimp(g) (M) =

We have associated to an injective group homomorphism i: H — G a ring
homomorphism i: N (H) — N(G) (see Definition 1.23). Given an N (H)-
module M, the induction with i is the N'(G)-module i, M = N(G) @n () M.
Obviously i, is a covariant functor from the category of A'(H)-modules to the
category of N(G)-modules, preserves direct sums and the properties “finitely
generated” and “projective” and sends N'(H) to N(G).

Theorem 6.29. Leti: H — G be an injective group homomorphism. Then

(1) Induction with i is a faithfully flat functor from the category of N (H)-
modules to the category of N(G)-modules, i.e. a sequence of N(H)-
modules My — My — M is exact at My if and only if the induced
sequence of N (G)-modules i, My — 1. My — 1. Mo is exact at i.M;;

(2) For any N (H)-module M we have:

dlmN(H)(M) = dimN(G) (Z*M)
Proof. Tt is enough to show for any N (H )-module M

Tor;\[(H) N(@),M) =0 for p > 1; (6.31)
iM=0= M=0. (6.32)

We begin with the case where M is finitely generated projective. Let A €
M, (N(H)) be a matrix such that A = A*, A? = A and the image of the
N (H)-linear map Ra: N(H)" — N(H)™ induced by right multiplication
with A is N(H)-isomorphic to M. Let i, A be the matrix in M, (N(G))
obtained from A by applying i to each entry. Then i, A = (i, A)*, (i.4)? =
i.A and the image of the N(G)-linear map R;, 4: N(G)" — N(G)™ induced
by right multiplication with i, A is N'(G)-isomorphic to .M. Hence we get
from the definition (6.3)

dimprr) (M) = trar(a) (A);
dimp () (i« M) = trare) (i A).
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Since tra(e(i(a)) = tramy(a) holds for a € N(H) (see Lemma 1.24 (1)),
we get (6.30). Since for a finitely generated projective N'(H)-module we have
M =0 < dimy gy (M) = 0 and 4, M is a finitely generated projective N'(G)-
module, (6.32) follows from (6.30). If M is projective, (6.31) is obviously
true.

Next we treat the case where M is finitely presented. Then M splits
as M = TM & PM where PM is finitely generated projective and TM
is finitely presented (see Theorem [6.7 (3)). By Lemma [6.28 (4) we obtain

an exact sequence 0 — N(H)* & N(H)" & TM — 0 with f = f* If
we apply the right exact functor given by induction with 4 to it, we get an
exact sequence N'(G)" 2, N(G)" — i, TM — 0 with (i, f)* = i.f. Since
we know (6.30) and (6.31) already for finitely generated projective N (H)-
modules, we conclude from Theorem [6.7 (4b) and (4€) and the definition of
Tor that (6.30) and (6.31) hold for the finitely presented N (H)-module M
provided that we can show that i, f is injective.

We have i, (v(f)) = v(i.f), where i, (v(f)) was introduced in Definition
1.23. Because v respects weak exactness (see Theorem [6.24' (3)), v(f) has

dense image since N'(H)" — N(H)™ — 0 is weakly exact. Then one easily
checks that v(i.f) = i.(v(f)) has dense image since CG ®cg I*(H) is a
dense subspace of [?(G). Since the kernel of a bounded operator of Hilbert
spaces is the orthogonal complement of the image of its adjoint and v (i, f)
is selfadjoint, v(i. f) is injective. Since v~! respects exactness (see Theorem
6.24 (3))) . f is injective.

Next we show (6.32)) for finitely presented M. It suffices to show for an
N(H)-map N(H)™ — N(H)" that g is surjective if i,g is surjective. Since
the functors v~! and v of Theorem 16.24 are exact we have to show for an
H-equivariant bounded operator h: [?(H)™ — [?(H)" that h is surjective if
ivh: 2(G)™ — 12(G)™ is surjective. Let {E) | A > 0} be the spectral family of
the positive operator hoh*. Then {i.Ey | A > 0} is the spectral family of the
positive operator i, ho (i.h)*. Notice that h or i.h respectively is surjective if
and only if E\ = 0 or i, F) = 0 respectively for some A > 0. Because E) =0
or i, El\ = 0 respectively is equivalent to tra-(g)(Ex) = 0 or trar(g)(i«Ex) =0
respectively and trpr(g)(Ex) = trar(q)(i«Ex) holds by Lemma [1.24! (1)), the
claim follows. This finishes the proof of (6.30), (6.31) and (6.32) in the case
where M is finitely presented.

Next we explain how we can derive the case of a finitely generated N (H)-
module M from the case of a finitely presented N (H)-module. Notice that
from now on the argument is purely algebraic, no more functional analysis
will enter. If f: M(H)" — M is an epimorphism with kernel K, then M is
the colimit over the directed system of N (H)-modules N'(H)"/K; indexed
by the set {K; | j € J} of finitely generated submodules of K. Now (6.30)
follows from Additivity and Cofinality (see Theorem 4 (4b) and (4c)) or
directly from Theorem 6.13| about dimension and colimits since i, commutes
with colimits. The functor Tor commutes in both variables with colimits
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over directed systems [94, Proposition VI.1.3. on page 107] and hence (6.31)
follows.

Next we prove (6.32)) for finitely generated M. As above we write M =
colim;e s N (H)™ /K. Since each structure map N(H)"/K;, — N(H)"/Kj,
is an epimorphism of finitely generated N (H)-modules, we have M = 0
if and only if for each jo € J there is j; € J such that N(H)"/Kj,
vanishes. Recall that i, commutes with colimits and is right exact. Hence
i«M = colimje i (N(H)"/K;) and i, M = 0 if and only if for each jo € J
there is j; € J such that i, (N(H)"/Kj;,) vanishes. Since N(H)"/Kj, is
finitely presented, we know already that N (H)"/K;, = 0 if and only if
i+(N(H)"/K;,) = 0. Hence i, M = 0 if and only if M = 0.

The argument that (6.30), (6.31) and (6.32)) are true for all N(H )-modules
if they are true for all finitely generated A(H)-modules is analogous to the
proof above that they are true for all finitely generated N (H)-modules if
they are true for all finitely presented N (H)-modules. Namely, repeat the
argument for the directed system of finitely generated submodules of a given
N (H)-module. This finishes the proof of Theorem [6.29. O

The proof of Theorem [6.29 would be obvious if we knew that A (G) viewed
as an N (H)-module were projective. Notice that this is a stronger statement
than the one proved in Theorem [6.29. One would have to show that the higher
Ext-groups instead of the Tor-groups vanish to get this stronger statement.
However, the proof for the Tor-groups does not go through directly since the
Ext-groups are not compatible with colimits.

The rather easy proof of the next lemma can be found in [333, Lemma
3.4 on page 149].

Lemma 6.33. Let H C G be a subgroup. Then

(1) dimprgy (N (G) ®@cg CIG/H]) = [H|™t, where |H|™' is defined to be zero
if H is infinite;
(2) If G is infinite and V' is a CG-module which is finite dimensional over
C, then
dimpr () (N (G) ®ce V) = 0.

6.4 The Extended Dimension Function and Amenable
Groups

In this section we deal with the special case of an amenable group G. The
main result (Theorem 6.37) will be that A'(G) is flat over CG from the point
of view of the extended dimension function, although A(G) is flat over CG
in the strict sense only for very few groups, conjecturally exactly for virtually
cyclic groups (see Conjecture 6.49).
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6.4.1 Survey on Amenable Groups

In this subsection we give a brief survey about amenable and elementary
amenable groups. Let [°°(G, R) be the space of bounded functions from G to
R with the supremum norm. Denote by 1 the constant function with value
1.

Definition 6.34 (Amenable group). A group G is called amenable if
there is a (left) G-invariant linear operator p: 1°°(G,R) — R with p(1) =1
which satisfies for all f € 1°°(G,R)

inf{f(g) | g € G} < u(f) <sup{f(g) | g € G}.

The latter condition is equivalent to the condition that p s bounded and
w(f)>04f f(g) >0 for all g € G. Let AM be the class of amenable groups.

The class EAM of elementary amenable groups is defined as the smallest
class of groups which has the following properties:

(1) It contains all finite and all abelian groups;

(2) It is closed under taking subgroups;

(8) It is closed under taking quotient groups;

(4) It is closed under extensions, i.e. if 1l - H — G — K — 1 is an exact
sequence of groups and H and K belong to EAM, then also G € EAM;

(5) It is closed under directed unions, i.e. if {G; | i € I} is a directed system
of subgroups such that G = J,.; Gi and each G; belongs to EAM, then
G € EAM. (Directed means that for two indices i and j there is a third
index k with G;,G; C Gy.)

We give an overview of some basic properties of these notions. A group
G is amenable if and only if each finitely generated subgroup is amenable
[419, Proposition 0.16 on page 14]. The class of amenable groups satisfies the
conditions appearing in the Definition 6.34] of elementary amenable groups,
namely, it contains all finite and all abelian groups, and is closed under tak-
ing subgroups, forming factor groups, group extensions, and directed unions
[419, Proposition 0.15 and 0.16 on page 14]. Hence any elementary amenable
group is amenable. Grigorchuk [228] has constructed a finitely presented
group which is amenable but not elementary amenable. A group which con-
tains the free group on two letters Z % Z as a subgroup is not amenable
[419, Example 0.6 on page 6]. There exist examples of finitely presented
non-amenable groups which do not contain Z % Z as a subgroup [407]. Any
countable amenable group is a-T-menable, i.e. it admits an affine, isometric
action on a real inner product space which is metrically proper in the sense
that limg_,o ||gv|| = oo holds for every v € V' [33]. For a-T-menable groups
the Baum-Connes-Conjecture has been proved by Higson and Kasparov [257].
An infinite a-T-menable group and in particular an infinite amenable group
does not have Kazhdan’s property T.

A useful geometric characterization of amenable groups is given by the
Fglner condition [35, Theorem F.6.8 on page 308].
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Lemma 6.35. A group G is amenable if and only if it satisfies the Folner
condition, i.e. for any finite set S C G with s € S = s~ € S and € > 0
there ezists a finite non-empty subset A C G such that for its S-boundary
0sA={acA| thereiss e S withas ¢ A} we have

54| < e |A]

Another version of the Fglner criterion is that a finitely presented group
G is amenable if and only if for any positive integer n, any connected closed
n-dimensional Riemannian manifold M with fundamental group m1 (M) = G
and any € > 0 there is a domain {2 C M with (n — 1)-measurable boundary
such that the (n — 1)-measure of 92 does not exceed € times the measure of
2 [35, Theorem F.6.8 on page 308]. Such a domain can be constructed by
an appropriate finite union of translations of a fundamental domain if G is
amenable.

The fundamental group of a closed connected manifold is not amenable
if M admits a Riemannian metric of non-positive curvature which is not
constant zero [16]. Any finitely generated group which is not amenable has
exponential growth [35, Proposition F.6.24 on page 318]. A group G is called
good in the sense of Freedmann if the so called m;-null disk lemma holds for G
which implies the topological s-Cobordism Theorem for 4-manifolds with G
as fundamental group. Any group with subexponential growth is good [204]
Theorem 0.1 on page 511] and amenable. No amenable group is known which
is not good and it may be true that the classes of good groups and amenable
groups coincide. The following conditions on a group G are equivalent:

(1) G is amenable;

(2) The canonical map from the full C*-algebra of G to the reduced C*-
algebra of G is an isomorphism [420, Theorem 7.3.9 on page 243];

(3) The reduced C*-algebra of G is nuclear [303], provided that G is count-
able;

(4) G is finite or for any connected free G-CW-complex X the first Novikov-
Shubin invariant a;(X) is not co™ (see Theorem [2.55/ (5b));

(5) For a closed connected Riemannian manifold M with G = (M) the
Laplacian Ag: L202°(M) — L20°(M) acting on functions on the univer-
sal covering has zero in its spectrum, provided that G is finitely presented
(see [68] or Section 2.7);

(6) HY(G,I?(Q@)) is not Hausdorff [242, Corollary I11.2.4 on page 188];

(7) N(G) ®@cg C is not trivial (see Lemma [6.36]).

Conjecture 6.48| implies another characterization of amenability in terms
of Go(CG), namely [CG] = 0 would hold in Go(CG) if and only if G is not
amenable (see Conjecture 9.67).

It is sometimes easier to deal with elementary amenable groups than with
amenable groups since elementary amenable groups have a useful description
in terms of transfinite induction (see Lemma [10.40]).

For more information about amenable groups we refer to [419].
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6.4.2 Amenability and the Coinvariants of the Group von
Neumann Algebra

Lemma 6.36. N(G)®cqC[G/H] is trivial if and only if H is non-amenable

Proof. Since N(G) ®@cq C[G/H] and N(G) @pray N(H) @cu C are N(G)-
isomorphic, we conclude from Theorem [6.29] (1) that its suffices to prove the
claim in the special case G = H.

Let S be a set of generators of G. Then P, 4 CG CG S C—
0 is exact where €(}_,c5Ag - 9) = X ,cqAg and ry, denotes right multipli-

cation with v € CG. We obtain an exact sequence @, g N (G) —>€BS€STS_1
N(G) S N(G) ®ca C — 0 since the tensor product is right exact. Hence

N(G) ®cg C is trivial if and only if @, ¢ N (G) Beesrenr, N(G) is surjec-
tive. This is equivalent to the existence of a finite subset 7' C S such that

D.cr N(G) Beerrom, N (G) is surjective. Let Gg C G be the subgroup gen-
erated by 7. Then the map above is induction with the inclusion of Gy C G

applied to @, N (Go) Beerria, N(Gp). Hence we conclude from Theo-
rem [6.29] (1)) that N (G) ®ce C is trivial if and only if N (Go) @cg, C is trivial
for some finitely generated subgroup Gy C G. The group G is amenable if
and only if each of its finitely generated subgroups is amenable [419, Propo-
sition 0.16 on page 14]. Hence we can assume without loss of generality that
G is finitely generated and S is finite. Moreover, we can also assume that S
is symmetric, i.e. s € S implies s~ € S.

Because the functor v of Theorem [6.24! (3) is exact, N'(G) ®cg C is trivial

if and only if the operator f: @, 4 *(G) Deesren, I2(G) is surjective. This
is equivalent to the bijectivity of the operator

D.ocsrst
=

id — A
3 .1|‘5|’f o fts Q) T (),

PPN
It is bijective if and only if the spectral radius of the operator [?(G) Zees S
12(G) is different from 1. Since this operator is convolution with a probability
distribution whose support contains .S, namely

. S|t g€ s
P:G—10,1], g»—>{07 95
the spectral radius is 1 precisely if G is amenable, by a result of Kesten [290].

0
6.4.3 Amenability and Flatness Properties of the Group von
Neumann Algebra over the Group Ring

In this subsection we investigate the flatness properties of the group von
Neumann algebra A/ (G) over the complex group ring CG. The next statement
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says roughly that for an amenable group the group von Neumann algebra is
flat over the group ring from the point of view of dimension theory.

Theorem 6.37. (Dimension-flatness of N (G) over CG for amenable
G). Let G be amenable and M be a CG-module. Then
dimy () (TorgG(/\/'(G), M)) =0 forp>1,

where we consider N'(G) as an N (G)-CG-bimodule.
Proof. In the first step we show for a finitely presented N (G)-module M

dimp(c) (Tor;CG(N(G), M)) = 0. (6.38)

Choose a finite presentation CG™ ER CcG" & M — 0. For an element
u =3, Ag-g inl*(G) define its support by supp(u) := {g € G | \y # 0} C G.
Let B = (b;j) € M(m,n,CG) be the matrix describing f, i.e. f is given by
right multiplication with B. Define the finite subset S of G by

S={geG|gorg"e| Jsupp(bi,)}.
i

Let f®):12(G)™ — I?(G)™ be the bounded G-equivariant operator induced
by f. Denote by K the G-invariant linear subspace of [?(G)™ which is the
image of the kernel of f under the canonical inclusion k: CG™ — [2(G)™.
Next we show for the closure K of K

K = ker(f@). (6.39)

Obviously K C ker(f®)). Let pr: I2(G)™ — 1?(G)™ be the orthogonal projec-
tion onto the closed G-invariant subspace K+ Nker(f®). The von Neumann
dimension of im(pr) is zero if and only if pr itself is zero (see Theorem [1.9
(3))). Hence (6.39) will follow if we can prove

trar(q)(pr) = 0. (6.40)
Let € > 0 be given. We conclude from Lemma [6.35 that there is a finite
non-empty subset A C G satisfying

m-(|S[+1) - |9s4]
A

where 9sA is defined by {a € A| there is s € S with as ¢ A}. Define

<e (6.41)

A:= {geG|gedsAorgte dsA for some t € S}

= 9sA( <U 85A~t> :

tesS
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Let pry: I?(G) — [2(G) be the projection which sends dgec g 9 to
> geaAg - g. Define pru: I2(G) — I*(G) analogously. Next we show for s € S
and u € I*(GQ)

pryors(u) = rsopry(u) if pry(u) =0, (6.42)

where rg: [2(G) — [?(G) is right multiplication with s. Since ¢ € S implies
t~! € S, we get the following equality of subsets of G

{l9eGlgseAgg Ay ={geA|g¢ A}

Now (6.42) follows from the following calculation for u = deG,ggA Ag-g €
(@)

pryors(u) = pry Z Agrgs| = Z Ag - gs

geG,g¢ A g€G,gs€A,g¢ A

— Z g gs = Z Ag g | s = rsopry(u).

geEA,g¢ A geEA,g¢ A

We have defined S such that each entry in the matrix B describing f is a
linear combination of elements in S. Hence (6.42]) implies

B o120 =1 (ons )
if pro(u;))=0fori=1,2...,m

Notice that the image of @.", pry lies in CG™. We conclude

m
@prA(u) eK if ueker(f®),pra(u;)=0fori=1,2....,m

This shows

(pro@prA> (ker(f(Q)) N @ker(prA)> = 0.

i=1

Since ker(pr,) has complex codimension |A| in I2(G) and |A] < (]S| + 1) -
|0s A, we conclude for the complex dimension dim¢ of complex vector spaces

dimg <<pro®prA> (ker (f@ ))) <m-(|S]+1)-]0sA|. (6.43)

Since propry, is an endomorphism of Hilbert spaces with finite dimensional
image, it is trace-class and its trace trc(propry) is defined. We get
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tre (pro pr
trpr() (pr) = el gﬁ —1Pra) (6.44)

from the following computation for e € G C I2(G) the unit element

trae (pr) = Z<pri,i(e)7 e)
i=1
=11 2 Z 4]+ e)
T4 Z > rii(9),9)

i=1g€eA

| Z Z 7, g prA g>
i=1geA
Z Z opry(9),9)
i=1 geG

|A| Ztrc 7.zoprA)

= ﬁtrc (pr o(@prA)> .

If H is a Hilbert space and f: H — H is a bounded operator with finite
dimensional image, then trc(f) < ||f|| - dime (f(im(f))). Since the image of
pr is contained in ker( f (2)) and pr and pr 4 have operator norm 1, we conclude

tre <pro@prA> < dimg¢ <<pro@prA> (ker 2)))> . (6.45)
i=1
Equations (6.41), (6.43), (6.44) and (6.45) imply
trar(a)(pr) < e.

Since this holds for all € > 0, we get (6.40) and hence (6.39) is true.
Let pri: I2(G)™ — I2(G)™ be the projection onto K. Let i: ker(f) —
CG™ be the inclusion. It induces a map

idN(G) Rcat: N(G) ®cq ker(f) — N(G)m

where here and in the sequel we will identify N(G) ®ce CG™ = N(G)™ by
the obvious isomorphism. Next we want to show

im(v~ (pr)) = im(idy(g) ®cai). (6.46)



262 6. L*-Invariants for General Spaces with Group Action

Let = € ker(f). Then
Lo (id—v ! (prg)) o (idy(g) ®cai) (1 ® ) = (id — pr) o k o i(z),(6.47)

where k: CG™ — [*(G)™ and [: N(G)™ — [2(G)™ are the obvious inclu-
sions. Since (id — prg) is trivial on K we get (id —prg) o ko i = 0. Now we
conclude from (6.47) that im(idy () ®cqi) C ker(id —v~!(prg)) and hence
im(idy(¢) ®cgi) C im(v~'(prg)) holds. This shows im(idx(c) ®cai) C
im(v~!(prg)). It remains to prove for any N'(G)-map g: N (G)™ — N(G)
with im(idy(e) ®@cgi) C ker(g) that g o v=!(prg) is trivial. Obviously
K C ker(v(g)). Since ker(v(g)) is a closed subspace, we get K C ker(v(g)).
We conclude v(g) o priz = 0 and hence g o v~ *(pr) = 0. This finishes the
proof of (6.46]).

Since v~ ! preserves exactness by Theorem 6.24 (3) and idare) ®caf =
v~ f®), we conclude from (6.39) and (6.46) that the sequence

N(G) e ker(f) D20 pr(gym @ BT jr(gym

is weakly exact. Continuity of the dimension function (see Theorem 6.7 (4d))
implies

dimN(G) (ker(idN(G) ®(CGf)/ im(idN(G) ®(Cgi)) = 0.

Since TorT“(N(G), M) = ker(idy(q) ®ccf)/ im(idy (@) ®ci) holds, we
have proved (6.38) provided that M is finitely presented.

Next we prove (6.38) for arbitrary CG-modules M. Obviously M is the
union of its finitely generated submodules. Any finitely generated module
N is a colimit over a directed system of finitely presented modules, namely,
choose an epimorphism from a finitely generated free module F to N with
kernel K. Since K is the union of its finitely generated submodules, N is the
colimit of the directed system F/L where L runs over the finitely generated
submodules of K. The functor Tor commutes in both variables with colimits
over directed systems [94, Proposition VI.1.3. on page 107]. Now (6.38]) follows
from Additivity and Cofinality (see Theorem 6.7/ (4c) and 4b)) or directly
from Theorem [6.13/ about dimension and colimits.

Next we show for any CG-module, that dim ) (TOI“;C,G N(G), M)) =0

holds for all p > 1 by induction over p. The induction step p = 1 has been
proved above. Choose an exact sequence 0 — N — F — M — 0 of N (G)-
modules such that F is free. Then we obtain form the associated long exact se-
quence of Tor-groups an isomorphism TorSG N(G@), M) = Torggl (NM(G),N)
and the induction step follows. This finishes the proof of Theorem 6.37. O

Conjecture 6.48. (Amenability and dimension-flatness of N'(G) over
CG). A group G is amenable if and only if for each CG-module M

dimy () (TorSG(./\/'(G), M)) =0 forp>1
holds.
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Theorem 16.37| gives the “only if”-statement. Evidence for the “if”-state-
ment comes from the following observation. Suppose that G contains a free
group Z * 7 of rank 2 as subgroup. Notice that S*V S! is a model for B(Z
7). Tts cellular C[Z x Z]-chain complex yields an exact sequence 0 — C[Z x*
7)* — C|Z * Z] — C — 0, where C is equipped with the trivial Z x Z-action.
We conclude from Additivity (see Theorem 6.7/ (4b)), Theorem [6.29] (1) and
Lemma 6.36

dimpr(z.z) (TOT(E[Z*Z] N(Z *Z), C)) =1
N (G) @x(ziz) Tori (N (Z x Z),€)) = Ta ¥ (M(G), CC Deizazy ©).
We conclude from Theorem 16.29/ (2)

dimpr(g) (TOI“&CG N(G),CG ®cz+z) C)) # 0.

One may ask for which groups the von Neumann algebra N(G) is flat as
a CG-module. This is true if G is virtually cyclic. There is some evidence for
the conjecture

Conjecture 6.49 (Flatness of N (G) over CG). The group von Neumann
algebra N'(G) is flat over CG if and only if G is virtually cyclic, i.e. G is
finite or contains Z as normal subgroup of finite index.

6.5 L2-Betti Numbers for General Spaces with Group
Actions

In this section we extend the notion of L?-Betti numbers for free G-CW-
complexes of finite type introduced in Definition [1.30 to arbitrary G-spaces,
where we will use the extended dimension function dimyr(g) of Definition
6.20. We prove the main properties of these notions.

Definition 6.50 (L?-Betti numbers). Let X be a (left) G-space. Equip
N(G) with the obvious N (G)-ZG-bimodule structure. The singular homology
HS(X;N(G)) of X with coefficients in N'(G) is the homology of the N'(G)-
chain complex N (G) @zq C3"8(X), where C3"(X) is the singular chain
complez of X with the induced ZG-structure. Define the p-th L2-Betti number
of X by

VP (X, N(G)) = dimpy ) (HS (X;N(G))) € [0, 0],

where dim () is the extended dimension function of Definition [6.20.

If G and its action on X are clear from the context, we often omit N'(G)
in the notation above.

Define for any (discrete) group G its p-th L?-Betti number by

b(G) = b (EG,N(G)).
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We first show that this new definition and the old one agree when both
apply. For that purpose we will need the following two lemmas. The proof of
the first one can be found for instance in [333, Lemma 4.2 on page 152].

Lemma 6.51. Let X be a G-CW-complex and C.(X) be its cellular ZG-
chain complex. Then there exists a ZG-chain homotopy equivalence

Fo(X): Cu(X) — CM8(X),

which is, up to ZG-homotopy, uniquely defined and natural in X . In particular
we get a natural isomorphism of N'(G)-modules

Hy(N(G) @26 Cu(X)) = HS(X;N(G)) := Hy(N(G) ®z¢ C3M(X)).

Lemma 6.52. Let C. be a finitely generated Hilbert N'(G)-chain complez.
Then there is an isomorphism, natural in C.,

hy(CL): v (HSP(CL)) = PH, (v (CL)),
where v™1 is the functor appearing in Theorem |6.24.

Proof. We define h,(C) by the following commutative diagram whose columns
are exact and whose middle and lower vertical arrows are isomorphisms by
Theorem 6.7 (2) and Theorem [6.24! (3)

0 0

I I

v EP(CL) ) P, (L))

fl(q)T TT

vl(ker(cy)) —— ker(v71(cp))

u*l(j)T lT

v (imleprn) ~—2h ()

I I

0 0

where i: ker(c,) — Cp, j: im(cpt1) — ker(cp), k: im(cp41) — Cp and [ are
the obvious inclusions and ¢ and r the obvious projections. Then h,(C.) is
an isomorphism by the five-lemma. 0O

Lemma 6.53. Let X be a G-CW -complex of finite type. Then Definition
1.30 and Definition 6.50 of L?-Betti numbers bz(,z)(X;N(G)) agree.
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Proof. We can identify N (G) ®z¢ C(X) with u‘l(Ciz)(X)). Now apply
Theorem [6.7 (4¢€)), Theorem [6.24] (4)), Lemma 6.51] and Lemma [6.52. O

Next we collect some basic properties of L?-Betti numbers.

Theorem 6.54. L2-Betti numbers for arbitrary spaces).

(1)

(2)

(3)

(4)

Homology invariance

We have for a G-map f: X - Y

(a) Suppose for n > 1 that for each subgroup H C G the induced
map fH: X" — YH s C-homologically n-connected, i.e. the map
Hime(fH:C): Hyme(XH;C) — Hi™s(YH; C) induced by f% on sin-
gular homology with complex coefficients is bijective for p < n and
surjective for p = n. Then the induced map f: HE(X;N(G)) —

Gy o biionti ot _

HZ% (Y; N(G)) is bijective for p < n and surjective for p =n and we
ge

2 _ (2 .
b (X) = b (V) forp <mn;
2 2 .
P (X) > b2 (Y) forp=mn;

(b) Suppose that for each subgroup H C G the induced map fH: X7 —
Y is a C-homology equivalence, i.e. H;i“g(fH; C) is bijective forp >
0. Then for all p > 0 the map f.: HS(X;N(G)) — HS(Y;N(G))
induced by f is bijective and we get

2 _ 2 .
WI(X) = BIY)  forp>0;

Comparison with the Borel construction

Let X be a G-CW -complex. Suppose that for all x € X the isotropy group
G, is finite or satisfies 65,2)(G$) =0 for all p > 0. Then

(XN (@) = BP(EG x XsN(G)  forp =03

Invariance under non-equivariant C-homology equivalences

Suppose that f: X — Y is a G-equivariant map of G-CW -complexes
such that the induced map Hf,ing(f; C) on singular homology with complex
coefficients is bijective. Suppose that for all x € X the isotropy group G,
is finite or satisfies b,(,2)(Gw) = 0 for all p > 0, and analogously for all
y €Y. Then we have for all p > 0

b (XN (G)) = b (YVN(G));

Independence of equivariant cells with infinite isotropy

Let X be a G-CW -complez. Let X [00] be the G-CW -subcomplex consist-
ing of those points whose isotropy subgroups are infinite. Then we get for
allp>0

2)(y. _ p2 ) .
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(5)

(6)

(7)

(8)
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Kiinneth formula

Let X be a G-space and 'Y be an H-space. Then X XY is a G x H-space
and we get for alln >0

b(2) X xY) Z b(2) (2)( ),
ptg=n
where we use the convention that 000 = 0, r- 00 = oco for r € (0,00]
and r 4+ 0o = oo forr € [0,00];
Restriction

Let H C G be a subgroup of finite index [G : H]. Then
(a) Let M be an N'(G)-module and res& M be the N'(H)-module obtained
from M by restriction. Then

dimp gy (ves M) =[G : H] - dimpg) (M),

where [G : H] - 00 is understood to be co;
(b) Let X be a G-space and let resg X be the H-space obtained from X
by restriction. Then

b (resd X N(H)) = [G: H] - bP(X;N(G));

Induction

Let i: H — G be an inclusion of groups and let X be an H-space. Let
i: N(H) — N(G) be the induced ring homomorphism (see Definition
1.23). Then

HS(G xy X;N(G)) = i, HY (X; N (H));
B(G x i X; N(G)) = b (X; N (H));

Zero-th homology and L?-Betti number

Let X be a path-connected G-space. Then

(a) There is an N(G)-isomorphism HS (X; N(G)) = N(G) ®@cq C;

(b) b (X;N(G)) = |G|~L, where |G|~ is defined to be zero if the order
|G| of G is infinite;

(¢c) H§(X;N(Q)) is trivial if and only if G is non-amenable;

Proof. (1) The proof of assertion (1) which generalizes Theorem [1.35! (1) can
be found in [333, Lemma 4.8 on page 153].

(2)) Because of Additivity (see Theorem 6.7 (4b)) it suffices to prove that the
dimension of the kernel and the cokernel of the map induced by the projection

are

pr,: HE(EG x X;N(G)) — HE(X;./\/'(G))

trivial. Notice that X is the directed colimit of its finite G-C'W-sub-

complexes. Since HS (—,N(G)) is compatible with directed colimits and di-
rected colimits preserve exact sequences, we can assume by Theorem 6.13
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about dimension and colimits that X itself is finite. By induction over the
number of equivariant cells, the long exact homology sequence and Addi-
tivity (see Theorem 6.7 (4b)) the claim reduces to the case where X is of
the shape G/H. Because of assertion (7)) it suffices to prove for the map
pr.: HY(EH; N (H)) — H} ({*};N(H)) that its kernel and cokernel have

trivial dimension, provided that H is finite or béz) (H;N(H)) =0 for p > 0.
This follows from assertion (8al).

(3) Since EG x X and EG x Y are free G-CW-complexes and id x f: EG x
X — EG x Y induces an isomorphism on homology with C-coefficients, the
claim follows from assertions (1b) and (2).

(4) We get an exact sequence of cellular ZG-chain complexes 0 — C, (X [o0]) —
Cy(X) — Cu(X, X[o0]) — 0 which is a split exact sequence of ZG-modules
in each dimension. Hence it stays exact after applying N (G) ®zg —, and we
get a long exact sequence of A'(G)-homology modules

- = Hy (X[oc]s N(@)) — Hy (X3 N(G)) — Hy (X, X[oo]; N (G))

— HpG_l(X[oo];./\/(G)) — ..

Because of Additivity (see Theorem [6.7/ (4b)) it suffices to prove that
dimpr(c) (NV(G) ® Cp(X[<])) = 0 for all p > 0. This follows from Addi-
tivity (see Theorem [6.7] (4h)), Cofinality (see Theorem 6.7 (4c)) and Lemma
6.33/ (1)), since Cp(X[o0]) is a direct sum of ZG-modules of the shape Z[G/H]|
for infinite subgroups H C G.

(5) This assertion is a generalization of Theorem [1.35! (4).

For any G-space Z there is a G-CW-complex Z’ together with a G-map
f: Z — Z' such that f¥ is a weak homotopy equivalence and hence induces
an isomorphism on singular homology with complex coeflicients for all H C G
[326,, Proposition 2.3 iii) on page 35]. Hence we can assume without loss of
generality that X is a G-CW-complex and Y is a H-CW-complex by assertion
(1b).

The G-CW-complex X is the colimit of the directed system {X; | i € I}
of its finite G-C'W-subcomplexes. Analogously Y is the colimit of the directed
system {Y; | j € J} of its finite H-CW-subcomplexes. Since we are working
in the category of compactly generated spaces, the G x H-CW-complex X xY
is the colimit of the directed system {X; xYj | (¢,7) € I x J}. Since homology
and tensor products are compatible with colimits over directed systems, we
conclude from Theorem 6.13] (2) about dimension and colimits



268 6. L*-Invariants for General Spaces with Group Action

b2 (X5 N(G))
= sup {inf {dimy(q) (Im(dsy.5, : HS (Xig; N (G)) — HS (X;,;N(G))))
|iy € Iig <iy} |io € I}; (6.55)
b2 (Y3 N(G))
= sup {inf {dimy gy (im(jo 5, : HY (Yies N(H)) — HY (Vs N(H))))
| j1 € J,jo < ji}|jo€ J}; (6.56)
b (X x Y; N (G x H))
= sup {inf {dimN(GxH) (im(:“(io,jo),(ilm) :
HSH (X, x Yis N(G x H)) — HE P (X3, x Y, N(G x H))))
| (iy,71) € I x J,ig < i1,j0 < ji} | GGo,j0) €I x J},  (6.57)

where here and in the sequel ¢, 4,, ¥j, 4, and gy
induced by the obvious inclusions.

Next we show for n > 0 and iy, € I with ig < ¢; and jg,71 € J with
Jo<h

i01j0)1(i17j1) are the maps

din (@ rry (I (Kio o), (i) Hie ™M (Xig X Yig; N(G x H))
i H’I’L(X’Ll X XJ17N(G X H))))
= Y dimye) (im(ig.i : HY (Xigs N(G)) = HY (XN (G))))

ptqg=n

~dimpery (im(jo 5, 0 HY (Y N(G)) — HI (Y5 N(G)))) . (6.58)
For k = 0,1 let C,[k] be the cellular ZG-chain complex of the G-C'W-pair
(Xi,, X, [00]), where X, [0o] has been introduced in Theorem [6.54! (4). For
k = 0,1 let D,[k] be the cellular ZH-chain complex of the H-CW-pair
(Y}, Y, [00]). Then C\[k] ®z D, [k] is the cellular Z[G x H]-chain complex of
the G x H-CW-pair (X x Y, (X x Y)[cx]). Notice that C,[k] is a direct sum
of ZG-modules of the shape Z[G/H] for finite subgroups H C G. Hence the
G-CW-complex structure on (X, , X;, [0o]) induces the structure of a Hilbert

N (G)-chain complex on c? [k] := I?(G)®z6C[k]. The analogous statements
are true for DIV [k] := 12(H) @26 D. [k] and 12(Gx H)®g(c 1) (Cu [k @2 Do [K]).
Notice that the last Hilbert N (G x H)-chain complex is isomorphic to the

Hilbert tensor product C? [k] ® D [k]. We conclude from Theorem 6.7 (2)
and (4d)), Theorem [6.24] and Theorem [6.54! (4)
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dlm/\/ (G) (lm( i0,i1 - ( ZU’N(G)) - HG(XZNN(G)))
= dimyy (g (clos im(¢i, ., 0 H?(CP[0]) - H 2>(C(2)[1])))) . (6.59)
dlm/\/ (m Yo jr : H;{J( ]O’N(H)> - Hf( g1’ ( ))))
= dimy(z) (clos im(e, 5, - (D [0]) — HP (D? )[1])))) . (6.60)
dimr ey (i o), (11,1 - Hyy M (Xig X Vo3 N(G x H))

— H7 (X, x Y53 N (G x H))))

= dims(g (A08(m (1630, i1y HEP (C20] @ DI [0])
- HA(CP e DPN))).  (6.61)
There is a commutative diagram of Hilbert A'(G X H)-modules
D, sy B (C2[0) @ Hy(DP[0)) —— B (¢ 0] @ DP[0])
D pig=n Pig.is ®¢jo,j1l /“(’ioxjo)w(iLh)J/
B, +mn B (CPN) @ HP (D)) —— HP(CP 1] @ D))

where the horizontal isomorphisms are the ones appearing in Lemma [1.22.
Thus we obtain an isomorphism of closure of the images of the two vertical
maps. The closure of the image of a Hilbert tensor product of two morphisms
is the Hilbert tensor product of the closures of the individual images. Now
(6.58) follows from Theorem [1.12/ (5), (6.59), (6.60) and (6.61)). Finally as-
sertion (5)) follows from (6.55)), (6.56), (6.57) and (6.58).

(6) generalizes Theorem [1.35 (9).

We begin with the proof of assertion (6a) Notice for the sequel that
resd N'(G) is N'(H)-isomorphic to N (H)“H]. Since M is the colimit of
the directed system of its finitely generated N (G)-submodules, it suffices
to consider the case where M is finitely generated because of Cofinality
(see Theorem [6.7 ( d)). Since for a finitely generated N ( )-module we have
T(resZ M) = res (TM) and hence P(resZ M) = res(PM), we conclude
from Theorem 6.7 (3) and (4€) that it suffices to treat the case of a finitely
generated projective N'(G)-module M. The functor v appearing in Theorem
6.24] is compatible with restriction for N (G)-modules and restriction from G
to H for Hilbert modules. Using Theorem[6.24! (4) we reduce the claim to the
assertion that for any finitely generated Hilbert A/(G)-module V we have

dimp gy (resg V) = [G: H] - dimpyg)(V).

This has already been proved in Theorem [1.12] (6).

Next we prove assertion (6b). We obtain an isomorphism of N (H)-CG-
bimodules N(H) ®cy CG — N(G) by sending u ® g to i, (u) o Ry
induces an N (H )-isomorphism
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N(H) @cy C,(resh X) = resB (N (G) ©ca Cu(X)).

Now assertion (6b) follows from assertion (6a).

(7)) is a generalization of Theorem [1.35 (10)) and follows from Theorem [6.29.

(8) This follows from Lemma 6.33 and Lemma[6.36/ and generalizes Theorem

1.35 (8). This finishes the proof of Theorem [6.54! O
We will investigate the class By, of groups G, for which béz) (G) = 0 holds

for all p > 0, in Section [7.1.

Remark 6.62. Let M be a closed Riemannian manifold. We have already
mentioned in Section 2.7 that the analytic Laplace operator A,: L22P (M) —
L? QP(M ) on the universal covering does not have zero in its spectrum if and
only if we get for its analytic p-th L2-Betti number b;z)(]T/[/) = 0 and for its
analytic p-th Novikov-Shubin invariant aﬁ(ﬁ ) = oco™. In the case p = 0
this is equivalent to the condition that H§ (X; N(G)) = 0 by Theorem [1.59,
Lemma [2.111 (8) Theorem 2.68 and Theorem [6.24] (3). The latter condition is
by Theorem [6.54' (8c) equivalent to the condition that 71 (M) is amenable.
Thus we rediscover (and in some sense generalize to arbitrary G-spaces) the
result of Brooks [68] that for a closed Riemannian manifold M the Laplacian
Ag: L2Q9(M) — L202°(M) acting on functions on the universal covering
has zero in its spectrum if and only if m (M) is amenable. Notice that both
Brook’s and our proof are based on Kesten [290].

The next result is a generalization of Theorem [1.39 and was conjectured
for a closed aspherical manifold fibering over the circle in [237, page 229).

Theorem 6.63 (Vanishing of L?-Betti numbers of mapping tori).
Let f: X — X be a cellular selfmap of a connected CW -complex X and
let mi(Ty) %G Zbea factorization of the canonical epimorphism into
epimorphisms ¢ and . Suppose for given p > 0 that b,(f)(G X goi X’,N(G)) <
oo and b;Q_)l(G X oi X:N(G)) < oo holds, where i: wl(z) — m1(Ty) is the
map induced by the obvious inclusion of X into Ty. Let Ty be the covering of
Ty associated to ¢, which is a free G-CW -complex. Then we get

b2 (T} N (@) = 0.

Proof. The proof is analogous to that of Theorem [1.39] except the following
changes. Instead of Theorem [1.35 (1)) and Theorem [1.35] (9) one has to refer
to Theorem [6.54/ (1b)) and Theorem [6.54 (6b) and one has to give a different
argument for the existence of a constant C which is independent of n and
satisfies

b (Tyns N(Gn)) < C. (6.64)
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In the proof of Theorem [1.39 we have taken C' = 3, + B,—1, where 3, is
the number of p-cells in X. Next we explain why we can take for (6.64)) the
constant

C =BG X goi X;N(Q)) + 071 (G x s X3 N(Q)).

First one checks that the image of ¢ oi: 71(X) — G is contained in 1 ~*(0)
and hence in G,,. One constructs an exact sequence of ZG,,-chain complexes

0 — C(Gr Xgoi X) = Co(Tin) — XC.(Gy X goi X) — 0.

Tensoring with A (G,,) and taking the long homology sequence yields the
exact sequence of NV(G,,)-modules

Hy(N(Gn) ®26,, C+(Gn X goi X)) = Hy(N(Gr) @z, Cu(Tyn))
— Hy 1 (N(Gn) @26, Co(Gr X goi X))
Additivity (see Theorem 6.7 (4b)) and Theorem [6.54 (7)) imply
b (Trrs N (G)) < 0P (G X gos X3 N (Gha))
b5 (G X goi X5 N (G));
B (G X goi X; N (Gn)) = b (G X goi X; N (Q));
BV (G X goi Xi N (G)) = 0571 (G % goi X N(Q)).

This finishes the proof of (6.64) and thus of Theorem [6.63! O
The next result is a generalization of Theorem [1.40. Its proof is analogous
to that one of Theorem [1.40\

Theorem 6.65. (L>-Betti numbers and S'-actions). Let X be a con-
nected S*-CW -complex. Suppose that for one orbit S'/H (and hence for all
orbits) the inclusion into X induces a map on m with infinite image. (In
particular the S*-action has no fized points.) Let X be the universal covering
of X with the canonical 71(X)-action. Then we get for allp > 0

)=
b (X) = 0.

The next Lemma [6.66! is a generalization of Lemma [1.41. Although it
is more general — we have dropped the finiteness conditions on the CW-
complexes F';, E and B — its proof is now simpler because our algebraic
approach to dimension theory and L2-Betti numbers is so flexible that we can
use standard methods from algebra and topology such as the Serre spectral
sequence for fibrations and local coefficients.

Lemma 6.66. Let F 5 E — B be a fibration of connected C'W -complezes.
Let ¢: m(E) — G be a group homomorphisms and let i,: m (F) — m(E)
be the homomorphism induced by the inclusion i. Suppose that for a given
integer d > 0 the L2-Betti number b,(,Q)(G X goi, F:N(Q)) vanishes for all
p < d. Then the L?-Betti number b,()z)(G Xy B N(G)) vanishes for all p < d.
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Proof. There is a spectral homology sequence of N (G)-modules which con-
verges to HS, (G x4 E; N(G)) and whose E'-term is

Eyq = HY(G Xpoi, FsN(Q)) @z, () Cp(B),

where the right 7 (B)-action on H,IG(G X o, F; N(@)) is induced by the fiber
transport. Since

B (G g, FN(G)) = dimya) (HY (G %o, FN(G))) = 0

holds for ¢ < d by assumption and C’p(é) is a free Zm (B)-module, we con-
clude from Additivity (see Theorem 6.7 (4b)) and Cofinality (see Theorem
6.7 (4c)) that dimpr ey (E,,) = 0 holds for all p > 0 and ¢ < d. Hence

bz(>2)(G X EaN(G)) = 0 holds for all p < d. O

Theorem 6.67 (L2-Betti numbers and fibrations). Let F - E % B

be a fibration of connected CW -complexes. Let p,: m(E) LAY m1(B)
be a factorization of the map induced by p into epimorphisms ¢ and . Let
ix: 1 (F) — w1 (E) be the homomorphism induced by the inclusion i. Suppose

for a given integer d > 1 that bg)(G X o F;N(@) =0 forp<d—1 and
bg)(G X goi. F;N(Q)) < oo holds. Suppose that w,(B) contains an element

of infinite order or finite subgroups of arbitrarily large order. Then b§,2)(G X
E;N(GQ)) =0 forp <d.

Proof. Since ng) (G X poi. F; N(G)) = 0 holds for ¢ < d—1 by assumption and
Cp(B) is a free Zm;(B)-module, we conclude by the same spectral sequence
argument as in the proof of Lemma [6.66

b2 (G x4 B;N(G)) =0 0<p<d-—1
and

b2 (G x4 E;N(G))
= dim/\/((;) (Eg,d)
= dim(q) (HJ'”(B; H (G % gor. FsN ()

= dimpr(g) (Hl?(G X goi. FiN(G)) @z, () Z) ,  (6.68)

where the right 71 (B)-action on H§ (G X go:, F; N(@)) is induced by the fiber
transport. It remains to prove

B2(G x4 E;N(G)) = 0. (6.69)
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Let A C m(B) be a subgroup which is either Z or finite. Let X be S! if
A = Z and a connected finite 2-dimensional CTW-complex X with 71 (X) = A
if A is finite. In any case we can choose a map f: X — B which induces
on fundamental groups the inclusion of A into w1 (B). Let F =% E, 2%
X be the fibration obtained from F - E % B by applying the pullback
construction with respect to f. Let f: Ey — E be the canonical map. Since
there is an obvious N (G)-epimorphism from H$ (G X goi, F;N(G)) @24 Z to
HS (G X poi, ﬁ,N(G)) ®zr, (B) L, we get from Additivity (see Theorem 6.7
(4b))

dimy () (HE (G X goi. FN(G)) @24 7)
> dim(q) (HF (G % goi, F; N(G)) @2e,(5) Z) - (6.70)
Define Gy = ¢~1(A). Then ¢ and v induce epimorphisms ¢y and 1y which
make the following diagram commute

o Yo

™1 (EO) GO 1 (X)

7 | r

m(E) —— ¢ —Y— m(B)

Notice that the fiber transport is compatible with pullbacks. From Theorem
6.29, from (6.68) applied to p and ¢ and applied to pg and ¢y and from (6.70])
we conclude

b7 (G x5 EsN(G)) < b5 (Go % gy Eos N(Go)). (6.71)

We firstly consider the case where A = Z and X = S'. Then Ejy is up to
homotopy the mapping torus of the selfhomotopy equivalence FF — F given
by the fiber transport of pg along a generator of 71 (S') and hence b((f) (Go X
Eo; N (Gy)) = 0 by Theorem 6.63. Now (6.69) follows from (6.71). Next we
consider the case where A is finite. Let F -5 B, 2% X be the fibration
obtained from pg: Eg — X by the pullback construction with respect to the
universal covering X — X. Put G; = ~!(1). This is a subgroup of Gy of
index |A|. Let ¢1: m1(E1) — G; be the epimorphism induced by ¢q. Notice
that the canonical map E; — Fj is a |Al-sheeted covering. We conclude from
Theorem [6.54! (7) and (6b) and from applying (6.68)) to p1 and ¢1: w1 (F1) —
Gy
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AL 55 (Go % Eo; N'(Go)) = b5 (resi (Go x4, Eo); N (G1))
= b (Gy xg, E1; N(Gy))
= dimy(a,) (Hfl (G1 Xg0(ir)= ﬁ;N(Gﬁ))
= 0P (G X gro(iye BN (G));
= bP(G X goi. F;N(Q)).
This implies together with (6.71)

b (G X poi. F3N(G))
|4

b (G x4 BN(G)) <

Since by assumption 71 (B) either contains Z as a subgroup or finite subgroups
A of arbitrarily large order, (6.69) follows. This finishes the proof of Theorem
6.67. O

As far as the assumption about 71 (B) in Theorem [6.67/is concerned, we
mention that there is for any prime number p > 107 an infinite finitely
generated group all of whose proper subgroups are finite of order p [405]. To
the author’s knowledge it is not known whether there is an infinite finitely
presented group with finite exponent. For more information about this so
called Burnside problem we refer to [469]. Using Theorem [6.29 one obtains
the following special case of Theorem 16.67.

Corollary 6.72. Let F 5 E 2, B be a fibration of connected CW -complexes
such that i.: m (F) — 71 (E) is injective, w1 (F) is infinite and b§2) (F) < .
Suppose that m1(B) contains an element of infinite order or finite subgroups
of arbitrarily large order. Then

bo(E) = by (E) = 0.

Corollary [6.72 has been conjectured in [237, page 235] for fibrations F' —
E — B of connected aspherical CW-complexes of finite type with non-trivial
fundamental groups. It will play a role in applications of L?-Betti numbers
to deficiencies of finitely presented groups in Section (7.3l

The next Theorem shows that for amenable G the p-th L?-Betti number of
a G-space X depends only on the CG-modules given by the singular homology
of X with complex coefficients. The key ingredient will be Theorem [6.37/ which
shows that the von Neumann algebra of an amenable group is not flat over
the complex group ring in the strict sense but is “dimension-flat”.

Theorem 6.73. Let G be an amenable group and X be a G-space. Then
bz()g) (X,N(G)) = dimN(G) (N(G) Qca H;ing(X; (C)) ,

where H;ing(X;(C) is the CG-module given by the singular homology of X
with complex coefficients.
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Proof. We will show for an arbitrary CG-chain complex C, with C, = 0 for
p<O0

dimp(g) (Hp(N(G) @cq Ci)) = dimy ) V(G) ®@ce Hp(Cy)) - (6.74)

We begin with the case where C, is projective. Then there is a universal co-
efficient spectral sequence converging to Hy44(N(G) @ce Cs) [518, Theorem
5.6.4 on page 143] whose E°-term is E2 = Tor;C,G(N(G),Hq(C’*)) Now
Additivity (see Theorem 6.7 (4b)) together with Theorem 6.37 imply (6.74)
if C, is projective.

Next we prove (6.74) in the case where C, is acyclic. If C, is 2-dimensional,
we conclude dimpr(qy (Hy(N(G) ®ca C.)) = 0 for p > 0 using the long exact
Tor-sequences of the exact sequence 0 — Cy — C; — Cy — 0, Additivity
(see Theorem [6.7 (4b)) and Theorem 6.37. Now the claim for any acyclic
CG-chain complexes C, with C), = 0 for p < 0 follows from by inspecting the

various short exact sequences 0 — im(cp11) — Cp — im(c,) — 0.

In the general case one chooses a projective CG-chain complex P, to-
gether with a CG-chain map f.: P, — C, which induces an isomorphism
on homology. Notice that the mapping cylinder cyl(f.) is CG-chain homo-
topy equivalent to C, and the mapping cone cone(f,) of f, is acyclic. Hence
(6.74) is true for P, and cone(f.). Thus we get (6.74) for C, from Additiv-
ity (see Theorem 6.7 (4b)) and the long exact homology sequences of the
short exact sequence of A'(G)-chain complexes which we obtain by applying
N(G) ®ce — to the short exact (in each dimension split exact) CG-sequence
0 — P, — cyl(f.) — cone(f,) — 0. This finishes the proof of Theorem 6.73.

0

We conclude from Theorem [6.54/ (8b) and Theorem [6.73

Corollary 6.75. If G is an infinite amenable group, then b§,2)(G) =0 for all
p=>0.

We will investigate the class By, of groups G, for which b§,2) (G) = 0 holds
for all p > 0, in Section [7.1.

Remark 6.76. Next we compare our approach with the one of Cheeger and
Gromov [107, section 2], where Corollary[6.75/has already been proved in [107,
Theorem 0.2 on page 191]. We begin with the case of a countable simplicial
complex X with free simplicial G-action. Then for any exhaustion Xy C X7 C
X3 C ... C X by G-equivariant simplicial subcomplexes for which G\ X is
compact, the p-th L?-Betti number in the sense and notation of [107, 2.8 on
page 198] is given by

bg)(X :G) = lim lim dimprg) (im (Hé)(Xk Q) 25 FZ()Q)(XJ- : G))) ,

j—o00 k—oo

where i;5: X; — X} is the inclusion for j < k. We get an identification
ﬁz(;)(Xj :G) = Hé) (X;; N(G)) from Lemma [1.76. Notice that for a G-map
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f:Y — Z of G-CW-complexes of finite type Hzgz)(Y;/\/'(G)) can be identi-
fied with H é)(Y;N’ (@)) and analogously for Z and that under these iden-
(f) = (Hé)(f))* (see Lemma [1.18]). Moreover, we conclude

tifications Hé)
from Additivity (see Theorem 6.7/ (4b)) that dimpr(e) (im (Hé)(f))) =

dimpr(q) (im (H,g2)(f))) Now we get from Lemma 6.52, Lemma 6.53 and
Theorem 6.7

dimpr(a) (im (Hl(;) (X :G) LN F](Dz)(Xj : G)))
= dimpr(g) (im (Hf(Xj;N(G)) C1LN Hf(Xk;N(G)))> .

Hence we conclude from Theorem [6.13] about dimension and colimits that
the definitions in [107, 2.8 on page 198] and in Definition 6.50! for a countable
free simplicial complex X with free simplicial G-action agree

b (X : G) = b2 (X; N(G)). (6.77)

If G is countable and X is a countable simplicial complex with simplicial (not
necessarily free) G-action, then by [107, Proposition 2.2 on page 198] and by
(6.77)

bW (X:G) = b (EGx X :G) = b2 (EGx X;N(G)). (6.78)

Cheeger and Gromov [107, Section 2] define L?-cohomology and L?-Betti
numbers of a G-space X by considering the category whose objects are G-
maps f: Y — X for a simplicial complex Y with cocompact free simplicial
G-action and then using inverse limits to extend the classical notions for
finite free G-C'W-complexes such as Y to X. Their approach is technically
more complicated for instance because they work with cohomology instead
of homology and therefore have to deal with inverse limits instead of directed
limits (see Theorem 6.13 and Theorem [6.18]). Our approach is closer to stan-
dard notions, the only non-standard part is the verification of the properties
of the extended dimension function (Theorem [6.7)). Moreover, the notion of
Cheeger and Gromov [107, Section 2] does only give béz) (EG x X;N(Q@)),
where we can and do also consider bg)(X SN(@)).

6.6 L2-Euler Characteristic

In this section we introduce the notion of L?-Euler characteristic and investi-
gate its relation to the equivariant Euler characteristic of a cocompact proper
G-CW-complex and the Burnside group.
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6.6.1 Definition and Basic Properties of L2-Euler Characteristic

If X is a G-CW-complex, denote by I(X) the set of its equivariant cells. For
a cell ¢ € I(X) let (G.) be the conjugacy class of subgroups of G given by
its orbit type and let dim(c) be its dimension. Denote by |G.|~! the inverse
of the order of any representative of (G.), where |G|~ is to be understood
to be zero if the order is infinite.

Definition 6.79 (L?-Euler characteristic). Let G be a group and let X
be a G-space. Define

hE (XN () =Y 0P (XGN(G)) € [0,00];

p=>0
XPXGN(G) =D (-1 P (XGN(G) €R - if KO (XN(G)) < oo;
p=0
m(X;G) = Z |Ge|™! €0, 00) if X is a G-CW -complez;
cel(X)
h2(G) := hD(EG;N(G)) €0, );
xP(G) = xPDEGN(G)) eR if N2 (G) < oo.

We call X2 (X;N(G)) and X (G) the L*>-Euler characteristic of X and G.

The condition h(?) (X; V(G)) < oo ensures that the sum which appears in
the definition of x?)(X;N(G)) converges absolutely and that the following
results are true. The reader should compare the next theorem with [107,
Theorem 0.3 on page 191]. We will investigate the class By, of groups whose
L2-Betti number all vanish in Section [7.1.

Theorem 6.80 (L?-Euler characteristic).

(1) Generalized Euler-Poincaré formula
Let X be a G-CW -complex with m(X; G) < oco. Then

B2 (XN (G)) < oo
S (DI |G| = (X N(@):

cel(X)

(2) Sum formula
Consider the following G-pushout

Xy —2 X,

d

X2L>X
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(3)

(4)

(5)

(6)
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such that iy is a G-cofibration. Suppose that h®(X; N(G)) < oo for
1=0,1,2. Then

(XN (@) < oo
YD N (G)) = XD (X N(G)) + P (Xas N (@) = X (X N (G));

Amenable groups

Suppose that G is amenable and that X is a G-CW-complex with
m(X;G) < co. Then

Y (IO G =) (-1)7 - dimg) (N (G) @ce Hy(X;C)),

cel(X) p=>0

where Hy(X; C) is the CG-module given by the cellular or the singular ho-
mology of X with complex coefficients. In particular ZCQI(X)(—I)dim(C) .
|G|~ depends only the isomorphism class of the CG-modules H,(X;C)
for allm > 0;

Comparison with the Borel construction

Let X be a G-CW -complex. If for all ¢ € I(X) the group G. is finite or
61(,2)(Gc) =0 for allp > 0, then

P (XN (G)) = b (BG x XiN(G))  forp = 0;
WP (X5N(G) = hP(EG x X3 N(G));
XD (XN (G) = xPEG x X;N(G)), if B (X;N(G)) < oo
D ()TN G = XPUEG x X5 N(G)), if m(X;G) < oo;
cel(X)
Invariance under non-equivariant C-homology equivalences

Suppose that f: X — Y is a G-equivariant map of G-CW -complexes with
m(X;G) < oo and m(Y;G) < oo, such that the induced map Hy(f;C)
on homology with complex coefficients is bijective. Suppose that for all
¢ € I(X) the group G, is finite or b§,2)(GC) =0 for all p > 0, and
analogously for all d € 1(Y'). Then

XPGN(@) = Y ()@ e

cel(X)
— Z (_1)dim(d) . |Gd|—1
deI(y)

= XYV N(G));

Kiinneth formula

Let X be a G-CW -complex and Y be an H-CW -complex. Then we get
for the G x H-CW -complex X XY
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(XXY'N(GXH))— ( ) m(Y; H);
hP(X X Y;N(G x H)) = ( N(G)) - h(2 (YN (H));
XPX X Y;N(G x H)) = (2 (XN(G)) XP(YSN(H)),
if K (X;N(G)), kP (YN (H)) < oo,
where we use the convention that 0-co =0 and - 00 = oo forr € (0, 00];
(7) Restriction
Let H C G be a subgroup of finite index [G : H]. Let X be a G-space and
let res X be the H-space obtained from X by restriction. Then
m(res? X; H) =[G : H)-m(X;G);
B (vest X5 N (H)) =[G+ H] - RO (X5 N (G)):
X (resg X; N (H)) =[G H] - XP(XGN(G)),  if WP (XGN(G)) < oo,
where [G : H] - 00 is understood to be oco;
(8) Induction
Let H C G be a subgroup and let X be an H-space. Then

m(G xg X;N(G)) =m(X; H);
WG > XsN(@Q)) = W (X N (H));
XPG xu X;N(G)) = XP (XN (H)), if W2 (X; N (H)) < o0.

Proof. (1) Additivity (see Theorem [6.7 (4b)) and Lemma [6.33] (1)) imply

b2 (X; N (G)) = dimp ) (Hp (NV(G) ®z¢ Cp(X)))
< dimpy(ay (V(G) ®z6 Cp(X))

= Z |GC| L

cel(X),dim(c)=p
This shows A (X;N(G)) < m(X;G). Additivity (see Theorem [6.7/ (4b))
implies

oo

XP(XN(G) =) (—1)P - dimye) V() @z Co(X3N(G)))

p=0

and thus assertion (1) follows.

(2)) Next we prove that the given square induces a long exact Mayer-Vietoris
sequence of N (G)-modules

L= HEL(XGN(G)) — HY (Xos N(G)) — HY (X1 N(G)BHS (X3 N(G))
— HS(X;N(G)) —

This is clear if the given pushout consists of G-CW-complexes with i; an
inclusion of G-CW-complexes, is a cellular G-map and X equipped with the
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G-CW-complex structure induced by the ones on Xy, X; and X5, and we use
the cellular ZG-chain complexes. Namely, in this situation we obtain a short
exact sequence of ZG-chain complexes 0 — Cy(Xy) — Ci(X1) @ Cu(X2) —
C.(X) — 0 which stays exact after applying N (G) ®zc — and we can take
the associated long homology sequence. The general case follows from Lemma
6.51, Theorem[6.54/ (1b)) and the fact that one can construct such a G-pushout
of G-CW-complexes together with G-maps from the cellular G-pushout to
the given G-pushout such that the maps induce on each H-fixed point set a
weak homotopy equivalence (see [326, Proposition 2.3 on page 35 and Lemma
2.13 on page 38]).

Notice that the alternating sums defining the L?-Euler characteristics
converge absolutely so that one can reorder the summands without changing
the limit. Now assertion (2) follows from Additivity (see Theorem (6.7 (4b)).

(3) This follows from assertion (1)) and Theorem [6.73.
(4) This follows from assertion (1)) and Theorem 6.54 (2)).
(5) This follows from assertion (1) and Theorem [6.54 (3]).
(6) This follows from Theorem [6.54/ (5).
(7) This follows from Theorem [6.54/ (6).

)
3

(8) This follows from Theorem [6.54! (7). This finishes the proof of Theorem
6.80. O

Remark 6.81. Let X be a C'W-complex which is virtually homotopy finite,
i.e. there is a d-sheeted covering p: X — X for some positive integer d such
that X is homotopy equivalent to a finite C'W-complex. Define the wvirtual
Euler characteristic following Wall [509]
X
Xvirt(X) = %
One easily checks that this is independent of the choice of p: X — X since the
ordinary Euler characteristic is multiplicative under finite coverings. More-

over, we conclude from Theorem 6.80 (1) and (7) that for virtually homotopy
finite X

m()z;N(m(X))) < o0
XD (XN (1 (X)) = Xvint (X)-

6.6.2 L2?-Euler Characteristic, Equivariant Euler Characteristic
and the Burnside Group

In this subsection we introduce the Burnside group and the equivariant Euler
characteristic and relate these notions to the L?-Euler characteristic. The
elementary proof of the following lemma is left to the reader.
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Lemma 6.82. Let H and K be subgroups of G. Let NK be the normalizer
of K in G and WK be its Weyl group NK/K. Then

(1) G/H® = {gH|g 'KgC H};
(2) The map

¢: G/HE — consub(H), gH — g 'Kg
induces an injection
WK\(G/H*) — consub(H),

where consub(H) is the set of conjugacy classes in H of subgroups of H;
(3) The WK -isotropy group of gH € G/H¥ is (gHg 'NNK)/K C NK/K =
WK ;
(4) If H is finite, then G/H™X is a finite union of WK -orbits of the shape
WK/L for finite subgroups L C WK. O

Definition 6.83. Define the Burnside group A(G) of a group G to be the
Grothendieck group which is associated to the abelian monoid under disjoint
union of G-isomorphism classes of proper cocompact G-sets S, i.e. G-sets S
for which the isotropy group of each element in S and the quotient G\S are
finite. O

Notice that A(G) is the free abelian group generated by G-isomorphism
classes of orbits G/H for finite subgroups H C G and that G/H and G/K are
G-isomorphic if and only if H and K are conjugate in G. If G is a finite group,
A(G) is the classical Burnside ring [494] section 5], [495], chapter IV]. If G is
infinite, then the cartesian product of two proper cocompact G-sets with the
diagonal action is not necessarily cocompact anymore so that the cartesian
product does not induce a ring structure on A(G). At least there is a bilinear
map induced by the cartesian product A(G1) @ A(G2) — A(G1 x G3).

Definition 6.84. Let X be a finite proper G-CW -complex. Define its equiv-
ariant Euler characteristic

XOX) = Y (=9 [a/a € A(G).

cel(X)

An additive invariant (A,a) for finite proper G-CW-complexes consists
of an abelian group A and a function a which assigns to any finite proper G-
CW-complex X an element a(X) € A such that the following three conditions
hold, i.) if X and Y are G-homotopy equivalent, then a(X) = a(Y), ii.)
if Xy, X1 and X5 are G-CW-subcomplexes of X with X = X; U X5 and
Xo = X1 N Xy, then a(X) = a(X1) + a(X2) — a(Xp), and iii.) a(@) = 0. We
call an additive invariant (U, u) universal, if for any additive invariant (4, a)
there is precisely one homomorphism ¢: U — A such that ¢ (u(X)) = a(X)
holds for all finite proper G-CW -complexes. One easily checks using induction
over the number of equivariant cells
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Lemma 6.85. (A(G),x%) is the universal additive invariant for finite proper
G-CW -complexes and we get for a finite proper G-CW -complexr X
XXy = Y x(WH\(X",X>H)).(G/H],
(H),|H|<o0

where x(WH\(XH, X>)) is the ordinary Euler characteristic of the pair of
finite CW -complexes WH\ (X, Xx>H).

Definition 6.86. Define for a finite subgroup K C G the L?-character map
G AG) —Q 8]~ Y I
i=1

if WK/Ly, WK/Ls,. .., WK/L, are the WK -orbits of S¥. Define the global
L?-character map by

ch® = Hchf(: A(G) — HQ
(K)

(K)

where (K) runs over the conjugacy classes of finite subgroups of G. O

Lemma 6.87. Let X be a finite proper G-CW -complex and K C G be a
finite subgroup. Then XX is a finite proper WK -CW -complex and

XP (XK N(WEK)) = chf(xC(X)).

Proof. The WK-space X¥ is a finite proper WK-CW-complex because for
finite H C G the WK-set G/H* is proper and cocompact by Lemma 6.82
(4)). Since the assignment which associates to a finite proper G-CW-complex
X the element 2 (X; N(WK)) in Q is an additive invariant by Theorem
6.80 (2) and (5), it suffices by Lemma [6.85 to check the claim for X = G/H
for finite H C G. This follows from the conclusion of Lemma [6.33/ (1) that
@ (WK/L; N(WK)) = |L|~" holds for finite L ¢ WK. O

Notice that one gets from Lemma 6.82] the following explicit formula for
the value of ch%(G/H). Namely, define

Lk (H) :={(L) € consub(H) | L conjugate to K in G}.
For (L) € Lk (H) choose L € (L) and g € G with g7'Kg = L. Then
g(HNNL)g™' = gHg™' N NK;

K|
Hy ' nNE) /K| = L
|(gHg™" N NK)/K| |H A NL|
This implies
K|
hG(G/H) = K] .
chi (G/H) |H A NL| (6.88)

(L)eLk (H)
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Lemma 6.89. The global L?-character map of Definition|6.86 induces a map
denoted by
ch®@,Q: A(G)2,Q— []Q
(K)
It is injective. If G has only finitely many conjugacy classes of finite sub-
groups, then it is bijective.

Proof. Consider an element " | r; - [G/H;] in the kernel of ch® @,Q. We
show by induction on n that the element must be trivial. The induction
beginning n = 0 is trivial, the induction step is done as follows. We can
choose the numeration such that H; subconjugated to H; implies ¢ > j. We
get from (6.88)

ch&(G/H) =1 if H=K;
chG(G/H) =0 if K is not subconjugated to H in G.

This implies
n
chj, (Z Ti: [G/Hi]> =
i=1

and hence 7, = 0. Hence the global L2-character map is injective. If G has
only finitely many conjugacy classes of finite subgroups, then the source and
target of ¢h® ®7,Q are rational vector spaces of the same finite dimension and
hence ch® ®zQ must be bijective. 0O

Remark 6.90. Suppose that there are only finitely many conjugacy classes
(H1), (H2), ..., (H,) of finite subgroups in G. Without loss of generality we
can assume that H; subconjugated to H; implies ¢ > j. With respect to the
obvious ordered basis for the source and target, the map ch® ®,Q is described
by an upper triangular matrix A with ones on the diagonal. One can get an
explicit inverse A~! which again has ones on the diagonal. This leads to a
characterization of the image of A(G) under the global L?-character map
x“. Namely, an element in 1 € [[/_, Q lies in ¢h®(A(G)) if and only if the
following Burnside integrality conditions are satisfied

Ape]]z (6.91)
i=1

Now suppose that G is finite. Then the global L2-character map is related
to the classical character map by the factor |WK|~!, i.e. we have for each
subgroup K of G and any finite G-set S

ch&(S) = |WK|~*-|5K]. (6.92)

One easily checks that under the identification (6.92) the integrality condi-
tions (6.91) correspond to the classical Burnside ring congruences for finite
groups [494, section 5.8], [495] section IV.5]. O
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Let E(G,FIN) be the classifying G-space for the family FZN of finite
subgroups (see Definition [1.28)).

Lemma 6.93. Suppose that there is a model for E(G, FIN) which is a finite
G-CW -complex. Then there are only finitely many conjugacy classes of finite
subgroups and for a finite subgroup K C G

chig (X9 (E(G, FIN)) = x?(WK).
If G is amenable, then we get for a finite subgroup K C G

chf (X9 (B(G, FIN))) = |WK|™,
where WK |~ is to be understood as 0 for infinite WK .

Proof. We get from Theorem [6.80 (4) and Lemma [6.87 since E(G, FIN )X
is a model for E(WK,FIN) and E(WK) x E(WK,FIN) is a model for
E(WK)

chS (XC(E(G, FIN))) = xP(EWK,FIN);N(WK)) = x@(WK).

In the case where G is amenable apply Theorem [6.54 (8b) and Corollary
6.75. O

Example 6.94. Let 1 — Z® — G — Z/p — 1 be an extension of groups
for n > 1 and a prime number p. The conjugation action of G on the normal
subgroup Z" factorizes through the projection G — Z/p to an operation p of
Z/p onto Z". There exists a finite G-CW-complex model for E(G, FIN) by
the following argument. If G contains a finite subgroup, then G is a semidirect
product of Z™ and Z/p and one can construct a finite G-CW-complex as
model for E(G, FZN) with R™ as underlying space. Suppose that G contains
no finite subgroup. Then H,(G;Q) =g (Z")%/? ®7 Q # {0} and hence G
admits an epimorphism onto Z. Now one can show inductively over n that
there is a finite model for BG.

We want to compute x%(E(G, FIN)). If this operation has a non-trivial
fixed point, then WH is infinite for any finite subgroup H of G and we
conclude from Lemma [6.89 and Theorem 6.93| that

x%(E(G,FIN)) = 0.

Now suppose that this operation p has no non-trivial fixed points. Let Hy be
the trivial subgroup and Hy, Ho, ..., H, be a complete set of representatives
of the conjugacy classes of finite subgroups. Each H; is isomorphic to Z/p.
One easily checks that there is a bijection

HNZ/p:Zp) — {(H)| H C G,1<|H]| <o}

and in particular r > 1, where Z} denotes the Z[Z/p]-module given by Z"
and p. We compute using (6.88))
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ch (G/Hy) = 1;

chf (G/Hy) =1 j=1,2,...,7

ch (G/H)) =1 i=j, i,j=12...,m
ch (G/H;) =0 i#j, i,j=12...,r

We conclude
(G, FIN) = - (6B + Y [6/8]

i=1

The integrality conditions of (6.91) become in this case

770—]13';771671«;

n € Z i=1,2,..,r

6.7 Finitely Presented Torsion Modules and
Novikov-Shubin Invariants

In this section we explain how the Novikov-Shubin invariants can be read off
from H,(X;N(Q)) for a free G-CW-complex X of finite type.
Let M be a finitely presented N (G)-module. Then we can choose an exact

sequence 0 — N(G)™ = N(G)™ — TM — 0 for some positive morphism f
by Lemma 6.28. Now define the Novikov-Shubin invariant

(M) := a(v(f)) € [0,00] ] [{oe™} (6.95)

by the Novikov-Shubin invariant of the morphism v(f): I?(G)* — ?(G)"
(see Definition 2.8)), where v has been introduced in (6.22). This is indepen-
dent of the choice of f because of homotopy invariance (see Theorem 2.19).
Moreover, for any finitely generated projective A/ (G)-resolution C, of M we
have ay (¥(Cy)) = a(v(c1)) = a(M). Obviously a(M) = a(TM). Recall that
the Novikov-Shubin invariant of a morphism f: U — V of finitely generated
Hilbert A(G)-modules introduced in Definition 2.8 measures the deviation
of the image of f to be closed. Analogously, the Novikov-Shubin invariant
of the cokernel of an N (G)-map g: P — @ of finitely generated projective
N(G)-modules measures the difference between im(g) and im(g).

Let 0 — My — M; — My — 0 be an exact sequence of N(G)-modules
such that two of them are finitely presented and have von Neumann dimension
zero. Then M; is finitely presented and TM; = M; for i« = 0,1, 2 by Theorem
6.5/ and Theorem 6.7 and we conclude from Theorem [2.20

1 1 1

o) = a(y) T a(dh)’

(6.96)




286 6. L*-Invariants for General Spaces with Group Action

In particular we get m < ﬁ, if M and N are finitely presented

N (G)-modules, dimpr)(N) = 0 and M C N. Moreover, Lemma (2.11)
(8) and Theorem 16.24 (3) imply that a(M) = oo™ <& M = 0 holds for a
finitely presented N (G)-module M with dimprgy(M) = 0. Hence we may
say that ﬁ measures the size of finitely presented N (G)-modules M with
dimN(G)(M) =0.

Lemma 6.97. Let X be a free G-CW -complex of finite type. Then ils
(p — 1)-th L2-Betti number bf_)l(X;N(G)) of Definition [1.30 and its p-th
Novikov-Shubin invariant o,(X;N(G)) of Definition 2.5 can be read off
from HE ,(X: N'(G)) by
b (X3 N(@)) = dim) (H 1 (X3 N (@)));
(X3 N(Q)) = a(HL (X N(@))).

Proof. The statement about the L?-Betti numbers has already been proved
in Lemma [6.53. We conclude from Lemma 2.11] (9), Theorem 6.7 (3) and
Theorem 16.24

(X N(G)) = a (2 O (X) — O, (X))
01(02)|kcr(c;2>)¢ : ker(cl?)t — CIOS(im(cZ(f))))

(

=a (coker (zfl (01(92)|ker(c;2’)L : ker(c{))*t — clos(im(cf))))))
(7
(

= a(THf_l(X§N(G)))
a(HE | (X:N(C)),

where coker denotes the cokernel. O
Notice that Lemma [6.97| gives a good explanation for Theorem [2.55/ (1)).
The next lemma will be interesting in connection with the zero-in-the-

spectrum Conjecture [12.1] (see Lemma [12.3)).

Lemma 6.98. Let X be a free G-CW -complex of finite type and let p > 0

be an integer. Then HS(X;N(G)) = 0 if and only if b](f) (X;N(G)) =0 and
iy (X N(G) = oot

Proof. Lemma [6.97) implies that bé,z)(X;N(G)) = 0 and a,+1(X;N(G)) =
oot if and only if dimprq)(Hp(X;N(G))) = 0 and a(Hy(X;N(G))) = oo™
Hence H,(X;N(G)) = 0 implies béz) (X3 N(G)) = 0 and a1 (X;N(G)) =
cot. Now suppose that b2 (X; NV(G)) = 0 and apt1(X;N(G)) = o™ Be-
cause of Theorem 6.7/ (3) and (4e) we conclude dims () (PH,(X; N (G))) =0
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and a(THp( ;N (G))) = oot and therefore PH,(X;N(G)) = 0 and
= 0. This shows H,(X;N(G)) = 0. O

6.8 Miscellaneous

We will deal with the Atiyah Conjecture for a group G in Chapter [10. It says
for a finite free G-CW-complex that b (X N(G)) € Q. If furthermore there
is an integer d such that the order of any finite subgroup H C G divides d,
then the strong Atiyah Conjecture [10.2] predicts d - b,(?) (X;N(G)) € Z for a
finite free G-CW-complex X . The following result is proved in [334, Theorem
5.2 on page 233]

Theorem 6.99. (1) Suppose that there is no bound on the order of finite
subgroups of G. Then for any sequence B3, B4, ... of elements in [0, 00],
there is a free simply connected G-CW -complex X satisfying

bl(f) (X5N(G)) = By forp > 3.

If G is countable, one can arrange that X has countably many G-
equivariant cells;

(2) Suppose that there is an integer d such that the order of any finite sub-
group of G divides d and that the strong Atiyah Conjecture 10.2 holds for
G. Then we get for any G-space X and p >0

d- b (X;N(G)) € ZU{oo}.

In [343] the notion of Novikov-Shubin invariants for free G-CW-complexes
of finite type is extended to arbitrary G-spaces. In particular one can talk of
the Novikov-Shubin invariants a,(G) := a,(EG; N(G)) of a group G. Recall
that a group is locally finite, if any finitely generated subgroup is finite. In
[343, Theorem 3.9 on page 174] it is proved that a,(G) > 1 for p > 1 if
G contains Z" as normal subgroup for some n > 1, and that o,(G) > 1
for p = 1,2 if G contains a normal subgroup, which is infinite elementary-
amenable and which does not contain an infinite locally finite subgroup. This
implies in particular that a,(X;N(G)) > 1 for p = 1,2 holds for a G-CW-
complex X of finite type if G contains a normal subgroup, which is infinite
elementary-amenable and which does not contain an infinite locally finite
subgroup.

Farber [182] constructs a category £(N(G)) which contains the category
{fin. gen. Hilb. N(G)-mod.} as a subcategory. The point is that £(N(G)) is
an abelian category, it is an abelian extension of {fin. gen. Hilb. N'(G)-mod.}
in the sense of [205]. An object in £(N(G)) is a map of finitely generated
Hilbert N'(G)-modules (a: A" — A). A morphism in £(N(G)) from (a: A" —
A) to (8: B’ — B) is an equivalence class of maps f: A — B such that there
exists a map g: A — B’ with foa = Bog. Here f and f' are called
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equivalent if and only if f — f’ = (3 o h for some morphism h: A — B’. Let
{fin. pres. N'(G)-mod.} be the category of finitely presented N (G)-modules.
The two approaches are unified by the fact that there is an equivalence of
abelian categories

v~ EN(G)) — {fin. pres. N(G)-mod.}
which induces the equivalence appearing in Theorem 16.24
~1: {fin. gen. Hilb. N(G)-mod.} — {fin. gen. proj. N(G)-mod.}.

The equivalence v~ sends an object (a: A’ — A) to the cokernel of v~ (a).

Any von Neumann algebra is semihereditary (cf. Theorem 6.7/ (1))). This
follows from the facts that any von Neumann algebra is a Baer #-ring and
hence in particular a Rickart C*-algebra [36, Definition 1, Definition 2 and
Proposition 9 in Chapter 1.4] and that a C*-algebra is semihereditary if and
only if it is Rickart [8, Corollary 3.7 on page 270].

The material of Subsection 6.6.2] can be extended from finite proper G-
CW-complexes to G-endomorphisms f: X — X of finite proper G-CW-
complexes by replacing Euler characteristics by Lefschetz invariants. Define
the equivariant Lefschetz invariant

LY(f) = Z Z )P - trzwn (Cp(f7, £71): Cp(XH, X=1)
(H),|H|<oo p=0
— Cp(XH, X>M)) . [G/H] € AG), (6.100)
where trzw g if the trace defined for endomorphisms of finitely generated pro-
jective ZWH-modules which is essentially determined by trzwi (R, : ZWH —

ZWH) = A, for u = ZweWH Aw - w € ZWH. One can also define an L?-
Lefschetz invariant

(SN (WE))

= Z(—l)p . trN(WK) (ld ®ZWKCp(fK)Z N(WK) RzWwK Cp(XK)
p=>0

— N(WK) @zwk Cp(XF))  €C. (6.101)

Notice that L¢(id: X — X) = x%(X) and L®(id: XX — XK, N(WK)) =
XP(XE; N(WK)). We can extend Theorem [6.80/ (1) and Lemma 6.87 to

chi (LY (f)) = L& (f5;N(WK)) (6.102)
= Z(—l)p W) (PHp(fK§N(WK))5
p=>0

PHVE (XX N(WK)) — PHYS (X5, N(WK))) . (6.103)

For more sophisticated Lefschetz type invariants see for instance [301] and
[335).
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Dimension functions and the role of the torsion part TM for an N (G)-
module will be further explained in Chapter 8 when we extend the group
von Neumann algebra N (G) to the algebra U(G) of affiliated operators. This
corresponds for a principal ideal domain R to the passage to its quotient field.

The dimension-flatness of the von Neumann algebra N (G) over CG for
amenable GG in the sense of Theorem 6.37 will play an important role in
computations about Go(CG) in Subsection 9.5.3.

We state without proof the next result which yields another proof of the
Kiinneth formula (see Theorem [6.54! (5)).

Theorem 6.104. Let G and H be two groups.

(1) Let 0 — My — My — My — 0 be an exact sequence of N(G)-modules
and let N be an N'(H)-module. Then

dimpraxmy (ker (N(G x H) @n(cyoen ) Mo @c N —
N(G x H) @x()gen(m M1 @c N)) = 0;

(2) Let M be an N(G) and N be an N (H)-module. Then

dimp gy (N (G x H) @n@)zenm M @c N)
= dimN'(G)(M) . dimN(H) (N)

with the convention 000 =00 -0 =0.

Elek [173] defines a dimension for finitely generated K G-modules for a
finitely generated amenable group G and a field K which satisfies additivity
and sends KG to 1.

Exercises

6.1. Let M be a submodule of a projective N(G)-module. Prove that
dim (@) (M) = 0 holds if and only if M = 0.

6.2. Let M be a finitely generated N'(G)-module and € > 0. Then there is a
finitely generated projective N'(G)-module @ together with an epimorphism
p: Q — M such that dimyr () (ker(p)) <e.

6.3. Let M be a submodule of the finitely generated projective N'(G)-module
P. Given € > 0, there is a submodule P’ C M which is a direct summand in
P and satisfies dimpr(g)(M) < dimpr(g)(P') + €.

6.4. Let M be a countably generated N (G)-module and M* be its dual
N (G)-module hom () (M, N(G)). Prove dimy ) (M) = dimpr(g) (M*).

6.5. Let I be the set of finite subsets of S* directed by inclusion. Define the
directed system {N; | J € I} by N; = L®(S') with the associated maps
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bk L°(ST) — L>(S?) for J C K which are given by multiplication with
[Tucx_yz—ufor J C K, where z—u € N(Z) is given by the function S* —
C sending z € S* to the complex conjugate of z — u. Define the N'(Z)-module
M = colimjec; Nj. Let M* be the dual N(Z)-module homy(z)(M,N(Z)).
Show

dimpr(z) (M) = 1;
M* = 0;
dimN(Z)(M*) =0.

6.6. Show that A/(Z) is not Noetherian. Deduce that A/ (G) is not Noetherian
if G contains an element of infinite order.

6.7. Let G be a group and let A be a ring with Z C A C C. Let P be a
projective AG-module such that for some finitely generated AG-submodule
M C P we have dimy(g)(N(G) ®a¢ P/M) = 0. Show that P is finitely
generated.

6.8. Let M be an N'(G)-module. Define T 4;;n M to be the union of all N'(G)-
submodules N C M with dimpr(g)(/N) = 0. Show that T M is the largest
N (G)-submodule of M with vanishing von Neumann dimension and that this
definition coincides with the Definition 6.1 of TM provided that M is finitely
generated, but not for arbitrary A (G)-modules M.

6.9. Let G be a group with the property that for any CG-module M
dimp(c) (TorfG (N(G), M)) — 0 holds for p > 1. Show that then any sub-

group H C G inherits this property, i.e. dimy ) (TorgH(N(H),N)) =0
holds for any CH-module N and any p > 1.

6.10. Show for a virtually cyclic group G that N'(G) is flat over CG.
6.11. Let G be a group for which N'(G) is flat over CG. Prove

(1) For any subgroup H C G the von Neumann algebra N'(H) is flat over
CH,

(2) If the group K contains G as a subgroup of finite index, then NV (K) is
flat over CK;;

(3) HE(EG;/\/'(G)) =0forp>1;

(4) b7(G) =0 for p > 1;

(5) If there is a CW-model for BG of finite type, then oy, (EG; N (G)) = oo™
for p > 1;

(6) G does not contain a subgroup which is Z™ or *I"_,Z for some n > 2;

(7) G does not contain the fundamental group of an aspherical closed mani-
fold whose universal covering is a symmetric space;

(8) G does not contain the fundamental group of a connected sum My # ... # M,
of (compact connected orientable) non-exceptional prime 3-manifolds

M;.



Exercises 291

6.12. Let G be a group such that there is no bound on the order of its
finite subgroups. Construct for 8 € [0,00] a countably generated projective
ZG-module P satisfying dimy(q)(N(G) ®zg P) = 3. Moreover, construct
for a sequence (3,04, 05, ... of elements in [0,00] a free simply connected
G-CW-complex X with bf) (X;N(G)) = B, for p > 3. If G happens to be
countable, find X with only countably many equivariant cells.

6.13. Given a sequence 31, B2, (3, ... of elements in [0, co], construct a group
G with b7 (G) = 8, for p > 1.

6.14. Let X be a G-CW-complex with m(X;G) < oo. Show that then X
has at most countably many equivariant cells with finite isotropy groups.

6.15. Let ' — E — B be a fibration of connected C'W-complexes and
¢: m(E) — G be a group homomorphism. Let F — F and E — E be the
coverings with G as deck transformation group associated to the homomor-
phisms 7 (F) 2> 771(E)7E> G and ¢: m(F) — G. Suppose that B is a finite
CW-complex and h(® (F; N(G)) < oo. Show

KA (E,N(Q)) < oo;
XP(E,N(@) = xP(F,N(@)) - x(B),

where x(B) is the ordinary Euler characteristic of the finite CW-complex B.

6.16. Show by constructing a counterexample that the condition bz(,2)(G X poi
X; N(G)) < oo and b;(i)l(G X poi X; N(G)) < 00 in Theorem 6.63 and the
condition ng) (F) < oo in Corollary [6.72l are necessary.

6.17. Let M be the connected sum Mi#...#M, of (compact connected

orientable) non-exceptional prime 3-manifolds M;. Assume that m (M) is
infinite. Show

bﬁ”@ = —X®(mi (M));
bs? (M) = x(M) — X (w1 (M));
bI(JZ)(M)ZO for p £ 1,2.

6.18. Let G be a group for which there is a d-dimensional G-C'W-model for
E(G, FIN). Show b2(G) = 0 for p > d.

6.19. Let G be a group for which there is a finite G-C'W-model for
E(G,FIN). Show that then the CG-module C, which is given by C with
the trivial G-operation, has a finite projective CG-resolution P,. The class
Y onso(=1)P - [P,] € Ko(CQ) is independent of the choice of P, and denoted
by [C]. Prove that it is the image of X (F(G;FZN)) under the homomor-
phism A(G) — Ky(CG), which sends a finite proper G-set S to the class
of the finitely generated projective CG-module C[S] given by the complex
vector space with S as basis.
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6.20. Let X be a G-CW-complex which is contractible (after forgetting
the group action). Suppose that each isotropy group G, is finite or satisfies
bz(,z)(GI) =0 for p > 0. Prove b§,2) (X;N(G)) = bj(,z)(G) for p > 0.

6.21. Equip Z[Z/5]/(N) = Z[exp(2mi/5)] with the obvious Z/5-action, where
N = Yt t' for t € Z/5 a fixed generator and (N) is the Z[Z/5]-ideal
generated by N. Let G be the associated semidirect product. Compute A(G)
and Y (E(G, FIN)) explicitly.

6.22. Let Fj be the free group of rank g > 1. Using the fact that C[Fy] is
a so called fir (= free ideal ring), i.e. any submodule of a free module is free
again (see [117, Corollary 3 on page 68]), show that for a Fy,-CW-complex
X of a finite type each C[Fy]-module H3"8(X;C) has a 1-dimensional finite

free resolution. Then prove that b](,Q)(X;./\/'(Fq)) and ayp41(X; N (F,)) depend
only on the C[Fy]-isomorphism class of H3"8(X;C).

6.23. Show for the group G = [];2, ZxZ that HS' (EG; N (G)) = 0 for p > 0.

6.24. Give a counterexample to the fggowing statement by inspecting the
special case G = H =Z and X =Y = S1: If X is a G-CW-complex of finite
type and Y an H-C'W-complex of finite type, then there is an isomorphism
HEH(X x Y;N(G x H))
~ B NG x H) @nenin (HY (X N(G)) @c HI (YN (H))) .

ptg=n
6.25. Prove Theorem [6.104.
6.26. Show that Theorem [6.54! (5) follows from Theorem [6.104.



7. Applications to Groups

Introduction

In this chapter we apply the results of Chapter 6l to questions about group
theory, mainly about deficiency and Euler characteristic.

In Section[7.1lwe investigate the class B; and B, respectively of groups for
which bg) (@) vanishes for p = 0,1 and for p > 0 respectively. The classes B
and B, turn out to be surprisingly large. For instance we prove that a group
containing a normal infinite amenable subgroup belongs to B.,. We also show
that a group G belongs to B; if it is an extension 1 - H - G — K — 1
of an infinite finitely generated group H and a group K which is infinite
elementary amenable or which contains an element of infinite order or which
contains finite subgroups of arbitrary large order.

The motivation to investigate the class B; is that a finitely presented
group which belongs to By has the following two properties. Its deficieny
satisfies def(G) < 1, and for any closed oriented smooth 4-manifold M with
m1 (M) = G we have |sign(M)| < x(M). This will be explained in Section
7.3l A survey on deficiency is presented in Subsection [7.3.1L

In Section[7.2 we discuss the L2-Euler characteristic of a group. It vanishes
if G belongs to By, and satisfies all the properties which are known for the
classical Euler characteristic x(BG) of a group for which BG has a finite CW-
model. The classical Euler characteristic and the virtual Euler characteristic
due to Wall are special cases of the L2-Euler characteristic.

In Section [7.4! we define for a group automorphism f: G — G of a group
with finite model for BG a real number p(?)(f) using L?-torsion. It behaves
like the Euler characteristic of BG. Applied to m(f) for a pseudo-Anosov
self-homeomorphism f: .S — S of a closed hyperbolic oriented surface S it
detects the volume of the hyperbolic 3-manifold given by the mapping torus
of f.

7.1 Groups with Vanishing L2?-Betti Numbers

In this section we investigate the following classes of groups. Recall that we
have introduced the L2-Betti numbers of a group G in Definition 6.50.
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Definition 7.1. Let d be a non-negative integer or d = co. Define the class
of groups

By = {G | b (G) =0 for 0 < p < d}.

Notice that By is the class of infinite groups by Theorem 6.54 (8b).

7.1.1 General Criterions for the Vanishing of the L2-Betti
Numbers of a Group

Theorem 7.2. Let d be a non-negative integer or d = co. Then

(1) The class Boo contains all infinite amenable groups;

(2) If G contains a normal subgroup H with H € By, then G € By;

(8) If G is the union of a directed system of subgroups {G; | ¢ € I} such that
each G; belongs to By, then G € By;

(4) Suppose that there are groups Gi and Go and group homomorphisms
o¢i: Go — G; for i = 1,2 such that ¢1 and ¢ are injective, Gy belongs
to By—1, G1 and Gy belong to By and G is the amalgamated product
G1 *q, G2 with respect to ¢1 and ¢o. Then G belongs to Bg;

(5) Let 1 - H 5 G 2, K — 1 be an exact sequence of groups such that
b,(f)(H) is finite for all p < d. Suppose that K is infinite amenable or
suppose that BK has finite d-skeleton and there is an injective endomor-
phism j: K — K whose image has finite index, but is not equal to K.
Then G € By;

(6) Let 1 — H 5 G5 K — 1 be an exact sequence of groups such that
H e By, b((f)(H) < 00 and K contains an element of infinite order or
finite subgroups of arbitrary large order. Then G € By;

(7) Let 1 — H % G 2, K — 1 be an exact sequence of infinite countable

groups such that bgz) (H) < 00. Then G € By.

Proof. (1) This has already been proved in Corollary [6.75.

(2) This follows from Theorem 6.54! (7)) and Lemma [6.66 applied to the fibra-
tion BH — BG — B(G/H) and the obvious isomorphism ¢: 7 (BG) — G.

(3) Inspecting for instance the bar-resolution or the infinite join model
for EG, one sees that EG is the colimit of a directed system of G-CW-
subcomplexes of the form G x¢g, EG; directed by I. Hence

Hf(EG;N(G)) = colim;ey HpG(G xa; EGi; N(Q)).

Now the claim follows from Theorem 6.13 about dimension and colimits and
Theorem 16.54/ (7) about compatibility of L2-Betti numbers with induction.

(4) Using the Seifert-van Kampen Theorem one easily checks that there is a
G-pushout
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G xg, EGy —— G xg, EGy

! l

G xg, EGy ——  EG

Now apply Theorem [6.54 (7)) and Additivity (see Theorem [6.7] (4h)) to the
associated long exact homology sequence for HE (—, N'(G)).

(5) This will be proved in Theorem [7.4/ (5) and (7).

(6) This follows from Theorem [6.54 (7) and Theorem [6.67 applied to the
fibration BH — BG — BK and the obvious isomorphism ¢: 7 (BG) — G.

(7) This is proved by Gaboriau [214, Theorem 6.8]. O
Next we prove a fibered version of Theorem [7.2.

Definition 7.3. Let d be a non-negative integer or d = oo. Define BQy to
be the class of groups G such that for any extension of groups 1 — H —
K — G — 1 with bl(,2)(H) < oo for p < d the group K belongs to By. Define
BFg4 to be the class of groups G with the property that for any fibration
F — E — BG for which F is path-connected and bg)(ﬁ') < oo holds for
p < d, we have b,(,Q)(E') =0 for p <d.

Theorem 7.4. Let d be a non-negative integer or d = co. Then

(1) BFq C BQy C By;

(2) If G contains a normal subgroup H which belongs to BQ4 or BF 4 respec-
tively , then G belongs to BQg or BF 4 respectively;

(3) If G is the union of a directed system of subgroups {G; | i € I} such that
each G; belongs to BQg or BF 4 respectively, then G belongs BQg or BF 4
respectively;

(4) Suppose that there are groups Gi and Go and group homomorphisms
oi: Go — G; for i = 1,2 such that ¢1 and ¢o are injective, Gy belongs
to BQgy_1 or BF4_1 respectively, G1 and Go belong to BQg or BF4 re-
spectively and G is the amalgamated product Gy *g, G2 with respect to
@1 and ¢o. Then G belongs to BQg or BF 4 respectively;

(5) Suppose that BG has finite d-skeleton and that there is an injective en-
domorphism j: G — G whose image has finite index, but is not equal to
G. Then G belongs to BF 4;

(6) The class BF4 contains all infinite elementary amenable groups.

(7) The class BQg contains all infinite amenable groups.

Proof. (1) This is obvious.
(2) This follows for BQ, from Theorem 7.2 (2) applied to p~!(H) C L for a

given extension 1 — K — L % G — 1 with bl(,z)(K) < oo for p < d. For BF,
the pullback construction for BH — BG yields a fibration F' — Ey — BH
and by hypothesis bg) (Eo) = 0 for p < d. Since F' is path-connected, both Eqy
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and E are path-connected. We obtain an exact sequence 1 — 71 (Fy) T,

m(E) - G/H — 1 for i: Ey — E the inclusion. The 7 (Ey)-space E, is the
restriction of the 7 (E) space E with (i) : m1(Eo) — m1(E). Now we get
béz)(E) =0 for p < d from Theorem [6.54 (6b).

(3) This follows for BQg4 from Theorem 7.2 (3). For BF 4, we can arrange that
BG is the directed union of CW-subcomplexes BG;. Let F — E; — BG;
be the restriction of a given fibration F' — F — BG with bg)(ﬁ) < 00
for p < d. By inspecting the maps between the long homotopy sequences
associated to these fibrations one shows that 71 (F;) — 71 (F) is injective for
all ¢ € I. Obviously E is the union of the E;. Since any compact subset of
BG is contained in a finite CW-subcomplex and hence in one of the BG;,
any compact subset of E is contained in one of the E;. This implies

H7 BB N (mi(E)))
= colimier HTB) (11 (E) Xr, (5,) Ei; N (m1(E))). (7.5)

Because of Theorem [6.13 ( ) about dimension and colimits and Theorem [6.54
(7) it suffices to show b( (E;) =0 for p < d and i € I. But this follows from
the assumption G; € BF4.

(4) This follows for BQy from Theorem [7.2 (4)) since for an epimorphism
p: K — G we can write K as the amalgamated product p~!(G) *p=1(Go)
p~1(G3). The proof for BF is analogous (using [326, Lemma 1.26 on page
19)).

(5) Fix an integer n > 1. Put G,, = im(j™). If k is the index of im(j) in
G, then k™ is the index of G, in G. Let F' — E — BG be a fibration with
bz(,2)(ﬁ) < oo for p < d. We get a k"-sheeted covering BG,, — BG. The
pullback construction yields a fibration F — FE,, — BG,, together with a
k"-sheeted covering F,, — E. We conclude from Theorem [6.54! (6b)

B _ b (Bn)

b2(E) = = (7.6)

p

Let 7, be the number of p-cells in BG. Since G, is isomorphic to G, we get
from the Leray-Serre spectral sequence applied to E,, — BG,, and Additivity
(see Theorem 6.7/ (4b))

b (E,) < Z b (F) iy (7.7)

Equations (7.6) and (7.7) imply

f;:o bgz)(ﬁ) “lip—q
kn '

b2 (E) = (7.8)
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Since k£ > 1 and (7.8) holds for all n > 1 and ZZ:O bgf)(ﬁ) - ip_gq is finite for
p < d by assumption, assertion (5)) follows.
(6) We first show G € BF , provided that G is infinite and locally finite. Let
F — E — BG be a fibration with bz(f)(ﬁ) < oo for p < d. We still have (7.5),
if we take {G; | i € I} as the system of finite subgroups of G. From Theorem
6.54] (7) and (6b) we conclude
@z
U (E) %oy BN (m(E)) = YD(E) = P

Since G is infinite and locally finite, |G;| becomes arbitrary large for appro-
priate ¢ € I. Additivity (see Theorem 6.7 (4b)) and Theorem 6.13 (2)) about
dimension and colimits implies together with (7.5)) that b](f) (E) =0 for p < d.

We want to show that the class of elementary amenable groups is con-
tained in FZN U BF4, where FZN is the class of finite groups. By Lemma
10.40/ it suffices to show the following two claims. i.) If all finitely generated
subgroups of G belong to FZN U BF,, then G € FIN U BF,4, and ii.) for
any extension 1 — H — G — K — 1, for which H € FIN U BF, and
K contains Z™ as normal subgroup of finite index for some n > 0, we have
G € FIN UBF4. We begin with i.). We have already shown for locally finite
G that G belongs to FZN UBF4. It remains to treat the case where G is not
locally finite. Then G can be written as the union of the directed system of
its infinite finitely generated subgroups G;. By induction hypothesis each G;
belongs to BF 4. Then G € BF 4 by assertion (3)). Finally we prove ii.) If H is
finite, G contains Z™ for some n > 0 as normal subgroup of finite index and
hence belongs to FZN U BF4 by assertions (2) and (5). It remains to treat
the case, where H is infinite and hence by induction hypothesis belongs to
BF4. If Fy is the fiber of the composition £ — BG — BK, then we obtain
a fibration F — Fy — BH. Hence bf)(}*'vo) =0 for p < d. From Lemma 6.66
we conclude b1(,2)(E') =0 forp <d.

(7) Because of assertion (3) it suffices to treat the case of a finitely generated
(and hence countable) amenable group. This case follows from [214, Theorem
6.6]. This finishes the proof of Theorem [7.4l O

The next question is related to Question [1.95/ and arises from Theorem
7.4l

Question 7.9. (Vanishing of L?-Betti numbers of groups and epi-
morphism of groups).
Is Bd = BQd = B}—d?

7.1.2 The Vanishing of the L?-Betti Numbers of Thompson’s
Group

Finally we explain the following observation about Thompson’s group F. 1t is
the group of orientation preserving dyadic PL-automorphisms of [0, 1] where
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dyadic means that all slopes are integral powers of 2 and the break points
are contained in Z[1/2]. It has the presentation

—1 .
F={(xo,z1,22,... | ] Znx;i = Zpq1 for i <n).

This group has some very interesting properties. Its classifying space BF' is
of finite type [70] but is not homotopy equivalent to a finite dimensional CW-
complex since F' contains Z™ as subgroup for all n > 0 [70, Proposition 1.8].
It is not elementary amenable and does not contain a subgroup which is free
on two generators [66], [85]. Hence it is a very interesting question whether
F is amenable or not. We conclude from Theorem [7.2| (1)) that a necessary
condition for F' to be amenable is that b]([,Q)(F ) vanishes for all p > 0. This
motivates the following result.

Theorem 7.10. (L2-Betti numbers of Thompson’s group).
All L?-Betti numbers bz(,2)(F) of Thompson’s group F vanish. a

Proof. There is a subgroup F; C F together with a monomorphism ¢: F; —
Fy such that F} is isomorphic to F' and F' is the HNN-extension of F; with
respect to @ with one stable letter [70, Proposition 1.7 on page 370]. From the
topological description of HNN-extensions [350, page 180] we conclude that F'
is the fundamental group of the mapping torus Tsg of the map B®: BF; —
BF; induced by @. The inclusion BF| — Tge induces on the fundamental
groups the inclusion of I} in F. One easily checks that the cellular ZF-chain
complex of the universal covering T of Tpg is the mapping cone of a certain
ZF-chain map from ZF ®Qzp, C.(EF}) to itself. Since ZF is free over ZF1,
we conclude for p > 1

HP(ZF ®ZF1 C*(EFl)) =7ZF ®ZF1 Hp(C*(EFl)) =0.

This implies Hp(TAB;; Z) =0 for p > 2. Hence Tgg is a model for BF. Now
the claim follows from Theorem [1.39. O

7.2 Euler Characteristics of Groups

We have introduced the L?>-Euler characteristic x(? (@) of a group already in
Definition 6.79. It encompasses the rational valued virtual Euler character-
istic of Wall (see Remark [6.81). We have related it to the equivariant Euler
characteristic of F(G, FIN) provided that there is a finite G-CW-model for
E(G,FIN). Namely, Lemma [6.93 implies

XP(G) = chyy (X (E(G, FIN))), (7.11)

where chﬁ}: A(G) — Q sends [G/H] to |H|7L.
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Lemma 7.12. If G belongs to Bu, then X (G) = 0.

Recall that we have given criterions for G € By, in Theorem [7.2. Now
it becomes clear why it is worth while to extend the classical notion of the
Euler characteristic x(G) := x(BG) for groups G with finite BG to arbitrary
groups. For instance it may very well happen for a group G with finite BG
that G contains a normal group H which is not even finitely generated and has
in particular no finite model for BH and which belongs to B, (for instance,
H is amenable). Then the classical Euler characteristic is not defined any
more for H, but we can still conclude that the classical Euler characteristic
of G vanishes.

The standard product and amalgamation formulas for the classical Euler
characteristic carry over to the L2-Euler characteristic. Namely, let Go, G1
and G2 be groups with h(2)(Gi) < oo for i = 0,1,2 and ¢;: Gg — G be
injective group homomorphisms for ¢ = 1, 2. Then the direct product G; x G2
and the amalgamated product G ¢, G2 with respect to the homomorphisms
¢1 and ¢, satisfy

(G *g, Ga) < oo
X

)
X2 (G x¢, Ga) = XP(G1) + xP(G2) — xP(Go); (7.13)
2 (Gy x Gy) < o0;
X@(G1 x Ga) = xP(G1) - XD (Gy). (7.14)

This follows from Theorem [6.80 (2) and (6). More information about the
classical Euler characteristic and the virtual Euler characteristic of a group
can be found in [69, Chapter IX].

7.3 Deficiency of Groups

7.3.1 Survey on Deficiency of Groups

Definition 7.15 (Deficiency). Let G be a finitely presented group. Define
its deficiency def(G) to be the mazimum g(P) —r(P), where P runs over all
presentations P of G and g(P) is the number of generators and r(P) is the
number of relations of a presentation P.

Next we reprove the well-known fact that the maximum appearing in
Definition [7.15/ does exist.

Lemma 7.16. Let G be a group with finite presentation
P = (s1,82,...,84 | Ri,Ra,..., R;)

Let ¢: G — K be any group homomorphism. Then
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g(P) —r(P) < 1-b(K x4 EG;N(K)) + b (K xs EG;N(K))
—b(K x4 EGN(K)).

Proof. Given a presentation P with g generators and r relations, let X be the
associated finite 2-dimensional CW-complex. It has one 0-cell, g 1-cells, one
for each generator, and r 2-cells, one for each relation. The attaching map of
the 2-cell associated to a relation is a map from S! to the 1-skeleton, which
is a wedge of g 1-dimensional spheres, and given by the word defining the
relation. There is an obvious isomorphism from 71 (X) to G so that we can
choose amap f: X — BG which induces an isomorphism on the fundamental
groups. It induces a 2-connected K-equivariant map f: K x4 X — K x4 EG.
Theorem [6.54 (1&) implies

V2K x4 X;N(K)) = 0P (K x4 BEG;N(K))  forp=0,1; (7.17)
b2 (K x4 X N(K)) > b2 (K x4 EGN(K)). (7.18)

We conclude from the L2-Euler-Poincaré formula (see Theorem 6.80 (1)) and
from (7.17) and (7.18])

g—r=1-xI(K x4 X;N(K))
=1 -0 (K x4y XiN(K)) + b2 (K x, X; N(K))
—b57 (K .y X N (K))
<1-b2(K x4 EG;N(K)) + b2 (K x4 EG;N(K))
b\ (K x4 EG;N(K)).O

Example 7.19. We give some examples of groups, where the deficiency is
realized by the “obvious” presentation.

The free group F, of rank g has the obvious presentation (sq, s2,. .., g | 0)
and its deficiency is realized by this presentation, namely def(Fy) = g. This

follows from Lemma [7.16] because of b((f) (Fy;) =0 and ng) (F;) =g —1. One
also can apply the analog of Lemma [7.16/ for the classical Betti numbers
instead of the L2-Betti numbers since bo(F,) = 1 and by (Fy) = g.

If G is a finite group, def(G) < 0 by Lemma [7.16] because we get for the
classical Betti numbers by(G) = 1 and b1(G) = 0 or because we get for the
L2-Betti numbers b(()z) (G) = |G|7t and b§2> (G) = 0. The deficiency of a cyclic
group Z/n is 0, the obvious presentation (s | s™) realizes the deficiency. It
is not hard to check using homology with coefficients in the finite field F,, of
prime order p that the deficiency of Z/nxZ/n is —1. The obvious presentation
(s,t]s™ t",[s,t]) realizes the deficiency, where [s,t] denotes the commutator
stsT1tL,

The inequality in Lemma [7.16] is actually an equality and in particular
def(G) = 1 — x(BG) if BG is a finite 2-dimensional CW-complex. If G is
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a torsion-free one-relator group, the 2-dimensional C'W-complex associated
with any presentation with one relation and g generators is aspherical and
hence BG is a finite 2-dimensional C'W-complex [350), chapter IIT §§9 -11]
and G has deficiency g — 1.

We conjecture that for a torsion-free group having a presentation with
g > 2 generators and one non-trivial relation

b (@) = 0;
B(G) = def(G) —1=g—2

holds (compare [237, page 235]). This would follow from the strong Atiyah
Conjecture 10.2, which says that the L2-Betti numbers of the universal cover-
ing of a finite CW-complex with torsion-free fundamental group are integers,
by the following argument. Namely, the kernel of the second differential of the
L?-chain complex of BG is a proper Hilbert N'(G)-submodule of I?(G) so that
its dimension bgz)(G) is less than one and hence by the Atiyah Conjecture
zero. Since G must be infinite and hence b(()Q) (G) = 0 (see Theorem [6.54 (8b)),
the Euler-Poincaré formula (see Theorem 6.80/ (1)) implies bgz)(G) =g—2.

The following result is a direct consequence of [177, Theorem 2.5]. It is
proved using homology with coefficients in Z/2.

Theorem 7.20. Let M be a connected compact orientable 3-manifold with
fundamental group m and prime decomposition

M = M4 My .. #M,..

Let s(M) be the number of prime factors M; with non-empty boundary and
t(M) be the number of prime factors which are S?-bundles over S'. Denote
by x(M) the Euler characteristic. Then

def(my (M) = dimg, o (Hy (3 Z,/2)) — dimg, o (Ha (7 Z/2))

=s(M)+t(M)— x(M).O

Example 7.21. One may expect that the deficiency is additive under free
products. This is not true as the following example, which is taken from
[264, Theorem 3 on page 162], shows. It plays an important role in the con-
struction of a counterexample up to homotopy of the Kneser Conjecture in
dimension four [298]. There, a closed connected orientable smooth 4-manifold
M is constructed whose fundamental group is the free product of two non-
trivial groups such that M is not homotopy equivalent to My#M; unless
My or M, is homeomorphic to S*. We mention that a stable version of the
Kneser Conjecture remains true in dimension four [299], where stable means
that one has to allow connected sums with copies of S% x S2.



302 7. Applications to Groups

Suppose that m;, r;, n; and ¢; for i = 0,1 are integers satisfying
ri > 1, r" —1=n;q, r, =1 mod n;, (m;,n;) #1, (qo.q1) = 1.
Then the group
G = (Z/mo x Z/ng) x (Z/m1 X Z/nq)
has the “obvious” presentation
G = (ag,bo,a1,b1 | ay™,b°, [ao, bo], ai™*, b7, [a1, b1]).

But its deficiency is not realized by this presentation. Namely its deficiency
is —1 and is realized by the following presentation

G <a07b07a17b1 |
am" =1 [(l b ] = bTo 1 aml =1 [Cl b } = brl ! bno = bn1>
0 » |00, Y0 0 s U s (21, U1 1 » Yo 1

To show that this is indeed a presentation of G, it suffices to show that
the relation b;° = 1 follows from the other relations. We start by proving

k
inductively for & = 1,2,... the relation afbiai_k = b, " for i = 0,1. The
induction step follows from the calculation

k k+1
1 i T

k rk
=a;b;} P (aibiafl) f=(b)" =0

k+1y o —(k+1)
a; " bia; i

= aiafbia;ka;
This implies for kK =m; and i =0, 1

()" =b =1
Since bj® = b} holds, we conclude
(b)™ = (o)™ = 1.

Since go and ¢; are prime, we get b(° = 1.

Notice that groups appearing in the Example [7.21] above contain torsion.
It may still be true that the deficiency is additive under free products of
torsionfree groups.

Finally we mention the following result [30, Theorem 2| which is in a
certain sense complementary to our results (see Lemma [7.22 and Theorem
7.25). If G is a finitely presented group with def(G) > 2, then G can be
written as an amalgamated product G = A x¢ B, where A, B and C are
finitely generated, C is proper subgroup of both A and B and has index
greater than two in A or B. In particular G contains a free subgroup of
rank 2 and is not amenable. This implies that an amenable finitely presented
group has deficiency less or equal to one (see also [28], [160), Corollary 2.57]).
This also follows from Theorem [7.25. We mention that not every group of
this particular shape A xc B has deficiency > 2, take for example Z %3.7 Z =
(s,t | t3 = s3) which has deficiency 1. This follows from Lemma [7.22 (1) and
Theorem 7.2 (4).

Another test for bounds on deficiencies is given in [349] using Fox ideals.



7.3 Deficiency of Groups 303

7.3.2 Applications of L?-Betti Numbers to Deficiency and to
Signatures of 4-Manifolds

Lemma 7.22. Let G be a finitely presented group and ¢: G — K a homo-
morphism such that b§2)(K x4 EG;N(G)) =0. Then

(1) def(G) < 1;
(2) Let M be a closed oriented 4-manifold with G as fundamental group.
Then
|sign(M)| < x(M);

Proof. (1)) Follows directly from Lemma [7.16.

(2) By the L?-Signature Theorem (see [9]) applied to the regular covering
M — M associated to ¢, the signature o(M) is the difference of the von
Neumann dimensions of two complementary subspaces of the space of L2-

integrable harmonic smooth 2-forms Hé)(ﬁ) and hence

| sign(M)| < dimp () (H{y) (M)).
We conclude from the L?-Hodge-de Rham Theorem [1.59/ and Lemma [6.53
| sign(M)| < b5 (M, N'(K)). (7.23)

We get from the assumption and Poincaré duality (see Theorem [1.35 (3)

together with Lemma 6.53)) that b](gz) (K x4 EG;N(G)) =0 for p=1,3. The
Euler-Poincaré formula (see Theorem [1.35 (2)) implies

2
x(M) = 3057 (W, N (K)). (7.24)
7=0
Now assertion (2) follows from (7.23) and (7.24). |

Theorem 7.25. Let 1 — H 5 G L K — 1 be an ewact sequence of in-
finite groups. Suppose that G is finitely presented and one of the following
conditions is satisfied.

(1) b (H) < oo;
(2) The ordinary first Betti number of H satisfies by(H) < co and K belongs
to Bl 5

Then

(i) def(G) < 1;
(i) Let M be a closed oriented 4-manifold with G as fundamental group.
Then
|sign(M)] < x(M).
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Proof. If condition (1)) is satisfied, then bz(f)(G) =0 for p = 0,1 by Theorem
7.2/ (7), and the claim follows from Lemma [7.22.

Suppose that condition (2)) is satisfied. There is a spectral sequence con-
verging to HX (K x, EG; N(K)) with E*-term

E!, = TorS™(H,(BH;C),N(K))
[518, Theorem 5.6.4 on page 143]. Since H,(BH;C) is C with the trivial K-
action for ¢ = 0 and finite dimensional as complex vector space by assumption
for ¢ = 1, we conclude dimN(K)(E;q) =0 for p+ g =1 from the assumption
b® (K) = 0 and Lemma 6,33 (2). This implies b{* (K x, EG; N'(K)) = 0 and
the claim follows from Lemma [7.22. O
Theorem [7.25 generalizes results in [162], [279], where also some other
information is given. See also [250], [297]. We mention the result of Hitchin
[263] that a connected closed oriented smooth 4-manifold which admits an
Einstein metric satisfies the stronger inequality |sign(M)| < 2 - x(M).

7.4 Group Automorphisms and L2-Torsion

In this section we explain that for a group automorphism f: G — G the L2-
torsion applied to the (G x ¢ Z)-CW-complex E(G X s Z) gives an interesting
new invariant, provided that G is of det > 1-class and satisfies certain finite-
ness assumptions, for instance, that there is a finite G-C'W-model for EG or
more generally for E(G, FIN). We will investigate the basic properties of
this invariant.

7.4.1 Automorphisms of Groups G with Finite Models for BG

Let G be a group. We assume that there is a finite CTW-model for its clas-
sifying space BG and that G is of det > 1-class (see Definition [3.112). By
Theorem 13.3 (2) G is of det > 1-class if G belongs to the class G which will
be dealt with in Subsection [13.1.3l It contains all residually amenable groups
and in particular all residually finite groups.

Suppose that f: G — G is an automorphism. Let Gy := G x5 Z be the
semidirect product of G and Z with respect to the automorphism f. By as-
sumption BG has a finite CW-model. We pick one. Let Bf: BG — BG be
the map induced by f which is up to homotopy uniquely determined by the
property that 71 (f) is conjugate to f under the identification G = m(BG).
The mapping torus Tgy is a finite CW-model for B(G Xy Z), since there
is a fibration BG — Ty — S, We conclude from Theorem [1.39 that

bl(,2)(B(G x5 Z)) = 0 for p > 0. Since G is of det > 1-class by assumption,
G %y Z is of det > 1-class by Theorem [13.3/ (3). Notice that the construc-
tion of B(G x¢ Z) is unique up to homotopy. We conclude from Lemma
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13.6/ that B(G x ¢ Z) is a det-L?-acyclic finite free (G x5 Z)-CW-complex

and the L2-torsion p(2)(B(5;; 7)) is well-defined and depends only on the
automorphism f: G — G.

Definition 7.26 (L?-torsion of group automorphisms). Let f: G — G
be a group automorphism. Suppose that there is a finite CW -model for BG
and G is of det > 1-class. Define the L?-torsion of f by

pD(f:G—= @) =pP(BGx;Z) € R

Next we present the basic properties of this invariant. Notice that its
behaviour is similar to the Euler characteristic x(G) := x(BG).

Theorem 7.27. Suppose that all groups appearing below have finite CW -
models for their classifying spaces and are of det > 1-class.

(1) Suppose that G is the amalgamated product G *g, G2 for subgroups G; C
G and the automorphism f: G — G is the amalgamated product fi * g, fo
for automorphisms f;: G; — G;. Then

p@ () = PP () + 0P (f2) = 0P (fo);
(2) Let f: G — H and g: H — G be isomorphisms of groups. Then
PP (fog) = pP(gof).

In particular p( (f) is invariant under conjugation with automorphisms;
(3) Suppose that the following diagram of groups

1 G Go Gy 1
fll le idl
1 G Go Gy 1

commutes, has exact rows and its vertical arrows are automorphisms.
Then

PP (f2) = x(BGs)-p?(fr):
(4) Let f: G — G be an automorphism of a group. Then for all integers

n>1
") = (£

(5) Suppose that G contains a subgroup Go of finite index [G : Gp. Let
f: G — G be an automorphism with f(Go) = Go. Then

p(2)(f) = [G . GU] : p(2)(f|G0)’
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(6) Let f: G — G be an automorphism of a group G. Then p® (f) depends
only on the map H,()z)(Bf): H,(,Q)(BG) — HJSQ)(BG) induced by f on the
L%-homology of the universal covering of BG. More precisely,

pA(f) = Z(—l)P .1n (detcxfz (M)) )

p=>0

where j*H]gz)(E\C/J) is the finitely generated Hilbert N'(G xy Z)-Hilbert
module, which is obtained from the N(G)-Hilbert module HISQ)(EC:’) by
induction with the canonical inclusion j: G — G Xy Z, and the mor-
phism Hz(,z)(g}): j*H,g2)(§é) — j*H,g2)(§é) is the completion of the
map C[G X ; Z] ®ca HI()Q)(EE?) — C[G X s Z] Qca Héz)(é\é) which sends
Y®u to 7®u—'yt®ng2)(§})(u) fort € Z a fized generator, v € C[GX ;Z)]
and u € HZ(;z)(Eé);

(7) We have p®(f) = 0 if G satisfies one of the following conditions:
(a) All L*-Betti numbers of the universal covering of BG vanish;
(b) G contains an amenable infinite normal subgroup.

Proof. (1) One constructs finite CW-models BG; for i = 0,1,2 and BG
such that BG; C BG is a CW-subcomplex for i = 0,1,2 and BG = BG1 U
BG4y and BGy = BG1 N BGy and the inclusion BG; — BG induces on
the fundamental groups the inclusions G; — G for ¢ = 0,1,2. Then one
constructs self-homotopy equivalences Bf;: BG; — BG,; for i = 0,1,2 and
Bf: BG — BG such that Bf restricts to Bf; on BG,; and Bf and Bf;
induce on the fundamental groups f and f; for i = 0,1, 2. Then the mapping
torus Ty contains Ty, for ¢ = 0,1,2 as subcomplex, Tsy = Ty, UTBy, and
Ts, = Ty, N TBy, and the inclusion Try, — Tpy induces an injection on
the fundamental groups for ¢ = 0,1,2. The sum formula (see Theorem [3.96)
(2) implies

p D (Tpy) = p@(Tup) + p P (Tsr,) — 0P (Tas,)-

(2) This follows from the fact that for maps u: X — Y and v: ¥ — X
of CW-complexes the mapping tori Ty, and T, are homotopy equivalent
[326, (7.31) on page 129].

(3) There is an induced fibration B(Gy %y, Z) — B(G2 %y, Z) — BGj3
such that the inclusion of the fiber into the total space induces the obvious
injection on the fundamental groups. Now apply the fibration formula (see
Theorem [3.100/ and Remark [3.102)).

(4) Since there is a n-sheeted covering T(gfy» — Ty, the claim follows from
multiplicativity of L?-torsion under finite coverings (see Theorem 13.96! (5)).

(5) There is a finite covering with [G : Gy]-sheets Tps, — Ty since there is
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a bijection from G//Go to (G xy Z)/(Go x|, Z). Now the assertion follows
from multiplicativity of L2-torsion under finite coverings (see Theorem [3.96
())-

(6) This follows from Theorem [3.106.

(7) This follows from assertion (6) and Theorem 7.2 (I)) and (2). This finishes
the proof of Theorem [7.27. 0O

7.4.2 Automorphisms of Surfaces

Let S be a compact connected orientable 2-dimensional manifold, possibly
with boundary. Let f: S — S be an orientation preserving homeomorphism.
The mapping torus T is a compact connected orientable 3-manifold whose
boundary is empty or a disjoint union of 2-dimensional tori. Then T} is an
irreducible Haken manifold with infinite fundamental group and incompress-
ible boundary if S is different from S? and D?. In this case T satisfies
Thurston’s Geometrization Conjecture, i.e. there is a maximal family of em-
bedded incompressible tori, which are pairwise not isotopic and not boundary
parallel, such that it decomposes T into pieces, which are Seifert or hyper-
bolic. Let My, Ms, ..., M, be the hyperbolic pieces. They all have finite
volume vol(M;). (We have explained the notions and facts above in Section
4.1). Then Theorem 4.3/ shows

Theorem 7.28. If S is 5%, D2, or T2, then p® (f) = 0. Otherwise we get

PP (1) m(S) = m(S) = — D vol(My)
i=1

Let S be a closed orientable hyperbolic surface and f: S — S be a self-
homeomorphism. It is called irreducible if f is not homotopic to an auto-
morphism which leaves some essential closed 1-dimensional submanifold in-
variant. Essential means that none of the components is nullhomotopic in S.
It is called periodic if it is homotopic (or, equivalently, isotopic) to a map
g: S — S for which there is a positive integer n with ¢ = id. The notion
pseudo-Anosov in terms of transverse singular foliations can be found for
instance in [96, page 95]. It is important to know that the following state-
ments for an irreducible selfhomeomorphism f: S — S are equivalent: i.) f is
pseudo-Anosov, ii.) f is not periodic and iii.) the mapping torus T is hyper-
bolic [96, Theorem 6.3], [369, Theorem 3.6 on page 47, Theorem 3.9 on page
50]. We know from Theorem 4.3 that p(® (m(f)) is —& - vol(T) and hence
different from zero, provided that T is hyperbolic. If T} is not hyperbolic, f
must be, up to homotopy, periodic and hence p(2)(i“vf) = 0 by Theorem [7.27
(4). Hence f is pseudo-Anosov if and only if p®(f) < 0, and f is periodic if
and only if p®(f) = 0.

Recall that we can read off p)(f) := p( (T}) from H£2)(f) by Theo-
rem 3.106/ and thus, because of Theorem 4.9, from the map induced by f
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on the fundamental group m1(F). So we have in principle a procedure to
decide whether f is pseudo-Anosov by inspecting the map induced on the
fundamental group.

7.4.3 A Combinatorial Approach for the L?-Torsion of an
Automorphism of a Finitely Generated Free Group

In this Subsection we discuss how the combinatorial approach to L2-torsion
of Subsection [3.7| specializes in the case of an automorphism f: FF — F of
the free group F' on r letters s, sg, ..., s,. Write G = F' X7 Z for the semi-
direct product associated to f. Let ¢ € Z be a generator and denote the
corresponding element in G also by t. Define a (r,r)-matrix A over ZF by

0
o (),
0s; 1<i,j<r

where é% denotes the Fox derivative. Choose a real number K > 0 which is
greater than or equal to the operator norm of the morphism

TI_tA: @ZZ(G) — @ZQ(G
i=1 i=1
given by right multiplication with (I —tA). A possible choice for K is

K = +/@r—1)r max{||l —tA; |l |1<14,j<r}

where || deFfo Ag - g|l1 is defined by >~ - [Ag]. Denote by A* the matrix
obtained from A by transposing and applying the standard involution ZF —
ZF, which sends >, cp A - u t0 >, c o Au - u™t, to each entry. Denote by

trzg: ZG — 7, Zx\g~g = Ae
geG

the standard trace on ZG, where ). is the coefficient of the unit element e
in G. It extends to square matrices over ZG by taking the sum of the traces
of the diagonal entries. Define

(A K)y = trzg (1= K72 (1= tA)(1 = A7)

Theorem 7.29. In the setting above the sequence c(A, K), is a monotone
decreasing sequence of non-negative real numbers, and the L?-torsion of f

satisfies
PA(f) = —r-In(K Z » <0.

l\.’)\»—~
'B\H
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Proof. Choose \/;_; S* with the obvious base point x as model for BF. Re-
alize f as an endomorphism Bf: BF — BF respecting the base point. Fix
a base point € BF which is sent under the projection BF — BF to x.
Choose a lift Bf: BF — BF uniquely determined by the property that it
sends T to itself. In the sequel we identify F, w1 (BF) and the group of deck

transformations of BF with respect to the given base points 2 and z. Then

vi is (f: F — F)-equivariant. The cellular ZF-chain complex of BF looks
like

Pzr Lzl g
1=1

where rs,_1: ZF — ZF sends u to u(s; — 1). The matrix A defines a
(Zf: ZF — ZF)-equivariant homomorphism

TA: éZF — éZF,
=1 =1
(Z Auj - u) =D g Fw) A
1<j<r

uelr uel j 1<k<r

and analogously for the unit (r,r)-matrix I. The (Zf: ZF — ZF)-equivariant
chain map C.(Bf): C.(BF) — C.(BF) looks like

2im1Tei—1
_ 5

@, ZF ZF
;Al ?,l
@, ZF LTl g

Then the cellular ZG-chain complex of T;} = BG is the mapping cone of
the following chain endomorphism of ZG @z C.(BF)

P, 2G il e

TI—t,AJV TlftJV
r e Tei—1
®_, 26 == 74

where r7_;4 and r1_; are given by right multiplication with the square matri-
ces I —tA and (1 —t) over ZG. It is det-L2-acyclic after tensoring with [2(G)
since G belongs to the class G (see Definition [13.9) by Lemma [13.11, and
Theorem [1.39 and Theorem [13.3 (2) hold. The 1-dimensional ZG-chain com-
plex ZF DL 7F s det-L2-acyclic and has trivial L2-torsion after tensoring
with I2(G) (see (3.24) and Theorem [3.14/ (6) ). Moreover, it is a subcomplex of
the mapping cone of the chain endomorphism above. The weakly exact long
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L2-homology sequence (see Theorem [1.21) and the sum formula (see Theo-
rem [3.35 (1)) imply that the L2-torsion of f, which is the L?-torsion of this
mapping cone after tensoring with 1?(G), is the L2-torsion of the quotient
ZG-chain complex concentrated in dimension 2 and 1 after tensoring with

lz(G) '8 s
.HOH@ZGZL‘:;@ZGHO.
=1 =1

This implies

PP (f) = —In(dety(q)(idiz) ®zaTI-14)) -

Since G belongs to the class G (see Definition [13.9)) by Lemma[I3.11, Theorem
13.3/ (2) implies that p(Q)(f) is non-positive. The other claims follow from
Theorem [3.172 (1) and (4]). O

Suppose that the second Novikov-Shubin invariant ag(B(F X s Z)) is pos-
itive, what is conjectured to be true for any group (see Conjecture 2.82) and
proved if f is induced by a surface homeomorphism (see Theorem 4.2/ (1))).
If @ is a number with 0 < o < a(B(F Xy Z)), then there is a real number
C > 0 such that for all p

L
1 C
0 < p®? 2r-In(K) - Y ~-¢(A,K), < —
< PP+ n(E) =3 A K)y < o
holds (see Theorem 3.172/ (5)). In other words, the speed of convergence is
exponential.

7.4.4 Generalizations

So far we have assumed that there is a finite model for BG. This implies
that G is torsionfree. Similar to the notion of the virtual Euler characteristic
(see Remark [6.81)) of a group G, which possesses a subgroup G} C G of
finite index with a finite CW-model for BGg, one can extend the definition
of p@(f) to automorphisms f: G — G of such a group G. Namely, choose
a subgroup Gy C G of finite index such that there is a finite CW-model for
BGy and f(Goy) = Gy. Then define

PP (fla,: Go — Go)
[G . Go] ’

Pak(f: G—G) = (7.30)
Given a subgroup G, of finite index in G with a finite C'W-model for
BGY,, one obtains the desired subgroup Go by Nnezf™(Gf). We have to show

that this is independent of the choice of Gy. Let G1 be another such choice.
Then we obtain from Theorem [7.27| (5)) if we put Go = Go N G4
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PP (fla,) D (flc,) P (flc,) P (flc,)

[GZG()] - [GG()][G()GQ] a [GGﬂ[GlGQ] o [GGl]

Another more general possibility is to use the classifying space E(G X
Z,FIN) of G xs Z for the family FZN of finite subgroups. Then one can
define under the assumption that F(G, FZN) has a finite G-CW-model and
G is of det > 1-class

P (f: G — Q)= pP(EG x; Z; FIN);N(G x; 7).  (7.31)

Here we use the fact that there is a finite G » ¢ Z-model for E(G % Z; FIN),
provided that there is a finite G-CW-model for E(G, FZN'). Namely, the to
both ends infinite mapping telescope of the f: G — G-equivariant homotopy
equivalence E(G, FIN) — E(G,FIN) induced by f is a model for E(G X
Z; FIN). Moreover, one has to use the fact that the definition of L?-torsion
carries over to finite proper G-CW-complexes and depends only on the G-
homotopy type provided that G is of det > 1-class (see Section 3.8)).

Any discrete cocompact subgroup of a connected Lie group and any word-
hyperbolic group has a finite G-CW-model for E(G, FIN) (see [1), Corollary
4.14], [370]). For more information about E(G, FZN') we refer for instance
to [336].

If G is torsionfree, then these three notions p()(f), pgr)t(f) and ) (f) are
all defined if and only if one of them is defined, and in this case they coincide.
Suppose that G possesses a torsionfree subgroup Gy of finite index. Then BGy

has a finite CW-model if there is a finite G-CW-model for E(G, FIN). If
both p‘(fr)t( f) and 5?(f) are defined, they coincide.

We mention without giving the proof that Theorem [7.27| carries directly
over to pB(f: G — @), provided we assume in assertion (3) that Gj is

torsionfree.

7.5 Miscellaneous

If one takes the third Novikov-Shubin invariant into account, one can improve

Lemma [7.22] (I)). Namely, if BG has finite 3-skeleton, b§2)(K X EG,N(Q)) =
0 and a3(K x4 EG;N(G)) # oo™, then

def(G) < 0. (7.32)

This can be seen as follows. It suffices to improve the inequality in Lemma
7.16/ to a strict inequality

g—r < 1-bP (K x s EG; N (K))+b\2 (K x s EG; N (K)) b8 (K x y EG; N (K))
by the following modification of the proof of Lemma [7.16. Namely, since
a3(K x4 EG;N(GQ)) # oof, we have THE (K x4 EG;N(K)) # 0. No-
tice that HI (K x4 X;N(K)) — HE(K x4 EG;N(K)) is surjective and
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HE(K x4 X; N(K)) is a finitely generated projective (K )-module since X
is 2-dimensional and N'(K') semihereditary by Theorem 6.7/ (1). We conclude
from Theorem 6.7/ and Lemma[6.28 (3)) that (7.18) becomes a strict inequality

B (K x4 X N(K)) > b (K x4 EGN(K))

and (7.32) follows.

We mention the following result of Lott [320, Theorem 2] which gener-
alizes a result of Lubotzky [324]. The statement we present here is a slight
improvement of Lott’s result due to Hillman [259].

Theorem 7.33. Let L be a connected Lie group. Let G be a lattice in L. If
def(G) > 0, then one of the following assertions holds

(1) G is a lattice in PSLy(C);
(2) def(G) = 1. Moreover, either G is isomorphic to a torsionfree non-
uniform lattice in R x PSLy(R) or PSLy(C), or G is Z or Z>.

More information about the class By can be found in [34]. For instance
the first L2-Betti number of a group having Kazhdan’s property (T) vanishes
[34, Corollary 6].

The following result is due to Gaboriau [214, Theorem 6.3]. (An alterna-
tive proof using the dimension theory of Chapter |6 can be found in the Ph.
D. thesis of Roman Sauer [456].) Two countable groups Gy and G are called
measure equivalent if there exist commuting measure-preserving free actions
of Gy and G; on some infinite Lebesgue measure space (£2,m) such that the
actions of both Gy and G admit finite measure fundamental domains (see
[237, 0.5E], [211] and [212]).

Theorem 7.34 (Measure equivalence and L?-Betti numbers). Let Gy
and G1 be two countable groups which are measure equivalent. Then there is
a constant C > 0 such that for allp >0

bj(gz)(Go) = C'b;(?)(Gl)'

Since any infinite amenable group is measure equivalent to Z [408], this
gives another proof of the fact that the L2-Betti numbers of infinite amenable
countable groups vanish. Notice that Z™ and Z™ have different Novikov-
Shubin invariants for m # n (see Example 2.59) so that Novikov-Shubin
invariants are not invariant under measure equivalence.

The notion of measure equivalence can be viewed as the measure theoretic
analog of the metric notion of quasi-isometric groups. Namely, two finitely
generated groups Gy and G are quasi-isometric if and only if there exist
commuting proper (continuous) actions of Go and G7 on some locally com-
pact space such that each action has a compact fundamental domain [237,
0.2 C4 on page 6].
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If the finitely generated groups Gy and G; are quasi-isometric and there
exist finite models for BGo and BG; then b5 (Go) = 0 < b2 (Gy) = 0
holds (see [237, page 224], [410]). But in general it is not true that there is
a constant C' > 0 such that b,(,2)(G0) = C- b,(,2)(G1) holds for all p > 0
(cf. [215), page 7], [237, page 233], [523]). If F, denotes the free group on g
generators, then define G, := (F5 x F3) x F,, for n > 2. The groups G, and
G,, are quasi-isometric for m,n > 2 (see [132, page 105 in IV-B.46], [523|
Theorem 1.5]) and have finite models for their classifying spaces. One easily
checks that ng)(Gn) =n and bg)(Gn) = 4 (see Example [1.38)).

Gaboriau’s Theorem [7.34' implies that G,, and G,,, are measure equivalent
if and only if m = n holds. Hence there are finitely presented groups which are
quasi-isometric but not measure equivalent. Another example is pointed out
in [215, page 7]. There exist quasi-isometric finitely generated groups G and
G such that Gg has Kazhdan’s property (T') and G does not, and Kazhdan’s
property (T) is an invariant under measure equivalence [211, Theorem 8.2].

The converse is also true. The groups Z™ and Z™ are infinite amenable and
hence measure equivalent. But they are not quasi-isometric for different m
and n since n is the growth rate of Z™ and the growth rate is a quasi-isometry
invariant.

Notice that Theorem [7.34/ implies that the sign of the Euler characteristic
of a group G is an invariant under measure equivalence, what is not true for
quasi-isometry by the example above.

We mention the following not yet published result of Monod and Shalom
that the non-vanishing of the second bounded cohomology HZ(G;1?(G)) of a
countable group G with coefficients in [?(G) is an invariant of the measure
equivalence class of G.

The following questions arose in discussions with R. Sauer in view of
Theorem 3.113/ and [343].

Question 7.35. (L?-torsion of groups and quasi-isometry and mea-
sure equivalence).

Let G; for i = 0,1 be a group such that there is a finite CW -model for
BG; and EG; is det-L?-acyclic. Suppose that Gy and G, are measure equiv-
alent or that Gy and G are quasi-isometric. Does then p® (EGy; N (Gy)) =
0 < p®(EG;N(Gy)) =0 hold?

Question 7.36. (Novikov-Shubin invariants and quasi-isometry).
Let G; for i = 0,1 be a finitely generated group. Suppose that Gy and Gy
are quasi-isometric. Does then a,(EGo; N (Go)) = ap,(EG1; N (G1)) hold for
p>17

A lattice G in a locally compact second countable topological group 7' is a
discrete subgroup such that the measure on 7'/G induced by a right invariant
Haar measure on T has finite volume. (This implies that 7" is unimodular.)
Since two lattices in the same locally compact second countable topological
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group T are measure equivalent [211, Example 1.2 on page 1059], Theorem
7.34 implies (see also Theorem [3.183)

Corollary 7.37. Let G1 and G2 be two lattices in the same locally compact
second countable topological group T. Then for all p > 0

b (G)  _ b(Ga)
vol(T/Gy) — vol(T/Ga)’

A survey article about orbit equivalent measure preserving actions and
L2-Betti numbers is written by Gaboriau [215].

For each Artin group A, Davis and Leary [129] compute the L?-cohomology
of the universal covering of its so called Salvetti complex. This is a finite CW-
complex which is conjectured to be a model for the classifying space BA.
In the many cases when this conjecture is known to hold their calculation
describes the reduced L2-cohomology of FA, or, equivalently, the L2-Betti

numbers bg) (A).

Exercises

7.1. Let d be a non-negative integer. Suppose that the group G has a de-
scending series of infinite subgroups G = Gg D G; D G2 D ... D Gg4 such
that BG,,11 has finite (d —n)-skeleton for each n =0,1,2,...,d—1, Gy 11 is
normal in G,, and the quotient G,, /G, 11 contains an element of infinite order
or contains finite subgroups of arbitrary large order for n = 0,1,...,d — 1.
Prove G € B,.

7.2. Suppose that the group G has a descending series of infinite subgroups
G =Gy D Gy DGy D...such that BG4 is of finite type, Gj41 is normal
in G, and the quotient G,, /G, 41 contains an element of infinite order or

contains finite subgroups of arbitrary large order for n = 0,1,.... Prove
G € Bs.
7.3. Let G,, forn=0,1,2,... be a sequence of non-trivial groups. Prove
B (1520Gn) = Y b (Gr).
n=0
for p > 2 and
b (20 C) = 0.

7.4. Let G1, Gg, ..., G, be finitely many groups. Prove



Exercises 315

2
W ([Tan =" > TIef@w.
k=1 0<j1,d25--5dn, k=1
Zzzljk:p

where we use the convention that 000 = 0, 7+ co = oo for r € (0, 00] and
r 4 00 = oo for r € [0, x].

7.5. Let {G; | i € I} be a family of non-trivial groups for an infinite index
set 1. Put G = [],.; Gi. Prove G € By. Show by giving an example that it
is not necessarily true that H,(,Q)(EG;N(G)) =0 for all p > 0.

7.6. Let G be an infinite locally finite group. Show that HS (EG; N (G))
vanishes for p > 1 and does not vanish for p = 0 and that bz(,Q)(G) = 0 holds
for all p > 0.

7.7. Let 1 - H — G — K — 1 be an extension of groups such that H or K
respectively is finite. Show that K or H respectively belongs to By, BQ, or
BF, if and only if G does.

7.8. Let d be a non-negative integer or d = co. Let F’ %, E' 2 Bbeafibration
of connected C'W-complexes such that b,(,Q)(m(E) X ey (1) F;N(m1(E))) < o0
for p < d. Suppose that Hp(é ; C) is a finite dimensional complex vector space
for p < d and that 71 (B) € BF,. Show that then b2 (E) = 0 for p < d.

7.9. Let G and H be non-trivial groups. Show that bgz)(G x H) = 0 if and
only if G =H =7/2.

7.10. Suppose there is a finite G-CW-model for E(G; FZN). Let d be the
least common multiple of the order of finite subgroups of G. Show

d-x?(G) ez

7.11. Prove x?(SL(2,Z)) = —

7.12. Let G be a finitely presented group. Show
def(G) < b1(G; Z/p) — b2(G; Z/p),

where b,(G;Z/p) is the p-th Betti number of EG with respect to singular
homology with coefficients in Z/p.

7.13. Let f: G — G be a (not necessarily bijective) endomorphism of a group
G which possesses a finite CW-model for BG and is of det > 1-class. Let K

be the colimit of the directed system ... LaL gL .. indexed by Z. Let
G be the semidirect product K x Z with respect to the shift automorphism
of K. Show
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(1) There is a finite CW-model for BGy, namely the mapping torus of
Bf: BG — BG;
(2) BGy is det-L*-acyclic and the L2-torsion p(Z)(EZ}’/f) depends only on f.
Define o
p?(f) = p?(BGy);

(3) Show that this invariant reduces to the invariant p(®(f) of Definition
7.26/ in the case where f is an automorphism;

(4) Show that Theorem [7.27 does hold also for group endomorphisms if one
makes the following modifications or additional assumptions. Assertion
(1), @), (3) and (4) remain true. For assertion (5) one needs the con-
dition that f induces a bijection G/Gg = G/Gy. In the formulation of
assertion (6) one must replace the universal covering of BG by the cov-
ering associated to the canonical projection G — K. In assertion (7) the
conditions must be required for K instead of G.



8. The Algebra of Affiliated Operators

Introduction

In this chapter we introduce and study the algebra i/ (G) of operators affiliated
to N(G) for a group G. A G-operator f: dom(f) C V — W of Hilbert
N (G)-modules is an operator whose domain dom(f) is a linear G-invariant
subspace and which satisfies f(gx) = ¢gf(z) for all x € dom(f) and g € G.
The algebra U (G) consists of densely defined closed G-operators a: dom(a) C
I2(G) — I2(G) and contains N'(G) as a subalgebra. It is constructed in such
a way that an element f: [*(G) — [*(G) in N(G) is a weak isomorphism
if and only it is invertible in U(G). This is reflected algebraically by the
fact that U(G) is the Ore localization of N (G) with respect to the set of
non-zero divisors (see Theorem [8.22 (1)). It does not come with a natural
topology anymore but has nice ring theoretic properties. Namely, U (G) is von
Neumann regular, i.e. for any r € U(G) there is s € U(G) with rsr = r, or,
equivalently, any finitely generated submodule of a projective U(G)-module
is a direct summand (see Theorem [8.22] (3)). We have already mentioned in
Examplel6.12/that A'(G) behaves in several ways like a principal ideal domain
except that N (G) is not Noetherian and has zero-divisors if G is infinite.
Any principal ideal domain R has a quotient field F', and in this analogy
U(QG) should be thought of as F'. Recall that the (extended) dimension of an
arbitrary R-module M is the same as the F-dimension of the F-vector space
F®r M (see Example [6.12). In terms of this analogy it is not surprising that
the extended dimension function dim ¢y for arbitrary NV'(G)-modules comes
from an extended U (G)-dimension function dimg ) over U(G) in the sense
that dimp ) (M) = dimy e (U(G) @nr(cy M) holds for any N (G)-module
M (see Theorem [8.29)). The algebra U(G) will play a role in the proof of the
Atiyah conjecture in Chapter [10. It will be the largest algebra attached to a
given group which we will consider in this book. All other algebras attached
to a given group will be contained in it.
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8.1 The Algebra of Affiliated Operators

In this section we introduce the algebra U(G) of operators affiliated to the
group von Neumann algebra N'(G). It was originally introduced and studied
in [396], Chapter XVI].

We have already studied the C-category {fin. gen. Hilb. /'(G)-mod.} with
involution of finitely generated Hilbert N(G)-modules with bounded G-
operators as morphisms (see Section [6.2). We have already seen that weak
isomorphisms play an important role. Recall that an operator is a weak iso-
morphism if its kernel is trivial and its image is dense and that a weak
isomorphism is in general not invertible. The basic idea for the following con-
struction is to enlarge the set of morphisms in {fin. gen. Hilb. N (G)-mod.} to
get a new C-category with involution {fin. gen. Hilb. N'(G)-mod.};, with the
same objects such that weak isomorphisms become invertible. To motivate it,
let us consider a bounded G-operator f: V — W of finitely generated Hilbert
N (G)-modules, which is a weak isomorphism, and check what is needed to
find an “inverse”. The polar decomposition f = wus consists of a unitary
invertible G-operator u and a positive G-operator s which is a weak isomor-
phism. So it suffices to “invert” s. Since s is a weak isomorphism, its kernel
is trivial and we obtain an unbounded densely defined closed G-operator
JATYEN, if {E\ | X € [0,00)} is the spectral family of s (see Subsection
1.4.1)). This should become the inverse of s. Hence we must enlarge the mor-
phisms to include unbounded densely defined G-operators like [ A"NE,.
The difficulty will be that the composition and sum of unbounded densely
defined closed operators (see Notation [1.69) is in general not again densely
defined and closed. The main problem is that the intersection of two dense
subspaces is not necessarily dense again. It will turn out that in the specific
situation, which we are interested in, this problem can be solved. We need
some preparation to handle this.

Definition 8.1 (Affiliated operator). An unbounded operator f: dom(f)
CV — W of finitely generated Hilbert N'(G)-modules is called affiliated (to
N(Q@)) if f is densely defined with domain dom(f) C V, is closed and is a
G-operator, i.e. dom(f) is a linear G-invariant subspace and f(gzx) = gf(x)
for all x € dom(f) and g € G.

Definition 8.2. Let V be a finitely generated Hilbert N'(G)-module. A G-
invariant linear subspace L C V is called essentially dense if for any e > 0
there is a finitely generated Hilbert N'(G)-submodule P C 'V with P C L and
dimN(G)(V) - dimN(G)<P) <e.

Notice that essentially dense implies dense.

Lemma 8.3. Let f, f': V — W be affiliated operators of finitely generated
Hilbert N'(G)-modules. Then
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(1) A countable intersection of essentially dense linear G-subspaces of V is
again essentially dense;

(2) If L C W is essentially dense, then f~Y(L) C dom(f) is an essentially
dense subspace of V. In particular dom(f) is essentially dense;

(3) If f' C f, then f' = f. In particular f = [, if there is a G-invariant
subset S of dom(f) Ndom(f’) which is dense in 'V and on which f and
/! agree;

(4) If f is bounded on its domain, i.e. there is C < 0 with |f(x)| < C|z| for
all x € dom(f), then dom(f) =V.

Proof. (1) Let {L,, | n > 0} be a countable set of essentially dense linear G-
subspaces of V. Given € > 0, choose a Hilbert A/(G)-submodule P, C V with
P, C L, and dim ) (V) —dimpr(q) (P) < 27" te. Put P =),>¢ P Then
P is a Hilbert N'(G)-submodule of V' with P C (1),,»¢ L» and we conclude
from Theorem [1.12| (2) and (4)

dimy () (V) = lim_dimy(e) (ﬂ Pn>

n=0
= lim (dimN(G)(V) — dimpr(g) (ﬂ Pn>>
meee n=0
< lim Y (dimpe) (V) = dimye) (Pa))
n=0

< lim (Z 2—"—1e>
n=0

= €.

(2) We can write f using polar decomposition as the composition
fvs ker(f)t % im(f) = im(f) KN w,

where pr and ¢ are the canonical projection and inclusion, w is a unitary
isomorphism and s is a densely defined unbounded closed G-operator which
is positive and a weak isomorphism. Let {E) | A € [0,00)} be the spec-
tral family of s. Since E) converges for A — oo strongly to id, we get
limy oo dimp gy (im(£y)) = dimy ) (im(f)). Fix € > 0. Choose A¢ with
dimpr () (im(f)) — dimprg)(im(Ey,)) < €/2. Since L is essentially dense
in W, we can find a Hilbert N (G)-submodule P C W with P C L and
dim @y (W) — dim(g) (P) < €/2. We conclude from Theorem [1.12/ (2)

dimN(G) (1m(f)) — dlmN(G)(P M 1m(E>\0)) <e (84)
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Notice that im(E),) C dom(s) follows from (1.66) since each y € im(E),)
lies in the domain of ffooo ME). Moreover, s induces a bounded G-operator
sy : im(Ey,) — im(FE),) which is a weak isomorphism, and s~1(P N
im(Ey,)) = s H(PNim(Ey,)) Nim(Ey,) = (sx,) " (P Nim(E),)) is a closed
G-invariant subspace of im(f). We conclude from Lemma 2.12

dimpr e (s7H(P Nim(Ey,))) = dimp ) (P Nim(Ey,)). (8.5)
We conclude from Additivity (see Theorem 1.12] (2)))
dimy(g) (s7H(PNim(Ey,))) + dimp(g) (ker(f))
= dimpyg) ((souopr) " (PNim(Ey,))); (8.6)
dimp(g) (V) = dimy () (ker(f)) + dimp ) (im(f)). (8.7)

Hence (s 0w opr) (P Nim(E),)) is a Hilbert A/(G)-submodule of V, is
contained in f~1(L) and because of (8.4), (8.5), (8.6) and (8.7)

dimpr ey (V) — dimpr(a) ((s ouopr) HPN im(EAO))) <e.

Hence f~1(L) is essentially dense.

(3) Let V be a finitely generated Hilbert A/(G)-module. We first show that an
affiliated operator h: V' — V which is symmetric is already selfadjoint. We do
this using the Cayley transform k(s) of a symmetric densely defined operator
s: dom(s) C H — H, which is the operator (s —i)(s +i)~! with domain
dom(k(s)) = (s + i)(dom(s)). Let us summarize the basic properties of the
Cayley transform (see [421, Section 5.2]). It is an isometry on its domain
dom(k(s)). The operator x(s) — 1 with the same domain as x(s) is injective
and has range im(k(s) — 1) = dom(s). If in addition s is closed, then the
subspaces (s +i)(dom(s)) are closed. The operator s is selfadjoint if and only
if (s +1i)(dom(s)) = (s — ¢)(dom(s)) = H.

We want to use the latter criterion to show that h is selfadjoint. No-
tice that x(h) is a G-operator as h is a G-operator, and dom(k(h)) =
(h 4 i)(dom(h)) is closed as h is closed. Let p denote the projection onto
the G-invariant closed subspace dom(k(h)). Then x(h) o p — p is everywhere
defined and im(k(h) — 1)) = im(x(h) o p — p). Since

(k(h)op—p)* = ((k(h) o p—p) op)” = p*o(k(h)op—p)* = po(k(h)op—p)*,

we conclude using Additivity (see Theorem [1.12/ (2)))
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This and assertion (2)) imply
dim (@) ((h +i)(dom(h))) = dimp () (V).

Since (h + i)(dom(h)) C V is closed, we conclude (h + i)(dom(h)) =
dom(k(h)) =V from Theorem [1.12 (1) and (2). Since x(h) is an isometry on
its domain and a G-operator, we get dimy; () (im(k(h)) = dimprg) (V). As
(h—1i)(dom(h)) = im(k(h)) is closed, we conclude (h —i)(dom(h)) = V. This
finishes the proof that h is selfadjoint.

Now we can give the proof of (3)). Let f = uh be the polar decomposition
of f. Put A/ = u*f’. Since u* is a bounded G-operator and f’ is affiliated, h’
is affiliated. We have b’/ = u*f' C u*f = h. We conclude b’ C h = h* C (h')*,
i.e. h' is symmetric. Hence h’ is selfadjoint by the argument above. This
implies b’ = h = h* = (h')* and hence dom(f’) = dom(h') = dom(h) =
dom(f), ie. f=f".

(4) Any closed densely defined operator which is bounded on its domain is
automatically everywhere defined. O

Now we are ready to define the desired C-category with involution
{fin. gen. Hilb. N'(G)-mod.}, as follows. Objects are finitely generated Hilbert
N (G)-modules. Given two finitely generated Hilbert A(G)-modules V' and
W, the set of morphisms from V to W consists of all affiliated operators
f: dom(f) C V — W. The identity element of V is given by the identity
operator id: V' — V. Given an affiliated operator f: dom(f) C V — W, its
adjoint f*: dom(f*) C W — V is affiliated, since the adjoint of a closed
densely defined operator is always closed and densely defined and the adjoint
of a G-operator is always a G-operator. Thus we can define the involution by
taking the adjoint.

Given morphisms f: dom(f) C U — V and g: dom(g) C V — W, de-
fine their composition g o f in {fin. gen. Hilb. N'(G)-mod.};; by the minimal
closure of the unbounded operator go f: U — W with domain f~!(dom(g))
as defined in Notation [1.69. We have to check that this is well-defined. From
Lemma 8.3 (2) we conclude that f~!(dom(g)) is essentially dense and in
particular dense in U. We know already that the adjoints g* and f* are affili-
ated again and hence f*og* with domain (g*)~!(dom(f*)) is densely defined.
Since the domain of the adjoint of g o f contains (¢*)~!(dom(f*)), (go f)*
is densely defined. This implies that g o f is closable, namely, ((g o f)*)* is
its minimal closure. Obviously g o f is a G-operator. Hence its minimal clo-
sure is indeed affiliated. Analogously one defines the complex vector space
structure on the set of morphisms from V' to W by taking the minimal clo-
sure of the addition and scalar multiplication of unbounded operators de-
fined in Notation [1.69. We leave it to the reader to check that the various
axioms like associativity of the composition and so on are immediate con-
sequences of Lemma [8.3 (3). Obviously {fin. gen. Hilb. N'(G)-mod.} is a C-
subcategory with involution of {fin. gen. Hilb. N (G)-mod.};;. Next we show
that {fin. gen. Hilb. N(G)-mod.};; has the desired properties.
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Lemma 8.8. (1) An affiliated operator f: dom(f) C'V — W represents an
isomorphism in {fin. gen. Hilb. N'(G)-mod.}y if and only if f is a weak
isomorphism, i.e. [ has trivial kernel and dense image f(dom(f));

(2) Let f: dom(f) € V. — W be an affiliated operator. Then there are
bounded (everywhere defined) G-operators a: V.— W and b:' V. — V
with the properties that b is a weak isomorphism and f = ab~' holds in
{fin. gen. Hilb. N(G)-mod.}y.

Proof. (1) Suppose that f: dom(f) C V — W is an affiliated operator
which is a weak isomorphism. Let f = us be its polar decomposition. Then
u: V. — W is a unitary bijective G-operator and s: dom(s) C V — V
is an affiliated operator which is positive and a weak isomorphism. Let
h(s): V. — V be the operator given by the functional calculus applied to
s for the Borel function A: R — R which sends A # 0 to A™! and 0 to, let
us say, 0. Notice that h(s) is a densely defined selfadjoint G-operator and
in particular affiliated. If {Fy | A € [0,00)} is the spectral family of s, then
im(E,) N im(Ef-/n) is contained in dom(h(s)) for all integers n > 1. Since
s has trivial kernel, lim,, .o dim(g)(im(£,) N im(Ef-/n)) = dimpr(g) (V).
Since both s and h(s) map im(E,) Nim(E; )" to itself and define in-
verse operators there, Lemma [8.3 (3) implies that s and h(s) define in-
verse morphisms in {fin. gen. Hilb. N'(G)-mod.}y. Since u obviously defines
an isomorphism in {fin. gen. Hilb. A(G)-mod.}y;, f is an isomorphism in
{fin. gen. Hilb. N'(G)-mod.}y.

Now suppose that the affiliated operator f: dom(f) C V — W defines an
isomorphism in {fin. gen. Hilb. N'(G)-mod.}y. Let h: dom(h) C W — V be
an inverse. For = € ker(f) we have z € f~!(dom(h)) and hence z = id(x) =
ho f(x) = 0. Hence f has trivial kernel. Since foh = id in U, the image of f
contains the subspace h~!(dom(f)) which is dense by Lemma 8.3 (2). Hence
the image of f is dense. This shows that f is a weak isomorphism.

(2) Let f = us be the polar decomposition of f. Let p = 1 — u*u. This is the
projection onto ker(u*u) = ker(us) = ker(s). We have f = u(s+p) and (s+p)
is an affiliated positive operator dom(s + p) C V — V with trivial kernel.
Define Borel functions hy,ha: R — R by h1(A) = A and ha(A) =1 for A < 1
and by hi(A) =1 and ho(A) = 1/A for A > 1. Then uwohy(s+p) and ha(s+p)
are bounded G-operators, ha(s + p) represents an invertible morphism in
{fin. gen. Hilb. N'(G)-mod.}z; and f = (u o hi(s + p)) o (ha(s + p))~! in
{fin. gen. Hilb. N'(G)-mod.},. O

Definition 8.9 (Algebra of affiliated operators). Define U(G) to be the
ring with involution given by the endomorphisms of I12(G) in the C-category
with involution {fin. gen. Hilb. N'(G)-mod.}y, i.e. the ring of affiliated oper-
ators f: dom(f) C I*(G) — I*(G).

Let {I>(G)"}u C {fin. gen. Hilb. N(G)-mod.};; be the full subcategory,
whose objects are [?(G)" for n > 0. Let {U(G)"} be the category whose
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objects are the (left) U (G)-modules U(G)™ for n > 0 and whose morphisms
are U(G)-homomorphisms. Then we obtain an isomorphism of C-categories
with involution (compare with [6.22))

v {U(G)"} — {12(G)" Ju. (8.10)

Example 8.11. Let G = Z". Using the identifications of Example [1.4 we
get an identification of U(Z™) with the complex algebra L(T™) of equivalence
classes of measurable functions f: T™ — C. Recall that two such functions
are equivalent if they differ on a subset of measure zero only.

Let ¢: H — G be an injective group homomorphism. We have associated
to it a covariant functor of C-categories with involution

ix: {fin. gen. Hilb. N (H)-mod.} — {fin. gen. Hilb. N/(G)-mod.}

in Definition 1.23. The same construction induces a covariant functor of C-
categories with involution

ix: {fin. gen. Hilb. N (H)-mod.};; — {fin. gen. Hilb. N (G)-mod.}y,

because for an affiliated operator f: U — V of finitely generated Hilbert
N (H)-modules the densely defined G-operator id @cp f: dom(id @cpy f) =
CG ®cpy dom(f) C iU — i,V has a densely defined adjoint and therefore
its minimal closure exists and is affiliated. Functoriality follows from Lemma
8.3 (3). In particular we get a ring homomorphism

iv: U(H) — U(G). (8.12)

Notice that A(G) is a *-subring of U (G) and that U(G) does not carry a
natural topology anymore. However, U(G) has nice properties as a ring what
we will explain below.

8.2 Basic Properties of the Algebra of Affiliated
Operators

In this section we explain and prove various ring-theoretic properties of U(G).

8.2.1 Survey on Ore Localization

Definition 8.13. Let R be a ring. Given a set S C R, a ring homomorphism
f: R — R is called S-inverting if f(s) is invertible in R’ for all s € S. An
S-inverting ring homomorphism f: R — Rg is called universal S-inverting
if for any S-inverting ring homomorphism g: R — R’ there is precisely one
ring homomorphism G: Rs — R’ satisfying go f = g.
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The universal property implies as usual that the universal S-inverting homo-
morphism f: R — Rg is unique up to unique isomorphism. One can construct
such a universal S-inverting ring homomorphism by writing down a suitable
ring with generators and relations. If S is the set of elements s € R for which
f(s) € Rs is a unit, then S is multiplicatively closed, i.e s,t € S implies st € S
and 1 € S, and the ring homomorphism ¢: Rg — Ry, which is uniquely de-
termined by fgo ¢ = fg, is an isomorphism. Hence we can assume in the
sequel without loss of generality that S is multiplicatively closed. If R is com-
mutative and S C R multiplicatively closed, one can describe Rg in terms of
fractions 7s~! with the obvious rules for addition and multiplications. Under
a certain condition this nice approach works also for non-commutative rings.

Definition 8.14 (Ore localization). Let .S C R be a multiplicatively closed
subset of the ring R. The pair (R, S) satisfies the (right) Ore condition if .)
for (r,s) € R x S there exists (r',s") € R x S satisfying rs' = sr’ and ii.) if
forr e R and s € S with sr =0 there ist € S with rt = 0.

If (R, S) satisfies the Ore condition, define the (right) Ore localization
to be the following ring RS™1. Elements are represented by pairs (r,s) €
R x S, where two such pairs (r,s) and (r',s") are called equivalent if there
are u,u’ € R such that ru = r'v’ and su = s'u’ hold and su = s'u’ belongs
to S. The addition and multiplication is given on representatives by (r,s) +
(r', ") = (re+1'd,t), where t = sc = s'd € S and by (r,s) - (r',s") = (rc, s't),
where sc = 't for t € S. The unit element under addition is represented
by (0,1) and under multiplication by (1,1). Let f: R — RS™! be the ring
homomorphism which sends r € R to the class of (r,1).

One may try to remember part i.) of the Ore condition by saying that for
any left (= wrong way) fraction s~!r there is a right fraction r’(s’)~! with
s71r = 7/(s’)7L. Notice that part ii.) of the Ore condition is automatically
satisfied if S contains no zero-divisor.

Lemma 8.15. Suppose that (R, S) satisfies the Ore condition. Then

(1) The map f: R — RS~ is the universal S-inverting ring homomorphism;

(2) The kernel of f: R — RS~ is {r € R|rs =0 for some s € S};

(3) The functor RS™! @r — is exact;

(4) The pair (M, (R),S - I,,) satisfies the Ore condition, where M, (R) is the
ring of (n,n)-matrices over R and I, is the unit matriz. The canon-
ical ring homomorphism induced by the universal property M,(R)(S -

)t =N M, (RS™1) is an isomorphism.

Proof. [484), Proposition II.1.4 on page 51]. O
The next example is based on [489].

Example 8.16. Let G be a torsionfree amenable group. Suppose that the
Kaplansky Conjecture [10.14] holds for G with coefficients in the field F, i.e.
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FG has no non-trivial zero-divisors. We want to show that the set S of non-
zero-divisor satisfies the left Ore condition. Since F'G is a ring with involution
the right Ore condition follows as well. Notice that then the Ore localization
(FG)S™! is a skewfield, in which F'G embeds.

Consider elements 3,7 in F'G such that v is a non-zero-divisor. Choose
a finite subset S C G such that s € S = s~! € S and 3 and ~ can be
written as =) gbs-sand v = > _gcs - 5. Since G satisfies the Fglner
condition (see Lemma6.35), we can find a non-empty subset A C G satisfying
|0s Al|S] < |A]. We want to find elements 6 = > . s do-aande =) . 4 e4-a
such that e is a non-zero-divisor and €3 = §v. Let AS C G be the subset
{a-s|a€ A, se€ S} Then the latter equation is equivalent to the following
set of equations indexed by elements u € AS

Z eqbs —dgacs = 0.

a€A,s€ES,s-a=u

This is a system of |AS| homogeneous equations over F' in 2| A| variables d,,
and e,. Suppose that |AS| < 2|A|. Then we can find a solution different from
zero, in other words, we can find § and € such that ¢ = §y and at least one of
the elements § and e is different from zero. Since 7 is a non-zero-divisor, e = 0
implies § = 0. Therefore € # 0. By assumption ¢ must be a non-zero-divisor.
It remains to prove |[AS| < 2|A|. From

AS ¢ AulJ{aeAla-s7'¢gA}-s ¢ AU JOsA-s.
seS ses

we conclude
|AS| < [A[ +[S] - |0sA| < 2|A|

and the claim follows.

Let F, be the free group with g > 2 generators. Let S be the multiplica-
tively closed subset of CF, consisting of all non-zero-divisors. We mention
that CF, has no non-trivial zero-divisors and that (CFy, S) does not satisfy
the Ore condition.

The lamplighter group L is amenable but the set S of non-zero-divisors
does not satisfies the left Ore condition [311].

8.2.2 Survey on von Neumann Regular Rings

Definition 8.17 (Von Neumann regular). A ring R is called von Neu-
mann regular if for any r € R there is an s € R with rsr =r.

This notion should not be confused with the notion of a regular ring,
i.e. a Noetherian ring for which every R-module has a projective resolution
of finite dimension. For instance a principal ideal domain R is always reg-
ular since submodules of free R-modules are free (see [15, Corollary 1.2 in



326 8. The Algebra of Affiliated Operators

chapter 10 on page 353]), but it is von Neumann regular if and only if it is
a field. The definition above is appropriate to check whether a ring is von
Neumann regular. However, for structural questions the following equivalent
characterizations are more useful.

Lemma 8.18. The following assertions are equivalent for a ring R.

(1) R is von Neumann reqular;

(2) Every principal (left or right) ideal in R is generated by an idempotent;

(8) Every finitely generated (left or right ) ideal in R is generated by an
idempotent;

(4) Ewery finitely generated submodule of a finitely generated projective (left
or right ) R-module is a direct summand;

(5) Any finitely presented (left or right ) R-module is projective;

(6) Every (left or right ) R-module is R-flat.

Proof. see [444, Lemma 4.15, Theorem 4.16 and Theorem 9.15], [518, Theo-
rem 4.2.9 on page 98|. O

Several processes preserve the property of a ring to be von Neumann
regular.

Lemma 8.19. (1) If R is von Neumann regular, then the matriz ring M, (R)
is von Neumann regular;

(2) The center of a von Neumann regular ring is von Neumann regular;

(8) A directed union of von Neumann regular rings is von Neumann regular.

Proof. Assertions (1) and (2) follow from [224, Theorem 1.7 and Theorem
1.14], whereas assertion (3) follows directly from the Definition [8.17 of von
Neumann regular. O

Recall that an R-module is semisimple if any submodule of a module is a
direct summand. A ring R is called semisimple if any R-module is semisim-
ple. A ring R is semisimple if and only if R considered as an R-module is
semisimple.

Lemma 8.20. Let R be von Neumann regular. Then

(1) Any element in R is either a zero-divisor or a unit;
(2) If a von Neumann regular ring is Noetherian or Artinian, then it is al-
ready semisimple.

Proof. (1) This follows from Lemma [8.18 (2). Assertion (2) is proved in [224],
page 21]. a

In our situation the rings are rings with involution *: R — R, sometimes
also called *-rings. The involution is required to satisfy i.) * o * = id; ii.)
x(1) = 1, 1il.) *(r 4+ s) = *(r) + x(s) and iv.) *(r - s) = *(s) - *(r) for r, s € R.
We often write *(r) = r*.
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Example 8.21. The complex group ring CG is von Neumann regular if and
only if G is locally finite. If G is locally finite this follows from Lemma [8.19
(3) since G is the directed union of its finitely generated subgroups and the
complex group ring of a finite group is semisimple and hence in particular
von Neumann regular.

Suppose that CG is von Neumann regular. Let H C G be a finitely
generated subgroup. Let s, so, ..., s, be a set of generators of H. There is

an exact sequence of CH-modules CH" - CH < C — 0, where C comes
with the trivial H-action, 4 is given by the (r,1) matrix (s1 — 1,...,8, — 1)
and e sends ) ;. ;7 Anh to Y i An. This sequence stays exact after applying
CG ®cy —. From Lemma [8.18 (5) we conclude that C[G/H] = CG ®cp C is
a projective CG-module. This implies that H is finite. This shows that G is
locally finite.

More information about von Neumann regular rings can be found for
instance in [224].

8.2.3 Basic Properties of the Algebra of Affiliated Operators

The next result summarizes the main properties of the algebra of affiliated
operators.

Theorem 8.22 (The algebra of affiliated operators).

(1) The set of non-zero-divisors S in N'(G) satisfies the right Ore condition
and the Ore localization N'(G)S™! is canonically isomorphic to U(G);

(2) U(G) is flat as N (G)-module;

(3) U(G) is von Neumann regular;

(4) Let M be a finitely presented N'(G)-module. Then U(G) Qpc) M is a
finitely generated projective U(G)-module. If additionally dimy gy (M) =
0, then U(G) @nrq) M = 0;

(5) A sequence Py — Py — Py of finitely generated projective N'(G)-modules
is weakly exvact at Py if and only if the induced sequence U(G) @ pr(cy Po —
U(G) ®N(G) P1 — U(G) ®N(G) P2 15 exact at U(G) ®N(G) Pl,'

(6) If g € M,,(U(G)) is a projection, then q € M, (N(G)). If e € M, (U(G))
is an idempotent, then there is a projection p € M,(N(G)) such that
pe = e and ep = p holds in M, (U(G));

(7) Given a finitely generated projective U(G)-module Q, there is a finitely
generated projective N'(G)-module P such that U(G) @r(c) P and Q are
U(G)-isomorphic;

(8) If Py and Py are two finitely generated projective N (G)-modules, then
Py =N P UG) QN(G) Py =) UG) QN(G) Pr.

Proof. (1) An element f € N'(G) = B(I?(G))% is not a zero-divisor if and only
if f is a weak isomorphism (see Lemma [1.13). Hence the right Ore condition
for the set S of non-zero-divisors of N'(G) is satisfied by Lemma 8.8/ (2)). From
Lemma 8.8 (2) and Lemma [8.15] (1)) we obtain a canonical homomorphism of
rings with involution N (G)S™! — U(G) which is bijective.
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(2) This follows from assertion (1)) and Lemma [8.15/ (3).

(3) Consider a € U(G). Let a = us be its polar decomposition into a G-
equivariant partial isometry v and a positive affiliated operator s. Let f: R —
R be the function which sends A to A™! if A > 0 and to zero if A < 0. Then
f(s) e and sf(s)s = s holds in U(G). If we put b = f(s)u*, we conclude

aba = usf(s)u*us = usf(s)s = us = a.

(4)) Because of Theorem 6.5 and Theorem 6.7 (3) and (4€) it suffices to prove
the claim that dimur ) (M) = 0 implies U(G) @pr(gy M = 0. From Lemma
6.28 we get an exact sequence 0 — N(G)" = N(G)* — M — 0 with
a weak isomorphism s. By Theorem 6.24/ (3) v(s) is a weak isomorphism.
We get from Lemma 8.8 (1) that U(G) ®,r(g) s is an isomorphism. Hence
UG) Qnqy M =0.

(5) We firstly show for a finitely generated projective N (G)-module P

P=0<U(G) Qne) P =0. (8.23)

Choose an idempotent e: N (G)™ — N(G)™ whose image is N (G)-isomorphic
to P. Then U(G)®pr(c)e is an idempotent whose image is U (G)-isomorphic to
U(G)®pr(c) P- The matrix in M, (U(G)) describing U(G) @ ar(q)e is the image
of the matrix in M,,(N(G)) describing e under the injection M, (N (G)) —
M, (U(G)) induced by the inclusion of rings N (G) C U(G). Hence e is zero
if and only if U(G) @nr(q) € = 0. Therefore (8.23) is true.

Consider a sequence of finitely generated projective N (G)-modules P, ELN

P, ELN P,. Since N(G) is semihereditary (see Theorem 6.5 and Theo-

rem 6.7 (1)), the image of f1 o fy is a finitely generated projective N(G)-
module. We conclude from assertion (2) and (8.23) that f; o fo is zero
if and only if U(G) ®pr(q) f1 o U(G) @pr(e) fo is zero. Hence we can as-
sume without loss of generality that im(fp) C ker(f1). Recall that the

given sequence Py Jo, P EEN P, is weakly exact if and only if the finitely
generated projective N'(G)-module P (ker(f1)/im(fo)) is trivial and that
ker(f1)/im(fo) = P (ker(f1)/im(fo)) @ T (ker(f1)/im(fo)) (see Definition
6.1, Theorem 6.5/ and Theorem 6.7/ (3))). Now apply Theorem 6.7 (4€), asser-
tion (2)), assertion (4) and (8.23).

(6) Let ¢ € M, (U(G)) be a projection. Then the induced affiliated oper-
ator [2(G)" — [?(G)" is bounded on its domain, namely by 1, and hence
everywhere defined by Lemma [8.3 (4). Therefore ¢ € M,,(N(G)).

Let e € M, (U(G)) be an idempotent. Put z = 1 — (e* —¢)? = 1 +
(e* —e)(e* — e)*. This element z is invertible in M, (U(G)) by Lemma [1.13
and Lemma 8.8 (1) because the induced affiliated operator [2(G) — [2(G) is
obviously injective. We have z = 2%, ze = ez = ee*e, ze* = e*ee™ = e*z. We
also get 27 'e = ez~ ! and z7'e* = e*z~!. Put p = ee*z~!. Then one easily
checks p* = p, p® = p, pe = e and ep = p.
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(7) Let @ be a finitely generated projective U(G)-module. Let e € M, (U(G))
be an idempotent whose image is U(G)-isomorphic to Q. By assertion (6)
there is a projection p € M, (N (G)) such that pe = p and ep = e holds in
M, (U(G)). Put P =im(p). Then P is a finitely generated projective N (G)-
module with U(G) @nra) P Zue) Q-

(8) Let Py and P; be two finitely generated projective N'(G)-modules with
U(G) @na) Po Zue) U(G) ®ara) Po- Because of assertion (1) there is an
N(G)-map f: Py — Pp such that U(G) @pr () f is an isomorphism. By
assertion (5) f: Py — P; is a weak isomorphism. Hence Py and P; are N (G)-
isomorphic by Lemma [6.28 (). O

8.3 Dimension Theory and L2-Betti Numbers over the
Algebra of Affiliated Operators

In this section we construct a dimension function dimy(q) for arbitrary U(G)-
modules such that Additivity, Cofinality and Continuity hold and for any
N (G)-module M we recapture dimyr(gy (M) by dimyc)(U(G) @pra) M).
This allows us to define L?-Betti numbers over U(G).

Notation 8.24. Denote by LY (R") the set of direct summands in R" with
the partial ordering < induced by inclusion. Denote by L (I2(G)") the set
of Hilbert N'(G)-submodules of 1?(G)™ with the partial ordering < induced by
inclusion.

Define for a finitely generated projective U (G)-module @

where P is any finitely generated projective N'(G)-module P with U (G)®ar(c
P =) Q. This definition makes sense because of Lemma 8.22 (7) and (8)

Lemma 8.26. (1) Let j: L¥(N(G)") — LY¥U(G)™) be the map which
sends P C N(G)™ to the image of the composition

U(G)®nr ()t
RN AL L E N

UG) @pcy P U(G) @priey N(G)" L UG,

where i: P — N(G)" is the inclusion and | the obvious isomorphism.
Then j preserves the partial ordering and is bijective;

(2) The map k: LY(N(G)") — LY¥(12(G)™) induced by the functor v (see
(6.22)) is bijective and preserves the ordering;

(3) For a subset S C LY(U(G)™) there is a least upper bound sup(S) €
L&U(G)™). If S is directed under inclusion, then

dimyy (e (sup(S)) = sup{dimy ) (P) | P € S}.
The analogous statement holds for N'(G) instead of U(QG).
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Proof. (1) Obviously j preserves the partial ordering. Bijectivity follows from
Lemma [8.22] (6).

(2)) This is obvious.

(3) Because of assertions (1) and (2)) it suffices to show for any subset S C
L (12(G)™)) that a least upper bound sup(S) exists in L4 (1?(G)") and that
dimp @y (sup(S)) = sup{dimpr(e) (V) | V € S} holds if S is directed under
<. We construct sup(S) as the intersection of all Hilbert N/ (G)-submodules
V of [?(G)" for which each element of S is contained in V. Suppose that S
is directed under inclusion. Then sup(S) is the same as the closure of the
union of all elements in S. Now the second claim follows from Lemma [1.12
(3). This finishes the proof of Lemma [8.26. O

Lemma 8.27. The pair (U(G), dimy()) satisfies Assumption 6.2,

Proof. We already know that (N(G), dimy () satisfies Assumption 6.2 (see
Theorem [6.5). Hence (U(G), dimy () satisfies Assumption 6.2 (T). It remains
to prove Assumption [6.2] (2). One easily checks that it suffices to do this for
a submodule K C U(G)™ for some positive integer n. Let S = {P | P C
K, P fin. gen. U(G)-module}. Notice that each P € S belongs to L (U(G)™)
since U(G) is von Neumann regular (see Lemma 8.18 (4) and Lemma [8.22
(3)). By assertion (3) of the previous Lemma [8.26/ the supremum sup(S) €
LI (U(G)™) exists and satisfies

dimy( (sup(S)) = sup{dimy ) (P) | P € S}.

Hence it remains to prove K = sup(S). Consider f: U(G)" — U(G) with K C
ker(f). Then ker(f) € LY™(U(G)") and P C ker(f) for P € S. This implies
sup(S) C ker(f). Since any finitely generated submodule of K belongs to S
and hence is contained in sup(S), we get K C sup(S) and hence K C sup(9).

m|

Definition 8.28. Let M be a U(G)-module. Define its extended von Neu-
mann dimension

dimu(G)(M) S [0,00]
by the extension constructed in Definition 6.6 of dimy ) (Q) which we have
introduced for any finitely generated projective U(G)-module @Q in (8.25).

Specializing Theorem 6.7/ about dimension functions for arbitrary modules
to this case and using Lemma 6.28 (3) and Theorem R.22| (see also [435)
Chapter 3]) we obtain

Theorem 8.29. [Dimension function for arbitrary U(G)-modules].
The dimension dimy(q) satisfies Additivity, Cofinality and Continuity. Given
any N (G)-module M, we get

dimN(G)(M) = dimu(g)(U(G) ®N(G) M)
If P is a projective U(G)-module, then dimyc)(P) =0« P =0.
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Now we can define L2-Betti numbers working with /(G) instead of N'(G).
This corresponds in the classical setting for Betti numbers of a CW-complex
Y to define the p-th Betti number as the dimension of the rational vector
space H,(Y;Q) instead of the rank of the abelian group H,(Y;Z).

Definition 8.30. Let X be a (left) G-space. Define the singular homology
HE(X;L[(G)) of X with coefficients in U(G) to be the homology of the U(G)-
chain complez U(G) Qz¢ CE™8(X), where C3"8(X) is the singular chain com-
plex of X with the induced ZG-structure. Define the p-th L?-Betti number of
X by

b (X;UG)) = dimy ) (Hy (X;U(G))) € [0, 00],
where dimy(q) is the extended dimension function of Definition |8.28.

We conclude from Lemma 8.22 (2) and the above Theorem [8.29

Theorem 8.31. Let X be a G-space with G-action. Then we get

DD (X;N(G)) = bP(X;U(G)).

8.4 Various Notions of Torsion Modules over a Group
von Neumann Algebra

In this section we consider three different notions of torsion modules in the
category of N(G)-modules and analyse their relationship. We have already
introduced for an N (G)-module M its submodule TM in Definition 6.1/ as
the closure of {0} in M, or, equivalently, as the kernel of the canonical map
t(M): M — (M*)*. Next we define

Definition 8.32. Let M be an N(G)-module. Define N'(G)-submodules

TaimM = U {N | N is an N(G)-submodule of M with dimy(cy(N) =0};
TyM = ker(j) forj: M —U(G) ny M, m—1@m.

Notice that Tgim(M) C M is indeed an N(G)-submodule by Additivity
(see Theorem [6.7 (4b)) and can be characterized to be the largest N (G)-
submodule of M of dimension zero. Because of Lemma [8.15 (2) or [484]
Corollary 11.3.3 on page 57] one can identify Ty M with the set of elements
m € M for which there is a non-zero-divisor r € N (G) with rm = 0. Notice
that

M =TM <& M* =homy ) (M,N(G)) =0;

M =TimM < dlmN(G)(M) = 0;

M=TyuM & U(G)@x e M =0.
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Lemma 8.33. (1) If M is an N(G)-module, then TyyM C TaqimM C TM;

(2) If M is a finitely generated projective N(G)-module, then TyM =
Ty M = TM = 0;

(8) If M is a finitely presented N'(G)-module, then TyM = TqimM = TM;

(4) If M is a finitely generated N'(G)-module, then TgimM = TM.

Proof. (1) Since U (G) is flat over N'(G), the U(G)-map U(G)@n () (TuM) —
U(G) ® () M is injective. Since this map at the same time is the zero map,
U(G) On(q) (TyM) is trivial. We get dimpr(g)(Ty M) = 0 from Theorem
8.29. This implies TyM C TgmM. Let f: M — N(G) be any N(G)-
map. Then f(TgqimM) is an N(G)-submodule of dimension zero in N(G)
by Additivity (Theorem [6.7] (4b)). By Theorem 6.7/ (1)) and (4b)) each finitely
generated N (G)-submodule of f(TaimM) C N(G) is projective and has di-
mension zero. Any finitely generated projective N (G)-module of dimension
zero is trivial (Lemma [6.28 (3)). Hence f(TaqimM) is trivial. This implies
T4gimM C TM.

(2) Obviously TP is trivial for a finitely generated projective N'(G)-module
P. Now apply assertion (I)).

(3) Let M be finitely presented. Then M = PM & TM with finitely gener-
ated projective PM by Theorem [6.7 (1). Because of assertions (1) and (2) it
suffices to prove Ty (TM) = TM. This follows from Theorem 6.7 (4€) and
Lemma [8.22] (4).

(4) This follows from Theorem 6.7/ (4€). O

Example 8.34. We want to construct a finitely generated non-trivial N'(G)-
module M with the property that Ty (M) = 0 and TqimM = M and in
particular Ty (M) # TgimM. Let I} C I C ... C N(G) be a nested sequence
of ideals which are direct summands in N (G) such that dimy(g)(I,) # 1 and
lim,, oo dimpr(g)(I) = 1. Let I be the ideal J,~, I,. Put M = N(G)/I.
Then dimr(g) (M) = 0 by Theorem 6.7/ (4b) and (4c)). This implies T i, M =
M. By Lemma 8.33 (2) we get Ty N (G)/I, =0 for n > 1. Lemma 8.36 (1)
below implies that Ty M = colim,>1 Ty N (G)/I, = 0.

We get for instance for G = Z such a sequence of ideals (I,,),>1 by the
construction in Example [1.14l

Example 8.35. An example of an N(Z)-module M with M* = 0 and
dimpr gy (M) = 1 and hence with Ty, M # TM is given in the exercises
of Chapter 6.

The notion Ty, has the best properties in comparison with Tg;y, and T.

Lemma 8.36. (1) The functor Ty is left exact and commutes with colimits
over directed systems;

(2) An N(G)-module M is cofinal measurable in the sense of [343, Defini-
tion 2.1], i.e. all its finitely generated submodules are quotients of finitely
presented N (G)-modules of dimension zero, if and only if TyM = M.
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(1) Let {M; | i € I} be a directed system of A(G)-modules. Since the
functor U(G) @ () — is compatible with arbitrary colimits and the functor
colim;¢y is exact for directed systems, the canonical map colim;¢; Ty M; —
Ty (colim;e; M;) is an isomorphism. Since U (G) is flat over N (G) by Theo-
rem [8.22! (2), Ty, is left exact.

(2) Obviously submodules of cofinal-measurable N'(G)-modules are cofinal-
measurable again. Because of Lemma 8.33| (3) and assertion (1) it suffices to
prove for a finitely generated N'(G)-module M that U(G) @prqy M = 0 is
true if and only if M is the quotient of a finitely presented N (G)-module N
with U(G) @pre) N = 0.

The if-part is obvious, the only-if-part is proved as follows. Let M be a
finitely generated U(G)-module with U(G) @pr(q) M = 0. Choose an epimor-
phism f: N(G)" — M. Since U(QG) is flat over N'(G) by Theorem 8.22 (2), the
inclusion i: ker(f) — N(G)™ induces an isomorphism U(G) @ (¢ ker(f) —
U(G) ®n () N(G)™. Hence we can find an A-map g: N (G)" — ker(f) such
that U(G) ®n () g is an isomorphism. Hence coker(iog) is a finitely presented
N (G)-module with U(G) ® () coker(io g) = 0 which maps surjectively onto
M. a

8.5 Miscellaneous

Let R be a principal ideal domain with quotient field F'. We have already
mentioned in Example [6.12 that R together with the usual notion of the
rank of a finitely generated free R-module satisfies Assumption 6.2/ and that
the extended dimension function of Definition 6.6/ is given by dimg(M) =
dimp(F ®p M). Notice that F is the Ore localization of R with respect to
the set S of non-zero-divisors and that all the properties of U (G) as stated in
Lemma, 8.22! and Theorem 18.29/ do also hold for F'. Moreover, the condition
M = Ty M translates to the classical notion of a torsion module, namely
that F @z M = 0, or, equivalently, that for each element m € M there is an
element r € R with r # 0 and rm = 0.

More information about affiliated rings and their regularity properties
can be found in [36], [37], [247]. A systematic study of U(G) and dimension
functions is carried out in [435] chapters 2 and 3].

Exercises

8.1. A ring R with involution * is called *-regular if it is von Neumann
regular and for any » € R we have r*r = 0 < r = 0. Show that U(G) is
x-regular.

8.2. Construct a commutative diagram of C-categories
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{fin. gen. proj. N'(G)-mod.} —>— {fin. gen. Hilb. N'(G)-mod.}

| l

{fin. gen. proj. U(G)-mod.} —X— {fin. gen. Hilb. N'(G)-mod.}y

whose vertical arrows are the obvious inclusions and whose horizontal arrows
are equivalences of C-categories.

8.3. Let G be a group. Make sense out of the following chain of inclusions
G CZG C CG ClHG) Cc CHG) C N(G) C I*(G) CcU(G),
where [!(G) is the Banach algebra of formal sums 3 gec Ag g which satisfy

> gec [Agl < o0

8.4. Let f: P — @ be a homomorphism of finitely generated projective U (G)-
modules with dimy(q)(P) = dimg ) (Q). Show that the following assertions
are equivalent: i.) f is injective, ii.) f is surjective, iii.) f is bijective.

8.5. Show that the functor Ty, is left exact, but the functor T is not left
exact.

8.6. Show that the functor Ty, does not commute with colimits over
directed systems, unless all structure maps are injective.

8.7. Give an example of a non-trivial N'(Z)-module M and a directed system
{M; | i € I} of submodules (directed by inclusion) with the properties that
M* =0 and M; = N(Z) for i € I. Show that this implies TM # |J,;.; TM;.

8.8. Given an N(G)-module M, define T),M by the cokernel of i: M —
U(G) Opnre)y M, m — 1@ m. Construct for an exact sequence of N(G)-
modules 0 - L - M — N — 0 a natural exact sequence 0 — Ty L —
T™yM — TyN — T, L — T,,M — T;,N — 0.

8.9. Show for an infinite locally finite group G that
2 . — (2 . —
bP(GN(G)) = b (G U(G)) = 0

for all p > 0, but HS(EG;U(G)) # 0.
Show that we get an N (G)-module M such that

dimN(G)(M) = dimu(c) (U(G) Qu(a) M) = 0,

but U(G) Qua) M # {0}.



9. Middle Algebraic K-Theory and L-Theory
of von Neumann Algebras

Introduction

So far we have only dealt with the von Neumann algebra N'(G) of a group
G. We will introduce and study in Section 9.1 the general concept of a von
Neumann algebra. We will explain the decomposition of a von Neumann
algebra into different types. Any group von Neumann algebra is a finite von
Neumann algebra. A lot of the material of the preceding chapters can be
extended from group von Neumann algebras to finite von Neumann algebras
as explained in Subsection [9.1.4. In Sections [9.2] and 9.3] we will compute
K, (A) and K, (U) for n = 0,1 in terms of the centers Z(.A) and Z(U), where
U is the algebra of operators which are affiliated to a finite von Neumann
algebra A. The quadratic L-groups L& (A) and L¢(U) for n € Z and the
decorations € = p, h, s are determined in Section 9.4, The symmetric L-groups
L?(A) and L?(U) turn out to be isomorphic to their quadratic counterparts.

In Section 9.5/ we will apply the results above to detect elements in the K-
and G-theory of the group ring. We will show for a finite normal subgroup H
of an arbitrary (discrete) group G that the map Wh(H)¢ — Wh(G) induced
by the inclusion of H into G has finite kernel, where the action of G on
Wh(H) comes from the conjugation action of G on H (see Theorem [9.38).
We will present some computations of the Grothendieck group Go(CG) of
finitely generated (not necessarily projective) CG-modules. The main result,
Theorem 9.65, says for an amenable group G that the rank of the abelian
group Go(CG) is greater or equal to the cardinality of the set con(G)y .y of
conjugacy classes (g) of elements g € G for which |g| < oo and |(g)] < oo
hold. The map detecting elements in Go(CG) is based on the center valued
dimension which is related to the Hattori-Stallings rank. We will review the
Hattori-Stallings rank, the Isomorphism Conjecture for Ko(CG) and the Bass
Conjecture in Subsection 9.5.2. This chapter needs only a small input from
Chaper 8 and is independent of the other chapters.
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9.1 Survey on von Neumann Algebras

So far we have only considered the von Neumann algebra N (G) of a group
G (see Definition [1.1). In this section we introduce and study the notion of
a von Neumann algebra in general.

9.1.1 Definition of a von Neumann Algebra

Let H be a Hilbert space and B(H) be the C*-algebra of bounded (linear)
operators from H to itself, where the norm is the operator norm. The norm
topology is the topology on B(H) induced by the operator norm. The strong
topology, ultra-weak topology or weak topology respectively is the unique topol-
ogy such that a subset A C B(H) is closed if and only if for any net (z;);er
of elements in A, which converges strongly, ultra-weakly or weakly respec-
tively to an element x € B(H), also x belongs to A (see Subsection [1.1.3| for
the various notions of convergence). The norm topology contains both the
strong topology and the ultra-weak topology, the strong topology contains
the weak topology, the ultra-weak topology contains the weak topology. In
general these inclusions are strict and there is no relation between the ultra-
weak and strong topology [144) 1.3.1 and 1.3.2]. A map of topological spaces
h: X — Y is continuous if and only if for any net (x;);er converging to x the
net (h(x;));cr converges to h(z). Notice that this characterization of continu-
ity is valid for all topological spaces. Only if X satisfies the first countability
axiom (i.e. any point has a countable neighborhood basis) one can use se-
quences (z,)n>0 instead of nets, but this axiom will not be satisfied for some
of the topologies on B(H) introduced above.

Definition 9.1 (Von Neumann algebra). A von Neumann algebra A is
a sub-x-algebra of B(H) which is closed in the weak topology and contains
id: H— H.

The condition weakly closed can be rephrased in a more algebraic fashion
as follows. Given a subset M C B(H), its commutant M’ is defined to be the
subset {f € B(H) | fm = mf for all m € M}. If we apply this construction
twice, we obtain the double commutant M". The proof of the following so
called Double Commutant Theorem can be found in [282, Theorem 5.3.1. on
page 326].

Theorem 9.2 (Double Commutant Theorem). Let M C B(H) be a
sub-x-algebra, i.e. M is closed under addition, scalar multiplication, multipli-
cation and under the involution x and contains 0 and 1. Then the following
assertions are equivalent.

(1) M is closed in the weak topology;
(2) M is closed in the strong topology;
(3) M =M".



9.1 Survey on von Neumann Algebras 337

In particular the closure of M in the weak topology as well as in the strong
topology is M".

9.1.2 Types and the Decomposition of von Neumann Algebras

Next we recall the various types of von Neumann algebras. A projection p
in a von Neumann algebra A is an element satisfying p?> = p and p* = p.
It is called abelian if pAp is a commutative algebra. Two projections p and
q are called equivalent p ~ gq, if there is an element v € A with p = uu*
and ¢ = u*u. We write p < ¢ if gp = p. A projection p is finite, if ¢ < p
and g ~ p together imply p = ¢, and infinite otherwise. A projection p is
properly infinite if p is infinite and cp is either zero or infinite for all central
projections ¢ € A. The central carrier c, of a projection p is the smallest
central projection ¢, € A satisfying p < c,,.

A von Neumann algebra A is of type I if it has an abelian projection whose
central carrier is the identity 1. If 4 has no non-zero abelian projection but
possesses a finite projection with central carrier 1, then A is of type I1. If A
has no non-zero finite projection, it is of type I11. We call A finite, infinite
or properly infinite respectively if 1 is a projection, which is finite, infinite or
properly infinite respectively. A von Neumann algebra A is of type Iy or of
type I1; respectively if A is finite and of type I or of type I respectively. It
is of type I, or of type 11, respectively if A is properly infinite and of type I
or of type I respectively. All von Neumann algebras of type 111 are properly
infinite. A von Neumann algebra can only be of at most one of the types Iy,
I, I, Il and III. A von Neumann algebra A is called a factor if its
center Z(A) :={a € A|ab=ba for all b € A} consists of {A-1] A€ C}. A
factor is of precisely one of the types I¢, I, 111, Ils or I11.

One has the following unique decomposition [283, Theorem 6.5.2 on page
422].

Theorem 9.3. Given a von Neumann algebra A, there is a natural unique
decomposition,

A= AIf X .A]oo X .,4111 X AIIOO X .A[[]

into von Neumann algebras of type Iy, I, 111, Il and I11. In particular
one obtains natural decompositions for the K-groups

Kn(.A) = Kn(.A]f) X Kn(-AIoc) X Kn(-AIIl) X KR(AIIOO) X Kn(.A[[[).

Lemma 9.4. Let G be a discrete group. Let Gy be the normal subgroup of
G consisting of elements g € G, whose centralizer has finite index (or, equiv-
alently, whose conjugacy class (g) consists of finitely many elements). Then

(1) The group von Neumann algebra N(G) is of type I if and only if G is
virtually abelian;
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(2) The group von Neumann algebra N'(G) is of type II if and only if the
index of Gy in G is infinite;

(3) Suppose that G is finitely generated. Then N (G) is of type Iy if G is
virtually abelian, and of type 11 if G is not virtually abelian;

(4) The group von Neumann algebra N'(G) is a factor if and only if Gy is
the trivial group.

Proof. (1) This is proved in [285], [490].

(2) This is proved in [285],[366].

(3) This follows from (1)) and (2) since for finitely generated G the group Gy
has finite index in G if and only if G is virtually abelian.

(4) This follows from [144, Proposition 5 in II1.7.6 on page 319]. a

9.1.3 Finite von Neumann Algebras and Traces

One of the basic properties of finite von Neumann algebras is the existence
of the center valued trace which turns out to be universal.

A finite trace tr: A — C on a von Neumann algebra is a C-linear mapping
satisfying tr(ab) = tr(ba) for a,b € A and tr(a) > 0 for a > 0 (i.e. a = bb*
for some b € A). It is called faithful, if for a € A with a > 0 we have
tr(a) =0 = a = 0. It is called normal if for f € A, which is the supremum
with respect to the usual ordering < of positive elements (see [1.7) of some
monotone increasing net {f; | ¢ € I'} of positive elements in A, we get tr(f) =
sup{tr(f;) | ¢ € I'}. The next result is taken from [283, Theorem 7.1.12 on page
462, Proposition 7.4.5 on page 483, Theorem 8.2.8 on page 517, Proposition
8.3.10 on page 525, Theorem 8.4.3 on page 532].

Theorem 9.5. Let A be a finite von Neumann algebra on H. There is a
map
tr =trty: A — Z(A)

into the center Z(A) of A called the center valued trace or universal trace
of A, which is uniquely determined by the following properties:

(1) tr* is a trace with values in the center, i.e. tr* is C-linear, for a € A
with a > 0 we have tr*(a) > 0 and tr*(ab) = tr*(ba) for all a,b € A;
(2) tr*(a) = a for all a € Z(A).

The map tr" has the following further properties:

(8) tr* is faithful;

(4) tr* is normal, or, equivalently, tr* is continuous with respect to the ultra-
weak topology on A;

(5) [t (a)|| < |la]| fora € A;

(6) tr*(ab) = atr™(b) for alla € Z(A) and b € A;
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(7) Let p and q be projections in A. Thenp ~ q, if and only if tr(p) = tr*(q);

(8) Any linear functional f: A — C which is continuous with respect to
the norm topology on A and which is central, i.e. f(ab) = f(ba) for all
a,b € A, factorizes as

flza)
—

A Z(4) C.
Example 9.6. Let X be a compact space together with a finite measure v
on its Borel-o-algebra. Let L*°(X,v) be the Banach algebra of equivalence
classes of essentially bounded measurable functions X — C, where two such
functions are called equivalent if they only differ on a set of measure zero. It
becomes a Banach algebra with the norm

flloe = mnf{K >0 |v({z € X [|f(z)] = K}) = 0}

and the involution coming from complex conjugation. This turns out to be a
commutative von Neumann algebra by the obvious embedding

L>®(X,v) — B(L*(X,v))

coming from pointwise multiplication. Any commutative von Neumann alge-
bra is isomorphic to L (X, v) for appropriate X and v [144, Theorem 1 and
2 in 1.7.3 on page 132].

Example 9.7. Let G be a group. The right regular representation p,: CG —
B(I1*(G)) sends g € G to the operator r -1 : 1*(G) — [*(G), w+ ug, whereas
the left reqular representation p;: CG — B(I1*(G)) sends g € G to the oper-
ator ly: I?(G) — [*(G), u +— gu. The left regular representation is a ho-
momorphism of C-algebras, whereas the right regular representation is an
anti-homomorphism of C-algebras, i.e. it respects the scalar multiplication
and addition, but respects multiplication only up to changing the order. We
get from [283, Theorem 6.7.2 on page 434]

im(p)” = im(p)" = BI*(G))°.

Hence N(G) as introduced in Definition [1.1] is the closure of CG, which we
view as a x-subalgebra of B(I>(G)) by the right regular representation p,, in
B(I?(G)) with respect to the weak or strong topology. The closure of im(p,) in
B(I?(G)) with respect to the norm topology is called the reduced C*-algebra
C}(G) of G. In the special case G = Z", we get C}(Z") = C(T™) (compare
with Example [1.4), where C(T™) denotes the space of continuous functions
from T™ to C.

We will later need for the computation of K;(.A) the following technical
condition. It is always satisfied for a von Neumann algebra acting on a sep-
arable Hilbert space and in particular for the group von Neumann algebra
N(G) of any countable group G.

Definition 9.8. A von Neumann algebra is countably composable if every
orthogonal family of non-zero projections is countable.
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9.1.4 Extending Results for Group von Neumann Algebras to
Finite von Neumann Algebras

Let A be a finite von Neumann algebra with some faithful finite normal trace
tr: A — C. Define a pre-Hilbert structure on A by (a, b) = tr(ab*). Let I2(A)
be the Hilbert completion of .A. Denote by ||a|| the induced norm on I2(A).
Given a € A, we obtain a linear operator A — A sending b to ab. This
operator is bounded with operator norm [|a||. Hence it extends uniquely to
a bounded operator p;(a): I2(A) — [?(A) satisfying ||p;(a)||cc = ||a||. This
yields the left reqular representation

pr: A — B(1*(A)).

Thus we obtain a left A-module structure on [?(A). Analogously we get
pr(a): 1?(A) — [?(A) induced by b + ba. In particular we obtain the
right regular representation p,: A — Ba(I*(A)) from A into the subalgebra
BA(I*(A)) of linear bounded A-operators of B(I?(.A)). The following result
is fundamental for the theory of Hilbert modules over a finite von Neumann
algebra (see Dixmier [144, Theorem 1 in 1.5.2 on page 80, Theorem 2 in 1.6.2
on page 99]).

Theorem 9.9. Let A be a finite von Neumann algebra. Then the right reg-
ular representation

pr:A— B.A(ZQ(‘A))
is an isometric anti-homomorphism of C-algebras.

In the special case where A is the group von Neumann algebra N(G) :=
B(I1?(G))€, the inclusion N(G) — I2(G) f — f*(1) induces an isometric
isomorphism ?(NV(G)) — *(G) and thus an identification of By (I*(N(G))
with B(I?(G))Y. Under this identification the map p, of Theorem 9.9/ becomes
the the anti-homomorphisms of C-algebras N'(G) — N (G) sending f to the
operator i o f* o, where i: [2(G) — [?(G) sends > gecAg g to deGTg'g'

Remark 9.10. In view of Example (9.7 and Theorem 9.9 it is clear that a lot
of the material of the preceding chapters extends from group von Neumann
algebras (with the standard trace) to finite von Neumann algebras with a
given finite faithful normal trace. For instance, there is an obvious notion
of a finitely generated Hilbert .A-module and the corresponding category is
equivalent to the category of finitely generated projective A-modules as C-
category with involution (cf. Theorem 6.24). It is clear how to define the
von Neumann dimension for a finitely generated A-module and to extend for
instance Theorem 6.5/ and Theorem 6.7. Moreover, the definition of the L2-
Betti number bg) (X; V) of a G-space X (see Definition[6.50) can be extended
to the case where an A-CG-bimodule V', which is finitely generated projective
over A, is given. Then the definition of b](gz) (X; N(Q@)) is the special case V =
N(G), where the N (G)-CG-bimodule structure comes from the inclusion of
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rings CG C N(G). Also the notion of the algebra U(G) of operators affiliated
to N(G) extends to a finite von Neumann algebra A. All the nice properties
of U(G) carry over to U = U(A), for instance U(A) is von Neumann regular
and is the Ore localization of A with respect to the set of non-zero divisors.

For the rest of this chapter we will use some of the results, which we only
have proved for group von Neumann algebras, also for finite von Neumann
algebras.

9.2 Middle K-Theory of a Neumann Algebra

In this section we define and compute the K-groups Ko(A), Ki(A) and
K7V (A) for a von Neumann algebra A.

9.2.1 Ky of a von Neumann Algebra

Definition 9.11 (Projective class group Ky(R)). Let R be an (associa-
tive) ring (with unit). Define its projective class group Ko(R) to be the abelian
group whose generators are isomorphism classes [P] of finitely generated pro-
jective R-modules P and whose relations are [Py] + [P2] = [P1] for any ezact
sequence 0 — Py — P| — P> — 0 of finitely generated projective R-modules.
Define Go(R) analogously but replacing finitely generated projective by finitely
generated.

One should view Kjy(R) together with the assignment sending a finitely
generated projective R-module P to its class [P] in Ky(R) as the univer-
sal dimension for finitely generated projective R-modules. Namely, suppose
we are given an abelian group and an assignment d which associates to
a finitely generated projective R-module an element d(P) € A such that
d(Py) + d(P2) = d(Py) holds for any exact sequence 0 — Py — P} — P, — 0
of finitely generated projective R-modules. Then there is precisely one homo-
morphism ¢ of abelian groups from Ky (R) such that ¢([P]) = d(P) holds for
each finitely generated projective R-module. The analogous statement holds
for Go(R) if we consider finitely generated R-modules instead of finitely gen-
erated projective R-modules.

Definition 9.12 (Center valued trace). Let A be a finite von Neumann
algebra and let tr* be its center valued trace (see Theorem[9.5). For a finitely
generated projective A-module P define its center valued von Neumann di-
mension by

dim"(P) := tr*(A) := zn:tr“(ai,i) € Z(A? ={ac Z(A) | a=a*}

for any matriv A = (a; ;)i ; € Mp(A) with A> = A such that im(Ra: A" —
A™) induced by right multiplication with A is A-isomorphic to P.
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The definition of dim“(P) is independent of the choice of A (cf. (6.4)).
The matrix A appearing in Definition 9.12 can be chosen to satisfy both
A? = A and A* = A. This follows from Theorem [6.24. Therefore dim"(P)
is an element in Z(A)%/? with respect to the Z/2-action coming from taking
the adjoint.

The next result follows from [283, Theorem 8.4.3 on page 532, Theorem
8.4.4 on page 533].

Theorem 9.13 (K| of finite von Neumann algebras). Let A be a finite
von Neumann algebra.

(1) The following statements are equivalent for two finitely generated projec-
tive A-modules P and Q:
(a) P and Q are A-isomorphic;
(b) P and Q are stably A-isomorphic, i.e. P®V and Q &V are A-
isomorphic for some finitely generated projective A-module V ;
(¢) dim"(P) = dim"(Q);
(d) [P] =[Q] in Ko(A);

(2) The center valued dimension induces an injection
dim®: Ko(A) — Z(A)%? ={a e Z(A) | a=a"},

where the group structure on Z(A)%/? comes from the addition. If A is
of type 11y, this map is an isomorphism. 0O

Example 9.14. Let A be an abelian von Neumann algebra. Then it is of the
shape L (X, v) as explained in Example 9.6. Let L°°(X, v, Z) be the abelian
subgroup of L*°(X,v) consisting of elements which can be represented by
bounded measurable functions f: X — Z. We claim that the center-valued
dimension induces an isomorphism

dim": Ko(L*(X,v)) — L=(X,v,Z).

This follows from Theorem [9.13| (2)) and the following result taken from [331]
Lemma 4.1]. Namely, for an abelian von Neumann algebra A and an A-
homomorphism t: A" — A", which is normal, i.e. ¢ and t* commute, there
exists a unitary morphism u: A" — A" such that u* ot o u is diagonal.

Theorem 9.15. Let A be a properly infinite von Neumann algebra. Then
K() (A) = 0

Proof. We firstly show that for a properly infinite projection in a von Neu-
mann algebra A the class [im(p)] € Ko(A) of the finitely generated pro-
jective A-module im(p) is zero. This follows essentially from [283, Lemma
6.3.3 on page 411] from which we get a projection ¢ satisfying ¢ < p and
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q ~ p— q ~ p. Since equivalent projections have A-isomorphic images and
im(p) is A-isomorphic to im(p — ¢) @ im(q), we get in K((A)

[im(p)] = [im(q)] + [im(p — ¢)] = [im(p)] + [im(p)] = [im(p)] = 0.

Given any projective A-module P, choose a projection p € M, (A) such that
im(p: A" — A") is A-isomorphic to P. Notice that M, (A) is again a von
Neumann algebra.

Next we want to show that p & 1 € M,41(A) is properly infinite. The
center Z(M,1(A)) is {¢- In11 | ¢ € Z(A)}, where I,1; is the identity
matrix in M,,4+1(A). This follows for instance from Theorem [9.2. Hence any
central projection ¢ in M, 41(A) is of the form ¢ = ¢ - I,, 1 for some central
projection ¢ € A. If ¢(p @ 1) is not zero, then ¢ € A is a non-zero central
projection. Since A is by assumption properly infinite, ¢ is infinite. But then
also ¢ is infinite by [283, Theorem 6.3.8 on page 414]. Hence p @ 1 is properly
infinite.

The Morita isomorphism p: Ko(M,y1(A)) — Ko(A) is defined by
w([P]) = [A"* @y, a) P In particular it maps the class of im(p & 1) to
the class of im(p)@im(1) = P®.A. Since we have already shown that properly
infinite projections represent zero in Ky, we conclude [A] =0 € Ky(A) and
[m(p&1)] =0 € Ko(My+1(A)). Hence we get in Ko(A)

[P] = [im(p) ® im(1)] = [A] =0—-0= 0.0

In view of Theorem [9.3| and Theorem [9.15 we get for any von Neumann
algebra A that Ko(A) = Ko(Ar,) ® Ko(Arr,) and hence the computation of
Ky (A) follows from Theorem 9.13.

9.2.2 K; of a von Neumann Algebra

Definition 9.16 (K-group K;(R)). Let R be a ring. Define Ki(R) to be
the abelian group whose generators are conjugacy classes [f] of automor-
phisms f: P — P of finitely generated projective R-modules with the follow-
ing relations:

i.) Given a commutative diagram of finitely generated projective R-modules

0 p——p-L.p 0
A
0 P ——pr-L.p 0
with exact rows and automorphisms as vertical arrows, we get [f1]+[f3] = [fe].

i1.) Given automorphisms f,g: P — P of a finitely generated projective R-
module P, we get [go f] = [f] + [g]-

Define Kinj (R) analogously by replacing automorphisms by injective en-
domorphisms everywhere.
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We leave it to the reader to check that the definition of Kj(R) by
Ki(R) := GL(R)/|GL(R),GL(R)] in Subsection 3.1.1 coincides with the
one of Definition [9.16.

Let Z(A)'™™ be the abelian group of elements in the center of A which
are invertible. The set of non-zero-divisors in Z(.A) is an abelian monoid
under multiplication and we denote by Z(A)* the abelian group which is
obtained from this abelian monoid by the Grothendieck construction. We can
identify the abelian von Neumann algebra Z(.A) with L>° (X, v) (see Example
9.6). Then Z(A)™ becomes the space of equivalence classes of measurable
functions f: X — C which are essentially bounded from below and above,
i.e. there are positive constants k and K such that {x € X | |f(z)| < k}
and {z € X | |f(z)| > K} have measure zero. The space Z(A)" becomes the
space of equivalence classes of measurable functions from f: X — C for which
f71(0) has measure zero. Notice that Z(A)* = U(Z(A))"™ = Z(U(A))™.
We get from [344], Theorem 2.1]

Theorem 9.17 (K; of von Neumann algebras of type I;). Let A be a
von Neumann algebra of type Iy. Then there is a so called normalized deter-
minant

detyorm: Mi(A) — Z(A)

with the following properties:

(1) If A € My(A) satisfies detnorm(A) = 1, then A is a product of two
commutators in GLi(A);
(2) The normalized determinant induces isomorphisms

detporm : K1(A) = Z(A)™;
detyorm : KM (A) = Z(A)Y,
which are compatible with the involutions.

We can use the center valued trace to define the center valued Fuglede-
Kadison determinant

. 1
detpr: GLp(A) — Z(A)T™, A exp (2 -tr“(ln(A*A))) ,
where Z(A)+Y is the (multiplicative) abelian group of elements in the center

of A which are both positive and invertible. We get from [344, Theorem 3.3]

Theorem 9.18 (K; of von Neumann algebras of type II;). Let A be
a countably composable von Neumann algebra of type I1;.

(1) If A € GLi(A) satisfies detpr(A) = 1, then A is a product of nine
commutators in GLi(A);
(2) The center valued Fuglede-Kadison determinant induces an isomorphism

detpr: Ki(A) = Z(A)TM;
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(3) KM (A) = 0.

Theorem [9.18 (2) has also been proved in [179], provided that A is a
factor. We get from [344], Theorem 4.2]

Theorem 9.19. Let A be a countably composable properly infinite von Neu-
mann algebra. Then Ki(A) = K{"(A) = 0.

In view of Theorem 9.3, Theorem 9.18 (3) and Theorem 9.19 we get for
a countably composable von Neumann algebra A that Ki(A) = K1(Af,) ®
Ki(Arp,) and K{™(A) = K™(A;,) and hence the computation of Kj(A)
and K1 (A) follows from Theorem 9.17 (2) and Theorem 9.18 (2).

The condition countably composable appearing in Theorem 9.18 and The-
orem [9.19! is purely technical, it may be possible that it can be dropped.

9.3 Middle K-Theory of the Algebra of Affiliated
Operators

In this section we compute the K-groups Ko(U) and K;(U) of the algebra
U of operators affiliated to a finite von Neumann algebra .4 and deal with a
part of the localization sequence associated to A — U.

Theorem 9.20 (K-groups of U). Let A be a finite von Neumann algebra
and U be the algebra of affiliated operators. Then

(1) The map i.: Ko(A) — Ko(U) induced by the inclusion i: A — U is an
isomorphism;
(2) There is a natural isomorphism

Ji KA) = K ).

Proof. (1)) This follows from Theorem [8.22] (7) and (8).

(21) Since for an injective endomorphism f: P — P of a finitely generated
projective A-module P the induced map U @4 f: U R4 P - U R4 P is a
U-isomorphism (see Lemma [6.28 (2) and Theorem [8.22/ (5)), we obtain a nat-
ural map j: K™ (A) — Ki(U). We define an inverse k: K1 (U) — K™ (A) as
follows. Let n € K ilnj (U) be an element for which there is a U-automorphism
f: U™ = U™ with n = [f]. By Lemma [8.8 we can choose injective endomor-
phisms a,b: A™ — A" such that Y ® 4 a = f ol ® 4 b (identifying U @ 4 A™
and U™). Define k(n) = [a] — [b]. We leave it to the reader to verify that k is
well-defined and an inverse of j. ]

Notice that Theorem 9.20] together with the results of Subsections [9.2.1
and [9.2.2 give the complete computation of K, (/) for n = 0, 1, provided that
Ajr is countably composable.
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Definition 9.21. Let Ko(A — U) be the abelian group whose generators are
isomorphism classes of finitely presented A-modules M withtd @ 4 M = 0 and
whose relations are [My] + [Ma] = [Mi] for any exact sequence 0 — My —
My — My — 0 of such A-modules.

Recall that the following conditions for an A-module M are equivalent by
Lemma [6.28 (4) and Lemma 8.33] (3): i.) M is finitely presented with U ® 4
M = 0,ii.) M is finitely presented with dim 4 (M) = 0, iii.) M has a resolution
0—- A" - A" - M — 0, iv.) M has a resolution 0 - P - P = M — 0
for finitely generated projective A-modules and U ® 4 M = 0.

Let S C R be a multiplicatively closed subset of the ring R satisfying the
Ore condition (see Definition 8.14)). Provided that S contains no zero-divisors,
there is an exact localization sequence associated to an Ore localization R —

RS~ [39]
Ki(R) 5 Ky (RS™) L Ko(R— RS™) £ Ko(R) 2% Ko(RS™). (9.22)

Here i1 and i are induced by the canonical map i: R — RS~! and Ky(R —
RS™1) is defined in terms of R-modules M which possess a resolution 0 —
P — Py - M — with finitely generated projective R-modules Py and
P, and satisfy RS™! @ g M = 0. The map k sends the class of such an
R-module M to [Py] — [P1]. The class of an automorphism f: (RS™1)" —
(RS™H)™ is sent by j to [coker(a)] — [coker(b)] for any R-endomorphisms
a,b: R" — R", for which RS™! ®ga and RS~! @b are bijective and satisfy
f= RSS! Xpr ao (RS_I Rnr b)_l.

Lemma 9.23. Let A be a finite von Neumann algebra. Then
(1) The localization sequence (9.22) yields for A and its Ore localization U

(see Theorem[8.22 (1)) the exact sequence

Ky (A) 2 K (U) 5 Ko(A = U) 5 Ko(A) 5 KoU);
It splits into an exact sequence
Ki(A) S Ky U) L Ko(A—U) — 0 (9.24)
and an isomorphism
INE Ko(.A) — K()(U);

(2) The localization sequence is the direct product of the localization sequences
of the summands Aj, and Arr, appearing in the decomposition A =
Az, x Arr, (see Theorem[9.3);

(8) If A is of type Iy, then the exact sequence (9.24) is isomorphic to the
short exact sequence

0= Z(A)™ — Z(A)® - Z(A)"/Z(A)™ 0,
In particular Ko(A — U) = Z(A)Y/Z(A)"Y;
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(4) If A is of type II; and countably composable, then the exact sequence
(9.24) becomes ‘
Z(A)T™ - 0—0—0.

In particular Ko(A — U) = 0.

Proof. (1)) This follows from Theorem [9.20 (1).

(2) This is obvious.

(3) This follows from Theorem [9.17] and Theorem 9.20! (2).

(4) This follows from Theorem [9.18 and Theorem [9.20! (2). |

9.4 L-Theory of a von Neumann Algebra and the
Algebra of Affiliated Operators

In this section we give the computation of the L-groups of a von Neumann
algebra A and of the algebra U of affiliated operators. The definitions of the
various decorated quadratic and symmetric L-groups LS (R) and L?(R) for
a ring R with involution *: R — R are given for instance in [429], [430]. The
decoration € = p or € = h respectively means that the underlying modules
are finitely generated projective or finitely generated free respectively. If we
write € = s, we mean the L-groups with respect to the trivial subgroup in
K.

Before we state the result, we need some preparation. A non-singular
symmetric form a: P — P* on a finitely generated projective (left) R-module

is an R-isomorphism P — P* such that the composition P - (P*)* <, pr
is equal to a, where 7 is the canonical isomorphism and the involution on R is
used to transform the canonical right module structure on P* to a left module
structure. Two symmetric non-singular forms a: P — P* and b: Q — Q* are
isomorphic if there is an R-isomorphism f: P — @ satisfying f*obo f = a.
Given a finitely generated projective R-module P, the associated hyperbolic
non-singular symmetric form h(P): PQ P* — (P®Q P*)* = P*@® P is given by
(1) é . Two non-singular symmetric forms are called equivalent
if they become isomorphic after adding hyperbolic forms. The Witt group of
equivalence classes of non-singular symmetric forms with the addition coming
from the orthogonal sum can be identified with L°(R) [429, Proposition 5.1 on
page 160]. The analogous statement is true for L9 (R) or LY(R) respectively
if one considers only non-singular symmetric forms a: F — F* for finitely
generated free R-modules or non-singular symmetric forms a: R" — (R")*

the matrix

respectively such that the element in K, (R) given by the composition of a
with the standard isomorphism

i: (R")" = R",  f—=(f(er)", fle2)",.... f(en)")
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vanishes. If A is a von Neumann algebra (actually it is enough to require .4
to be a C*-algebra), there are maps

sign® LS(A) — Ko(A); (9.25)
v Ko(A) — LY(A), (9.26)

which turn out to be inverse to one another [442, Theorem 1.6 on page 343]).
The map ¢ of (9.26) above sends the class [P] € Ky(A) of a finitely generated
projective A-module P to the class of i: P — P* coming from some inner
product p on P (see Section [6.2)). Such an inner product exists and the class
of i: P — P*in Lg(.A) is independent of the choice of the inner product by
Lemma 6.23.

Next we define sign'®([a]) for the class [a] € L(A) represented by a
nonsingular symmetric form a: P — P*. Choose a finitely generated pro-
jective A-module @) together with an isomorphism u: A" — P & Q. Let
i: (A")* — A™ be the standard isomorphism. Let a: A" — A™ be the
endomorphism i o u* o (a + 0) o u. We get by spectral theory projections
X(0,00)(@): A" — A™ and X (—sc,0)(@): A" — A™. Define P, and P_ to be
image of X (0,00 (@) and x(—oo,0)(@). Put sign® ([a]) = [Py]—[P_]. We leave it
to the reader to check that this is well defined. The non-singular symmetric
form a: P — P* is isomorphic to the orthogonal sum of a;: P — P} and
a_: P_ — P* where a; and —a_ come from inner products. This implies
that sign® and . are inverse to one another. One can define analogously
isomorphisms, inverse to one another,

sign®: LOU) — Ko(U); (9.27)

vt Ko(U) — LYU). (9.28)

Let R be a ring with involution. The involution on R induces involutions

on the reduced K-groups K;(R) for i = 0,1 which are defined as the cok-

ernel of the homomorphisms K;(Z) — K;(R) induced by the obvious ring

homomorphism Z — R. Denote by H"(Z/2; K;(R)) the Tate cohomology of

the group Z/2 with coefficients in the Z[Z/2]-module K;(R). For any Z[Z/2]-

module M, H"(Z/2; M) is 2-periodic with

H(Z/2; M) = ker(1 —t: M — M)/im(1 + t: M — M);
HYZ/2; M) =ker(1+t: M — M)/im(1 — t: M — M),

where t € Z/2 is the generator. We get long exact Rothenberg sequences [429),
Proposition 9.1 on page 181]

.. — HY(Z/2; Ko(R)) — LL(R) — L)(R) — H'(Z/2; Ko(R))
— LY(R) — LY(R) L H(Z/2; Ko(R)) — ..., (9.29)
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where j sends the class of a symmetric non-singular form f: P — P* to the
class of the element [P] € Ky(R), and

.. — H%(Z/2; K\(R)) — LL(R) — L}(R) — H"(Z/2; K, (R))
— LY(R) — LY(R) & H(Z/2 K1 (R) — ..., (9.30)
where k sends the class of a symmetric non-singular form a: F — F* to the

class of the element [ioh*oaoh] € Ki(R) for any R-isomorphism h: R® — F

and i: (R™)* =, R" the standard isomorphism. There are also Rothenberg
sequences for the quadratic L-groups, just replace the symmetric L-groups
in (9.29) and (9.30) by the quadratic versions.

Theorem 9.31 (L-groups of von Neumann algebras). Let A be a von
Neumann algebra. If A is finite, let U = U(A) be the algebra of affiliated
operators. Then

(1) The symmetrization maps

(A);

LY(A) = L,
= L)
are isomorphisms for n € Z and € = p, h, s;
(2) The quadratic L-groups are 2-periodic, i.e. there are natural isomor-
phisms

o

L5 (A) = Li 4o (A);
Ly U) = L, ()
forn € Z and € = p, h,s and analogously for the symmetric L-groups;
(3) The L?-signature maps sign® defined in (9.25) and (9.27) and the maps

v defined in (9.26) and (9.28) are isomorphisms, inverse to one another,
and yield a commutative square of isomorphisms

t~
PAN
=

sign(®
) gT> Ko(A)

2)

0 sign(
L,U) —— KoUU)

(4) We have L}(A) =0 and L,(U) = 0;
(5) If A is of type 111, then for n € Z the diagram of natural maps

0 —— Z/2 —— LY(A) —— Lg(A) — 0

I

0 —— 2/2 —— LOU) —— LOU) — 0

IR
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(6)

(7)
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is commutative, the vertical maps are isomorphisms and the rows are
ezact. We have L} (A) = Ly (U) = 0.
If A is countably composable and of type Iy, then the natural maps
appearing in the commutative square

LM (A) —— L}(A)

l l

LrU) ——— Ly

IR
IR

<
S

are isomorphisms forn € Z;

Suppose that A is of type Iy. Then the natural map L?(A) — L?(U) is
bijective for n € Z and € = p, h, s. We have L} (A) = 0.

Letl: LY (A) — Ko(A) be the composition of the natural map i: L) (A) —
LY(A) with the isomorphism sign®: LY(A) — Ko(A). If [A] € 2-Ko(A),
then we get an exact sequence

0= Z/2 — LY(A) 5 2 Ko(A) = 0,

where 1y is induced by 1. If [A] ¢ 2 - Ko(A), then | is injective and its
image is generated by 2 - Ko(A) and [A].
If K1(Z) — K4 (A) is trivial, then we get an exact sequence

0— LO(A) — LO(A) — {f € Z(A)™ | =1} -0

and L5(A) =0.

Suppose that K1(Z) — K1(A) is not trivial. Let  be the subgroup of
{f € Z(A)™ | f2 = 1} generated by the image of [—id: A — A] under
the isomorphism detyorm @ K1 (A) Z, Z(A)™ of Theorem 9.17. Then we
obtain an exact sequence

0 — LY(A) = Ly(A) = {f € Z(A™ | f* =1}/k = 0

and LY(A) = Z/2;

If A is properly infinite, then Ly (A) and L} (A) vanish for n € Z. If A
is countably composable and properly infinite, then L"(A) vanishes for
n € Z.

Proof. (1) This follows from the fact that 2 is invertible in A and U [429,
Proposition 3.3 on page 139]. The proof is given there only for L? but applies
also to L" and L®.

(2)) This follows from assertion (1) and from the fact that ¢ = v/—1 belongs to
Z(A) and Z(U) and is sent under the involution to —i (see [429, Proposition

4.3 on page 150]. The proof is given there only for L? but applies also to L"
and L°.
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(3) This follows from the constructions and definitions and from Theorem
9.20 (1). The map sign® : LY(A) — Ko(A) is defined and bijective not only
for a von Neumann algebra A, but also for a C*-algebra A (see [442, Theorem
1.6 on page 343]).

(4) The L-group L}(A) is isomorphic to the topological K-group K{,,(A)
(for any C*-algebra A) [442, Theorem 1.8 on page 347]. For a von Neumann
algebra K1°P(A) is trivial. [51, Example 8.1.2 on page 67], [514, Example
7.1.11 on page 134].

Since U(G) is von Neumann regular (see Theorem 8.22 (3)), any finitely
generated submodule of a finitely generated projective module is a direct
summand (see Lemma [8.18 (4)). Hence the argument that L7 (R) vanishes
for semisimple rings in [428] carries over to U. One could also argue by doing
surgery on the inclusion of Hy(C\) — C\ in the sense of [429, Section 4].

(5) We conclude from Theorem [9.13] (2) and Theorem 9.18 (2) that the in-
volution on K;(A) is trivial and 2 - id: K;(A) — K;(A) is bijective for

= 0,1. Hence f["(Z/Q;Ki(A)) = 0 for i,n € {0,1}. The natural map
K1(A) — K;(A) is bijective by Theorem [0.18 (2). We get a short exact se-
quence 0 — Ky(Z) = Z — Ko(A) — Ko(A) — 0 from Theorem 9.13/ (2). It
induces a long exact sequence of Tate cohomology groups. This implies that
HY(Z)2,Ko(A)) = Z./2, HY(Z/2, Ko(A)) = 0 and H"(Z/2, K1(A)) = 0 for
n = 0,1. We conclude from Theorem 9.18 (3) and Theorem [9.20] that the
natural map H”(Z/2,KZ( ) — H”(Z/2,K1( )) is bijective for n,i € {0,1}.
Now assertion (5) follows from the Rothenberg sequences (9.29) and (9.30).
(6) We have already proved in assertion (3) and (4) that i: L) (A) — L) (U)
is bijective for all n.

The involution on K¢(A) is trivial and multiplication with 2 is injective
by Theorem [9.13| (2). This implies

HO(Z/2; Ko(A)) = Ko(A)/2 - Ko(A);

HY(Z)2; Ko(A)) = 0.
The long exact Tate cohomology sequence associated to 0 — Ky(Z) = Z —
Ko(A) — Ko(A) — 0 yields the exact sequence
0 — H'(Z/2 Ko(A)) = Z/2 > Ko(A)/2 - Ko(A) — H(Z/2; Ko(A)) — 0,

where 7 sends the generator of Z/2 to the class of [A]. The natural map
H™(Z)2; Ko(A)) — H™(Z/2; Ko(U)) is bijective for n = 0,1 by Theorem
9.20/ (1). Hence the part of assertion (6) for L} follows from assertions (3)),
(4) and from the Rothenberg sequence (9.29). It remains to treat L7.

We conclude from Example [9.6 applied to Z(A), Theorem 9.17 (2) and
Theorem 9.20] (2)) that detyorm induces isomorphisms

H(Z/2; K1(A) = {f € Z2(A) | f* =1}
HY(Z/2; K1(A)) = 0,
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and that the natural map H"(Z/2; K1 (A)) — H™(Z/2; K1(U)) is bijective
for n = 0,1. We begin with the case where K;(Z) — K;(A) is trivial. Then
the natural maps K;(A) — K;(A) and K;(U) — K, (U) are bijective. The
Rothenberg sequence (9.30) reduces to

0 — LY(A) — LY(A) & {f € Z(A) | f2 =1} — LL(A) — 0.

By inspecting the proof of Theorem [9.17 in [344, Theorem 2.1] one checks
that any element in x € K;(A) with * = x can be represented by an element
a € A" with a* = a. (Notice that this is not completely obvious since the
composition of the canonical map Z(A)"™ — K;(A) with detyorm: K1(A) —
Z(A)™ is not the identity in general.) Hence the map k in the Rothenberg
sequence above is surjective and assertion (6) follows.

It remains to treat the case where K1(Z) — K;(A) is not trivial. The exact
Tate cohomology sequence associated to the exact sequence 0 — K;(Z) =
{1} — Ki(A) — Ki(A) — 0 and the computations above yield a short
exact sequence

0 {feZ(A)| f2=1}r> H(Z/2, K1 (A) — {£1} -0  (9.32)
and imply H'(Z/2; K1(A)) = 0 and that the natural map H™(Z/2; K1 (A)) —
H"™(Z/2; K1(U)) is bijective for n = 0, 1. The Rothenberg sequence (9.30) re-
duces to

0 — LO(A) — LY(A) & HO(Z/2; K1 (A)) — LL(A) — 0.

Since any element in ¢ € K;(A) with 2* = z can be represented by an
element a € A™ with a* = a, the image of k contains the image of the map 4
appearing in the exact sequence (9.32). From the definition of k one concludes
that im(k) C im(¢). Namely, for a symmetric non-degenerate symmetric form
f: P — P*ora: F — F* respectively the element [P] € Ko(R) or [ioh*oao
h] € K 1(R) respectively, which appears in the definition of the image under
k of the element [f] € LY(R) or [a] € L (R) respectively, lifts to an element
in the unreduced K-group, which is fixed under the involution. Hence we get
im(k) = im(%). Now assertion (6)) follows.

(7) We already know that K;(A) = 0 for ¢ = 0,1 (see Theorem [9.15 and
Theorem [9.19). Now the claim follows for e = p from assertions (2)), (3) and
(4)). The claim for the other decorations € = h, s is a direct consequence of the
Rothenberg sequences (9.29) and (9.30). This finishes the proof of Theorem
9.31. 0O

Remark 9.33. The canonical decomposition of A (see Theorem[9.3) induces
an isomorphism

L;L(.A) i) L;;('Alf) X L;(A[w) X L;L(.AIII) X L;L(-AIIOO) X Lg(.A][]).
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If A is finite, the canonical decomposition of A (see Theorem 9.3) induces a
splitting

Ly U(A)) = Ly (U(Ar,)) x Ly (U(Arr))-

This comes from a general splitting Ly (R x S) = Ly (R) x Ly(S) for rings
with involution. This splitting is not available for the other decorations € =
h, s essentially because we only get a splitting K;(Rx.S) — K;(R)x K;(S) for
the unreduced K-groups, which does not carry over to the reduced K-groups.

Example 9.34. Let G be a finitely generated group which does not contain
Z™ as subgroup of finite index. Then N(G) is of type II; and countably
composable by Lemma [9.4. We conclude from Theorem 9.13, Theorem [9.18|
Theorem 9.20 and Theorem 9.31/ that

Ko(N(G)) = Z(N(G)™?;

Ki(N(Q)) = Z(N(G) ™™

KoU(@)) = Z(N(G)*/;

K1(U(G)) = 0;

LYN(@)) = ZN(@)*?;

Ly(N(G)) = LYN(G));

LY N(G)) =0 for e = p, h, s;

L?(./\/'(G)) ~ LMUG)) forn € Z,e = p, h, s;
LE(NV(G)) 2 LEMN(G)) forn € Z,e =p,h, s;
L (U(G)) = LT (U(G)) forneZ,e=p,h,s;

and that there is an exact sequence 0 — Z/2 — LY (N(G)) — Z(N(G))*/? —
0. If G contains no element g € G with g # 1 and |(g)| < oo, then we conclude
from Lemma [9.4] (4)

ZN(G)? =R
Z(N(G))""in" ~ R>0.

Remark 9.35. Analogously to the localization sequence in K-theory (9.22])
there is a long exact localization sequence in L-theory [430) Section 3.2]. Let
A be a finite von Neumann algebra and U the algebra of affiliated operators
such that Ay, is countably composable. Then the maps L?(A) — L™(U)
and LS (A) — L& (U) are bijective for all n € Z and € = p, h, s by Theorem
9.31. Hence the relative terms L7 (A — U) and LS (A — U) must vanish for
n € Z and € = p,h,s. They are defined in terms of U-acyclic Poincaré A-
chain complexes. Equivalently, they can be defined in terms of linking forms
and formations on finitely presented A-modules which are U-torsion [430),
Proposition 3.4.1 on page 228, Proposition 3.4.7 on page 274, Proposition
3.5.2 on page 292, Proposition 3.5.5 on page 361]. See also [184], [186].



354 9. Middle Algebraic K-Theory and L-Theory of von Neumann Algebras

9.5 Application to Middle K- and G-Theory of Group
Rings

9.5.1 Detecting Elements in K7 of a Complex Group Ring

We have introduced the Whitehead group Wh(G) of a group G in Subsection
3.1.1. Let i: H — G be the inclusion of a normal subgroup H C G. It induces
a homomorphism ig: Wh(H) — Wh(G). The conjugation action of G on H
and on G induces a G-action on Wh(H) and on Wh(G) which turns out to
be trivial on Wh(G). Hence iy induces homomorphisms

i1: 7 @z Wh(H) — Wh(G); (9.36)
is: Wh(H)® — Wh(G). (9.37)

The main result of this subsection is the following theorem. We emphasize
that it holds for all groups G.

Theorem 9.38 (Detecting elements in Wh(G)). Let i: H — G be the
inclusion of a normal finite subgroup H into an arbitrary group G. Then the
maps i1 and iz defined in (9.36) and (9.37) have finite kernel.

Proof. Since H is finite, Wh(H) is a finitely generated abelian group. Hence
it suffices to show for k = 1,2 that iy is rationally injective, i.e. idg ®ziy is
injective. The G-action on H by conjugation c: G — aut(H) factorizes as
G 2 G/CqH S aut(H), where Cy is the centralizer of H, i.e. the kernel
of ¢, and € is injective. Since H is finite, aut(H) and therefore G/CsH are
finite. This implies that the natural map

b: Q ®z Wh(H)® = Q ®z Wh(H )/
— Q®zia/cen Wh(H) = Q ®@z6 Wh(H)
sending ¢ ®z x to ¢ ®zg x is an isomorphism. Its composition with Q ®zq 1

is Q ®z¢ 12. Hence it suffices to show that is is rationally injective.
Next we construct the following commutative diagram
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GXZ/2 SOig
_

(z(cHy™) ZN(G)

J3 J{ detrx T

K (CH)G*Z/2 %, K (N(Q))

A o]

K\(ZH)GXZ/2 ", K(ZG)%?

’| ']

Wh(H)GXZ/2 L) Wh(G)Z/2

Wh(H)¢ —2 . Wh(G)

The G-actions on the various groups above come from the conjugation action
of G on the normal subgroup H. The Z/2-actions are given by the involutions
coming from the involutions on the rings. Notice that these two actions com-
mute. The maps j; and k; are the obvious inclusions. The homomorphisms
p and ¢ are induced by the canonical projections K1(ZH) — Wh(H) and
K1(ZG) — Wh(G). The maps j2 and ke come from the obvious ring ho-
momorphisms. Let j5: Z(CH)™ — K;(CH) be the homomorphism sending
u € Z(CH)™ to the class in K;(CH) represented by the CH-automorphism
of CH given by multiplication with w. It induces the homomorphism j3. We
have indicated the definition of the center-valued Fuglede-Kadison determi-
nant K1 (NV(G)) — Z(N(G))™ in Subsection[9.2.2. Notice that it is defined
for any group G. The condition that A/(G) is countably decomposable enters
in the proof of Theorem [9.18, not in the construction of the Fuglede-Kadison
determinant. The horizontal maps is, i3 and i4 are induced by the inclusion
i: H — G in the obvious way. The map i5 comes from the inclusion of CH
into N(G). Let ig: (EJ’(((:H)“‘V)GXZ/2 — (J\f(G)i“")GXZ/2 be the injection in-
duced by the inclusion of rings CH — N (G). We have N(G)Y = Z(N(G)),
since CG is dense in A(G) in the weak topology. We have N(G)™¥ N
Z(N(G)) = Z(G))™. This implies (AV(G)m) ™ = (z(W(@))m)™*.
Hence we can define a map s: (N(G) )GXZ/Q — Z(N(G)) ™ by sending a
to |a| = va*a. For u € Z(N(G))%/? the Fuglede-Kadison determinant of the
N (G)-automorphism of N(G) given by multiplication with u is |u| = vu*u.
Now one easily checks that the diagram above commutes. In order to show
that io is rationally injective, it suffices to prove the following assertions:

inv

(1) s is rationally injective;
(2) ig is injective;

(3) j3 is an isomorphism;
(4) jo is rationally injective;
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) p is rationally an isomorphism;
) ji1 is rationally an isomorphism;
) ky is injective;

) detFK okg(ker(q)) =1.

)
)

(3) Recall that js is induced by a homomorphlsm jt: Z(CH)™ — K,(CH)
by taking the G x Z/2- fixed point set. Since the G x Z/2-action factorizes
through the finite group G/CcH x Z/2, j3 is a rational isomorphism if j}
is a rational isomorphism. Since CH is semisimple, there is an isomorphism
pr: CH — szl M, (C). Thus we obtain a commutative diagram
b
Z(CH)™ —— [losy (M, @)™ S22 [T, O

o

i) | o ma |

=1 detc ona inv
Ki(CH) —— TIhe, Ki(M,,(€) =22 1 ¢

Here the isomorphism d,: C*v — Z(M,, (C))™ sends A to the diagonal
(ng, ne)-matrix whose diagonal entries are all A\, the maps k|, are defined
analogously to j4, the map m,: C™ — C™ sends A to A"e, the Morita
isomorphism i, : K1(Mp, (C)) — K1(C) is given by applying C"* @y, (c) —
and detc: K1(C) — C™ is the isomorphism induced by the determinant.
Since all horizontal arrows and the maps m, are rational isomorphisms, j§ is
rationally bijective.

(4) Wall [511] has shown for finite H that the kernel SK;(ZH) of the change of
rings map K1(ZH) — K1(QH) is finite and maps under the canonical projec-
tion K1 (ZH) — Wh(H) bijectively onto the torsion subgroup tors(Wh(H))
of Wh(H) (see also [406, page 5 and page 180]). The change of rings map
K,(QH) — K,(CH) is injective [406l page 5 and page 43]. Hence the change
of rings map K;(ZH) — K;(CH) is rationally injective. Since jo is obtained
by taking the fixed point set under the action of the finite group G/Ce H X7 /2
from it, jo is rationally injective.

(5) The kernel of the projection Ky(ZH) — Wh(H) is finite as H is finite.
Hence p is rationally bijective since it is obtained from a rational isomor-
phism by taking the fixed point set under the operation of the finite group
G/Cgﬂ X Z/Q.

(6) The involution on Wh'(H) := Wh(H)/ tors(Wh(H)) = ( )/SK1(ZH)
is trivial [511], [406, page 182]. This implies Wh'(H) = Wh'(H)%/2. Since
SK\(ZH) is finite, we conclude that the inclusion Wh(H)%/?2 — Wh(H) is a
rational isomorphism. This implies that j; is rationally bijective.

(7) This is obvious.
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(8) An element in the kernel of K;(ZG) — Wh(G) is represented by a ZG-
automorphism ri,: ZG — ZG which is given by right multiplication with an
element +g for g € G. Since for the induced N (G)-map ri,: N(G) — N(G),
we have (r14)*ory, = 1, we get det g oka([r44]) = 1. This finishes the proof
Theorem [9.38. O

9.5.2 Survey on the Isomorphism Conjecture for Ky of Complex
Group Rings, the Bass Conjecture and the Hattori-Stallings Rank

In this section we explain the Isomorphism Conjecture for Ky(CG) and the
Bass Conjecture and their relation. We introduce the Hattori-Stallings rank
and study its relation to the center valued dimension of a group von Neumann
algebra.

We begin with the Isomorphism Conjecture for Ky(CG). For more in-
formation about the Isomorphism Conjectures in algebraic K- and L-theory
due to Farrell and Jones and the related Baum-Connes Conjecture for the
topological K-theory of the reduced group C*-algebra we refer for instance
to [27, Conjecture 3.15 on page 254], [128] section 6], [194], [256] [257], [339],
[340], and [501].

The orbit category Or(G) has as objects homogeneous spaces G/H and
as morphisms G-maps. Let Or(G,FZN) be the full subcategory of Or(G)
consisting of objects G/H with finite H. We define a covariant functor

Or(G) — ABEL,  G/H — K,(CH) (9.39)

as follows. It sends G/H to the projective class group Ko(CH). Given a
morphism f: G/H — G/K there is an element g € G with g"'Hg C K such
that f(¢’H) = ¢'gK. Define f.: Ko(CH) — Ky(CK) as the map induced by
induction with the group homomorphism c¢,: H — K, h + g~ 'hg. This is
independent of the choice of g since any inner automorphism of K induces
the identity on Ko(CK).

Conjecture 9.40 (Isomorphism Conjecture). The Isomorphism Conjec-
ture for Ko(CQ) says that the map

a: COlimOr(G,fIN) KO(CH) — KQ((CG)

induced by the various inclusions H C G is an isomorphism.

Notation 9.41. Let con(G) be the set of conjugacy classes (g) of elements
g € G. Let con(G)s be the subset of con(G) of conjugacy classes (g) for
which each representative g has finite order. Let con(G).s be the subset of
con(G) of conjugacy classes (g) which contain only finitely many elements.
Put con(G) ey = con(G)y Ncon(G)cr. We denote by classo(G), classo(G)y,
classo(G)er, and classo(G)f,cp respectively the complex vector space with the
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set con(G), con(G) ¢, con(GQ)cs and con(G)yc¢ respectively as basis. We de-
note by class(G), class(G)y, class(G)cy, and class(G)f.cr respectively the com-
plex vector space of functions from the set con(G), con(G)y, con(G).s and
con(Q) y,cp respectively to the complex numbers C.

Notice that classo(G), classo(G), classo(G)qr and classg(G)y.c; can be
identified with the complex vector space of functions with finite support from
con(G), con(G) ¢, con(G).s and con(G) ¢,c¢ to C. Recall that (g) is finite if and
only if the centralizer Cj; of g has finite index in G. We obtain an isomorphism
of complex vector spaces

z: classo(G)ey — Z2(CG),  (9)— D g (9.42)

9'€(9)

Define the universal CG-trace of dea Agg € CG by

tréq Z A9 | = Z Ag - (9)- € classy(G). (9.43)

geG geG

Under the obvious identification of classo(G) with CG/[CG, CG], the trace
trgé becomes the canonical projection. This extends to square matrices in
the usual way

trée: M, (CG) — classy(G), A Ztr%G(ai’i). (9.44)
i=1
Let P be a finitely generated projective CG-module. Define its Hattori-
Stallings rank by

HS(P) :=tr¢a(4) € classo(G), (9.45)

where A is any element in M,,(CG) with A2 = A such that the image of the
map CG™ — CG™ given by right multiplication with A is CG-isomorphic to
P. This definition is independent of the choice of A (cf. (6.4)). The Hattori-
Stallings rank defines homomorphisms

HS: Ko(CG) — classy(G), [P] — HS(P); (9.46)
HSc: Ko(CG) ®z C — classy(G), [P]®@ A +— XA-HS(P). (9.47)

Conjecture 9.48 (Bass Conjecture). The strong Bass Conjecture for CG
says that the image of the map HSc: Ko(CG) ®z C — classo(G) of (9-47) is
classo(G)s.

The strong Bass Conjecture for ZG says that for a finitely generated
projective ZG-module P
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0 if g # 1;

HS(C @z P)(9) = {rkz(z ®za P) ifg=1.

The weak Bass Conjecture for ZG says that for a finitely generated projective
Z.G-module P

HS(C®z P)(1) = Z HS(P)(9) = rka(Z ®zc P).
(g)€con(G)

Theorem 9.49. For any group G there is a commutative diagram whose left
vertical arrow is an isomorphism

(colimoy(c, 7zar) Ko(CH)) @z C 2829, Ko(CG) @2 C

hl% J{HSC

classo(G) s ——  classy(G)

Proof. Firstly we explain the maps in the square. We have introduced the
map a in Conjecture 9.40 and the map HS¢ in (9.47). The map e is given
extending a function con(G) s — C to a function con(G) — C by putting it to
be zero on elements in con(G) which do not belong to con(G) ;. Define for a
group homomorphism ¢: G — G’ a map 9.: con(G) — con(G’) by sending
(h) to (3(h)). It induces a homomorphism ), : classy(G) — classg(G’). One
easily checks that the following diagram commutes

Ko(CG) —2— Ky(CG")
Hsl Hsl (9.50)
classo(G) SN classo(G")
There is a canonical isomorphism
f1: (colimoy g, rzary) Ko(CH)) ®z C =
colimo,(g,7za7) (Ko(CH) ®7 C). (9.51)

The Hattori-Stallings rank induces for each finite subgroup H of G an iso-
morphism Ky(CH) ®z C — class(H) by elementary complex representation
theory for finite groups [470, Theorem 6 in Chapter 2 on page 19]. Thus we
get an isomorphism

fo: COHmOr(G,]—'IN) (Ko(CH) ®zC) = COhmOr(G”FI/\/') class(H). (9.52)

Let f3: colimoyq,7zar) con(H) — con(G)y be the map induced by the
inclusions of the finite subgroups H of G. Define a map f;i: con(G); —
colimoy(g, 7z con(H) by sending (g9) € con(G)s to the image of (g) €



360 9. Middle Algebraic K-Theory and L-Theory of von Neumann Algebras

con((g)) under the structure map from con((g)) to colimo, (g rzar) con(H),
where (g) is the cyclic subgroup generated by g. One easily checks that this
is independent of the choice of the representative g of (¢g) and that f} and f}
are inverse to one another. The bijection f4 induces an isomorphism

f3: colimoyq, 7z class(H) =N classo(G) f, (9.53)

because colimit and the functor sending a set to the complex vector space
with this set as basis commute. Now the isomorphism h is defined as the
composition of the isomorphisms f; of (9.51)), fo of (9.52) and f5 of (9.53).
It remains to check that the square in Theorem 9.49 commutes. This follows
from the commutativity of (9.50). This finishes the proof of Theorem [9.49.
O
A group G is poly-cyclic if there is a finite sequence of subgroups {1} =
Go C G1 C G3 C ...G, = G such that G; is normal in G;4; with cyclic
quotient G;41/G; for i = 0,1,2,...,7 — 1. We call G virtually poly-cyclic if
G contains a poly-cyclic subgroup of finite index.

Theorem 9.54. (1) The map a ®zidc: (colimoy,rza) Ko(CH)) @2 C —
Ko(CG) ®z C is injective;

(2) The Isomorphism Conjecture for Ko(CG) [9.40 implies that the map
HSc: Ko(CG) ®z C — classo(G) of (9.47) is injective with image
classo(G)s and hence implies the strong Bass Conjecture for Ko(CQG)
9.78;

(8) Let P be a finitely generated projective CG-module and let g € G be an
element of infinite order with finite (g). Then HS(P)(g) = 0;

(4) Let P be a finitely generated projective ZG-module. Then HS(C ®z
P)(g) = 0 for any element g € G with g # 1 for which |g| < oo or
[(g)] < oo;

(5) The strong Bass Conjecture for ZG is true for residually finite groups
and linear groups;

(6) The strong Bass Conjecture for CG is true for amenable groups;

(7) The strong Bass Conjecture for CG is true for a countable group G,
if the Bost Conjecture holds for G, which is the version of the Baum-
Connes Conjecture with C(G) replaced by I*(G). (A discussion of the
Bost Conjecture and the class of groups for which it is known can be found
in [38]. The class contains all countable groups which are a-T-menable);

(8) Suppose that G is virtually poly-cyclic. Then the map

a: colimor(g)}-ﬂ\/) Ko((CH) — Ko((CG)
is surjective and induces an isomorphism
a: (COlimOr(GV}'Z‘/\/) KO(CH)) ®Z C i Ko((CG) ®Z (C,

and the forgetful map
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F: Ko(CG) — Go(CQ)

is an isomorphism;
(9) If P is a finitely generated projective CG-module, then HS(P)(1) € Q.
Proof. (1) and (2) These follow from Theorem [9.49.
(8) This follows from [23, Theorem 8.1 on page 180].
(4) and (5) These follow from [307, Theorem 4.1 on page 96].

(6) This is proved for elementary amenable groups in [197, Theorem 1.6]. The
proof for amenable groups can be found in [38].
(7) This is proved in [38].
(8) Moody has shown [384] that the obvious map @ crrpy Go(CH) —
Go(CG) given by induction is surjective. Since G is virtually poly-cyclic,
the complex group ring CG is regular, i.e. Noetherian and any CG-module
has a finite dimensional projective resolution [447, Theorem 8.2.2 and Theo-
rem 8.2.20]. This implies that f: Ko(CG) — Go(CG) is bijective. The same
is true for any finite subgroup H C G. Now the claim follows using assertion
(1).
(9) is proved in [529]. See also [78§]. O
Next we investigate the relation between the center valued dimension
dim}L\/(G) (see Definition 9.12)) and the Hattori-Stallings rank. Define a homo-
morphism

¢: ZIN(GQ)) — class(G)cr (9.55)
by assigning to u € Z(N(Q))

#d(u): con(G)er — C, (h) =ty | u- 1 Z ht.
(O]
e(h)

Equivalently, ¢(u) can be described as follows. If we evaluate u € Z(N(G)) C
N(G) = B(I*(G))% at the unit element e € G, we obtain an element u(e) =
dgec g9 € I2(G) with the property that A, depends only on the conjugacy
class (g) of g € G. This implies that A\, = 0 if (g) is infinite and ¢(u)(g) = Ay
for g € G with finite (g).

Lemma 9.56. The map ¢: Z(N(G)) — class(G).y is injective. The compo-
sition of k: classo(G)cp — Z(N(G)) with ¢: Z(N(G)) — class(G).y is the
canonical inclusion classy(G)q; — class(G).s, where k is given by

El Y o @] = D xe | D¢

(g)€con(G) (9) 9'€(9)

The following diagram commutes
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Ky(CG) SRLLEN classg(G) ——— classo(G)ey

i*J( y kl
KoN(G)) 59, Z(n(@)?? —— Z(N(G)),

where 7 is given by restriction, i, is induced by the inclusion i: CG — N(G),
7 1s the inclusion and the other maps have been defined in Definition [9.12
and (9.46).

Proof. Obviously ¢ is injective and ¢ o k is the canonical inclusion. For the
commutativity of the diagram above it is enough to show for an element
A€ M,(CG) and h € G with finite (h)

trgg(A)(h) = (¢ o triy (e (A)) (), (9.57)
since for A € M,,(CG) with A% = A we have

pokoroHS(Im(A))(h) = trga(A)(h);
¢ o jodimpyg) b ([m(A)]) = (¢ 0 triy(g)(A4))(h)-

To prove (9.57) it suffices to show for ¢ € G and h € G with finite (h)

treg(9)(h) = (&0 triy(q (9)) (h)- (9.58)
Obviously
tréc(9)(h) =ty [9- D R (9.59)
he(h)

We conclude from the universal property of try, s for all = € N(G) (see
Theorem [9.5)

trae [0 D, (W) ] = (¢otrfre (@)(h). (9.60)
h'e(h)

Now (9.58)) and hence (9.57) follow from (9.59) and (9.60). This finishes the
proof of Lemma [9.56. 0O
We conclude from Theorem 9.54 (9) and Lemma [9.56

Corollary 9.61. Let P be a finitely generated projective CG-module. Then
dimp )N (G) ®zg P) = HS(P)(1) and this is a non-negative rational num-
ber.

The next result shows that one cannot detect elements in Ko(ZG) b
Ko(N(G)) in contrast to Wh(G) (cf. Theorem [9.38).
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Theorem 9.62. The change of rings map Ko(ZG) — Ko(N(G)) is trivial.

Proof. Because of Theorem 9.13| (2) and Lemma [9.56 it suffices to prove for
a finitely generated projective ZG-module P that HS(C ®z P)(g) = 0 for
g € G with g # 1 and |(g)| < oo, and HS(C ®z P)(1) € Z. This follows from
Theorem 9.54! (4) and the fact that P ¢ im(A) for some A € M, (ZG)
with A% = A. O

Theorem 9.63. The image of the composition
Ky(CG)®z C Hoe, classo(G) = classo(G)ey

is classo(G) f,cf-
Proof. Apply Theorem [9.49/ and Theorem [9.54! (3). O

9.5.3 G-Theory of Complex Group Rings

In this subsection we investigate Go(CG) (see Definition [9.11)). We have de-
fined TNV (G) ®cg M and PN (G) ®cg M in Definition [6.1] (see also Section
8.4). Recall from Theorem [6.5 and Theorem 6.7 (3) that PN (G) ®cg M is a
finitely generated projective N'(G)-module.

Theorem 9.64. If G is amenable, the map
I: Go(CG) — Ko(N(G)), [M] = [PN(G) ®@ca M]

is a well-defined homomorphism. If f: Ko(CG) — Go(CQ) is the forgetful
map sending [P] to [P] and i.: Ko(CG) — Ko(N(Q)) is induced by the
inclusion i: CG — N(G), then the composition l o f agrees with i..

Proof. If0 — M LM 1 & M, — 01is an exact sequence of finitely generated
CG-modules we have to check in Ko(N(G))

[PN(G) ®@ca My) — [PN(G) @ca Mi] + [PN(G) @ce Ma] = 0.

Consider the induced sequence PN (G) ®cac Mo LN PN (G) ®ce M, 2,
PN (G) ®&cg Ms. Obviously D is surjective as p is surjective. We conclude

from Theorem 6.7 (1) that ker(b) and ker(p) are finitely generated projective
N(G)-modules. Theorem 6.7 (4b) and (4e) and Theorem [6.37 imply

dimN(G) (ker(g)) = 0;
dimpr(e) (PN (G) ®@ca My) = dimp (g (ker(p)) .

Lemma [6.28 shows that b is injective and PN(G) ®ca Mo Zp(q) ker (D).
Obviously ker(p) PN (G)®ce Mz and PN (G)®ca M, are N (G)-isomorphic.
O

Now we can detect elements in Go(CG) for amenable groups G.
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Theorem 9.65. Suppose that G is amenable. Then the image of the compo-
sition

dimX/(G)
AR AN

Go(CG) @7 C 1225 Ko(N(G)) @7 C Z(N(G)) 2 class(G)es

contains the complex vector space classo(G)ys.c5. In particular
rkz(Go(CG)) = |con(G)yg.erl-
Proof. Apply Lemma [9.56, Theorem 9.63/ and Theorem [9.64. 0O

Theorem 9.66. (1) If G is amenable, the class [CG| generates an infinite
cyclic subgroup in Go(CG) and is in particular not zero;
(2) If G contains Z * Z as subgroup, we get [CG] = 0 in Go(CQ).

Proof. (1) The map I: Go(CG) — Ko(N(G)) of Theorem 9.64] sends [CG]
to [N(G)] and [N(G)] € Ko(N(G)) generates an infinite cyclic subgroup
because of dimpr(cy (N (G)) = 1.

(2)) We abbreviate Fy = Z * Z. Induction with the inclusion F5 — G induces
a homomorphism Go(CF;) — Go(CG) which sends [CF5] to [CG]. Hence
it suffices to show [CF3] = 0 in Go(CF3). The cellular chain complex of
the universal covering of S' Vv S! yields an exact sequence of CFy-modules
0 — (CF,)? — CF; — C — 0, where C is equipped with the trivial Fy-action.
This implies [CFy] = —[C] in Go(CFy). Hence it suffices to show [C] = 0 in
Go(CF5). Choose an epimorphism f: F5 — Z. Restriction with f defines a
homomorphism Go(CZ) — Go(CF3). It sends C viewed as trivial CZ-module
to C viewed as trivial CFy-module. Hence it remains to show [C] = 0 in
Go(CZ). This follows from the exact sequence 0 — CZ =L CZ-C—0
for s a generator of Z which comes from the cellular CZ-chain complex of
St ]

Theorem [9.66 gives evidence for

Conjecture 9.67. (Amenability and the regular representation in
G-theory). A group G is amenable if and only if [CG] # 0 in Go(CQ).

Example 9.68. Let D be the infinite dihedral group D = Z/2 x Z/2. Then
we compute

Go(CD) = Ky(CD).

as follows. Since Ko(Z]Z)2)) =0 [125, Corollary 5.17] and the obvious map
Ko(Z[Z/2]) & Ko(Z[Z/2]) — Ko(ZD) is bijective [508, Corollary 11.5 and the

following remark], we conclude Ko(ZD) = 0. If s; and sy are the generators
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of the subgroups Z/2 x 1 and 1 % Z/2, then the set cons(G) consists of the
three elements (1), (s1) and (s2). Let C~ be the C[Z/2]-module with C as
underlying complex vector space and the Z/2-action given by —id. Let Py
and P, be the CD-modules given by induction with Z/2 = (s1) C Z/2xZ/2
and Z/2 = (sg) C Z/2%7/2 applied to C~. One easily checks that HS(P;) =
1/2-((e)—(s;)) for i = 1,2 and e € D the unit element. Notice that D contains
an infinite cyclic subgroup of index 2, namely (s;s2). Because of Theorem

9.54 (1)) and (8) the forgetful map f: Ko(CG) =N Go(CQ) is bijective and
we obtain isomorphisms u: Z3 = Ko(CD) and v: Ko(CD) = Z3, which are
inverse to one another and defined by

U(nm ny, nz)

=ng - [ZD] +ny - [P1] + ng - [Pa];
o([P]) = (

HS(P)(1) + HS(P)(s1) + HS(s2), —2 - HS(P)(s1), —2 - HS(s2)).

The composition
u 7 dim
7 % Ky(CD) 2 Ko(N(D)) —24 R

sends (ng, n1,m2) to ng + n1/2 + ne /2. In particular the map i, : Ko(CD) —
Ko(N (D)) is not trivial (compare with Theorem [9.62.)

Remark 9.69. The knowledge about Go(CQG) is very poor. At least there is
Moody’s result stated as Theorem[9.54] (8) and we will show in Example[10.13
that for the amenable locally finite group A = €D, ., Z/2 the map Ko(CA) —
Go(CA) is not surjective. On the other hand we do not know a counterex-
ample to the statement that for an amenable group with an upper bound on
the orders of its finite subgroups both a: colimo,(g, 7z Ko(CH) — Ko(CG)
and Ko(CG) — Go(CQ) are bijective. We also do not know a counterexample
to the statement that for a group G, which is non amenable, Go(CG) = {0}.
To our knowledge the latter equality is not even known for G = Z % Z.

9.6 Miscellaneous

We have emphasized the analogy between a finite von Neumann algebra A
and a principal ideal domain R and their Ore localizations U/ and F with
respect to the set of non-zero-divisors (see Example [6.12] and Section 8.5). Of
course F' is just the quotient field of R. Some of the results of this chapters
are completely analogous for R and F. For instance Ko(R) — Ko(F) is
bijective (compare Theorem 9.20] (1)). We have K;(F) = F™ and Ky(R —
F) = F"™/R™_ We also get K1(R) = R™, provided that R has a Euclidean
algorithm, for instance if R is Z or K[xz] for a field K (compare Theorem
9.17, Theorem 9.20/ (2) and Theorem 9.23] (3)).



366 9. Middle Algebraic K-Theory and L-Theory of von Neumann Algebras

The topological K-theory K;OP(A) of a von Neumann algebra A equals
by definition Ky(A) for p = 0 and mo(GL(A)) for p = 1. We have computed
K{°P(A) = Ko(A) in Subsection [9.2.1 and K[°?(A) = 0 holds for any von
Neumann algebra [51, Example 8.1.2 on page 67|, [514, Example 7.1.11 on
page 134].

More information about the Bass Conjecture can be found for instance in
23], [38], [159], [161], [165], [175], [176], [307], [458].

For an introduction to algebraic K-theory see for instance [378] and [441].

Computations of Go(AG) for Noetherian rings A and finite nilpotent
groups G can be found in [246], [305] and [513]. In [246] a conjecture is
stated which would give a computation for all finite groups G in terms of
certain orders associated to the irreducible rational representations of G.

One can also consider instead of Go(R) the version G{7>=(R) of G-
theory as suggested by Weibel. The group G& 7> (R) is defined in terms of
R-modules which are of type F P, i.e. possess a (not necessarily finite di-
mensional) finitely generated projective resolution (cf. Definition [9.11). This
version is much closer to K-theory than Gj. For instance the forgetful map
f: Ko(AG) — GEP=(AQ) is bijective for a commutative ring A if the trivial
AG-module A has a finite dimensional (not necessarily finitely generated)
projective AG-resolution. The latter condition is always satisfied for a ring
A containing Q as subring if there is a finite dimensional G-C'W-model for
the classifying space F(G,FZN) for proper G-actions. This is the case for a
word-hyperbolic group G and for a discrete subgroup G of a Lie group which
has only finitely many path components (see [1, Corollary 4.14], [370]).

Exercises

9.1. Let A be a von Neumann algebra. Show that A is finite if and only if it
possesses a finite normal faithful trace tr: A — C.

9.2. Let M be a closed hyperbolic manifold. Show that N (71 (M)) is of type
1.

9.3. Let M be a compact connected orientable 3-manifold whose boundary
does not contain S? as a path component. Show that A (m(M)) is of type
Iy if and only if M has a finite covering M — M such that M is homotopy
equivalent to S3, S' x §2, S x D?, T? x D' or T3, and that it is of type II;

otherwise.

9.4. Construct for any ring R and natural number m natural isomorphisms
Kn(Mp(R)) = K, (R) for n =0, 1.

9.5. Let A be an abelian von Neumann algebra. Show that [A] € Ky(A) is
not contained in 2 - K((A) and the canonical projection K;(A) — K;(A) is
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not bijective but that [M(A)] € Ko(M2(A)) is contained in 2 - Ko(M2(A))
and K (Ms2(A)) — K;(M2(A)) is bijective.

9.6. Show that the topological K-group K{°P(A) := mo(GL(A)) is trivial
for any von Neumann algebra A.

9.7. Let G be a finite group. Let V and W be two finite dimensional unitary
representations. Define the character of V' by the function xy : G — C which
sends g € G to the trace trc(ly: V' — V) of the endomorphism [, of the finite
dimensional C-vector space V' given by left multiplication with g. Show that
V and W are unitarily CG-isomorphic if and only if xyv = xw.

9.8. Let R be a ring such that the set S of non-zero divisors satisfies the Ore
condition. Let C be a finite free R-chain complex such that each homology
group H,(C,) has a 1-dimensional finitely generated free R-resolution and is
S-torsion, i.e. RS™! ®@r H,(C.) = 0. Define an element

PUC) =D (-1 [Ha(CL)] € Ko(R— RS

neEZ

Choose an R-basis for C,. It induces an RS~ !-basis for RS™! @ C,. Show
that RS~! ®g C, is an acyclic based free RS~ '-chain complex. Define its
torsion

p(RS™' ®r C.) € K1(RS™)

as in (3.1). Show that the image of this element under the projection to
the cokernel coker(i;) of the map i1: K1(R) — Ki(RS™!) appearing in
the localization sequence (9.22)) is independent of the choice of the R-
basis and is an R-chain homotopy invariant of C,. Show that the map
j: K1(RS™Y) — Ko(R — RS™') appearing in the localization sequence
(9.22) maps p(RS™! ®@r C.) to p"(C,).

9.9. Compute explicitly for R = Z and S C Z the set of non-zero divisors
that RS~! = Q and that the localization sequence (9.22) becomes

{:l:l} _ Qinv & @Jr,inv g 7 1_) Z,
where p maps a rational number different from zero to its absolute value.
Show for a finite free Z-chain complex C, that H,(C.) has a 1-dimensional
finitely generated free R-resolution and is S-torsion for all n € Z, if and only
it H,(Cy) is a finite abelian group for all n € Z. Prove that in this case the
invariant p"(C,) introduced in the previous exercise becomes under these
identifications

p(C) = [T 1Ha(COITD" e,

neE”Z
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9.10. Let G be a finite group. Show that CG is semisimple, i.e. any submodule
of a finitely generated projective module is a direct summand. Conclude that
CG is a product of matrix algebras M, (C). Compute K, (CG) for n = 0,1
and L (CG) for € = p, h, s and n € Z as an abelian group.

9.11. Show that for a group G the following assertions are equivalent:

(1) N(G) is Noetherian;
(2) U(G) is Noetherian;

(3) U(G) is semisimple;

(4) Ko(U(G)) is finitely generated;

(5) Ko(WN(Q)) is finitely generated;

(6) G is finite.

9.12. For aring R let Nily(R) be the abelian group whose generators [P, f] are
conjugacy classes of nilpotent endomorphisms f: P — P of finitely generated
projective R-modules and whose relations are given by [Py, fi] — [P1, f1] +
[P2, f2] = 0 for any exact sequence 0 — (Fy, fo) — (P1, f1) — (P2, f2) = 0
of such nilpotent endomorphisms. Nilpotent means that f™ = 0 for some
natural number n. Show

(1) The natural map i: Ko(R) — Nilg(R) sending [P] to [P,0] is split injec-
tive;

(2) Let Nilp(R) be the cokernel of the natural map i: Ky(R) — Nilg(R). If
R is semihereditary, then Nily(R) = 0;

(3) Show for a group G that Nily(N(G)) = Nilo(U(G)) = 0.

9.13. Let G be a group such that Wh(G) vanishes. Show that any finite
subgroup of the center of G is isomorphic to a product of finitely many
copies of Z/2 and Z/3 or to a product of finitely many copies of Z/2 and
Z/4.

9.14. Suppose that the group G satisfies the weak Bass Conjecture for ZG.
Then the change of rings homomorphism Ko(ZG) — Ko(N(G)) maps the
class [P] of a finitely generated projective ZG-module P to rkz(Z ®z¢ P) -
V(G)]-

9.15. Show that G satisfies the strong Bass Conjecture for CG if and only if

HS(P)(g) = 0 holds for any finitely generated projective CG-module P and
any element g € G with |g| = |(g)| = oo

9.16. Show that the group G satisfies con(G) .y = {(1)} if and only if the
image of the change of rings map Ky(CG) — Ko(N(QG)) consists of torsion
elements.

9.17. Let A be a finite von Neumann algebra. Construct homomorphisms
dAI Go(A) — Ko(.A) and dz,{: Go(U) — Ko(U) such that dA o f.A =id
and dy o fyy = id holds for the forgetful maps f4: Ko(A) — Go(A) and
Ju: Ko(U) — Go(U).
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9.18. Let F be a free group. Let V be a CF-module whose underlying complex
vector space is finite dimensional and let H C F be a subgroup. Show that
V ®c C[F/H] with the diagonal F-action is a finitely generated CF-module
whose class in Go(CF) is zero.

9.19. Let G be finite. Show that the change of coefficients map j: Go(ZG) —
Ky(QQG) is well-defined and surjective.






10. The Atiyah Conjecture

Introduction

Atiyah [9, page 72] asked the question, whether the analytic L?-Betti numbers

b,(,2) (M) of a cocompact free proper Riemannian G-manifold with G-invariant
Riemannian metric and without boundary, which are defined in terms of the
heat kernel (see (1.60)), are always rational numbers. This is implied by the
following conjecture which we call the (strong) Atiyah Conjecture in view of
Atiyah’s question above.

Given a group G, let FZN (G) be the set of finite subgroups of G. Denote
by

1

Fva L @ (101

the additive subgroup of R generated by the set of rational numbers {‘—111,| |
H e FIN(G)}.

Conjecture 10.2 (Strong Atiyah Conjecture). A group G satisfies the
strong Atiyah Conjecture if for any matriz A € M(m,n,CG) the von Neu-
mann dimension of the kernel of the induced bounded G-operator

r& (@) — Q)" 1A
satisfies

1
dim (ker (r(z): PaE)™ - (G ")) € il

We will explain in Subsection [10.1.4' that there are counterexamples to
the strong Atiyah Conjecture 10.2, but no counterexample is known at the
time of writing if one replaces WZ by Q or if one assumes that there
is an upper bound for the orders of finite subgroups of G.

In Subsection [10.1.1 we will give various reformulations of the Atiyah
Conjecture. In particular we will emphasize the module-theoretic point of
view which seems to be the best one for proving the conjecture for certain
classes of groups (see Lemma [10.7). This is rather surprising if one thinks
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about the original formulation of Atiyah’s question in terms of heat kernels.
On the other hand it gives some explanation for the strong Atiyah Conjecture
10.2. Roughly speaking, the strong Atiyah Conjecture [10.2 predicts that all
L?-Betti numbers for G are induced by L2-Betti numbers of finite subgroups
H C G. This is the same philosophy as in the Isomorphism Conjecture [9.40)
for Ko(CG) or in the Baum-Connes Conjecture for K (C*(G)). We discuss
the relation of the Atiyah Conjecture to other conjectures like the Kaplansky
Conjecture in Subsection [10.1.2. We will give a survey on positive results
about the Atiyah Conjecture in Subsection [10.1.3l

In Section 10.2 we will discuss first a general strategy how to prove the
strong Atiyah Conjecture [10.2. Then we will explain the concrete form in
which the strategy will appear to prove the strong Atiyah Conjecture [10.2
for Linnell’s class of groups C.

In Section [10.3| we give the details of the proof of Linnell’s Theorem
10.19. The proof is complicated, but along the way one can learn a lot of
notions and techniques like transfinite induction, universal localization of
rings, division closure and rational closure, crossed products and G- and K-
theory. Knowledge of these concepts is not required for any other parts of the
book. To get a first impression of the proof, one may only consider the proof
in the case of a free group presented in Subsection [10.3.1 which can be read
without knowing any other material from this Chapter [10.

To understand this chapter, the reader is only required to be familiar with
Sections 1.1}, [1.2] and |6.1.

10.1 Survey on the Atiyah Conjecture

In this section we formulate various versions of the Atiyah Conjecture, discuss
its consequences and a strategy for the proof.

10.1.1 Various Formulations of the Atiyah Conjecture

Conjecture 10.3 (Atiyah Conjecture). Let G be a group. Let F be a field
QCc FcCandletZ C ACR be an additive subgroup of R. We say that
G satisfies the Atiyah Conjecture of order A with coefficients in F' if for any
matric A € M(m,n, FG) the von Neumann dimension (see Definition 1.10)
of the kernel of the induced bounded G-operator rff) 2(G)™ = PG, x—
T A satisfies

dimpr(g) (ker (rff): Pa)™ — 12(G)")) e A

Notice that the strong Atiyah Conjecture 10.2!is the special case F' = C
and A = mz, where the choices of F' and A are the best possible ones.
Sometimes we can only prove this weaker version for special choices of F' and
A but not the strong Atiyah Conjecture 10.2! itself.
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Lemma 10.4. Let G be the directed union of the directed system {G; | i € I}
of subgroups. Then G satisfies the Atiyah Conjecture [10.3 of order A with
coefficients in F if and only if each G; does. In particular a group G satisfies
the Atiyah Conjecture [10.3 of order A with coefficients in F' if and only if
each finitely generated subgroup does.

Proof. Let A € M(m,n, FG;). Then we conclude from Lemma 1.24
dimpc,) (ker (rff>: (G — ZQ(Gi)"»
= dimyr(g) (ker (Tf)Z e — l2(G)")) .

For any A € M(m,n,FG) there is G; such that A already belongs to
M (m,n, FG;) because there are only finitely many elements in G which ap-
pear with non-trivial coefficient in one of the entries of A. A group G is the
directed union of its finitely generated subgroups. O
We can reformulate the Atiyah Conjecture [10.3|for F' = Q as follows.

Lemma 10.5. (Reformulation of the Atiyah Conjecture in terms of
L?-Betti numbers). Let G be a group. Let Z C A C R be an additive
subgroup of R. Then the following statements are equivalent:

(1) For any cocompact free proper G-manifold M without boundary we have
2 ) :
b (M;N(Q)) € 4
(2) For any cocompact free proper G-CW -complex X we have
2)(y. .
WP XGN(G)) € A

(3) The Atiyah Conjecture [10.3 of order A with coefficients in Q is true for
G.

Proof. (3) = (2) This follows from Additivity (see Theorem [1.12 (2)).

(2) = (3) Because of Lemma [10.4 and the equality b](DZ)(G xug Z;N(GQ)) =
b](gz)(Z;N(H)) forp >0, H C G and Z an H-CW-complex (see Theorem [6.54
(7)), we can assume without loss of generality that G is finitely generated.
Put Y = \/Y_, S'. Choose an epimorphism f: m(Y) = x?_,Z — G from the
free group on ¢ generators to G. Let p: Y — Y be the G-covering associated
to f. Let A be an (m,n)-matrix over QG and let d > 3 be an integer. Choose
k € Z with k # 0 such that k - A has entries in ZG. By attaching n copies of
G x D! to Y with attaching maps of the shape G x S92 - G — Y and m
d-cells G'x D% one can construct a pair of finite G-CW-complexes (X,Y) such
that the d-th differential of the cellular ZG-chain complex C\(X) is given by
k- A and the (d+1)-th differential is trivial. This follows from the observation
that the composition of the Hurewicz map mq_1(X4—1) — Hg_1(X4—1) with
the boundary map Hy—1(Xg—1) — Hg—1(Xa—1, X4q—_2) is surjective since each
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element of the cellular ZG-basis for Cyq_1(X) = Hq_1(X4—1, X4—2) obviously
lies in the image of the composition above. Hence C£2)(X ) is a finite Hilbert
N (G)-chain complex such that H(§2)(Ci2) (X)) = H(§2) (X;N(Q)) is just the
kernel of 7”1(3,)4: *(G)™ — [*(G)". Obviously r,(f_L and Tff) have the same

kernel. Hence dimr(¢) (ker(rf))) = bElQ)(X;N(G)).

(1) = (2) Given a cocompact free proper G-CW-complex X of dimension n,
we can find an embedding of G\X in R*"*3 with regular neighborhood N
with boundary ON [445, chapter 3]. Then there is an (n + 1)-connected map
f: ON — G\X. Let f: 9N — X be obtained by the pullback of X — G\X
with f. Then f is (n + 1)-connected and ON is a cocompact free proper
G-manifold without boundary. We get b2 (X; NV(G)) = b$? (ON; N(G)) for
p < n from Theorem [1.35! (1)).

(2) = (1) This is obvious. This finishes the proof of Lemma [10.5. O

Atiyah’s question [9, page 72], whether the L?-Betti numbers béz) (M; N(@))
of a cocompact free proper Riemannian G-manifold M with G-invariant Rie-
mannian metric and without boundary are always rational numbers, has a
positive answer if and only if the Atiyah Conjecture(10.3 of order A = Q with
coefficients in F' = Q is true for G. This follows from the L?-Hodge-de Rham
Theorem [1.59, the expression of the L2-Betti numbers in terms of the heat
kernel (see (1.60) and Theorem 3.136/ (1)) and Lemma [10.5 above.

All examples of L2-Betti numbers of G-coverings of closed manifolds or
of finite C'W-complexes, which have explicitly been computed in this book,
are consistent with the strong Atiyah Conjecture [10.2, provided that there is
an upper bound on the orders of finite subgroups of G. Without the latter
condition counterexamples do exist as we will explain in Remark [10.24.

One can rephrase the Atiyah Conjecture also in a more module-theoretic
fashion, where one emphasizes the possible values dimy;g)(N(G) ®pag M)
for FG-modules M. This point of view turns out to be the best one for proofs
of the Atiyah Conjecture. Recall that we have defined the von Neumann
dimension of any N (G)-module in Definition 6.6/ (using Theorem [6.5).

Notation 10.6. Let G be a group and let F be a field with Q Cc F C C.
Define A(G, F)tgp, A(G, F)gp, A(G, F)gg or A(G, F)an respectively to be the
additive subgroup of R given by differences

dimpr(a)(N(G) ®@rc Mi) — dimpra) (N (G) @rc Mo),

where My and M7 run through all finitely generated projective FG-modules,
finitely presented F G-modules, finitely generated F'G-modules or FG-modules
with dimpr ey (N(G) @ra M;) < oo for i = 0,1 respectively.

Lemma 10.7. (Reformulation of the Atiyah Conjecture in terms
of modules). A group G satisfies the Atiyah Conjecture of order A with
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coefficients in F if and only if A(G, F)g C A, or equivalently, if and only if
for any finitely presented FG-module M

dimN(G) (N(G) Rra M) e A

Proof. Given a matrix A € M(m,n,FG), let ry: FG™ — FG" and
TJX(G): N(G)™ — N(G)" be the associated FG-homomorphism and N (G)-
homomorphism given by right multiplication with A. Since the tensor product
N(G)®p¢g — is right exact, coker (rﬁ/(c)) is M (G)-isomorphic to N (G) Q¢
coker(r4). We conclude from Additivity (see Theorem 6.7/ (4b))

dimpr( (ker (rﬁ/(g)>) =m —n+dimpy(g) (N (G) @pg coker(ra)) . (10.8)

Since N(G) is semihereditary (see Theorem 6.5/ and Theorem 6.7 (1)),
ker (T’Q/(G)) is finitely generated projective. We get from Theorem 6.24

dimpr(a) (ker (TQ/(G))) = dimpr (@) (ker (rf))) . (10.9)

We conclude from (10.8) and (10.9) that dimyr(¢) (ker (Tf))) belongs to A if

and only if dimyr(g) (N (G) @ g coker(r4)) belongs to A since m—n € Z C A.
O

Lemma 10.10. Let G be a group and let F' be a field with Q C F C C.

(1) We have WZ C MG, F)gp. If the Isomorphism Conjecture [9.40
for Ko(CG) is true, we have Wl(c)lZ = MG, F)tgp;

(2) /1(G7 F)fgp C A(G, F)fp C /1(G7 F)fg C A(G, F)an;

(8) A(G, F)z C clos(A(G, F)g,), where the closure is taken in R;

(4) clos(A(G, F)g,) = clos(A(G, F)gg) = A(G, F)an.

Proof. (1) The image of the following composition

colimo, (g, 7za) Ko(FH) = Ko(FG) 5 Ko(N(G)) e, g

is Wl(g)‘z, where a is essentially given by the various inclusions of the finite
subgroups H of G and is in the case F' = C the assembly map appearing in
the Isomorphism Conjecture 9.40 for Ky(CG), and ¢ is a change of rings
homomorphism. This follows from the compatibility of the dimension with
induction (see Theorem 6.29 (2)) and the fact that dimprg) (V) = \Tlﬂ .

dimc (V) holds for a finitely generated N (H)-module for finite H C G. The

image of the composition Ko(FG) % Ko(N(Q)) AN, R i by definition
A(G, F)gp.

(2)) This is obvious.
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(3) Let M be a finitely generated F'G-module. Choose an exact sequence
@iel FG L FG" — M — 0 for an appropriate n € N and index set 1.
For a finite subset J C I let M; be the cokernel of the restriction of p to
D;c; F'G. We obtain a directed system of finitely presented FG-modules
{M; | J C I,]J| < oo} such that colim -y |jj<oc My = M. We conclude
colim 1, 7j<00 N(G)®ra M = N(G)®@pa M since N(G) ®pg — has a right
adjoint and hence respects colimits. Each of the structure maps N(G) ®p¢
My, = N(G) ®@pg My, for J; C Jo C I with |J1], |Ja| < oo is surjective and
each F'G-module M} is finitely presented. Hence the claim follows since the
dimension is compatible with directed colimits (see Theorem 6.13] (2)).

(4) Let M be an FG-module. Let {M; | i € I} be the directed system of its
finitely generated submodules. Then M is colim;c; M;. Hence N(G) @ pg M
is colim;e; N (G) @ pg M;. Because of Theorem 16.13| (2) and assertion (3)) it
suffices to show that for any map f: My — M; of finitely generated FG-
modules we have

dimJ\/(G) (im (id®paf: N(G) Rra My — N(G) ®rg My)) € A(G, F)fg.

This follows from Additivity (see Theorem 6.7/ (4b))) and the exact sequence

N(G) @pc My MN’(G) ®Rra M M)N(G) ®pq coker(f) — 0.0

Remark 10.11. Let G be a group. Then mZ is closed in R if and
only if there is an upper bound on the orders of finite subgroups. Suppose
that there is such an upper bound. Then the least common multiple d of the
orders of finite subgroups is defined and

1
Wz - {TER‘d'TEZ}

and by Lemma [10.7/ and Lemma [10.10/ the strong Atiyah Conjecture [10.2]is
equivalent to the equality

{reR|d-reZ} = AG,Clyp = A(G,C)y, = A(G,C)iy = A(G,C)an.

In particular the strong Atiyah Conjecture [10.2 for a torsionfree group G is
equivalent to the equality

Z = AG,C)yp = A(G,C)p = A(G,C)gg = A(G,C)an.
Remark 10.12. Assume that G is amenable and that there is an upper

bound on the orders of finite subgroups of G. Then G satisfies the strong
Atiyah Conjecture 10.2/if and only if the image of the map

dimpr(gy: Go(CG) — R,  [M] — dimprey(N(G) @ca M)
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(see Theorem 6.7 (4e) and Theorem 9.64)) is contained in (and hence equal to)
Wl(g)‘z. Moreover, we conclude from Theorem [9.54/ (§8) and Lemma [10.10
(I) that the strong Atiyah Conjecture 10.2] holds for virtually poly-cyclic

groups G.

Example 10.13. Let A = @, ., Z/2. This abelian group is locally finite and
hence satisfies the Isomorphism Conjecture [9.40 for Ky(CG) and by Lemma
10.4] the strong Atiyah Conjecture [10.2 . This implies

1

Z[1/2] = mz = AA,C)gp = A(A, O

We want to show that each real number r > 0 can be realized by r =
dimpray (N (A) ®ga M) for a finitely generated QG-module M. This implies

AA,C) =R
or, equivalently, that the map
dimpray: Go(CA) = R, [M]+— dimpy(a)(N(A) ®ca M)

(see Theorem 6.7 (4€) and Theorem [9.64) is surjective. The image of its com-
position with the forgetful map f: Ko(CA) — Go(CA) is Z[1/2]. In particular
we conclude that f is not surjective and Go(CA) is not countable.

Let A, C A be the finite subgroup @Z;é Z/2 of order 2" for n > 1.
Denote by N, € QA the element 27" - > _, a. Let I, and (N,) be the
ideals of QA generated by the elements N,, — N,,_1 and N,,. Since N,,N,, =
Niax{m,n}, We get a direct sum decomposition (N,) @ I,, = (N,,—1) Since
(Ny,) is QG-isomorphic to QG ®ga, Q for Q with the trivial A,-action and
the dimension is compatible with induction (see Theorem [6.29] (2)), we get

dimN(A) (N(A) ®QA In)
= dim/\/(A) (N(A4) ®qa (Nn-1)) — dimp(4) (NV(4) ®a (Nn))

1 1
‘An—1| ‘An|
=27".

Fix any number r € [0,1). Because it has a 2-adic expansion, we can find a
(finite or infinite) sequence of positive integers ny; < ny < ng < ... such that

r o= Z?fﬂi = ZdimN(A)(N(A) ®0a In;)-
i>1 i>1

Let P, ¢ QA be the QA-submodule Zle I,,. By construction P, =
@le I,, and Py is a direct summand in QA. This implies



378 10. The Atiyah Conjecture

k
dimpray(NV(A) @ga QA/P) = 1= 27,
i=1

Let P C QA be the union of the submodules P;. Then N (A4) ®ga QA/P =
colimy_,oo N'(A) ®ga QA/Py;. We conclude from Theorem 6.13/ (2)

dimN(A)(N(A) ®ga QA/P) = 1—2277“ =1-r

i>1

Since M = QA™ @ QA/P is a finitely generated QA-module and satisfies
dimpra)(N(A) ®ga M) =n + 1 —r, the claim follows.

10.1.2 Relations of the Atiyah Conjecture to Other Conjectures

In this subsection we relate the Atiyah Conjecture to other conjectures.

Conjecture 10.14 (Kaplansky Conjecture). The Kaplansky Conjecture
for a torsionfree group G and a field F' says that the group ring FG has no
non-trivial zero-divisors.

If G contains an element g of finite order n > 1, thenz = >_" | ¢* is a non-
trivial zero-divisor, namely x(n —x) = 0. Hence the Kaplansky Conjecture is
equivalent to the statement that, given a field F', a group G is torsionfree if
and only if F'G has no non-trivial zero-divisors.

If G is a right-ordered torsionfree group and F' is a field, then the Kaplan-
sky Conjecture is known to be true [302, Theorem 6.29 on page 101]), [310,
Theorem 4.1]. Delzant [140] deals with group rings of word-hyperbolic groups
and proves the Kaplansky Conjecture for certain word-hyperbolic groups.
Given a torsionfree group G, a weaker version of the Kaplansky Conjecture
predicts that F'G has no non-trivial idempotents and a stronger version pre-
dicts that all units in F'G are trivial, i.e. of the form A-g for A € F, A\ # 0 and
g € G [302, (6.20) on page 95]). For more information about the Kaplansky
Conjecture we refer for instance to [310, Section 4]. A proof of the next result
can also be found in [172].

Lemma 10.15. Let F be a field with Z C F C C and let G be a torsionfree
group. Then the Kaplansky Conjecture holds for G and the field F if the
Atiyah Conjecture [ 10.3 of order A = Z with coefficients in F is true for G.

Proof. Let z € FG be a zero-divisor. Let r{? I2(G) — I*(G) be given by
right multiplication with z. We get 0 < dimy/(g) (ker(rg))) < 1 from The-

orem [1.12 (I)) and (2). Since by assumption dimus(q) (ker(rf))) € Z, we

conclude dimyr(¢) (ker(rff))) = 1. Since ker(rg(f)) is closed in [2(G), Theo-
rem [1.12/ (T) and (2) imply ker(r{?) = I2(G) and hence z = 0. ]
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Lemma 10.16. Let G be a torsionfree amenable group. Then the strong
Atiyah Conjecture10.2 for G is equivalent to the Kaplansky Conjecture 10.14
for G and the field C.

Proof. Because of Lemma [10.15! it suffices to prove the strong Atiyah Con-
jecture 10.2, provided that the Kaplansky Conjecture [10.14 holds for G
and C. We first show for a CG-module M which admits an exact sequence
CG™ % CG — M — 0 that dimp(g)(N(G) ®ce M) € {0,1}. Let C. be the
chain complex concentrated in dimension 1 and 0 with c as first differential.
We conclude from Lemma, [1.18, Theorem 16.24/ and the dimension-flatness of
N(G) over CG for amenable G (see Theorem [6.37)

dimpre) (N (G) @ca M) = dimy () (coker(N(G) @cq ¢))

HY (3G >®CG C.))

)(
= dimpr(g)( )
= dimp(g)(ker(Ag: I*(G) — 1*(G))
( )
( )-

= dimy () (ker(NV(G )®<cc; c*e)
= dimpr(q) (N (G) ®cq ker(c*c)

Since c*c: CG — CG is CG-linear and hence given by right multiplica-
tion with an element in CG, its kernel is either trivial or CG. This implies
dimp oy (N (G) ®ca ker(c*c)) € {0,1} and thus dimprg)(N(G) ®@ca M) €
{0,1}.

In order to prove the strong Atiyah Conjecture [10.2] it suffices to show
for any finitely generated CG-module M that dimy; ) (N (G) ®cq M) is an
integer. We proceed by induction over the number n of generators of M.
In the induction beginning n = 1 we can assume the existence of an exact
sequence @, ; CG 2, CG — M. Given a finite subset J € I, let M, be
the cokernel of the restriction of p to @, ; CG. Then dimy ) (N (G) ®ca
Mjy) € {0,1} by the argument above. We conclude as in the proof of Lemma
10.10° (3) that dimpr ) (N (G) @ceg M) € {0,1}. It remains to prove the
induction step from n to n+ 1. Obviously we can find a short exact sequence
of CG-modules 0 — L — M — N — 0 such that L is generated by one
element and N by n elements. By induction hypothesis dimpr(c) (N (G)®ca L)
and dimpr(q) (N (G) ®ce N) are integers. We conclude from Additivity (see
Theorem 6.7 (4b)) and dimension-flatness of N'(G) over CG for amenable G
(see Theorem 16.37)

dimpr(q) (N (G)®ce M) = dimp(q)(NV(G)@ce L) +dimp(a) (N (G) @ce N).

Hence dimpr(q) (N (G) ®ca M) is an integer. O
The result above follows also from [416, Theorem 2.2].
Suppose that there is an integer d such that the order of any finite sub-
group of G divides d and that the strong Atiyah Conjecture [10.2] holds for
G. Suppose furthermore that h(?)(G) < oo and hence x(? (@) is defined (see
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Definition 6.79)). Theorem [6.99 (2) says that d - b,(,z)(G) € Z holds for all p.
This implies

d-x?(@) e Z.

This is consistent with the result of Brown [69, Theorem IX.9.3 on page
257) that d - x'(G) € Z holds for a group G of finite homological type, i.e.
a group G of finite virtual cohomological dimension such that for any ZG-
module M, which is finitely generated as abelian group, H;(G; M) is finitely
generated for all ¢ > 0. Here x/'(G) is defined by

1

Y(G) = RN -Z;(—l)prkz(Hp(Go;Z)) (10.17)

for any torsionfree subgroup Gy C G of finite index [G : Gp]. Namely, if G
contains a torsionfree subgroup Gq of finite index, which has a finite model
for BG, then both x(®(G) and x/(G) are defined and agree. This follows
from Remark 6.81, where x(?)(G) = Xyirt(BG) is shown, and the fact that
Xvirt (BG) = X'(G) [69, page 247].

We will state, discuss and give some evidence for the Singer Conjecture
in Chapter [11. Because of the Euler-Poincaré formula (see Theorem [1.35! (2))
the Singer Conjecture implies for a closed aspherical manifold M that all the
L2-Betti numbers bz(f) (M ) of its universal covering are integers, as predicted
by the strong Atiyah Conjecture [10.2 in combination with Lemma [10.5.

A link between the Atiyah Conjecture and the Baum-Connes Conjecture
will be discussed in Section[10.4. A connection between the Atiyah Conjecture
and the Isomorphism Conjecture9.40 for Ko(CG) has already been explained
in Lemma [10.10/ (1)). Notice that the Atiyah Conjecture is harder than the
Baum-Connes Conjecture and the Isomorphism Conjecture for Ko(CG) in
the sense that it deals with finitely presented modules (see Lemma [10.7) and
not only with finitely generated projective modules.

10.1.3 Survey on Positive Results about the Atiyah Conjecture

In this subsection we state some cases, where the Atiyah Conjecture is known
to be true.

Definition 10.18 (Linnell’s class of groups C). LetC be the smallest class
of groups which contains all free groups and is closed under directed unions
and extensions with elementary amenable quotients.

We will extensively discuss the proof of the following theorem due to
Linnell [309, Theorem 1.5] later in this chapter.

Theorem 10.19 (Linnell’s Theorem). Let G be a group such that there
is an upper bound on the orders of finite subgroups and G belongs to C. Then
the strong Atiyah Conjecture 10.2 holds for G.
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The next result is a direct consequence of Theorem [13.3 (2)), Theorem
13.31] (2) and Proposition 13.35! (I) which deal with the Approximation Con-
jecture [13.1L

Theorem 10.20. Let Z C A C R be an additive subgroup of R which is
closed in R. Let {G; | i € I} be a directed system of groups such that each
G; belongs to the class G (see Definition[13.9) and satisfies the Atiyah Con-
jecture[10.5 of order A with coefficients in Q. Then both its colimit (= direct
limit) and its inverse limit satisfy the Atiyah Conjecture 10.3 of order A with
coefficients in Q.

The next definition and the next theorem, which is essentially a conse-
quence of the two Theorems 10.19 and [10.20] above by transfinite induction,
are taken from [463].

Definition 10.21. Let D be the smallest non-empty class of groups such that

(1) If p: G — A is an epimorphism of a torsionfree group G onto an elemen-
tary amenable group A and if p~1(B) € D for every finite group B C A,
then G € D;

(2) D is closed under taking subgroups;

(3) D is closed under colimits and inverse limits over directed systems.

Theorem 10.22. (1) If the group G belongs to D, then G is torsionfree and
the Atiyah Conjecture[10.5 of order A = Z with coefficients in F' = Q is
true for G;

(2) The class D is closed under direct sums, direct products and free products.
Every residually torsionfree elementary amenable group belongs to D.

The fundamental group of compact 2-dimensional manifold M belongs to
C since it maps onto the abelian group Hy (M) with a free group as kernel. If
m1(M) is torsionfree, it belongs also to D. This follows from the fact that a
finitely generated free group is residually torsionfree nilpotent [354, §2]. The
pure braid groups belong to D since they are residually torsionfree nilpo-
tent [180, Theorem 2.6]. The Atiyah Conjecture [10.3] of order A = Z with
coefficients in F = Q is also true for the braid group (see [313]). Positive
one-relator groups, i.e. one relator groups whose relation can be written as
a word in positive multiples of the generators, belong to D because they are
residually torsionfree solvable.

10.1.4 A Counterexample to the Strong Atiyah Conjecture

The lamplighter group L is defined by the semidirect product

L:=@Pz/2xz

neE”L
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with respect to the shift automorphism of €, ., Z/2, which sends (z,)nez
to (Tn_1)nez. Let eg € @5 Z/2 be the element whose entries are all zero
except the entry at 0. Denote by ¢t € Z the standard generator of Z which
we will also view as element of L. Then {egt,t} is a set of generators for
L. The associated Markov operator M: I*(G) — [*(G) is given by right
multiplication with I - (eot + ¢ + (egt) ™' 4+ t~1). It is related to the Laplace
operator Ag: I2(G) — I2(G) of the Cayley graph of G by Ag = 4 -id —4 -
M. The following result is a special case of the main result in the paper of
Crigorchuk and Zuk [230, Theorem 1 and Corollary 3] (see also [229]). An
elementary proof can be found in [143].

Theorem 10.23 (Counterexample to the strong Atiyah Conjecture).
The von Neumann dimension of the kernel of the Markov operator M of the
lamplighter group L associated to the set of generators {egt,t} is 1/3. In
particular L does not satisfy the strong Atiyah Conjecture[10.2.

Notice that each finite subgroup of the lamplighter group L is a 2-group
and for any power 2" of 2 a subgroup of order 2" exists. Hence m 1=
Z[1/2] and we obtain a counterexample to the strong Atiyah Conjecture 10.2.
At the time of writing the author does not know of a counterexample to the
strong Atiyah Conjecture in the case, where one replaces WZ by Q or
where one assumes the existence of an upper bound on the orders of finite

subgroups.

Remark 10.24. The lamplighter group L is a subgroup of a finitely pre-
sented group G such that any finite subgroup of G is a 2-group. By Theo-
rem [10.23 above and a slight variation of the proof of Lemma [10.5 we con-
clude the existence of a closed Riemannian manifold M with G = 7 (M)
such that not all the L2-Betti numbers of its universal covering belong to
WMZ =7Z[1/2].

The group G is constructed as follows (see [229]). Let ¢: L — L be the
injective endomorphism sending ¢ to t and e to egt~'egt. Let G be the HHN-
extension associated to the subgroups L and im(¢) of L and the isomorphism
¢: L — im(¢). This group G has the finite presentation

G = (eo,t,s|ed=1,[t " eot,e0) = 1,[s,t] = 1,5 Legs = egt ept).

The general theory of HHN-extensions implies that G contains L as a sub-
group, namely, as the subgroup generated by ey and t and each finite sub-
group of G is isomorphic to a subgroup of L [350, Theorem 2.1 on page 182,
Theorem 2.4 on page 185].

Remark 10.25. For the lamplighter group L the Isomorphism Conjecture
9.40) is true, i.e. the assembly map

a: colimp,/gcor(r,Fza) Ko(CH) — Ko(CL)
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is bijective.

We first prove surjectivity. A ring is called regular coherent, if any finitely
presented module has a finite projective resolution. For a finite group H the
rings CH and C[H X Z] are regular coherent. Given a commutative ring R,
any finitely presented R[ED, ., Z/2]-module or R[(D,,c;Z/2) x Z]-module
respectively is the induction of a finitely presented RH-module or R[H X Z]-
module respectively for some finite subgroup H C @p,, ., Z/2. Hence the rings
ClP,.czZ/2] and C[(D,,c7 Z/2) x Z] are regular coherent. For a commuta-
tive ring R and automorphism a: R — R the change of rings homomorphism
Ko(R) — Ko(R4[t,t71]) is surjective, where R, [t,t ] is the ring of a-twisted
Laurent series over R, provided that R and R[Z] are regular coherent [508],
Corollary 13.4 and the following sentence on page 221]. This implies that
Ko(C[®,,czZ/2]) — Ko(CL) is surjective. Since @,,.5 Z/2 is locally finite,
D,,cz Z/2 satisfies the Isomorphism Conjecture 9.40. This proves the surjec-
tivity of a: colimycrzar(r) Ko(CH) — Ko(CL).

Next we prove injectivity. For finite subgroups H C K of L the inclusion
H — K is split injective, because both H and K are Z/2-vector spaces.
Therefore Ko(CH) — K((CK) is a split injection of finitely generated free
abelian groups. Hence colim g zzar(r) Ko(CH) is torsionfree. Since a @z C is
injective by Theorem [9.54! (1)), the assembly map a is injective.

We conclude for the lamplighter group L that A(G,C)gep # A(G, C)gp.

10.2 A Strategy for the Proof of the Atiyah Conjecture

In this section we discuss a strategy for the proof of the strong Atiyah Con-
jecture 10.2l We begin with a general strategy. Although it cannot work in
full generality because of the counterexample presented in Subsection [10.1.4]
it is nevertheless very illuminating and is the basic guideline for proofs in
special cases. We will give some basic facts about localization in order to
formulate the result which we will prove and which implies Linnell’s The-
orem [10.19. After presenting some induction principles we will explain the
concrete form in which the strategy will appear to prove the strong Atiyah
Conjecture [10.2] for Linnell’s class of groups C. To get a first impression of the
proof, one may only consider the proof in the case of a free group presented
in Subsection [10.3.1 which can be read without knowing any other material
from this Chapter [10.

Linnell proves his Theorem [10.19/in [309, Theorem 1.5]. Our presentation
is based on the Ph. D. thesis of Reich [435].

10.2.1 The General Case

In this Subsection we discuss a general strategy for the proof of the strong
Atiyah Conjecture [10.2. We have introduced and studied the notion of a von
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Neumann regular ring in Subsection [8.2.2] and of the algebra U (G) in Defini-
tion 8.9/ and Subsection [8.2.3. It suffices to recall for the sequel the following
facts. A ring is von Neumann regular if and only if any finitely presented R-
module is finitely generated projective (see Lemma 8.18]). The algebra U(G) is
the Ore localization of N (G) with respect to the multiplicatively closed sub-
set of non-zero-divisors in N (G) (see Theorem [8.22 (1))). The algebra U (G) is
von Neumann regular (see Theorem 8.22] (3)). The explicit operator theoretic
definition ¢/(G) will not be needed. The dimension function dimys gy for ar-
bitrary N (G)-modules extends to a dimension function dimy gy for arbitrary
U(G)-modules (see Theorem [8.29).

Lemma 10.26 (General Strategy). Let G be a group. Suppose that there
is a ring S(G) with CG C S(G) C U(G) which has the following properties:

(R’) The ring S(G) is von Neumann regular;
(K’) The image of the composition

Ko(S(Q)) & KoU(@)) 249, g

is contained in Wl(cﬂzf where 1 denotes the change of rings homo-
morphism.

Then G satisfies the strong Atiyah Congecture [10.2.

Proof. Because of Lemma [10.7 it suffices to show for a finitely presented
CG-module M that dimprgy(N(G) @cg M) belongs to WZ . Since
S(G) is von Neumann regular, the finitely presented S(G)-module S(G) ®cq
M is finitely generated projective (see Lemma [8.18) and hence defines a
class in Ko(S(G)). The composition dimyg)oi: Ko(S(G)) — R has im-
age \.FTl(G)lZ by assumption and sends the class of S(G) ®ce M to
dimpar(@) (N(G) ®ce M) by Theorem 8.29. O

Remark 10.27. The role of the ring-theoretic condition (R”) is to reduce
the problem from finitely presented modules to finitely generated projective
modules. Thus one can use K-theory of finitely generated projective modules.
The price to pay is that one has to enlarge CG to an appropriate ring S(G)
which is nicer than CG, namely, which is von Neumann regular. This will be
done by a localization process, namely, we will choose S(G) to be the division
closure of CG in U(G). This will be a minimal choice for S(G). Notice that
localization usually improves the properties of a ring and that in general CG
does not have nice ring theoretic properties. For instance CG is von Neumann
regular if and only if G is locally finite (see Example8.21). No counterexample
is known to the conjecture that CG is Noetherian if and only if G is virtually
poly-cyclic. The implications G virtually poly-cyclic = CG regular = CG
Noetherian are proved in [447, Theorem 8.2.2 and Theorem 8.2.20]. In order
to be able to treat dimensions, the algebra U(G) comes in, which in contrast
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to N(G) does contain S(G). The passage from N (G) to U(G) does not cause
any problems since the dimension theory of N (G) extends to a dimension
theory for U(G) and the change of rings map Ko(N(G)) — Ko(U(G)) is
bijective (see Theorem 8.29] and Theorem [9.20 (1))).

Lemma 10.28. Let S(G) be a ring with CG C S(G) C U(G).

(1) Suppose that S(G) is semisimple. Then there is an upper bound on the
orders of finite subgroups of G;

(2) Suppose that S(G) satisfies the conditions (R’) and (K’) of Lemma 10.26
and that there is an upper bound on the orders of finite subgroups of G.
Then S(G) is semisimple;

(3) Suppose that G is torsionfree. Then S(G) is a skew field if and only if
S(G) satisfies the conditions (R’) and (K’) of Lemmal10.26. In this case
we get for any CG-module M

dimN(G)(N(G) ®ca M) = dimu(g) (U(G) ®ce M)
= dimg(g) (S(G) Qca M)7

where dimg(q) (V) for an S(G)-module V' is defined to be n if V Zgg)
S(G)™ for a non-negative integer n and by oo otherwise.

Proof. (1) By Wedderburn’s Theorem the semisimple ring S(G) is a finite
product of matrix rings over skewfields. Since Ky is compatible with prod-
ucts and Ko(D) = Z for a skewfield D, the Morita isomorphism implies
that Ko(S(Q)) is a finitely generated free abelian group. Hence WI(GMZ
is finitely generated since it is contained in the image of the composition
dimyyy 0i: Ko(S(G)) — R. If a1, ag, ..., a, are generators for m%
we can find [ € Z such that [-a; € Zfori=1,2... 7. Hencel-Wl(G)lZ C Z.

Therefore [ is an upper bound on the orders of finite subgroups of G.

(2) Let I be the least common multiple of the orders of finite subgroups of
G. By condition (K’) the image of the composition

dimu(c)
R ——

Ko(8(G)) — KoU(G)) R

liesin 1-Z = {r € R | -7 € Z}. We want to show that for any chain of ideals
{0} =hchclhc...cl.= S(G) OfS(G) with I; 7é Ii+1 we have r <.
Then S(G) is Noetherian and hence is semisimple by Lemma 8.20 (2).
Choose x; € I; with x; ¢ I;_1 for 1 <i <r—1. Let J; be the ideal gener-
ated by x1, x2, ..., z; for 1 <i <r—1. Then we obtain a sequence of finitely
generated ideals of the same length {0} =Jy C J; C Jo C ... C J, = S(G)
of S(G) with J; # J;y1. Since U(G) is von Neumann regular, J;_; is a direct
summand in J; (see Lemma 8.18 (4)). Hence we get direct sum decomposi-
tions J; = J;—1 @ K; for i = 1,2, ..., r for finitely generated projective non-
trivial S(G)-modules K1, Ko, ..., K,. Choose an idempotent p; € M,,(S(G))



386 10. The Atiyah Conjecture

representing K;. Then p; considered as an element M, (U(G)) represents
U(G) ®s(e) K and is non-trivial. Hence U(G) ®@s(c) K; is a non-trivial
finitely generated projective U (G)-module. We conclude from Theorem [8.29
dimyye) (U(G) @u(sy Ki) >0 for i =1,2,...,7 and hence

0 < dimy ) (U(G) Bs(c) 1) < dimy () (U(G) @s(c) J2)
<... < dimu(G)(U(G) Xs(a) Jr—1) < L.

Since [ - dimy(q)(U(G) ®s(g) Ji) is an integer for i = 1,2,...,7 — 1, we get
r <.

(3) Suppose that S(G) satisfies conditions (R’) and (K’). By the argument
above S(G) is semisimple and contains no non-trivial ideal. Hence it is a skew
field. Recall that over a skew field S(G) any S(G)-module V is isomorphic
to @,c; S(G) for some index set I. Now apply Theorem 8.29. Any skewfield
satisfies the conditions (R’) and (K’). This finishes the proof of Lemma[10.28.

O

Example 10.29. Consider the free abelian group Z" of rank n. Let C[Z"]
be the quotient field of the commutative integral domain C[Z"]. By inspecting
Example8.11we see that C[Z"] C C[Z"]y) C U(Z"). By Lemmal10.28/(3)) the
quotient field C[Z"] satisfies the conditions of Lemma [10.26. This proves
the strong Atiyah Conjecture [10.2 for Z™ and that for any C[Z"]-module M

dimN(Zn)(./\/'(Z”) Qczn M) = dimC[Zn](O) ((C[Zn](o) Qczn] M)

holds. The reader should compare this with the explicit proof of Lemma [1.34]
which corresponds to the case of a finitely presented C[Z"]-module M.

Remark 10.30. Suppose that G is a torsionfree amenable group which
satisfies the Kaplansky Conjecture 10.14. We have already shown in Ex-
ample [8.16/ that set S of non-zero-divisors of CG satisfies the Ore condi-
tion (see Definition 8.14) and that the Ore localization S™!CG is a skew
field. Recall from Theorem [8.22 (1)) that U(G) is the Ore localization of
the von Neumann algebra N(G) with respect to the set of all non-zero-
divisors. A non-zero-divisor x of CG is still a non-zero-divisor when we
regard it as an element in A(G) by the following argument. Denote by
Y@ N(G) = N(G) and 16 CG — CG the maps given by right multi-
plication with z. The kernel of ri\/(G) is a finitely generated projective N'(G)-
module since N'(G) is semihereditary (see Theorem 6.5/ and Theorem 6.7 (1)).
We conclude dimN(G)(ker(ré\/(G)) = dimpr(q) (N (G) @ce ker(r9)) from the
dimension-flatness of N'(G) over CG for amenable G (see Theorem [6.37).
Since ker(ry) = {0}, Lemma 6.28 (3) implies that 29 has trivial kernel and
hence z is a non-zero-divisor in N'(G). We conclude CG C S7'C[G] C U(G).
Hence the strong Atiyah Conjecture [10.2 holds for G by Lemma [10.28 (3).
Notice that this gives a different proof of Lemma [10.16.
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Remark 10.31. We know already from Subsection [10.1.4' that the strong
Atiyah Conjecture [10.2 does not hold for arbitrary groups G. We think that
the extra condition that there is an upper bound on the order of finite sub-
groups of G is very important. Under this condition we see from Lemma 10.28
(2) that we can replace in Lemma [10.26] the condition (R’) that S(G) is von
Neumann regular by the stronger condition (R) that S(G) is semisimple. Ac-
tually, the proof of Linnell’s Theorem does only work if we use (R) instead
of (R?). O

10.2.2 Survey on Universal Localizations and Division and
Rational Closure

We give some basic facts about universal localization and division and ratio-
nal closure.

Let R be a ring and X be a set of homomorphisms between (left) R-
modules. A ring homomorphism f: R — S is called X-inverting if for every
map a: M — N € X the induced map S ®g a: SQ®r M — S ®r N is
an isomorphism. A Y-inverting ring homomorphism i: R — Ry is called
universal X -inverting if for any X-inverting ring homomorphism f: R — S
there is precisely one ring homomorphism fyx: Ry — S satisfying fxoi = f.
This generalizes Definition 813l If f: R — Ry and f': R — R, are two
universal Y-inverting homomorphisms, then by the universal property there
is precisely one isomorphism g: Ry — R with go f = f’. This shows
the uniqueness of the universal X-inverting homomorphism. The universal
Y-inverting ring homomorphism exists if X is a set of homomorphisms of
finitely generated projective modules [465], Section 4]. If X is a set of matrices,
a model for Ry is given by considering the free R-ring generated by the set
of symbols {@;; | A = (a;;) € X} and dividing out the relations given in
matrix form by AA = AA =1, where A stands for (@; ;) for A = (a; ;). The
map i: R — Ry does not need to be injective and the functor Ry ® g — does
not need to be exact in general.

Notation 10.32. Let S be a ring and R C S be a subring. Denote by T(R C
S) the set of all elements in R which become invertible in S. Denote by
Y (R C S) the set of all square matrices A over R which become invertible in

S.

A subring R C S is called division closed if T(R C S) = R™ i.e. any
element in R which is invertible in S is already invertible in R. It is called
rationally closed if ¥(R C S) = GL(R), i.e. any square matrix over R which
is invertible over S is already invertible over R. Notice that the intersection
of division closed subrings of S is again division closed, and analogously for
rationally closed subrings. Hence the following definition makes sense.

Definition 10.33 (Division and rational closure). Let S be a ring with
subring R C S. The division closure D(R C S) or rational closure R(R C S)
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respectively is the smallest subring of S which contains R and is division
closed or rationally closed respectively.

Obviously R C D(R C S) C R(R C S) C 5. One easily checks D(D(R C
S)cS)=DRcC S)and R(R(RC S) C S) =R(R C S). The rational
closure R(R C S) of R in S is the set of elements s € S for which there is
a square matrix A over S and a matrix B over R such that AB = BA =1
holds over S and s is an entry in A [118] section 7.1]. The easy proof of the
next two results is left to the reader (or see [435, Proposition 13.17]).

Lemma 10.34. Let S be a ring with subring R C S.

(1) If R is von Neumann regular, then R is division closed and rationally
closed in S;
(2) If D(R C S) is von Neumann reqular, then D(R C S) = R(R C S).

Lemma 10.35. Let S be a ring with subring R C S.

(1) The map ¢: Rp(rcs) — S given by the universal property factorizes as

¢: Rr(rcs) 2, DRCS)CS;
(2) Suppose that the pair (R, T(R C S)) satisfies the (right) Ore condition
(see Definition [8.14). Then

Rr(rcs) = RT(RC S)"' =D(RC ),

i.e. the map given by the universal property Rp(rcs) EX RT(RcC S)7 !
is an isomorphism, and ®: Ryprcsy — D(R C S) is an isomorphism;

(3) The map : Rxrcs) — S given by the universal property factorizes as
Y: Ry(rcs) L R(RC S)CS. The map ¥: Ry(rcs) — R(R C S) is
always surjective.

The map ¥: Ryrcs)y — R(R C S) is not always injective. (An example
will be given in the exercises.)

Lemma 10.36. Let R; C S; C S be subrings for i € I and R = |J;c; R
and S = J;c; Si directed unions of rings. Suppose that all rings S; are von
Neumann regular. Then S is von Neumann regular and we obtain directed
UNIONS

T(RcS)=|JT(R C Si);

el
S(RcCS)=JE(R: c S
el
D(RC S) = DR C Si);
el

R(RCS)=|JR(R; C S)).
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Proof. One easily checks that S satisfies Definition 8.17 of von Neumann
regular.

Suppose that x € R becomes invertible in S. Choose i € I with = € R;.
Obviously z is not a zero-divisor in S;. Since S; is von Neumann regular, x; is
invertible in S; by Lemma[8.20/ (1). This shows T(R C S) = ,;c; T(R; C S;).
The proof of X(R C S) = J;c; Z(R; C S;) is similar using the fact that
a matrix ring over a von Neumann ring is again von Neumann regular by
Lemma 8.19/ (I)).

Since S; is von Neumann regular, Lemma [10.34! (1) implies D(R; C S;) =
D(R; ¢ S) € D(R C S) and hence J;,c;D(R; C S;) C D(R C S).
Since J;c; D(R; C S;i) = U;e; D(R; C S) is division closed in S, we get
Uier D(R; € S;) = D(R C S). The proof for the rational closure is analo-
gous. O

10.2.3 The Strategy for the Proof of Linnell’s Theorem

We will outline the strategy of proof for Linnell’s Theorem [10.19.

Notation 10.37. Let G be a group. Define D(G) to be the division closure
D(CG C U(G)) and R(G) to be the rational closure R(CG C U(G)) of CG
in U(G) (see Definition [10.35). We abbreviate T(G) = T(CG C U(G)) and
Y(G) = X(CG Cc U(G)) (see Notation|10.32).

The ring D(G) will be our candidate for S(G) in Lemma [10.26. We con-
clude from Lemma [10.34 that any von Neumann regular ring S(G) with
CG C S(G) C U(G) satisfies D(G) C R(G) C S(G) and that D(G) = R(G)
holds if D(G) is von Neumann regular. Hence D(G) is a minimal choice for
S(G) in Lemma [10.26 and we should expect D(G) = R(G). In view of Re-
mark [10.31] we should also expect that D(G) is semisimple. The upshot of
this discussion is that, in order to prove Linnell’s Theorem [10.19, we will
prove the following

Theorem 10.38 (Strong version of Linnell’s Theorem). Let G be a
group in the class C (see Definition[10.18) such that there exists a bound on
the orders of finite subgroups. Then

(R) The ring D(G) is semisimple;
(K) The composition

colime reor(c,rzan Ko(CH) % Ko(CG) - Ko(D(G))

is surjective, where a is the assembly map appearing in the Isomorphism
Congjecture [9.40 for Ko(CG) and essentially given by the various inclu-
sions of the finite subgroups of G, and i is a change of rings homomor-
phism.
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Notice that we have replaced the condition (K’) appearing in Lemma
10.26 by the stronger condition (K) above. The stronger condition gives bet-
ter insight in what is happening and also yields a connection to the Isomor-
phism Conjecture [9.40/ for Ko(CG). Namely, the surjectivity of the change of
rings map Ko(CG) — Ko(D(G)) is equivalent to the condition (K) provided
that the Isomorphism Conjecture [9.40/ for Ko(CG) holds.

We will prove in the strong version of Linnell’s Theorem [10.38 a statement
which implies the strong Atiyah Conjecture [10.2 by Lemma [10.26] but which
in general contains more information than the strong Atiyah Conjecture[10.2.
At least for torsionfree groups G the statement turns out to be equivalent to
the strong Atiyah Conjecture [10.2/ by the next lemma.

Lemma 10.39. Let G be a torsionfree group. Then the strong Atiyah Conjec-
ture10.2 is true if and only if D(G) is a skewfield. In this case D(G) = R(G)
and the composition

colimoy (g, 7zar) Ko(CH) % Ko(CG) 5 Ko(D(G))

18 surjective.

Proof. Suppose that D(G) is a skewfield. Then D(G) = R(G) follows
from Lemma [10.34] (2)). Since any finitely generated module over a skew-
field is finitely generated free, the composition colimo, (g, rzar) Ko(CH) 4

Ko(CG) & Ko(D(Q)) is surjective. The strong Atiyah Conjecture 10.2 fol-
lows from Lemma [10.26.

Now suppose that the strong Atiyah Conjecture 10.2! holds. We want to
show that R(G) is a skewfield. It suffices to show for any element z € R(G)
with « # 0 that x is invertible in U(G), because then z is already invertible
in R(G) since R(G) is rationally closed in U (G). By Lemma[10.35/ (3) there is
y € CG x(g) which is mapped to = under the canonical ring homomorphism
V: CGxq) — R(G). Two square matrices A and B over a ring R are called
associated if there are invertible square matrices U and V and non-negative
integers m and n satisfying

A0 B 0
U(01m>v - (01n>'

For a set of matrices X' over R, the universal X-inverting homomorphism
f: R — Ry and s € Ry we can find a square matrix A over R such that
f(A) and s are associated in Ry. This follows from Cramer’s Rule (see [465)}
Theorem 4.3 on page 53]). If we apply this to y € CGx ) regarded as
(1,1)-matrix and push forward the result to R(G) by ¥, we obtain invertible
matrices U,V over R(G) and a matrix A over CG satisfying

z 0
U(OIm1>V = A.
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If we consider this over U(G), we conclude for the maps r, and r4 induced
by right multiplication with = and A

dimy(im(r, : U(G) — U(G))+m—1 = dimy ) (im(ra: U(G)™ — UG)™)).

Since by assumption the strong Atiyah Conjecture [10.2l holds, Theorem [8.29
and Lemma [10.7 imply that dimy(g) (im (ra: U(G)™ — U(G)™)) must be an
integer < m and hence dimy (ker(r,: U(G) — U(G))) € {0,1}. Since x is by
assumption non-trivial and U(G) is von Neumann regular by Theorem [8.22
(3), the kernel of r, is trivial by Lemma [8.18 and Theorem 18.29. Hence x
must be a unit by Lemma 8.20 (I). Hence R(G) is a skewfield. Since D(G)
is division closed and contained in the skewfield R(G), D(G) is a skewfield.
We conclude D(G) = R(G) from Lemma [10.34! (2). This finishes the proof of
Lemma [10.39. O

The rest of this chapter is devoted to the proof of the strong version
of Linnell’s Theorem [10.38. First of all we explain the underlying induction
technique.

Lemma 10.40 (Induction principle). Suppose that (P) is a property for
groups such that the following is true:

(1) (P) holds for any free group;
(2) Let1 - H— G — Q — 1 be an extension of groups such that (P) holds

for H and @ is virtually finitely generated abelian, then (P) holds for G.
(8) If (P) holds for any finitely generated subgroup of G, then (P ) holds for
G;

Then (P) holds for any group G in C.
If we replace condition (1) by the condition that (P) holds for the trivial
group, then (P) holds for any elementary amenable group G.

Proof. This follows from the following description of the class C and the class
EAM of elementary amenable groups respectively by transfinite induction in
[300, Lemma 3.1] and [309, Lemma 4.9]. Define for any ordinal « the class of
groups D, as follows. Put Dy to be the class consisting of virtually free groups
or of the trivial group respectively. If « is a successor ordinal, define D,, to be
the class of groups G which fit into an exact sequence 1l - H - G — @Q — 1
such that any finitely generated subgroup of H belongs to D,_; and @ is
either finite or infinite cyclic. If « is a limit ordinal, then D,, is the union of
the Dg over all 3 with # < a. Then C or EAM respectively is |, Da- O

Lemma 10.40/is the reason why it sometimes is easier to prove a property
(P) for all elementary amenable groups than for all amenable groups. We
conclude from Lemma [10.40.

Lemma 10.41 (Plan of proof). In order to prove the strong version of
Linnell’s Theorem [10.35 and hence Linnell’s Theorem [10.19 it suffices to
show that the following statements are true:
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(1) Any free group G has the property (R), i.e. D(G) is semisimple;

(2) If1 - H— G — Q — 1 is an extension of groups such that H has
property (R) and Q is finite, then G has property (R);

(3) If1 - H— G — Q — 1 is an extension of groups such that H has
property (R) and Q is infinite cyclic, then G has property (R);

(4) Any virtually free group G has property (K), i.e. the composition

colime rreor(c,7za) Ko(CH) % Ko(CG) 5 Ko(D(G))

18 surjective;

(5) Letl - H — G — @ — 1 be an extension of groups. Suppose that for any
group H', which contains H as subgroup of finite index, properties (K)
and (R) are true. Suppose that Q is virtually finitely generated abelian.
Then (K) holds for G;

(6) Suppose that G is the directed union of subgroups {G; | i € I} such that
each G; satisfies (K). Then G has property (K);

(7) Let G be a group such that there is an upper bound on the orders of finite
subgroups. Suppose that G is the directed union of subgroups {G; | i € I}
such that each G; satisfies both (K) and (R). Then G satisfies (R).

Proof. We call two groups G and G’ commensurable if there exists subgroups
Go C G and G, C G’ such that [G : Go] < 0o and [G’ : Gj] < oo holds and
Go and G, are isomorphic. In order to prove Lemma 10.41], it suffices to show
for any G € C the following property:

(P) If there is an upper bound on the orders of finite subgroups of G
and Gy is commensurable to G, then Gy satisfies (R) and (K).

This is done by proving the conditions in Lemma [10.40.

Since any group G which is commensurable with a free group is virtually
free, condition (1) of Lemma [10.40| follows from assumptions (1), (2) and (4)
in Lemma [10.41.

Let1 - H — G — @ — 1 be an extension such that @ is virtually finitely
generated abelian, H has property (P) and there is an upper bound on the
orders of finite subgroups of G. Let G be any group which is commensurable
to G. Then one easily constructs an extension 1 — Hy — Gy — Qg — 1 such
that Hy is commensurable to H and )y is commensurable to () and hence
virtually finitely generated abelian. Then Gy satisfies (K) by assumption (5)
of Lemma [10.41. Moreover one can find a filtration of Gy by a sequence of
normal subgroups Hy = G,, C G,—1 C ... C G1 C Gg such that G;/G;—1 =
Z for 1 <i<n-—1and Gy/G is finite. The group Gy has property (R) by
assumptions (2) and (3) of Lemma [10.41l Hence G has property (P). This
proves condition (2) of Lemma [10.40.

Finally we prove condition (3) of Lemma [10.40. Suppose that there is an
upper bound on the orders of finite subgroups of G. Any finitely generated
subgroup of Gy is commensurable to a finitely generated subgroup of G.
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Hence Gy has properties (K) and (R) by assumptions (6)) and (7)) of Lemma
10.41. Now Lemma [10.41! follows from Lemma [10.40. |

Remark 10.42. Notice that in the formulation of condition (P) in the proof
of Lemma [10.41 we have to build in the commensurable group Gy since we
cannot prove in general that a group G has property (K) if a subgroup
Go C G of finite index has property (K).

In the statements (5) and (7) of Lemma [10.41] we need both (K) and (R)
to get a conclusion for (K) or (R) alone. Therefore we cannot separate the
proof of (K) from the one of (R) and vice versa.

If we would replace (R) by (R') in Lemma [10.41), statement (7) remains
true if we omit the condition that there is an upper bound on the orders
of finite subgroups and that each G; satisfies (K). We only need that each
G, satisfies (R') to prove that G satisfies (R’). This looks promising. The
problem is that we cannot prove statements (3) and (5) for (R’) instead
of (R). Namely, the proofs rely heavily on the assumption that D(H) is
Noetherian (see Goldie’s Theorem [10.61] and Moody’s Induction Theorem
10.67). Notice that a von Neumann regular ring is semisimple if and only
if it is Noetherian (see Lemma [8.20! (2)). The counterexample to the strong
Atiyah Conjecture given by the lamplighter group L (see Subsection [10.1.4)
actually shows that at least one of the statements (3) and (5) applied to
1—-,c,2/2 — L — 7 — 0 is wrong, if we replace (R) by (R’).

We can replace condition (K) by (K’) in Lemma [10.41] getting a weaker
conclusion in the strong version of Linnell’s Theorem [10.38. This still gives
the strong Atiyah Conjecture and the proof of statement (4) simplifies con-
siderably. But we prefer the stronger condition (K) because we get a stronger
result in strong version of Linnell’s Theorem [10.38.

10.3 The Proof of Linnell’s Theorem

This section is devoted to the proof that the conditions appearing in Lemma
10.41] are satisfied. Recall that then the strong version of Linnell’s Theorem
10.38 and hence Linnell’s Theorem [10.19 follow.

10.3.1 The Proof of Atiyah’s Conjecture for Free Groups

In this subsection we prove

Lemma 10.43. The strong Atiyah Conjecture 10.2 holds for any free group
G, i.e. for any matrix A € M (m,n,CG) the von Neumann dimension of the
kernel of the induced bounded G-operator

Tf) : l2(G)m — lQ(G)", z— A

satisfies
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dimps(g) (ker (7“1(42): P(G)™ — lQ(G)”)> €Z.

The proof uses the notion of a Fredholm module and is designed along
the new conceptual proof of the Kadison Conjecture for the free group Fj
on two generators due to Connes [120, IV.5] (see also [166]). The Kadison
Conjecture says that there are no non-trivial idempotents in C}(G) for a
torsionfree group G. We begin with introducing Fredholm modules.

Let H be a Hilbert space. Given a Hilbert basis {b; | ¢ € I'} and f € B(H),
define tr(f) € Ctobe ), ;(f(bi), b;) if this sum converges. We say that f is of
trace class if tr(| f|) < oo holds for one (and then automatically for all) Hilbert
basis, where |f| is the positive part in the polar decomposition of f. (Notice
that this agrees with Definition [I.8 applied to |f| in the case G = {1}.) If f is
of trace class, then ), (f(b;),b;) converges and defines a number tr(f) € C
which is independent of the choice of Hilbert basis. We call f € B(H) compact
if the closure of the image of the unit disk {# € H | |z| < 1} is compact.
We call f € B(H) an operator of finite rank if the image of f is a finite
dimensional vector space. We denote by L(H), £}(H), and K(H) the (two-
sided) ideal in B(H) of operators of finite rank, of operators of trace class
and of compact operators. Denote by LP(H) = {f € B(H) | |f|P € L*(H)}
the Schatten ideal in B(H) for p € [1,00). Notice that LO(H) C LY(H) C
LY(H) c £9(H) Cc K(H) holds for 1 < q < ¢/. A x-algebra or algebra with
involution B is an algebra over C with an involution of rings *: B — B, which
is compatible with the C-multiplication in the sense *(\-b) = X-x(b) for A € C
and b € B. We call a #-homomorphism p: B — B(H) a B-representation. Here
we do not require that p sends 1 € B to idy € B(H).

Definition 10.44. Let B C A be an arbitrary x-closed subalgebra of the
C*-algebra A. For p € {0} U[1,00) a p-summable (A, B)-Fredholm module
consists of two A-representations py: A — B(H) such that py(a) — p—(a) €
LP(H) holds for each a € B.

We will later construct a O-summable Fredholm (A (G), CG)-module. The
next lemma follows using the equation

pr(ab) — p_(ab) = (@) (p1 () — p—(5)) + (p(a) — p(a))p—(b).

Lemma 10.45. Let py: A — B(H) be a p-summable (A, B)-Fredholm mod-
ule. Then

(1) For q € {0} U[1,00) the set A1 = {a € A| py(a)—p_(a) € LY(H)} is
a *-subalgebra of A. For ¢ < q' we have the inclusions A° c A' C A7 C
AT C A;
(2) The map
7 A' - C, awtr(py(a)) —tr(p_(a))

is linear and has the trace property T(ab) = 7(ba);
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(8) Tensoring p+ with the standard representation psy of My, (C) on C" yields
a p-summable (M, (A), M, (B))-Fredholm module. We have M, (AP) C
M, (A)P.

To show that certain numbers are integers, the key ingredient will be the
following lemma.

Lemma 10.46. Let p,q € B(H) be two projections with p—q € LY (H). Then
tr(p — q) is an integer.

Proof. The operator (p — ¢)? is a selfadjoint compact operator. We get a
decomposition of H into the finite dimensional eigenspaces of (p — q)? [434,
Theorem IV.16 on page 203]

H =ker((p — q)*) & @ E.
A#O

This decomposition is respected by both p and ¢ since both p and ¢ commute
with (p—q)?. Notice that ker(p—q) = ker((p—q)?). Next we compute the trace
of (p — q) with respect to a Hilbert basis which respects this decomposition

trlp—q) =Y u((p—als) = Y trlpls,) — trldls,)-

A#£0 A#£0

Each difference tr(p|g,) —tr(¢|g,) is an integer, namely, the difference of the
dimensions of finite dimensional vector spaces dim¢(p(Ey)) — dime(g(Ey)).
Since the sum of these integers converges to the real number tr(p — ¢), the
claim follows. O

Lemma 10.47. Let a,b € B(H) be elements with a —b € L°(H). Denote by
Pker(a) @1 Prer(v) the orthogonal projections onto their kernels. Then pyer(a) —

Pxer(b) € ‘CO(H)

Proof. One easily checks that pyer(q) and piers) agree on ker(a — b). Since
the orthogonal complement of ker(a — b) is finite dimensional because of
a—be LOH), we conclude Pker(a) — Pker(b) € LO(H). a

In order to construct the relevant Fredholm module, we need some basic
properties of the free group F5 in two generators s; and so. The associated
Cayley graph is a tree with obvious Fy-action. The action is free and transitive
on the set V of vertices. It is free on the set F of edges such that F»\ E' maps
bijectively to the set of generators {si, s2}. Hence we can choose bijections
of Fy-sets V = Fy and F = F, ][ Fo. We equip the Cayley graph with the
word-length metric. Then any to distinct points x and y on the Cayley graph
can be joined by a unique geodesic which will be denoted by x — y. On
x — y there is a unique initial edge init(x — y) on x — y starting at z. Fix
a base point xy € V. Define a map

f:V = E][{} (10.48)
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by sending x to init(z — xg) if  # z¢ and to * otherwise. Notice for x # xg
that ginit(z — x0) = init(gz — gxo) is different from init(gz — xo) if and
only if gz lies on gzrg — x¢. This implies

Lemma 10.49. The map f is bijective and almost equivariant in the follow-
ing sense: For a fived g € Fy there is only a finite number of vertices x # xg
with gf(z) # f(gx). The number of exceptions is equal to the distance from
To to gxg.

It is shown in [I141] that free groups are the only groups which admit maps
with properties similar to the one of f.

Let [?(V) and [?(E) be the Hilbert spaces with the sets V and E as Hilbert
basis. We obtain isomorphisms of C[Fy]-representations 1?(V) = [?(F,) and
12(V) 2 ?(Fy) @ [2(Fy) from the bijections V 2 F, and E = Fy [[ F, above.
Thus we can view [2(V) and [?(E) as N (F,)-representations. Denote by C the
trivial N (Fy)-representation for which az = 0 for all @ € N (F») and z € C.
Denote by pi: N(Fy) — B(12(V)) and by p: N(Fy) — B(I*(E) ® C) the
corresponding representations. The map f from (10.48)) induces an isometric
isomorphism of Hilbert spaces F: I2(V) = I12(E) @ C. Let p_: N(G) —
B(12(V)) be defined by p_(a) = F~o p(a)o F.

Lemma 10.50. (1) We have for a € N(F)

trn (@) = Y ((p(a) = p—(a))(@), 2);

zeV

(2) The representations py and p_ define a 0-summable (N (Fy), C[F5])-
Fredholm module;

(3) We get trar(r,)(A) = 7(A) for A€ My (N(F2))Y, if 72 Myp(N(Fo))' — R
is the map defined in Lemma |10.45 for the Fredholm module p+ ® pgt-

Proof. (1) We get for g € Fy and x € V with x # xg

((p+(9) — p—(9))(x0), T0) = trar(r,)(9);
((p+(9) = p-(9))(x),z) = 0.
By linearity we get the equations above for any a € C[F3]. Recall that N'(F3)
is the weak closure of C[F3] in B(I*(F3)). One easily checks that try(g,)(a)

and {p, (a) — p_(a))(x),z) are weakly continuous functionals on a € N (G)
for each x € E. This implies for a € N'(Fy) and 2 € V with = # o

((p4(a) = p—(a))(z0),w0) = trar(m,)(a);
(o (@) - p—(@))(@),2) = 0.
Now assertion (1) follows by summing over z € E.

(2) By Lemma [10.49 we have
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p+(9)(x) = gz = [ (gf(x)) = p-(9)(x)

for all x € V with a finite number of exceptions. Hence p4(g) — p—(g) has
finite rank for g € F». By linearity py(a)—p—(a) has finite rank for a € C[F3).

(3) This follows from (1)) and Lemma [10.45 (3]). O
Now we are ready to prove Lemma [10.43.

Proof. Since any finitely generated free group occurs as a subgroup in Fj
and any finitely generated subgroup of a free group is a finitely generated
free group, it suffices to prove the strong Atiyah Conjecture only for Fy by
Lemma [10.4. Since for any matrix B € M (m,n,C[F3]) the matrix BB* is
a square matrix over C[Fy| and ker (7’%21)3*) = ker (r?) holds, it suffices to

prove for each square matrix A € M, (C[F3])
dim(p,) (ker (rff): B(Fy)" — 12(F2)”)) e Z.

Consider the 0-summable (N (F3), CFy)-Fredholm module of Lemma [10.50
(2). By 0-summability we know C[Fy] C N'(F»)°. From Lemma 10.45/ (3) we
conclude M, (C[Fy]) C M, (N(F2)°) € M,(N(F))°. Hence py ® pst(A) —
p— ® pst(A) is a finite rank operator. We conclude from Lemma [10.47 that
Pler(ps @pst (A)) ~Per(p_@ps (A)) 18 Of finite rank. Since up to the summand C we

are dealing with sums of regular representations, we get p4 ® pst (pker(r@))) =
A

Pxer(ps ®psi(A)) and pP— @ Pst (pker(rf))) @ pcr = Pxer(p_®psi(A))» where bcr

is the projection onto the summand C". Hence Prex(r@) € M, (N(F))° C
A

M,, (N (Fs))!. Lemma 1