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Abstract. We show that a non-trivial finitely-generated residually-finite ra-
tionally-solvable (or RFRS) group G is virtually fibred, in the sense that it
admits a virtual surjection to Z with a finitely-generated kernel, if and only if
the first L2-Betti number ofG vanishes. This generalises (and gives a new proof
of) the analogous result of Ian Agol for fundamental groups of 3-manifolds.

1. Introduction

In 2013, Ian Agol [Ago13] completed the proof of Thurston’s Virtually Fibred
Conjecture, which states that every closed hyperbolic 3-manifold admits a finite
covering which fibres over the circle. The final step consisted of showing that the
fundamental group G of a hyperbolic 3-manifold has a finite index subgroup H

which embeds into a right-angled Artin group (a RAAG). Agol in [Ago08] showed
that in this case H is virtually residually-finite rationally-solvable (or RFRS ); the
same article contains the following result.

Theorem (Agol [Ago08]). Every compact irreducible orientable 3-manifold with

trivial Euler characteristic and non-trivial RFRS fundamental group admits a finite

covering which fibres.

Since closed hyperbolic 3-manifolds are irreducible and have vanishing Euler
characteristic, it follows that such manifolds are virtually fibred, that is, admit
fibring finite coverings.

Our focus here is the above result of Agol – morally, we will generalise this
theorem by removing the assumption of the group being the fundamental group of
a 3-manifold.

Theorem 5.3. Let G be an infinite finitely-generated group which is virtually

RFRS. Then G is virtually fibred, in the sense that it admits a finite-index subgroup

mapping onto Z with a finitely-generated kernel, if and only if �
(2)

1
(G) = 0.

Here, �(2)

1
(G) denotes the first L2-Betti number. The assumption on the vanis-

hing of �(2)

1
(G) is supposed to be thought of as the analogue of Agol’s insistence

on the vanishing of the Euler characteristic of the 3-manifold. Also, it is a natural
assumption here: the connection between fibring and the vanishing of the L

2-Betti
numbers was exhibited by Wolfgang Lück (see Theorem 2.27).

Let us remark that virtually-RFRS groups abound in nature: every subgroup of
a RAAG is virtually RFRS (as shown by Agol [Ago08, Corollary 2.3]), and so every
virtually-special group (in the sense of Wise) is virtually RFRS.

We show that Theorem 5.3 implies Agol’s result; in fact, we prove a slightly
stronger, uniform version, see Theorem 6.2 – the same uniform version can in fact
be deduced directly from Agol’s theorem, see [FV15, Corollary 5.2].
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2 DAWID KIELAK

The method. We start by observing that it follows from a result of Thomas
Schick [Sch02] that every RFRS group G satisfies the (strong) Atiyah conjecture
(over Q), since it is residually {torsion-free solvable}. The group G is also torsion-
free, and so Linnell’s theorem [Lin93] gives us a skew-field D(G) which contains
QG. Moreover, the D(G)-dimensions of H⇤(G;D(G)) coincide with the L

2-Betti

numbers, and so �
(2)

1
(G) = 0 if and only if H1(G;D(G)) = 0. Now the main

technical result of the current paper is Theorem 4.13, which says roughly that
D(G) is covered by the Novikov rings of finite index subgroups of G.

Which brings us to the Novikov rings, as defined by Sikorav [Sik87]: For every

homomorphism � : G ! R there exists the associated Novikov ring dQG
�

, which

contains the group ring QG. One should think of dQG
�

as a ‘completion’ of QG

with respect to the ‘point at infinity’ determined by � – more precisely, by the ray
{�� | � 2 (0,1)}. The key point for us here is the theorem of Sikorav [Sik87]
(originally proved for Z-coe�cients; we recast it in the setting of Q-coe�cients in
Theorem 3.11), which states that a character � : G ! Z is fibred, that is has a

finitely-generated kernel, if and only if H1(G;dQG
�

) = H1(G;dQG
��

) = 0.
At this point we have made a connection between the vanishing of the first

L
2-Betti number of G, equivalent to

H1(G;D(G)) = 0

and fibring of a finite index subgroup H of G, equivalent to

H1(H;dQH
± 

) = 0

and these two homologies are related by Theorem 4.13.

The one concept which we have not elucidated so far is that of RFRS groups.
The definition is somewhat technical (see Definition 4.1); the way RFRS groups
should be thought of for the purpose of this article is as follows: in a RFRS group
G, every finite subset of G can be separated in the abelianisation of some finite
index subgroup.

Passing to a finite index subgroup is well-understood in terms of group homology;
the significance of a finite subset S of G being separated in (the free part of) the
abelianisation G

fab lies in the following observation: if x 2 QG has support equal

to S, then x becomes invertible in dQG
�

for a ‘generic’ � : G ! R.
To summarise, here is a (rather rough) heuristic behind the proof of Theorem 5.3:

We investigate a chain complex C⇤ of free QG-modules computing the group ho-
mology of G. Since G is a finitely-generated group, the modules C1 and C0 are
finitely-generated modules. Since we only care about computing H1(G; ?), we mo-
dify C⇤ by removing Ci for i > 3 and replacing C2 by a finitely-generated module.
Now, to compute H1(G;D(G)) we can change the bases of C0, C1 and C2 over
D(G) and diagonalise the di↵erentials. Crucially, the change of basis matrices are
all finite, and hence by Theorem 4.13 we obtain the same change of basis matrices

in the Novikov ring dQH
 

of some finite index subgroup H of G, for fairly generic
 . This then implies the equivalence

H1(H;dQH
 

) = 0 , H1(G;D(G)) = 0

as desired.
We o↵er also a more general result, Theorem 5.2, showing the equivalence

of vanishing of higher L
2-Betti numbers and higher Novikov homology groups

Hi(H;dQH
�

).
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RFRS GROUPS AND VIRTUAL FIBRING 3

The tools. The main tools we use are the same as the ones used by the author in
[Kie]: twisted group rings, Linnell skew-field, Ore localisations, Malcev–Neumann
completions and the Novikov homology. The flavour of the article is therefore rather
ring-theoretic. All of the tools are discussed in detail in Section 2.

We have already discussed the Novikov homology; we also already met the skew-
field of Linnell. The Ore localisation is a very simple tool allowing one to form fields
of fractions from rings satisfying a suitable condition (known as the Ore condition).
The elements of an Ore localisation are fractions of ring elements.

The Malcev–Neumann completion creates a skew-field containing QG for groups
G which are biorderable – the biordering allows us to consistently choose a way of
building power series expansions for inverses of elements of QG, and thus we may
use infinite series instead of fractions.

And, last but not least, twisted group rings: the slogan is that group rings are
better behaved than groups with respect to short exact sequences. More specifically,
start with a short exact sequence of groups

H ! G ! Q

Choosing a section s : Q ! G allows us to write every element
P
�gg of QG as

X

q2Q

⇣X

h2H

�hs(q)h

⌘
s(q)

which clearly is an element of the group ring (QH)Q via the identification s(q) 7! q.
The caveat is that the ring multiplication in (QH)Q is chosen in such a way that
(QH)Q is isomorphic as a ring to QG. The multiplication is given explicitly in
Section 2.2; what is important here is that Q acts on QH by conjugation, and
multiplication in Q is given by the section s, and so there are correction terms
appearing due to the fact that s is not necessarily a homomorphism. The resulting
ring is a twisted group ring, which we will nevertheless denote by (QH)Q, since it
behaves in essentially the same way as an honest group ring. Also, twisted group
rings can be easily defined using other coe�cients than Q, which we will repeatedly
use in the article.

Acknowledgements. The author would like to thank: Peter Kropholler and Da-
niel Wise for helpful conversations; Stefan Friedl, Gerrit Herrmann, and Andrei
Jaikin-Zapirain for comments on the previous version of the article; the referee for
careful reading and the suggestion of both the statement and proof of Theorem 5.4;
the Mathematical Institute of the Polish Academy of Sciences (IMPAN) in Warsaw,
where some of this work was conducted.

The author was supported by the grant KI 1853/3-1 within the Priority Pro-
gramme 2026 ‘Geometry at Infinity’ of the German Science Foundation (DFG).

2. Preliminaries

2.1. Generalities about rings. Throughout the article, all rings are associative
and unital, and the multiplicative unit 1 is not allowed to coincide with the additive
unit 0 (this latter point has no bearing on the article; we state it out of principle).
Ring homomorphisms preserve the units. Also, we will use the natural convention
of denoting the non-negative integers by N.

Before proceeding, let us establish some notation for ring elements.

Definition 2.1. Let R be a ring. A zero-divisor is an element x such that xy = 0
or yx = 0 for some non-zero y 2 R.

An element x is invertible in R if and only if it admits both a right and a left
inverse (which then necessarily coincide).
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Definition 2.2 (Division closure). Let R be a subring of a ring S. We say that R
is division closed in S if and only if every element in R which is invertible in S is
already invertible in R.

The division closure of R is the smallest (with respect to inclusion) division-
closed subring of S containing R. It is immediate that the division closure of R
coincides with the intersection of all division closed subrings of S containing R.

2.2. Twisted group rings. In this section, let R be a ring and let G be a group.

Definition 2.3 (Support). Let R
G denote the set of functions G ! R. Since R

has the structure of an abelian group, pointwise addition turns RG into an abelian
group as well.

Given an element x 2 R
G, we will use both the function notation, that is we will

write x(g) 2 R for g 2 G, and the sum notation (standard in the context of group
rings), that is we will write

x =
X

g2G

x(g)g

When we use the sum notation, we do not insist on the sum being finite.
Given x 2 R

G, we define its support to be

suppx = {g 2 G | x(g) 6= 0}
We define RG to be the subgroup of R

G consisting of all elements of finite
support.

For every H 6 G, we identify R
H with R

G by declaring functions to be zero
outside on G r H. In particular, this implies that RH ✓ RG (in fact, it is an
abelian subgroup).

Throughout the paper, we will only make three identifications of sets; this was
the first one, the second one is discussed in Section 2.3, and the third one in the
proof of Proposition 2.20.

We will now endow RG with a multiplication, turning it into a ring.

Definition 2.4 (Twisted group ring). Let R⇥ denote the group of units of R. Let
⌫ : G ! Aut(R) and µ : G⇥G ! R

⇥ be two functions satisfying

⌫(g) � ⌫(g0) = c
�
µ(g, g0)

�
� ⌫(gg0)

µ(g, g0) · µ(gg0, g00) = ⌫(g)
�
µ(g0, g00)

�
· µ(g, g0g00)

where c : R⇥ ! Aut(R) takes r to the left conjugation by r. The functions ⌫ and
µ are the structure functions, and turn RG into a twisted group ring by setting

(?) rg · r0g0 = r⌫(g)(r0)µ(g, g0)gg0

and extending to sums by linearity (here we are using the sum notation).
When ⌫ and µ are trivial, we say that RG is untwisted (in this case we obtain

the usual group ring). We adopt the convention that a group ring with Z or Q
coe�cients is always untwisted.

We will suppress ⌫ from the notation, and instead write r
g for ⌫(g�1)(r).

Remark 2.5. When H 6 G is a subgroup, restricting the structure functions to,
respectively, H and H⇥H allows us to construct a twisted group ring RH. Observe
that, as abelian groups, RH 6 RG as H is a subset of G, and thus the structure
functions turn RH into a subring of RG.

It is also easy to see that when H 6 G, then RH is invariant under conjugation
by elements of G.

The key source of twisted group rings is the following construction.
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RFRS GROUPS AND VIRTUAL FIBRING 5

Proposition 2.6. Let Q be a quotient of G with associated kernel H. Let s : Q ! G

be a set-theoretic section of the quotient map. Let RG be a twisted group ring.

The structure functions ⌫ : Q ! Aut(RH) and µ : Q ⇥ Q ! (RH)⇥ given by,

respectively,

⌫(q) = c(s(q))

and

µ(q, p) = s(q)s(p)s(qp)�1

satisfy the requirements of Definition 2.4 and turn (RH)Q into a twisted group

ring.

Proof. We need to verify the two conditions of Definition 2.4. Firstly, for every
q, p 2 Q we have

⌫(q) � ⌫(p) = c
�
s(q)

�
� c
�
s(p)

�

= c
�
s(q)s(p)

�

= c
�
s(q)s(p)s(qp)�1

s(qp)
�

= c
�
µ(q, p)s(qp)

�

= c
�
µ(q, p)

�
� ⌫(qp)

Secondly, for every p, q, r 2 Q we have

µ(p, q) · µ(pq, r) = s(p)s(q)s(pq)�1 · s(pq)s(r)s(pqr)�1

= s(p)s(q)s(r)s(pqr)�1

= s(p)s(q)s(r) · s(qr)�1
s(p)�1 · s(p)s(qr) · s(pqr)�1

= s(p)s(q)s(r)s(qr)�1
s(p)�1 · µ(p, qr)

= c
�
s(p)

��
s(q)s(r) · s(qr)�1

�
· µ(p, qr)

= ⌫(p)
�
µ(q, r)

�
· µ(p, qr) ⇤

We will say that the twisted group ring (RH)Q is induced by the quotient map
G ! Q. Note that the ring structure of (RH)Q depends (a priori) on the section
s : Q ! G.

Remark 2.7. Throughout, all sections are set-theoretic sections, and for every
section s we always require s(1) = 1.

Definition 2.8. We extend the definition of s : Q ! G to

s : (RH)Q ! RG

by setting

s(
X

q2Q

xqq) =
X

q2Q

xqs(q)

where xq 2 RH for every q 2 Q.

Lemma 2.9. The map s is a ring isomorphism

s : (RH)Q
⇠=! RG

Proof. The map is injective since xqs(q) and xps(p) for p 6= q are supported on
distinct cosets of H in G. The map is surjective since the support of every x 2 RG

can easily be written as a disjoint union of finite subsets of these cosets.
The fact that the map is a ring homomorphism follows directly from the definition

of the twisted multiplication (?) in (RH)Q. ⇤
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The definition of the twisted group ring structure on (RH)Q depends on the
choice of s. But the above result shows that for two di↵erent sections, the twisted
group rings (RH)Q are isomorphic, and the isomorphism restricts to the identity
on the coe�cients RH.

2.3. Ore condition.

Definition 2.10. Let R be a ring, and let T denote the set of its elements which
are not zero-divisors. We say that R satisfies the Ore condition if and only if for
every r 2 R and s 2 T there exist p, p0 2 R and q, q

0 2 T such that

qr = ps and rq
0 = sp

0

We call R an Ore domain if and only if T = R r {0} and R satisfies the Ore
condition.

It is a classical fact that every ring satisfying the Ore condition embeds into its
Ore localisation Ore(R). Elements of such an Ore localisation are expressions of
the form r/s (right fractions) where r 2 R and s 2 T ; formally, they are equiva-
lence classes of pairs (r, s), with the equivalence relation given by multiplying both
elements on the right by a non-zero-divisor.

Equivalently, the Ore localisation consists of left fractions s\r, and the Ore con-
dition allows one to pass from one description to the other. This is needed in order
to define multiplication in Ore(R). A detailed discussion of the Ore localisation is
given in Passman’s book [Pas85, Section 4.4].

Since the map r 7! r/1 is an embedding, we will identify R with its image in
Ore(R). This is the second identification of sets, to which we alluded in Section 2.2.

When R is an Ore domain, Ore(R) is a skew-field, sometimes called the (clas-

sical) skew-field of fractions of R. It is immediate that if F is a skew-field, then
F = Ore(F), as every fraction r/s is equal to rs

�1.

Let us state a useful (and immediate) fact about Ore(R).

Proposition 2.11. Let R and S be rings satisfying the Ore condition. Let

⇢ : R ! S

be a ring homomorphism, and suppose that non-zero-divisors in R are taken by ⇢

to non-zero-divisors in S. Then

Ore(⇢) : Ore(R) ! Ore(S)

r/s 7! ⇢(r)/⇢(s)

is an injective ring homomorphism (which clearly extends ⇢).

We are interested in Ore localisations for the following reason.

Theorem 2.12 (Tamari [Tam57]). Let RG be a twisted group ring of an amenable

group G. If RG is a domain, then it satisfies the Ore condition, and hence Ore(RG)
is a skew-field.

In fact, Tamari’s theorem admits a partial converse: if QG is an Ore domain
then G is amenable; see the appendix of [Bar19].

2.4. Atiyah conjecture. Let G be a countable group.

Definition 2.13. The von Neumann algebra N (G) of G is defined to be the algebra
of bounded G-equivariant operators on L

2(G).
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RFRS GROUPS AND VIRTUAL FIBRING 7

Above, we view the operators as acting on the left, and the G action is the action
on the right. Observe that a bounded (that is, continuous) G-equivariant operator
⇣ on L

2(G) is uniquely determined by ⇣(1) 2 L
2(G). This allows us to view N (G)

as a subset of L2(G), which in turn is a subset of CG. We will adopt this point of
view, since it is convenient for us to work in CG.

The group ring QG acts on L
2(G) on the left by bounded operators, commuting

with the right G-action. Thus, we have a map QG ! N (G). This map is easily
seen to be injective. With the point of view adopted above we can in fact say much
more: this map is the identity map QG 6 QG

< CG. Thus, we have QG being an
actual subset of N (G).

We need the von Neumann algebra only to define Linnell’s ring D(G) (which
we shall do in a moment), and so readers not familiar with von Neumann algebras
should not feel discouraged.

Theorem 2.14 ([Lüc02, Theorem 8.22(1)]). The von Neumann algebra N (G) sa-
tisfies the Ore condition.

Note that N (G) is extremely far from being a domain.

Definition 2.15 (Linnell ring). Let G be a group. We define D(G) (the Linnell

ring) to be the division closure of QG inside Ore(N (G)).

It is important to note that left multiplication by x for x 2 QG endows D(G)
with a QG-module structure.

It is also important to observe that in Lück’s book, D(G) denotes the division
closure of CG rather than QG; this is a minor point, as all the desired properties
are satisfied by our D(G) as well.

Definition 2.16 (Atiyah conjecture). We say that a torsion-free group G satisfies
the Atiyah conjecture if and only if D(G) is a skew-field.

Remark 2.17. This is not the usual definition of the Atiyah conjecture; it is however
equivalent to the (strong) Atiyah conjecture (over Q) for torsion-free groups by a
theorem of Linnell [Lin93].

The Atiyah conjecture has been established for many classes of torsion-free
groups. Crucially for us, it is known for residually {torsion-free solvable} groups
by a result of Schick [Sch02]. It is also known for virtually {cocompact special}
groups [Sch14] and locally-indicable groups [JZLÁ], as well as for large classes of
groups with strong inheritance properties.

Lemma 2.18. Suppose that G is a torsion-free group satisfying the Atiyah conjec-

ture. Every sub-skew-field K of D(G) containing QG is equal to D(G).

Proof. Every non-zero element in K is invertible in K, and therefore K is division
closed in Ore(N (G)). Also, K contains QG. But D(G) is the intersection of all
such rings, and hence D(G) = K. ⇤

We will now discuss the behaviour of D(G) under passing to subgroups of G.

Proposition 2.19 ([Lüc02, Lemma 10.4]). Every subgroup of a group satisfying

the Atiyah conjecture also satisfies the Atiyah conjecture.

Proposition 2.20. Let G be a group with a subgroup H. The Linnell ring D(H)
is a subring of D(G). Moreover, if H is a normal subgroup then D(H) is invariant
under conjugation by elements of G.

Sketch proof. Since the mathematical content of this proposition is standard (see
for example [Kie, Proposition 4.6] or [Lüc02, Section 10.2]), we o↵er only a sketch
proof.
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Take ⇣ 2 N (H). We will now make ⇣ act on L
2(G). To this end, let P be a set of

coset representatives of H in G. Note that L2(G) is equal to the set of L2 functions
in C

S
p2P

Hp =
Q

p2P
CHp, and hence is a subset of

Q
p2P

L
2(Hp). We let ⇣ act on

each L
2(Hp) by x 7! ⇣(xp�1)p. It is immediate that the resulting action of ⇣ onQ

p2P
L
2(Hp) preserves L2(G); it is equally clear that the action is continuous and

G-equivariant. This procedure produces a ring homomorphism N (H) ! N (G),
which we denote ⇣ 7! ⇣

0.
Recall that we are viewing N (H) and N (G) as subsets of CH and CG, respecti-

vely. Since we have ⇣(1) = ⇣
0(1) by construction, the map ⇣ 7! ⇣

0 is actually a
restriction of the identity map CH 6 CG. Therefore, we have N (H) 6 N (G).

Now an easy argument (using the decomposition of G into cosets of H) shows
that non-zero-divisors ofN (H) are still non-zero-divisors inN (G). Proposition 2.11
tells us that the identity map id induces an injective map

Ore(id) : Ore(N (H)) ! Ore(N (H))

Formally speaking, since Ore localisation consist of equivalence classes, we are not
allowed to say that Ore(N (H)) is a subset of Ore(N (H)). We never view elements of
Ore localisations as equivalence classes however – we view them always as fractions
r/s, and such expressions in Ore(N (H)) are also valid expressions in Ore(N (G)).
We will therefore identify (for the third and final time) the set Ore(N (H)) with
the corresponding subset of Ore(N (G)). It is now easy to see that we also have
D(H) 6 D(G).

Now suppose that H is a normal subgroup, and let g 2 G. Conjugation gives us
an action of g on CG, and this action clearly preserves CH . It is immediate that it
also preserves N (H) and QH, and hence has to preserve D(H). ⇤

We will now concentrate on the situation in which H is a normal subgroup of G.

Remark 2.21. The above proposition immediately implies that if H is the kernel
of an epimorphism G ! Q, we may form a twisted group ring D(H)Q, where the
structural functions are precisely as in Proposition 2.6. We will say that D(H)Q is
induced by G ! Q.

In practice, we will be interested in two cases: Q will be either finite or free-
abelian. Let us first focus on the case of Q being finite.

Lemma 2.22. If Q is finite, and G is torsion free and satisfies the Atiyah conjec-

ture, then the natural map D(H)Q ! D(G) given by

X

q2Q

�qq 7!
X

q2Q

�qs(q)

is a ring isomorphism.

The statement above can be proven completely analogously to [Lüc02, Lemma
10.59]. Note that Lück is only assuming D(G) to be semisimple, whereas we are
working under a stronger assumption of D(G) (and hence also D(H)) being skew-
fields.

As before, we will refer to the isomorphism D(H)Q ! D(G) above simply as s.

Now we move to the case of Q being free abelian.

Proposition 2.23. Suppose that G is finitely generated, torsion free, and satisfies

the Atiyah conjecture. Let s↵ denote a section of an epimorphism ↵ : G ! Q onto

a free-abelian group; let K = ker↵. The twisted group ring D(K)Q satisfies the

Ore condition, and the map

s↵ : D(K)Q ! D(G)

27 Aug 2019 14:36:44 EDT
Version 3 - Submitted to J. Amer. Math. Soc.



RFRS GROUPS AND VIRTUAL FIBRING 9

is injective and induces an isomorphism

Ore(s↵) : Ore
�
D(K)Q

� ⇠= D(G)

Sketch proof. The proof is completely analogous to that of [Lüc02, Lemma 10.69],
and hence we only o↵er an outline here.

First we note that, as before, our D(G) is not the same as Lück’s, but it exhibits
the same properties. Lück starts with a short exact sequence with G in the middle,
and the quotient being virtually finitely-generated abelian. We are looking at a
short exact sequence

K ! G ! Q

where the quotient is finitely generated and free abelian, and so certainly satisfies
the assumptions of [Lüc02, Lemma 10.69]. The lemma also requires D(K) to be
semi-simple, but in our case we have the stronger assumption that D(K) is a skew-
field, sinceK is torsion-free and satisfies the Atiyah conjecture. Lück concludes that
the Ore localisation of D(K)Q exists and is isomorphic to D(G); the isomorphism
produced coincides with our Ore(s↵). ⇤

2.5. L
2
-homology.

Definition 2.24 (L2-Betti numbers). Let G be a torsion-free group satisfying
the Atiyah conjecture. Let C⇤ be a chain complex of free left QG-modules. The

n
th

L
2
-Betti number of C⇤, denoted �

(2)

n (C⇤), is defined to be the dimension of
Hn(D(G)⌦QGC⇤) viewed as a (left) D(G)-module. Note that there is no ambiguity
here, since dimensions of modules over skew-fields (which are essentially vector
spaces) are well-defined.

We say that C⇤ is L2-acyclic if and only if �(2)

n (C⇤) = 0 for every n.

Similarly, we define the n
th

L
2
-Betti number of G, denoted �

(2)

n (G), to be the
dimension of Hn(G;D(G)) viewed as a D(G)-module; we say that G is L

2-acyclic

if and only if �(2)

n (G) = 0 for every n.

Remark 2.25. Again, this is not the usual definition of L2-Betti numbers. In the
above setting it coincides with the usual definition by [Lüc02, Lemma 10.28(3)].

The following is a version of a celebrated theorem of Lück [Lüc02, Theorem 1.39]
(it is stated here in a slightly reworded fashion).

Theorem 2.26 ([Lüc02, Theorem 7.2(5)]). Let

1 ! H ! G ! K ! 1

be an exact sequence of groups such that �
(2)

p (H) is finite for all p 6 d. Suppose

that K is infinite amenable or suppose that BK has finite d-skeleton and there is

an injective endomorphism K ! K whose image is proper and of finite index in

K. Then �
(2)

p (G) = 0 for every p 6 d.

Restricting the above to the situation we will be interested in gives the following.

Theorem 2.27. If H is a finitely-generated group, and if

1 ! H ! G ! Z ! 1

is an exact sequence of groups, then �
(2)

1
(G) = 0.

Proof. We need only observe that Z is an infinite amenable group, that being finitely
generated implies finiteness of the zeroth and first L2-Betti numbers. ⇤
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2.6. Biorderable groups.

Definition 2.28. A biordering of a group G is a total order 6 on G such that for
every a, b, c 2 G we have

a 6 b ) ac 6 bc and a 6 b ) ca 6 cb

A group G is biorderable if and only if it admits a biordering.

Definition 2.29 (Malcev–Neumann skew-field). Let 6 denote a biordering of a
group G. Let R be a ring, and let RG be a twisted group ring. The set

F6(RG) = {x : G ! R | suppx is 6-well ordered}
becomes a skew-field when endowed with the twisted convolution (?) – see [Mal48,
Neu49]. We call it theMalcev–Neumann skew-field of RG with respect to6. (Recall
that a totally ordered set is well-ordered if and only if every non-empty subset
thereof admits a unique minimum.)

3. Novikov rings

3.1. Novikov rings.

Definition 3.1 (Novikov rings). Let RG be a twisted group ring, and let

� 2 H
1(G;R) = Hom(G;R)

(we will say that � is a character). We set

dRG
�

=
n
x : G ! R

���
�� suppx \ ��1((1,])

�� < 1 for every  2 R
o

The set dRG
�

is turned into a ring using the twisted convolution formula (?). We
will call it the Novikov ring of RG with respect to �.

Definition 3.2. Let (�1,1] = R t {1} be endowed with the obvious total
ordering and an abelian monoid structure given by addition (with the obvious
convention that x+1 = 1 for every x 2 (�1,1]).

Let � 2 H
1(G;R) be given. We extend the definition of � : G ! R to

� : dRG
�

! (�1,1]

by setting

�(x) =

⇢
min�

�
supp(x)

�
if x 6= 0

1 if x = 0

In particular, this also defines � : RG 6 dRG
�

! (�1,1].

Remark 3.3. Let (xi)i be a sequence of elements of dRG
�

with (�(xi))i converging
to 1. It is easy to see that the partial sums

NX

i=0

xi

converge pointwise as functions G ! R, and hence one can easily define their limit
P1

i=0
xi 2 dRG

�

.

Lemma 3.4. Let RG be a twisted group ring, and let � 2 H
1(G;R) be a character.

For every x, y 2 dRG
�

we have

(1) �(x+ y) > min{�(x),�(y)};
(2) �(xy) > �(x) + �(y);
(3) �(xy) = �(x) + �(y) if RG has no zero-divisors.
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Proof. (1) This follows immediately from the definition of � : dRG
�

! (�1,1]
and the fact that supp(x+ y) ✓ supp(x) [ supp(y).

(2) Let a 2 supp(x) and b 2 supp(y) be such that

�(x) = �(a) and �(y) = �(b)

For every a
0 2 supp(x) and b

0 2 supp(y) we have

�(a0) > �(a) and �(b0) > �(b)

Now, every c 2 supp(xy) can be written as a product c = a
0
b
0 of some a

0

and b
0 as above. Thus

�(xy) > min
a0,b0

�(a0b0) = min
a0,b0

�
�(a0) + �(b0)

�
= �(a) + �(b) = �(x) + �(y)

(3) If RG has no zero-divisors, we know that ab 2 supp(xy), and so

�(xy) = �(a) + �(b) = �(x) + �(y) ⇤
Remark 3.5. It follows immediately from (3) above, that if RG has no zero-divisors,
then � : RGr {0} ! R is a monoid homomorphism.

Definition 3.6 (Free abelianisation). Let G be a group. Let Gfab denote the image
of G inH1(G;Q) (under the natural homomorphism). When G is finitely generated,
G

fab is simply the free part of the abelianisation of G, that is abelianisation of G
divided by the torsion part. We define ↵ : G ! G

fab to be the natural epimorphism.
We will refer to ↵ as the free abelianisation map.

Remark 3.7. Clearly, every character in H
1(G;R) yields a character G

fab ! R in
the obvious way. Conversely, every character in H

1(Gfab;R) yields a character in
H

1(G;R). Thus we will not di↵erentiate between such characters, and use the same
symbol to denote both.

Proposition 3.8. Let G be a group, and let � 2 H
1(G;R). Choose a section

s↵ : Gfab ! G, and recall that this choice gives (QK)Gfab
the structure of a twisted

group ring, where K = ker↵. The ring isomorphism s↵ : (QK)Gfab ! QG extends

to a ring isomorphism

\(QK)Gfab
� ⇠= dQG

�

Proof. We define ◆ : QK
G

fab

! QG by setting ◆(x)(g) = x(↵(g))(gs↵(↵(g))�1) for
every x : Gfab ! QK. Let us unravel this definition: we take ↵(g), an element of
the the group G

fab, and evaluate x on it. This yields an element of QK, which is
formally a subset of QK , the set of functions from K to Q. Thus, it makes sense
to evaluate x(↵(g)) on elements in K = ker↵, and gs↵(↵(g))�1 is such an element.
After this last evaluation we obtain an element of Q, as desired.

When restricted to (QK)Gfab, the map ◆ coincides with the map s↵ (which is an
isomorphism by Lemma 2.9): this is easy to verify, but cumbersome to write down,
so we omit it here.

We claim that ◆( \(QK)Gfab
�

) lies within dQG
�

. Indeed, take x 2 \(QK)Gfab
�

. By
definition, for every  2 R the set suppx \ ��1((�1,]) ✓ G

fab is finite.
Observe that for a 2 G

fab we have

supp ◆(x) \ ↵�1(a) = {g 2 G | ↵(g) = a and x(a)(gs↵(↵(g))
�1) 6= 0}

Since for every a 2 G
fab the function x(a) 2 QK has finite support in K, we have

| supp ◆(x) \ ↵�1(a)| < 1
for every a 2 G

fab. Therefore supp ◆(x) \ ��1((1,]) ✓ G is finite, as it is a finite

union of finite sets. This shows that ◆(x) 2 dQG
�

, as claimed.
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There is an obvious inverse to ◆ defined on dQG
�

, namely x 2 dQG
�

being
mapped to x

0 : Gfab ! QK given by x
0(a)(k) = x(ks(a)). It is immediate that

x
0 2 \(QK)Gfab

�

. We now verify that this map is an inverse to ◆:

◆(x0)(g) = x
0�
↵(g)

��
gs↵(↵(g))

�1
�
= x

�
gs↵(↵(g))

�1
s↵(↵(g))

�
= x(g)

and

◆(x)0(a)(k) = ◆(x)(ks↵(a)) = x(↵(ks↵(a))
�
ks↵(a)s↵(↵(ks↵(a)))

�1
�
= x(a)(k) ⇤

Again, we will denote the isomorphism \(QK)Gfab
� ⇠=! dQG

�

by s↵.

3.2. BNS invariants and Sikorav’s theorem. Let G be a finitely-generated
group, and letX denote the Cayley graph ofG with respect to some finite generating
set T . Recall that G is the vertex set of X, and each edge comes with an orientation
and a label from T .

Definition 3.9. A character � 2 H
1(G;R) r {0} lies in the Bieri–Neumann–

Strebel (or BNS ) invariant ⌃(G) if and only if the full subgraph of X spanned by
{g 2 G | �(g) > 0} is connected.

The invariant ⌃(G) does not depend on the choice of a finite generating set –
this can easily be proven directly, but it will also follows from Sikorav’s theorem
below.

The significance of BNS invariants for us lies in the following result.

Theorem 3.10 (Bieri–Neumann–Strebel [BNS87, Theorem B1]). Let G be a finite-

ly-generated group, and let � : G ! Z be non-trivial. Then ker� is finitely generated

if and only if {�,��} ✓ ⌃(G).

In [Sik87] Sikorav gave a way of computing ⌃(G) using the Novikov rings. He

used the rings dZG
�

, whereas we have to work with dQG
�

. For this reason we will
prove Sikorav’s theorem in our setting (the proof is identical).

Theorem 3.11 (Sikorav’s theorem). Let G be a finitely-generated group, and let

� 2 H
1(G;R)r {0}. The following are equivalent:

(1) � 2 ⌃(G);

(2) H1(G;dZG
�

) = 0;

(3) H1(G;dQG
�

) = 0.

Proof. Let us start with some general setup: Since � 6= 0, there exists a generator
s 2 T with �(s) 6= 0. Without loss of generality we may assume that �(s) > 0.

Let
C1 ! C0

denote the cellular chain complex of X with coe�cients in Z. It is immediate that
C1 and C0 are finitely generated free ZG-modules. In fact, C0 is 1-dimensional,
and we can append the chain complex on the right with the augmentation map
ZG ! Z. We obtain

C1 ! C0 ! Z
and it is immediate that this complex is exact at C0. We append the complex
again, this time on the left by adding a free ZG-module C2 in such a way that

C2 ! C1 ! C0 ! Z
is exact at C1 and C0. We denote the above chain complex by C⇤. The di↵erentials
will be denoted by @.
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We pick cellular bases for the free modules C0 and C1. For C0 the basis we pick
is the singleton {1} – recall that group elements are the vertices of X. For C1 the
basis is the collection of oriented edges emanating from 1. We will denote the basis
element corresponding to an edge labelled t 2 T by et.

Setting the value of � on the basis elements of C1 to zero gives as a map
� : C1 ! (�1,1]. Specifically, we have �(g.et) = �(g), which assigns a value
to every edge in X.

It is clear that {et | t 2 T} forms a basis ofdZG
�

⌦ZGC1, and we may view chains

in dZG
�

⌦ZG C1 as functions from the edge set E of X to Z.
(1) ) (2) In this part of the proof we adopt the convention that tensoring without
specified ring is always over ZG.

Since �(s) 6= 0, the element 1 � s is invertible in dZG
�

with inverse
P

i2N s
i.

Therefore the space of 1-cycles in dZG
�

⌦ C⇤ is spanned by

e
0
t
= et � (1� t)(1� s)�1

es

with t 2 T r {s}. In fact it is easy to see that these elements form a basis of

the space of 1-cycles. We will now define a dZG
�

-linear map c from the 1-cycles to
dZG

�

⌦ C2 by specifying its value on every basis element e0
t
.

Take t 2 T r {s}. Since �(s) > 0, there exists n 2 N such that �(tsn) > �(s)
and �(sn) > �(s). We are assuming that � 2 ⌃(G), and the definition tells us that
we may connect s�1

ts
n to s

�1
s
n in X by a path which goes only through vertices

g with �(g) > 0. This implies that the path traverses only edges whose � value is
non-negative.

We now act (on the left) by s, and conclude that the existence of a 1-chain p (sup-
ported on the image of the path we just constructed) with boundary @p = ts

n�s
n,

and such that � evaluated at the edges in the support of p is always positive. Since
C⇤ is exact at C1, there exists ct 2 C2 such that

(‡‡) @ct = et + t

n�1X

i=0

s
i
es � p�

n�1X

i=0

s
i
es

since the right-hand side is a cycle – it is supported on a cycle in X composed of the
edge corresponding to et, the path underlying p, and two segments, one connecting
1 to s

n and the other connecting t to ts
n. We define c(e0

t
) = ct.

Now @ � c(e0
t
) = @ct, which we have already computed. Since @ct is a cycle, we

can write it using the basis {e0
t
| t 2 T r {s}} – this is done by forgetting es in (‡‡),

and replacing et by e
0
t
. We obtain

@ct = e
0
t
�

X

r2Tr{s}

�re
0
r

where �r 2dZG
�

is such that �(�r) > 0 for every r – this follows from the properties
of p. Writing @ � c as a matrix, with respect to the basis {e0

t
| t 2 T r {s}}, we

obtain

I�M

where � takes every entry of M to (0,1). This matrix is invertible over dZG
�

with
inverse

P
i2N M

i (compare Remark 3.3), and therefore @ � c is an epimorphism.
Hence the di↵erential

@ : dZG
�

⌦ C2 !dZG
�

⌦ C1

is onto the cycles, and thus H1(dZG
�

⌦ C⇤) = 0, as claimed.
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(2) ) (3) This is immediate since dQG
�

= dQG
�

⌦cZG�
dZG

�

, and tensoring is right-
exact.

(3) ) (1) We start by replacing C⇤ by Q⌦Z C⇤; in order not to make the notation
too cumbersome, we will continue to use C⇤. Also, in this part, unspecified tensor
products are taken over QG.

We are assuming that

0 = H1(G;dQG
�

) = H1(dQG
�

⌦ C⇤)

Take g, h 2 G with �(g),�(h) > 0. We need to show that there exists a path in X

going only through vertices x 2 G with �(x) > 0 connecting g to h.
Since X is connected, there exists a path p in X connecting g to h. We take p

to be geodesic. Recall that �(s) > 0. Consider the function ⇠ : E ! Q which is the
characteristic function of the set of edges of p (taking orientations into account)
and the edges of the infinite rays r1 and r2 emanating from g and h and using only
edges with label s (and only positively orientated).

The function ⇠ clearly lies in dQG
�

⌦ C1; by construction, it is actually a cycle

there. Since H1(dQG
�

⌦C⇤) = 0, there exists an element x 2 dQG
�

⌦C2 with @x = ⇠.

Since C2 and dQG
�

⌦ C2 are free modules, there exists a finite-dimensional free
submodule C

0
2
6 C2 such that

x 2 dQG
�

⌦ C
0
2

The module C
0
2
has a finite basis; the boundary of each of the basis elements is a

chain in C1. The chosen basis for C 0
2
gives also a basis for dQG

�

⌦C
0
2
, and so we may

write x = (x1, . . . , xm) for some m 2 N with xi 2 dQG
�

. By taking the restriction
of each xi : G ! Q to suitable finite subset of G we form elements x

0
i
2 QG such

that
�
�
@(xi � x

0
i
)
�
> 0

for every i. Let x
0 = (x0

1
, . . . , x

0
m
) 2 C

0
2
6 C2. By construction, the support of

@(x� x
0) contains only edges whose value under � is positive. Now

⇠ = @x = @(x� x
0) + @x

0

and so ⇠ � @x
0 is a cycle in dQG

�

⌦C1 supported only on edges of positive �-value.
Note that @(x0) has finite support, and the rays r1 and r2 are both infinite.

Thus, ⇠ � @x
0 contains in its support some edges of r1 and r2. Since ⇠ � @x

0 is a
cycle, there exists a path in supp(⇠�@x0), say q, connecting some endpoints, say x1

and x2, of these edges. Now a path starting at g, following r1 up to the vertex x1

(without loss of generality), then following q, and then following the ray r2 against
its orientation to h, is as desired. ⇤
3.3. Linnell’s skew-field and Novikov rings. Suppose that we have a finitely-
generated group G which is torsion free and satisfies the Atiyah conjecture. We have
already discussed that, in this case, QG embeds into Linnell’s skew-field D(G). We
pick a character � : G ! R. We also pick a section s↵ of the free abelianisation map
↵, and let K = ker↵. Recall that we will also treat � as a character � : Gfab ! R.

The key point of this section is to find a skew-field (depending on a character

�) that will simultaneously house dQG
�

and D(G). We will use it to define a set

of good elements of D(G), which we will call representable in dQG
�

, by taking the

intersection of D(G) and dQG
�

in the larger object. To achieve this goal, we need to
study a multitude of injective maps between objects we have previously constructed.
These are summarised in Figure 3.12, which is a commutative diagram.
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QG� _

✏✏

� �
// D(G) � v

i6

vv

(QK)Gfab �
�

//

3 S
s↵

⇠=
ee

� _

✏✏

D(K)Gfab �
�

//

)
 

s↵

66

� _

✏✏

 t

id6
''

Ore(D(K)Gfab)
� ?

Ore(s↵)⇠=

OO

� _

Ore(id6)

✏✏

dQG
�

v�

j�

55

\(QK)Gfab
�

? _

s↵

⇠=
oo

� �
//

\D(K)Gfab
�
� �

id6
// F6(G)

Figure 3.12. A commutative diagram of the various embeddings

In the diagram, we see three maps labelled s↵. These are all induced by the
set-theoretic section s↵ : Gfab ! G in a way we had made explicit previously.

All the unlabelled maps are various identity maps.
We pick a biordering 6 on the finitely-generated free-abelian group G

fab which
is compatible with �, in the sense that � : Gfab ! R is an order-preserving ho-
momorphism. Let F6(G) denote the Malcev–Neumann skew-field F6(D(K)Gfab)

associated to 6. By definition, F6(G) is a subset of D(K)G
fab

. The ring \D(K)Gfab
�

is another such subset, and in fact we have

\D(K)Gfab
�

✓ F6(G)

since � is order preserving; we will denote the inclusion map by id6. This map
is located in the bottom-right part of Figure 3.12. Note that id6 does not in fact
depend on 6. We are adding the subscript for clarity. We define

j� = id6 � id �s↵�1 : dQG
�

! F6(G)

Composing

id6 � id : D(K)Gfab ! F6(G)

gives us an inclusion which we will also call id6; again, id6 does not depend
on 6. Now Ore(id6) : Ore(D(K)Gfab) ! F6(G) denotes the map induced by
id6 : D(K)Gfab ! F6(G), as in Proposition 2.11; this last map is injective, as it is
a non-trivial ring homomorphism from a skew-field. We define

i6 = Ore(id6) �Ore(s↵)
�1 : D(G) ! F6(G)

Note that Ore(id6) and i6 are the only maps in Figure 3.12 which depend on the
choice of 6.

This completes the description of the embeddings visible in Figure 3.12.

Definition 3.13 (Representable elements). We say that an element x 2 D(G) is

representable in dQG
�

if and only if we have i6(x) 2 j�(dQG
�

) for every biordering
6 compatible with �.

Lemma 3.14. Let x 2 D(G) be representable in dQG
�

. If 6 and 60
are biorderings

on G
fab

compatible with �, then

i6(x) = i60(x)

Proof. Recall that x = s↵(p)s↵(q)�1 with p, q 2 D(K)Gfab and q 6= 0.
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Now,

i6(x) = Ore(id6)Ore(s↵)
�1(s↵(p)s↵(q)

�1)

= Ore(id6)(p/q)

= id6(p) id6(q)�1

and similarly for 60. Since x is representable, both i6(x) and i60(x) are elements

of the ring \D(K)Gfab
�

(which is a subset of D(K)G
fab

). But we also know that

id6(p) = id60(p) = id(p) 2 \D(K)Gfab
�

and

id6(q) = id60(q) = id(q) 2 \D(K)Gfab
�

and thus
�
i6(x)� i60(x)

�
id(q) = id6(p) id6(q)�1 id6(q)� id60(p) id60(q)�1 id60(q)

= id6(p)� id60(p)

= 0

But the ring \D(K)Gfab
�

embeds in a skew-field (via id6), and hence it does not
admit zero-divisors. Since q 6= 0, we conclude that

i6(x) = i60(x) ⇤

In view of the above, we will denote by ◆�(x) 2 dQG
�

the unique element such
that for any (hence every) suitable 6 we have

j�

�
◆�(x)

�
= i6(x)

We think of ◆� as a map taking representable elements in D(G) to their representa-

tives in dQG
�

. It is easy to see that representable elements form a subring of D(G),
and ◆� is a ring homomorphism.

Definition 3.15 (D(G,S)). For S ✓ H
1(G;R) we define D(G,S) to be the subset

of D(G) consisting of elements representable over dQG
�

for every � 2 S.
When S = {�}, we will write D(G,�) for D(G, {�}).

Remark 3.16. It is clear that D(G,S) is a subring of D(G), as it is an intersection
of subrings.

Lemma 3.17. Let S, S
0 ✓ H

1(G;R) be two subsets with S
0 ✓ S. Then

D(G,S) 6 D(G,S
0)

is a subring.

Proof. This follows immediately from the definitions. ⇤

Since we are working with Novikov rings, it is essential for us to be able to
evaluate � at elements in the various rings appearing in Figure 3.12. On all rings
but the ones in the right-most column of Figure 3.12 we already know how to
evaluate �, since all these rings are group rings or Novikov rings of G or Gfab. We
will now focus on the right-most column.

Definition 3.18. Let � : G ! R be a character, and let p, q 2 D(K)Gfab be given,
with q 6= 0. We have already defined �(p) 2 (�1,1] and �(q) 2 R. We now set

�(p/q) = �(p)� �(q)
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It is immediate that �(pr/qr) = �(p/q) for r 6= 0, and hence this formula defines
the evaluation � : Ore (D(K)Gfab) ! (�1,1].

Since Ore(s↵) is an isomorphism, we define � : D(G) ! (�1,1] by

�(s↵(p)s↵(q)
�1) = �(p/q) = �(p)� �(q)

Finally, let x 2 F6(G). If x = 0 we set �(x) = 1 as usual. Now suppose that

x 6= 0. By definition, x 2 D(K)G
fab

, and suppx is well-ordered. In particular,
suppx has a unique 6-minimum, say a. We set �(x) = �(a).

We can now add all the di↵erent evaluation maps called � to Figure 3.12. We
claim that in doing so, we produce another commutative diagram – in other words,
the various evaluations defined above coincide.

The claim is trivial to verify everywhere, except for the maps

id6 : \D(K)Gfab
�

! F6(G)

and

Ore(id6) : Ore(D(K)Gfab) ! F6(G)

For the former map, take x 2 \D(K)Gfab
�

; we may assume that x 6= 0. By
definition, �(x) = �(a) where a 2 suppx is an element minimising �. But, since 6
is �-compatible, we may take a to be the 6-minimum of suppx.

For the latter map, take p, q 2 D(K)Gfab r {0}. Let

a = min
6

supp p

and

b = min
6

supp q

Arguing as above, we see that

�(p/q) = �(p)� �(q) = �(a)� �(b)

On the other hand, the construction of F6(G) tells us that

min
6

supp id6(q)�1 = b
�1

and so

�
�
Ore(id6)(p/q)

�
= �

�
min
6

supp(id6 p id6(q)�1)
�
= �(ab�1) = �(a)� �(b)

and we are done.

Remark 3.19. It follows immediately from the Ore condition and Remark 3.5 (no-
ting that D(K)Gfab has no zero-divisors, as it embeds in a skew-field F6(G)) that
� is now a well-defined group homomorphism D(G)r {0} ! R.

It is also immediate that for x 2 D(G) the mapH
1(G;R) ! R given by � 7! �(x)

is continuous.

3.4. Groups with finite quotients. Let G be a finitely-generated torsion-free
group satisfying the Atiyah conjecture (so D(G) is a skew-field). Let Q be a finite
quotient of G with the corresponding kernel H. We fix a section s : Q ! G of the
quotient map. As always, we have s(1) = 1.

We will also use ↵H : H ! H
fab to denote the free abelianisation map of H, and

we pick a section s↵H
of this map.

Definition 3.20. For every  2 H
1(H;R) we define  q : H ! R to be the character

given by  q(x) =  (s(q)xs(q)�1).
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Note that the notation  q is reasonable, since

( q)p(x) =  
q
�
s(p)xs(p)�1

�

=  
�
s(q)s(p)xs(p)�1

s(q)�1
�

=  (µ(q, p)s(qp)xs(qp)�1
µ(q, p)�1)

=  
qp(x)

since µ(q, p) 2 H and therefore conjugating the argument by µ(q, p) does not alter
the value under  .

Note that conjugation by elements s(q) with q 2 Q induces an outer action of Q
on H. But an outer action descends to an action of Q on H

1(H;R).
Let S ✓ H

1(H;R) be a subset invariant under the action of Q. Recall that
we have a twisted group ring D(H)Q induced by the quotient G ! Q. Since S

is Q-invariant, it is immediate that the action of Q on D(H) preserves D(H,S).

Indeed, take x 2 D(H,S) and  2 S. By definition, we have ◆ (x) 2 dQH
 

. In
particular, ◆ (x) is an element of QH . Take q 2 Q. The element s(q)�1

◆ (x)s(q) is
clearly still an element of QH , since H is normal in G. It is immediate that in fact

s(q)�1
◆ (x)s(q) 2 dQH

 
q

, and  q 2 S since S is Q-invariant.
Now that we know that D(H,S) is Q-invariant, the structure functions of D(H)Q

give us a twisted group ring structure for D(H,S)Q.
Interestingly, if S is not necessary Q-invariant, the abelian group D(H,S)Q

whose elements are formal sums of elements in Q with coe�cients in D(H,S), and
the addition is pointwise, forms a right D(H,S

0)Q-module, where S
0 =

T
q2Q

S
q.

The right action of D(H,S
0)Q on D(H,S)Q is induced by the following rule

xqq · ypp = xqyp
q
�1

µ(q, p)qp

where q, p 2 Q, xp 2 D(H,S) and yp 2 D(H,S
0), and where we treat

yp
q
�1

2 D(H,S
0)

as an element in D(H,S), and the multiplication xpyp
q
�1

is carried out in D(H,S).
Similarly, we endow the abelian group F6(H)Q, consisting of formal sums of

elements in Q with coe�cients in F6(H), with the structure of a right D(H)Q
module: the right action is induced by almost the same rule as above, that is,

xqq · ypp = xqi6(ypq
�1

)µ(q, p)qp

where now xq is an element of F6(H), and yp
q
�1 2 D(H) is sent to an element of

F6(H) by the map i6 = Ore(id6)Ore(s↵H
)�1 (compare Figure 3.12).

Definition 3.21 (Value and defect). Let  2 H
1(H;R) be a character. For

x 2 D(H)Q we write x =
P

q2Q
xqq with xq 2 D(H). We define the Q-value

of  at x to be

 Q(x) = min
p,q2Q

�
 
p(xq) +

1

|Q| (s(q)
|Q|)
 
2 (�1,1]

For a character  2 H
1(H;R) we define its Q-defect

| |Q = max
p,q2Q

��� Q

�
s(p)s(q)s(pq)�1

�
�  Q(p)�  Q(q) +  Q(pq)

��� 2 [0,1)

(note that s(p)s(q)s(pq)�1 2 H ✓ D(H)).

In order not to overload notation, we will not di↵erentiate between characters in
H

1(G;R) and their restriction to H in H
1(H;R).
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Lemma 3.22. For every � 2 H
1(G;R), q 2 Q, and x 2 D(H)Q, we have �

q = �,

|�|Q = 0, and �Q(x) = �(s(x)).

Proof. Let x =
P

q2Q
xqq with xq 2 D(H). Note that x1 is an arbitrary element of

D(H). If x1 = 0 then

�
q(x1) = �(s(q)x1s(q)

�1) = �(0) = �(x1)

If x1 6= 0 then again

�
q(x1) = �(s(q)x1s(q)

�1) = �(x1)

since � a homomorphism from D(G)r {0} to an abelian group.
We also have

�Q(x) = min
p,q2Q

�
�
p(xq) +

1

|Q|�(s(q)
|Q|)
 
= min

q

�(xqs(q)) = �(s(x))

Finally, we have

|�|Q = max
p,q2Q

����Q
�
s(p)s(q)s(pq)�1

�
� �Q(p)� �Q(q) + �Q(pq)

��� = max
p,q2Q

|�(1)| = 0

which completes the proof ⇤
Let us now investigate the key properties of the Q-value map

 Q : D(H)Q ! (�1,1]

Lemma 3.23. Let  2 H
1(H;R), x, y 2 D(H), q 2 Q, w, z 2 D(H)Q be given.

All of the following hold:

(1)  Q(xq
�1

) =  Q(x);
(2)  Q(xq) =  Q(q · x) =  Q(q) +  Q(x);
(3)  Q(xy) >  Q(x) +  Q(y);
(4)  Q(x+ y) > min{ Q(x), Q(y)};
(5)  Q(z + w) > min{ Q(z), Q(w)};
(6)  Q(zw) >  Q(z) +  Q(w)� | |Q.

Proof. (1) We have

 Q(x
q
�1

) =  Q

�
s(q)xs(q)�1

�

= min
p2Q

 
pq

�1�
s(q)xs(q)�1

�

= min
p

 
�
s(pq�1)s(q)xs(q)�1

s(pq�1)�1
�

= min
p

 
�
s(pq�1)s(q)s(p)�1

s(p)xs(p)�1
s(p)s(q)�1

s(pq�1)�1
�

(†)
= min

p

 
�
s(p)xs(p)�1

�

= min
p

 
p(x)

=  Q(x)

where (†) follows from the fact that s(pq�1)s(q)s(p) 2 H ✓ D(H)r{0} and
that  restricted to D(H) r {0} is a homomorphism with abelian image,
and so is stable on conjugacy classes.

(2) By definition,

 Q(xq) = min
p

�
 
p(x)

 
+

1

|Q| 
�
s(q)|Q|� =  Q(x) +  Q(q)

Also,

 Q(q · x) =  Q(x
q
�1

q) =  Q(x
q
�1

) +  Q(q)
(1)

=  Q(x) +  Q(q)
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(3) We have

 Q(xy) = min
p

 
p(xy)

(‡)
= min

p

�
 
p(x) +  

p(y)
�

> min
p

 
p(x) + min

p

 
p(y)

=  Q(x) +  Q(y)

where (‡) follows from Remark 3.19.
(4) The Ore condition tells us that we may write x = s�(x0)s�(d)�1 and

y = s�(y0)s�(d)�1 for x0
, y

0
, d 2 D(K)Gfab. Thus we have

 Q(x+ y) = min
p

 
p(x+ y)

= min
p

{ p(x0 + y
0)�  

p(d)}

(††)
> min

p

min{ p(x0)�  
p(d), p(y0)�  

p(d)}

= min
p

min{ p(x), p(y)}

= min{ p(x), p(y) | p 2 Q}
= min{min

p

 
p(x),min

p

 
p(y)}

= min{ Q(x), Q(y)}

where (††) follows from Lemma 3.4(1).
(5) We write z =

P
p
zpp and w =

P
p
wpp with zp, wp 2 D(H). Now,  Q(z+w)

is defined as the minimum over p 2 Q of

 Q

�
(zp + wp)p

� (2)

=  Q(zp + wp) +  Q(p)

(4)

> min{ Q(zp), Q(wp)}+  Q(p)

(2)

= min{ Q(zpp), Q(wpp)}

> min{ Q(z), Q(w)}

(6) Again, we write z =
P

p
zpp and w =

P
p
wpp. Now, for every p, p

0 2 Q we
have

 Q(zpp · wp0p
0) =  Q(zpwp0

p
�1

s(p)s(p0)s(pp0)�1
pp

0)

(2)

=  Q(zpwp0
p
�1

s(p)s(p0)s(pp0)�1) +  Q(pp
0)

Observe that s(p)s(p0)s(pp0)�1 2 H and hence we may continue:

 Q(zpp · wp0p
0)

(3)

>  Q(zp) +  Q(wp0
p
�1

) +  Q

�
s(p)s(p0)s(pp0)�1

�
+  Q(pp

0)

>  Q(zp) +  Q(wp0
p
�1

)� | |Q +  Q(p) +  Q(p
0)

(1)

=  Q(zp) +  Q(wp0)� | |Q +  Q(p) +  Q(p
0)

(2)

=  Q(zpp) +  Q(wp0p
0)� | |Q

There exists p00 2 Q such that

 Q(zw) =  Q

� X

pp0=p00

zpp · wp0p
0�
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since  Q(zw) is defined as a minimum of such terms. Now we have

 Q

⇣ X

pp0=p00

zpp · wp0p
0
⌘ (5)

> min
pp0=p00

 Q(zpp · wp0p
0)

> min
pp0=p00

�
 Q(zpp) +  Q(wp0p

0)� | |Q
�

= min
pp0=p00

�
 Q(zpp) +  Q(wp0p

0)
�
� | |Q

> min
p

 Q(zpp) + min
p

 Q(wpp)� | |Q

=  Q(z) +  Q(w)� | |Q ⇤
We are now ready for the key lemma which will allow us to construct inverses

for elements in D(H,S)Q.

Definition 3.24. For every  2 H
1(H;R) we set  Q = { q | q 2 Q}.

Lemma 3.25. Let  2 H
1(H;R). Let x, y 2 D(H, 

Q)Q be given. Suppose that x

is invertible in D(H, 
Q)Q with inverse x

�1
. Suppose further that we have

 Q(y) +  Q(x
�1)� 2| |Q > 0

Then the inverse of s(x+ y) in D(G) exists and lies in s(D(H, )Q).

Proof. Note that the map s : D(H)Q ! D(G) is an isomorphism by Lemma 2.22.
We start by remarking that x + y 6= 0, as otherwise we would have (using

Lemma 3.23(6))

 Q(y) +  Q(x
�1) =  Q(�x) +  Q(x

�1) 6  Q(�1) + | |Q = | |Q
which would contradict the assumed inequality. Therefore s(x+ y) is invertible in
D(G), with inverse s(z) where z =

P
q2Q

zqq with zq 2 D(H). Our goal is to show

that in fact every zq is representable in dQH
 

.

We have
 Q(x

�1
y) >  Q(y) +  Q(x

�1)� | |Q > | |Q
by Lemma 3.23(6) and by assumption. Let us quantify this inequality: there exists
✏ > 0 such that

 Q(x
�1

y) > | |Q + ✏

Now repeated application of Lemma 3.23(6) tells us that for every i > 0 we have

 Q

�
(�x

�1
y)i
�
=  Q

�
(x�1

y)i
�
> | |Q + i✏

As (�x
�1

y)i 2 D(H)Q, we may write (�x
�1

y)i =
P

q2Q
wi,qq with wi,q 2 D(H).

Now

i✏ 6  Q

�
(�x

�1
y)i
�
= min

p,q2Q

{ p(wi,q) +
1

|Q| (s(q)
|Q|)} 6  (wi,q) +

1

|Q| (s(q)
|Q|)

for every q 2 Q. Since Q is finite and  is fixed, this implies that the sequence
( (wi,q))i converges to 1 for every q 2 Q. Since x

�1
y 2 D(H, 

Q)Q, we have

◆ (wi,q) 2 dQH
 

which together with the previous observation yields the convergence of the series

X

q2Q

 1X

i=0

◆ (wi,q)

!
q

in dQH
 

Q (compare Remark 3.3); we denote the limit by z
0. (We will show later

that z0 is the element representing zx in dQH
 

Q.)
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Let us pick a biordering 6 on H
fab compatible with  . By definition, we have

j (z
0) 2 F6(H)Q

(this is a slight abuse of notation, as j is really defined as a map dQH
 

! F6(H);
here we extend it by the identity on Q; we will similarly abuse notation for i6).

We have already observed that F6(H)Q is a right D(H)Q-module. We claim
that in the module F6(H)Q we have

j (z
0) · (1 + x

�1
y) = 1

Indeed, this can be seen by taking the partial sums

j 

0

@
X

q2Q

 
mX

i=0

◆ (wi,q)

!
q

1

A =
X

q2Q

 
mX

i=0

i6(wi,q)

!
q = i6

 
mX

i=0

(�x
�1

y)i
!

and multiplying them by 1+ x
�1

y on the right. Observing that the module action
happens via the map i6, we obtain

i6

 
mX

i=0

(�x
�1

y)i
!

· (1 + x
�1

y) = i6

 
mX

i=0

(�x
�1

y)i(1 + x
�1

y)

!

= i6
�
1� (�x

�1
y)m+1

�

= 1� i6
�
(�x

�1
y)m+1

�

= 1� i6

0

@
X

q2Q

wm+1,qq

1

A

We have already shown that  
⇣P

q2Q
wm+1,qq

⌘
tends to 1 with m, and hence

lim
m�!1

◆ 

0

@
X

q2Q

wm+1,qq

1

A = 0

Therefore we also have

lim
m�!1

j ◆ 

0

@
X

q2Q

wm+1,qq

1

A = 0

But j ◆ = i6 and so

j (z
0) · (1 + x

�1
y) = lim

m�!1
i6

 
mX

i=0

�
�x

�1
y
�i
!

· (1 + x
�1

y)

= 1� lim
m�!1

i6

0

@
X

q2Q

wm+1,qq

1

A

= 1

as claimed.

Recall that we have z 2 D(H)Q which is an inverse of x+y in D(H)Q. We have
also

i6(zx) · (1 + x
�1

y) = i6
�
z(x+ y)

�
= 1

We conclude that
�
j (z0)� i6(zx)

�
· (1 + x

�1
y) = 0. But then

j (z
0)� i6(zx) =

�
j (z

0)� i6(zx)
�
·
�
(1 + x

�1
y) · zx

�
= 0
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and so i6(zx) 2 im(j ). But this is the precise meaning of zx being representable in

dQH
 

Q. Since x�1 2 D(H, 
Q)Q, we conclude that z is representable in dQH

 

Q. ⇤

4. RFRS

4.1. Generalities.

Definition 4.1 (RFRS). A group G is called residually-finite rationally-solvable or
RFRS if and only if there exists a sequence (Hi)i2N of finite index normal subgroups
Hi 6 G with H0 = G such that

• Hi+1 6 Hi (that is, (Hi)i is a chain), and
•
T

Hi = {1} (that is, (Hi)i is a residual chain), and
• ker↵i 6 Hi+1 for every i, where ↵i : Hi ! Hi

fab is the free abelianisation
map.

The sequence (Hi)i is called a witnessing chain, and it always comes equipped with
set-theoretic sections si : Qi = G/Hi ! G of the quotient maps �i : G ! Qi such
that si(1) = 1.

Proposition 4.2. Every RFRS group G is torsion-free and satisfies the Atiyah

conjecture.

Proof. We will show that G is residually {torsion-free solvable}. This will su�ce, as
residually torsion-free groups are themselves torsion free, and residually {torsion-
free solvable} groups satisfy the Atiyah conjecture by [Sch02, Proposition 1 and
Theorem 1].

Let us now proceed with the proof. Set Ki = ker↵i 6 Hi. Since Ki 6 Hi, it
is immediate that

T
Ki = {1}. We have Ki 6 Hi+1 by the definition of RFRS.

Further, we have Ki+1 6 Ki since Ki+1 is the intersection of the kernels of all ho-
momorphisms Hi+1 ! Q, and every homomorphism Hi ! Q restricts to a homo-
morphism Hi+1 ! Q. The group Ki/Ki+1 is torsion-free abelian since Hi+1/Ki+1

is. Therefore (Ki)i2N is a residual chain witnessing the fact that G is residually
{torsion-free solvable}. ⇤
4.2. Linnell’s skew-field of finitely-generated RFRS groups. Let G be a
finitely-generated RFRS group with witnessing chain (Hi)i2N and finite quotients
�i : G ! Qi with kernels Hi and sections si : Qi ! G.

Note that H
1(Hi;R) = Hom(Hi,R) is naturally a subspace of H1(Hj ;R) for

every j > i.

Definition 4.3 (Rich and very rich subsets). A character  2 H
1(Hn;R) is ir-

rational if and only if it is injective on Hn
fab. Note that characters irrational in

H
1(Hn;R) are not necessarily irrational in H

1(Hn+1;R).
Let L = {L�m, . . . , L�1} denote a finite chain of linear subspaces of H1(G;R)

with L�m < · · · < L�1. We endow each Li with a fixed dense subset; we will
refer to the characters in this subset as irrational. The dense subsets of irrational
characters of the subspaces Li are part of the structure of L.

Suppose that L is fixed (it might be empty). For notational convenience we set
Li = H

1(Hi;R) for i > 0. A subset of Li (for i > �m) is very rich if and only if it
is open and contains all irrational characters in Li.

Now we define a notion of a rich set inductively: a subset of L�m is rich if and
only if it is very rich. For i > �m, a subset U of Li is rich if and only if U

� \Li�1

is rich in Li�1, where U
�
denotes the interior of the closure of U , all taken in Li.

Clearly, every very rich subset is also rich.
Note that both notions of richness are relative to the chosen witnessing chain of

G, and the chain L. The witnessing chain is fixed throughout; we also fix L.
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The reason for introducing L will became apparent in Remark 4.8. Note that we
do not require the fixed dense sets inside of L�i to satisfy any additional properties
– these dense sets will be coming from the intrinsic notion of irrationality in linear
subspaces ofH1(G;R), and they are in general not the intersections of the subspaces
L�i with the irrational characters in H

1(G;R).
Lemma 4.4. The intersection of two (and hence finitely many) rich subsets of

Li is rich. Thus, every rich subset of H
1(Hi;R) contains a rich subset which is

Qi-invariant.

Proof. Clearly the intersection of two very rich sets is itself very rich. Thus the
statement holds for i = �m. We now proceed by induction: Let V and V

0 be two
open subsets of Li such that V

� \ Li�1 and V 0� \ Li�1 are rich. By the inductive
hypothesis, V

� \V 0� \Li�1 is also rich. It is an easy exercise in point-set topology
to show that for open sets V, V 0 we have

V
� \ V 0� = V \ V 0�

This finishes the proof of the first part of the statement.
The second part of the statement follows by intersecting all rich sets in a Qi-orbit

of a given rich set. ⇤
Lemma 4.5. Let U and V be two open subsets of Li such that the intersections of

U and V with the set of irrational characters of Li coincide. If U is rich, then so

is V .

Proof. Since U is open and the set of irrational characters is dense, the closure U

is equal to the closure of the intersection of the two. Hence U = V , and the result
follows. ⇤
Lemma 4.6. Suppose that L = ;. If U is a rich subset of H

1(Hn;R), then its

closure in H
1(Hn;R) contains H

1(G;R).
Proof. The proof is an induction on n. When n = 0 the set U is in fact very rich,
and hence is dense in H

1(G;R).
Now suppose that U is an open subset of H1(Hn;R) such that U

�\H
1(Hn�1;R)

is rich. The inductive hypothesis tells us that H
1(G;R) lies in the closure of

U
� \ H

1(Hn�1;R) taken in H
1(Hn�1;R). But this closure is clearly contained

in U
�
taken in H

1(Hn;R), and obviously U
� ✓ U . ⇤

Definition 4.7 (K(G,L)). An element x 2 D(G) is well representable with asso-

ciated integer n and associated rich sets {Ui | i > n} if and only if for every i > n

the set Ui is rich in H
1(Hi;R) and x 2 si(D(Hi, Ui)Qi).

We denote the set of all well-representable elements in D(G) by K(G,L). We
write K(G) = K(G, ;).
Remark 4.8. Every Hn is itself a RFRS group with witnessing chain (Hi)i>n. Since
we have D(Hn) 6 D(G), it is immediate that every element in K(Hn,L) is auto-
matically an element of K(G,L) when L is a chain of subspaces of H1(G;R), since
we may use the same associated integer and the same associated rich sets.

Conversely, every element x 2 K(G,L) \D(Hn) lies in K(Hn,L0), where

L0 = L [ {H1(Hj ;R) | 0 6 j < n}
(and where the dense subset of irrationals in every H

1(Hj ;R) is the obvious one)

since it is immediate that when we write x = si

⇣P
q2Qi

xqq

⌘
with xq 2 D(Hi, U)

for i > n and some rich set U , we have xq = 0 for every q 62 �i(Hn) (formally, this
follows from the fact that si : D(Hi)Qi ! D(G) is an isomorphism, as shown in
Lemma 2.22).
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The above remark is the reason why we introduced L: otherwise, we could not
pass from K(G) \D(H1) to K(H1).

Lemma 4.9. For every L, the subset K(G,L) is a subring of D(G) containing QG.

Proof. Take x, y 2 K(G,L), and let n denote the maximum of their associated
integers.

By Lemma 4.4, for every i > n there exists a Qi-invariant rich set Ui such that

x, y 2 si

�
D(Hi, Ui)Qi

�

Since D(Hi, Ui)Qi is a ring, we have x + y, x · y 2 D(Hi, Ui)Qi, and hence x + y

and x · y are both well representable. This shows that K(G,L) is a ring.
Every element in QG is well representable with associated integer 0 and associ-

ated (very) rich sets Ui = H
1(Hi;R). ⇤

Lemma 4.10. Let x 2 K(G,L) r {0}, and let A be a finite indexing set. Sup-

pose that for every a 2 A we are given an element xa 2 K(G,L) r {0} with an

inverse x
�1
a

2 K(G,L). Let U be a rich subset of H
1(G;R). If for every irrational

� 2 H
1(G;R) which lies in U there exists a 2 A with

�(xa) = �(x) < �(x� xa)

then x is invertible in K(G,L).

Proof. Take j 2 N. Recall that sj : D(Hj)Qj ! D(G) is an isomorphism.
For every a 2 A we set

Vj,a =
n
 2 H

1(Hj ;R)
��� Qj

�
sj

�1(x� xa)
�
+  Qj

�
sj

�1(x�1

a
)
�
> 2| |Qj

o

We observe that Vj,a is open. We define

Vj =
[

a2A

Vj,a

and observe that Vj is an open set as well.
We claim that Vj contains all irrational characters of H1(G;R) lying in U . In-

deed, let � be such a character. Since � 2 H
1(G;R), we have |�|Qj

= 0 for all j by
Lemma 3.22. By assumption, there exists a 2 A such that

�Qj

�
sj

�1(x� xa)
�
= �(x� xa) > �(xa)

(here we have used Lemma 3.22 again). Also,

�Qj

�
sj

�1(x�1

a
)
�
= �(x�1

a
) = ��(xa)

These three facts immediately imply that � 2 Vj,a, and hence prove the claim. We
conclude, using Lemma 4.5, that Vj \H

1(G;R) is rich in H
1(G;R), and therefore

Vj is rich in H
1(Hj ;R) (formally, this requires an easy induction argument, which

is left to the reader).

Let V 0
j
be the intersection of the Qj-orbit of Vj ; the set V 0

j
is rich by Lemma 4.4.

Let n be the maximum of the associated integers of the elements x, xa and x
�1
a

for
all a 2 A. For every j > n there exist a Qj-invariant rich set Wj such that

x, xa, x
�1

a
2 sj

�
D(Hj ,Wj)Qj

�

for every a (this uses Lemma 4.4). We define Uj = V
0
j
\Wj . It is immediate that

Uj is rich for every j. We now claim that for every j > n, the element x admits an
inverse in sj

�
D(Hj , Uj)Qj

�
; clearly this will imply that x is invertible in K(G,L),

since each of the inverses will coincide with the inverse of x in D(G).
Fix j > n, and let  2 Uj . Clearly  2 Vj,a for some a. Also,

 
Qj = { q | q 2 Qj} ✓ Wj \ V

0
j
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as both Wj and V
0
j
are Qj-invariant. Therefore x, xa, x

�1
a

2 sj

�
D(Hj , 

Qj )Qj

�
,

and we may apply Lemma 3.25; we conclude that x = xa + (x � xa) admits an
inverse in sj

�
D(Hj , )Qj

�
. Since  was arbitrary, and the various inverses coincide

in D(G), we conclude that x is invertible in sj

�
D(Hj , Uj)Qj

�
, and so x is invertible

in K(G,L). ⇤

Proposition 4.11. Every x 2 QGr {0} is invertible in K(G,L).

Proof. The proof is an induction on  = | suppx|. By assumption, we have  > 1.
The base case  = 1 is immediate, since then x is already invertible in QG.

In the inductive step, we will assume that the result holds for all elements y with
| supp y| <  across all finitely-generated RFRS groups and all chains L. Recall
that ↵ : G ! G

fab is the free abelianisation map. There are two cases to consider.

Case 1: Suppose that |↵(suppx)| > 2.
We write

x =
X

a2↵(supp x)

xa

where for each a we have xa 2 QG with ↵(suppxa) = {a}.
Using the inductive hypothesis we see that every xa is invertible in K(G,L).

Now we apply Lemma 4.10 with U = H
1(G;R) and A = ↵(suppx), and where to

each irrational � we associate a 2 A on which �|A is minimal (note that such an a

is unique, since � is irrational).

Case 2: Suppose that  > 1 but |↵(suppx)| = 1. In this case there exists � 2 G

and i such that �x 2 QHi but �0x 62 QHi+1 for every �0 2 G (we are using here
that (Hj)j is a residual chain). It is clear that without loss of generality we may
assume that � = 1.

Let ↵i : Hi ! Hi
fab be the free abelianisation map. If ↵i(suppx) is supported

on a singleton, then there exists �0 such that �0x is supported on ker↵i. But
ker↵ 6 Hi+1, which contradicts our assumption on i. Thus

|↵i(suppx)| > 2

We now apply the argument of Case 1 to x thought of as an element of QHi, and
conclude that x admits an inverse in K(Hi,L0), where L0 = L[{H1(Hj ;R) | j < i}.
But K(Hi,L0) is a subring of K(G,L) by Remark 4.8, and this finishes the proof. ⇤

Lemma 4.12. Let S ✓ H
1(G;R) and let x 2 D(G,S)r {0} be given. There exists

a very rich subset V ✓ H
1(G;R) such that

V =
G

a2A

Va

where A is a finite indexing set, and where for every a 2 A there is xa 2 QGr {0}
such that for every � 2 Va \ S we have

�(xa) = �(x) < �(x� xa)

Proof. Recall that ↵ : G ! G
fab denotes the free abelianisation map; let K denote

its kernel, and let s↵ denote a section.
We have x = s↵(y)s↵(z)�1 with y, z 2 D(K)Gfab r {0} (since x 6= 0). We define

A = supp y ⇥ supp z where the supports are subsets of Gfab, and for a = (b, c) we
declare Va to be the set of those characters in H

1(G;R) which attain their minima
on supp y precisely at b, and on supp z precisely at c. It is immediate that the sets
Va are open and pairwise disjoint. It is also immediate that V =

F
a2A

Va is very
rich, since it contains all irrational characters in H

1(G;R).
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Now let us fix a = (b, c) 2 A. We write

y = yb + y
0 and z = zc + z

0

where yb, y
0
, zc, z

0 2 D(K)Gfab satisfy supp yb = {b}, supp y0 = supp y r {b},
supp zc = {c}, and supp z0 = supp z r {c}. Take � 2 S \ Va. By the defini-
tion of D(G,S), there exists a biordering 6 on G

fab compatible with � such that

i6(x) 2 \(QK)Gfab
�

. Now

i6(x) = i6(s↵(y))i6(s↵(z))�1 = y id6(z)�1

and so
i6(x)z = y

where both equations hold in F6(G).
Applying � to both sides of the equality tells us that � attains its minimum on

supp ◆6(x) at d which satisfies dc = b. Note that this forces d to be unique. Let

x
0
a
= i6(x)(d)d 2 (QK)Gfab

We immediately see that �(x0
a
) < �

�
i6(x) � x

0
a

�
. Setting xa = s↵(x0

a
) 2 QG, we

obtain

�(x� xa) = �
�
i6(x� xa)

�
= �

�
i6(x)� x

0
a

�
> �(x0

a
) = �(xa)

Note that ◆6(x)(d) = y(b)z(c)�1 is independent of the choice of 6. Therefore xa

depends only on x and a 2 A, but not on �. ⇤

Theorem 4.13. Let G be a finitely-generated RFRS group. We have

K(G,L) = D(G)

for every chain L.

Proof. Recall that every sub-skew-field of D(G) containing QG is equal to D(G) by
Lemma 2.18. In view of this fact, we need only show that K(G,L) is a skew-field
(since we have already seen in Lemma 4.9 that K(G,L) contains QG). To this end,
take x 2 K(G,L) r {0}. Let n denote the associated integer of x. We proceed by
induction on n.

Base case: Suppose that n = 0. Let U denote the associated rich set of x in
H

1(G;R). We now apply Lemma 4.12 to x 2 D(G,U), which produces for us a
very rich set V =

F
a2A

Va where A is a finite set.
Let � 2 H

1(G;R) be an irrational character contained in U . Lemma 4.12 tells
us that there exists a 2 A and xa 2 QGr {0} such that

�(xa) = �(x) < �(x� xa)

Also, since xa 2 QGr {0}, it is invertible in K(G,L) by Proposition 4.11. Now an
application of Lemma 4.10 gives us invertibility of x in K(G,L).
Inductive step: Let

x = sn

0

@
X

q2Qn

xqq

1

A

with xq 2 D(Hn) for every q 2 Qn.
Let B = {q 2 Qn | xq 6= 0}, and consider the map ⇠ : B ! Q1 given by

⇠(q) = �1sn(q). If ⇠ is constant on B, then up to multiplying x by an element of G
we may assume that ⇠(B) = {1}. This implies that sn(q) 2 H1 for every q 2 B, and
so x = sn(

P
xqq) 2 D(H1). Therefore x 2 K(H1,L0) (using Remark 4.8), where

L0 = L [ {H1(G;R)}
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Treated as an element in K(H1,L0), the element x has lower associated integer, and
hence is invertible in K(H1,L0) (and therefore in K(G,L)) by induction.

Now suppose that ⇠ is not constant on B. Let A = {⇠(q)) | q 2 B}. Clearly, A
is a finite set. For every a 2 A, the element

xa = sn

0

@
X

⇠(q)=a

xqq

1

A

is invertible in K(G,L) by the above discussion. Also,

xas1(a)
�1 =

X

⇠(q)=a

xqsn(q)s1(a)
�1 2 D(H1)

since xq 2 D(Hn) 6 D(H1) and sn(q)s1(a)�1 2 H1.
Consider the restriction ↵ : H1 ! G

fab. Its image ↵(H1) is a finitely-generated
free-abelian group, and its kernel is K (which is also the kernel of ↵ : G ! G

fab).
Thus, Proposition 2.23 tells us that the isomorphism

Ore(s↵) : Ore(D(G)Gfab) ! D(G)

restricts to an isomorphism

Ore(D(K)↵(H1)) ! D(H1)

Hence,
�(xa) = �

�
xas1(a)

�1
�
+ �(s1(a)) 2 �(s1(a)H1) ✓ R

for every � 2 H
1(G;R).

Let � 2 H
1(G;R) be irrational, and take distinct a and b in A. Since � is

injective as a map G
fab ! R, the set of values that � attains at the coset s1(a)H1

of H1 in G is disjoint from the set of values it attains at s1(b)H1 – here we are
using the fact that H1 > ker↵ in a crucial way. Therefore

�(xa) 6= �(xb)

Hence, for each irrational � there exists a 2 A such that

�(x) = �(xa) < �(x� xa)

We finish the argument by an application of Lemma 4.10. ⇤

5. The main results

Throughout this section, all unspecified tensoring happens over QG.

Definition 5.1 (Antipodal map). Given a vector space V , we call the map V ! V

given by v 7! �v the antipodal map.

Theorem 5.2. Let G be a finitely-generated RFRS group, and let N 2 N be an

integer. Let C⇤ denote a chain complex of free QG-modules such that for every

i 6 N the module Ci is finitely generated, and such that Hi(D(G)⌦C⇤) = 0. There

exists a finite-index subgroup H of G and an open subset U ✓ H
1(H;R) such that

(1) the closure of U contains H
1(G;R);

(2) U is invariant under the antipodal map;

(3) Hi

�dQH
 

⌦QH C⇤
�
= 0 for every i 6 N and every  2 U .

Proof. We fix a free QG-basis of every Ci with i 6 N . Since we only care about
homology up to degree N , we apply the following procedure to C⇤: all modules
in degrees above N + 1 are set to 0; since HN (D(G) ⌦ C⇤) = 0 and CN is finitely
generated, there exists a finitely-generated free submodule CN+1 of CN+1 such that
replacing CN+1 by CN+1 still yields vanishing of the N th homology with coe�cients
in D(G). We replace CN+1 by CN+1. We will continue to denote the new chain
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complex by C⇤ – it is now a finite chain complex of finitely-generated free modules,
and we still have

Hi(D(G)⌦ C⇤) = 0

for every i 6 N . The homology of the new complex C⇤ with any coe�cients agrees
with the homology of the old complex in degrees lower than N ; in degree N this
does not have to be the case, but nevertheless if some homology of the new complex
vanishes in degree N , then it must have vanished for the old complex too.

By assumption, we have Hi(D(G)⌦C⇤) = 0 for all i 6 N . Since D(G) is a skew-
field, this implies the existence of invertible matrices M0, . . . ,MN+1 over D(G) such
that if we change the basis of D(G)⌦Ci by Mi, we obtain a chain complex C

0
⇤ which

can be written as follows: every C
0
i
splits as Di � Ei, and every di↵erential is the

identity matrix taking Di+1 isomorphically to Ei, and is trivial on Ei+1.
We have shown in Theorem 4.13 that D(G) = K(G). Since we are looking at

finitely many matrices Mi and their inverses, and each of them is finite, there are
only finitely many entries appearing in these matrices. Therefore, there exists n

(the maximum of the associated integers) and a rich set U ✓ H
1(Hn;R) (where

(Hi)i denotes a witnessing chain of G) such that all the matrices Mi and their
inverses lie over D(Hn, U)Qn, where Qn = G/Hn. We additionally assume that
U is Qn-invariant and invariant under the antipodal map (see Lemma 4.4). For
notational convenience we set H = Hn and Q = Qn. Note that the closure of U
contains H1(G;R) by Lemma 4.6.

Every entry of a matrix Mi lies in D(H,U)Q. The ring D(H,U)Q has the struc-
ture of a free finitely-generated left D(H,U)-module. Therefore the right action of
Mi on the free D(G)-module D(G) ⌦ Ci can be seen as right-multiplication by a
matrix M

0
i
with entries in D(H,U) on the free D(H,U)-module D(H,U)⌦QH Ci.

Take  2 U . By the very definition of D(H,U), we may replace each entry of

M
0
i
by an element of dQH

 

. Applying this procedure to the inverse of the matrix

Mi gives a matrix over dQH
 

which is the inverse of M 0
i
; we will therefore denote it

by M
0
i

�1.
We are now ready to conclude the proof: for every i there exists a matrix M

0
i

over dQH
 

invertible over the same ring, and such that if we change the basis of
dQH

 

⌦C⇤ using these matrices, we obtain a chain complex C
00
⇤ such that every C

00
i

splits asD0
i
�E

0
i
, and every di↵erential vanishes on E

0
i
and takesD0

i+1
isomorphically

to E
0
i
. The homology of this chain complex obviously vanishes in every degree. ⇤

Theorem 5.3. Let G be an infinite finitely-generated group which is virtually

RFRS. Then G is virtually fibred, in the sense that it admits a finite-index sub-

group mapping onto Z with a finitely-generated kernel, if and only if �
(2)

1
(G) = 0.

Proof. Suppose first that G is virtually fibred; let H denote a finite index subgroup
of G which maps onto Z with a finitely-generated kernel. By Theorem 2.27, the
first L

2-Betti number of H vanishes. But [Lüc02, Theorem 1.35(9)] tells us that

then �(2)

1
(G) = 0 as well.

Now let us look at the other direction. Suppose that �(2)

1
(G) = 0. Note that the

first L2-Betti number of every finite index subgroup of G vanishes as well (by the
same argument as above), and being virtually fibred clearly passes to finite index
overgroups, and therefore we may assume that G itself is RFRS, infinite and finitely

generated. Since G is infinite, we have �(2)

0
(G) = 0 by [Lüc02, Theorem 6.54(8b)].

We apply Theorem 5.2 where C⇤ is constructed as follows: take the cellular
chain complex of the universal covering of some classifying space of G with finite
1-skeleton, and tensor it with QG. We take N = 1. We conclude the existence of
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a finite index subgroup H and a non-empty open subset U ✓ H
1(H;R) such that

H1(dQH
 

⌦QH C⇤) = 0

for every  2 U . Let us take  2 U whose image is Z – such a  exists since U is
open, non-empty, and H

1(H;R) is non-trivial. Since QH ⌦QH C⇤ is a resolution of
the trivial QH-module Q, the vanishing of the above homology tells us that

H1(H;dQH
 

) = 0

Since U is invariant under the antipodal map, we also have

H1(H;dQH
� 

) = 0

Now Sikorav’s Theorem (Theorem 3.11) tells us that { ,� } ✓ ⌃(H), and so ker 
is finitely generated by Theorem 3.10. This finishes the proof. ⇤

Recall that a group G is said to be of type FP2 if and only if there exists a long
exact sequence

· · · ! C2 ! C1 ! C0 ! Z
of projective ZG-modules Ci, where Z is considered to be a trivial ZG-module, such
that C2, C1 and C0 are finitely generated. By standard homological algebra (see
for example [Bie81, Remark 1.1(2)]) we may in fact take the modules Ci to be free
for all i, and the modules C2, C1, and C0 to be additionally finitely generated.

Note that being of type FP2 forces G to be finitely generated.
A group G is of cohomological dimension at most 2 if and only if there exists an

exact sequence
0 ! D2 ! D1 ! D0 ! Z

of projective ZG-modules Di, where Z is again a trivial ZG-module.
Again, standard homological algebra (or [Bie81, Proposition 4.1(b)]) tells us that

if G is both of type FP2 and of cohomological dimension at most 2, we may take
D2 to be finitely generated and projective, and D1 and D0 to be finitely generated
and free.

The author is grateful to the referee for pointing out the following application.

Theorem 5.4. Let G be a non-trivial virtually-RFRS group of type FP2 and of

cohomological dimension at most 2. If �
(2)

2
(G) = �

(2)

1
(G) = 0, then there exists a

finite index subgroup H of G and an epimorphism  : H ! Z with kernel of type

FP2.

Proof. Since G is of type FP2, we have an exact sequence C⇤ as above. Observe
that Hi(D(G) ⌦ZG C⇤) = 0 for all i 6 2, since the L

2-Betti numbers of G vanish

– note that �(2)

0
(G) = 0 as G is non-trivial and of finite cohomological dimension,

which together imply that G is infinite, which su�ces by [Lüc02, Theorem 6.54(8b)].
In fact, the higher L

2-Betti numbers also vanish, as can be easily seen using the
resolution D⇤ from above.

Note that being infinite implies that Gfab is non-trivial.
Now, the chain complex C

0
⇤ = QG ⌦ZG C⇤ satisfies the assumptions of Theo-

rem 5.2 with N = 2. From the theorem we obtain a finite index subgroup H, and
a surjective character  : H ! Z such that

Hi

�dQH
 

⌦QH C
0
⇤
�
= 0 = Hi

�dQH
� 

⌦QH C
0
⇤
�

for i 2 {0, 1, 2}.
Since  is non-trivial, we have

H0

�
H;dZH

 �
= 0 = H0

�
H;dZH

� �
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(this is an easy exercise).
By Theorem 3.11, we have

H1

�
H;dZH

 �
= 0 = H1

�
H;dZH

� �

We now want to compute the second homology of H with these coe�cients. Con-
sider the resolution D⇤ from above. We have D3 = 0 and

H2(dQH
 

⌦ZH D⇤) = H2(H;dQH
 

) = 0

This implies that dQH
 

⌦ZH @ is injective, where @ : D2 ! D1 denotes the di↵eren-
tial.

The module D2 is finitely generated and projective, and so we have an isomor-
phism of ZH-modules

D2 � E ⇠= ZHn

for some n and some ZH-module E. We immediately see that
⇣
dZH

 

⌦ZH D2

⌘
�
⇣
dZH

 

⌦ZH E

⌘
⇠= dZH

 

⌦ZH ZHn =
⇣
dZH

 
⌘n

and ⇣
dQH

 

⌦ZH D2

⌘
�
⇣
dQH

 

⌦ZH E

⌘
⇠=
⇣
dQH

 
⌘n

Since the natural map dZH
 

! dQH
 

is clearly injective, the same is true for the
induced map ⇣

dZH
 
⌘n

!
⇣
dQH

 
⌘n

and hence for the natural map

dZH
 

⌦ZH D2 ! dQH
 

⌦ZH D2

This implies that dZH
 

⌦ZH @ is injective, and so

H2(H;dZH
 

) = H2(dZH
 

⌦ZH D
0
⇤) = 0

A completely analogous argument shows that

H2(H;dZH
� 

) = 0

also holds. We now conclude that ker is of type FP2 from a theorem of Pascal
Schweitzer [Bie07, Theorem A.1] (which should be thought of as a higher degree
version of Sikorav’s theorem). ⇤

6. Agol’s Theorem

In [Ago08], Agol proved the following theorem.

Theorem 6.1 (Agol’s theorem). Let M be a compact connected orientable irredu-

cible 3-manifold with �(M) = 0 such that ⇡1(M) is RFRS. If � 2 H
1(M ;Z)r {0}

is a non-fibred homology class, then there exists a finite-sheeted cover p : M 0 ! M

such that p
⇤
� 2 H

1(M 0;Z) lies in the cone over the boundary of a fibred face of

B(M 0).

Let us explain the notation: � stands for the Euler characteristic. A non-trivial
character � : ⇡1(M) ! Z is fibred if and only if it is induced by a fibration of M
over the circle; equivalently (thanks to a theorem of Stallings [Sta62]), � is fibred if
and only if its kernel is finitely generated. The notation p

⇤
� corresponds to simply

� in our notation, since we identify H
1(M ;R) with a subspace of H1(M 0;R).

The notation B(M) stands for the Thurston polytope (defined in [Thu86]). It is
a compact rational polytope lying in H

1(M ;R), and its key property is that certain
maximal open faces of B(M) are called fibred, and a primitive integral character
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� 2 H
1(M ;Z) r {0} is fibred if and only if it lies in the cone in H

1(M ;R) over a
fibred face. (This property of B(M) was shown by Thurston in [Thu86], and then
reproved by the author in [Kie] using methods very similar to the ones used in this
article).

We will now give a new proof of Agol’s theorem; in fact, we give a slightly
stronger, more uniform statement, since we will show that the finite cover M 0 can
be chosen independently of �.

Theorem 6.2 (Uniform Agol’s theorem). Let M be a compact connected orientable

irreducible 3-manifold with �(M) = 0 such that ⇡1(M) is RFRS. There exists a

finite-sheeted cover p : M 0 ! M such that for every � 2 H
1(M ;Z) r {0} either �

is fibred or p
⇤
� lies in the cone over the boundary of a fibred face of B(M 0).

Proof. We begin by observing that an irreducible 3-manifold with infinite funda-
mental group is aspherical. Since the statement is vacuous when G = ⇡1(M) = {1},
and since G is RFRS, we may assume that G is infinite, and thus that M is as-
pherical. Now �(M) = 0 is equivalent to the vanishing of the L

2-Betti numbers by
[LL95, Theorem 0.1b].

Since M is compact, G is finitely generated. We may now apply Theorem 5.2
with N = 3 to the cellular chain complex C⇤ of the universal covering of M (with
Q-coe�cients). We are given a finite index subgroup H 6 G and an open set U in
H

1(H;R) which is invariant under the antipodal map, and whose closure contains
H

1(G;R). Furthermore, we have

H1

�dQH
 

⌦QH C⇤
�
= 0

for every  2 U .
Let M

0 ! M be the covering corresponding to H 6 G. Then QH ⌦QH C⇤
coincides with the cellular chain complex of the universal covering of M

0 (as a
QH-module).

Let � : G ! Z be non-trivial. Since � 2 H
1(G;R), there exists a sequence ( i)i

of characters in U with
lim

i�!1
 i = �

Since U is invariant under the antipodal map, we have � i 2 U for every i, and
therefore

H1

�
H;dQH

 i�
= H1

�
H;dQH

� i�
= 0

for every i. Sikorav’s Theorem (Theorem 3.11) tells us that

{ i,� i | i 2 N} ✓ ⌃(H)

and Theorem 3.10 tells us that each  i has a finitely-generated kernel. Stallings’s
Theorem [Sta62] now implies that every  i is fibred (note that M 0 is still irreduci-
ble). Thus, every  i lies in the cone of a fibred face of B(M 0).

Since the polytope B(M 0) has finitely many faces, and so finitely many fibred
faces, we may pass to a subsequence and conclude that every  i lies in the cone of
the same fibred face of B(M 0). Hence, � itself must lie in the closure of this cone.
Now one of two possibilities occurs: � lies in the cone of a fibred face, and so is
itself fibred, or � lies in the cone of the boundary of a fibred face of B(M 0). ⇤
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