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Preface

A fundamental idea in algebraic topology is to study a space via an associated chain
complex. If the space carries a CW structure, the cellular chain groups capture
the number of cells in each degree and the boundary maps reflect how the cells
are glued to the previous skeleton. In this sense, the chain complex extracts and
bundles what is topologically relevant. Classical invariants, like Betti numbers and
Reidemeister torsion, emerge from the chain complex by taking dimensions and
determinants. One can repeat this process for the finite coverings of the space. But
infinite coverings have infinitely generated chain groups even if the base space is
compact. So dimensions might be infinite and determinants are not even defined.
¢2-Invariants cope with this infinite setting. One observes that the deck transfor-
mation group G acts on the covering space, hence on the chain groups, and turns
them into finitely generated modules over the group ring ZG. But depending on
G, this ring might be large (neither left- nor right-Noetherian) and accordingly,
the category of ZG-modules has no useful notion of rank or dimension, let alone
determinant. So algebraically, and without further assumption on G, we are stuck.
But salvation comes from functional analysis: the functor £2-completion turns
finitely generated modules over ZG into finitely generated Hilbert modules over
the group von Neumann algebra L(G). This category is decisively better behaved:
it comes endowed with equivariant versions of all the basic notions of linear
algebra: trace, dimension, and determinant. Correspondingly, the ¢2-completed
chain complex yields ¢2-Betti numbers and £>-torsion, the £2-counterparts of Betti
numbers, and Reidemeister torsion. These will be the protagonists of this text.

As the reader might have noticed, already defining ¢>-Betti numbers and £>-
torsion comes at a price. Sound knowledge both in algebraic topology and functional
analysis is required from any student who seriously wants to work with these
objects. In an attempt to lower the high entry level to the field, we decided to assume
no prior exposure to functional analysis whatsoever, and the course will actually
start with the definition of Hilbert space. In contrast, the reader should be familiar
with the basic concepts of algebraic topology: fundamental group, covering theory,
(co-)homology, CW complexes, and the elementary notions of category theory.
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As such, the text at hand is designed for graduate students after a first course
on algebraic topology. It has grown out of a lecture given at Karlsruhe, a mini
course at the Borel Seminar in Les Diablerets, and some introductory talks the
author has given on different occasions. Since ¢2-invariants have popped up in
contexts as diverse as differential geometry, geometric group theory, 3-manifolds,
operator algebras, ergodic theory, cohomology of arithmetic groups, and even
Turing machines and quantum groups, it is hoped that also the researcher from
another field will find these notes useful for introducing herself to these surprisingly
powerful tools.

A rough overview of the contents of this text is presented in the subsequent
introductory chapter. Let us only say here that the text ends with surveying a
couple of recent research developments in which £2-invariants have played a major
role. In this sense, we hope that the course provides a little more than merely a
quick introduction to the field. It is however not meant to be a sequel to Liick’s
treatment [117]. Instead, we intended to write a shorter account, giving more
extensive explanations in the foundational chapters and sparing technical details
in the more advanced sections. While several new developments since 2002 were
taken up, many more have been left out. It would most definitely be time for a new
systematic record.

It is my pleasure to thank Jakob Albers, Sabine Braun, Dawid Kielak, Benjamin
Wallermann, and the anonymous referees for many helpful comments and sugges-
tions on previous versions of these notes. In addition, I acknowledge funding from
the Deutsche Forschungsgemeinschaft within the priority program “Geometry at
Infinity” and I am grateful for the hospitality of the Hausdorff Research Institute for
Mathematics in Bonn during the junior trimester program “Topology” from which
the text has benefited in various ways.

Karlsruhe, Germany Holger Kammeyer
June 2019
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Chapter 1 )
Introduction Check for

A reasonable space, say a connected CW complex X, often does not come alone. It
brings along the family of Galois coverings {X y}ny<g for G = m1(X). The spaces
X n come equipped with a nice (free, cellular) action of the group G/N by deck
transformations. This is one of many reasons why modern topology seeks to recover
classical achievements in an equivariant setting. Let us consider an easy example,
the Betti numbers b, (X) = dim¢c H, (X; C) for compact X; and let us concentrate
on the most important covering: the universal one X = X (e}

For every n-cell in X we fix one of the G-many lifts to an n-cell in X. These
choices yield a description of the cellular chain complex Ci (X; C) as

r— (CGIT — (CO" — (COY ! — -+

where k;, is the number of n-cells. Here CG is just the free C-vector space with basis
G and the unit element in G corresponds to the chosen cell. Recall that the chain
modules C,, (3? ;C)=H, ()? s X n—1; C) are defined by the singular homology of the
n-skeleton relative to the (n — 1)-skeleton. Therefore the G-action on X by cellular
homeomorphisms induces a G-action on Cy ()? ; C). In the above picture this action
is just given by translating the basis vectors. The differentials are G-equivariant by
naturality.

One idea to come up with equivariant Betti numbers would be to find some kind
of equivariant dimension “dimcg”, defined on G-invariant subquotients of some
(CG)K, and set “bf (3?) = dimcg Hy ()?; C)”. Of course, any decent such “dimcg”
must take nonnegative values and satisfy the two relations dimcg CG = 1 and
dimcg V = dimcg U + dimcg W for a short exact sequence

0O—U—V—>W-—0.

But this is where the trouble starts. Say X = S' v S! so that G = F> is the free
group on two letters. Since X has one 0-cell and two 1-cells, the chain complex

© Springer Nature Switzerland AG 2019 1
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2 1 Introduction
Cy (i ; ©) is of the form

0 — (CF)? -2 CF, —> 0.

Now recall that X is a tree. As a consequence, every nonzero finite linear
combination of 1-cells in C; ()~( :C) & (CF>)? must have an edge in its support
without neighbor on one end. But d; sends an edge to the difference of its end
points; so the lonely end survives and d is injective! Hence the sequence

0— ((CFQ)2 i) CF, —> cokerd; — 0

is short exact and buries all hopes to find “dimc ™ as desired. Having said that, here
is a glimpse of light that should help us all recover from the shock. Say not only
finite linear combinations of edges were allowed but also infinite ones, as long as
these are only square-summable. Then Fig. 1.1 shows an element x € kerd.

The central node in this picture is as good as any other: we can shift x — gx
for any g € F, which illustrates that ker d; is an F»-invariant subspace of (EZFZ)Z.
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Fig. 1.1 An ¢2-1-cycle in the universal covering of S' v S'. The edge on the right hand side of
the center point has coefficient 1. From there on, two of any three neighboring edges obtain half
the previous coefficient and the remaining edge gets the coefficient 0. The series formed by the
squares of the coefficients converges to 3
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Here £2F2 is the case G = F; of the general definition
026G = ’deG Ce&: deG|Cg|2 < oo} .

The condition that the formal sums in £>G have square summable (complex)
coefficients is also known as the £2-condition. It effects that £2G has a natural inner
product which turns it into a complete normed space. Said differently, £2G is a
Hilbert space. We remark that for infinite G, the normed space CG = @; C is not
complete while C¢ = [ I C is not even normable.

The discussion thus far suggests that we should be dealing with closed G-
invariant subspaces of (£2G)k . These are known as Hilbert G-modules. It turns out
that for Hilbert modules, dimension with the postulated properties can be defined.
This so called von Neumann dimension “dimp )" can take any nonnegative real
number as value. It paves the way for the definition

bP (X) = dimg () HP(X)

of £2-Betti numbers, our first and foremost example of an 2 -invariant.

If one overcomes a good deal of technical difficulties only to define a variation
of a well-known invariant, then it is fair to raise an eyebrow and ask “What’s it all
good for?”. Well, a good way to corroborate the usefulness of a new method is to
show that it answers seemingly unrelated questions. Here is an example.

Conjecture 1.1 (Kaplansky) Let G be a torsion-free group. Then the group ring
QG has no nontrivial zero divisors.

The group ring QG is the Q-vector space with basis G and linear multiplication
defined on the basis by composition in the group. Kaplansky is asking ifa - b = 0
in QG implies a = 0 or b = 0, an entirely algebraic question.

Theorem 1.2 Let G be torsion-free. Suppose b,(lz)(X) € Zsg for n > 0 whenever
X is a Galois covering of a connected, compact CW complex X whose deck
transformation group embeds into G. Then the Kaplansky conjecture holds true
for G.

We got used to algebra answering questions in topology. This theorem is an
instance of the reverse phenomenon. A particular case of the so called Atiyah
conjecture says that the hypothesis of Theorem 1.2 should always be valid. We will
discuss the background on this conjecture, report on recent progress, and see that it
is now known for a fairly good deal of groups.

Let us look at a second example. A closed hyperbolic manifold is a compact
quotient H" /T of hyperbolic n-space H" by a torsion-free discrete subgroup I' C
Isom(H").

Theorem 1.3 A closed hyperbolic manifold does not permit any nontrivial action
by the circle group.
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>
Fig. 1.2 The left hand manifold admits no hyperbolic structure. The right hand manifold admits
no nontrivial action by the circle group

To be fair, we should say that this theorem was known long before the advent of
£2-invariants. But £2-invariants give a particularly clean line of reasoning: Both £2-
Betti numbers and yet to be defined £2-torsion obstruct nontrivial S'-actions. Even-
dimensional hyperbolic manifolds have a nonzero middle ¢2-Betti number while
odd-dimensional ones have nonzero £2-torsion. Figure 1.2 is a helpful reminder of
the situation.

A hyperbolic manifold is an example of an aspherical space: the universal
covering is contractible. This leads us to yet another outcome of £>-invariants.

Conjecture 1.4 (Hopf) Let M be a 2n-dimensional closed aspherical manifold.
Then (—1)" x (M) > 0.

In the original statement, Hopf discussed the sign of the Euler characteristic
x(M) in terms of curvature. The above formula was his prediction for non-
positively curved manifolds which are aspherical by the so called Hadamard
theorem. Similar to the classical case, we have an Euler-Poincaré formula x (M) =
Zn>0(—1)"b,(,2)(1\7 ) expressing the Euler characteristic in terms of £2-Betti num-
bers. This is why the Hopf conjecture is a consequence of the following conjecture.

Conjecture 1.5 (Singer) Let M be an m-dimensional closed aspherical manifold
with 2 (M) > 0. Then 21 = m.

Indeed, ¢>-Betti numbers are nonnegative by definition, so for a closed aspherical
2n-manifold M, the Singer conjecture implies

(—=D"x (M) = (=1)"(=1)"bP (M) = bP (M) > 0.

Now that we elaborated on the interest in studying ¢2-Betti numbers b,(,z) ()? ), let
us ponder how they are related to the ordinary Betti numbers b, (X). As just said,
we have Y, (—1)"b7(X) = 3, (—1)"b,(X). But already for the k-torus T¥, the
existence of circle actions implies b,(lz)('ﬁ‘) = 0 for all n > 0 which drastically
contrasts with the classical Betti numbers b, (T*) = (];) So the individual Betti
number b, (X) cannot be related to b,(lz)(i ) in any all too apparent way. This is
maybe not so surprising as b,(lz) (f ) is defined in terms of the deck transformation
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action G ~ X on the universal covering whereas the classical Betti number b,,(X)
is computed “downstairs” with no dependency on coverings whatsoever.

For a finite d-sheeted Galois covering X — X, it is however easy to see that
b,(lz) (X) = by(X)/d. So one could hope that for larger and larger finite coverings,
the number b, (X)/d should give a better and better approximation of b,(lz) (i ). More
precisely, let us consider sequences b,(X;)/[G : G;] for towers of finite Galois
coverings - -- — X2 — X — X associated with nested chains G| > G, > - --
of finite index normal subgroups G; < G. The hope would be to obtain b,(lz) ()? )
in the limit “X; — X7, or correspondingly “G; — {1}”, which we can express
mathematically as (), G; = {1}. Such residual chains of finite index normal
subgroups in G with trivial total intersection may or may not exist. If they do exist,
then G is called residually finite. Many groups occurring in practice are residually
finite, including finitely generated linear groups and fundamental groups of 3-
manifolds. Liick’s approximation theorem asserts the desired asymptotic equality.

Theorem 1.6 (Liick) Let X be a connected compact CW complex whose funda-
mental group G = m1 X is residually finite. Then for every residual chain (G;) in G
and every n > 0 we have

fim XD _ b (X).
i—oo [G : Gi]

The proof of Liick’s approximation theorem uses spectral calculus, a chapter
within functional analysis of intrinsic beauty. We will thoroughly explain the ideas
of this field in a preparatory section right before we give the proof of Liick’s
theorem. As explained above, the theorem can be restated as

lim b?(X;) = bP(X).
1—> 00

It makes sense to ask if this equality remains true after dropping the assumption that
G; would have finite index in G. This leads to the approximation conjecture which,
in a slightly weakened version, reads as follows.

Conjecture 1.7 (Approximation Conjecture) Let X be a connected compact CW
complex, set G = m1X and let (G;) be a nested chain of normal subgroups of
G with (); G; = {1}. Then for every n > 0 we have

lim b2(X;) = bP(X).
1—>00

The approximation conjecture has a decisive advantage over the approximation
theorem: it allows for progress on the Atiyah conjecture and hence gives more
positive results on Kaplansky’s Conjecture 1.1. How? If one finds a chain (G;) of
normal subgroups in G with (); G; = {1} such that the quotient groups G/G; are

torsion-free and satisfy the Atiyah conjecture, then the sequence b,(lz) (X;) consists
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of integers. So the limit b,(lz) ()?) is an integer, too, hence G satisfies the Atiyah
conjecture. In this sense, the class of torsion-free groups satisfying the Atiyah
conjecture is residually closed.

Trying to transfer the proof of Liick’s theorem to the approximation conjecture
leads naturally to Schick’s determinant conjecture. We will prove the determinant
conjecture for residually finite groups which in turn shows the approximation
conjecture for chains with residually finite factor groups G/G;. This improves
Liick’s theorem from finite quotients to residually finite quotients. Many more
variants and generalizations of Liick’s theorem were meanwhile proven on which
we will report in the course.

Liick’s approximation theorem can be seen as a fundamental result in the active
research field of homology growth: a positive n-th £>-Betti number of X detects that,
asymptotically, the rank of the free part in the n-th homology of X; grows linearly
in the number of sheets. As a consequence of Liick’s approximation, the following
conjecture is a formally weaker version of the Singer conjecture.

Conjecture 1.8 Let X be an aspherical, 2n-dimensional, closed, connected mani-
fold with residually finite fundamental group G = 71 X. Then for every residual
chain (G;) in G we have

lim ranky, Hy (X;)free = (=) x(X).
i—00 [G: Gi]

So the Euler characteristic is expected to detect free homology growth in the
middle degree of an even-dimensional aspherical manifold. It so turns out that the
aforementioned £2-torsion p(2)()~( ) serves as an odd-dimensional cousin of x (X):
it is expected to detect forsion homology growth in the middle degree of an odd-
dimensional aspherical manifold.

Conjecture 1.9 Let X be an aspherical, (2n + 1)-dimensional, closed, connected
manifold with residually finite fundamental group G = m1X. Then for every
residual chain (G;) in G we have

lim longn.(Xz)tors| _ (—1)",0(2)(32).
i»co  [G:Gy]

Note that the logarithm appearing in the formula says that non-zero £>-
torsion actually detects exponential growth of the order of the torsion subgroup
of Hy(X;) = H,(X;;Z). The definition of £2-torsion is somewhat involved.
Conceptually, though, it is simply the £2-counterpart to classical Reidemeister
torsion which once gave the complete classification of Lens spaces. We will explain
this background before giving the precise definition of £2-torsion, followed by
basic properties and some applications. Then we discuss that a potential proof of
Conjecture 1.9 would actually split into three proofs of three different conjectures,
each of which is of independent interest, and each of which is wide open: the
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torsion Singer conjecture, the small regulator conjecture, and the determinant
approximation conjecture.

A typical situation of both geometric and algebraic interest arises if the odd-
dimensional aspherical manifold X is a so-called arithmetic locally symmetric
space. For example, G could be a finite index torsion-free subgroup of SL(3; Z) and
X would be the double coset space G\SL(3; R)/SO (3). This explicit example does
not quite meet the requirements of Conjecture 1.9 because X is not compact. It is
however homotopy equivalent to a compact CW complex so that one may still hope
the conclusion of Conjecture 1.9 was true for residual chains (G;) in G. Carrying
out all computations, we would then obtain the remarkable formula

log |H2(Xi)tors| §(3)
im —
i—00 [G: Gi] 96+/372

with ¢(3) = > o n13. While this must remain conjectural, some definite results
are possible for compact arithmetic locally symmetric spaces if one replaces the
Z-coefficients in H,(X;) = H,(X;;Z) with certain coefficient systems coming
from representations of the matrix group in which (G) lies. This approach is due to
Bergeron and Venkatesh and shall be presented in one of the more advanced sections
of this text.

¢>-Torsion has recently also come into focus in 3-manifold theory, where an
additional twist in the definition leads to the £2-Alexander torsion. The £>- Alexander
torsion of a 3-manifold determines the Thurston norm which in turn has played
a central role in the recent breakthrough proof of the virtually fibered conjecture.
Moreover, just like in the case of homology, both ¢£2-Betti numbers and £2-torsion
cannot only be defined for CW complexes but also for groups via classifying
spaces. As such they define powerful tools to study groups and many interesting
new questions arise. To name one, one could ponder how much information on
the £2-torsion of a group is already contained in the profinite completion of the
group? We will see, for example, that if we knew that Conjecture 1.9 was true, we
could conclude that the ¢>-torsion and hence the volume of 3-manifolds depends
on the profinite completion of the fundamental group only. In another vein, it is a
consequence of Liick’s approximation theorem that the first £2-Betti number bgz) (G)
of a finitely presented residually finite group G captures the growth of the free
abelian rank of the abelianized finite index subgroups of G. This turns biz)(G) into
a particularly relevant group invariant. It is related to M. Lackenby’s rank gradient
and D. Gaboriau’s cost by the inequalities

RG(G) > cost(G) — 1 = bP(G).

The second inequality is due to Gaboriau while the first is elegantly explained by
the Abért—Nikolov theorem. It is a standing question if either inequality can be strict.

With varying resolution by details, all these aspects will be discussed during
the course. This means the text at hand intends to set up a walkable path from
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the definition of Hilbert space to the state of the art in some specific questions.
Operator algebras, Hilbert modules and von Neumann dimension will be introduced
and discussed in Chap. 2 which assumes no prior knowledge on functional analysis.
The study of £2-Betti numbers of CW complexes is the subject of Chap. 3. Chapter 4
introduces Liick’s extended von Neumann dimension and ¢2-Betti numbers of
groups via classifying spaces. Chapter 5 is concerned with the approximation of
¢2-Betti numbers, rank gradient, and cost. In Chap. 6 we study %-torsion, torsion
growth in twisted and untwisted homology and applications. Most sections in the
first few chapters end with a number of problems which are meant to familiarize
the reader with the acquired material and give an opportunity to try out the new
methods in practice. The exercises vary in difficulty between almost obvious and
pretty involved; but they have all been tested in practice. Needless to say: doing
them is crucial.



Chapter 2 )
Hilbert Modules and von Neumann Cheeicfo
Dimension

2.1 Hilbert Spaces

Euclidean geometry is the geometry of R". To talk about lengths, angles and
orthogonality in a general finite dimensional R-vector space V, we thus have
to fix an identification ¢ : V — R” first. On a second thought, this demands
more than necessary because if two identifications v, ¥ differ by an orthogonal
transformation vr; o ¥, ' ¢ O(n), then all lengths and angles agree and we are
dealing with one and the same geometry on V. So what we really have to pick is a
basis up to orthogonal transformations or, which is the same, an inner product on
V: a positive definite, bilinear, symmetric form. The correct way of extending this
notion from real to complex, possibly infinite-dimensional vector spaces is captured
by the following definition.

Definition 2.1 An inner product space is a complex vector space V with a function
(-,+): V x V — C which satisfies forall x, y,z € Vanda € C

@
(i)

x,x) > 0 with equality if and only if x = 0,
x,y+z)=(x,y)+(x,2),
(i) (x, ay) = alx,y),
i) (y,x) = (x, ).
With this definition the inner product is conjugate-linear in the first variable and

linear in the second variable. This stipulation appears to be more common in physics
than in mathematics but we prefer to have the complication up front.

{
(
(
(

Example 2.2 Standard complex n-space C" with standard inner product

n
()= xivi
i=1

© Springer Nature Switzerland AG 2019 9
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10 2 Hilbert Modules and von Neumann Dimension

forx = (x1,...,x0),y=O1,..., ) € C".

Example 2.3 Complex valued continuous functions on an interval Cla, b] with
inner product

b
(f.8) = / fx)g(x)dx

for f, g € Cla, bl.

Let (V, (-,-)) be an inner product space. Two vectors x,y € V are called
orthogonal if (x,y) = 0. A subset {x;|i € I} C V is called orthonormal if
(xi,yi) = 1foralli € I and (x;,y;) = O fori # j. We set ||x]| = {x, x)
and thus commit ourselves to verifying in what follows that this defines a norm on
V. As a first step we observe a “Pythagorean theorem”.

Lemma 2.4 Let {x;}]_, be orthonormal in'V. Then for all x € V we have

2

lx])* = Z| (xi, )| + x—Z(x,, )xi

i=1

Proof This is an easy calculation after decomposing x orthogonally into

X = Xn:(x,',x)x,- + (x — Xn:(x,-,x)x,-) .

i=1 i=1 0

In particular, we obtain Ix)?> > Yo i, x)|* which is sometimes known as
Bessel’s inequality.

Corollary 2.5 (Cauchy-Schwarz Inequality) Forallx,y € V we have |{x, y)| <
Iyl

Proof If y = 0 there is nothing to prove. Otherwise {Hi H} is an orthonormal set so

2 _ )P
X = . O
i lIyl2

Lemma 2.6 The pair (V, || - ||) is a normed vector space.

that Bessel’s inequality gives x| > |(Hy\|’

Proof Only the triangle inequality needs proof. For x, y € V we calculate

x4 y12 = (x, %) 4 (6, ) + (0, x) + (9, 9) = (x, x) +2Refx, y) + (v, y)
< (6, x) 2000 W+ 0 y) < P+ 20x iyl + Ty 2
= (Ilxll + llyIn?

by the Cauchy—Schwarz inequality. O
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As usual, a normed space is a metric space with respect to the distance d (x, y) =
[lx — y|l. Recall that a metric space X is called complete if every Cauchy-sequence
of points in X has a limit in X.

Definition 2.7 A Hilbert space is an inner product space which is complete as
metric space.

Standard n-space C" from Example 2.2 is a Hilbert space. The direct sum
;2 C clearly inherits an inner product from the inclusions of the subspaces
= @;_, C but it is not complete because <211<V=1 z’§>N is a Cauchy sequence

without limit (here ey is the k-th standard basis vector). However, any inner product
space can be transformed into a Hilbert space by completion.

Example 2.8 Let £2 be the space of sequences (an);2, of complex numbers which
satisfy > 02 0|an| < oo with the inner product

((@n), (bn)) = Zan n-

The series converges because 2|a,||b,| < lan|® + |bn|?. One can check that /2
is a Hilbert space in which @2, C embeds isometrically and densely. Similarly,
Cla, b] from Example 2.3 is not a Hilbert space (why?). Its completion looks as
follows.

Example 2.9 Let £2[a, b] be the complex vector space of complex valued Lebesgue
measurable functions on the interval [a, b] which satisfy f ab| fI?dr < oo. Setting

b
f.8) :/ fgdn

defines an inner product on £%[a, b] where convergence follows again because
21 fllgl < | fI>+|g|?. Let L*[a, b] be the quotient space of £>[a, b] by the subspace
of functions which vanish Lebesgue-almost everywhere (or, which is the same, the
functions f for which || f|| = 0). Then the inner product of £?[a, b] descends to an
inner product on L?[a, b] and turns L?[a, b] into a Hilbert space in which Cla, b]
embeds isometrically and densely.

We can form new Hilbert spaces out of old ones as follows.

1. If H is a Hilbert space, then so is every closed subspace K C H. The example
Cla, b] C L?[a, b] shows that the word “closed” cannot be omitted.

2. Similarly, if K C H is a closed subspace, then the quotient space H/K is a
Hilbert space because the canonical map K+ — H/K identifies H/K with the
orthogonal complement

={xeH|(x,y)=0forally € K}
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of K which is a closed subspace. The identification is more subtle than it sounds
because for constructing the inverse map H/K — K= one has to show that
every affine space (x + K) € H/K has a unique element of minimal norm
(Exercise 2.1.2).

3. If {H;}72, is an (at most) countable family of Hilbert spaces, then we define the
direct sum @2, H; as the space of all sequences (x;)?2, with x; € H; satisfying
Z;’il I ”%1,- < 00. The inner products of the H; sum up (independent of order)
to give an inner product on °2, H; for which 72, H; is complete. Note that
if the family is finite, the condition Z?i 1 X ”%'Ii < 00 is empty.

4. For two Hilbert spaces H; and H, we declare an inner product on the vector
space tensor product H; ®c H» by setting

(x1 ® x2, y1 @ YV2)Hy@cH, = (X1, Y1) Hy (X2, Y2) i,

on simple tensors. This extends linearly to all of H;y ®c H» by writing a general
element in H; @c H> as a sum (no coefficients!) of simple tensors. We define the
Hilbert space tensor product H; ® H» as the Hilbert space completion of the inner
product space (Hy ®c Ha, (-, ) Hy@cH,)- As an example, given measure spaces
(Xi, ni) with countably generated o -algebras for i = 1, 2, the correspondence
f ® g — f - g extends to a canonical identification

L*(X1,dun) ® L*(X2,dia) = L2(X) x X2, dig ® dua).

For a proof we refer to [150, Theorem I1.10(a), p. 52].

In linear algebra we were taught that as an application of Zorn’s lemma, every vector
space has a basis. In the context of Hilbert spaces such a basis is sometimes referred
to as a Hamel basis in order to distinguish it from the following concept which is
more natural and more convenient in our setting.

Definition 2.10 Let H be a Hilbert space. An orthonormal basis of H is a maximal
orthonormal subset of H.

Here, as usual, “maximal” means that the orthonormal set is not properly
contained in any other orthonormal set. Existence is again immediate from Zorn’s
lemma because the union of a nested sequence of orthonormal subsets is orthonor-
mal. The next result says that the orthogonal decomposition of vectors familiar from
finite-dimensional Euclidean space carries over to Hilbert spaces though the sums
are possibly infinite.

Theorem 2.11 Let H be a Hilbert space, let {x;}ic; be an orthonormal basis and
let x € H. Then

x= (i, x)x and x> =) |(x, x)

iel iel
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It follows from Bessel’s inequality Z/EJ|(xj, x)|? < |x||? for J C I finite
that (x;, x) is nonzero for at most countably many i € I. The theorem asserts
convergence of the sums in H and R independent of order.

Proof Fix some ordering x;,, X;,, ... of the basis vectors x; with (x;, x) nonzero

and set y, = Y y_;(Xi., x)xj,. Forn > m we get

n

Z (Xig» X)Xiy

k=m+1

2 n
= Y e, 0

k=m+1

lyn — ymll* =

This shows that y, is a Cauchy sequence because the series Z,fi 11Xy x)|?
converges since the partial sums form a monotone increasing sequence bounded by
lx]|>. Using orthonormality of {x;};; it is easy to see that y = lim,_, » y, equals
x. By Lemma 2.4 we have moreover

n

(0.¢]
— 1 . N2 — 2 . 2
O—,}EEO”X_E (i, )2 117 = X112 = D i )|

k=1 k=1

which shows the second equality. O

Most Hilbert spaces of interest possess a countable orthonormal basis. In that
case we say that the Hilbert space H is separable. An equivalent characterization of
separability is the existence of a countable dense subset in H (Exercise 2.1.6). We
remark that for a separable Hilbert space an orthonormal basis can be constructed by
a Gram-Schmidt procedure (Exercise 2.1.5) without invoking the axiom of choice.
In this course we will exclusively deal with separable Hilbert spaces.

A morphism A: H; — H; of Hilbert spaces is a bounded linear operator. This
means that A(u1x + pn2y) = u1Ax + urAy forall x,y € Hy and py, up € C
and that there exists a constant C > 0 with ||Ax||g, < C||x|/g, forall x € Hy. A
bounded linear operator is by definition (Lipschitz) continuous. If A is a continuous

linear operator, then there exists § > 0 such that ||Ax| < I for ||x|| < &. Thus for

any nonzero y € H; we have HA (ﬁi\l)” <1l,s0C = g is a constant showing

that A is bounded. So a bounded linear operator is the same as a continuous linear
operator. We stress that morphisms of Hilbert spaces are not required to preserve
the inner product. If they do, that is if (Ux, Uy)n, = (x, y)n,, then U is called an
isometry. If in addition U is onto, then U : H; — H is called unitary and H; and
H, are called isomorphic.

Theorem 2.12 Any separable Hilbert space H is either isomorphic to C" or to £>.

Proof Choose an orthonormal basis {x;};e; of H. Then I can either be identified
with {1, ..., n} or with the set of all positive integers. Accordingly, sending x € H
to ({x1, x), (x2, x), ...) defines either a map from H to C" or, by Theorem 2.11,
to £2. This map is clearly linear and continuous. Theorem 2.11 shows moreover
that it is norm preserving and the methods of the proof also give that it is onto. By
polarization (Exercise 2.1.1) it is unitary. O
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Remark 2.13 Tt should be a reassuring fact that all infinite-dimensional separable
Hilbert spaces are isomorphic. The experience, however, is that this observation
causes some headache to anyone learning this for the first time. For in a moment
we will discuss that also Lz[a, b] is separable, so why then, oh why, do we give
all these fancy names L2[a, b], £2, ¢2G to one and the same Hilbert space? The
reason is that we are not only interested in the abstract Hilbert space on its own but
more so in representations of various algebraic and functional analytic objects on
Hilbert space. To even write down any such natural representations we need to give
separable Hilbert space its suitable interpretation as square-integrable functions,
square-summable sequences, and so forth.

Example 2.14 The most important so obtained identification of Hilbert spaces, both
historically and for the theory of ¢2-invariants, is the isomorphism L?[—m, 7] =
0%(Z) called Fourier transform. Theorem 2.12 implements this isomorphism as
soon as we have found a countable orthonormal basis of L2[—7, 7r]. We claim that

Hinx

o0
{ fu(x) = \‘/27{ } is such an orthonormal basis. It is clearly an orthonormal set
n=—oo

so we only need to show maximality which is equivalent to showing that ( f,,, g) =0
for all n € Z implies g = 0. To show the latter, the following result is key.

Theorem 2.15 Let [ be a 2w -periodic continuously differentiable function. Then
the sequence of functions 22;7 NS, ) fu converges uniformly to f.

The proof is involved and goes beyond the scope of this chapter; one has to show
Cesaro summability of the series first to conclude uniform convergence by some
estimates also involving the derivative f’, see [150, Problems II.14, I1.15, p. 64].
Now for any f as in the theorem, 29;7 ~N{Su, f) fu converges uniformly and thus
also in L2[—7t, ). Soif (f,, g) = O for all n € Z, then also

n=—oo n=—oo

(f. 8) =< > <fn,f>fn,g>= D7 (o £ fnr8) =0

Thus g lies in the orthogonal complement of the continuously differentiable periodic
functions C},[—n, m]. But C},[—n, ] is dense in L?[—7, ] because every step
function is an L2-limit of functions in C 11,[—71, ] and step functions are dense.
This completes the proof. Since the interval [—m, 7] with normalized Lebesgue
measure is isomorphic, as measure space, to the circle S ' with standard rotation
invariant Borel probability measure, we can equally interpret Fourier transform as
the isomorphism of Hilbert spaces L>(S') = ¢2(Z).

If for f € L2[—7, ] we set ¢, = (fn, ), then the equalities in Theorem 2.11
take the form

1 o0 o0 1 T
= cne™  and len|? = / | £ (0)]dx.
r= > D el =, iy

n=—oo n=—oo
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The first one is called the Fourier series presentation of f with Fourier coefficients
¢ and the second one is known as Parseval’s identity. Motivated by Theorem 2.12,
this terminology is also common usage in the abstract setting of Theorem 2.11.
Note that Parseval’s identity can be seen as the case “n = 00 of our Pythagorean
Lemma 2.4.

Exercises

2.1.1 Let (V, (-, -)) be an inner product space and let x, y € V.

(a) Show the parallelogram identity || x + y||* + |lx — y|I* = 2||lx 1> + 2[y[I>.
(b) Show that the inner product can be recovered from the norm by polarization
according to the formula

() = 4(Ux 4+ v = llx = y1?) = i(lx +iyl® = lx —iy[?).

2.1.2 Let H be a Hilbert space, K € H a closed subspace and x € H. Show that
there is a unique element z € K closest to x.

Hint: Choose a sequence (y,) in K realizing infyck ||x — y|| and show that it is
Cauchy. Exercise 2.1.1 might help. Don’t forget uniqueness.

2.1.3 Two measures 11 and p2 on the same measurable space X are called mutually
singular if there exists a measurable set A C X such that u;(A) = 0 and
u2(X \ A) = 0. Let 1 and o be two mutually singular Borel measures on the
real line. Show that L2 (R, d(u1 + w2)) is canonically isomorphic to LR, dur) &
L*(R, dua).

2.1.4 Let H be a Hilbert space and K € H a closed subspace. Show that every
element x € H decomposes uniquely as x = z + w wherez € K and w € K+ =
{veH:(y,z) =0forallz € K}.

2.1.5 Let H be a Hilbert space. Recall the Gram-Schmidt process for construct-

ing an orthonormal set vy, v2,... € H from an arbitrary sequence of vectors
Uy, uz,... € H:setv, = u, — Zk<n(vk, u,) and normalize. Apply it to the
sequence 1, x, x2,x3, ... of functions in L2[—1, 1] and show that you obtain the

sequence p,(x) = \/n + éP,, (x)forn =0,1,2,... where

Pw= ey
x) = X< —

" 21n! dx

is the n-th Legendre polynomial.

2.1.6 Show that a Hilbert space is separable if and only if it possesses a countable
dense subset.
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2.2 Operators and Operator Algebras

Let H and K be Hilbert spaces. We denote the set of morphisms from H to K
by B(H, K). Recall that a continuous bijection of topological spaces need not
be a homeomorphism. Fortunately, there is no corresponding phenomenon for
morphisms 7 € B(H, K).

Theorem 2.16 (Inverse Mapping) If T is bijective, then T is invertible.

If T is only surjective, then the theorem shows that 7" is open by factorizing T over
H/kerT. If we knew conversely that a surjective operator was open, we would get
that the inverse map of a bijective T € B(H, K) is continuous. So the above can be
restated as follows.

Theorem 2.17 (Open Mapping) If T is onto, then T is open.

We shall take the open mapping theorem for granted; a suitable reference is [150,
Theorem II1.10, p. 82]. The letter “B” in B(H, K) is meant to remind us that any
T € B(H,K) is required to be bounded which says there is C > 0 such that
ITx| < C|lx|| forall x € H. The minimal such C is called the operator norm of T
or for short just the norm of T. It is customary to also denote it by || 7'|| and we have

ITI = sup |Txlk.
lxllz=1
It thus follows from the norm properties of || - || x that the operator norm is indeed

a norm on the complex vector space B(H, K) and the induced topology is called
the uniform operator topology or simply the norm topology. One can show that
the normed space B(H, K) is complete and thus by definition a Banach space.
Two cases are of particular interest: the dual space H* = B(H,C) and the
endomorphisms B(H) = B(H, H) better known as the bounded operators on H.
For many purposes, the norm topology on B(H) has too many open sets (is
too fine), so that subsets of interest in B(H) have too small closures. That is why
one introduces two coarser topologies. The strong operator topology is the coarsest
topology in which all evaluation maps Ex: B(H) - H, T +— Tx forx € H are
still continuous. The weak operator topology is the coarsest topology for which all
the maps E, y: B(H) — C, T +— (x,Ty) for x,y € H are continuous. If H is
infinite dimensional, neither the weak nor the strong operator topologies are first
countable. This has the effect that sequences need to be replaced by nets to describe
closures of subsets. A net in a topological space X is a map I — X from a directed
set (I, <) where “directed” means it comes with a reflexive and transitive binary
relation “<” such that any two elements a, b € I have a common upper bound
celwitha <candb < c. Anet (x;)jes in X converges to x € X if for each
neighborhood U of x thereis i € I suchthat x; € U forall j > i. It s then true for
a completely general topological space X that a subset A C X is closed if and only
if all nets in A which are convergent in X have all their limits in A. It is likewise
true that a map f: X — Y of arbitrary topological spaces is continuous at x € X
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if and only if lim;e; f(x;) = f(x) for all nets (x;);e; in X converging to x. The
following result explains why one does not encounter the dual Hilbert space H* too
often in writings.

Theorem 2.18 (Riesz Lemma) Given T € H™* there exists a unique yr € H such
that T (x) = {yr, x). Moreover, we have |T|| = ||yt |l H.

Proof We only give an instructional outline. If 7 = 0, then y7 = 0 is the unique
vector doing the trick. Otherwise, there exists z € H \ker(7T'). Since T is continuous,
ker(T) is closed so that by Exercise 2.1.2, there is a unique # € ker(T") closest to z.

One checks that w = z — u € (ker T)* and that y7 = \|zTulﬂ)2 w is the unique element
as desired. Details can be found in [150, Theorem I1.4, p. 43]. |

Given T € B(H, K), we obtain the adjoint T* € B(K, H) by setting T*x =
Yi(t,x) where [(T, x) € H* is the linear functional 7 — (x, Th)x. We thus have
enforced the characterizing equality (T*x, y) = (x, T'y). From this it follows that

ker 7% = (imT)® orequivalently (ker 7*)* =imT

where the bar means closure. If T has a bounded inverse 71, then so does T*
and (T*)~' = (T—H*. By means of adjoints unitaries and isometries can be
conveniently characterized.

* Anoperator U € B(H, K) is unitary if and only if U*U = idy and UU™* = idg.

* Anoperator U € B(H, K) is an isometry if and only if U*U = idy.

* A still weaker notion is that of a partial isometry U € B(H, K) where we only
require that U*U is a projection in B(H).

* An (orthogonal) projection is an operator P € B(H) satisfying P = P* =
P2. Geometrically, P is the orthogonal projection onto im P because P2 = P
implies H = im P @ ker P and P = P* implies im P C (ker P)*, hence
imP = (ker P)* by Exercise 2.1.4. If an operator P € B(H) satisfies only
P? = P butnot P = P*, we will explicitly call it an oblique projection.

* A projection is an example of a positive operator, an operator A € B(H)
satisfying (Ax,x) > O for all x € H. We write A < B for A,B € B(H) if
B — A is positive.

» Every positive operator is in particular a self-adjoint operator: an operator T €
B(H) such that T = T*. This is an easy exercise, namely Exercise 2.2.4 (ii).

* Finally, a self-adjoint operator is a special kind of a normal operator: an operator
T € B(H) which commutes with its adjoint, 7*T = TT*.

For H = K the correspondence T + T* defines an involution: a conjugate
linear, norm preserving bijection of B(H) satisfying (T S)* = S*T* and (T*)* =
T. A short form of saying this is that B(H) is a *-algebra (read “star algebra”).
The commutant of a subset M C B(H) is given by M’ = {T € B(H)|ST =
TS forall S € M}, the bicommutantis M" = (M')'.
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Theorem 2.19 (von Neumann Bicommutant Theorem) Let M be a unital
(meaning idg € M) *-subalgebra of B(H). The following are equivalent.

(i) M is weakly closed.
(ii) M is strongly closed.
(iti) M =M".

Proof Of course (i) = (ii). To see (iii) = (i) we show that commutants are always
weakly closed. So let N C B(H) be any subset. If N' = B(H), we are done.
Otherwise, there is § € N, To € B(H) \ N’ and x € H such that STyx — ToSx =
y #0.Sothemap T — ((ST—T S)x, y) takes anonzero value at T = Ty. But since
this map is weakly continuous, it does so for an entire weakly open neighborhood
U of Tp. Thus U C B(H) \ N’ which shows that N’ is weakly closed. To see
(i) = (iii) first note that the inclusion M C M” is tautological. To obtain the other
inclusion we observe that the strong operator topology is the topology of pointwise
convergence in H so that a neighborhood basis of T € B(H) is given by

N(T;x1,...,xp;8)={S € B(H): (T — S)x;|| < ¢ forall i}.

So given T € M”, we want to find § € M within this neighborhood. Let x =
(x1,...,x,) € H". The diagonal action of M on H" embeds M in B(H") =
Mat(n, n; B(H)) as constant diagonal matrices. For this embedding, however, M’ =
Mat(n, n; M") which is why M” consists again of constant diagonal matrices with
constant entry in M” € B(H). So M” is embedded in B(H") the same way as M
is. In what follows the vectors under consideration determine which embedding is
meant. Let P be the orthogonal projection onto K = Mx. We claim that P € M.
Indeed, K is obviously M-invariant and so is K+ because M* = M. Decomposing
any y € H" uniquely as y = yx + yg1 we get for every A € M that

PAy = P(Ayk + Ayg1) = Ayk = APy

hence the claim. Now M is unital, so x € Mx and thus Tx = TPx = PTx €
K = Mx. Therefore there is S € M such that |Tx — Sx|| < e¢. In particular
ITxr — Sx|| <efork=1,..., n. |

Definition 2.20 A unital *-subalgebra of B(H) satisfying one (then all) of the
above conditions is called a von Neumann algebra.

We remark that a norm closed *-subalgebra is known as a C*-algebra (read “C-
star algebra”). So every von Neumann algebra is a C*-algebra and satisfies the so
called C* identity || T*T || = ||T ||*> which is easy to see for adjoints and can be used
to characterize C*-algebras abstractly.

Example 2.21 The trivial examples of von Neumann algebras are C (realized as
multiples of idy) and B(H). Note that one is the commutant of the other.

The von Neumann algebra we are about to construct in the next example is key.
It foreshadows that the fields of functional analysis and group theory share a vast
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overlap and exploring their mutual interaction remains an object of active research
to this day. Now and in the remainder of the text, unless otherwise stated, G will
denote a discrete, countable group.

Example 2.22 (Group von Neumann Algebra) The group algebra (or group ring)
CG is the C-vector space spanned by G with multiplication defined on the basis
G by composition in the group and on CG by linear extension. Thus CG is a
commutative algebra if and only if G is a commutative group. Requiring that G be
orthonormal turns CG into an inner product space. In concrete terms, CG consists
of finite formal sums ), _.; cog with distributive multiplication and inner product
given by

geG

(Xog€s8 2y dg8) =D, Cody.

The Hilbert space completion of CG is denoted by £°G. By construction G C ¢>G
is an orthonormal (Hilbert) basis. So elements of £2G can be represented by Fourier
series ), Cg8 With deG|Cg|2 < o0 as in Theorem 2.11. An element & € G

acts unitarily on ¢2G by g +— hg and also by g + gh~! for basis elements
g € G. By linear extension this defines the left regular representation A and
the right regular representation p of CG, respectively, and turns £2G into a CG-
bimodule. We embed the group algebra as bounded operators on £2G by the right
regular representation p: CG — B(£2G). The *-operation restricts on p(CG) to

the involution p (de(; ng> = p (deG ngil)'

Definition 2.23 The group von Neumann algebra R(G) is the weak closure of the
unital *-subalgebra p(CG) C B(£>G).

By Theorem 2.19 the group von Neumann algebra R(G) is equivalently the strong
closure of p(CG) or equivalently R(G) = p(CG)”. Whenever the distinction
matters, we will say more precisely that R(G) is the right group von Neumann
algebra of G. Exercise 2.2.9 provides a guided tour through the proof that the
commutant R(G)" coincides with the left group von Neumann algebra L(G) =
AMCG)" generated by the left regular embedding of CG. As group multiplication
is associative, left and right regular representation commute so that p(CG) lies in
B(£>G)* while A(CG) lies in B(¢*>G)?, the subalgebras of B(£>G) consisting of
left and right G-equivariant operators on ¢>G, respectively. It turns out that these
inclusions are weakly dense.

Theorem 2.24 We have R(G) = B(t2G)* and £(G) = B({*G)".

Proof By symmetry it is enough to show the first equality. To see the inclusion “C”
we only have to observe that B(£2G)* is strongly closed. So if (7;);cs is a net in
B(£>G)* converging strongly to T € B(¢?>G) and x € £>G is any vector, then for
all g € G we have

T(gx) = Egx(im Ty) = lim Ego(Ty) = lim gT; (x) = g lim T; (x) = gT (x)
iel iel iel iel
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thus 7 € B(£2G)". For the other inclusion we use that each S € R(G) = A(CG)”
is a strong limit of a net in A(CG). Hence every T € B (£2G)}‘ commutes with every
such S. This gives B(£2G)* C R(G)" = R(G). |

Example 2.25 Suppose that G in the above example is a finite group of order n.
Then ¢2>G = C" is a finite-dimensional Hilbert space, the various topologies on the
(n x n)-matrices B(¢2G) = M,,(C) agree and CG embeds as a closed subalgebra.
Thus R(G) = CG and in particular R({1}) = C.

Example 2.26 Building upon Example 2.14 let us now consider the example G = Z
of Example 2.22. The left action of the generator 1 € Z on ¢%(Z) shifts a basis
element k € Z C £*(Z) by one step: k — k + 1. By Fourier transform this

. 2 P . einx ei(n+l)x ix einx
corresponds in L“[—m, 7] to shifting a basis vector to = .
P [ ’ ] g V2 V2r V2

Setting z = ¢ and identifying C[Z] with the Laurent polynomials C[z, z™!],
it follows that the left regular representation of C[Z] on 02(Z) corresponds to
multiplication of functions in L?[—, 7] by Laurent polynomials in C[z, z~'].
Thus R(Z) = B(L*[—m, ])” consists of operators which are equivariant with
respect to Laurent polynomials. By the Stone—Weierstrass theorem every continuous
function in C[—, 7r] is a uniform limit, thus an L2-limit, of polynomials. Since
C[—m, ] C L*[—m, 7] is dense, it follows that any f € L*[—m, 7] is an L?-limit
of polynomials, f = limg pi. Since T € B(Lz[—rr, 7])* is continuous, we thus
have

Tf =T(lim py) = lim Tpg = lim T(peD) = (lim p)T(1) =T(1)- £,
k— 00 k— 00 k— 00 k—00

so T is given by multiplication with the function 7(1) € L?*[—m, 7] where 1 €
L?[—m, 7] is the constant function. We claim that in fact 7'(1) lies in the subspace
L®[—m, ] of L>[—m, ] because T is essentially bounded by || T ||. Suppose on the
contrary the set {|7(1)| > ||T||}, which is well-defined up to a null set, had positive
Lebesgue measure. Then there is ¢ > 0 such that the set A = {|T(1)| > |T|| + €}
still has positive measure. Let x4 be the characteristic function of A which is equal
to one on A and zero elsewhere. Then the vector f4 = f4 ¢ L?[—m, 7] has

VA(A)
norm one, so that we have

IT)? > ||T(fA)||2=/ TR X dn > (1T + &)

- A(4)

which is absurd and proves the claim. Conversely, multiplication with any g €
L*°[—m, 7] clearly defines an element in B(L2[—7t, 7])*. These constructions are
mutually inverse. We thus have proven

R(Z) = L®[—m, 7] = LO(S)).

With absolutely no effort this result generalizes to R(Z") = L°°(T") where T" is
the n-dimensional torus.
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Remark 2.27 The isomorphism R(Z) = L*(S') is only one appearance of a way
more general principle: every abelian von Neumann algebra acting on a separable
Hilbert space is isomorphic to L*°(X, u) for some standard measure space (X, ().
Similarly, every unital abelian C*-algebra is isomorphic to C(X), the continuous
functions on a compact Hausdorff space X. Isomorphism of abelian von Neumann
algebras corresponds to isomorphism of measure spaces and isomorphism of abelian
unital C*-algebras corresponds to homeomorphism of compact Hausdorff spaces.
So one might want to think about a noncommutative von Neumann algebra as a
“noncommutative measure space” whereas a noncommutative C*-algebra should
be a “noncommutative topological space”. The study of operator algebras is there-
fore frequently subsumed under the somewhat glamorous notion noncommutative
geometry.

Example 2.28 For each positive integer n, we can amplify the group von Neumann

algebra to B ((EZG)”))‘ where G acts diagonally by A. The discussion above
Theorem 2.24 and the proof of the bicommutant theorem (Theorem 2.19) reveal
that

A , ,
B ((5%)”) = (MCG)idyagy) = My(M(CG)) = My(R(G)).

So B ((€2G)")A is equivalently the weak closure of the (n x n)-matrices M,,(CG)
embedded as unital *-subalgebra of B ((EzG)") by matrix multiplication from the
right using p. The *-operation acts on M, (CG) by transposition and involuting the
entries as in Example 2.22.

Example 2.29 A von Neumann algebra M whose center Z(M) = M N M’ equals
Cidp is called a factor. It is not hard to see that for the free group F,, onn > 2
letters, the group von Neumann algebra R(F},) is a factor. In fact, R(G) is a factor if
and only if G is i.c.c. meaning that every nontrivial conjugacy class in G is infinite.
Here is an open problem in von Neumann algebras.

Question 2.30 (Free Factor Problem) Letn > m > 2. Are R(F,) and R(F,)
isomorphic as von Neumann algebras?

To make this question meaningful, we need to define what morphisms of von
Neumann algebras should be. This is somewhat subtle and following [138], it
is best done once an intrinsic definition of von Neumann algebras is available:
Without reference to some Hilbert space, Sakai [154] characterized a von Neumann
algebra as an abstract C*-algebra M that admits a predual: a Banach space V
whose dual Banach space V* = B(V,(C), defined as below Theorem 2.17, is
(isometrically) isomorphic to M. Preduals are unique in the strong sense that for
any two isomorphisms my: V* — M and my : W* — M, there exists a unique
isomorphism F: W — V withmy = mwy o F*. Now a morphism of von Neumann
algebras is a C*-homomorphism f: M — N which admits a predual: there exist
isomorphisms m: V* — M and n: W* — N and a Banach space morphism
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F: W — Vsuchthatno F* = f om. Isomorphisms of von Neumann algebras are
invertible morphisms.

The weak-* topology on the dual Banach space V* is the coarsest topology that
makes the evaluation maps E,: V* — C, ¢ — ¢(x) for all x € V continuous. By
uniqueness, the weak-* topologies of all preduals induce one and the same topology
on a von Neumann algebra M. It is called the ultraweak operator topology of M. As
it turns out, a C*-morphism M — N of von Neumann algebras is a morphism of
von Neumann algebras if and only if it is ultraweakly-ultraweakly continuous. Even
better, an abstract *-isomorphism M — N is automatically an ultraweak-ultraweak
homeomorphism [20, II1.2.2.12]. So long story short: in Question 2.30, we could
have equivalently asked whether R(F;) and R(F},,) are isomorphic as *-algebras.

Of course neither are F,, and F,,, isomorphic as groups nor are CF, and CF),
isomorphic as C-algebras. An abstract formulation of the easy reason is that the
functor C[ - ] from groups to C-algebras is left adjoint to the unit group functor (- )*
from C-algebras to groups, so an algebra homomorphism CF,, — C is specified by
exactly n elements in C*. But those homomorphisms do not extend to R(F;,) and it
is notoriously hard to keep track of what is happening after taking weak closures.
For more on the theory of factors, we recommend Jones’ lecture notes [83].

Exercises

2.2.1 Work out the details in the proof of the Riesz lemma (Theorem 2.18).

2.2.2 Let V be a normed space with completion V and let W be a complete normed
space. Show that a bounded linear operator 7: V. — W extends uniquely to a
bounded linear operator 7: V — W and ||T| = ||T|.

2.2.3 Let H be a separable Hilbert space. We consider the three topologies Tyeak,
Tstrong and Thorm on B(H).

(1) We have Tyeak C Tstrong C Tnorm-
(i) If H is infinite dimensional, then both of these inclusions are proper. Hint: Fix
H = (2 and consider operators which delete or shift members of sequences.
(iii) The involution T + T* on B(H) is weakly and norm continuous but not
strongly continuous unless H is finite dimensional.

224 LetT,U € B(H).

(1) If U is a partial isometry, so is U*.

(ii) The operator T is self-adjoint if and only if (Tx, x) € R forall x € H. Hint:
Can one compute (T x, y) forall x, y € H if one only knows the values (T x, x)
forx e H?

(i) If T is self-adjoint, we have ||T'|| = supj, =1 [{Tx, x}|.
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2.2.5 In this exercise we construct the polar decomposition of an operator T €
B(H, K).

(i) Let A € B(H) be positive. Show that there is a unique positive operator B €
B(H) such that B> = A. Hint: You may use that the power series about zero
of the function f(z) = ~/1 — z converges absolutely for |z| < 1.

(i1) Show that there exist a partial isometry U € B(H, K) and a positive operator
P € B(H) such that T = UP. Hint: Set P> = T*T. What effect should U
have onim P? And on ker P?

(iii)) Show that U and P can be arranged to satisfy ker U = ker P and that requiring
this determines them uniquely. We set |T| = P and call T = U|T| the right-
handed polar decomposition of T .

(iv) Construct a left-handed polar decomposition T = |T|U by a careful use of
adjoints. What condition makes it unique?

(v) Show that if H = K and T is normal (commutes with T%), then the
partial isometries and the positive operators in the right- and left-handed polar
decompositions agree (and commute).

2.2.6 LetT € B(H).

(i) The operator T is invertible if and only if 7 has dense image and T is
additionally bounded from below meaning ||Tx| > ¢llx|| for some ¢ > 0
andall x € H.

(i) If T and T* are bounded from below, then T is invertible.

(iii) Every T € B(H) is a linear combination of two self-adjoints.
(iv) Every T € B(H) is a linear combination of four unitaries. Hint: Review
Exercise 2.2.5 (1) from above.

2.2.7 Let A C B(H) be a C*-algebra and let T € A be invertible in A. Show that
the partial isometry and the positive operator in (both) the polar decomposition(s)
of T lie in A. Remark: If A is even a von Neumann algebra, the conclusion holds
true without assuming T was invertible.

2.2.8 Let H be a Hilbert space, let M C B(H) be a von Neumann algebra and let
2 € H be a vector. We say that Q2 is cyclic for M if M2 C H is dense. We say that
Q is separating for M if for T € M we have TQ2 = Oif and only if 7 = 0.

(i) Show that € is cyclic for M if and only if €2 is separating for M.
(i) Show that the unit element e € G constitutes a cyclic and separating vector
e € %G for the group von Neumann algebra R(G) = p(CG)".

2.2.9 Consider the conjugate linear involution J : £2G — £2G givenby }_ 2 €8>
Do Ce g L

(i) Show that J(Te) = T*e forall T € R(G) = p(CG)". Hint: First consider
T € p(CG) < R(G). Remember that the adjoint map is not strongly
COntinuous.

(ii) Show that (Jx, Jy) = (y, x) and JT J(Se) = ST*(e) where x, y € £>G and
S, T € R(G).
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(iii) Show that JR(G)J C R(G)'. Hint: Use (ii) above and Exercise 2.2.8 (ii).

(iv) Show that the formula J(Te) = T*e also holds for T € R(G)'. Hint: It is
enough to show that J (T e) and T*e are mapped to the same complex number
under (-, Ae) forall A € R(G).

(v) Show that JR(G)J = R(G)'. Hint: Use Exercise 2.2.8(i) and 2.2.8 (ii).

(vi) Conclude p(CG) = A(CG)”. In words: left and right group von Neumann
algebras are commutants of one another.

2.3 Trace and Dimension

Here is what makes group von Neumann algebras so useful.

Definition 2.31 Lete € £2G be the canonical basis vector given by the unit element
in G. The linear functional

trrg): R(G) = C, T (e, Te)

is called the von Neumann trace or simply the trace of R(G).

Of course, a linear functional only deserves to be called “trace” if it satisfies the
trace property trgG)(ST) = trg(g)(T S) for all S, T € R(G). This can be checked
by an easy calculation if S, 7 € CG C R(G) and thus holds for all of R(G)
because trg(g) is weakly continuous by definition. To make the reader value the
availability of a trace in R(G) from the very start, we should say that for an infinite
dimensional Hilbert space H there does not exist any nonzero linear functional
tr: B(H) — C satisfying tr(ST) = tr(T'S), not even if we do not impose any
continuity requirement whatsoever. The von Neumann trace does extend, however,
to the amplified group von Neumann algebra of Example 2.28 by summing up
the traces of the diagonal entries which clearly maintains the trace property. The
survival of the trace when passing from linear algebra to the infinite-dimensional
setting of group von Neumann algebras will later in the course allow us to recover
two further notions from linear algebra: dimension and determinant.

Example 2.32 To keep up with our running example we spell out that the trace
of f € L®[—m, ] = R(Z) is given by trrz)(f) = 2; ffn f(x)dx. For any
measurable subset A C [—m, 7] the characteristic function y4 € L°°[—m, 7]
satisfies x4 = x4 = X/% and thus is a projection. We have trg(z)(x4) = 5
where A denotes Lebesgue measure. So the trace of a projection in M, (R(Z)) can
take any real number in [0, n] as value. Note that projections in M, (C) must have
integer traces in [0, n].

We would like to define traces also of endomorphisms (bounded G-operators)
of an abstract Hilbert space H with isometric linear left G-action. Say H comes
equipped with a fixed isometric linear embedding i: H < (¢>G)" for some n
which is equivariant with respect to the diagonal A-action on (£°G)". Then H is
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identified with a closed G-invariant subspace of (£2G)” and we know what to do.
Let PLiy € B((EzG)"))‘ be the orthogonal projection onto i (H) and let B(H)G
denote the endomorphism set of H.

Proposition 2.33 The linear functional B(H)° — C given by
T — trﬂ(G)(l oT o prl(H))

is independent of the choice of embedding i: H < (£*>G)".

Proof Let j: H < (£>G)™ be another linear isometric G-embedding. It is clear
that the trace is invariant under stabilization

B((£2G)") — B((£*G)"™™*, T Ta®0

so that we may assume n = m. Using the inverse mapping theorem (Theorem 2.16)
the two embeddings i and j define a unitary j o i 1. i(H) — j(H) which we
extend to a partial isometry u on (£2G)" by setting it equal to zero on i (H)™. By
construction, u satisfies j = u o i and hence, taking adjoints, pr ) = prjgy o u™
Thus

trrigy(joT Oprj(H)) = REI(‘;)(M oioT oprypyyo u*) =

=trg@)ioT o PLim) © u*u) =

= tr (ioT opr; g opr; =
R(G)( PTi(H) © PYicay)
= trr(c)(i o T o pry(gy)- |

So to obtain a well-defined trace we do not need a particular embedding H —
(£>G)", only existence matters. This explains the following definition.

Definition 2.34 A Hilbert L(G)-module (also Hilbert G-module or just Hilbert
module) is a Hilbert space H with linear isometric left G-action such that there
exists a linear isometric G-embedding H — (£2G)" for some n.

To justify the terminology “£(G)-module”, one observes that the G-action on
H extends uniquely to a linear £(G)-action as follows. We write u € L(G)
as a strong limit of group ring elements u = s-lim,-EM(deG ci,gg) and set
U-x = lim,-€1(zg€G Cig8 - x) for x € H. Well-definedness and uniqueness is
easily established with the help of any G-embedding H < (£2G)".

More precisely, a Hilbert module in the above sense should be called a finitely
generated Hilbert module as opposed to a general Hilbert module for which we
would require existence of a linear, isometric G-embedding into £>G ® K for some
possibly infinite dimensional Hilbert space K. Here £>G ® K is the Hilbert space
tensor product as discussed in (2.1) on p. 12, with the left G-action defined on



26 2 Hilbert Modules and von Neumann Dimension

elementary tensors by h(g ® x) = (hg) ® x. General Hilbert modules will not pop
up before Chap. 4 so that for now we will leave the assumption of finite generation
implicit.

We will say that a Hilbert module H is free if a G-equivariant unitary H >
(£2G)" can be chosen as embedding. Morphisms of Hilbert £(G)-modules are
bounded G-operators. Proposition 2.33 tells us that endomorphisms of Hilbert
L(G)-modules have a canonical trace which we still denote by trg(). Let us analyze
what properties this trace has on offer.

Theorem 2.35 (von Neumann Trace) Let H be a Hilbert L(G)-module.

(i) Linearity. The trace trg(g) is C-linear.

(ii) Weak continuity. The trace trg() is weakly continuous.

(iii) Trace property. Let s, t € B(H)C. then trR(G) (st) = tre(c) (ts).

(iv) Faithfulness. Let t € B(H)C. Then trr(c)(t*t) = 0 if and only if t = 0.
(v) Positivity. Let s, t € B(H)Y and s < t. Then trr(G) (s) < trg(G) ().

Proof Fix an embedding i: H — (£*G)". Linearity is clear. To see (ii) we only
have to convince ourselves that the map B(H)Y — B((£2G)), t +— 1, given by
t =i ot opr), is weakly continuous. So let 7 € B(H)Y be weak limit of the net

(t;)jer in B(H)C. Then forall x, y € (¢2G)" we have
?g} {x,t5y) = 1}?} {(x,iotjopry)(y) = %I} (Pricay (), £ (Pry oy (¥))) =
= (PLi(a) (X), 1Py ) = (X, 1Y),

thus #; — ¢ weakly.

Since pr; gy o i = idy, we have st = s 1. Therefore (iii) follows from the trace
property in the amplified algebra B((£2G)™)C.

To show (iv) we first note that since i* = pr; (), we have moreover 1* = t*. For
t*t € M,,(R(G)) we thus have

n n n n
trr(G) (1) = Y e, (t*1) jje) = Y (e, (t"1) jje) = ZZ (%) jtize)
n n n
=D e e = Y llgjel?
j=1k=1 jk=1

which in case trgg)(t*1) = 0 gives tjge = O forall 1 < j, k < n. For any other
basis vector g € £2(G) we then likewise have tjikg = tjr(ge) = gtjre = 0. Thus
trr(c) (t*t) = 0 implies ¢t = 0.

To see (v) we only have to show trgg)(r) > 0if r € B(H)Y is positive. But this
holds by definition because r is likewise positive. O
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In Sect. 2.1 we listed various ways in which a new Hilbert space can arise out of
old Hilbert spaces. All of these constructions extend from Hilbert spaces to Hilbert
L(G)-modules.

(i) If H is a Hilbert G-module, then so is every closed G-invariant subspaces
K C H. Just restrict any embedding H < (¢2G)" to K. We call K a Hilbert
submodule.

(i) If K C H is a closed G-invariant subspace of a Hilbert G-module H, then the
quotient H/K is a Hilbert module since it can be identified with the closed
G-invariant subspace K- C H. We call H/K a Hilbert quotient module or
Hilbert factor module.

(iii) For Hilbert G-modules H; and H, with embeddings i1: H; — (€2G)”1 and
ir: Hy = (£>G)™ we obtain an embedding i1 ®ir: H) ® Hy — (£2G)" 1"
showing that the Hilbert direct sum Hy @ H> is a Hilbert module.

(iv) Let H; be a Hilbert G{-module and let H be a Hilbert G>-module. Pick
embeddings ij: Hy — (€2G1)" and ip: Hy — (€2G2)’”. These tensor up
to give an embedding

i=i1Q®ir: H ® Hy = (£°G)" @ ((2Go)™ = (2G| ® £2Go)™
= ((2(Gy x G)™

where all isomorphism are canonical, see the discussion in (2.1) on page 12.
This shows that H; ® Hj is a Hilbert (G| x G,)-module called the Hilbert
tensor product of Hy and Hj

(v) Here is a simple but important new concept. Let Go < G be a subgroup of
finite index m. We have a functor resg0 from Hilbert G-modules to Hilbert
Go-modules obtained by restricting the group action from G to Gy. For
the embedding it is enough to observe that a system of representatives for
G/ G determines a Go-unitary resg0 2(G) = (£2Go)™. We call reng(H)
a restricted Hilbert module.

The von Neumann trace behaves well with respect to constructing new Hilbert
modules out of old Hilbert modules. More precisely, if a Hilbert module arises as a
direct product, tensor product or by restriction, the new traces can be expressed in
terms of the old ones as follows.

Theorem 2.36 (Computing von Neumann Traces)

(i) Additivity. Suppose we have a commutative diagram of Hilbert modules

i p

P

0 H i P

0 0
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with exact rows. Then

trr() (s) = trr() (1) + trr(G) (?)-

(ii) Multiplicativity. Let Hy be a Hilbert G1-module and let Hy be a Hilbert G-
module. Two morphisms s € B(H)®! andt € B(H»)°2 define a morphism
s®t € B(H, @ Hy)9'*92 such that

tIR(G xGy) (8 @ 1) = tIr(G,)(8) - IR(G,) (1).

(iii) Restriction. Let H be a Hilbert G-module and let Gy < G be a subgroup of
finite index. Then for every s € B(H) we have

R(Go) (1esg, (8)) = [G: Gol trr(G) (s).

Proof We start with (i). By the inverse mapping theorem (Theorem 2.16) both
i: H— kerp and pt = Piter pyt & (ker p)t — L are invertible and the latter
means that every short exact sequence of Hilbert modules is split. Let i = u1]i|
and p = | pT|uy be polar decompositions of i and p=, respectively. Arguing as in
Exercise 2.2.7 we see that all appearing operators are themselves G-equivariant. We
obtain a unitary u = u; @ u3: H ® L — K and a commutative diagram

0 H HoL L 0
li~! u Ip*

0 H—sg—C o1 0
r N t

0 H—s>k—t > 0
lil u* Pt

0 H HoL L 0

where the top and the bottom row are the standard short exact sequence.
The diagram tells us that the endomorphism u*su is given in block form as
(""'(;‘ 1 |pi|jr|pi\>' Letj = 1 ® jp: H® L < (26" ® (£2G)™ be an
embedding coming from two embeddings j; and j» of H and L, respectively.
Since u is unitary, j o u* is an (isometric) embedding K <> (¢>G)". Thus
trr(c) (s) = trr(g) (u*su). So the block matrix representation gives

trr(G) (s) = trree (i |7i] ™Y + trre) (I p 17 pL D) = trrie) () + trre) (1)

by the trace property, Theorem 2.35 (iii).
We now prove (ii). The morphisms s € B(H S and r € B(H»)9? define the
morphisms ®t € B(H; ® H,)C1xG2 by requiring (s ® 1) (x1 ® x2) = s(x1) @ 1(x2)
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on elementary tensors. Retaining the notation from the previous proof, we have a
diagram

00— Hy ® Hy 22 (126" ® ((2G)" — > im(i1 @ i) — 0

st li@t_ 10

00— H ® Hy—=2 (026" ® (126" —2> im(iy @ in)- —= 0.

By additivity (i) we obtain trr(G,xG,) (s ® 1) = URG,;xG,) (s ® t). The proof
concludes with the computation

IR(G1xG) (s ®1) = (e e, (s @1)(e®e)) =(e®e,s(e) ®1(e)) =
= (e, s(e)) - (e, 1(e)) = trr(G)(5) - trr(G,) (1)
where we applied the definition of inner product on Hy Q¢ H» from page 12.
To see (iii) we choose a system of representatives gi,...,8n € G for the
cosets in G/G giving rise to a unitary of Hilbert spaces u: (£2Go)" — (>G

determined by (h1,...,hy,) — hig1 + -+ + hugm for h; € Gyp. This unitary
is moreover Go-equivariant when viewed as a map u: (£2Go)" — 1resg0 (£2G).

Thus u*: 1resg0 ((?G) — (£*Go)™ is an embedding showing that resg0 (L2G) is a

Hilbert Gp-module. For any s € R(G) = B(£2G)* we have resg0 (s) = u*su €
M, (R(Go)). A moment’s thought gives

resG, (s),;(e) = preagy (gjs(@)g; )
from which it follows that
trR(Go) resgo(s)” = (e, gis(e)gfl) = (gflegi, s(e)) = (e, s(e)) = trr(G)(s)

independent of i. Thus we have trqq(GO)(reng (s)) = mtrg(c)(s). The general case
s € B(H)Y follows by composing a given embedding of H with the unitary
u* @ --- @ u* to obtain an embedding of resg0 (H). Then one can view resg0 (s) as
an element of M, (M,,(R(Gg))) that satisfies the relation resg0 (s)il_ = resg0 (sii).
Therefore trg(G,) (resg0 (5)) = m trg(g)(s) follows from the above. |

Definition 2.37 Let H be a Hilbert £(G)-module. We define the von Neumann
dimension of H as

dimg(G)(H) = trg(g) (idg).

Example 2.38 If G is the trivial group, a Hilbert module is just a finite dimensional
inner product space. Since R(G) = C, we should have dimg(s) = dimc and indeed,
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this notational collision is deliberate: von Neumann dimension with trivial G is
ordinary complex vector space dimension. A computer scientist might say “we have
overloaded the dimension function”.

Example 2.39 If G is a finite group, the underlying complex vector space of a
Hilbert G-module H is still of finite complex dimension. Setting G¢ equal to the
trivial subgroup, the restriction property of the trace, Theorem 2.36 (iii), shows that
dimR(G) (H) = dlrlné(;;‘H

Note that CX with trivial G-action is a Hilbert G-module because we can embed
it by i : CK < (£2G)* sending the k-th coordinate zx to f/kn (g1 4+ -+ gn) inthe

k-th coordinate of (¢2G)* for G = {e = g1, g2, ..., gn}. The formula from above
gives dimyg(G)((Ck) = ﬁ

Example 2.40 If G = Z, then every measurable subset A C [—m, ] gives rise
to a closed subspace L2A C L2[—71, 7] & Ez(Z). In Example 2.32 we saw that
trRz) XA = Az(j‘;‘ so that dimg(z) (L2A = k’\z(f‘). This shows that von Neumann

dimension can take any nonnegative real number as value.

Example 2.41 Let H < G be a subgroup. The Hilbert space ¢2(G/H) has an
isometric, linear G-action defined on the orthonormal basis G/ H by left translation
of cosets. We claim that this action turns ¢2(G/H) into a Hilbert £(G)-module if
and only if H is finite. In the latter case we obtain dimg(g) *(G/H) = | 1}1\ .
Indeed, if H = {h1 = e, ha, ..., h,} is finite, then sending the element gH
to \}n (gh1 + --- + ghy) defines a well-defined, linear, isometric G-embedding

i: 03(G/H) — £2G. In this way 02(G/H) is embedded in £2G as the subspace of
all Fourier series with constant coefficient throughout left H-cosets. The projection

onto this subspace is given by right multiplication with ,11(h1 + -+ 4+ hy). The unit

matrix coefficient of this projection is i showing that dimg(c) ¢*(G/H) = | flI| .

On the other hand H € ¢>(G/H) always gives an H-invariant vector, whether H
is finite or not. So if there is a linear G-embedding EZ(G/H) <> (£2G)", there exists
a nonzero H-invariant vector in (¢2G)". Since G acts diagonally on L26)", any
nonzero coordinate of this H-invariant vector gives a nonzero H -invariant vector
x € £2G. Letx = > cgg be the Fourier series of x. Then H-invariance says
hx = x which means

geG

PILENEDILT:
geCG geG

so that ¢;,—1, = ¢g forall g € G and h € H. Thus the Fourier coefficients of x are

8
constant throughout right H-cosets in G. If H is infinite, £2-summability says they

all vanish, contradicting that x is nonzero.

Before we translate properties of von Neumann trace to properties of von
Neumann dimension, we must point the reader’s attention to an important pecu-
liarity of the category of Hilbert spaces and thus also of Hilbert £(G)-modules: a
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monomorphism which is also an epimorphism may fail to be an isomorphism! The
problem is that in the diagram of Hilbert modules

n
)
H > K Z L
5]

it is enough that s have dense image to conclude t; = 1, fromt; o s =1, o 5.

Example 2.42 Consider the polynomial p(z) = z — 1 acting on L>(S!). A function
f € ker(p(z)) must have constant Fourier coefficients but then Parseval’s identity
(or simply £2 summability) requires that they all vanish, so f = 0. For the same
reason the adjoint p*(z) = z~' — 1 is injective, thus im p(z) = ker(p*(z))* =
{O}J- = L*(SY), so p(2) has dense image. But the constant function 1 € L2(Sh
has no preimage because its Fourier coefficients would have to satisfy ¢, = ¢ and
c_k = c—1 forall k > 1 as well as co — c_; = 1. There is no square summable way
to make that happen.

To do justice to this phenomenon we introduce the following terminology.

Definition 2.43 A sequence H 'y k 25 L of Hilbert modules is called weakly
exact at K if ker p = imi. A morphism s: H — K is called a weak isomorphism

if0— H—> K — 0is weakly exact.

With these notions at our disposal we can set up a handy tool box for computing
von Neumann dimension.

Theorem 2.44 (Computing von Neumann Dimension)

(i) Normalization. We have dimgg)(£*G) = 1.
(ii) Faithfulness. For a Hilbert L(G)-module H we have dimgc)(H) = 0 if and
only if H is trivial.
(iii) Outer regularity. Let {H;};es be a system of Hilbert submodules of a Hilbert
L(G)-module H directed by containment “2”. Then

di . . N
1IMR(G) m H, llgf dlmR(G) H,
iel
(iv) Inner regularity. Let {H;};c; be a system of Hilbert submodules of a Hilbert
L(G)-module H directed by inclusion “Z”. Then

dimg(c) U H;, = sup dimg(G) H;.

iel iel

(v) Additivity. Let 0 — H LN K2 L-—0bea weakly exact sequence of
Hilbert L(G)-modules. Then

dimgg) K = dimgg) H + dimg) L.
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(vi) Multiplicativity. Let H be a Hilbert L(G1)-module and let Hy be a Hilbert
L(G»2)-module. Then

dimg(G,xG,) H1 ® Hy = dimg(,) Hi - dimg(g,) Ha.

(vii) Restriction. Let H be a Hilbert £(G)-module and let Gy < G be a subgroup
of finite index. Then

dimg(G,) reng(H) = [G: Goldimgg) H.

Proof Property (i) is clear. Properties (ii), (vi) and (vii) are immediate consequences
of Theorems 2.35 and 2.36. Property (iii) follows from (iv) and (v) by considering
the system {HiJ-},-EI. It remains to show (iv) and (v). For (iv), let L = Uie[ H;.
Given x € H and ¢ > 0, there exists iy € I such that pr; (x) lies in an open ¢-ball
around pry;, (x) because pry;, (x) is the point closest to x in H;, by Exercise 2.1.2.
Thus ||pr; (x) — pry, (x)|| < e foralli > ip, so the net (eri)iEI converges strongly,
hence weakly, to pr;. Since the trace is weakly continuous by Theorem 2.35 (ii),
this gives

dimg(G) L = trgG)(pry) = 11161111 trR(G) (eri) = supdimg(g) H;.
iel

We should start the proof of (v) with the heads-up that unlike an exact sequence, a
weakly exact sequence of Hilbert modules need not split. Nevertheless, i ® p*: H &
L — K is a weak isomorphism. Even better, for the partial isometry u in the polar
decomposition of i & p* we have uu™ = pr; ;e oy = idg . Thus u is unitary and
therefore K is isomorphic to H @ L. Now (v) follows from additivity of the trace,
Theorem 2.36 (i). |

This last theorem shall conclude our quick trip through functional analysis. We
will however come back to it in Chap. 5, Sect. 5.2, when we will explain functional
calculus in various operator algebras and the spectral theorem. For now, we have
collected enough material to return to our original objective: equivariant topology.

Exercises

2.3.1 Let G be a finite group of order n. For every prime divisor p | n construct a
projection P € R(G) with trg(g)(P) = 11).

2.3.2

(i) Show that the group ring CG is directly finite: if ab = e for a, b € CG, then
also ba = e. Hint: Consider right multiplication by a and b as operators on
£2G.
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(i1) Extend this result from C to any field F of characteristic zero. Hint: Only finitely
many elements of F occur as coefficients in a and b.

Remark: If F is a field of positive characteristic, direct finiteness of F G is open (in
general) and known as Kaplansky’s direct finiteness conjecture.



Chapter 3 )
¢2-Betti Numbers of CW Complexes Shethie

3.1 G-CW Complexes

Let us consider a space X with a left action of a (discrete, countable) group G by
homeomorphisms. Say X carries in addition the structure of a CW complex so that
X is filtered by skeleta X,,. As usual, when two structures are given on one object,
we want to reconcile them by imposing some compatibility. Recall that an open n-
cell E C X is a connected component of X, \ X, _1. An open cell is an open n-cell
for some n.

Definition 3.1 We say that G acts cellularly on the CW complex X if for each open
cell EC Xandeachg € G

(1) the translated set gE is again an open cell in X,
(i1) if gE intersects E in a nonempty set, then g leaves E pointwise fixed.

By invariance of domain, condition (i) is equivalent to requiring that the transla-
tion map defined by g be cellular (respect the filtration by skeleta). Condition (ii)
might look a little less natural. It says that the isometry group S3 of the standard
2-simplex does not act cellularly with respect to the CW structure indicated on the
left in Fig.3.1. Just observe that every g € S3 translates the only 2-cell to itself
but g does not leave it fixed pointwise unless g = ¢; so condition (ii) is violated in
the strongest sense. The group S3 does act cellularly, though, after one barycentric
subdivision as depicted on the right of Fig. 3.1.

This example illustrates the idea of condition (ii). It ensures the cellular
triangulation is sufficiently fine to describe the group action in combinatorial terms.
This is what we will explain next. Since X is a CW complex, we can choose pushout
diagrams that provide us with a homeomorphism

Xn \ Xn1 = ]_[ DDn
J€JIn
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Fig. 3.1 Two different CW structures of the 2-simplex

where D" is the open n-disk. Condition (i) says G permutes the components of this
space. So G acts on the index set J,. Let I, = G\ J, be the set of orbits and fix one
element in each orbit i € I,. If H; denotes the corresponding stabilizer group, we
obtain the description J, = [ | iel, G/H;, hence

Xo\ Xpo1 = | [ G/H: x D"

i€l

because G, thus G/ H;, is discrete. Condition (ii) implies that this map becomes a G-
homeomorphism when G acts diagonally on G/ H; x D" by left translation on G/ H;
and trivially on D". This gives us the idea that just like a CW complex is obtained
inductively by gluing in cells, it should be possible to construct a CW complex with
cellular G-action by gluing in equivariant G-cells of the form G/H x D" for some
subgroup H < G.

Theorem 3.2 Let X be a CW complex endowed with a left action by a discrete
group G. The following are equivalent.

(i) The group G acts cellularly on X.
(ii) The skeleta X, are G-invariant subspaces and there exist pushouts in the
category of G-spaces and G-maps

1] G/H:x s" '~ x,_,

iel,
l i)l jn

1 G/Hix D" —2+ x,,.

iel,

Proof (ii) = (i) is clear. If (i) holds, the above construction gives us diagrams as in
(i1). These are diagrams in the category of G-spaces, as required, but we only know
that they are pushouts in the category of spaces. To see that they are pushouts in the
category of G-spaces, let f: X,_1 — Z and g: ]_[ieln G/H; x D" — Z be G-
maps with fog, = goi,. We obtain aunique map u: X, — Z withuo j, = f and
uoQ, = g.Itremains to show that u is G-equivariant. But X, is the disjoint union of
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X,—1 and O, (Uieln G/H; x Dn) and on these two subspaces the map u restricts

to the maps f and g along the inclusions given by j, and by the restriction of Q,
to[[;c 1, G/Hi x D", respectively. Since f and g are G-equivariant by assumption,
we obtain (ii). |

Definition 3.3 A G-CW complex is a CW complex X with an action by a discrete
group G which satisfies either of the two conditions in Theorem 3.2. A G-CW
complex X is called

* finite type if it has finitely many equivariant n-cells for every n,
* finite if it has finitely many equivariant cells altogether,

» proper if all stabilizer groups are finite,

* free if all stabilizer groups are trivial.

We remark that if G is not a discrete group but any locally compact Hausdorff
group, we can still take Theorem 3.2 (ii) as the definition of a G-CW complex where
we require that the G-action be continuous and all stabilizer groups H; be closed
subgroups. But again, unless otherwise stated, G will denote a discrete, countable
group in what follows. Be aware that if G is infinite, a finite G-CW complex X
must not be a compact space. In fact a G-CW complex is finite if and only if it is
cocompact meaning that the quotient space G\ X is compact.

The quotient space N\ X of a G-CW complex by a normal subgroup N < G isa
G/N-CW complex in a canonical way. For N = G this says that the quotient space
G\ X is an ordinary C W-complex. If a group G acts cellularly on a CW complex X,
then so does every subgroup Gy < G. Therefore restricting the group action defines
a functor resg0 from G-CW complexes to Go-CW complexes. Every equivariant G-
cell G/H x D" of X gives [G: Go]-many equivariant Go-cells Go / H N Go x D"
in 1resg0 X.

The subdivided 2-simplex from Fig. 3.1 is an example of a finite, proper S3-CW
complex which is not free. Figure 3.2 displays its equivariant cells. Here is a large
supply of examples of free G-CW complexes.

Example 3.4 Let X be a connected, finite type CW complex. Then every Galois
covering of X is a connected, finite type, free G-CW complex where G denotes
the deck transformation group. In this case, the examples are exhaustive: for every

Fig. 3.2 S3-equivariant cells
of the subdivided 2-simplex:
there are three 0-cells (circles,
triangles, square), three
1-cells (dashed, dotted, solid)
and one 2-cell (gray)
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connected, finite type, free G-CW complex X the projection map X — G\X is a
Galois covering.

Exercises

3.1.1 Let G be a group and let Go < G be a subgroup of finite index. Find the left
adjoint to 1resg0 : R(G)-mod — R(Gp)-mod.

3.1.2 Let X be a G-CW complex and let Go < G be any subgroup. We obtain
a Go-CW complex resg0 X by restricting the group action from G to Gy. This

construction clearly gives a functor resg0 : G-CW — Go-CW. Find its left adjoint.
Hint: Quite a few details need attention in the construction. In this exercise (and
only in this one!) a sketchy proof shall do.

3.1.3 Consider the real line R. We turn it into a CW complex X by decreeing that
each integer is a O-cell and that the intervals connecting adjacent integers are 1-
cells. Let z, r: R — R be the transformations#: x — x + 1 andr: x — —x. Let
Dy, = (t, r) be the subgroup of the isometry group of R generated by ¢ and r. By
construction, this group comes with an action Dyo ™ X.

(i) Make yourself aware that this action is not cellular.
(i) Find a subdivided CW structure Y for which D, does act cellularly. Show that
the Doo-CW complex Y is finite and proper but not free.

3.2 The £3-Completion of the Cellular Chain Complex

Let X be a G-CW complex. The translation map of every g € G defines self-
homeomorphisms (X, X,—1) = (Xn, X;—1) and thus an automorphism of the
relative singular homology group H, (X, X,—1). The latter is by definition the n-th
cellular chain group of X, so we see that the cellular chain complex C,(X) consists
of left ZG-modules. The differentials in C,(X) are the boundary maps in the long
exact sequence of the triple (X, X,—1, X,—2). It is crucial in our context that these
are natural: For a cellular map f: X — Y of CW complexes X and Y, the diagram

Jx
Hn(Xnv Xn-1) Hy (Yy, Ynfl)
fx
dy Hn—l(Xn—l)—> Hn—](Yn—l) dn
/ S+ \

Hn—l(Xn—l,Xn—2) Hn—l(Yn—la Yn—2)
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of singular homology groups commutes: the triangles commute by definition and the
squares by naturality of singular pair sequences. Hence the outer square commutes
and shows that the cellular chain boundaries are natural transformations dy: Cy —
Cx—1. Specializing f to the cellular automorphism of X given by translation with
g € G, this implies that the boundary maps in the cellular chain complex C.(X) are
G-equivariant. We thus have proven that the cellular chain complex C«(X) of a G-
CW complex X is canonically a chain complex of left ZG-modules. Of course, the
chain map induced by a G-equivariant, cellular map of G-CW complexes consists
of ZG-homomorphisms. So the following proposition summarizes the discussion
thus far.

Proposition 3.5 The cellular chain complex defines a functor (Cy, dy) from G-CW
complexes to chain complexes of left ZG-modules.

An explicit description of the chain complex C.(X) becomes available after
choosing pushout diagrams

]_[ G/H;x sn-t L Xn_1

iely
lin j’l
11 G/H; x p* —2~ X,
i€l

whose existence is granted by Theorem 3.2 (ii). The arrow i, is an inclusion as
neighborhood deformation retract (a “cofibration”) and hence the Mayer—Vietoris
theorem for pushouts [85, Theorem 5.15, p.56] says that (Q,, g,) induces an
isomorphism

Hy(| [ G/H: x D", || G/Hi x §"™") = Hy(Xn, Xn).

iel, iely

Since G is discrete, this gives

Ch(X) = @ @ H,(D", " 1) = @Z(G/H,»). (3.1

iel, G/H; iely

el

Here “=” means ZG-isomorphism and G acts on @ /1, Ha (D", $"=1) by per-

muting the summands. Note that the isomorphism H, (D", S"~!) = Z is canonical
because (D", S"~!) has a preferred orientation coming from the standard orienta-
tion of R”. Thus C,(X) is of the form

N @Z(G/Hi) — @Z(G/H,-) — @Z(G/H,-) — 0. (3.2)

iel iel iely
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How much does the isomorphism C,,(X) = P, 1, £(G/H;) depend on the chosen
pushout? Observe that the complete pushout diagram is determined by the lower
map Q. The map Q,, in turn, is G-equivariant and therefore determined by what it
does on [ [;; {eH;} x D". So the choice of a pushout is in more concrete terms the
choice of one n-cell in each G-orbit of n-cells together with its characteristic map.
We want to refer to this data as a cellular basis of the G-CW complex X.

Proposition 3.6 Let X be a G-CW complex. A cellular basis for X gives rise
to Z.G-isomorphisms @ieln Z(G/H;) = C«(X) where the H; are the stabilizer
groups of the chosen cells. We obtain the isomorphism of any other cellular basis by
precomposing with

PDrewn: PZG/eiHig") — PZG/H)

iely, i€l i€l

where ryg 5, Z(G/g; H,-gi_l) — Z(G/H;) is right multiplication with g, H;.
Here the g; H; are the unique cosets moving the cells of the first basis to the cells of
the second.

Proof Let ¢1, ¢2: D" — X, be characteristic maps of two cellular bases which
each pick out one n-cell in the same fixed G-orbit determined by i € I,. Then
there is g; € G with g;¢1(D") = ¢(D"). Thus if g1¢1(D") = g2¢2(D™), then
g101(D") = gogi¢1(D") which says g1 H; = gogi H; where H; is the stabilizer
group of the cell ¢1(D").

Let [D", §" 1] € H,(D", S"’l) be the canonical generator. Then the ele-
ments H,(gi¢1)([D", S"’l]) and H,(¢>)([D", S"’l]) generate the same direct
summand in the free Z-module H, (X", X"~!). Thus H,(gi¢)((D", S""']) =
+H, (¢2)([D", $"']).

So for every G-orbit of n-cells i € I, we have an embedding Z(G/H;) —
C,(X) which is unique up to precomposition with an isomorphism of the form
7(G/gi H,-g;l) = Z(G/H;) given by right multiplication with the coset +g; H;.
This is indeed an isomorphism because right multiplication with +H; g, ! defines
an inverse. O

We will now see that under favorable circumstances the cellular chain complex
C«(X) of a G-CW complex X can be completed to a chain complex of Hilbert
£L(G)-modules by means of the functor £2G ®z¢ (- ). It should come as no surprise
that circumstances are favorable if X is proper and finite type. This has the effect
that the cellular differentials are ZG-morphisms of the form

f: @PzG/a) — PzG/H) (3.3)

iell jel?

for finite families {H;};c;1 and {H;} jer? of finite subgroups of G. We start with
two plain algebraic-analytic propositions which explain the effect of the functor
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£2G ®z (-) on objects and morphisms of this type. The statements should be
plausible but the proofs require some thought. We consider £°G as a CG-ZG-
bimodule where CG acts from the left by A and ZG acts from the right by (-)* o p.

Proposition 3.7 Let H C G be a finite subgroup. Then we have a canonical
isomorphism of left CG-modules *G ®z7 7(G/H) = ¢*(G/H).

Proof Let n = |H|. Requiring that the distinguished elements ¢ ® H € (°G ®z¢
Z(G/H) and H € ¢*(G/H) should correspond to one another determines two
CG-homomorphisms ®: £>°G ®z¢ Z(G/H) — (*(G/H) and ¥: (*(G/H) —
02G ®76 Z(G/H) uniquely as follows

o chg ® H+— Z (chh>gH (34

8eG gHeG/H \heH
CoH
v Y emsii [ Y ( - Zgh) oH. (39
gHeG/H gHeG/H heH
Clearly ® o W = id. But the reverse composition is tricky. First we get
(Xhen csn)
Vod = .
co((Ses|on)=( X B s a)on
geG gHeG/H heH

In words, W o ® effects on the left factor ) ¢, g of a simple tensor that every Fourier
coefficient ¢ is replaced by the mean of the Fourier coefficients throughout the coset
gH.Butsince gh @ H = g ® H, we have

<(ZhE: Cgh) Z gh) Q H = Z Ceh gh® H. (3.6)

heH heH

Thus for every finite subset F € G/H we obtain

Z (ZheH Cgh) Z ¢h | @ H = (3.7)

n
gHeG/H heH
(ZheH CgH)
= Yo D cgh + Y n Y gh|®@H.  (38)
gHeFCG/H heH gHeG/H\ F heH

It is now tempting to say that this equals (deG cgg) ® H by passing to the

limit for larger and larger F. While in the end this will be true, the assertion
does not make sense at this point because we have not defined any topology on
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2G ®zc6 Z(G/H) yet. To do so we observe that the canonical ZG-homomorphism
q: G — €>G ®z6 Z(G/H) given by x +— x ® H is surjective. So we assign
the finest topology to £>G ®z¢ Z(G/H) for which g is still continuous. We want
to show that this gives a T7-space (points are closed). Since g is a quotient map by
construction, we have to show that preimages of points under g are closed in £>G.
Preimages of points under g are precisely the affine subspaces over kerq. By (3.6)
the subspace ker g consists of all Fourier series whose Fourier coefficients sum up
to zero over left H-cosets. But this space is just the orthogonal complement of the
image of the canonical inclusion £>(G/H) <> ¢>G constructed in Example 2.41
and thus is closed.

The point of these remarks is that in 77-spaces constant nets have unique limits.
Thus the element in (3.7) is the unique limit of the constant net given in (3.8),
directed over finite subsets I C G/H. By continuity of ¢ this limit equals

(deG cgg) ® H.Whence ¥ o & = id. m

The families {H;};c ;1 and {H} ;¢ ;2 from (3.3) determine isomorphisms {®;}; ¢ 1
and {‘I’j}jeﬂ as in (3.4) and (3.5). We want to refer to the CG-homomorphism

2 PG H) — @ G/H,)). (3.9)

iell jel?

given by f@ = (@1 @) 0 (d® f)o (@je,z w,) as the (2-extension of f.

Proposition 3.8 For every ZG-homomorphism f as in (3.3) the £>-extension f®
in (3.9) is a bounded operator of Hilbert spaces. It is given by right multiplication
with the matrix M;; = (f(H;)); € Z(G/Hj)Hf according to the well-defined rule
gHiM;j = gM;;.

Proof Let M(f); = f(H;) € @jelz Z(G/Hj) be the image of the H;-invariant
element H; € Z(G/H;) under f. By G-equivariance of f, the element M (f); is
likewise H;-invariant and the same goes for all the components M (f);; € Z(G/H})
of M(f); € @jdz Z(G/Hj) because G acts diagonally. Let M (f);; be any lift of
M(f)ij under ZG — Z(G/H;). Then for x € £2G we obtain

AR HxRH)=xRQ3M(f) = Zx@M(f)inj = Z.xM(f)ij ® Hj.
jel? jer?

It follows that the homomorphism f® is given by right multiplication with the
matrix M (f);; applying the well-defined rule g H; M (f);j = gM(f)ij.

It remains to see that this gives a bounded operator. To this end let H < G
be a finite subgroup and let 7: £2G — (>(G/H) be the canonical operator
given by g — gH. Composing \/’er‘ with the canonical isometric embedding

(*(G/H) < (>G from Example 2.41 we obtain the orthogonal projection
onto the closed subspace of ¢>G consisting of elements with constant Fourier
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coefficients throughout H-cosets. Thus ||| = +/|H|. Now let S; be a system of
representatives for the cosets G/H;, let x; = ) q1es; Co1H; g1 H; be some element
in £2(G/H;) and for fixed i and j write the matrix entry M;; € Z(G/Hj)Hi as
Mi; =) ©H; dyg, H; g2H; where almost all coefficients dg, H; € Z vanish. Then
considering the above we obtain

llxi - Mij |l = Z CoH; 81H | Mij || = Z g H; 81 M)
81ES; 81ESi
= Z dg,H; Z coiH; 8182Hj | < Zldng,-I Z CoH; 8182Hj
82 Hj 81€S; g2 H; 81€S;
< IMijlh/ | Hjllxi

with [|[M;j Iy = ) o H; |dg, 1, |. Therefore we can estimate the norm of an element
(xi)jept € Bjen ¢>(G/Hj;) multiplied from the right by M as

2 2
2
G- MIP = || D xi- My =Y 1D xi- My
iell jel? jeI? |liel!
2 2
=D M) = DD 1M 1 H x|
jel? \iel! jel? \iel!

< (|12| 12 max{|H;} - ||M||%) IGe)iept I
jel?
= const - ||(x,-),-€11||2

where || M |1 := max;; || M;;]l1. Whence f @ is a bounded operator. |

In the context of this proposition it is convenient to observe that the Z-submodule
of Z(G/ H}) consisting of H;-invariant elements can be described as Z(G/Hj)H' =
Z(h; G/Hj) where h; = Zhe H; h € ZG is the canonical H;-invariant element.
Indeed, for x = ZgHj chngj € Z(G/Hj) and h € H; we obtain that hx = x
is equivalent to ¢;-1,, = con; forall gHj € G/H;. So the matrix M from above
has entries M;; in Z(h; G/H ) which once more explains the rule g H; M;; = gM;;.
Note that the Z-submodule Z(h; G/H ) of Z(G/H|) is dual to the Z-submodule
Z(h;G/H;) of Z(G/H;) under the well-defined x-operation (h; gH;)* = hjg’lH,-
and (hngi)* = higilHj.

Proposition 3.9 The Hilbert space adjoint f@* of £ is given by right multipli-
cation with the matrix (M*) j; == (M;;)*.
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Proof This is a pure calculational matter along the canonical orthonormal bases
]_[iell G/H; and ]_[j€12 G/Hj. We have

(g1 H)higHj, g2Hj) = (g1higH;, g2H;) = Y (g1h'gHj, g1 H)

hieH;
= > ) (aihig.ghly =Y Y (gih, gahig™)
hiEH,' hjEHj hjEHj hiEH,'
= Y (g1H;, g2h'g " Hi) = (g1 H;, g2hjg~ " Hi)
hjEHj
= (g1H;, ($2Hj)hjg ™ H). O

Now we feel well prepared to study the ¢>-completion of a cellular chain
complex.

Definition 3.10 The ¢2-chain complex of a G-CW complex X is the CG-chain
complex given by Ciz) (X) = 02G Qz6 C+(X).

Thus the ¢2-chain complex construction is the composition of the cellular
chain complex C, which is functorial by Proposition 3.5, and the tensor functor
022G ®zc (). In particular, the differentials are given by diz) = id ® d, where d,
is the cellular differential. Since (id ® d) o (id ® d) = id ® d* = 0, we obtain
a functor (C,(Fz), df)) from G-CW complexes to CG-chain complexes. But on the
(full) subcategory of proper, finite type G-CW complexes, something better is true.

Theorem 3.11 The ¢>-chain complex defines a functor (Ciz), diz)) from proper,

Sfinite type G-CW complexes to chain complexes of Hilbert L(G)-modules.

Proof Let X be a proper, finite type G-CW complex and pick a cellular basis
for X. This determines finite families of finite stabilizer subgroups {H;}ici,-
Equation (3.1) and Proposition 3.7 therefore combine to give an isomorphism
P (X) = @i £2(G/H;). We pull back the inner product of @, ¢2(G/H;)

along this isomorphism to turn C ,22) (X) into a Hilbert space with isometric,
linear left G-action. The isomorphisms of Proposition 3.6 become G-equivariant
unitaries under the £?(G)®zg-functor so that the Hilbert space structure on C,(lz) (X)
is independent of the cellular basis. Thus Example 2.41 gives an embedding
@ics, (G/H;) = (L2G)*, where k, = |I,|. This verifies that C{” (X) has a
canonical structure of a Hilbert £(G)-module.

It remains to establish that the differentials d,(lz) and the CG-morphism C ,(12) (f)of
a G-equivariant, cellular map f: X — Y of proper, finite type G-CW complexes X
and Y are bounded operators. But this is what Proposition 3.8 asserts after applying
the isomorphism (3.1) for X and Y coming from any cellular bases. O
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The situation is particularly transparent when the proper G-CW complex X is
actually free. Note that a proper G-CW complex is automatically free if the group
G is torsion-free. In the case of a free, finite type G-CW complex X the £>-chain
complex Ciz) (X) consists of free Hilbert £(G)-modules so that it is of the form

s (2GR — (26N — (2GR — 0.

Proposition 3.8 says in this case that the differentials are given by right multipli-
cation with matrices over the integral group ring ZG. Proposition 3.9 says that the
adjoints of the differentials are given by right multiplication with the transposed
matrices whose entries are moreover involuted by the canonical ring involution of

Z.G givenby g > g~ L.

Exercises

3.2.1 Let G be a group and let H < G be a finite subgroup. Show that the Z-
submodule (ZG)" of H-invariant elements in ZG is a ZG-submodule if and only
if H is a normal subgroup.

322 Let Y be the Do-CW complex from Exercise 3.1.3. Show that
dy: sz)(Y ) — C(()z)(Y ) is a weak isomorphism by proving that it is injective
and that dimg(g) C\> (¥) = dimg(g) C (Y).

3.3 ¢2-Betti Numbers and How to Compute Them

Our journey arrives at a milestone. We are in the position to give the definitions
we have been longing for: £2-homology and ¢2-Betti numbers. Afterwards we look
at some concrete and very basic examples for which we can make computations
directly from the £2-chain complex in order to acquire some familiarity with the
situation. Only then will we move on to study properties of ¢>-Betti numbers
systematically.

Definition 3.12 Let X be a proper, finite type G-CW complex with £2-chain
complex (C? (X), ). The n-th (reduced) €2-homology of X is the Hilbert £(G)-
module Hy” (X) = kerd\” /imd>),.

Let us ponder for a moment why this definition is meaningful: The chain module
C,(,z)(X ) is a Hilbert module by Theorem 3.11. The kernel ker d,(,z) is a closed G-
invariant subspace because d,?) is continuous and G-equivariant. So ker d,?) is a
Hilbert submodule by the discussion below Theorem 2.35. The image im dﬁ:
G-invariant subspace of ker d,(,z) but it might not be closed: we will see in a minute

(1sa
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that the operator of Example 2.42 occurs as dfz) in C (2)(5"‘1)! We thus take the
closure before going over to the quotient. In this manner H,fz) (X) is a well-defined
Hilbert subquotient of C,(lz) (X). We can also consider the ordinary unreduced 2
homology H,S?&nr(X ) = ker d,(lz) /im d,(zg | as a quotient of CG-modules but again,
this object generally comes with no natural Hilbert module structure.

Definition 3.13 Let X be a proper, finite type G-CW complex. The n-th ¢>-Betti
number of X is given by bi> (X) = dimg(g) H\> (X).

So by definition £2-Betti numbers are nonnegative real numbers. Be aware that
b,(lz) (X) depends crucially on the action of G on X. To capture this dependence in
the notation, we will occasionally write b,(lz)(G ~ X) instead of b,(lz)(X). In the
special case of a Galois covering X of a finite CW complex X, it is understood
that b,(,z)(X ) means b,(,z)(G ~ X) where G ~ X is the deck transformation action.
In particular, for any connected finite CW complex X, the notation b,(lz) (X) means
bP(mX ~ X).

Example 3.14 Let G be a finite group. Then every G-CW complex X is proper.
Moreover X is of finite type if and only if all skeleta are compact. In this case, the
£2-chain complex

CP(X) = £2G ®26 C+(X) = CG ®z6 Cu(X) = (C @z ZG) @z Cx(X) =
ECRz(ZG Rz C+(X) EC Rz Cu(X) = Ce(X; C)

is just the cellular chain complex with complex coefficients. Note that associativity
of tensor products also holds with different rings involved [24, Chapter II, Sec-
tion 3.8]. So ¢2-homology for finite G equals ordinary homology and we obtain
from Example 2.39 that br(,z)(G N X) = b"’glf) € \(13|Z30 where b,(X) =
dimc H,(X; C) is the classical n-th Betti number. For G the trivial group, in
particular, a G-CW complex is the same as an ordinary CW complex and £2-Betti
numbers reduce to ordinary Betti numbers.

The example reveals that £2-Betti numbers report nothing new if G is finite. But
this is not a bug; it’s a feature! ¢>-invariants are designed as an extension of the
classical theory to infinite groups.

Example 3.15 Let X = S! be the Z-CW complex given by the universal covering
of the circle S! with the standard CW structure consisting of one 0-cell and one
1-cell. So X is an infinite line built from one free Z-equivariant O-cell and one free
Z-equivariant 1-cell. A choice of a cellular basis is indicated by the thickened 0- and
1-cell in the following image.

-2 -1 0 1
. —@ P ‘_’_‘—._ .....

-2 -1 0 1 2
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These determine the labeling of all cells by elements of Z. Part of the cellular
basis is the characteristic map D' — X of the chosen 1-cell which equips this
cell with an orientation. Say this orientation is the one indicated by the arrow.
Then the first cellular differential d; maps the chosen 1-cell to the O-cell labeled
“1” minus the O-cell labeled “0”. Thus (3.1), Proposition 3.8 and Fourier transform
as in Example 2.14 realize the ¢>-differential d{z) as the operator L>[—7m, 1] —>
L*[—m, 7] given by multiplication with the function (z — 1) where z = e'* for
x € [—m,m]. As we saw in Example 2.42 this is a weak isomorphism, thus
Héz) (X)) = C(()z)(X)/im dl(z) =0and Hl(z)(X) = ker dl(z) = 0. Since X has no cells
in dimensions larger than one, it follows that X is Ez-acyclic: we have br(,z)(X )=20
for all n > 0. Note however that H, S (X) # 0. We remark that this phenomenon

0,unr
can be captured by so-called Novikov—Shubin invariants [117, Chapter 2].

Example 3.16 Let Y be the CW complex in the following picture

~ -~

which can formally be defined by the pushout diagram

Xo— X

|

X——Y

where X is the CW complex from above and Xy is the O-skeleton. The group G =
Z. x 7./27 acts cellularly on Y in the only natural way: the Z-factor by translation
and the Z/2Z-factor by swapping upper and lower arcs. As a G-CW complex Y is
finite and proper but not free. It has one equivariant 0-cell with stabilizer {0} x Z /27
and one free equivariant 1-cell. A cellular basis identifies the £2-chain complex with

4@
ci = 0 —> (X(Z X Z)27) = X(Z x )27 | {0} x Z/2Z) —> O.

Since X is included in Y as a subcomplex and Xy = Y, the differential dl(z)
must again have dense image so that b(()z)(Y ) = 0. It follows that bgz)(Y ) =
dim kerd? is given b

R(Zx7/27) Kerdy = 18 given by

dimqg(ZXZ/zz) EZ(Z X Z/ZZ) — dim(R(ZXZ/QZ) EZ(Z X Z/ZZ / {0} X Z/ZZ)
=1-05=05
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where we applied additivity of von Neumann dimension (Theorem 2.44 (v)) and the
calculation in Example 2.41. Again there are no higher-dimensional cells so we have
P (¥) =0 foralln > 2.

Example 3.17 Now we want to fill in 2-cells into the circles of Y. But if we want
that G = Z x Z/2Z still acts cellularly, this requires us to also include some new
1-cells to account for the fixed point sets of the subgroup F = {0} x Z/27Z which
is still supposed to flip upper and lower half of the complex. Thus the new G-CW
complex Z contains Y as a G-subcomplex and additionally has one equivariant 1-
cell with stabilizer F' and one free equivariant 2-cell.

~ -

-~ ~

Accordingly, a cellular basis shows the £2-chain complex Ciz) (Z) is of the form

2. 4 2 4"
50— 26 25 PG @ 3(G/F) S 3(GJF) — 0.

Note however that the differentials are not the inclusion and projection of the direct
summands. The first differential d 1(2) has dense image as it already does when
restricted to the submodule coming from the subcomplex Y. The second differential
déz) is injective because the first component of déz) is idy2. Since the von Neumann
dimensions of the outer terms add up to 1.5 which is the von Neumann dimension
of the middle term, it follows that the £>-chain complex is weakly exact and thus Z
is £2-acyclic.

Of course the rules of the game are to avoid chain complex considerations
whenever possible. Instead, the following properties provide more systematic
methods to compute £2-Betti numbers of proper, finite type G-CW complexes.

Theorem 3.18 (Computation of £2-Betti Numbers)

(i) Homotopy invariance. Let f: X — Y be a G-homotopy equivalence of proper,
finite type G-CW complexes X and Y. Then b,(lz) (X)) = b,(lz)(Y) foralln > 0.
(ii) Zeroth £2-Betti number. Let X be a connected, nonempty, proper, finite type
G-CW complex. Then b(()z)(X) = \C1;| with 010 =0.
(iii) Kiinneth formula. Let X1 and X, be a proper, finite type G1- and G2-CW
complexes, respectively. Then X1 x X is a proper, finite type G1 x G-CW
complex and for all n > 0 we have

P (X1 x X)) = Y bPX)DP(X2).
ptq=n
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(iv) Restriction. Let X be a proper, finite type G-CW complex and let Go < G be

a finite index subgroup. Then resg0 X is a proper, finite type Go-CW complex

and by (resG X) = [G: Golb\® (X) for all n > 0.

Proof We start with (i). As a consequence of Theorem 3.11 we see that H,gz) is
a functor from proper, finite type G-CW complexes to Hilbert £(G)-modules and
we have to show that this functor factorizes over the homotopy category of G-CW
complexes. In other words, if the cellular G-maps fp, f1: X — Y are homotopic
by a homotopy 2: X x I — Y through cellular G-maps h; with hg = fy and
h1 = f1, then H,fz)(fo) = H,Sz)(fl). For a moment let’s take this fact for granted.
By cellular approximation we can assume that f, its G-homotopy inverse and the
homotopies to the identity are cellular. It then follows from the above that H,fz) (f)is
an isomorphism of Hilbert modules. Note however that Hilbert module morphisms
are not required to be isometric so that H,Sz)( f) must not be unitary. Thus it is not
quite immediate that H,fz)(X ) and H,fz)(Y ) have equal von Neumann dimension.
Nevertheless, (weakly) isomorphic Hilbert modules V and W do have equal von
Neumann dimension because we can argue that

050—>VS>SW-=0

is (weakly) exact so that dimg)V = dimg) W follows from additivity,

Theorem 2.44 (v). Let us now prove H,fz)( fo) = Héz)( f1). The homotopy # is
cellular so that A((X x I),) € Y,, where (X x I), = X,, x dI U X,,_1 x I. Since it
is also G-equivariant, the induced collection of maps y;,: C,(X) — C,41(Y) given
by

~ Hy 1 (h)
Hy (X, Xno1) —> Hy1 (X X 1, X, x 01U X1 x 1) 257 Hy g (Yor1, V)

consists of ZG-homomorphisms, where the first map is suspension. One checks that
¥« 1s actually a chain homotopy from C.(f1) to C«(f2): we have C(f1) —C«(f2) =
dx41V+« + Y«—1dsx as proven for example in [167, Proposition 12.1.6, p.303].
Applying €2G ®z6 (-) we obtain C7(f)) — CP(f) = d2 v + y2,dP

*+1 *—1
which maps €2-cycles to £2-boundaries so H,Sz)( f1) = H,Ez)( f2) as desired.

Part (ii) in case G is a finite group follows immediately from Example 3.14
because X is connected. The case of an infinite group is most naturally proven
with the concept of classifying spaces available so that we postpone the proof to
Sect.4.5.4 of Chap. 4 on p. 83.

To see (iii) we observe that we have an isomorphism

Ce(X1; C) ® Cy(X2; C) —> Cy(X1 X X2; C)

of C(G1 x G3)-chain complexes which maps a basis vector ¢, ® ¢, from the n-

chains @p+q:n Cp(X1; C) ®c Cy4(X2; C) to the product cell ¢, x ¢ in Cpp (X x
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X7; C). Note that the corresponding situation for singular chain complexes is way
less convenient: only a chain homotopy equivalence is available whose inverse must
be constructed by the abstract method of acyclic models. We have inclusions

2 2 3! 2
cPx)e CP ) - = = CPX x X)
dense dense

Ci(X1;C) ® Cu(X2; C) —— Cu(X) X X2;C)

where the top left entry is a tensor product of chain complexes of Hilbert modules.
So our isomorphism embeds a dense subspace of Ciz) X)® Ciz) (X7) isometrically
into a dense subspace of C,(Fz)(X 1 X X»p). It follows from Exercise 2.2.2 that
this embedding extends uniquely to a unitary isomorphism of Hilbert modules as
indicated in the diagram. Thus what we still need is a Kiinneth type theorem saying
that for chain complexes of Hilbert modules (Cx, cx) and (Dy, dy) we have an
isomorphism

P HP )@ HP (D) — HP(C, ® Dy).
p+q=n

We content ourselves with pointing out the key reason why this works. The
homology H,Ez) (Cy) can be identified with the orthogonal complement of im(d;,+1)
in kerd,. Since C, is a Hilbert module, it embeds into some (EZG)N so that
H,fz) (Cy) is a direct summand in a free Hilbert module and in this sense is “projec-
tive”. Thus there are no “Tor” phenomena. For the technical details, consult [117,
Lemma 1.22, p. 28]. Additivity and multiplicativity of von Neumann dimension
(Theorem 2.44 (v) and (vi)) finish the proof of (iii).

To show part (iv) recall that X and resg0 X are equal as (nonequivariant) CW

complexes, so that Cy,(X) and C*(lresg0 X) are equal as Z-modules. Since the G-

action on X permutes the cells and thus the canonical Z-basis of C(X), we obtain
a natural isomorphism Ci (1resg0 X) = 1resg0 C.(X) of chain complex of ZGy-

modules. Applying £2G ®zaG, (), this gives a natural isomorphism
P resS X) = 126Gy ® G Cu(X) Zresg CP(X)
* Go = 0 WZGy 1855, L« =Te8sg, Cx

of chain complexes of Hilbert £(Go)-modules. The reduced homology of the
latter is isomorphic to resg0 H,Sz)(X). Thus H,Sz)(resg0 X) = resg0 H,fz)(X)
and part (iv) follows from the restriction property of von Neumann dimension,
Theorem 2.44 (vii). |

If a proper G-CW complex X is not only finite type but honestly finite, we can
consider the alternating sum of £2-Betti numbers X(z)(X) = ano(—l)"b,(lz)(X).

By the above theorem, x ¥ (X) is a homotopy invariant which, it turns out, can be
read off directly from the G-CW structure of X.
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Theorem 3.19 (¢2-Euler-Poincaré Formula) Let X be a proper, finite G-CW
complex. For n > 0 let {H;}ic1, be the family of stabilizer subgroups of the G-
equivariant n-cells of X (unique up to conjugation). Then we have

XXX =3 ="y l;“.
n>0 iel, 't

In particular, if X is free, we have X(z)(X) = x(G\X).

Proof Since every equivariant n-cell in X gives one £*(G/H;)-summand in
C,(,z)(X), we get dimg(g) C,(lz)(X) = Y ic I | I;I from Example 2.41. Applying
additivity of von Neumann dimension (Theorem'2.44 (v)) to the two short weakly
exact sequences of Hilbert modules

a? .
0 — kerd® — CPX) 25 imd{® — 0,

0 — imd>, — kerd? — H®(X) — 0,

we obtain
1
Y=ty = (= 1) dimg(g) CP (X)
n>0 iel, |Hl| n>0

=3 (-n" (dimqg((;) kerd® + dimgg) im d,(,2)>

n>0

: : 2 .
= " <dlmve(c;) imd®| + dimg(G) H? (X)

n>0

+ dimR(G) im d,(lz)) .

Since d(gz) = 0, the outer two summands telescope out and the term reduces to
Yuso(— 107 (X) = xP(X). If X is free, we always have | H;| = 1 so that the
formula gives x @ (X) = Y20 (=D"[1| = x(G\X). =

We have arrived at the first motivating result from the introduction.

Corollary 3.20 The Singer conjecture (Conjecture 1.5) implies the Hopf conjecture
(Conjecture 1.4).

Proof The Singer conjecture asserts that the universal covering M of a closed,
aspherical 2n-dimensional manifold M can only have a nonzero £2-Betti number
in degree n. If this is true, then

(=D)"x (M) = (=1)"x P (M) = (=1)"(=1)"bP (M) = b{P (M) > 0.
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With the properties established so far we can easily recover the calculated ¢2-
Betti numbers of the G-CW complexes X, ¥ and Z from Examples 3.15-3.17.
Each of them has vanishing zeroth ¢2-Betti number by Theorem 3.18 (ii). The
circle has vanishing Euler characteristic so that biz) (X) = 0 follows from the £2-
Euler-Poincaré formula, Theorem 3.19. The ¢2-Euler-Poincaré formula also gives
biz)(Y ) = 0.5. Alternatively, we can restrict the group action on Y to Z x {0}
which acts freely. The quotient space is homeomorphic to S' v S! which has
Euler characteristic -1. Thus biz)(Y ) = 0.5 follows from the restriction property,
Theorem 3.18 (iv). Finally, Z and X are G-homotopy equivalent so that homotopy
invariance, Theorem 3.18 (i), and the above give that Z is likewise £2-acyclic.

Exercises

3.3.1 Let Fj be the free group on k > 2 letters and let X be the free, finite F3-CW
complex given by the universal covering of a wedge of k circles with the standard
CW structure consisting of one 0-cell and k 1-cells.

(i) Show that dfz): sz)(X) — C(()z)(X) is surjective.
(ii) Conclude that b{”(X) = k — 1 and b{”(X) = 0 forn # 1 and that the reduced
and unreduced ¢2-homology of X agree.

3.3.2 Let X be a proper, finite type G-CW complex, let I,, be the set of G-orbits
of n-cells in X and let H; < G be the stabilizer group of some n-cell in the orbit
i € I,,. Show that for each m > 0 we have the Morse inequality

Y =npmye | [_1” > (=" (X).
n=0 ! n=0

iel,

Explain that the Morse inequalities sharpen both the ¢2-Euler Poincaré formula and

the weak Morse inequalities Ziel,, \1'}” = br(lz)(X)~

3.3.3 Let G be a group, let Gy < G be a subgroup, and let X be a proper,
finite type Go-CW complex. Show that the G-CW complex indg0 X constructed

in Exercise 3.1.2 is likewise proper and finite type and that b,(f) (indg0 X) = b,(l2) (X)
foralln > 0.
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3.4 Cohomological £2-Betti Numbers

So far we have only dealt with £2-homology arising from the £2-chain complex of

Hilbert modules C,gz)(X) = (*G ®z6 C«(X). It is thus only natural to ask about
£2-cohomology which should arise from the “adjoint” cochain complex

Cly(X) = Homzg (C+(X). 2G)

whose differentials 82‘2) are given by precomposing with the cellular differentials
dy+1. Similarly as before, each C"2 (X) comes with a canonical inner product which
can be made explicit by choosing a cellular basis for X. However, Cflz) (X) is an
abelian group of ZG-homomorphisms of left ZG-modules. The ZG-CG-bimodule
structure on £2G thus turns Cflz) (X) into a right CG-module. Therefore (C(*z), 52‘2))
is actually a functor from proper, finite type G-CW complexes to chain complex
of right Hilbert R(G)-modules. Here a right Hilbert R(G)-module is defined in the
only possible way: a Hilbert space H with linear, isometric, right G-action such that
there exists a linear, isometric G-embedding H — (2G)" for some n where we
view (£2G)" as the diagonal right CG-module. The unit matrix coefficient also gives
a trace trp (g for £L(G) = A(CG)" = B(£%>G)” so that we obtain von Neumann
dimension dim g(g) of right Hilbert modules. Given a right Hilbert module H, we
can turn it into a left Hilbert module LH by setting LH = H as Hilbert spaces
but decreeing that g € G act on x € LH by g - x = xg~!. Leaving morphisms
pointwise unchanged turns £ into a functor £: mod-R(G) — L(G)-mod from
right Hilbert modules to left Hilbert modules.

Proposition 3.21 The functor £: mod-R(G) — L(G)-mod is an equivalence of
categories which preserves von Neumann dimension.

Proof Let ¢: £2G — £>G be the flip map g — g~'. We observe that composing
a right equivariant embedding i : H < (¢£>G)" with the n-fold product of ¢ yields
a left equivariant embedding i L(H) < (£2G)". This shows that £, after all,
is a functor. It is clear that building on x - g = g~ 'x one obtains an inverse
functor R: £(G)-mod — mod-R(G). For every direct summand ¢>G in (£2G)"
we compute

(. D) (€)) = ($(€). Prisr) (@) = (e, 0 Pryry 0 7' (@) = (e, priy (€))

which gives dimg(gy LH = dimzg) H. =

We can apply £ to turn the ¢£2-cochain complex (C 2‘2)(X ), 8;*2)) into a cochain
complex of left Hilbert modules. It turns out that this gives the Hilbert space adjoint
of the ¢>-chain complex.

Proposition 3.22 Let X be a proper, finite type G-CW complex. Then the cochain
complexes (LCZ’Z)(X),LS?Z)) and (C,(lz)(X),dr(li)l*) of left Hilbert modules are
isomorphic.
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Proof As in the preceding section the choice of a cellular basis realizes the cellular
differential d,,1 by right multiplication

Copt(X)—2+ C,(X)
® ZIG/H1-Y~ @ 7(G/H];).

i€lyy1 J€

with a matrix M;; € Z[h; G/H|]. By Propositions 3.8 and 3.9 we obtain that the
cellular ¢-differential and its adjoint are given by

2) (2) *

2,0 —=1 P x) 2,0 —— )
O CG/H) - @ AG/H) D CG/H) <X @ G/H)
i€yt JEly i€lpy1 JE€l

For the ¢?-cochain differential 5?2) the same cellular basis gives a diagram of right
Hilbert modules which we turn into a diagram of left Hilbert modules by the
equivalence L.

n n

) L
2) 2)
CiH (X) =———C (%) LEG(X) =<————— L (X)

B CHNG) <2 D PHNG) B LEHNG) L @ LEHNG)

iEIJH—l jeln ieln+1 jEIn

Here M7 is M viewed as a matrix M;;. € Z[H\G h;] which now acts by
multiplication from the left and where £ of course preserves colimits. One easily
checks that mapping H; g — g~ ! H; defines an isomorphism of left Hilbert modules

@i+ LE(H\G) > ¢2(G/ H;) such that the following square

@ £ENG 2L @ £EHNG)

léln+1 Jjely

~l®§0i ~l/€9(ﬂj

B G/H) <L @ G/H)

i€ln41 J€ln
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commutes. This square connects the two diagrams on the right hand side above
which gives the asserted isomorphism of cochain complexes. O

Now let (Ciz), iz)) be a general chain complex of Hilbert modules. The
canonical lift of the reduced homology Héz)(Cf)) — C,Sz) has a convenient
description as the kernel of the n-th £2-Laplacian A,(,Z) = d,(,z) *d,(,z) + dfﬁgld’gl*
as we show next.

Proposition 3.23 We have the £*>-Hodge—de-Rham decomposition
C? =ker A® @im d}gl @ imd\*

and the canonical map ker A’(12) — H,fz)(Ciz)) is an isomorphism for n > 0.

Proof In view of the orthogonal decomposition C,(,z) = ker d,(,z) @ im d,(lz) * it only
remains to show that ker Aflz) = ker d,(lz) N ker d}gi)l* because the right hand side

is the orthogonal complement of im dgg | in ker d,(,z) and thus the canonical lift of
HP(C?). But this identity follows from

(2) *
+ dnJrl X

2
| -

2
(A,(lz)x, x) = Hd,(lz) X H

The proposition can easily be transferred to cochain complexes and the

cochain complex (C,gz),d,(jzl*) and its adjoint chain complex (C,Sz),d,(lz)) share
(2)

the same ¢2-Laplacian. Consequently, the reduced homology of (Cj ,d,(lz))
is equal to the reduced cohomology of (C,(lz), d;ﬁ)l* ). Therefore the last three
propositions combine to the following theorem about the n-th reduced €>-
cohomology H(”z)(X) = ker5f’2) /im 8?2_)1 and the cohomological n-th €*-Betti
number b?z) (X) = dimgg) H("z) (X).

Theorem 3.24 Let X be a proper, finite type G-CW complex. Then for alln > 0 we

have Hy” (X) = LH, (X) and by” (X) = bl (X).

We are now prepared to prove that one of the cornerstones of algebraic topology,
Poincaré duality, has an 62-counterpart.

Theorem 3.25 (¢2-Poincaré Duality) Let M be an orientable G-manifold of
dimension m which comes with a triangulation as a finite, free G-CW complex.
Then bi(G ~ M) = b> (G ~ M).

Proof While in general a free G-space X must not be proper (in the sense that
the graph map G x X — X x X is proper), a free G-CW complex always
is. Therefore the quotient map M — G\M is a Galois covering and G\M is
a closed manifold. We have a homomorphism G — Z/2Z which sends g to
0 or 1 according to whether g acts orientation preserving or reversing on M.
Thus G has a subgroup of index at most two acting orientation preservingly.
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By the restriction property, Theorem 3.18(iv), we may assume G itself acts
orientation preservingly which implies that G\M is orientable. According to
[169, Theorem 2.1, p.23] this guarantees the existence of a ZG-chain homotopy
equivalence

[G\MIN(-): LC" (M) — Ci(M).

Here the left hand side is the chain complex (chain, not cochain!) given by
C"*(M) = Homgzg(Cp—«(M), ZG) which we turned into a chain complex of
left ZG-modules by reverting the ZG-action by means of the canonical involution
of ZG. We have allowed ourselves to denote the latter process by £ just like in the
case of Hilbert modules. Actually, the above reference provides this chain homotopy
only for universal coverings and under the convention that deck transformation is a
right action but neither of this is problematic. As in the proof of Theorem 3.18 (i)
the chain homotopy equivalence gives an isomorphism of reduced homology
after going over to the £2-completions. Moreover, the chain complexes of left
Hilbert modules ¢>G ®zg LC™ *(M) and LCZ’;;*(M ) are naturally isomorphic
by x ® f — (y = f(¥)x*) where “x” denotes the unitary involution of £>G given
by g — g L Together with Theorem 3.24 we conclude Héz) (M) = Hn(fln M). O

Of course, choosing a different triangulation for M does not alter the £2-Betti
numbers by homotopy invariance, Theorem 3.18 (i). Equivariant triangulations for
smooth, proper G-manifolds are known to exist so that £2-Poincaré duality can also
be given as a mere statement on manifolds.

To not overload the presentation notationally we have withheld so far the infor-
mation that all occurring (co)chain complexes have relative versions coming from
G-CW pairs (X, A). These give rise to relative ¢>-Betti numbers b\> (X, A). With
no additional effort, also Poincaré—Lefschetz duality extends to the £2-setting and
gives the more general ¢2-Poincaré-Lefschetz formula bs> (M) = b'> (M, dM)
for smooth free, proper, cocompact, m-dimensional G-manifolds with (empty or
nonempty) boundary.

Example 3.26 Let X, be the closed, orientable surface of genus g > 1. Then
b(()z)(f)g) = 0 by Theorem 3.18 (ii) befause X is connected and 1 (X) is infinite.
Thus £2-Poincaré duality gives bgz)(Eg) = 0. By the ¢>-Euler-Poincaré formula,

Theorem 3.19, we must then have bgz)(fg) = —x(Zg) = 2g — 2. Since there are
no cells of dimension three or higher, all other £2-Betti numbers are zero.

Now let us remove d > 1 open disks from X, to obtain the surface of genus g
with d punctures ¥, 4. Figure 3.3 explains that X, ; deformation retracts to a wedge

sum of 2g+d —1 circles, Xy 4 > \/l.zflrd_1 S!. Thus 71 (24 4) is free on (2g+d — 1)
letters and hence b(()z)(ig,d) = 0. By homotopy invariance, Theorem 3.18 (i),

and by the £2-Euler-Poincaré formula we obtain bgz)(flg,d) =d+2g —1).
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Fig. 3.3 The surface of
genus g with d punctures
deformation retracts to a
wedge sum of 2g +d — 1
circles. The sides of the
4g-gon are identified in pairs.
Additionally, we see that we
obtain one circle less than the
number of punctures

By Poincaré duality we have b(()z)(f)g,d, Bf\f)g,d) = b;z)(ig,d, aig,d) = 0 and
)~ ~
b (S, 0%ga) =d +2(g — 1).

3.5 Atiyah’s Question and Kaplansky’s Conjecture

What are possible values of ¢2-Betti numbers? By definition £2-Betti numbers of
G-CW complexes are nonnegative real numbers. It turns out, however, that all 02
Betti numbers we have computed so far are actually rational numbers. Atiyah made
a similar observation when he originally introduced £2-Betti numbers in an analytic
context and asked for examples of irrational £2-Betti numbers [8, p. 72]. Translated
to our setting the question takes the following form.

Question 3.27 (Atiyah [8]) Does there exist a finite, connected, free G-CW com-
plex X such that b,(lz)(G ~ X) ¢ Q for some n > 0?

Observe that assuming X is connected requires G to be finitely generated. The
question remained open for 30-some-odd years until Tim Austin [10] answered it in
the least constructive way one can imagine.

Theorem 3.28 (Austin [10]) Let B® C R be the set of real numbers which
occur as an €*-Betti number of a finite, connected, free G-CW complex X. Then
B@ is uncountable.

In particular, B> contains irrational and even transcendental elements. Shortly
thereafter, Grabowski [59] and Pichot—Schick—Zuk [145] showed independently that
in fact B® = Rx¢. Also of interest is the subset B® where one additionally
requires that X be simply-connected. By what we said in Example 3.4 the set B®
is precisely the set of all £2-Betti numbers of universal coverings of finite connected
CW complexes. Since there are only countably many finite CW complexes up to
homotopy equivalence, it follows that B® is countable. But B seems to be “very
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dense” in R>o. Grabowski [59] shows that it contains all nonnegative numbers with
computable binary extension. All algebraic numbers fall into this category and also
many transcendental ones, including 7 and e. The proof methods of these recent
results lie beyond the scope of this introductory course. But we want to understand
the setup in which these problems can be attacked as it also allows positive results,
imposing conditions on G in one way or another.

Given a finite, free G-CW complex X, Proposition 3.23 says b,(,z)(X ) =

dimgg) ker Aflz) for the ¢>-Laplacian Aflz) = d,(lz) *d,(lz) + d,(li)ldﬁl* . With a fixed

cellular basis the operator A,(lz) is realized by right multiplication with some matrix
A € M(ky, ky; ZG). The point is that, conversely, every number dimgg) ker(-A) €
R for some A € M(k,l; ZG) with finitely generated G occurs as an 02 _Betti
number.

Proposition 3.29 Let A € M(k,l; ZG) be a matrix over the integral group ring of
a group G that is generated by r elements. Then there exists a free G-CW complex
X consisting of k equivariant 3-cells, | equivariant 2-cells, r equivariant 1-cells and
one equivariant O-cell such that the third £*-differential d?(,z) : C§2) (X)) — Céz) (X)

can be identified with the right multiplication operator (£*G)* 4, (L2G).

Proof For simplicity, we start with the case k = [ = 1. Consider the space Z =
S2v (\/;:1 S'). We attach a 3-cell to Z by an attaching map ¢: S* — Z described

as follows. Write the only entry of A as a = Zﬁvzl asws (g1, ..., gr) where the
ws are words in the generators g1,..., g € G. Embed N little open 2-disks into
§2. Collapsing the complement of these disks to a point we obtain a wedge sum
of N little 2-spheres. Say the common base point of these 2-spheres is the south
pole in each of the 2-spheres. Then we collapse all circles of latitude in the southern
hemispheres up to the equator to one point each. The resulting space looks like a
bunch of lollipops stuck together at the free ends as illustrated in Fig. 3.4. From this
space the element a € ZG determines the map to Z: We give an orientation to the
1-cells of Z and label them by the generators g1, ..., g- € G. Now the base point
goes to the base point, the stick of the s-th lollipop is wrapped around the r one-cells
of Z according to the word w; and the candy 2-sphere of the s-th lollipop is mapped
to the only copy of S? in Z by a map of degree a;. Set ¥ = D3 Uy Z. The labeling
of the 1-cells in Y determines an epimorphism 1Y — G where 1Y is free of rank
k. The corresponding Galois covering of Y with deck transformation group G is the
desired G-CW complex X. Indeed, the characteristic map ®: D> — Y of the 3-cell
lifts to G-many characteristic maps D> — X. After choosing a base point in the 0-
skeleton of X these form the characteristic map Q: G x D* — X of an equivariant
3-cell and the cellular differential of the cell Q({e} x D?) is by construction the
elementa € ZG = Cr(X).

The adaptation to the general case is easy. We start with Z = (\/Z:1 5%) v
(\/Z:1 S') and for each i = 1, ..., k we attach one 3-cell as follows. We embed /
families of 2-disks into S corresponding to the entries of the i-th row of A. Then
we collapse as above and the entry A;; determines how the j-th bunch of lollipop



3.5 Atiyah’s Question and Kaplansky’s Conjecture 59

Fig. 3.4 The quotient space

of §? after the two collapsing

procedures. The base point

corresponds to the ’
complement of the embedded

disks and the sticks of the

lollipops are formed by
collapsed circles of latitude

is mapped to the subspace of Z consisting of the one-skeleton and the j-th copy of
S2.If Y denotes Z with the k 3-cells attached, then again the Galois covering X
corresponding to the epimorphism 1Y — G does the trick. O

If G is finitely presented, we can additionally attach finitely many 2-cells to the
CW complex Y from the above proof corresponding to the finitely many relators of
G. The universal covering is a simply-connected G-CW complex X whose third £2-
differential is given by right multiplication with A x0 where the nil-factor means that
the differential always assigns zero coefficients to the relator cells. Thus identifying
the sets B and B?® has become a mere problem in operator algebras and group
theory. In fact, foraring Z € R € C let

BY(G) = {dimg(g) ker(-A): A € M(k,I; RG); k,1 > 1},
then as a consequence of Proposition 3.29 and our discussion we have

B® — U Bg)(G) and 3@ — U Bg)(G)
Gfg. G fp.

forming the union over all finitely generated groups and all finitely presented groups,
respectively.

Actually, all of the groups considered by Austin, Grabowski and Pichot—Schick—
Zuk which lead to examples of irrational £2-Betti numbers arise as wreath products
of infinite and finite groups and thus possess arbitrarily large finite subgroups. This
property seems to be essential in the arguments. So we might suspect that groups
with an upper bound on the order of finite subgroups cannot lead to irrational £>-
Betti numbers. In fact we should be more specific because in the few example
computations of £2-Betti numbers we have done so far, we could only produce non-
integer ¢>-Betti number whose denominators were given by the order of stabilizer
subgroups.

Conjecture 3.30 (Atiyah Conjecture) Let Z € R C C be a ring and let G be a
group whose finite subgroups are of bounded order. Denote by lem(G) the least

common multiple of all occurring orders. Then Bg) (G) € . ml(G) Z=g.
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The conjecture with these particular assumptions is due to Liick and Schick. It
is however named after Atiyah, being a refinement of his original question 3.27. To
distinguish it from this question, it is sometimes also known as the strong Atiyah
conjecture for G, especially when R = C. Note that for a torsion-free group G, the
conclusion would be that £2-Betti numbers are integers. This is worth mentioning
because it has a serious mathematical consequence.

Conjecture 3.31 (Kaplansky) LetZ C R € C be aring and let G be a torsion-free
group. Then the group ring RG has no nontrivial zero divisors.

Theorem 3.32 If G is torsion-free and satisfies the Atiyah conjecture with coeffi-
cients in R, then RG satisfies the Kaplansky conjecture.

Proof Suppose a,b € RG satisfy a - b = 0. If a = 0, we are done. Otherwise,
a € RG C £%>G is a nonzero element in the kernel of the Hilbert module morphism

022G —h> 02G. Thus 0 < dimg () ker(-b) < 1 by the faithfulness and normalization
properties of von Neumann dimension, Theorem 2.44 (i) and (ii). Since we assume
the Atiyah conjecture for R and G, we conclude dimgg) ker(-b) = 1. Of course
we have £2G = ker(-b) & (ker(-b))* so that by additivity, normalization, and
faithfulness (Theorem 2.44), we have ker(-b) = ¢2G. In particular, for the unit
element vector e € £2G this givesh = e - b = 0. O

This also settles Theorem 1.2 from the introduction as we discuss next. It should
be apparent by now that the somewhat clumsy assumptions of this theorem are in
place to account for a possibly infinitely generated group G.

Proof (of Theorem 1.2) Suppose a, b € QG satisfy a-b = 0. Since both a and b are
finite linear combinations of elements in G, we have a, b € QH for some finitely
generated subgroup H < G and H is of course still torsion-free. The assumption
of the theorem assures that Bg)(H ) € Zs¢ via Proposition 3.29. This implies

B((@2 ) (H) € Z>( because clearing denominators leaves the kernels unchanged. The
last theorem thus givesa = 0 or b = 0. O

You will prove in Exercise 3.5.1 that the Kaplansky conjecture 3.31 on zero
divisors also implies that RG has neither nilpotent nor idempotent elements. This
provides even more motivation for finding positive results on the Atiyah conjecture.
Before we can state such a result, we have to give some definitions. A group is called
elementary amenable if it belongs to the smallest class of groups & such that & is
closed under taking subgroups, quotients, extensions, and directed unions and such
that & contains all finite and abelian groups. One can think of & as those groups
that are not “too far” from being virtually abelian. For example, virtually solvable
groups are elementary amenable. Let moreover C be the smallest class of groups
that is closed under directed unions and contains all free groups and all groups G
which occur in an extension

l]—N—GC—A—1
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with N € C and A elementary amenable. The first substantial result on the Atiyah
conjecture is due to P. Linnell [105].

Theorem 3.33 (Linnell [105]) Suppose the finite subgroups of G € C have
bounded order. Then G satisfies the Atiyah conjecture with R = C.

The proof of this theorem is an impressive compound of noncommutative
algebra and operator algebra theory that goes beyond what could be included
here. Nonetheless, T. Schick had the fruitful idea that approximation techniques can
substantially extend the class of groups for which the Atiyah conjecture is known,
at least if R = Q. We will come back to this point in Sect. 5.6 of Chap.5 where
we will exemplify this trick by showing the Atiyah conjecture with R = Q for free
groups if one only accepts it for torsion-free elementary amenable groups. We will
then move on to discuss further extensions and survey how a vast generalization of
Theorem 3.33 has emerged recently as Theorem 5.58.

Exercises

3.5.1 Let R be an integral domain and let G be a torsion-free group. We say that
the group ring RG satisfies the Kaplansky conjecture on

(i) wunits if every unit in RG is of the form rg for some r € R* and g € G,
(ii) nilpotents if every nilpotent element in RG is trivial or, equivalently, a*> = 0
implies a = 0 in RG,
(iii) zero divisors if every zero-divisor in RG is trivial,
(iv) idempotents if every idempotent in RG is trivial: if a> = a in RG, thena = 0
ora=1.

Show the implications (i) = (i) < (iii)) = (iv). Remark: Actually, it is also
known that (i) = (iii) but the proof is somewhat challenging. Of course, no
counterexamples to the remaining two implications are known, since all conjectures
might be true.

3.5.2 Let By, B1, - .., By be nonnegative rational numbers. Find a group G and a
finite, proper G-CW complex X with b,(lz)(X) =B, forn=0,1,...,N.

3.6 {%-Betti Numbers as Obstructions

Frequently one wants to prove that some mathematical object does not admit a
certain additional structure. To do so, one should find a nonzero obstruction: an
invariant which vanishes for all objects possessing the additional structure but does
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not vanish for the object under investigation. Famous examples in topology are
the Stiefel-Whitney numbers which obstruct that a closed smooth n-manifold is the
boundary of an (n + 1)-manifold, or the A-genus which obstructs the existence of a
positive scalar curvature metric on a 4k-dimensional spin manifold. In this section
we will see that ¢£2-Betti numbers can also be interpreted as obstructions in various
contexts.

3.6.1 (*-Betti Numbers Obstruct Nontrivial Self-coverings

The classical Euler characteristic x (X) obstructs the existence of non-trivial self-
coverings of a connected CW complex X. This is immediate from the multiplicative
behavior under finite coverings: if X — Y is a d-sheeted covering, then x (X) =
d - x(Y). Even though x (X) equals the alternating sum of ordinary Betti numbers,
the latter are not multiplicative individually as the twofold self-covering of the
circle reveals. Thus ordinary Betti numbers are not much good for deciding about
the existence of self-coverings. But according to Theorem 3.19, x (X) is also the
alternating sum of ¢2-Betti numbers and it turns out that these are multiplicative
individually.

Proposition 3.34 Let X L Y be ad-sheeted covering of connected CW complexes
of finite type. Then b,(,z)(X) =d- b,(,z)(Y) foralln > 0.

Proof We have a tower of coverings X - X 2 Y. An element y € mY
acts on X as a deck transformation of X if and only if y lies in the image of

mX LaN mY So while X and Y are equal as CW complexes, as G-CW complexes

we have X = reszlgl x Y. From Theorem 3.18 (iv) it follows that b(z) (X)) =[mY:
Pt X167 (Y) = d - b7 (V). O

Corollary 3.35 Let X be a connected, finite type CW complex. If br(,z)(f( ) > 0 for
some n > 0, then X does not have any nontrivial, connected, finite sheeted self
coverings.

For example the k-dimensional torus TX has many self coverings, thus b,(lz) (’Tk) =
0 for all » > 0 as could equally well be deduced from the Kiinneth formula.
Note that ¢£2-Betti numbers provide an a priori sharper obstruction to self-coverings
than the Euler characteristic: if all £2-Betti numbers vanish, then so does the Euler
characteristic but the converse is wrong.
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3.6.2 (2-Betti Numbers Obstruct Mapping Torus Structures

For many spaces, and in particular for 3-manifolds, it is an intriguing question if a
space can be constructed as a mapping torus. Let us first recall the definition.

Definition 3.36 Let X be a topological space and let f: X — X be a (continuous)
map. The mapping torus T (f) is the quotient space of X x I obtained by identifying
(x, 1) with (f(x),0) forall x € X.

For example, let X = S be the circle. If f is the identity map, we have T'(f) =
T2, whereas if f is complex conjugation, the mapping torus 7'( f) = K is the Klein

bottle. We observe that 7'(f) always comes with a canonical map 7 (f) A
sending (x, 1) to ¢™ .

Lemma 3.37 If X is path-connected, then w1 (p) is surjective.

Proof Fix a base point xo € X and a path y from x, to f(xp). Then the loop
y: 1 — T(f) defined by t — [(y(¢),t)] maps to a generator of 71(S1) under
71(p). 0

Theorem 3.38 (Liick, [114]) Let X be a connected, finite type CW complex and let
f: X — X be cellular. Then b,(lz)(T(f)) =0foralln >0

Proof Letus set G = w1 (T (f)). For each k > 1 we consider the subgroup G =
71(p)~V(kZ) of G. The k-fold covering space T'(f)g, of T(f) corresponding to
Gy can be constructed by gluing k copies of the product X x I cyclically, always
along the map f, as suggested by Fig.3.5. Retracting all but one copy of X x [
along the /-coordinate defines a homotopy equivalence from 7'(f)g, to T(f k.

e

Since T'(f)g, = resgk 7/’6‘/), we obtain

b aesG, TN 6P (T (Ng) BT (9

b (T (f)) = i . B

from Theorem 3.18 (iv) and (i). Clearly if X has ¢, n-cells, then T ( f k Yhas ¢, +c,—1
many n-cells so that b2 (T(f)) < @té-l by the weak Morse inequality from

Exercise 3.3.2. Since this holds for any &, it follows that 52 (T'(f)) = 0 for all
n>0. a

In Sect. 6.4 of Chap. 6, we will report on a recent break through in 3-manifolds.
To wit, Theorem 6.19 implies that each closed hyperbolic 3-manifold has a finite
covering which is a mapping torus 7'(f) of a homeomorphism f: ¥, — X, for
some surface Xg. Proposition 3.34 and Theorem 3.38 therefore yield the following
result.

Theorem 3.39 A closed hyperbolic 3-manifold is £*-acyclic.
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Fig. 3.5 Schematic picture
of the finite cyclic covering of
a mapping torus which arises
by cyclically gluing copies of
the cylinder X x I by means
of the map f

More precisely, the universal covering of such a manifold is £2-acyclic but
statements of this kind are customary and unlikely lead to confusion. As The-
orem 6.19 reveals, Theorem 3.39 actually holds for a way more general class
of 3-manifolds. But it should be contrasted with the case of hyperbolic surfaces
which have a nonzero first ¢2-Betti number as we have seen in Example 3.26.
We remark that long before Theorem 6.19 was available, Dodziuk [35] showed
that all odd-dimensional closed hyperbolic manifolds are ¢?-acyclic whereas the
even dimensional ones have a positive ¢2-Betti number precisely in the middle
dimension. He showed this in the analytic approach to £2-Betti numbers via de
Rham cohomology of square integrable differential forms on Riemannian manifolds
with isometric, cocompact G-action. It is actually in the latter setting that £2-Betti
numbers were originally defined by Atiyah [8]. These analytically defined £2-Betti
numbers equal our cellular £2-Betti numbers for any G-CW structure. The proof is
likewise due to Dodziuk [34].

Mapping tori of self-homeomorphisms of some space X are also known as
fiber bundles over S' with fiber X. In general, a fiber bundle over a base space
B with fiber X can be viewed locally as a product of X and B but globally,
the space might be twisted; see for instance [68, Section 4.2]. Mapping tori of
self-homotopy equivalences fall under the weaker concept of fibrations over S',
compare Exercise 4.5.1. Conversely, every fibration over S! arises up to homotopy
equivalence as a mapping torus. Hence, £2-Betti numbers obstruct that a space has
the structure of a fibration (let alone a fiber bundle) over the circle.

3.6.3 {%-Betti Numbers Obstruct Circle Actions

Recall from below Definition 3.3 that we defined G-CW complexes also for a
possibly non-discrete topological group G such as the circle group S! of unit
complex numbers.
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Theorem 3.40 Let X be a connected, finite type S'-CW complex such that some S' -
orbit of X embeds m\-injectively into X. Then every S'-orbit embeds m-injectively
into X and b? (X) = 0 for all n > 0.

Proof Let xp € X be a point in the mj-injectively included orbit and let yp € X
be any point outside this orbit. Since X is a connected CW complex, it is also path
connected, and we can pick a path y from xp to yg. Traveling along the path to
some point of the path, then traveling through the S'-orbit of this point and finally
traveling the path backwards defines a homotopy between the loop in X based at
xo given by the S'-orbit of xo and the loop y - ¢ - y~! where ¢ is the loop based
at yo given by the S'-orbit of yo. This shows that all orbits include 771-injectively.
For the second statement, we show more generally that the pullback f *X of the
universal covering X > X along any S'-equivariant, cellular map f: ¥ — X from
a finite type S'-CW complex Y is £2-acyclic as 71 X-CW complex. The theorem
then follows by setting f = idy. Since b,(,z) (? ) depends on the (n+1)-skeleton only,
we can assume that Y is finite and prove the theorem by induction on the dimension
N. For N = 0 the statement is vacuous (and thus true). Let Y be N-dimensional
and consider the S'-equivariant pushout that produces Y from the (N — 1)-skeleton
Yv_1.

1 S'/H x sv-1 24y
iely
li J
[I s'/H; x DN _He
iely

Pulling back the universal covering X > X along f and its precompositions with
the maps of the pushout diagram yields a 71 X-equivariant pushout

I Gog)*f*X — j*f*X

iely

Recall from [85, Theorem 5.15, p.56] that a (non-equivariant) pushout diagram
gives rise to a long exact sequence of ordinary homology groups, called the Mayer—
Vietoris sequence. Along similar lines one can show that an equivariant pushout
gives rise to a long weakly exact sequence in £2-homology, though we skip the
somewhat tedious proof which requires checking many details [117, Theorem 1.21,
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p- 27]. For the above pushout the sequence looks like

s @D HP (G oq) ) — HO (G %) @ @D HP(0; %) —

iel, i€l

— HP(f*X) > P HZ (G oa) f*X) > -

i€l

The S!-CW complexes Sl/H,- x SN=1 and Yn_; are of lower dimension so that
the 71 X-CW complexes (j o q,-)*f*f and j*f*)? are £>-acyclic by induction
hypothesis. It thus remains to show that the 1 X-CW complexes Q7 f *X are £2-
acyclic. The space S'/H; x DV is homotopy equivalent to S! because the S'-action
cannot have fixed points as this would violate the 1-injectivity condition. Therefore
orf *Xism X -homotopy equivalent to a (generally non-connected) covering of S’

which must be of the form 771 X xz S! for an embedding Z < 71X because Sl/H,-
includes m1-injectively into X by assumption. Here for H < G, the notation G x g Z
denotes the G-CW complex induced from the H-CW complex Z constructed in
Exercise 3.1.2. Concretely, it can be defined by identifying (g, z) with (gh™!, hz)
forall h € H in the product G x Z. By Exercise 3.3.3 £2-Betti numbers remain
unchanged under induction so that Qf f*X is £2-acyclic because S! is, as we had
already seen in Example 3.15. O

As a consequence we obtain the first half of Theorem 1.3 from the introduction.

Corollary 3.41 An even dimensional closed hyperbolic manifold M does not
permit any nontrivial action by the circle group.

Proof To conclude the corollary from Theorem 3.40, we still have to apply a couple
of nontrivial results which we take for granted as they lie outside the field of
£*-invariants. First of all, associated with any S'-action on M we have a finite S'-
CW structure according to an equivariant triangulation theorem due to Illman [78,
Corollary 7.2]. Next one proves that a nontrivial S!-action on an aspherical manifold
cannot have fixed points. Afterwards one verifies that a finite S'-CW complex
without fixed points satisfying H, ()? ; Q) = 0 has my-injectively embedded orbits;
see [117, Lemma 1.42, p.45] for both statements. Thus if M had a nontrivial § L
action, it would satisfy the assumptions of Theorem 3.40. The conclusion of the
theorem contradicts Dodziuk’s result mentioned above that an even dimensional
closed hyperbolic manifold has a nonzero middle £-Betti number. O

The A-genus of a compact oriented spin 4k-manifold [9], Gromov’s simplicial
volume of an oriented closed connected manifold [62, 109], and £2-torsion, to be
studied in Chap. 6, are all likewise obstructions to finite self-coverings and circle
actions. But neither simplicial volume nor ¢>-torsion vanishes for mapping tori
because for a hyperbolic 3-manifold, both are proportional to the volume with a
positive constant.



Chapter 4 )
¢2-Betti Numbers of Groups Shethie

A powerful outcome of topology is the fact that any homotopy invariant of spaces
yields an isomorphism invariant of groups via the construction of classifying spaces.
We introduce this concept right away in the version relative to families of subgroups.
This turns out to be useful because we defined ¢2-Betti numbers not only for free
but also for proper G-CW complexes.

4.1 Classifying Spaces for Families

Definition 4.1 A family of subgroups ¥ of G is a set of subgroups of G which is
closed under conjugation and finite intersections.

Examples are given by the trivial family 7RZV consisting only of the trivial
subgroup, the family ALL of all subgroups, the family of finite subgroups ¥ 7N
and the family VCYC of virtually cyclic subgroups. Here we apply the meta
definition that a group has virtually some property P (e.g. cyclic, torsion-free,
solvable, ...) if it possesses a finite index subgroup which has the property P.

Given a G-space X and a subgroup H < G, we denote by

X7 ={xeX:hx=xforallh € H}

the set of points in X which are fixed by H. Recall that X is called weakly
contractible if every map §"~! — X extends continuously to a map D" — X
for all n > 0. A different way of saying the same thing this is that X is n-connected
for every n > —1. In particular, for the first three values of n, this means that X is
nonempty, path-connected, and simply connected, respectively.

© Springer Nature Switzerland AG 2019 67
H. Kammeyer, Introduction to 2 -invariants, Lecture Notes in Mathematics 2247,
https://doi.org/10.1007/978-3-030-28297-4_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28297-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-28297-4_4

68 4 ¢2-Betti Numbers of Groups

Theorem 4.2 Let ¥ be a family of subgroups of G and let E be a G-CW complex
with all stabilizer groups in F. The following are equivalent.

(i) For every G-CW complex X with stabilizer groups in ¥ there exists a G-
equivariant map X — E which is unique up to G-homotopy.
(ii) Forall H € F the fixed point set E™ is weakly contractible.

Proof The key observation is that every H € ¥ defines a functor from the category
of G-spaces to the category of spaces by sending a G-space X to the fixed point
space X anda G-map f: X — Y to the restriction f¥: X — Y This functor
has a left-adjoint which sends a space X to the G-space G/H x X and a map f to
idg,m x f. The adjoint relation says that we have a bijection map;(G/H x X, Y) =
map(X, Y1), natural in X and Y, from G-maps to maps. Explicitly, it is given by

(f:G/HxX —>Y)— (x+— f(H,x))
with inverse
(h: X - Y*) — ((gH, x) — gh(x)).

Now we prove (i) = (ii). For all H € F, assertion (i) guarantees that we
have a G-map f: G/H — E and hence f(H) is a point in Ef showing that
E™ is not empty. For n > 1, we view amap f: §"~! — E as a point in the
space map(S"~!, Ef) with the compact-open topology. In this topology, the adjoint
relation becomes a homeomorphism map(S”_l, EMy = map;(G/H x sl E)
and the latter space is path-connected by assumption (i). Thus we can find a path
from f to any constant map S"~! — E* . Such a path defines a null-homotopy of
f which is the same as an extension of f from $"~! to D".

To prove (ii) = (i), let a G-CW complex X with stabilizers in ¥ be given. We
constructa G-map f: X — E inductively over the skeleta of X. To begin with, we
consider Xo = [ [, 1, G/Hi. By (ii), the spaces E Hi are not empty so we can pick
points x; € EM foralli e Iy. Requiring that H; € G/H; map to x; determines
a G-map G/H; — E uniquely by equivariance. The coproduct of all these G-
maps gives a G-map fo: Xo — E. Any other G-map f;: Xo — E defines points
x| = f'(H;) € EMi. Together with the x;, these give G-maps G/H; x S° — E.
The adjoint maps S° — Efi extend to D! by (ii) and accordingly the original maps
extend to G/H; x D'. The coproduct of these extensions defines a G-homotopy
from fj to f;;.

Now assume a G-map f,—1: X;—1 — E, unique up to G-homotopy, is given.
We choose a G-equivariant pushout

1 G/H; x s"~' -~ x,_,

iel,
Lin j)l

1] G/H x D" —2~ x,.

iely



4.1 Classifying Spaces for Families 69

By (ii), the restriction map

mapg ]_[ G/H; x D" E | = ]_[map (D", EH") N

iely, iely,

— ]_[map (S"_l, EH") = mapg ]_[ G/H; x S" ' E

iel, iel,

is surjective. Hence, we find a lift F;,_; € mapg (]_[l-eln G/H; x D", E) of f—10
qn- By the universal property of the pushout, we thus obtain a G-map f,,: X, — E,
extending f,,—1 as desired.

1 G/H; x s L5 x,,

iel,
inl j’l
Q fnfl
I G/H; x D" ———= X,
iel, AN

Let f,: X, — E be another G-map. By the induction hypothesis, the restriction
of f, to X,—1 is G-homotopic to f,_;. Since the inclusion X,—; — X, is a
cofibration, this homotopy extends to a homotopy H: X, x I — E with Hy = f,.
We may thus assume that f; and f, coincide on X,,_;. In that case, f,, and f, unify
toamap G, : Y, — E from the pushout Y, of the diagram X,, <— X,,_1 — X,,. The
equivariant n-cells G/ H; x D" of X, appear twice in Y, as “opposite” equivariant
cells so that the characteristic maps of the cells composed with G, define G-maps
G/H; x 8" — E where the n-disk D" is embedded once as upper and once as lower
hemisphere in S". Again by (ii) these maps extend to maps G/H; x D"*! — E so
that we can push the copy of X, embedded in Y,, by upper hemispheres through
(n 4+ 1)-disks to the copy of X, embedded by lower hemispheres, fixing X,
throughout. This defines a G-homotopy from f;, to f,.. O

Definition 4.3 A G-CW complex E#G with stabilizers in ¥ satisfying condi-
tions (i) and (ii) above is called a classifying space of G for F .

The concept of classifying spaces for families of subgroups is due to T.tom
Dieck.

Theorem 4.4 For every group G and every family of subgroups F of G there exists
a classifying space E¢G which is unique up to G-homotopy equivalence.
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Proof For the existence part of the theorem, we construct E#G inductively over
the skeleta. To begin with, set (ExG)o = | [y G/H. Now suppose (ExG),—1
is already given. For all H € ¥, pick one map §"~! — ((E£G),_1)" from each
homotopy class and attach an equivariant n-cell G/H x D" according to the adjoint
map G/H x sl (EFG)p—1. Thus (EFG),, is defined for all n > 0 and we set
E#G = colim,>0(ExG)p.

Note that for each H € ¥, the fixed point set (E#G)f forms a (non-
equivariant) subcomplex as it consists of a closed union of open cells. Thus by
cellular approximation, any map S"~! — (E#G)* is homotopic to a map §"~! —
(E¥G"),_1 = ((E#G),_1)". By construction, this map is homotopic to the
adjoint of an attaching map of an equivariant n-cell, whence it is null-homotopic.

Uniqueness follows from the usual nonsense: Say E,}G and E;G are two

classifying spaces of G for . By property (i), there are G-maps E}G — E;G
and E%G — Eger whose compositions, by uniqueness, are G-homotopic to the
identity maps on EgltG and E;G. O

For the sake of a transparent proof, we have given a construction of an E#G in
the proof which cannot be functorial for family preserving group homomorphisms
as we have chosen representatives of homotopy classes to obtain attaching maps.
There are, however, also functorial models for E#G. The terminology that some G-
CW complex is a model for E#G is meant to stress that a particular G-CW complex
within the uniquely defined G-homotopy equivalence class of classifying spaces of
G for F is under consideration.

For simplicity, we set EG = E¢rnG, also called the classifying space for
proper actions, and EG = Eqg7rqG, called the classifying space for free actions.
Since G acts freely on EG, the quotient map EG — G\EG is a covering. The
base space G\EG is more commonly denoted by BG and is an aspherical CW
complex because by Whitehead’s theorem, a weakly contractible CW complex is
contractible in the usual sense. Conversely, every aspherical CW complex X is a
model for B(m; X). If people plainly talk about a classifying space for G, most
commonly they refer to some model of BG.

Exercises

4.1.1 Let X be a connected CW complex and let ¥ be a model for BG. Show
that every homomorphism 71 (X, x9) — m1(Y, yo) is induced by a map (X, xo) —
(Y, yo). Hint: First assume that x is the only O-cell in X.
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4.2 Extended von Neumann Dimension

As a consequence of our discussion so far, we obtain the classical result that
aspherical CW complexes are determined uniquely up to homotopy equivalence by
the fundamental group. Accordingly, every homotopy invariant of CW complexes
gives an isomorphism invariant of groups, such as group homology H.(G) =
H.(BG), group cohomology H*(G) = H*(BG) and Betti numbers of groups
b, (G) = dimg H,(BG; Q). Similarly, G-homotopy invariants of G-CW complexes
give invariants of groups. In a moment we will go forward and define the n-th £>-
Betti number of a group G with respect to some family # by setting bflz)(G, F) =
b,(lz) (EFG). But before we do so, we need to address one important issue. So far we
defined ¢2-Betti numbers only for proper, finite type G-CW complexes. But given
an arbitrary group G and some family ¥, it cannot be assured that it possesses a
finite type model for E#G. Moreover, if # is not contained in ¥ I N, then EG
will never be proper.

Let us reflect on what made us require so far that any G-CW complex X under
our consideration was proper and of finite type. These conditions were imposed
to make sure that reduced ¢>-homology H,Sz)(X) as defined in 3.12 is a finitely
generated Hilbert module so that its von Neumann dimension is defined as in 2.37.
Properness was essential because Proposition 3.7 and Example 2.41 show that only
in this case the £2-chain complex consists of Hilbert modules. “Finite type” makes
sure these Hilbert modules are finitely generated. One can define von Neumann
dimension for general Hilbert modules H € ¢>G ® K by adding up von Neumann
traces diagonally after choosing an orthonormal basis of K. This might of course
give infinite values. However, given a proper, infinite type G-CW complex, it is
not clear how to come up with a Hilbert module structure on £2-homology. One
cannot expect anymore that the differentials dr(,z) in the cellular £2-chain complex
are bounded operators and so it is for example not guaranteed that the £2-cycles
ker d,(,z) form closed subspaces.

In what follows we will explain the remedy to these technical difficulties. While
we give the complete construction, proof ideas are only indicated in this section in
order to not lose track on our way to the definition of £2-Betti numbers of groups.
For a detailed account, we refer to [117, Sections 6.1 and 6.2].

The first insight is that once a finitely generated Hilbert module H is realized
as a closed G-invariant subspaces H C (£2G)", the orthogonal projection p to
this subspace is G-equivariant and thus lies in the amplified group von Neumann
algebra, p € M,(R(G)) by Example 2.28. This projection, in turn, gives rise to
a left R(G)-submodule R(G)" p of R(G)". The point is that R(G)" p is a finitely
generated projective R(G)-module in the algebraic sense: it is complemented as a
direct summand in a free, finite rank R(G)-module:

R(G)" =R(G)" p®R(G)" (1 - p),
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where 1 € M,(R(G)) is the unit matrix. Here we consider R(G) as a ring with
involution “x” only, dismissing all topology. Conversely, given a finitely generated
projective left R(G)-module P, it is by definition complemented in some R(G)"
which means we can find p € M, (R(G)) with p?> = p and an R(G)-isomorphism
u: P> im p to the image of p in R(G)". A priori, the idempotent p might be an
oblique projection as operator on (£G)" by right multiplication. But the orthogonal
projection onto the image of p is realized by a conjugate of p in M, (R(G)). So we
can additionally assume p = p* if we want to. In any case, the image of p as
operator on (£2G)" is a finitely generated left Hilbert £(G)-module.

It turns out that these two constructions are inverses of one another up to
isomorphism. But of course we want them to be inverses up to natural isomorphism
so that the construction ought to be functorial. The latter construction can be made
functorial as follows. The element p € M, (R(G)) and the isomorphism u give rise
to an inner product on the C-vector space P defined by

(X, ) =Y trrG) @)fu(y)s).

i=1

It is easily verified that this inner product is independent of the choices of p and
u. We have (gx, gy) = (x, y) forall g € G because G acts diagonally on R(G)".
Let P be the Hilbert space completion of P. The reader should convince herself
that R(G) = £>G which is a special case of the so called GNS-construction. Setting
0O = ker p, we observe that

PCPOO=ZP®QOZRG" ZRG)" = (£2G)".

Hence P is a finitely generated Hilbert £(G)-module. Here it was important that we
agreed in Definition 2.34 that the embedding is not part of the structure of a Hilbert
module because the above embedding depends on the choice of p.

Next we have to explain what our functor does with morphisms. Let f: P| — P
be a homomorphism of finitely generated projective left R(G)-modules. We argue
that f extends continuously to a G-equivariant operator f: P; — P,. After
choosing complements P1® Q1 = R(G)" and P,d Q2 = R(G)" for large enough ,
we can extend f trivially on Q1 and obtain an endomorphism F: R(G)" — R(G)"
of a free R(G)-module. Hence it is given by right multiplication with a matrix
in M,(R(G)). The matrix also describes the extension F: (£2G)" — (£2G)" of
F to the Hilbert completions. Since the amplified group von Neumann algebra
M, (R(G)) acts by bounded G-equivariant operators, so does the restriction of F to
P; C (£>G)" which agrees with f on the dense subspace Pj. Hence this restriction
gives the unique continuous extension f: P; — P, of f as desired.

Theorem 4.5 Completion defines an equivalence from the category of finitely
generated, projective left R(G)-modules to the category of finitely generated Hilbert
L(G)-modules.
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We leave the proof to the reader as the guided Exercise 4.2.1. The theorem can
be made a little more precise by saying that completion is an equivalence of C-
categories. This essentially says that morphism sets form complex vector spaces
and the equivalence preserves this structure. The theorem tells us that the category
of Hilbert modules can be fully embedded into the category of left R(G)-modules
as the subcategory of finitely generated projective left R(G)-modules. Thus the
following extension of von Neumann dimension to completely general left R(G)-
modules arises naturally.

Definition 4.6 The (extended) von Neumann dimension of a left R(G)-module N
is given by

dimg(gy N = sup {dimgG) P: P C N finitely generated, projective}.

In addition to the standard properties normalization and additivity, von Neumann
dimension of R(G)-modules comes with two regularity properties. The first prop-
erty goes by the name of cofinality, and says that von Neumann dimension equals
the least upper bound of the dimensions of any exhausting family of submodules.
The second, continuity, says that the dimension of a submodule N of some finitely
generated R(G)-module M agrees with the dimension of the closure N of N in M:

N = {x e M: p(x) = 0forall p € Homg)(M, R(G)) with N C ker ¢}.

To be completely precise, we collect these properties in a theorem.
Theorem 4.7 (Properties of Extended von Neumann Dimension)

(i) Normalization. We have dimgG)(R(G)) = 1.
(ii) Additivity. Suppose 0 - L — M — N — 0 is a short exact sequence of left
R(G)-modules. Then

dimggy M = dimg(c) L + dimgg) N.
Here it is understood that x +y = oo if x = 00 and/or’y = 0.
(iii) Cofinality. Let M be a left R(G)-module and suppose M = colim; M; for a
system (M;);c1 of submodules of M directed by inclusion. Then

dimgGy M = sup;; dimg(G) M;.

(iv) Continuity. Let M be a finitely generated left R(G)-module and let N C M be
a submodule. Then

dimyz(G) N = dimR(G) ]/\7
The proof is routine. Note that faithfulness fails for the extended von Neumann

dimension. But again, this is not a bug. It’s a feature that makes von Neumann
dimension strikingly reminiscent to the Z-rank of a finitely generated abelian group.
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For a generic finitely generated R(G)-module M we have a decomposition M =
PM & TM, where for the rorsion part TM = {/0\}, we have dimgG)(TM) = 0
by the continuity property (iv) and for the projective part P(M) = M/TM, we
have dimggy PM = dimg) M by the additivity property (ii). In view of these
observations, Liick goes as far as to say that the ring R(G) is “very similar” to Z.
Except that typically, it is not commutative, not Noetherian, and has zero divisors.
In any case it is undeniable that to a large extent the module categories over Z and
R(G) have a parallel structure theory. One could argue that the term von Neumann
rank instead of “extended von Neumann dimension” would be more consistent with
the above observations. But the terminology “extended von Neumann dimension”
has become standard in the literature. What makes the category of R(G)-modules
well-behaved from a technical point of view, is that the ring R(G) is semihereditary
which means that the property of being a projective (left) module is robust in the
following three senses.

Proposition 4.8 (Semiheredity of the Ring R(G))

(i) Projective submodules. Every finitely generated submodule U of a projective
R(G)-module P is projective.
(ii) Projective quotients. If' V is a finitely generated R(G)-module and U C 'V is a
submodule, then V / U is finitely generated projective.
(iii) Projective kernels. If f: Q — P is a morphism of finitely generated projective
R(G)-modules, then Ker f is finitely generated projective.

Note that setting U = 0 in the second part of the Proposition gives the
decomposition of V into projective and torsion part.

Proof We only show that (ii) implies (iii). If in (ii) the module V is also projective,
then not only V/ U but also U itself is finitely generated projective because it is a
direct summand in V' and hence a direct summand in a finite rank free module. It is
thus enough to show thatker f = ker f. Since P is a submodule of some R(G)", the
projections p; onto the n coordinates define n linear functionals on P whose kernels

have trivial intersection. Thus if x € lgr\f, then (p; o f)(x) =0fori =1,...,n
which implies f(x) = 0. |
Exercises

4.2.1 Prove Theorem 4.5 along the following lines.

(i) Show that the full subcategories of finite rank, free left R(G)-modules and
finite rank, free Hilbert £(G)-modules are equivalent.

(ii) Identify the category of finitely generated projective modules in each case with
the Karoubi envelope (check the literature!) of these subcategories. This yields
an equivalence of the categories of finitely generated projective Hilbert and
R(G)-modules.

(iii)) Show that completion is naturally isomorphic to this equivalence.
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4.2.2 Asequence U i) VE Wof finitely generated projective left R(G)-modules

is called weakly exact at V if im f C ker g and if for any other sequence Q SvS
W of finitely generated projective R(G)-modules we have imv C ker u whenever
im f € keru andimv C ker g. Show that the equivalence of Theorem 4.5 preserves
exact and weakly exact sequences.

4.3 ¢2-Betti Numbers of G-Spaces

Now that dimg(g) is defined for general left R(G)-modules, we can define £2-Betti
numbers for general G-spaces with no constraints whatsoever on the type of the
space or the occurring isotropy groups. The left G-action on X induces a left ZG-

module structure on the singular chain complex Ciing(X ). The R(G)-ZG-bimodule

R(G) determines the functor R(G)®7zg which turns C img (X) into a chain complex
of left R(G)-modules. So we can consider the extended von Neumann dimension of
the homology.

Definition 4.9 Let X be a G-space. The n-th £2-Betti number of X is
bP(X) = b (G ~ X) = dimg(g) Ha(R(G) ®z6 Cy™ (X)) € [0, ool.

It remains to check this notion is consistent with the previous definition.

Theorem 4.10 Let X be a proper; finite type G-CW complex. Then the (*-Betti
numbers of X according to Definition 3.13 coincide with the £>-Betti numbers of X
according to Definition 4.9.

Proof By [116, Lemma 4.2] one can construct a ZG-chain homotopy equivalence
Cien(X ) — C3"8(X) which induces an R(G)-isomorphism

Hy(R(G) @26 C(X) = Hy(R(G) ®z6 C2"™ (X)),
Since
dimg(G) Ha(R(G) ®z6 C5™(X)) = dimg(g) PH((R(G) ®zg C5' (X)),
it remains to show that
PH,(R(G) ®za C&I(X)) = H,2 (X).
To this end, consider the differentials 1 ® d, of the chain complex R(G) ®z¢

Cie“(X). As functionals H,(R(G) ®zg C:e”(X)) — R(G) are the same as
functionals on ker 1 ® d,, vanishing on im 1 ® d,,+1, the sequence

0— im1®dys1 — kerl ® dp — PH,(R(G) ®z6 C<(X)) — 0
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is exact. The point is that by Proposition 4.8 and its proof, all three R(G)-modules
in this sequence are finitely generated projective, so that our completion functor ( -)
is available. This functor is an equivalence so it preserves exact sequences. From
this we obtain a diagram with exact rows

0— > iml®dy 11 —> kerl ®d, —> PH,(R(G) ®z¢ C(X)) —= 0

R}

00— im dr(j_)l

— s kerd? —— S HPX)—— >0

in which the first two vertical arrows define the third. The bars in the first line denote
the completion functor, whereas the bar in the lower left means closure of a subspace
in Hilbert space. Since the first two vertical arrows are isomorphisms, so is the third
by the five lemma. O

Theorem 4.11 (Computation of £2-Betti Numbers Revisited)

(i) Homotopy invariance. Let f: X — Y be a G-homotopy equivalence of G-
spaces X and Y. Then b,(lz)(X) = b,(lz)(Y) foralln > 0.

(ii) Zeroth £2-Betti number. Let X be a path-connected G-space. Then b(()z)(X ) =
& with 0 =0.

(iii) Kinneth formula. Let X1 and X, be G- and Ga-spaces, respectively. Then
X1 x Xy is a G x Ga-space and for all n > 0 we have

P (X1 x X)) = Y BPX) D (X2).
ptq=n

(iv) Restriction. Let X be a G-space and let Go < G be a finite index subgroup.
Then 1resg0 X is a Go-space and b,(lz)(lresg0 X)=[G: Go]b,(lz)(X) foralln >
0.

Comparing this theorem to the previous cellular version Theorem 3.18, you will
notice that it is verbatim the same result except that “proper, finite type G-CW
complex” now simply reads “G-space” and “connected” was replaced by “path-
connected”. The latter two notions might differ for general spaces whereas for CW
complexes they do not. In (iii), the rules x 400 = 0o, x-00 = 0o and 00-0 = 0 apply
if some occurring £2-Betti number is infinite. We content ourselves with having
proven the cellular version and skip the proof of this generalization which the reader
may find in [116] and [117, Theorem 6.54].
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4.4 ¢2-Betti Numbers of Groups and How to Compute Them

Now that we have defined ¢2-Betti numbers of general G-spaces, we are in the
position to give the following definition.

Definition 4.12 Let G be a group and let ¥ be a family of subgroups. For n > 0,
the n-th £2-Betti number of G with respect to ¥ is defined by

bP(G,F) = bP(EFG) € [0, <]

Let us moreover agree that b,(lz)(G) shall mean bflz)(G, TRIV) = b,(lz)(E G).

Example 4.13 One can see geometrically that every finite group G has a finite
type model for the classifying space EG. Since EG is contractible, it follows
from Theorem 4.10 and Example 3.14 that b,(lz)(G) = 0O foralln > 1 and
b(()z)(G) = 1/|G|. Note that you will prove in Exercise 4.4.1 that a finite group
G has no finite model for EG unless G is trivial. In Exercises 4.4.2 and 4.4.3 you
will show more precisely that in fact EG has not even a finite-dimensional model.

As opposed to G-spaces, it is convenient to say that a group G is £>-acyclic if
b,(lz)(G) = 0 for n > 1 so that this notion includes the finite groups. We can now
clarify the role of the family F.

Theorem 4.14 Let G be a group and let F be a family consisting of £*-acyclic
subgroups. Then b,(lz)(G, F)= b,(lz)(G) foralln > 0.

Proof We only give an outline. By Theorem 4.2 we have a G-equivariant map
EG — E#G which is unique up to G-homotopy. We can turn this into an
equivariant map of free G-spaces by replacing EFG with E#G x EG on which
G acts diagonally (“the Borel construction’) and consider instead the diagonal map
EG — E#G x EG. One can show that applying R(G) ®z¢ Cimg( -) gives a chain
map that induces an isomorphism in homology and that the Borel construction does
not alter £2-Betti numbers. O

Theorem 4.14 says that instead of the trivial family, we can alternatively
use the families ¥ I N, VCYC and—as information for the initiated reader, see
Sect. 5.4.6—even the family AME of amenable subgroups to compute the £2-Betti
numbers of G. However, in practically all cases of interest it turns out that F 7N
is the best choice. Firstly, EG often has finite models when the others have not,
and secondly, if EG is at least finite type, the cellular definition (Definition 3.13) of
£2-Betti numbers still applies because EG is by definition proper. For example, the
real line turned into a CW complex with O-cells at the half-integers allows a cellular
action by the infinite dihedral group Doo = Z x Z/27. The reader may convince
herself that this defines a model for E D,. Recall that by Exercise 4.4.3, no group
with torsion elements can have a finite-dimensional model for EG.
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Table 4.1 Examples of classifying spaces and £2-Betti numbers

G BG EG EG bn(G) b?(G)

Z st R R 1 n=0,1 0 n>0
0 n>2

z T R¥ R¥ @) 0 n>0

Fy Ve, 8t k-reg. tree  k-reg. tree 1 n=0 0 n#1
k n=1 k—1n=1
0 n>2

Foo Vg, st 0o-reg. tree  0O-reg. tree I n=0 0 n#1
ocon=1 con=1
0 n>2

72 RP® 5% . 1 n=0 12 n=0
0 n>1 0 n>1

Do RP*® vRP>® See text R 1 n=0 0 n>0
0 n>1

PSL(2,7Z) RP*™ v Z/3\S® See text H? 1 n=0 1/6 n=1
0 n>1 0 n#1

Table 4.1 gives examples of Betti numbers and ¢>-Betti numbers of various
groups. The reader is advised to check it entry for entry. In the second to last
example, one can picture the space E D, which is the universal covering of
RP* v RP*, as follows. The base point in RIP* has two lifts in S°°, call them
left and right. We line up countably many copies of S°° and identify the right base
point of each copy with the left base point of the succeeding copy. A generator of
the infinite cyclic normal subgroup Z < Do, = Z x Z/2Z acts on this space by
translating the copies by two steps. The subgroup Z/27Z < D« acts by inversion
about the center of a certain copy of S so that on this particular copy it acts as
the antipodal map and maps the n-th neighbor on the right homeomorphically to the
n-th neighbor on the left.

In the last example, a matrix (¢ 5) € PSL(2, Z) acts on the upper half plane
model of H? by z + (az + b)/(cz + d). Note that the action is not cocompact
so that this model of EG is not of finite type. The value biz) (PSL(2,7Z)) = 1/6
can be obtained by analytic methods (see the remarks below Theorem 3.39) and
a careful comparison of analytic and cellular ¢>-Betti numbers. Way more easily,
however, one can compute this value by means of the well-known isomorphism
PSL(2,Z) = Z/2 % Z/3 and Theorem 4.15 (ii) below. Due to this isomorphism, a
model for BPSL(2, Z) is given by RP*® v (Z/3Z\ §°°), where you will construct
the action of Z/3Z on S*° in Exercise 4.4.2. The universal covering EPSL(2, Z)
can hence again be obtained by gluing countably many copies of S°. This time,
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however, these are glued so as to be aligned along a 3-regular tree, where the copies
of S covering RP* form the edges and the copies of S covering Z/37Z \ S
form the vertices of the tree.

Theorem 4.15 The following formulas hold for any groups.
(i) BP(G1 X G2) = ¥ sy P (G1) - 5P (G2) for all n = 0.
(ii) For the free product of two groups, we have
bP(G1 * G2) = b?(G1) + b (Go) forn = 2,

1
|Gl

b(()2)(G1 * G2) = 0 if G1 and G, are nontrivial.

bP (G Ga) =1+ bP(Gy) — +bP(Ga) —

|G2|’

(iii) b2 (Go) =[G : GolbP(G) foralln > 0if Gy < G has finite index.

Proof The product G1 x G acts freely on the product space EG1 x EG,. A map
s"~1 . EG; x EG;, is the same as two maps sl EG; fori = 1,2.
These extend to D", hence E(G| x G,) >~ EG; x EG,. So (i) follows from the
Kiinneth formula for ¢2-Betti numbers of G-spaces, Theorem 4.11 (iii). For (ii),

note that E(G * Gp) =~ BGmGz by van Kampen’s theorem and observing

that BG1 v BG; arises by gluing alternately the weakly contractible spaces EG1
and E G in a tree-like pattern. The asserted formulas follow from a Mayer—Vietoris
type argument which we will skip as it is technically somewhat involved. Since we
have EGg >~ resg0 EG, we see that (iii) follows from Theorem 4.11 (iv). |

Recall from Table 4.1 that b'”(PSL(2,Z)) = 1/6 and b\ (F2) = 1. Thus
part (iii) of the above theorem has the curious consequence that any embedding
F> C PSL(2, Z) either has infinite index or index six. This can also be seen by an
Euler characteristic argument.

The groups G we considered so far either possess a finite type model for EG or
are not even finitely generated. Let us conclude this section by pointing the reader
to a result of Liick and Osin [121, Theorem 4.1] who construct for every n > 2 and
every ¢ > 0 an infinite p-group Q with n generators such that bgz)(Q) >n—1—e¢.
The group Q is not finitely presented and hence does not admit a model for £ Q with
finite 2-skeleton. It arises as a colimit of certain quotients of the free group F;, which
lie in a pro- p group and whose first £2-Betti number can be uniformly bounded from
below by n — 1 — . The bound is still valid for Q by M. Pichot’s semicontinuity
theorem for the first £2-Betti number [144, Theorem 1.1]. The group Q is of interest
because it shows that the finite type assumption in Liick’s approximation theorem,
to be examined in Chap. 5, cannot be omitted as we will discuss in Sect.5.4.1.
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Exercises

4.4.1 Let G be a finite group. Show that G has no finite model for BG unless G is
trivial. Hint: Euler characteristic.

4.4.2 Show that S = colim, S" is contractible by constructing an explicit
homotopy from the identity map of S to a constant map. For eachm > 2 find a CW
structure on S*° and a free, cellular action of Z/mZ on S*° to obtain (Z/mZ)\S*
as a model for B(Z/mZ). Hint: Review the homology computation of lens spaces.

4.4.3 Show that for all n > 1 we have b,(Z/mZ) = O whereas H,,(Z/mZ; Z]mZ)
= Z/mZ. Conclude that a group G which has a finite-dimensional model for BG is
torsion-free. In particular, a finite group G has no finite-dimensional model for BG
unless G is trivial.

4.4.4 Let p > 0andg,n > 1 be integers.

(i) Find a group G = G(n; p,q) with finite type model for EG such that
bP(G) = 0 for k # n and b\?(G) = .
(i) Find a group as above that additionally satisfies by (G) = 0 for k > 1.

4.5 Applications of £2-Betti Numbers to Group Theory

With the concept of ¢>-Betti numbers of groups at hand, we will present some
interesting applications and relations to other concepts of group theory. Once again,
£2-Betti numbers will have things to say in contexts that are not related to ¢2-
methods in any apparent way.

4.5.1 Detecting Finitely Co-Hopfian Groups

Definition 4.16 A group G is called (finitely) co-Hopfian if G is not isomorphic to
a proper subgroup of G (of finite index).

Obviously, finite groups are co-Hopfian and free abelian groups are not.

Theorem 4.17 Let G be a group and assume 0 < b,(lz)(G) < oo for some n > 0.
Then G is finitely co-Hopfian.

Proof If G has a subgroup H < G of index 1 < [G : H] < oo such that H = G,
then by Theorem 4.15 (iii) we have for all n > 0O that

br(lz)(G) =[G : H] b,(lz)(H) =[G : H] br(zz)(G)

and hence either b2 (G) = 0 or bP(G) = oo. O
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Thus nonabelian free groups Fy for k > 2 are finitely co-Hopfian and so is
PSL(2, Z). Free groups do however contain free groups of larger rank as proper
finite index subgroups. To see this, consider the quotient map

which identifies pairs of points on the three circles mapped to one another by a
point reflection through the center of the middle circle. It is a twofold covering map
illustrating that F> contains F3 as a subgroup of index 2. Say the left hand circle
of the base space is the image of the two outer circles and the right hand circle is
the RP! image of the middle circle. Let us pick the left hand wedge point as base
point of the covering space. If a and b are the two generators of the free fundamental
group of the base space that wind around the left and right circle, respectively, then
we see that the characteristic subgroup F3 < F» = (a, b) is generated by a, b2, and
bab™!.

Note that on the other hand Fy is not co-Hopfian. It can be embedded into
itself as an infinite index subgroup in numerous ways, for example using that
the commutator subgroup of Fy is isomorphic to F. Of course Theorem 4.17
only gives a sufficient condition for a group to be finitely co-Hopfian. For
instance, fundamental groups of closed (and more generally of finite volume)
hyperbolic 3-manifolds are £2-acyclic, as we discussed in Theorem 3.39, but they
are also finitely co-Hopfian. One way to see this, is that these manifolds have

non-zero ¢2-torsion, another multiplicative invariant which we will introduce in
Chap. 6.

4.5.2 Bounding the Deficiency of Finitely Presented Groups

For a finite presentation P = (S|R) of a finitely presented group G, let g(P) = |S]|
be the number of generators and let r(P) = | R| be the number of relators in P.

Definition 4.18 The deficiency of G is def(G) = m}gx{g(P) —r(P)}.

Here the maximum is taken over all finite presentations of G. Intuitively, adding
another generator to some presentation of G should cost another relation. So it
seems plausible that the maximum above exists. To see this rigorously, we make
use of the presentation complex X p associated with P. This is a two-dimensional
CW-complex, whose 1-skeleton is a wedge sum of as many circles S! as P has
generators. To these we attach one 2-cell for each relation r in P by the attaching
map the word r describes when we orient and label the circles by the generators
s of P. By construction we have m1(Xp) = G. We can kill the higher homotopy
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groups of X p by attaching cells of dimension three and higher. This extends X p
to a model of BG with finite 2-skeleton. Hence the inclusion map Xp — BG
induces isomorphisms H;(Xp) = H;(BG) for i = 0,1 and an epimorphism
H>(Xp) — Hy(BG). It follows that

gP)—r(P)=1—x(Xp)=1—>bo(Xp) +b1(Xp) —b2(Xp)
=b1(Xp) — b2(Xp) < b1(G) — b2(G).

Example 4.19 For the free abelian groups we have

def(Z") = ”(32_ O (’;)

Indeed, the presentation Z" = (xy,...,x,|[x;,x;]1 < i < j < n) gives the
inequality “>" and the reverse inequality “<” follows from the calculation above.
Similarly we see def(F},) = n.

One can do the exact same calculation as above for £2-homology to conclude the
following result.

Theorem 4.20 Let G be any finitely presented group. Then
def(G) < 1 - b (G) +bP(G) - bP(G).

Depending on G, this bound can be better or worse than the one given by
ordinary Betti numbers. For example for G = PSL(2, Z), Theorem 4.20 only
gives def(PSL(2,Z)) < 7/6, hence def(PSL(2,7Z)) < 1 whereas the ordinary
Betti number bound is def(PSL(2,7Z)) < 0. This is the correct value because
PSL(2,Z) = (a,b|a?, b3). On the other hand, let G < Isom(H*) be a discrete,
torsion-free subgroup such that the quotient space G\IH* is a hyperbolic 4-manifold
of finite volume. In that case one can find a CW structure on H* such that the
free action of G is cellular and cocompact. Since H* is contractible, this gives
a finite model for EG. Recall that we mentioned on p.64 that a hyperbolic 4-
manifold only has one non-zero ¢£2-Betti number which sits in degree 2. Hence
Theorems 4.20 and 3.19 give def(G) < 1 — x(G). Hirzebruch’s proportionality
principle [76] says that x(G) is proportional to the volume of G\H* and the
proportionality constant in this case is given by the ratio of Euler characteristic and
volume of the 4-sphere S*. So we get def(G) < 1 — 47312 vol(G\H*) as observed by
Lott [112]. Since G has subgroups of arbitrarily large index, as we will discuss in
Sect. 5.1 of Chap. 5, it follows that G has subgroups with arbitrarily large negative
deficiency.
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4.5.3 One Relator Groups and the Atiyah Conjecture

Let G be a finitely generated one relator group, meaning a group with presentation
P = (x1,...xg|r) in which the nontrivial word r in the letters x1, ..., x; is the
only relator. If G is torsion-free, so that of necessity g > 2, it is known that the
presentation complex X p is already aspherical and hence a two-dimensional model
for BG [124, 111, Paragraph 9-11]. It follows that def(G) = g — 1 because

g—1=<def(G) <bi1(G) —b(G)=—xG)+1=—-U—-g+DH+1=g—-1.

For the £>-homology of G, Liick [117, p.301] expected (compare the remarks by
Gromov in [64, 8.A4]) and Dicks—Linnell [32] confirmed the following.

Theorem 4.21 Let G be a torsion-free group with g generators and one relator.
Then b\ (G) = g — 2 and b (G) = 0.

We saw in Example 3.26 that the theorem is true for surface groups. The proof
of Theorem 4.21 in [32] uses Linnell’s theorem 3.33 on the Atiyah conjecture. We
will however report at the end of Chap. 5 that very recently, the Atiyah conjecture
was proven for torsion-free one relator groups which allows an easier conclusion of
the theorem, as was observed by Liick.

Proof Since the classifying space BG = X p has no 3-cells, we have
H?(G) = ker (df): cP(Xp) — c{z)()?p))

and moreover Céz) (Xp) = €2G because X p has precisely one 2-cell corresponding
to the only relator in P. Since the (reduced) relator word r is nontrivial by definition,
it follows that the homomorphism déz) is nontrivial. Hence ker déz) is a proper
Hilbert submodule of C{* (X p) which implies 0 < b$”(G) = dimg() kerd}” < 1.
As the Atiyah conjecture 3.30 is true for G with coefficients in Z, it follows that
b$?(G) = 0. Theorem 3.19 gives

bP(G) = —x(Xp) +bP(G) +bP(G) = —(1 —g+ 1) =g —2. O

4.5.4 The Zeroth ¢2-Betti Number

We can finally settle a debt and give the missing part of the proof of Theo-
rem 3.18 (ii), namely that b(()z)(X) = 0 if G is an infinite group and X is any
connected, nonempty, proper, finite type G-CW complex X. By Theorems 4.2
and 4.4 we have a G-map f: X — EG, unique up to G-homotopy. Similar
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to the proof of Theorem 4.14, we can go over to the Borel construction and
consider the G-map id x f: EG x X — EG x EG of free G-CW complexes.
Since X is connected and nonempty, the induced map Hp(id x f; C) in (singular)
homology is an isomorphism and H;(id x f; C) is trivially surjective because
H{(EG x EG; C) = 0. In other words id x f is homologically 1-connected and
a homological algebra argument shows that it remains homologically 1-connected
if coefficients are taken in R(G) instead of C [116, Lemma 4.8]. It follows
that b(()z)(EG x X) = b(()z)(EG x EG). As the Borel construction does not
alter ¢2-Betti numbers, we obtain b{”(X) = b{’(EG) and finally b’ (EG) =
b(()z)(E G) by Theorem 4.14. Note that if G acted freely on X, we would get
easily that G is finitely generated: by covering theory G would be a quotient
of m1(G\X) which is finitely generated because G\X has compact 2-skeleton.
However, since we only assume that G acts properly, we need a more elaborate
argument.

Lemma 4.22 Suppose that for a group G there exists a nonempty, connected,
proper, finite type G-CW complex X. Then G is finitely generated.

Proof A connected CW complex is path-connected and any path in X connecting
any two points in the 1-skeleton X; can be homotoped relative end points to a path
inside Xi. Thus X is a one-dimensional, connected CW complex with a proper,
cellular and cocompact action by G. Since the action is cocompact, there exists a
compact subcomplex D C X such that the G-translates of D cover X. Since the
action is proper, the set S = {g € G: gD N D # (} is finite. We claim that §
generates G. So let g € G. Pick a O-cell xo € D and a finite chain ey, ..., e, of
oriented, closed 1-cells in X joining x¢ to gxo so that the end point x; of ¢; is at
the same time the initial point of e;1 fori = 1,...,n — 1. Since the action is
cellular, we can find group elements g; € G such that ¢; C g; D. Enlarging D, if
necessary, we can arrange that g1 = e and g, = g. Since x; € g;D N gi+1D, we
have g;rllxi € D and (gflg,url)g;rllx,- = gflx,- € D, whence glflg,'H e S. As

g= (g7 e)(gy" g3) - (g, &n), the proof is complete. O

Thus we are left with the task of computing b(()z) (G) for a finitely generated group
G.Let § C G be a finite generating set. As explained above, we have a model for
BG with (BG)| ~ \/ses S'. We observe that (EG); is in this case the Cayley
graph of G with respect to S. Indeed, the vertex set of (EG); can be identified with
the group G and two vertices g1, g2 € G are connected by an edge if and only if
there exists s € § such that sg; = g2. Accordingly, after picking a cellular basis,
the first cellular differential is of the form

di: Pze 2= g6,

seS

It is now convenient to consider the £>-cochain complex from Sect. 3.4 in Chap. 3
instead of the £2-chain complex we usually consider. The zeroth codifferential is
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given by

50
Homz (ZG, *G) —> ) Homzg(ZG, £2G)

seS

@ = Bses (x = @(x(s — o).

Thus a homomorphism ¢ € ker 8?2) has the property that ¢(xs) = ¢(x) for all
s € S. Since every element g € G is a finite word in the alphabet S, it follows
¢(xg) = ¢(x) for all g € G and hence gp(e) = ¢(g) = ¢(e) forall g € G.
Writing ¢(e) = > ¢€G Cg8» We see that this implies the coefficients ¢, are constant
throughout G. Since G is infinite, the £2-condition thus implies cg =0forallg € G
and hence ¢ = 0. From Theorem 3.24 we conclude

2 . .
b (G) = by (EG) = dimy(g) Hy)(EG) = dim zg) ker 5% = 0. O

4.5.5 ¢%-Betti Numbers of Locally Compact Groups

Let G be a (second countable, Hausdorff) locally compact group. Up to scaling,
there exists a unique nontrivial, countably additive measure u on G, called the Haar
measure, such that u(gB) = w(B) for all g € G and all Borel subsets B C G. A
discrete subgroup I" < G is called a lattice if u induces a finite G-invariant measure
on the quotient space G/I". For example, PSL(2, Z) is a lattice in PSL(2, R). It is
a deep property based on the notion of ¢2-Betti numbers of equivalence relations
that lattices I, A C G in the same locally compact group satisfy Gaboriau’s
proportionality principle [55]:

b2y b (A)
w(G/T) — u(G/A)

for all n > 0. In particular, all lattices in G have vanishing and non-vanishing £>-
Betti numbers in the same degree. The proportionality principle allows the definition

b,(lz)(G, W) = ﬁi’zc);(l})) for the n-th €2-Betti number of the locally compact group G
with a fixed (scaling of the) Haar measure p provided G possesses a lattice I' C G.
It is not hard to see that locally compact groups which have lattices are unimodular,
meaning that also u(Bg) = w(B). More recently, a direct definition of bflz)(G, 7))
was given by H.D. Petersen for any unimodular locally compact group G, with or
without lattice [142]. For groups with lattices, Gaboriau’s machinery is then applied
in [99]*Theorem B to verify the compatibility

bP(I) =bP(G, w) - w(G/T).
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Some example computations of £2-Betti numbers of locally compact groups can be
found in [143].

Exercises

4.5.1 Recall our comment on p. 64 that for a homotopy equivalence f: X — X of
a CW complex X the mapping torus 7 (f) is (homotopy equivalent to) a fibration
over S! (in the sense of Serre). This means that for any CW pair (Y, A) all homotopy
lifting problems

Y x{0JUA x [ —=T(f)

7
e
-
-
-
-

Y x] —— = §!

have a solution. Apply this fact to show that for every group G with finite type model
for BG and for every ¢ € Aut(G) we have b,(,z)(G Xy Z) = Oforalln > 0.



Chapter 5 )
Liick’s Approximation Theorem Shethie

In Theorem 3.19 we saw that x @ (X) = x (G\X) for a finite, free G-CW complex
X. Thus the alternating sum of £2-Betti numbers of X equals the alternating sum
of ordinary Betti numbers of G\ X. One might wonder whether there is also some
relation between the n-th ¢2-Betti number and the ordinary n-th Betti number by
themselves.

5.1 The Statement

The example of the k-torus T illustrates that any such relation will have to be subtle

as we have b,(,z) (’ﬁ‘) = 0 for all n while b, (T¥) = (ﬁ) However, if X is a finite type
H-CW complex for a finite group H, we saw in Example 3.14 that ordinary and
£2-Betti numbers are related by the formula b,(lz) (X) = b"’ I(i)l( ) Given a proper, finite
type G-CW complex X for a possibly infinite group G, every finite index normal

subgroup N < G defines the G/N-CW complex N\X for which we thus have

bu(N\X)
@ _
bP(G/N ~ N\X) = G:iN

So one could hope to obtain the £2-Betti number br(,z)(G ~ X) as a limit of the
right hand side for “N — {1} whenever this expression is meaningful: G should
have the property that finite index normal subgroups can come arbitrarily close to
the trivial subgroup. The following definition makes this notion precise.

Definition 5.1 A residual chain in G is a sequence

G=6Go=G1=2G2= -
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of nested finite index normal subgroups G; < G with mizo G; = {1}. A (countable)
group G is called residually finite if it possesses a residual chain.

The class of residually finite group is reasonably large. It includes finite groups
(trivial), free groups, finitely generated nilpotent groups, fundamental groups of
3-manifolds ([70] + geometrization) and, most notably, finitely generated linear
groups: subgroups of GL(n, K) for some n and some field K of arbitrary character-
istic (see [135] for an account).

As a non-example, the Baumslag—Solitar groups

B(m,n) = {(a,b | ba™b~'b")

are not residually finite unless |n| = 1, [m| = 1, or |n| = |m| as is proven in [127].
For some groups, residually finiteness fails in the strongest sense. Higman’s group
[74]

(a,b,c,d|a 'bab=2 b~ ebe™?, ¢ 'ded™?, d \ada™?)

is an infinite group with no finite quotients at all. Of course, infinite simple groups,
for example Tarski monsters, are likewise not residually finite.

Theorem 5.2 (Liick, [115]) Let X be a free, finite type G-CW complex. Assume G
is residually finite and let (G;) be any residual chain. Then for every n > 0 we have

bu(Gi\X
bP(G A X) = Jlim [((; _’(\;.]).
- Ui

The theorem says that a positive n-th £2-Betti number detects “free homology
growth”: asymptotically, the free abelian rank of the homology group H,(G;\X)
grows linearly in the index [G : G;] with speed br(,z)(X ). In view of Example 3.4,
the covering space version of the theorem that was presented in the introduction
as Theorem 1.6 is the special case of Theorem 5.2 when X is connected and
simply-connected. The theorem obtains a purely group theoretic interpretation if
X is moreover weakly contractible.

Theorem 5.3 Let G be a residually finite group that has a finite type model for EG.
Then for any residual chain (G;) and every n > 0, we have

. bu(Gi)
bP(G) = 1 e
n(O= 1016 6

To conclude this result from Theorem 5.2, we only have to note that each
subgroup G; still acts freely on EG, so that G;\EG is a model for BG;. Again,
if b,(,z)(G) > 0, then b, (G;) — oo for every residual chain.



5.2 Functional Calculus and the Spectral Theorem 89

In order to prove Theorem 5.2, we have to supplement our functional analytic
toolbox from Chap. 2 by the beautiful theory of spectral calculus. This will occupy
the next section.

Exercises

5.1.1 Let G = F(a, b) be the free group on letters @ and b. Fori > 1,1let G; < G
be the subgroup given by

Gi=(da,ad"ba™* " k=0,...,i—1).

(i) Show that the subgroups G; are nested, normal and of finite index in G.
(i1) Show that lim;_, »[G : G;] = oo but that mizl G; is nontrivial.

bi(Gy)

(iii) Verify by direct computation that nevertheless bgz)(G) = lim -G
i— c

o]

5.2 Functional Calculus and the Spectral Theorem

Let T € B(H) be a bounded operator on a separable Hilbert space H. For what
functions f can we define f(7T)? Since B(H) is a C-algebra, we know what to
do if f € C[z] is a polynomial: for f(z) = Y ;_, arz* we simply set f(T) =
S _oaxT*. Similarly, if f(z) = Y 72, axz* is a power series which converges in
some open disk U = {|z| < ||T]| + €}, then f(T) = Z,fozo a;T* is still defined
because the partial sums Z,ICVZO ay T* clearly form a Cauchy sequence in the Banach
space B(H). In fact, the condition that U should contain the closed disk around zero
with radius ||T'|| is only a crude way to ensure the weaker condition that U contains
the spectrum of T. It turns out that this is all we need to define f (7).

Definition 5.4 The spectrum of T is the subset o (T") € C given by
o(T)={¢ € C: ¢ -idyg — T is not bijective. }.

By Theorem 2.16, we could have equivalently required that ¢ - idy — T is not
invertible. Since the set of invertible operators in B(H) is open, o (T') is a closed
subset of C. We have Gelfand’s spectral radius formula

X 1
r(T):= sup [¢|= lim [|T"|~
rea(T) n— 00

and in particular r(7') < ||T|| which shows that o (T") is bounded, hence compact.
The complement o(7) = C \ o(T) is also known as the resolvent set of T. By
the inverse mapping theorem (Theorem 2.16), each { € o(T) defines a bounded
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operator (¢ - idy — T)~! so that we have the resolvent mapping

R(T): o(T) > B(H), ¢+ ! .
¢—-T
If o (T') was empty, then for every x, y € H, the inner product (R(T)(¢)x, y) would
define an entire function tending to zero for { — oo. By Liouville’s theorem, we
then must have (R(T)x, y) = O for all x, y € H, thus R(T) = 0 which is absurd.
Thus o (T) is always nonempty. Conversely, any compact nonempty subset of C
occurs as spectrum of a bounded operator in B(H) as you will prove in the guided
Exercise 5.2.1.

Now the key observation to define f(7) for a power series f converging in a
neighborhood U of o (T) is that f defines a holomorphic function f: U — C for
which we have the Cauchy formula

1
f@)= /f@)dé“
y&—z

where y is any (piecewise) smooth closed curve in U winding once around z.
It is possible to define “operator valued integration” by mimicking the classical
definition in terms of Riemann sums of finer and finer partitions, only that
convergence is now required with respect to the operator norm of B(H). Let T’
be a finite set of closed curves in U such that the inner points I, those z € C that
have winding number one with respect to I', satisfy

o(T) C Ir C U.

Such a set I always exists because o (T') is compact. Then

AT = Z/ f(f)

gives a well-defined bounded operator f(7) € B(H) satisfying the spectral
mapping theorem o (f(T)) = f(o(T)). The construction gives the existence part
of the following theorem.

Theorem 5.5 (Holomorphic Functional Calculus) Let T € B(H) and let U be
an open neighborhood of o (T'). Then there is a unique homomorphism

OWU) ={f: U — C holomorphic} — B(H), f+> f(T)

of C-algebras which is unit preserving, xy(T) = idy, satisfies idy(T) = T, and is
continuous with respect to uniform convergence on compact sets in U.
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Recall that xy denotes the characteristic function of the set U. Uniqueness
is easy: such a homomorphism is determined on polynomials and holomorphic
functions on U can be identified with convergent power series on U. These are
uniform limits of the partial sums on any compact subset of U. Holomorphic
functional calculus is in general not an injective homomorphism. Nonetheless, the
identity theorem says it is injective if U is connected and o (T') has a cluster point.

We remark that for the entire construction, it was not important that we were
working in B(H). Any unital Banach algebra A would have worked equally fine: an
associative C-algebra A with 1 € A, endowed with a complete norm || - || satisfying
lxyll < llx|Illy]l for all x,y € A. On B(H), however, we have the additional
structure of a x-operation and if 7 = T* is self-adjoint, one can see with the help
of Exercise 2.2.6 (ii) that o (T') C R. Moreover, the spectral radius formula reduces
in this case to #(T) = ||T || (Exercise 5.2.2). For these operators, we can improve
the domain of definition from O(U) to the C*-algebra C(c(T), C) of continuous
C-valued functions on the compact, nonempty set o (T') with x-operation given by
complex conjugation.

Theorem 5.6 (Continuous Functional Calculus) Letr T € B(H) be self-adjoint.
Then there is a unique isometric *-embedding of C*-algebras

Cw(),C) — B(H), [ f(I)

which is unit preserving, xo(r)(T) = idy, and satisfies ids (1) (T) = T.

Proof (Idea) Requiring x,(r)(T) = idy and ids(7)(T) = T implies that for a
polynomial p, the operator p(T') is given by evaluating p in the operator 7. The core
part of the proof is to show that this is norm preserving, meaning ||p(T)|| = | pll
where the latter denotes the sup-norm on C (o (T), C). The polynomials on o (T')
form a point separating subalgebra in C (o (T'), C) so that the unital x-algebra they
generate is dense by the Stone—Weierstrafl theorem. It follows that the map p +—
p(T) has a unique extension to a continuous *-homomorphism on C(o(T), C)
which is clearly norm-preserving, hence injective. O

The spectral mapping theorem o (f(T)) = f(o(T)) also holds for continuous
calculus. If A € o(T) is an eigenvalue so that there is x € H nonzero with Tx = Ax,
then f(T)x = f(A)x. This is immediate from continuity when approximating f by
polynomials. Preservation of x-operation and the spectral mapping theorem show
that precisely the real valued functions f € C(o(T),R) C C(o(T),C) give a
self-adjoint operator f(T) = f(T)*.

Proposition 5.7 The operator f(T) is positive if and only if f > 0.

Proof In one direction, this follows because for f € C(o(T), R>g) we get f(T) =
VM*/ f(T) > 0. In the other direction, if f € C(o(T),R) has f(A) < 0
for some A € o(T), use Weyl’s criterion: there are x, € H with ||x,|| = 1 and
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limy, o0 [(T — A)x, || = 0. Hence

(f(T)xn, xn) = ((f(T) = f)xn, xp) + f(R)

is negative for big enough n by Exercise 5.2.4. O

The proposition says in particular that for self-adjoint 7 € B(H) and any fixed
vector x € H, the linear functional

D, 7:Co(T),C) — C, fr (x, f(T)x)
is positive: if f € C(o(T), R>o), then &, r(f) > 0. This observation will lead us

to yet another extension of the domain for functional calculus.

Theorem 5.8 (Riesz Representation Theorem) Let X be a compact Hausdorff
space and let ®: C(X, C) — C be a positive linear functional. Then there exists a
unique regular Borel measure . on X such that

Mﬂ=ffw

forall f € C(X,C). The total mass of  is given by u(X) = ||®||.
The reader will find the arduous proof in [153, Theorem 2.14, p. 40].

Definition 5.9 The spectral measure of T associated with x is the unique measure
Wx, T representing the positive linear functional ®, 7.

‘We thus have
u“ﬂTn>=/JuuLT 5.1)

for all f € C(o(T),C). Now the decisive observation is that the right hand
side is in fact defined for all f from (o (T), C), the bounded complex-valued
Borel measurable functions on o (7). Thus we can simply define the values
(x, f(T)x) € Cforx € H and f € AB(o(T),C) by (5.1). Then polarization
(recall Exercise 2.2.4) determines the values (x, f(T)y) forall x, y € H. The Riesz
lemma (Theorem 2.18) provides for each x € H a unique vector z € H such that
(x, f(T)y) = (z,y) forall y € H. This determines the operator f(7)* and hence
f(T) for f € B(o(T),C).

Theorem 5.10 (Borel Functional Calculus) Ler T € B(H) be self-adjoint.
Continuous functional calculus extends uniquely to a continuous x-homomorphism

B (T),C) — B(H), [ f(I).
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Continuity of the *-homomorphism can more precisely be stated as || f(T)| <
Il f1I where || f]| is again the sup-norm. This inequality becomes an equality once
we identify two bounded Borel functions if they agree jx 7-almost everywhere
for all x € H. In fact, there is an up to equivalence unique basic measure (Lt
on o (T) whose null sets are precisely the measurable subsets of o (7') which are
wx,7-null sets for all x € H [33, Proposition 4 (iii), p. 130]. Hence under the
above identification, (o (T), C) is turned into L>° (o (T'), 1), the pr-essentially
bounded Borel measurable complex valued functions on o(7) up to equality
pr-almost everywhere. Borel functional calculus then defines an isometric *-
embedding

L>®(o(T), ur) —> B(H)

which is not only an embedding as C*-algebra, but in fact an ultraweakly continuous
and weakly closed embedding as von Neumann algebra [33, Proposition 1, p. 128].
Moreover:

Proposition 5.11 If a sequence of functions f, € L*(o(T), ur) converges ur-
almost everywhere to some f € L*®(o(T), ur), then the sequence of operators
fu(T) converges strongly to f(T).

Proof The weak convergence follows from (5.1) and the bounded convergence
theorem. For strong convergence, we need additionally that || f,, (T)x|| converges to
| £(T)x|| for all x € H. But that is equivalent to the weak convergence of | f,|>(T)
to | f|>(T), so we are done. |

The next result says the basic measure pr has atoms precisely at the eigenvalues of
T.

Proposition 5.12 An element . € o(T) is an eigenvalue of T with normalized
eigenvector x € H if and only if .y T is the Dirac measure at A.

Proof Let 6, denote the Dirac probability measure with support {A}. If x € H
with ||x]| = 1 is an eigenvector of 7" with eigenvalue A € o (T'), then (5.1) says that
[ fd8. = [ fdux,r forall continuous functions f on o (7). But any characteristic
function x4 of a closed set A C o (T) is a monotone limit of continuous functions
and the closed sets form a N-stable generating system of the o-algebra of Borel
sets. This implies px,7 = 8, (see also [12, Lemma 30.14, p. 231]). Conversely, if
Mx, T = 8y, then

& -idg — T)x||> = A2 — 2x(x, Tx) + (x, T*x)
=27 —24 / sder(s) + / 5% dpty,7(5)

=22 22+ =0,
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so x is an eigenvector of 7" with eigenvalue A and

I l1? = (x, idp () = (¥, Xo(r)(T)x) = / Xo (1) ditx, 7 = 83.(0 (T)) = 1,

so x is normalized. O

Proposition 5.13 If A € o(T) is an eigenvalue with eigenvector x € H, then for
every f € L®(o(T), urt), we have f(T)x = f(A)x.

Proof First note that by the last proposition, the value f()) is well-defined. We
already know the statement holds true if f is continuous. In view of Proposi-
tion 5.11, it remains to show that for every function f € Z(o (T), C), there exists a
sequence from the subalgebra C (o (T), C) of continuous functions which converges
pointwise to f pr-almost everywhere. To construct such a sequence, we can start
with a sequence f;, € C(o(T),C) which converges to f in L'-norm, meaning
limy, s 00 f |f — faldur = 0. Such a sequence exists because f is an L'-limit of
simple functions which in turn have L'-approximations by continuous functions.
It then follows from basic measure theory that f, converges in measure to f and
consequently, a subsequence converges to f pr-almost everywhere. O

Of course it does not even make sense to ask if the spectral theorem o (f (7)) =
f(o(T)) is true for Borel calculus. We remark that both the continuous and the
Borel functional calculus extend from self-adjoint to normal operators T € B(H),
essentially because these operators still generate abelian C*- and von Neumann
algebras. Table 5.1 gives an overview of the three different types of functional
calculus we have described. As the functions—from holomorphic via continuous to
measurable—become more and more general, the ranges become bigger and bigger
operator algebras.

Remember that for the holomorphic functional calculus, the operator 7' can lie in
any unital Banach algebra. Similarly, for the continuous functional calculus, 7 may
lie in any unital C*-algebra and for the Borel functional calculus, 7 may lie in any
von Neumann algebra on a separable Hilbert space. The ranges will then be norm
and weakly closed subalgebras, respectively.

The feature that C*-algebras come with a continuous functional calculus while
von Neumann algebras have a measurable functional calculus is yet another striking

Table 5.1 Various flavors of functional calculus

Functional calculus T € B(H) Domain Range

Holomorphic Any o) Subalgebra of unital Banach
algebra generated by T

Continuous Normal C(o(T),C) Unital C*-algebra generated by T

Borel Normal L>®(o(T), ur) von Neumann algebra generated

by T
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corroboration of the philosophy we alluded to in Remark 2.27: C*-algebras are non-
commutative topological spaces and von Neumann algebras are noncommutative
measure spaces.

The decisive advantage of the passage from the abelian C*-algebra C (o (T), C)
to the abelian von Neumann algebra L°° (o (T'), C), is that the latter contains (and is
actually generated by) the characteristic functions y 4 for measurable subsets A C
o (T). Since X,% = X4 = Xa, these are orthogonal projections in L% (o (T), C).
Hence so are the corresponding operators Pr(A) = xa(T) in B(H), called
the spectral projections of T. They form a projection valued measure: we have
Pr(o(T))) = idy and every x € H gives a Borel measure A — (x, Pr(A)x)
on o (T), namely the spectral measure py 7. Integration of bounded measurable
functions can be defined with respect to projection valued measures in the usual
way. The result is a bounded operator and Borel functional calculus takes the elegant
form

£ :/fdPT.

By (5.1), the projection valued measure Pr and the spectral measure (x, Pr x) =
Wy, 1 satisfy the compatibility relation

<x,/fdPT x>=/fd(x,PTx).

We spell out the particular case f = idy (7).

Theorem 5.14 (Spectral Theorem) Let T € B(H) be self-adjoint. Then

T:/ A dPr(L).
o(T)

The theorem is a vast generalization of the fact from linear algebra that a
Hermitian matrix is (unitarily) diagonalizable with real eigenvalues. We have indeed
the following observation.

Proposition 5.15 If 1 € o(T) is an eigenvalue, then Pr({)\}) is the orthogonal
projection onto the eigenspace of A.

Proof Letx € H be an eigenvector for A. By Proposition 5.13, we obtain

Pr({A) x = xpy(M) x = xy(M) x = x,

hence x lies in the image of Pr({A}). Conversely, let x be a nonzero vector in the
image of Pr({A}). Setting {1} = o (T) \ {1}, we obtain

Xy (T) x = xpe (T xp(T) x = (xpage - xp)(T) x =0.
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Therefore
Tx =ido ) (T)x = (A Xy +1do () X1y )(T)x = Ax + T xpye(T)x = Ax,

S0 x is an eigenvector of A. O

This proposition concludes our excursion to spectral calculus. We are now
suitably armed to attack the proof of Liick’s approximation theorem.

Exercises

5.2.1 Let D C C be a compact, nonempty subset.

(i) Construct a countable, dense subset X C D.
(ii) Show that T: L?>(X, ) — L*(X,u), f(x) — xf(x) defines a bounded
operator if x denotes the counting measure on X. Whatis ||T||?
(iii) Show that o (T) = D.

5.2.2 Let T € B(H). Show that r(T) = ||T| if

(i) T is self-adjoint,
(ii) T is normal.

Hint: Use the C*-identity |T*T| = || T||%.

5.2.3 Gelfand’s spectral radius formula is not only true in B(H) but actually in any
unital Banach algebra A. Conclude that if A is even a C*-algebra, then the unital
x-algebra structure of A determines the norm. Thus the unital x-algebra structure of
a C*-algebra determines the topology!

5.2.4 Let T € B(H) be self-adjoint. Weyl’s criterion says that A € o(T) if and
only if X is an approximate eigenvalue, meaning A has an approximate eigenvector:
a sequence (x,) C H with ||x,|| = 1 and lim,, ||[(T — A)x,|| = 0. In that case, show
that for every f € C(o(T), C), the sequence (x,) is an approximate eigenvector of
f(T) with approximate eigenvalue f(A). Hint: First assume f is a polynomial.

5.2.5 Let X be a compact Hausdorff space. Find all projections in the abelian C*-
algebra C(X, C).

5.3 The Proof

In view of Example 3.14, Liick’s approximation theorem asserts that

bP(G A X) = ilirgo bP(G/Gi ~ G\X) (5.2)
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for a free, finite-type G-CW complex X, any residual chain (G;) in G, and each
fixed n > 0. As the first step of the proof, we translate this topological statement to
an algebraic one. We fix a cellular basis (p.40) of X and obtain cellular bases for
all the (G/G;)-CW complexes G;\ X by composing with the canonical projections
X — G;\X. These define identifications

CPX)= (*G)F and CP(G\X) = (£2(G/G)F

where k = k(n) is the number of equivariant n-cells in X. Under this identification,
the ¢2-Laplacian Aflz) of X from p.55 acts on (£2G)¥ by right multiplication with
a *-invariant matrix D € M (k, k; ZG) because the (n + 1)-skeleton of X is
finite. Correspondingly, the n-th ¢2-Laplacian of G;\X acts on (£2(G/G;))* by
right multiplication with the matrix D; € M(k, k; Z(G/G;)) obtained from D
by applying the canonical *-ring homomorphism ZG — Z(G/G;) to the entries.
Because of Proposition 3.23, in these terms Liick’s theorem takes the form

dimR(G) ker(-D) = .lim dimqq(G/G,.) ker(-Di).
i—00

In the next step, we exploit our excursion to functional calculus to translate this
algebraic statement into a measure theoretic one. To thisend, lete = e @ --- P e be
the diagonal vector in (¢2G)¥ consisting of the unit vector e € £>G in each of the k
coordinates. Then Proposition 5.15 gives

dimgg) ker(-D) = trg(g) P.p({0}) = (&, P.p({0})e) = n({0})

where P.p is the projection valued measure and p := ¢,.p is the spectral measure
of the operator - D associated with ¢. Similarly, we obtain

dimg(G,c;) ker(-D;) = u; ({0})

where (; = g, .p, is the spectral measure of the operator -D; associated with the
vectore; = GiP---BG; € (Ez(G/G,-))k consisting of the unitelement G; € G/ G;
in each of the k coordinates. Thus Liick’s approximation theorem ultimately asserts
a convergence property of spectral measures, to wit

n({O0h = lim 1; ({0). (5.3)

It is in this formulation that the theorem becomes accessible because there is a good
deal of techniques to investigate convergence questions for measures. We start by
showing that the sequence of measures w; converges weakly to . To do so, recall
from the end of the proof of Proposition 3.8 that we have

|- Dl <k*- Dl =d.
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The same bound works for the reduced matrices, || - D;|| < d for all i, so that we
can consider w; and p as measures on the closed interval [0, d].

Proposition 5.16 For all continuous functions f € C([0, d], R) we have

[ rau=tim [ rau.

Proof First assume f is a polynomial with real coefficients. Then [ fdu =
trr() (- f (D)) is the sum of the coefficients of the unit element e in the diagonal
entries of the matrix f (D) € M (k, k; RG). Similarly, f fdui =trgr6H ¢ f(Di))
is the sum of the coefficients of the unit element G; in the diagonal entries of
f(D;) € M(k,k; R(G/Gj)). Observe that f(D;) is still obtained from f (D) by
applying the ring homomorphism RG — R(G/Gj) to the entries. Thus if N is so
large that we have g ¢ Gy for all those g € G that have a nonzero coefficient in
any of the diagonal entries of f (D), then trr(g,G,) (- f(D;)) = trg() (- f (D)) for
alli > N. In particular, we obtain the asserted convergence.

In the general case f € C([0, d], R), we know that f is a uniform limit of real
polynomials by the Stone—Weierstrass theorem and the assertion follows from the
bounded convergence theorem. O

What this result has to say on whether (5.3) holds true, is captured by the
following classical theorem of measure theory [43, Theorem 4.10, p. 385].

Theorem 5.17 (Portmanteau Theorem) Let E be a compact metric space and let
v; and v be finite Borel measures on E with the same total mass. Then the following
are equivalent.

(i) Forall f € C(E, R), we have lirn,-_,ooffdv,' = ffdv.
(ii) For all closed sets A C E, we have lim sup;_, ., Vi (A) < v(A).
(iii) For all open sets U C E, we have liminf;_, o v; (U) > v(U).

Note that our spectral measures p; and p all have total mass k. Combining
Proposition 5.16 with the “(i) = (ii)” part of the theorem, we obtain
limsup;_, o, 1i({0}) < w({0}), in other words

bP(G ~ X) = limsup b'P(G/G; ~ G\X),

i—00

which is half of what we are striving for. This inequality is sometimes known as
Kazhdan’s inequality. It already says Liick’s theorem holds true if b,(,z) (X) = 0. For
the general case, however, we still need to know that also

liminf 11; ({0}) = w({0). (5.4)

This is not automatic from weak convergence: The Dirac measures §1,; on the
measurable space [0, d] converge weakly to dg by continuity of f € C([0, d], R) at
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Fig. 5.1 A logarithmic //
bound. The figure also shows /
the graph of the distribution 1 +--O

function of the measure 8 /; !
which would violate any such i
bound for large i

/i 1

zero. But 81/;({0}) = Oforall i > 1 whereas §o({0}) = 1. The measures §1,; would
occur as our measures w; if for instance the matrices D; were the constant diagonal
matrices with entries 1/i - G;. But there is a simple reason why no scenario of this
sort can occur: Our matrices D; have entries from the group ring Z(G/G;) which
has integral coefficients!

Liick’s decisive insight was that this integrality leads to the existence of a
continuous function, independent of the residual chain (G;), that uniformly bounds
all the positive spectral distribution functions . — 11;((0, 1)) but still tends to zero
for small positive A. We indicate such a function as the dashed plot in Fig.5.1.

Proposition 5.18 (Logarithmic Bound) Foralli and ) € (0, 1) we get

k logd
(0, 1)) < .
wi((0, 1)) < log |

Proof We agree to fix i > 0 and A € (0,1) throughout the proof. Setting
r = k[G : G;], we can consider D; as a symmetric (» x r)-matrix with coefficients

in Z operating on C” by multiplication. Let A; < --- < X be the distinct
positive eigenvalues of D; with multiplicities m1, ..., ms. Proposition 5.15 and
Example 3.14 show that foreach j = 1, ..., s, we have

mj

wi(A;}) = trrigy6i Poo; () = dimgg/c;) (im P.p, ({A;})) = G: G’

Say the first ¢ eigenvalues A ; are strictly smaller than A. Since u; is supported on

o (-D;), which either equals {0, A1, ..., Ag} or {A1, ..., As}, we obtain

t
B oy Mt my
i 2) =3 il =" o

j=l1
The characteristic polynomial p of D; satisfies the relation

p(x)

xR =1 —x)" (A —x)™.
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where R = m1 + - - - + my is the rank of the matrix D;. Setting x = 0 gives
L< At (5.5)

because the left hand side is a polynomial with integer coefficients and a positive
integer is at least one. From this we obtain the estimate

LAyt )\’I"HI A < e g

by the spectral radius formula and again because || - D;|| < d for all i. Taking
logarithm and keeping in mind that log A < 0, this is equivalent to

my+---+my  klogd
. = . |
(G : Gi] | log 2|

With this proposition at our disposal, we can easily finish the proof. For all A €
(0, 1), we have u; ({0}) = u; ([0, 1)) — w;((0, 1)) so that Proposition 5.16, the “(i)
= (iii)” part of Theorem 5.17, and Proposition 5.18 give

klogd

liminf 12; ({0}) > ([0, 1)) — :
i—00 |log Al

Since this holds for arbitrary A € (0, 1), we also have

. . klogd
liminfp; ({0}) > lim { ([0, 2)) —
i—00 A—>01

|10gx|> - i‘;f)ﬂ([(), x) > w{o}).

We thus verified (5.4) and the proof of Liick’s approximation theorem is complete.

Exercises

5.3.1 Review the proof and point your finger to where exactly the various assump-
tions of Liick’s approximation theorem enter: X of finite type, X is free, normal
subgroups, subgroups with trivial total intersection, finite index subgroups, nested
subgroups.

5.4 Extensions

In this section, we want to take Liick’s approximation theorem to the limit
and discuss for each of its assumptions in how far they are necessary or allow
for generalization. Towards the end, we report on some recent variants of the
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approximation theorem, illustrating that this result keeps inspiring researchers to
this day.

5.4.1 Infinite Type G-CW Complexes

The proof of Liick’s approximation theorem in the previous section heavily relies
on the observation that £2-Laplacians are realized by matrices over the group ring
with a finite number of rows and columns. Thus it appears unpromising to try and
loosen the finite type assumption for the G-CW complex X. Indeed, Liick and Osin’s
group Q from the end of Sect. 4.4 is a finitely generated, residually finite, infinite p-
group with positive first £2-Betti number. Since torsion groups have vanishing first
Betti number, the group Q violates the conclusion of Corollary 5.3. So one cannot
even extend the approximation theorem for the first £2-Betti number from finitely
presented to finitely generated groups.

5.4.2 Proper G-CW Complexes

In this paragraph we weaken the assumption on the action of G on X from being
free to being proper. If the group G has a finite type model for EG, it is clear that
this can be done by the Borel construction: we can apply Liick’s theorem to the free
finite type G-CW complex EG x X which has the same ¢2-Betti numbers as the
proper finite type G-CW complex X. In general, however, we will have to adapt the
arguments of the preceding section to the occurrence of stabilizer groups.

Theorem 5.19 Let X be a proper, finite type G-CW complex. Assume G is
residually finite and let (G;) be any residual chain. Then for every n > 0 we have

b P (G ~ X) = lim b"(G’\X).
i—»oo [G: Gy
Proof We can still factor out the normal subgroups G; < G to obtain the G/ G;-
CW complexes G;\ X. Each equivariant n-cell G/H x D" in X with finite stabilizer
group H < G corresponds to an equivariant quotient cell G/HG; x D" in the
G/G;-CW complex G;\X with finite stabilizer group H/H N G; = HG;/G; <
G/G;. In particular, the G/G;-CW complexes G;\ X are proper. By Example 3.14
we again have the reformulation (5.2) of the approximation theorem.

We pick a cellular basis of X. This realizes the £>-Laplacian A,(lz) of X as an
operator on (P, I ¢2(G/H,). Proposition 3.8 explains that this operator is given by
right multiplication with the (k x k)-matrix D, € Z(G/Hy)" by the well-defined
rule gH, - D,y = gD,s. Here k = |I,| is again the number of equivariant n-cells.
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For each i, we have canonical Z-module homomorphisms
pi: Z(G/H)" — 7(G/H,G;)/HGi,

and the n-th ¢?-Laplacian of G;\ X acts on @rel,, 0*(G/H,G;) by right multiplica-
tion with the matrix (D;),s = pi (D). Consider the vectors

— M Hy 2

€= i ® 0 ® Yy € 6195 (G/H;) and
rely

. HiG; HG; 2 .

Ei= g @@ e P *G/H,G).

rel,

As in the preceding section, these allow the reformulation of the theorem as
pn({0}) = lim u;({0})
1—>00

where p is the spectral measure of -D associated with ¢ and p; is the spectral
measure of -D; associated with ¢;.
The rest of the proof goes through as before. We use the constant

d = k2 max {|H,|} - | D|?
rely

and then Proposition 5.16 holds true because the finiteness of H, implies that for all
g ¢ H, we can find N so large that gh ¢ G; foralli > N and all h € H,. Hence for
each g ¢ H, thereis N such that g ¢ H,G; for alli > N. Proposition 5.18 holds
true because we can consider the matrices D; as symmetric (o X p)-matrices with
coefficients in Z where p = Zre[n [G : H,G;]. Since p < k[G : G;], we obtain
again the estimate

mip+---+my; - klogd
[G:Gi] ~ |loghl’ H

Combining Theorem 5.19 with Theorem 4.14, we obtain the following version
of Liick approximation for groups. As we already discussed in Sect. 4.4 of Chap. 4,
the assumption of this theorem is often easier to establish in practice.

Theorem 5.20 Let G be a residually finite group that has a finite type model for
EG. Then for any residual chain (G;) and every n > 0, we have

b G) = tim "G
" i—oo [G : Gi]
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In particular, Liick and Osin’s groups from Sect. 5.4.1 above admit no model for
E G with finite 2-skeleton either. It is a curious observation that all the properties
of ¢2-Betti numbers gathered in Theorem 3.18 are immediate consequences of
Theorem 5.19 in case G is residually finite (none of the properties were used in
the proof).

5.4.3 Non-normal Subgroups

Consider a nested sequence
G=6Go=zG1=2G2= -

of not necessarily normal, finite index subgroups of G. Following [1, Section 3],
we see that the chain (G;) gives rise to a so-called coset tree T. Vertices of T are
all right cosets G;g. Two vertices G;g and G jh are connected by an edge if and
onlyif j =i+ 1and Gjh C G;g. The coset Go = G provides a natural root
for the tree so that the i-th level vertex set is just G;\G, and each node in G;\G
has precisely [G;: G;+1] children. A typical coset tree is indicated in Fig.5.2. We
define the boundary dT of T as the set of all infinite rays in 7 starting at G¢. In other
words, 37 = lim G;\G and this description makes sense not only in the category
of sets but also in the category of topological spaces and of measure spaces. Each
G;\G carries the discrete topology and the uniform probability measure. Thus as
a space, dT is compact, totally disconnected and Hausdorff. It has a basis of the
topology given by shadows sh(G;g) where a shadow sh(G;g) consists of all rays
going through the vertex G; g. The Borel probability measure p on 97 is determined
by the values w(sh(G;g)) = [G}Gi]. The group G permutes the cosets in G;\G by
right multiplication preserving the child—parent relation. Thus G acts on T from
the right by tree automorphisms and we obtain an induced probability measure
preserving right action of G on a7 by homeomorphisms.

Lemma 5.21 The action 0T «~ G is ergodic: G-invariant measurable subsets of
T have measure O or 1.

Fig. 5.2 The first three steps
of a typical coset tree. Note
that coset trees are generally
not regular
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Proof If the chain stabilizes, the boundary is finite and the action is transitive so
that the assertion is clear. Otherwise, Kuratowski’s theorem [93, Theorem 15.6,
p-90] says 0T is Borel-isomorphic to the unit interval with Lebesgue measure and
so Lebesgue’s density theorem applies: any measurable subset A € 97 is almost
everywhere dense. In particular, if (A) > 0, then for all ¢ > 0 there is some G; go
with

n(sh(Gigo) N A) > (1 — &) sh(Gigo).

If A is moreover G-invariant, then the same must hold for all G;g. Adding up all
these inequalities gives

w(Ay= > ush(Gig)NA)>1—c¢,
GigeG;i\G

which implies w(A) = 1. |
Lemma 5.22 [f (G;) is residual, then 0T \~ G is free.

Proof Given a nontrivial g € G, there exists i such that g ¢ G;. Since G; is normal,
the element g permutes G;\ G without fixed points. Thus g moves all rays in 97 .
O

The lemma leads naturally to the following weakening of a chain being residual.

Definition 5.23 A chain (G;) of finite index subgroups of G is called Farber if the
action 0T G is essentially free.

Of course “essentially free” means that p-almost every point in 97 has trivial
stabilizer. To verify this condition, the following more explicit criterion is helpful.
Let n; be the number of subgroups conjugate to G; in G. For g € G, let n; (g) be the
number of subgroups conjugate to G; that contain g. For each g € G, let Fixyr(g)
be the set of rays in 97 fixed by g.

Proposition 5.24 We have 1 (Fixy7r(g)) = lim; 00 ""n(f ) and hence the chain (G;)

is Farber if and only if lim; _, ni;lfg) = 0 for all nontrivial g € G.

Proof Let m;(g) be the number of cosets fixed by g under the permutation action
Gi\G ~ G. Then the measure of the set P;(g) of all paths in 7 whose first i steps
are fixed by g € G is given by u(P;i(g)) = m;(g)/[G : G;]. Each of the n;(g)
conjugates of G; in which g lies, fixes [N(G;) : G;] distinct cosets in G;\ G, where
N(G;) denotes the normalizer of G; in G. Hence

mi(g)  ni@ING): Gl ni(g)

= - (5.6)
[G:Gi] [G:N(GHIN(G)) : Gi] n;

Since Fixyr(g) = (1); Pi(g) and the sets P;(g) are open and nested, the proposition
follows from the outer regularity of . O
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Theorem 5.25 ([44]) Let X be a free, finite type G-CW complex and let (G;) be
any Farber chain. Then for every n > 0 we have

bP(G ~ X) = lim bu(G\X)
i»oo [G:Gi]

The original proof is given in [44, Theorem 0.3] but also a proof along the lines of
Sect. 5.3 is possible. To establish weak convergence of spectral measures, one only
has to observe that according to (5.6), the Farber condition says that the proportion
of fixed points of the permutation that g defines on G;\G becomes negligible for
large i unless g is trivial. In other words, for all D € RG the fraction

rr(R(G\G) -2 R(G/\G))
G : Gy]

converges to the unit coefficient of D. It is also clear from (5.6) that each
refinement of a Farber chain is again Farber. This shows that any Farber chain
(Gy) can be turned into a residual chain by replacing each G; with the normal core
N 0cG ¢~ 'Gig. Indeed, for normal subgroups the sequence 1;(g)/n; takes only the
values O or 1, so that the Farber condition says the sequence eventually vanishes.
Thus the total intersection of the normal cores of G; is trivial. This means that
Theorem 5.25 only applies to residually finite groups, just like Liick approximation
does. Merely the permitted chains are more general.

In [17], Bergeron and Gaboriau settle the question in how far the Farber condition
is optimal for approximating £>-Betti numbers. This includes the construction of
examples of non-Farber chains which even violate Kazhdan’s inequality. Never-
theless, it is shown that for every free, finite type G-CW complex X and every
chain of finite index subgroups (G;), the sequence b, (G;\X)/[G : G;] converges.
Generically, the limit will depend on the chain (G;) and can be described in terms
of X and 9T

5.4.4 Nontrivial Total Intersection

Given a chain (G;) of finite index normal subgroups, it is apparent that the right
hand side of Liick’s approximation theorem is oblivious to proper coverings of
(M; G)\X. Accepting that, we can formulate a version of the approximation
theorem valid for all groups (which is however vacuous for Higman’s group).

Theorem 5.26 Let X be a free, finite type G-CW complex and let (G;) be any chain
of finite index normal subgroups. Set K = (\; G;. Then for every n > 0, we have

. bn(Gi\X)
@) —
b, (G/K ~ K\X) = l_lilgo GG
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Proof The proof of Proposition 5.16 in Sect. 5.3 needs the tiny modification that
now gK being nontrivial in G/K says precisely that there is some i with g ¢ G;.
The rest goes through as before. O

5.4.5 Non-nested and Infinite Index Subgroups

This case is commonly subsumed under the term approximation conjecture. It has
attracted quite some attention due to its intricate relation with the determinant
conjecture dealing with “determinants” of matrices over the group ring. Moreover,
the approximation conjecture gives some insight on the Atiyah conjecture 3.30
and whence on Kaplansky’s Conjecture 1.1. These remarks call for a thorough
discussion which we outsource to Sect. 5.6.

5.4.6 Further Variants

Liick’s approximation theorem has become the prototype example of a whole multi-
tude of results recognizing ¢>-invariants as limits of finite dimensional counterparts.
We only mention a few here and come back to this aspect in Chap.6 when we
discuss the asymptotics of torsion in homology.

In the default setting of a free, finite type G-CW complex X and a residual chain
(Gi), we can consider any field k and set b,(G;\X; k) = dimy H,(G;\X; k). Of
course, this only gives something new if k has positive characteristic p and then
bu(Gi\X; k) = b,(Gi\X; ) where I, is the field with p elements. In the case
of positive characteristic, convergence of the sequence b, (G;\X; k)/[G : Gi], let
alone independence of (G;), is wide open for general residually finite G. But in the
special case when G is torsion-free and elementary amenable (see p. 60), Linnell et
al. [107] show

: . bu(G\X: k)
Ore . _ n l
dimgg Hy (X 0) = lim 2 = 6

for any k. Here the left hand side denotes the Ore dimension of the kG-module
H,(X; k). If G is torsion-free elementary amenable, the group ring kG, though
possibly noncommutative, can be localized at § = kG \ {0} to a skew field S~'kG
and then

dimP H, (X, k) = dimg1,5(S~'kG @i Hn(X; k).

Observe that the Ore dimension is by definition always an integer. In the charac-
teristic zero case, this is in accordance with Linnell’s Theorem 3.33 which says
in particular that the Atiyah conjecture 3.30 with R = Q holds for torsion-free
elementary amenable groups.
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Every elementary amenable group is amenable. It admits a left G-invariant
bounded linear functional p on the Banach space £*°G with (1) = 1. Grig-
orschuk’s group [61] of intermediate growth is an amenable group which is not
elementary amenable. For amenable groups, Dodziuk—Mathai gave an approxima-
tion theorem for ¢2-Betti numbers in terms of subcomplexes of X, rather than
quotients. The interested reader may find out about this in [36].

The growth of Betti numbers has also been examined in more specific geometric
situations. For example, if G is a discrete, cocompact subgroup of SL(k, R) with
k > 3, then G acts by isometries on the contractible symmetric space X =
SL(k, R)/SO(k). By discreteness, G intersects the compact group SO(k) in a finite
group. This implies that X is proper and in fact, after choosing a suitable G-CW
structure, a finite model for EG. It follows from Borel [21] that b,(lz)(G) = 0 for
n>0.

Theorem 5.27 (Abért et al. [2]) For G as above, let (G;) be any sequence
of distinct, finite index subgroups of G (not necessarily nested, not necessarily
normal). Then for every n > 0, we have

. bn(Gy)
m =
i—oo [G : Gi]

The background to this astonishing result is that in the situation at hand, the
condition [G : G;] — oo is enough to ensure that the coverings G;\ X converge
to X in the sense of Benjamini—Schramm: for every R > 0, we have

vol(T\X)<g) _
im =0
i—00 VOl(Fi\X)

where (I';\X)<g denotes the R-thin part consisting of the points in I';\ X with
injectivity radius < R (the maximal radius for which the exponential map is a
diffeomorphism). This and a variety of other highly interesting and much related
theorems can be found in the influential paper [2].

To conclude this section, let me report on two most recent approximation results
of Kionke. The first one [97] is concerned with approximating multiplicities of
finite group representations. Let H be a finite group and let X be a finite H-CW
complex. Then the homology H,(X; C) is a finite dimensional representation of H
which therefore decomposes as a direct sum of irreducibles y with multiplicities
m(x, H,(X; C)). Kionke defines an Ez-counterpart m® (x, X; G) of these multi-
plicities for a proper, finite type G-CW complex X and shows that for any residual
chain (G;) we have

i m(x, Hy(Gi\X; C))
im =

(5. X: G).
e (G : Gi] my (6 X G)

The starting point for the second result is the observation that in Liick’s approx-
imation theorem, the real number br(,z)(X ) is the limit of the sequence of rational
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numbers b,(G;\X)/[G : G;] when considering Q as a subspace of R. Number
theory philosophy says however, that the p-adic numbers Q, are completions of
Q with equal rights. It turns out that the sequence of Betti numbers b, (G;\X)
converges in @, if one does not divide by the index. For more on this interesting
idea, the reader is referred to [94].

5.5 Rank Gradient and Cost

Related to the notion of deficiency studied in Sect. 4.5.2 is the rank d(G) of a group
defined as the minimal cardinality of a generating subset of G. If G is finitely
generated and P = (S|R) is a presentation with |S| = d(G), we can again form
the presentation complex X p which now is a possibly infinite two-dimensional
CW complex with one O-cell and d(G) 1-cells. Corresponding to any finite index
subgroup H < G, we have a finite sheeted covering Xy of Xp whose lifted CW
structure has [G : H] many O-cells and d(G) - [G : H] many 1-cells. Hence the
1-skeleton (Xpg )1, being a connected graph with [G : H] vertices, possesses a
spanning tree (a contractible subgraph containing all vertices) with [G : H] — 1
edges. Since subcomplexes are cofibrations, the homotopy type of Xy remains
unchanged when collapsing the spanning tree, so the fundamental group of the
resulting space is still isomorphic to H. This shows the inequality

d(H) <d(G)[G: H]— (G : Hl—1) = (d(G) — D[G : H] + 1. (5.7)

Lackenby’s rank gradient quantifies how far away from equality the inequality can
get [100].

Definition 5.28 The (absolute) rank gradient of the group G is given by

. d(H) -1
RG(G) = inf .
H<G [G: H]
[G:H]<oxo

The extreme case RG(G) = 0 occurs for example for mapping torus groups
of the form G = K X Z for any finitely generated group K. We can find a self-
homotopy equivalence f of a CW model B K with one 0-cell and d(K) many 1-cells
such that 71 f is the automorphism defining the semidirect product G. As part of
Exercise 4.5.1, or knowing about the long exact sequence of homotopy groups for a
fibration, we see that the mapping torus 7'(f) is a model for BG. From the proof of
Theorem 3.38, we thus extract that T(fk) is amodel for B(K x (kZ)) withd(K)+1
many 1-cells, independently of k. Hence the index k subgroups K x (kZ) < G reveal
that RG(G) = 0.

Another class of groups with vanishing rank gradient is formed by so called S-
arithmetic groups with trivial congruence kernel. As above, vanishing of the rank
gradient follows from a uniform upper bound on the rank of a certain sequence
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of subgroups: the principal congruence subgroups. The relevant definitions will
be given in Sects. 6.6 and 6.7. The bound on the rank was found by Sury and
Venkataramana [164] in the example of SL,(Z) for n > 3, and stated in general.
Moreover, Artin groups with connected defining graph, Aut(F,) forn > 2, Out(F},)
for n > 3, and mapping class groups MCG(Xg) of surfaces with genus g > 2 all
have zero rank gradient [92].

On the other hand, for the free group Fy on k letters, we have RG(Fy) = k — 1
because in that case, inequality (5.7) is an equality. We only have to notice that the
first Betti number provides a lower bound for the rank of a group. Hence for a finite
index subgroup H < Fj, we have

dH)>by(H)=1—x(H)=1—[F: HI(1—k) = (k — D[Fy : H] + 1.

Without much trouble, one concludes from this that the index 12 overgroup SL;(Z)
of F, likewise has positive rank gradient [100, Lemma 3.1]. More generally than
nonabelian free groups, finitely presented groups with def(G) > 2 have positive
rank gradient. To see this, let P = (S|R) be a presentation realizing the deficiency.
Then the covering Xy of X p constructed as above has [G : H] - | R| many 2-cells,
hence

bi(H) = ((IS| = DIG : H]+ 1) =[G : H]|R| =[G : H](IS| = [R[ = 1) +1

which gives RG(G) > def(G) — 1. Comparing this inequality with Theorem 4.20
and reviewing the examples given so far, one realizes that RG(G) bears quite some
resemblance to the first £2-Betti number biz)(G). Indeed, Liick’s approximation
theorem has the following consequence.

Theorem 5.29 Every finitely presented residually finite group G satisfies
RG(G) > b'P(G).

Proof Inequality (5.7) implies that the net (d[(g)H_]l), indexed by all finite index

subgroups H < G and directed by containment, is monotone decreasing. As it is
bounded from below by zero, it converges and the limit is RG(G). If we define
H; < G as the intersection of the (finitely many!) normal subgroups of G of index

at most i, then (H;){2, is a residual chain such that the sequence (d[(g:’};]l) is a

cofinal subnet of (d[(g:)[;]l) by the normal core construction. Hence RG(G) equals
the limit of this subnet. Since G is finitely presented, it has a model for EG with
finite 2-skeleton so that the inequality d(H;) > b1 (H;) and Theorem 5.3 complete
the proof: We only have to recall from the beginning of Sect. 5.3 that the conclusion
of Theorem 5.3 on the n-th £2-Betti number holds if the (n + 1)-skeleton of EG is
finite. m|
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It comes as a little surprise that an intriguing group invariant from measurable
dynamics, called the cost of G, can be squeezed into the inequality of Theorem 5.29:

RG(G) > cost(G) — 1 > b*(G) (5.8)

for every infinite, finitely generated, residually finite group G, even if we drop the
assumption of finite presentation. Cost of a group was introduced by Gaboriau [54]
building on the earlier notion for equivalence relations by Levitt [101]. To prepare
the definition, let (€2, u) be a standard Borel probability space which again by
Kuratowski’s theorem is Borel isomorphic to the Lebesgue probability space
([0, 11, 1). Say (€2, u) comes with an ergodic probability measure preserving
(p-m.p.) right action v\~ G by a countably infinite discrete group G. Then “being
in the same G-orbit” defines the measurable orbit equivalence relation E C Q2 x 2.
We interpret any measurable subset S C € x € as the set of edges defining a
directed graph with vertex set 2. In this way, our equivalence relation E defines an
uncountable directed graph whose connected components are countable complete
digraphs: Any two distinct vertices in a connected component are joined by two
unique edges of opposite direction. If S C E is a measurable subset, we call S a
subgraph of E. Given a graph S C Q x Q and k > 1, we define the k-th power
of S by agreeing that (x,y) € S if and only if either x = y or there exists an
undirected path in S from x to y of length at most k. If we have E = | ;. S¥, we
write E = (S) and say that S C E spans E. -

Definition 5.30 The edge measure e(S) of a subgraph S C E is given by

e(S) =/Qdegs(X)dM(X)

where degq(x) = [{y € Q: (x, y) € §}| is the number of outgoing edges from x.

So the edge measure e(S) is the average number of outgoing edges per vertex
in the graph S. As such, it is a measure of complexity for S. This means we can
consider the infimum of the edge measures over all spanning subgraphs of E as the
price we need to pay for generating the equivalence relation of the measurable group
action.

Definition 5.31 The cost of @ v\ G is the cost of the measurable equivalence
relation £ C  x € and it is given by cost(E) = cost(2 ~ G) = inf(5y—f e(S).
We set

cost(G) = inf cost(2 \ G)

where the infimum is taken over all ergodic and essentially free p.m.p. actions
QAN G.

Encountering the definition for the first time, one could get the idea to pick S C E
consisting of an oriented path in each connected component of E that would travel
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precisely once through each vertex of the complete graph to conclude that cost is
always one. But that is of course nonsense because the dependence of cost on the
group action is encoded in the measurability condition on the subset S C E. The
above “picking” of S is a perfect application of the axiom of choice from which
one cannot expect any measurability assertion on S whatsoever. If however G is
finitely generated by g1, ..., g, then the edges (x, xg;) forx € Qandi =1,...,n
form a measurable spanning subgraph § C E, implying that cost(G) < d(G). The
connected components of almost all points in S will look like the Cayley graph of
G without distinguished base point. If for example G = F,, is free on g1, ..., gn,
this means S is essentially a forest: The connected component of a vertex x € Q is
almost surely a tree. In his fundamental work on cost [54], D. Gaboriau has shown
that this subgraph S realizes the cost so that cost(2 v~ F;;) = n for all essentially
free ergodic p.m.p. actions 2 v~ F,, and in particular cost(F,) = n. It is unknown
whether the phenomenon of constant cost for all these actions is observable for all
groups:

Question 5.32 (Fixed Price Problem) Does every essentially free ergodic probabil-
ity measure preserving action 2 v~ G of a countable group G have the same cost?

It is a famous theorem of Ornstein and Weiss [140, Theorem 6] that the orbit
equivalence relation of a p.m.p. action 2 v~ G of an amenable group G with almost
surely infinite orbits can be generated by a single Borel automorphism and hence by
an action Q \ Z. Since Z is a free group, this demonstrates that infinite amenable
groups have fixed price one.

We will next present a beautiful theorem due to Abért and Nikolov [1] which
builds the bridge from rank gradient to cost, hence from a combinatorial to a
dynamic invariant. To state the theorem, we define the relative rank gradient of
G with respect to any chain (G;) of finite index subgroups by

. d(Gy—1
RG(G, (G))) = 11320 [G:G;i]~

We now assume for the rest of this section that G is finitely generated. This has the
effect that the canonical residual chain (H;) in G from the proof of Theorem 5.29 is
defined and we have RG(G, (H;)) = RG(G). Recall from Sect. 5.4.3 that any chain
(G;) defines the ergodic p.m.p. action 37 v~ G on the boundary 97 of the coset
tree T. For the canonical chain (H;), the boundary of the coset tree d7 coincides
with the profinite completion G of G to be examined more closely in Sect.6.7.
Assuming that G is also residually finite, we can choose a Farber sequence (G;) of
finite index subgroups in G so that the action a7 \ G is essentially free.

Theorem 5.33 (Abért-Nikolov) Let (G;) be Farber in G with coset tree T. Then

cost(@T ~ G) = RG(G, (G)) + 1.
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We obtain the first inequality in (5.8) as an immediate corollary and this
inequality is actually an equality if the fixed price problem has an affirmative
answer. As another consequence of the theorem, the fixed price problem would
positively answer the open question whether the relative rank gradient is in fact
independent of the Farber chain. On the other hand, Abért—Nikolov explain that
the hyperbolic rank vs Heegard genus conjecture would imply that the relative
rank gradient does depend on the Farber chain; so either the rank vs Heegard
conjecture or the fixed price problem is false. Every closed orientable 3-manifold
M admits a decomposition into two handlebodies along some closed surface of
genus g. The minimal possible such g is called the Heegard genus g(M). The core
of any one handlebody provides a set of g generators for 71 M so that g(M) >
d(m1M). The rank vs Heegard conjecture asks whether equality holds. Amusingly,
the case d(r1 M) = 0 gives the Poincaré conjecture. After several non-hyperbolic
counterexamples had been constructed, Li [102] has meanwhile also disproved the
hyperbolic case so that the fixed price problem is the one that remains open.

The proof of Theorem 5.33 we are about to give has previously appeared as the
blog post [86]. We will see in a moment that the following notion closely related
to measurable (sub-)graphs shall come in handy: A graphing is a measurable subset
M C Qx G. It suggests itself to picture an element (x, g) € 2 x G as an “arrow” in
2 pointing from x to xg. Note that (almost all) these arrows are determined by their
initial and final point if and only if the action 2 v~ G is (essentially) free. We can
sort the arrows in the subset M either by initial point or by direction: either by the
Q- or by the G-coordinate. So interchangeably we think of M as a family of subsets

Me={xeQ:(x,89) e M} CQ
parametrized by group elements g € G, or as a family of subsets
M,={geG: (x,89)eM}CG

parametrized by points x € 2. Guided by what we did above, we define the k-th
power M¥ of M by all the arrows we obtain by composing up to k arrows from M
regardless of their direction. In more mathematical terms this means (x, g) € M* if
and only if there is 0 <[ < k and a decomposition g = g1 - - - g/ in G such that for
all 0 <i <[ either

(xg1- 8 8iv1) €M or (xgi---giy1.873)) € M. (5.9)

Note that M? = Qx {1}, regardless of what M is. We say that a graphing M C 2xG
spans 2 x G if we have Q@ x G = Ukzo M¥In this case we write (M) = Q x G.
Let e be the measure on 2 x G given by the product of ¢ and the counting measure
on G.
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Definition 5.34 The groupoid cost of the ergodic p.m.p. action 2 G is

(AN G)= inf M).
geost(2 N G) (M>1nQXGe( )

To explain the terminology, we observe that the set 2 x G has a groupoid
structure: two arrows (x1, g1), (x2, g2) € € x G can be composed if and only if
X181 = X2, meaning the first arrow points to the initial point of the second, and in
that case their composition is (x1, g1g2). So a graphing spans 2 x G if and only if
it generates Q2 x G as groupoid.

Proposition 5.35 We have
gcost(2 ™ G) > cost(2 N G)

with equality if the action is essentially free.

Proof A graphing M C 2 x G defines a subgraph ®(M) C E of the orbit
equivalence relation £ C Q x 2 by setting

P(M) = {(x,x8): (x,8) € M}.

Clearly ®(M*) = ®(M)F so that ® preserves the spanning property. We have
deggppry(x) < [Mx| with equality almost everywhere if the action 2 ~ G is
essentially free. Integrating over 2 gives the inequality. To obtain equality for
essentially free actions one still has to show that each spanning subgraph can be
obtained from a spanning graphing via ®; we skip this argument which needs some
technical care but no unusual ideas [1, Lemma 6]. O

Theorem 5.36 If (G;) is a chain of finite index subgroups in G with coset tree T,
then

geost(dT v G) = RG(G, (Gy)) + 1.

We stress that for this result, the subgroups G; must not be normal, the chain must
not be Farber, and the subgroups are not required to have trivial total intersection.
Clearly, this theorem and Proposition 5.35 complete the proof of Theorem 5.33.

Proof We first show gcost(d7 «\ G) < RG(G, (G;)) + 1. For all ¢ > 0 we find
some i with ‘ff;G’i;fll < RG(G, (G})) + €. Thus the integer
d = [(RG(G, (Gi)) +8)[G: Gil] +1

gives an upper bound for d(G;). Say G; is generated by g1,...,g4s and let 1 =
Y1, ..., YIG: G;) be a system of representatives for G;\G. We define a graphing
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M C 9T x G by setting

M. — sh(G;) if g = g; for some j > 1 or g = y; for some j > 1,
& ] otherwise.

We claim that (M) = 0T x G. Indeed, let (x,g) € oT x G and let y, and yp
be the representatives from the list for which x € sh(G;y,) and y, g)/b*1 e G;.

Hence we can write g as a word of the form ya’l gjil1 e gj.;l yp. With respect to this

factorization of g one easily verifies the criterion (5.9) to conclude (x, g) € M k+2
proving the claim. By definition M, equals sh(G;) for precisely d + [G: G;] — 1
elements in G and is empty otherwise. Hence the graphing M has measure

Gl -1
(M) = d+[G: Gi]
[G: Gi]
It follows that
d—1
geost(dT ~ G) < 4+ 1 <RG(G, (Gj)) + 1 +e.
[G: Gi]

The reverse inequality gcost(d7 v G) > RG(G, (G;)) + 1 is somewhat harder.
Given ¢ > 0, there exists a graphing M which spans 37 x G and has measure
e(M) < gcost(dT ~ G) + ; The first thing to do now is to construct yet another
graphing N € 9T x G which is close to M in the sense that for the symmetric
difference we have e(NAM) < § and such that N has the convenient property that
each Ny is a finite union of shadows which is nonempty only for finitely many g €
G. Since the shadows form a countable basis of the topology of 97, it is conceivable
that such a “finite approximation” to M exists. So we shall allow ourselves to skip
the precise technical construction [1, Lemma 5]. Since N is made up from only
finitely many shadows altogether, there exists a large enough i such that each Ny is
in fact a finite union of level-i shadows of the form sh(G;h).

We define a finite, directed, labeled graph G as follows. The vertex setis V =
G;\G and for each g € G we connect w € V with wg € V by an edge of label g
if and only if sh(w) € N,. The graph G has the canonical base pointv = G; € V.
This data defines a homomorphism of groups

p: m(G,v) — G

I =(ei,...,ex) —> label(e;)*" - - - label(ep)*!

which multiplies the labels along a loop of edges, inverting the label whenever
we travel through an edge in reverse direction. We claim that the image of the
homomorphism ¢ is precisely G;. Indeed, for each ! € m1(G, v) we have vp(l) = v
by the construction of the graph G. Thus ¢(/) € Stab(v) = G;. Let h € G; be any
element and pick some ray x € sh(v). Since N spans T x G, there is a factorization
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h=g1---gc with g; € G such that forall 0 < j < k either

(xg1---gj, gj+1) €N or (xgi---gj+1,87) €N.

For0 < j < k,let w; € V = G;\G be the level-i vertex in the coset tree T
through which the ray xyy - - - y; passes. Then we have wo = wy = v and for each
0 < j < keither w; is connected to w ;11 by an edge in G with label g; 41 or wj1
is connected to w; by an edge of label g;il. Hence these edges form a loop [ with
¢(l) = h proving the claim.

Thus G; is a quotient group of 71 (G, v). The latter group is free of rank 1 — x (G).
Note that

1
e(N) =D e Zsh(G,-h)gNg [G: G;i]

so that e(N)[G : G;] is the number of edges in G while the number of vertices in G
is of course [G : G;]. Putting pieces together, we obtain

d(G)) =d(m(G,v) =1+eN)[G: Gi] - [G: Gi].
By subadditivity of the measure e appliedto N € M U (NAM) we conclude

RG(G, (G)) < (5i] =e(N) = 1 < geost@T ~ G) +& — 1

and the proof is complete. O

The second inequality of (5.8), or better the inequality
cost(G) — 1 > bP(G) — b{P(G)

to include finite groups into the discussion, is due to Gaboriau [55, Corollaire 3.23
and Corollaire 3.16]. It holds for all (at most) countable discrete groups G.
Hence the above mentioned Theorem of Ornstein—Weiss implies that all amenable
groups G have biz)(G) = 0 and in fact [55, Corollaire 0.1] that all amenable groups
are £>-acyclic (in the sense of p.77). This result was first proven by Cheeger and
Gromov [29, Theorem 0.2]. By a spectral sequence argument, one can conclude
from this more generally that any group G with an infinite amenable normal
subgroup is £?-acyclic [117, Lemma 6.66, p.271]. This applies for example to all
groups with infinite center. It was moreover long known that groups with Kazhdan’s
property (T) [14], a property often described as the “opposite” of being amenable,
have vanishing first £2-Betti number [13, Corollary 6] while they may or may not
have some positive higher ¢£2-Betti number. The corresponding statement that (7')-
groups have cost one has only recently been verified [77] but the fixed price problem
remains open for them. It is yet unknown whether either inequality in (5.8) can be
strict.
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There is a lot more to say about ¢>-invariants and measured group theory. We
invite the reader to learn about it from the inspiring survey articles of Furman [53]
and Gaboriau [56, 57]. As evidence of the potential of measured group theory
methods, let us conclude this section with a geometric result [155, Corollary to
Theorem A] that Sauer obtained by applying Gaboriau’s theory of Z-simplicial
complexes [55, Section 2] and other tools from measurable group theory to elaborate
a proof strategy anticipated by Gromov [66, p. 297] upon ideas of A. Connes. Given
a smooth manifold M, the minimal volume minvol(M) is the greatest lower bound
of the volumes of all complete Riemannian metrics on M with sectional curvature
pinched between —1 and 1.

Theorem 5.37 (Main Inequality for ¢2-Betti Numbers) For each dimension d,
there is a constant Cq > 0 such that every closed aspherical smooth d-manifolds
M satisfies

bP (M) < Cqgminvol(M) foralln > 0.

As M is aspherical, we have b,(lz) (1\71 ) = b,(lz) (1 M). So the theorem remarkably
identifies an orbit equivalence invariant of w1 M [55, Corollaire 3.16] as a lower
bound on the minimal volume of M, the latter being an intrinsically geometric
concept.

5.6 Approximation, Determinant, and Atiyah Conjecture

The formulation of Liick’s approximation theorem given in (5.2) still makes sense
if the normal subgroups G; of G have infinite index. Just notice that £2-Betti
numbers of the G/ G;-CW complex G;\ X are defined regardless of whether G; has
finite or infinite index. One might also come up with the idea to not only consider
limits of sequences on the right hand side but also limits of nets (see p. 16) over
residual systems (G;);c; of normal subgroups directed by containment “2” with
(ic; Gi = {1}. The corresponding approximation statement has become known as
the approximation conjecture.

Conjecture 5.38 (Approximation Conjecture) Let X be a free, finite type G-CW
complex and let (G;);es be a residual system. Then for every n > 0 we have

bP(G A X) = lim bP(G/G; ~ G\X).
e

Similar to Liick’s approximation theorem and to the Atiyah conjecture, the
approximation conjecture is in fact not so much a topological question but more
an algebraic one. In fact, the following version is equivalent as a consequence of
Proposition 3.29.
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Conjecture 5.39 Let G be a group with residual system (G;);e;. Then for all A €
M (k, l; QG) with reductions A; € M (k,[; Q(G/G;)), we have

dimgg ker(2G* 5 2Gly = limdimg(/c, ker(€(G/ Gt A 2660,
e

Considering coefficients in Q instead of Z is possible because scalar multipli-
cation with the l.c.m. of the denominators does not alter the kernels. Note that
Proposition 3.29 requires G to be finitely generated but since A has only finitely
many entries, it lies in M (k, [; QH) for a finitely generated subgroup H of G and
the von Neumann dimension of ker(-A) is the same over R(G) and R(H) as we saw
as part of Exercise 3.3.3.

Allowing infinite index normal subgroups has a remarkable advantage: the
quotient groups G/ G; can be torsion-free and this permits the following application
of the approximation conjecture to the Atiyah conjecture 3.30.

Theorem 5.40 Let G be a group with residual system (G;) satisfying the approx-
imation conjecture. If each group G/G; is torsion-free and satisfies the Atiyah
conjecture 3.30 with R = Q, then the same is true for G.

Proof Any torsion element g € G becomes trivial in all quotient groups G/G;
as these are torsion-free. Hence ¢ € (); G; is trivial and G is torsion-free.
By assumption, for any A € M(k,1; QG), the net (dimgG,g,)(ker-A;))ies
consists of integers. Hence if G satisfies the approximation conjecture, then
lim; ey dimg(g, ;) (ker -A;) = dimg(c)(ker-A) is an integer as well. |

This approach to the Atiyah conjecture is due to Schick [156, 158]. In view
of Theorem 3.32, it should be enough motivation to tackle the approximation
conjecture. Revisiting Sect. 5.3, we see that the framework of the proof of Liick’s
approximation theorem remains valid verbatim for the approximation conjecture if
we only replace limits of sequences with limits of nets. Also the proof of the Port-
manteau theorem works equally well for nets. Hence, showing the approximation
conjecture amounts to establishing Propositions 5.16 and 5.18 in the new situation.
For the first proposition, which asserts weak convergence of spectral measures, this
is trouble-free: ﬂi ¢y Gi is trivial, hence traces converge. The crux of the matter
is the second proposition. Recall that it sets up a uniform logarithmic bound for
spectral distribution functions from an innocuous observation in (5.5): the product
of positive eigenvalues of D; is an integer, hence uniformly bounded from below
by one. This argument breaks down when the quotient groups G/G; are infinite.
So the first step for proving the approximation conjecture consists in finding a
reformulation of (5.5) that would still make sense when the matrices A; (or better
A?‘A,-) act on infinite dimensional Hilbert spaces. To this end, we notice that the
product )\T' --- Ay in (5.5) is precisely the determinant of the operator -D; when
we restrict domain and target to the orthogonal complement of the kernel of - D; .

So let us try and define such a “determinant” in the general setting of a morphism
T: H — K of finitely generated Hilbert £(G)-modules H and K. The operator
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|T| was already constructed in Exercise 2.2.5. Alternatively, we apply continuous
functional calculus (Theorem 5.6) to the self-adjoint operator 7*T on H and obtain
|T| = ~/T*T. The operator |T| is then positive by Proposition 5.7. It is moreover
G-equivariant as it lies in the von Neumann algebra generated by the G-equivariant
operator T*T . Hence also the measure P|7| from p. 95 takes values in G-equivariant
projections so that we can take the von Neumann trace to obtain a canonical real
valued measure w7 = trgig) Pjr| on o (|T|). By construction, it is the spectral
measure (7| = Mg, 7| Where e € H is the preimage of pr(e @ --- @ e) € (L2G)Hk
under any embedding i : H < (£2G)* where “pr” is the orthogonal projection onto
i(H). Indeed, the definition of trg(s) in Proposition 2.33 shows that

trri) P =(e®---®e, (o PArjopn)(e®---De)) =
=(pr(e® ---De), Pr|(pr(e®--- De)))

because i* = pr. Note that the notation w|7| intentionally collides with our earlier
notation for a basic measure of |7'| from p. 93.

Proposition 5.41 The spectral measure 1| = e, 1| is basic for |T|.

Proof Let x € H be a nonzero vector and let A C o (|T|) be measurable with
Hx, T)(A) > 0. Since P7|(A) = P|T|(A)2 = Pir|(A)* is an orthogonal projection,
we obtain

0 < jux7i(A) = (x, Pr(A)x) = | Pir (A)x 1>

Hence Theorem 2.44 (ii) implies dimg(g)im P;7|(A) > 0 which is equivalent to
0 < trgre) Pr((A) = w1 |(A). m

So the equivalence class of basic measures for the positive part of a morphism 7
of finitely generated Hilbert modules has the canonical representative |7|. The 02
version of a “determinant up to kernel” is now captured by the following definition.
Letusseto(IT)T = o (|IT)) \ {0}.

Definition 5.42 The Fuglede—Kadison determinant of T: H — K is

detgg) T = exp </ log d;,LT) .
o(ITh+

The above Lebesgue integral is always defined because the positive part of the
logarithm function is bounded on o (|T|)*™ < (0, ||T||]. It might happen, though,
that |7'| has so much spectral mass around zero that the integral has value —oo. In
this case, we can and will set detg(g) T = exp(—o00) = 0. But we want to say that T
is of determinant class if detg(gy T > 0, or in other words, if log is 1|7|-integrable
on o(|T|)*. Also be aware that the zero operator has all its spectral mass at the
eigenvalue zero which is excluded from integration. Thus detg(g) 0 = exp(0) = 1.
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To understand why this definition gives a notion of determinant, it is advisable
to decode it in case the group G is trivial so that H = Ck. In that case, o (|T|)"
consists of the finitely many positive eigenvalues of |T'|, also known as the positive
singular values of T, and Proposition 5.15 says that p|7|({A}) is the multiplicity of
L € o(|T|)*. It follows that detg(g) T is the product of the positive singular values
of T repeating them according to multiplicities. Similarly, for a finite group G, the
Fuglede—Kadison determinant detg(g) 7 is the |G|-th root of the product of positive
singular values of T raised with multiplicities.

In any case, the inequality )»'f“ - Ay > 1 from (5.5) can now be restated as
detgr(G/G:)(-Di) > 1. We make the bold claim that this should not only be true for
finite groups but in fact for all groups.

Conjecture 5.43 (Determinant Conjecture) Let G be any group and let A €
M (k, 1; ZG) be any matrix. Then

detg(c) ((ezc)k N (EZG)Z) > 1.

Just like (5.5), the determinant conjecture, if true, yields a uniform logarithmic
bound for the positive spectral distribution function of -A and thus provides the
missing part for the approximation conjecture.

Proposition 5.44 (Logarithmic Bound II) Let T: H — K be a morphism of
finitely generated Hilbert L(G)-modules. Suppose dimgy H < k and detgigy T >
1. Then for all » € (0, 1), we have

klog [Tl

w0, 1)) < ogh| -

Proof The proof is the continuous version of the argument given in Proposi-
tion 5.18. Indeed, detggy T > 1 gives

2 7]
0 5/ log dur| =/ log dur| +/ log dujr| <
o(IT)* ot x

<log - ur((0, 1)) +logIT| - w7 ([A, IT[]) <
<logh - ur|((0, 1)) +log|IT| - k. O
We are now in the position to state and prove that the determinant conjecture
implies the approximation conjecture in the following sense.

Theorem 5.45 Let G be a group and let (Gi)ic; be a residual system. If each
group G/G; satisfies the determinant conjecture, then G and (Gi)icy satisfy the
approximation conjecture 5.39.
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Proof Fix A € M(k,l; QG) and let ¢ be the l.c.m.of the denominators of the
coefficients in the entries of A. The matrix D = ¢2A*A € M (k, k; ZG) and the
reductions D; € M(k,k; Z(G/G;)) are positive and have the same kernels as A
and A;. Thus we have to show p.p({0}) = lim;e; 1. p, ({0}). As discussed above,
this follows once we prove that for all i € I and all A € (0, 1), we have

klogd
.p;((0, 1)) < .
w-p; (0, 1)) < log |

But if the determinant conjecture is true for each G/G;, then this is implied by
Proposition 5.44 and the inequality || - D;|| <k>- | D] :=d. O

This theorem draws the attention from the approximation conjecture toward the
determinant conjecture. We shall now endeavor to prove the determinant conjecture
for a reasonable class of groups. We start with an entirely measure theoretic
consideration. Let X be a (not necessarily compact) metrizable space and suppose
that a net (u;);es of finite Borel measures on X weakly converges to a finite Borel

measure (4, meaning that
tim [ faui = [ £
iel

for all bounded continuous functions f € Cp(X, R). Then for possibly unbounded
nonnegative functions, we still get the following inequality.

Lemma 5.46 For every continuous function f: X — [0, 00), we have

liminf/fduiz/fdu.

iel
As usual in these contexts, integrals are allowed to take the value co. With a

sequence of measures instead of a net, the lemma is given as [43, Aufgabe 4.13,
p-409]. For the convenience of the reader we provide a proof.

Proof Foralli € I and all n € N, we have
/ min(f, n) du; < / i
by monotonicity of the integral. Taking the limit inferior over i € I gives
/min(f, n)ydu < hl}éi]nf[ fdu;

forall n € N by weak convergence of the measures j; to x. Taking the limitn — oo
completes the proof by the monotone convergence theorem. O
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The inequality of Lemma 5.46 implies the following inequality for the determi-
nant of a matrix and of its reductions.

Proposition 5.47 Let G be a group with residual system (Gi)ic; such that each
group G/ G; satisfies the determinant conjecture. Then for every A € M (k,l; QG),
we have

detg() -A > limsup detg(G/G,) -Ai-
iel

Proof Since for ¢ > 0, we have detgg)(-cA) = ck detgG)(-A) and similarly for
cA;, we can multiply A with the l.c.m. of the denominators, if need be, to assume
A € M(k,l; ZG). The proof of Proposition 5.16 works equally well when the
groups (G;) form a residual system instead of a residual chain. So applying this
proposition to -A*A and -A} A;, we see that the spectral measures M|.4; 2 converge

weakly to 4|42 on the closed interval [0, a?] with a2 = k% - ||A*A||;. Since for all
f € C([0,a], R), we have

/f(X)d/L|~A|(X) =/f(«/X)d/L|.A|2(X),

and similarly for A;, the net of spectral measures p; = p|.4;] converges weakly to
i = .4 on [0, a]. As we assume that G/G; satisfies the determinant conjecture,
Proposition 5.44 and the inequality |- A;|| < a give

loga

k
wi((0,2)) < N (5.10)

Og Al

forall A € (0,1) and all i € I. We now show that this implies that p; converges
also weakly to u on the open interval (0, 1]. Indeed, let f € Cp((0, 1],R) be a
continuous function bounded by | f| < C. Then splitting the domain of integration
as (0, 1] = (0, A) U [A, 1], we obtain for each i € I the estimate

1
Jdui
0+

IA
IA

1 1
—Cui((O,)»))Jr/A fdu; Cu;i ((0, A))Jr/A Sdu;.

Together with (5.10), this gives
C’ 1 1 bol 1
— dpi dp; < dui
PR LT WETE RS LT

with C’ = Ckloga. The function f can clearly be extended continuously from
[A, 1] to [0,a], so u; — p weakly on [X, 1]. Hence first taking liminf;c; and

A
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lim sup; ./, respectively, then forming the limit A — 07 we obtain

1 1 1
lim inf/ fdu; > / fdu >lim sup/ fdui,
o+ o+

iel iel

which gives the asserted weak convergence of p; to  on (0, 1]. Now we have

lim suplogdetyg(G/G) A —hmlnf/ (—log) du; + lim sup/ logdu;.

iel iel

As p; converges weakly to u both on (0, 1] and on [1, a], Lemma 5.46 gives

1 a
lim suplog detgrG/G,) -Ai < — (—log)du + / logdu = logdetg(g) -A.
iel 0+ 1

Finally, the logarithm function is monotone increasing, therefore commutes with
lim sup; ;. This completes the proof. O

Remark 5.48 The statement that in fact we should have

detqg((;) A= lzlenll detqg(G/Gi) A

for any group G, any residual system (G;), and any matrix A € M (k, l; QG) goes
by the name determinant approximation conjecture, neither to be confused with
the determinant conjecture nor with the approximation conjecture... At the time
of writing, the determinant approximation conjecture is wide open. The inequality
opposite to Proposition 5.47

detR(G) A< 1im i]nf detﬂ(G/Gi) Aj (5.11)
i€

turns out to be surprisingly hard to establish. It seems that as of now, it is only
known for virtually cyclic G, see [159] and [117, Lemma 13.53, p.478]. Even
in this case, a technical result from Diophantine approximation enters the proof,
namely a precursor of Baker’s famous theorem on linear forms in logarithms.
In [87, Section 4] the reader can find a short excursion to this beautiful part of
transcendental number theory in which the technical result is stated as Theorem 15.
We will revisit inequality (5.11) at the end of Sect. 6.5 in Chap. 6.

If matrices are allowed to have coefficients in CG instead of QG, the determinant
approximation conjecture becomes wrong even in the case G = Zand k = [ = 1.
A counterexample is presented in [117, Example 13.69, p.481]. For amenable
G, Li-Thom [103, Theorem 1.4] show that Fuglede—Kadison determinants can
be approximated by the determinants of the operators obtained by restricting and
projecting to subspaces £2(F) for F C G finite.
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Theorem 5.49 Let G be a group with residual system (G;)icy. If each quotient
group G/ G; satisfies the determinant conjecture, then so does G.

Proof Immediate from Proposition 5.47. O

Corollary 5.50 Residually finite groups satisfy the determinant conjecture.

Proof By (5.5), finite groups satisfy the determinant conjecture. O
Combining Theorem 5.45 with Corollary 5.50 gives the following result.

Theorem 5.51 Let G be a group with residual system (G;)ic; such that each
quotient group (G/G;)icy is residually finite. Then G and (G;)ic1 satisfy the
approximation conjecture.

This theorem finally improves Liick’s approximation theorem from finite quo-
tient groups to residually finite quotient groups. Be aware, however, that a residually
residually finite group is residually finite. So Theorem 5.51 does not yet apply to a
more general class of groups G than Liick’s approximation theorem does. It does
however apply to more general systems of subgroups (G;);c; in a residually finite
group G.

We now fulfill our promise from the end of Sect.3.5 in Chap.3 and illustrate
how the approximation conjecture gives further insight into the Atiyah conjecture by
Schick’s strategy in Theorem 5.40. Knowing or accepting the Atiyah conjecture 3.30
for elementary amenable groups (which are “close” to being abelian), we can
conclude it for free groups (which are far from being abelian).

Theorem 5.52 The Atiyah conjecture for elementary amenable torsion-free groups
implies the Atiyah conjecture for free groups in case R = Q.

Proof Similarly to the argument below Conjecture 5.39, a matrix over the rational
group ring of a free group involves only finitely many words in finitely many letters
from a free generating set. Hence we can replace the free group by the free subgroup
generated by these finitely many letters. Thus it suffices to show the theorem for the
free group on n letters G = F,.

The lower central series (Gi);?io of G, recursively defined by Go = G and
Gi+1 = [G, G;], is a residual chain in G. The quotient groups G/G; are torsion-
free nilpotent [67, Chapter 11]. In particular, they are elementary amenable, hence
satisfy the Atiyah conjecture 3.30 with R = Q by assumption. Finitely generated
nilpotent groups are moreover residually finite as shown in [75]. Theorem 5.51 and
Theorem 5.40 complete the proof. O

In the remainder of this chapter, we inform on further developments in this circle
of ideas, only hinting at proofs as we feel inclined to do so. For the determinant
conjecture, we can state a surprisingly encompassing result.

Theorem 5.53 (Elek-Szab6 [42], Schick [157]) The class of groups satisfying
the determinant conjecture contains all sofic groups and is closed under limits and
colimits of directed systems, subgroups, and amenable extensions.
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Note that limits of groups are typically uncountable but any matrix is supported
in a finitely generated subgroup so that this is no issue. Schick [157] showed
that the property of satisfying the determinant conjecture has the asserted closure
properties. In this context, being closed under amenable extensions is meant a little
more general than just saying that G satisfies the conjecture if G has a normal
subgroup N such that G/N is amenable and N satisfies the conjecture; see [157,
Definition 1.12 and 1.13] for the precise statement. Since the conjecture holds
for the trivial group, Schick’s result already shows that all residually amenable
groups satisfy the conjecture. Elek and Szabd [42] proved subsequently that the
determinant conjecture holds for the humongous class of sofic groups, a notion
due to Gromov [65] and named so by Weiss [171] that simultaneously generalizes
amenability and residual finiteness. At the time of writing, no example of a non-
sofic group is known. However, experts seem to believe they exist and constructing
amatrix A € M(k,[; ZG) with detg(G) -A < 1 might be a strategy to find one.

What can be said about the approximation conjecture 5.39 if we allow more
general coefficients? Asking this might not have an immediate topological gain,
but it is still of algebraic interest as we can again draw conclusions on the Atiyah
conjecture which in turn has consequences for Kaplansky’s conjecture with more
general coefficient fields.

Conjecture 5.54 (Approximation Conjecture with Coefficients in K) Let G be a
group with residual system (G;);e; and let K C C be any subfield. Then for all
A € M(k,l; KG) with reductions A; € M (k,l; K(G/G})), we get

dimgg ker(2G* A 022Gy = limdimg G, ker(¢*(G/G)* A 266,
IS

If K = Q is the field of algebraic numbers, then a matrix A € M(k,l; QG)
has in fact entries in FG where F is a finite Galois extension of Q. Multiplying
with a rational integer, if need be, we may assume that A € M (k,[; OrG) where
OFr is the ring of integers of F'. With similar “bootstrapping” methods as before, this
integrality can be exploited to show that Fuglede—Kadison determinants are bounded
from below by a positive constant if the groups G/G; are obtained from the trivial
group by successive application of the operations listed in Theorem 5.53. Similar to
Proposition 5.44, we obtain a logarithmic spectral bound which suffices to conclude
the conjecture. This method is due to Dodziuk et al. [37, Theorem 3.7]. Jaikin-
Zapirain sketches in [80, Section 10.4] how to incorporate the methods of Elek—
Szabé to conclude that G and (G;) also satisfy the approximation conjecture with
coefficients in Q if each quotient G/ G; is sofic. But Q-coefficients take the method
of finding lower bounds for determinants to the limit. Once transcendental numbers
occur in the matrix, the Fuglede—Kadison determinants of the reduced matrices can
converge to zero [80, Section 10.3].

Hence the most general case K = C calls for new techniques. If G is
amenable, then so are all the quotients G/G; and the approximation conjecture
with coefficients in C was proven by Elek [41], see also [141]. The breakthrough
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is however due to Jaikin-Zapirain who recently pioneered an innovative algebraic
approach [81] to address this question.

Theorem 5.55 (Jaikin-Zapirain [79]) Let G be a group with a residual system
(Gi)ier such that each quotient group G/G; is sofic. Then G and (G;)icy satisfy
the approximation conjecture with coefficients in C.

Moreover, Jaikin-Zapirain proves the approximation conjecture with coefficients
in C for free groups with arbitrary residual systems [79]. It was long known that
the Kaplansky conjecture with R = Q and R = C are actually equivalent, see for
instance [37, Proposition 5.1]. For sofic groups, Theorem 5.55 has the same striking
consequence on the Atiyah conjecture.

Theorem 5.56 (Jaikin-Zapirain [79]) If G is sofic, then the Atiyah conjecture with
R = Q is equivalent to the Atiyah conjecture with R = C.

This is a particularly convenient theorem because as opposed to Linnell’s
theorem 3.33, the more recent results on the Atiyah conjecture were obtained for
R = Q rather than C. For example, the authors of [37] applied the approximation
methods sketched above similarly as in Theorem 5.40 to prove the Atiyah conjecture
with R = Q for the following class of groups.

Definition 5.57 Let D be the smallest nonempty class of groups that

* contains every torsion-free group G for which there exists an epimorphism
p: G — A onto an elementary amenable group A such that p~!(H) € D for
every finite subgroup H < A.

* is closed under taking limits, colimits, and subgroups.

So in particular, residually torsion-free solvable groups lie in D. Incorporating
additional work of Farkas and Linnell [45], Linnell and Schick [106], Schreve [161],
and Jaikin-Zapirain and Lépez-Alvarez [82], Theorem 5.56 implies the following
extensive result on the Atiyah conjecture [81, Corollary 1.2].

Theorem 5.58 The Atiyah conjecture with R = C holds for groups in D, Artin
braid groups, finite extensions of the fundamental group of a compact special cube
complex, torsion-free p-adic analytic pro-p groups, and locally indicable groups.

We will not define or explain the additional classes of groups occurring in this
theorem. But let us mention that the result on analytic pro-p groups implies that
every finitely generated linear group over a field of characteristic zero has a finite
index subgroup satisfying the conjecture. Unfortunately, it is not known in general
if the Atiyah conjecture passes to finite index overgroups. Partial results on this
question were however used in the proof for braid groups and virtually cocompact
special groups.

As another side remark Wise [173, Theorem 1.4], showed that one relator groups
with torsion are virtually cocompact special, hence satisfy the Atiyah conjecture. If
the letters in the relator word of a one relator group occur with only nonnegative
powers and the abelianization of the group is torsion-free, then the group itself is
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torsion-free and residually in Linnell’s class C [156, Example 4.1]. Therefore it
lies in O and likewise satisfies the Atiyah conjecture. Finally, Jaikin-Zapirain and
Loépez-Alvarez showed most recently that the Atiyah conjecture holds for locally
indicable groups. This includes the torsion-free one relator groups by work of
Brodskii [27]. For more information on all these recent developments in the approx-
imation theory of £2_Betti numbers, we recommend the survey articles [80, 96].



Chapter 6 )
Torsion Invariants Check for

Let us step back and take a look on what we have achieved so far. The starting
point was to consider the n-th Betti number b,(X) of a finite CW complex X,
which is defined as ranky, H), (X)fee Where Hy(X) = H,(X)free D Hy(X)tors 18
the decomposition of the n-th integral homology into free and torsion part. We
introduced the n-th £2-Betti number b,@(f) as the Ez-counterpart to b,(X) and
Liick’s approximation theorem says that it can be recovered asymptotically from
the Betti numbers b, (X;) of finite coverings X; — X if w1 X is residually finite.
While this is a very satisfying theory, it came at the cost of completely discarding
torsion in homology.

Torsion in homology is however an object of utmost interest so it makes sense
to ask for a theory along the above lines that would define an ¢’-invariant of
X that could asymptotically be recovered from the finite groups H,,(X;)tors- The
good news is that such an invariant exists. It is called ¢>-torsion, and we have
a clean conjecture stating how and under what conditions it can be recovered
from the groups H, (X;)wrs. The bad news is that the conjecture is entirely open.
Nevertheless, it is instructive and worthwhile to expose the difficulties of the
conjecture so that at the end of this chapter the reader has an impression of the state
of the art in this circle of question which has attracted massive research efforts from
various fields, including 3-manifold theory and cohomology of arithmetic groups.

6.1 Reidemeister Torsion

To begin with, we will present the classical invariant from which £2-torsion arises in
the ¢2-setting. It goes by the name of Reidemeister torsion or Reidemeister—Franz
torsion. To motivate the definition, consider the 3-sphere S as the unit sphere in C?
and let p and g be coprime integers. We define a free action of the cyclic group Z/ p
on §3 by saying that the generator of Z/p moves the point (z1,22) € S € C to
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the point (e2719/Pz;, >™1/Pz,). The quotient space L(p, q) = S* /Z/p is hence a
three-dimensional manifold.

Definition 6.1 The manifold L(p, q) is called a lens space of type (p, q).

Let us compute the homotopy and homology groups of L(p, ¢). Since S is
simply-connected and Z/p acts freely, we have w1 (L(p, g)) = Z/p. The higher
homotopy groups 7x(L(p, q)) for k > 2 are equal to the homotopy groups x>
because S is the universal covering of L(p, ¢). With the help of Poincaré duality
and the universal coefficient theorem one readily verifies that the homology of
L(p, q) is given by Ho(L(p,q)) = Z, H\(L(p.q)) = Z/p, H2(L(p.q)) = 0
and H3(L(p, g)) = Z. The upshot of this is that the elementary algebraic topology
of L(p, g) does not see the integer g. Nevertheless, the lens space L(5, 1) is not
homotopy equivalent to the lens space L(5,2) and—even worse—the lens space
L(7,1) is homotopy equivalent to L(7,2) but they are not homeomorphic! But
how does one even prove that? All common invariants in topology (including
refinements like cup products in cohomology) are homotopy invariants and thus
will not be able to distinguish L(7, 1) from L(7,2). An object which is however not
a homotopy invariant of a CW complex X is the cellular chain complex C.(X; R),
for example with coefficients in R. Or more generally, if X is a G-CW complex,
one could consider the cellular chain complex C«(X; V) = V ®zc C«(X) for any
finite-dimensional representation V of G over R. Of course, Ci(X; V) is not even
invariant under refinements of the cell structure so that it is hardly a useful thing to
work with directly. But instead of taking homology, there is another way to extract
useful information hidden in C,(X; V) even if—or better especially if —C.(X; V)
has trivial homology. To do so, let us first advertise an intuitive picture to think about
chain complexes.

You grab a stack of beer coasters, allowed to be of varying sizes, and place half
of the coasters side by side on the table without overlaps so that some gap remains
in between any two adjacent coasters. Afterwards, you use the other half of the
coasters to cover the gaps so that any gap between two adjacent upper coasters lies
above some particular lower coaster.

What’s that got to do with chain complexes? The lower beer coasters represent the
even chain modules Cy,, the upper ones correspond to the odd chain modules Co 1.
The overlaps between upper and lower coasters determine how much of each chain
module is transported to the next chain module by the differential.

Cy Cs C3 Ci

BIT E1FE

Ce C4 C, Co
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Requiring that neither the upper nor the lower coasters overlap among themselves
thus translates precisely to the chain complex condition imd.+1 < kerd.
Accordingly, the upper gaps represent the even homology groups and the lower
gaps account for the odd homology groups of the chain complex. The two extreme
cases would be the picture

where all differentials are zero and thus the gaps (homology) are as big as the
coasters (chain modules) and the picture

where the chain complex is exact (or acyclic), imd,4+1 = ker dy, and thus there are
no gaps (no homology). In the latter case, visually Coqq = €D Ca4+1 is isomorphic
t0 Ceyen = 69 Cox.

To see this isomorphism formally, we assume that C,. consists of (finitely many)
finite dimensional R-vector spaces as in the example Cx = Ci(X; V). Then each
C. is automatically free and the condition H,(Cx) = 0 ensures that (Cy, dy) is
contractible: there exists a chain contraction yy: Cy — Cyy1 satisfying y,_1dy +

dyy1yx = 1dc,.

Proposition 6.2 The map daw+1 + Y24+41: Codd —> Ceven IS an isomorphism of
vector spaces.

Proof The composition (da«+1 + V2x+1)(d2x + ¥24) and the reverse composition
(d2x+y24) (d24+1+V24+1) are unipotent endomorphisms and in particular invertible.
O

So the map dast1+ ¥24+1: Codd — Ceven 1S represented by a nonsingular square
matrix as soon as we fix a basis for all the vector spaces Ci.

Proposition 6.3 The number det(dayy1 + Y24+1) € R* is independent of the choice
of the chain contraction yy.

Proof Letd: C, — Cy41 be another chain contraction. Set (i = (Vi1 — 8x+1)0%.
Then both (id + w2441) and the composition

(d2s41 + V2541) (Ad + 2s41) (d2s + 824)

are unipotent, thus the number det(da4+1+Y24+1) = det(dz*~|—82*)_l is independent
of y (and §). |

Definition 6.4 The Reidemeister torsion of Cy is given by

p(Cy) = |det(dast1 + vaut1)| € RO
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Other authors leave out the absolute value [149] or square the determinant
instead [31]. While Reidemeister torsion is independent of the chain contraction,
it depends decisively on the chosen bases. In fact, if we replace the basis for each
Cp by a new one, and if A, denotes the change of basis matrix, then the new
Reidemeister torsion differs from the old by the factor

-+ |det Ap| Vet A | |det Ag| " |det A_q| - - .

This means, however, that Reidemeister torsion remains unchanged if all change of
basis matrices are orthogonal. To obtain a well-defined invariant, it is thus enough
to specify the bases up to orthogonal transformations, or in other words to fix an
inner product on each C,. This makes computing Reidemeister torsion particularly
easy because the inner product gives a convenient, canonical chain contraction. To
see that, consider the orthogonal decomposition

C, = (kerd,) ® (kerd,,)l = imdy4+; @ imd,.
The differential d,, restricts to an isomorphism
dt = dnjimgy: imd, — imd,

so that a chain contraction with respect to the above decomposition is given by
0 0 . . . L
Vo = (dL -1 0)" The isomorphism dox+1 + Y24+1: Codd = Ceven 1S then given in
n+1
block form as

0 di
o
syl + V2ut1 = 2 0 di_l

at=" o

The inner products on the various C,, add up to inner products on Coqq and Ceyen.
Therefore, we obtain a positive endomorphism |dax+1 + y24+1| acting on Codq
which is defined by requiring that it have the same eigenspace decomposition as
(d2+1 + V24+1)* (d24+1 + Y2441) but with square rooted eigenvalues. In block form
it is given by

lda| -
dy |+
ldol -~
ld_q|*

|d2st1 + Vost1] =
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and is nicely illustrated by the beer coaster picture without gaps. Here we used
|dni‘1| = |d;-]7!, because |x~!| = |x|~! forall x € R*, and |d;"| = |d,|*, because
d, and |d,| have the same kernel. It is clear that for any choice of orthonormal bases
of C,, we have |det(d2s+1 + V24+1)| = det|dax+1 + Y24+1]- Thus we have proven the
following result.

Proposition 6.5 Let (Cy,dy) be a finite, acyclic chain complex of finite-
dimensional real inner product spaces. Then the Reidemeister torsion (with respect
to any collection of orthonormal bases of the C,,) is given by

|J_(71)n+l

p(Co) = [ detldy

nez

Let us now return to topology and consider a finite, free G-CW complex X, for
instance the universal covering of L(p, ¢). How do we obtain a chain complex from
X that fits in our picture? Well, we pick an orthogonal representationp: G — O (V)
on some finite-dimensional real inner product space V with the property that the
twisted chain complex C.(X; V) = V ®z¢ C«(X) is acyclic. Here V is turned into
a ZG-right module by setting v - g = ¢(g~!)(v). Existence of such a representation
must be checked case by case. Note however that the trivial representation V = R
will never work because C,(X; R) will be infinite-dimensional unless G is finite
and—what is worse—it is never acyclic because Ho(X; R) = Rump(X). Working
with an orthogonal representation has the effect that we obtain an inner product on
C«(X; V), defined as usual: Choosing a cellular basis for X gives an identification of
C,.(X) with the free ZG-left module (ZG)*~. This in turn gives an isomorphism of
R-vector spaces Cp, (X; V) = V*n which defines an inner producton C,(X; V). Had
we chosen a different cellular basis, then the change of basis matrix of Vkn would
be a generalized permutation matrix with entries +¢(g) and thus an orthogonal
transformation of V% _ It follows that the inner product is independent of the choice
of cellular basis.

Definition 6.6 The Reidemeister torsion of X with coefficients in V is given by
p(X; V) = p(Ci(X; V).

The discussion so far justifies that we did not mention any bases in the definition
any more. Reidemeister and Franz employed their torsion invariant to give the
complete homeomorphism classification of three-dimensional lens spaces. To be
historically correct, they gave the PL homeomorphism classification which was
later shown to be the same as the homeomorphism classification by Brody [28].
The result is that L(p, g1) is homeomorphic to L(p, ¢2) if and only if g1 = :tqzﬂEl
mod p. By means of the forsion linking form, one can see that L(p, q1) is homotopy
equivalent to L(p, g2) if and only if either g1g2 or —q1q> is a quadratic residue
mod p.
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Exercises

6.1.1 Consider three dimensional projective space RIP? (which can be interpreted
as a certain lens space). Let V be the nontrivial one-dimensional orthogonal
representation of Z/27Z. Show that V ®z7,27) Cx« (RP3) is acyclic and compute

the Reidemeister torsion p(RP3; V) of RP3 with coefficients in V.

6.2 ¢2-Torsion of CW Complexes

Reidemeister torsion as just defined is not only an invariant of the finite, free G-CW
complex X but in fact of a pair (X, V) consisting of X and an orthogonal G-
representation V. A topologist might find this unfortunate because she is interested
in properties of the space X, ideally without any outside influence. The only
canonical choice of a finite-dimensional representation V for the possibly infinite
group G would be the trivial representation R—which never gives rise to an acyclic
complex C«(X; V). However, once one exits the familiar ground of linear algebra
to enter the realm of Hilbert modules, the situation is better. There is a canonical
unitary representation of G: the right regular representation on £2G. Moreover, the
resulting chain complex Cy (X, £2G) is just the £2-chain complex C,(Fz) (X) which is
often £2-acyclic as we saw in various examples, including hyperbolic 3-manifolds
and mapping tori. These observations pave the way for the definition of ¢2-torsion,
the ¢2-version of Reidemeister torsion.
To translate the formula

—1 n+1
p(Co) = [T detid, [+

nez

from Proposition 6.5 to the £2-setting, we spell out that the factors “det |d, |- are
determinants of the positive part of a morphism of Euclidean spaces restricted to
the orthogonal complement of the kernel. Hence the Fuglede—Kadison determinants
detr(G) d,(lz) provide the perfect ¢>-counterpart and we can right away give the
following definition.

Definition 6.7 Let (C,Ez), diz)) be a chain complex of finitely many finitely gener-
ated Hilbert £(G)-modules. Assume Cf) is of determinant class: each d,(,z) is of
determinant class. Then the £2-torsion of Cf) is

pP(CP?) =Y (=1)"* logdetr(g) d .

nez

Comparing to Proposition 6.5, you will have noticed that we have taken the
logarithm so that £2-torsion can take any real value and not only positive values
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as Reidemeister torsion does. There is no mathematical necessity to do so but it
has the welcome effect that in a moment we will get additive formulas instead
of multiplicative ones and it also yields a more visible resemblance of £2-torsion
and Euler characteristic as yet to be discussed. We discussed that as opposed to
Reidemeister torsion, the transition from chain complexes to topology needs no
additional input.

Definition 6.8 Let X be a finite, proper G-CW complex which is £2-acyclic and of
determinant class. Then the £2-torsion of X is given by

PP (X) = p@ (P (X)).

Here it is of course understood that X is of determinant class if Ciz) (X) is. If
X is free, this is automatic from the determinant conjecture 5.43 which we have
proven for residually finite groups in Corollary 5.50. Since 3-manifold groups and
lattices in semisimple Lie groups with finite center are residually finite, being of
determinant class is granted in typical geometric situations. In fact, Theorem 5.53
says that being of determinant class is almost never an issue. Again, we will write
0P (G ~ X) whenever it seems appropriate to emphasize the dependence on the
group action. As usual after introducing a new notion, we list some properties.

Theorem 6.9 (Computation of ¢2-Torsion) Assume that all occurring G-CW
complexes are of determinant class.

(i) Homotopy invariance. Suppose the finite, free, £>-acyclic G-CW complexes
X and Y are G-homotopy equivalent and assume the determinant conjecture
holds true for G. Then p® (X) = p@(Y).

(ii) Additivity. Let X be a G-CW pushout of finite, free G-CW complexes

Xo —> X

|

X, — X,

where the upper map is an inclusion as G-invariant subcomplex. If three of the
spaces are £*-acyclic, then so is the fourth and we have

pP(X) = p®P(X1) + p@(X2) — 0P (Xo).

(iii) Multiplicativity. Let X — Y be a d-sheeted covering of finite CW complexes
such that X or Y is £%-acyclic. Then so is the other and

pP(X)=d - p?@ ).
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(iv) Products. Let X and Y be finite, free G- and H-CW complexes such that X is
02-acyclic. Then so is the (G x H)-CW complex X x Y and

PP (X xY) = p®P(X) x(H\Y).

(v) Poincaré duality. Let X be a finite, free, £>-acyclic G-CW complex such that
G\ X is an orientable, closed, 2n-manifold. Then ,0(2) (X)=0.

(vi) Hyperbolic manifolds. Suppose that G\ X is a (2n + 1)-dimensional manifold.
Assume either that it is closed and hyperbolic or has boundary and the interior
carries a finite-volume hyperbolic metric. Then

pP(X) = (=1)"Cy vol(G\X)

for a positive constant C,, that depends only on dimension.

The proof lies beyond the scope of this text because the somewhat intricate
definition of £>-torsion effects that verifying these properties requires a considerably
larger technical apparatus than was necessary for proving basic properties of £2-
Betti numbers. Statement (vi) in particular has an involved proof which spreads
over the papers [73, 110, 122]. _

It follows again from multiplicativity that p®(S1) = 0. Similarly as in Chap. 3,
Sect. 3.6.3, one can conclude from this that any connected, Kz-acyclic, finite, free
G-CW complex of determinant class with non-trivial S'-action has vanishing £2-
torsion. Thus Theorem 6.9 (vi) gives the second half of Theorem 1.3 from the
introduction.

Corollary 6.10 An odd dimensional closed hyperbolic manifold M does not permit
any nontrivial action by the circle group.

It is worthwhile to step back and skim through the properties of Theorem 6.9
with squinted eyes. In doing so, one should observe that the behavior of £>-
torsion is strikingly reminiscent to the behavior of the Euler characteristic! In
fact, homotopy invariance, additivity and multiplicativity hold true verbatim for
£2-torsion and Euler characteristic. Poincaré duality and the values for hyperbolic
manifolds, however, occur with shifted parity: Euler characteristic is zero for odd-
dimensional manifolds and non-zero for even-dimensional hyperbolic manifolds.
£2-torsion is zero for even-dimensional manifolds and non-zero for odd-dimensional
hyperbolic manifolds. This brings us back to the beginning of this section where we
said £2-torsion is a canonical invariant of spaces and thus should have a canonical
interpretation: it is the odd-dimensional cousin of the Euler characteristic.

At this point, this might sound somewhat shaky but in Sect.6.5 we discuss
another deep manifestation of this principle in the context of homology growth.
Beforehand, we include sections on £2-torsion of groups and £2-Alexander torsion
of 3-manifolds in order to see some more examples and get acquainted with our new
invariant.
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6.3 ¢2-Torsion of Groups

£2-torsion is only defined for finite G-CW complexes. Because of Exercise 4.4.3,
directly setting p?(G) = pP(EG) would exclude any group G with torsion
elements from the definition of £2-torsion. Let us therefore assume less restrictively
that G virtually possesses a finite, £2-acyclic classifying space of determinant class.
So we assume there is H < G with [G : H] < oo and E H finite, Ez-acyclic and of
determinant class.
Definition 6.11 The ¢>-rorsion of G is given by p@(G) = * (L1,

This is well-defined because if Hy, Hy < G are as above, then H; N H; is yet
another allowed choice and multiplicativity (Theorem 6.9 (iii)) yields

pPNEH)) _ pP(EH\NHy) _ pP(EH N Hy) _ pP(EH))
[G: Hi] [G: Hi][H : Hi N Hy] [G: Hi N Hy] (G:Hy]~

Example 6.12 By Theorem 6.9 (vi), the fundamental group G = 71 M of an odd-
dimensional hyperbolic manifold M has nonzero £>-torsion proportional to the
volume.

Example 6.13 In dimension three, we have the following generalization. Suppose
G = mM is an infinite fundamental group of a connected, compact, orientable,
irreducible 3-manifold, meaning every embedded 2-sphere bounds a disk. Assume
moreover that the boundary is either empty or a collection of tori. Then Thurston
geometrization says one can cut M along embedded, incompressible tori into
pieces each of which carries one out of eight geometries [7, Theorem 1.7.6]. A
minimal choice of such tori is moreover unique up to isotopy. Here, a torus in
M is incompressible if any embedded circle in the torus which is bounded by an
embedded disk in M is already bounded by an embedded disk inside the torus. In
this case we have

1
(2) — _ .
p(G) = 61 Ei vol(M;)

where the sum runs over the hyperbolic pieces [122, Theorem 0.7] as was
conjectured in [113, Conjecture 7.7]. So p®(G) = 0 if and only if M has no
hyperbolic pieces in which case M is called a graph manifold.

Example 6.14 Example 6.12 generalizes in another way as follows. A Lie group G
is called semisimple if the complexification of the Lie algebra of G has no nontrivial
abelian ideal. Let G be a noncompact, semisimple linear Lie groupand I' < G a
uniform lattice: a discrete subgroup such that the quotient space I'\G is compact.
By Selberg’s lemma [6], I" possesses a finite index subgroup A which is torsion-
free. Thus A intersects any fixed maximal compact subgroup K < G trivially and
therefore A acts freely on the symmetric space X = G /K. The symmetric space X



136 6 Torsion Invariants

is moreover contractible and the locally symmetric space T'\ X is a closed manifold.
Thus X possesses the structure of a contractible, free, finite A-CW complex and
whence is a model for EA. If g and ¢ are the Lie algebras of G and K, then the
deficiency of G is the difference

8(G) =rankc g ® C —rankc ¢t ® C.

It is a result of Borel [21] that I' (equivalently A) is £2-acyclic if and only if
8(G) > 0. In that case p@(I') = C(G, ) - w(I'\G) where u denotes both the
Haar measure on G, see Sect. 4.5.5, and the induced G-invariant measure on I'\G.
The constant C(G, ) depends on G and p only, and the product C(G, w) - u(I'\G)
is of course independent of w. By a result of Olbrich [139], we have C(G, u) # 0
if and only if §(G) = 1. For example S(SOO(Zn + 1, 1)) = 1 in which case A\X
is an odd-dimensional hyperbolic manifold as in Example 6.12. More generally,
8(SO%(p, q)) = 1 if and only if p - ¢ is odd. Up to isogeny, there is only one more
simple Lie group of deficiency one: G = SL(3, R). Note that also § (SL(4, R)) =1
but this group is already accounted for because SL(4, R) is a finite covering space
of S0°(3, 3).

Example 6.15 Let G and K be as in the last example. Things become somewhat
more involved if I' < G is a non-uniform lattice: a discrete subgroup such that the
quotient space I'\ G is not compact but still has finite volume ©(I"\ G). In that case
X is nonetheless an E A for any finite index, torsion-free subgroup A < I" but the A-
CW structure is not finite. One can however construct a finite model of EA from the
manifold X by adding certain components at infinity to X. This construction goes
by the name Borel-Serre compactification [22] and applies if A is an arithmetic
lattice, meaning it is essentially given by the Z-points of an algebraic group, see
Sect. 6.6 for the precise definition. By a deep result of Margulis, to be presented on
p. 152, assuming arithmeticity means no essential loss of generality provided G has
“higher rank”. The finite model of E A is ¢£>-acyclic if and only if §(G) > 0 just like
in the uniform case. This follows from Gaboriau’s proportionality principle in Sect.
4.5.5. As a consequence of a conjecture due to Liick et al. [123, Conjecture 1.2], for
£2-torsion we should also have the same situation as in the uniform case: p(z) IT) #
0 if and only if 6(G) = 1. At the time of writing, this remains open in general.
However, by inspecting closely the Borel-Serre compactification, one can conclude
that p®(I") = 0if §(G) is positive and even [84, Theorem 1.2].

The main example of a lattice in a semisimple Lie group is SL(k, Z). For
this group the discussion boils down as follows. We have biz) (SL(Q2,7)) = 112
because SL(2,Z) = Z/6 *z,» Z/4. For k > 3, the group SL(k, Z) is Ez-acyclic.
Conjecturally, the values ,0(2) (SL(3,Z)) and ,0(2) (SL(4, Z)) are non-zero whereas
p P (SL(k; Z)) = 0 for k > 5. But this is only known if k = 1 or 2 mod 4. So at
least we know that p® (SL(5, Z)) = p®(SL(6, Z)) = 0.

In addition to £2-torsion of groups one can also define £>-torsion of automor-
phisms of groups. To this end, we recall from Exercise 4.5.1 that if G has a finite
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model for BG, then for every automorphism ¢ € Aut(G), the group G X, Z has a
finite model which is £2-acyclic.

Definition 6.16 The ¢>-torsion of the automorphism ¢ € Aut(G) is given by
PP () = pP(G %y L).

This invariant has many interesting properties and values but only recently has it
gained attention in the literature, in particular so if G is free [30]. One can easily see
that two automorphisms have equal £2-torsion if they differ by an inner automor-
phism so that each element y € Out(F;) has well-defined £2-torsion. Some of these
elements can be represented by self-homeomorphisms of a punctured surface so that
the £-torsion gives the hyperbolic volume of the corresponding mapping torus as
in Example 6.13. In any case, it would be interesting to characterize the countable
subset p® (Out(F,)) C R of the real numbers. Here the notation “p® (Out(F,))”
should not be confused with the £2-torsion of the group Out(F,): the latter is not
defined because for the (rational) Euler characteristic, we have x (Out(F,)) < 0
for all n > 2 as was most recently announced by Borinsky and Vogtmann. In
fact, D. Gaboriau announced that bgz)% (Out(F,)) > 0 for n > 2 and this is the
highest possible degree with non-vanishing £2-homology because the barycentric
subdivision of the spine of outer space [168] is a (2n — 3)-dimensional simplicial
complex and a model for EOut(F,) [118, Section 4.9]. The two results are now
available as the preprints [23] and [58].

6.4 €2-Alexander Torsion

We started off Sect. 6.2 with praising £>-torsion for being a canonical invariant,
independent of any choice of representation as was necessary to define Reidemeister
torsion. But not on any account does this mean that there would be nothing to
gain if one does decide to consider twisted versions of ¢>-torsion. Actually, already
introducing a one dimensional twist leads to a surprisingly deep theory on which we
shall report in what follows. Towards the end of this section, we will moreover take
a quick glance at how these ideas could be further elaborated by considering higher
dimensional representations and how they have led to the introduction of universal
2-torsion.

Let X be a connected finite CW complex, set 7 = m;X, and pick some
cohomology class

¢ € H'(X; R) = Hom(r, R).
Every positive real number ¢ € (0, 0o) defines a ring homomorphism

k(p,1): Zr —> R, «(¢p,1)(g) =1?Wg



138 6 Torsion Invariants

by Z-linear extension. We precompose the right Rzz-module structure of ¢27 with
k (¢, t) to construct the x (¢, t)-twisted 02-chain complex

COX; k) = Cr @e(p.r) Cx(X).

Picking a cellular basis of X turns C,(Fz) (X: k) again into a chain complex of finitely
generated Hilbert modules. So for all ¢+ € (0, co) such that Ciz) ()? ;k(¢p, 1)) is of
determinant class, the ¢>-torsion is defined according to Definition 6.7. Requiring
that in addition Cf) (i s k(¢, 1)) be 62-acyclic (have no reduced homology), we set

DX, ¢)(1) = exp(—pP(CP(X; 1))).

So we undo taking the logarithm and insert a minus sign that makes sure that
determinants are inverted in odd instead of even degree. This convention seems
to be customary in the literature on Reidemeister torsion of 3-manifolds. Altering
the cellular basis, the base change matrix for C,(lz) ()? ; k) will be a generalized
permutation matrix with entries 4r?(®)g;. Typically, for + # 1, this matrix
will no longer be unitary. The Fuglede—Kadison determinant of such a matrix
is 1#(€)++6(k) 5o that the alternating product of determinants, which defines
@D (X, @) (1), is only well-defined up to multiplication with a monomial function of
the form ¢" for some r € R.

If D, € M(ky, kn—1; Zm) is the matrix representing the n-th cellular differential
in Cy ()~( ) with respect to some cellular basis, then « (¢, )(Dj;,), applied entry for
entry, is the matrix representing the n-th differential in Cf) (X; ). This implies that
if 1 € Q and ¢ lies in the integral lattice H'(X; Z) ¢ H'(X; R), then« (¢, 1)(D,) €
M (ky, kp—1; Q) so that Ciz) ()?, k (¢, 1)) is of determinant class if 7 satisfies the
determinant conjecture 5.43. For the moment we artificially set @ (X, $)(t) =0
if either Cf) (i ; k (¢, 1)) should not be of determinant class or is not Ez-acyclic. In
the example of interest, however, Liu showed that this never happens [108].

Theorem 6.17 (Liu [108]) Suppose N is a connected, compact, irreducible 3-
manifold with infinite fundamental group and whose boundary is empty or consists
of incompressible tori. Then the function T® (N, ¢) is continuous and everywhere
positive on (0, 00).

Of course these assertions do not depend on the particular representative of
T@ (N, ¢). The function TP (N, ¢) is called the full ¢>-Alexander torsion of N
with respect to ¢. The word “full” is in place because we are working with the
universal covering N, which is the “largest” covering of N. Instead, one can also
pick some epimorphism y : # — G through which ¢ € Hom(wr, R) factorizes and
twist the cellular chain complex C iz) (]\7 ) with

K(p, v, 1)(g) =t*®y(g).
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The result is the £2-Alexander torsion function T® (N, y, ¢) of the regular covering
Niery associated with y . For example, the abelianization epimorphism ¢, : 7 — Z
of aknotcomplement N = § 3 \vK gives the £2-Alexander torsion t? (N, ¢ab, Pab)
of the canonical infinite cyclic covering N[z 1. To find this function in explicit
terms, one can start with a Wirtinger presentation P = (g1, ..., 8k+1 |71, .-+, Tk)
of the knot group m which one can easily read off from a knot diagram as
outlined in [46, Section 2]. The corresponding presentation complex X p is simple
homotopy equivalent to N, a folklore result for which a proof is included in [51,
Proposition 5.1]. Thus we can replace N by X p to compute @ (N, d)ab ¢ap). The
second differential of C, (X p) is realized by the Fox matrix D, = ( ar’ ) defined

in [46, Section 3] and the first differential has the form D; = (g1 —1, ..., gkr1—1).

The abelianization map ¢, sends each generator g; to the generator zof (z) E Z.
It induces the ring homomorphism ©: Zr — Z[z*!] and the matrices ®(Dy) and
@ (D) realize the differentials in the chain complex of the infinite cyclic covering of
X p. Deleting any column of & (D) gives a square matrix Ax € M (k, k; Z[zil]),
called the Alexander matrix of the knot K. The determinant Ax = detZ[ ~# Ak €
Z[z*"] is called the Alexander polynomial of K . Let

Ag(@)=az—a1) (2 —ayp)

be its complex factorization. Then with the help of Jensen’s formula, it is not too
difficult to see that

TP (N, pab, da) (1) = max{t, 1}~ |a| [ [ max {r, ley]} .

i=1

The factor max{s, 1}~! stems from the first differential. The essential factor

M(Ag(12) = la| [ [ max {z, |ey])

i=1

comes from the second differential and is called the Mahler measure of the t-scaled
Alexander polynomial Ag(tz) of K. This explains why the name “Alexander”
shows up in ¢2-Alexander torsion. Also recall that the Alexander polynomial
Ak is only well-defined up to a factor 2. But including such a factor would
only multiply the £2-Alexander torsion with ¥, in beautiful accordance with the
flexibility in the definition of T (N, ¢ap, Pap).

Observe that the function r(z)(N , Pab, Gap) 18 piecewise monomial and picks up
another power of ¢ with each root o; of Ag assoonast > |;|. As such, the function
T = (N, ¢ab, Pab) 1s multiplicatively convex in the sense that for all 11, r, € (0, 00)
and all » € (0, 1) we have

t (g7 s et T (6.1)
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More generally, we obtain a multiplicatively convex function ® (N, y, ¢) for any
3-manifold N as in Theorem 6.17 whenever y: w1 — G maps onto a virtually
abelian group G. One checks this similarly as above, now using higher dimensional
Mahler measures if the finite index free abelian subgroup of G has higher rank. It
was Liu’s clever observation that the property of T being multiplicatively convex
survives when approximating the universal covering by virtually abelian coverings
as follows. Since 3-manifold groups are residually finite, we can choose a residual
chain (7r;) of w and we consider the characteristic subgroups

K; =ker(m; — Hi(m;; Q))

of m; which are normal in 7. By construction, the quotient groups I'; = n/K;
are finitely generated virtually abelian. Since the group (R, +) is torsion-free
abelian, any given homomorphism ¢: m — R factorizes through the quotient
homomorphisms y;: # — I for all i. Thus we obtain the multiplicatively
convex functions T (N, y;, ¢). Liu gives some careful convergence arguments
and uses the dangerously subtle continuity properties of the Fuglede—Kadison
determinant to conclude the defining inequality (6.1) of multiplicative convexity
also for the function 7@ (N, idy, ¢) - max{t, 1} with sufficiently large m. Clearly,
if a multiplicatively convex function is zero somewhere, it is zero everywhere. But
if N; are the hyperbolic pieces of N, then

@O0, (1) = Hexp (VOL(;V")) >0

1

by Example 6.13. So T@(N, ¢) is positive on (0, 0o). It is also continuous because
log o T@(N, ¢) o exp is convex on (—oo, 00) in the ordinary sense and hence, as
is well-known, continuous.

This proof method is a lesson for life. Instead of showing a weak property (con-
tinuity), one shows a stronger property that includes it (multiplicative convexity),
simply because the stronger property is more accessible in the given situation. It’s
like when you want to steal a car stereo but you can’t find the right tool to remove it
from the dashboard. Well, it’s easier to take the whole car!

If £2-Alexander torsion were just some continuous function whose value at one
gives back a known quantity, it would hardly be worth the trouble. The point is that
it carries more interesting geometric information. To explain this, we will go on
another quick excursion to 3-manifold theory.

Given a compact oriented surface X, possibly disconnected and with boundary,
the complexity of X is defined by x_(X) = — >, x(¥;) where the sum runs over
all those connected components X; of ¥ which are not homeomorphic to the sphere
§? or the disk D?. Every element of H>(N, dN; Z) can be represented by a properly
embedded surface (X,9X) C (N, dN).
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Definition 6.18 The Thurston norm of ¢ € H'(N; Z) is given by
xy(¢) = min{x_(X): [¥, 0X] is Poincaré dual to ¢}.

One can see that xy (@1 + $2) < xn(d1) + xn($2) and xn (k@) = |k|xn (¢) for
k € Z, so that xy extends to a seminorm on H 1(N ; R) via the unique extension
to H'(N; Q). This seminorm was first introduced and studied in [166]. The unit
ball of xx is a convex and centrally symmetric polyhedron in the R-vector space
H'(N;R) with finitely many faces each of which lies in a rational affine plane.
A priori, the polyhedron can be noncompact because xx vanishes on the subspace
spanned by homologically nontrivial surfaces with nonpositive Euler characteristic.
The polyhedron is however known to be compact if N admits a complete hyperbolic
metric on the interior.

The geometric significance of this polyhedron is that it allows for a convenient
description of all those classes ¢ € H I(N;Z) Z [N, §'] which in the interpretation
as homotopy classes of maps N — S' have a representative which is a surface
bundle over the circle. For such fibered class N — st any fiber (X,0%) C
(N,dN) is Poincaré dual to ¢ and norm realizing, meaning xy(¢) = x_(X).
Thurston showed that the fibered classes are precisely the integral points in the open
cones over certain top dimensional faces in the polyhedron, the so-called fibered
cones lying over fibered faces. It can happen that the xy-unit ball has no fibered
faces at all. But Agol [3, Theorem 5.1] showed that given a non-trivial, non-fibered
class ¢ € H' (N, Z), there exists a finite covering p: N — N such that p*¢ lies in
the boundary of a fibered cone, provided # = w1 N is RFRS. This acronym is short
for residually finite rationally solvable and means that v has a residual chain (i7;)
such that each map n; — m; /m;41 factors through w; — Hj(7;)free- Moreover, if
is infinite RFRS, then N has a finite covering with positive first Betti number. So on
this covering, one can pick a nontrivial class and if it is not already fibered, then by
the above, yet another finite covering has a unit Thurston norm ball with a fibered
face. Soon thereafter, Agol [4] and Wise [174] showed that 1 N is virtually RFRS
if N is hyperbolic and Przytycki and Wise [148] extended this result to the case
where N has a hyperbolic piece, in other words is not a graph manifold. So these
manifolds N always have a finite covering with fibered faces in their polytopes. In
particular, this settles the famous virtually fibered conjecture.

Theorem 6.19 (Virtually Fibered Theorem) Suppose N is a connected, compact,
irreducible 3-manifold with infinite fundamental group and whose boundary is
empty or consists of incompressible tori. If N is not a graph manifold, then some
finite covering of N is a surface bundle over the circle.

As an alternative to reading Agol’s original proof [3, Theorem 5.1], the reader
can also find a beautiful treatment in [48]. A thoroughly attributed exposition of
how these results fit into the web of all the spectacular recent breakthroughs in 3-
manifold theory is given in [7, Chapters 4 and 5].
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We got somewhat carried away but you should be convinced by now that the
Thurston norm is a central tool in the study of 3-manifolds. Thus it is a proud feature
of the full ¢2-Alexander torsion that it recovers the Thurston norm. To see this,
Liu [108, Theorem 1.2.2] proved that T (N, ¢) is asymptotically monomial which
implies that the limits

logT® (N, ¢)(1) _logt® (N, ¢)(1)
doo = lim and dp= lim
1—00 logt r—0+ logt

exist. The real number deg (N, ¢) = doo — dy is called the asymptotic degree
of 1(2)(N ,®). We remark that by Dubois et al. [39], 02-Alexander torsions are
symmetric in general, meaning T @ (N, y, ¢)(t™!) = t"t@(N, y, ¢)(¢) for some
r € R, so clearly one of the two limits above exists if and only if the other does.

Theorem 6.20 Suppose N is a connected, compact, irreducible 3-manifold with
infinite fundamental group and whose boundary is empty or consists of incompress-
ible tori. Then for all ¢ € H'(N; R), we have

degt@ (N, ¢) = xn(9).

The result is likewise due to Liu [108, Theorem 1.2.3] and independently
to Friedl and Liick [49] (for ¢ € H I(N; Q). Moreover, the theorem had a
precursor for the (p, g)-torus knot complement N, , in which case the earlier
defined ¢-Alexander invariant of Li and Zhang [104] was computed by Dubois and
Wegner [38] in terms of the knot genus g = (p — 1)(¢ — 1)/2. With our notation,
they showed that

t@ (N g, dab) (1) = max{1, 1}797P~9 = max{1, r}*$~".

Note that such a simple formula is only possible because torus knots are not
hyperbolic as reflected in the property 7> (N p.q» ®)(1) = 1. The formula accords
with Theorem 6.20 because Seifert surfaces are always dual to ¢y, so that x (¢ap) <
2g — 1 for any nontrivial knot, and this equality is in fact an equality, see for
example [47, Lemma 2.2]. Building on work of Herrmann [72], Dubois et al. [40,
Theorem 1.2] generalized the torus knot computation to

T@(N, ¢)(t) = max({l, 1}¥ @

if N # D? x S!, 82 x S! is a graph manifold and ¢ € H'(N; R) is any nontrivial
class. Together with Liick—Schick’s result that T@(N, ¢ab)(1) > 1 for non-graph
manifolds, this implies that 7 (N, ¢p) = max{r, 1}~! if and only if K is the
unknot. In other words, Zhang-Li’s £2-Alexander invariant detects the unknot, a
fact first noticed by Ben Aribi [15].

We conclude this section by drawing the reader’s attention to two new research
directions emerging out of the above. Firstly, we can take the viewpoint that given
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¢: m — R, the elements ¢ € (0, co) parametrize the family of one-dimensional
R-representations of 7 given by multiplication with 7#. In that sense, the full £2-
Alexander torsion 7®) (N, ¢) is merely a baby example of the idea to consider
£2-torsion as a function on representation varieties. The setup for this idea would be
roughly as follows. We fix an £2-acyclic free finite G-CW complex X of determinant
class, and consider varying, say complex, finite dimensional G-representations V.
Then we first form V ®c¢ C.(X; C), afterwards we pass to the Ez-completion by
applying £2G®cg with respect to the diagonal action, and finally we take the
£2-torsion. Well-definedness questions about ¢2-acyclicity and determinant class
already require quite some effort. Continuity questions—from today’s point of
view—seem to be almost out of reach. To some extent, this is also related to the
hard convergence questions of £2-torsion we will consider in the next section. But
this is also why any minuscule progress here could be valuable. Liick has launched
a first attack on these questions and the reader can find out about it in the technical
paper [119].

The second outcome of £2-Alexander torsion arises after realizing that the basic
properties of ordinary £2-torsion as listed in Theorem 6.9 can be reproven for twisted
versions like the full £2-Alexander torsion with virtually unchanged arguments, as is
for instance done in [38, Proposition 2.23]. This indicates that the properties are true
in a universal sense and should be proven once and for all on a more abstract level. In
the concrete case of £2-torsion, one achieves this by not taking the Fuglede—Kadison
determinant too early but instead considering the weak isomorphism between odd
and even Hilbert chain modules of an £2-acyclic chain complex as an element in the
first weak algebraic K-theory K{"(ZG) of the ring ZG. Similarly as ordinary first
algebraic K -theory, K|’(ZG) has endomorphisms (ZG)" — (ZG)" as generators
though these are not required to be ZG-isomorphism but only weak isomorphisms
after £2-completion. Relations are likewise defined in terms of weak isomorphisms
instead of ZG-isomorphisms. For an ¢2-acyclic finite free G-CW complex X,
universal €2-torsion p,(X) then lies in the quotient Wh"(G) of K{"(ZG) called
the weak Whitehead group, obtained by factoring out trivial units so that p, (X) is
a well-defined invariant, independent of a choice of cellular basis. Many familiar
properties of ¢>-torsion can already be proven for universal ¢>-torsion so that
they are right away available for images of p, (X) like ordinary £2-torsion or £2-
Alexander torsion. Also interesting is the polytope homomorphism

P: Wh"”(G) — P\th(Hl(G)free)

to the Grothendieck completion of integral polytopes in Hi(G)fee ®7 R with
addition given by Minkowski sum up to integral translation. For a 3-manifold N
as in the above theorems and assuming the Atiyah conjecture for 7 N, it turns out
that 2IP(p, (ﬁ )) is dual to the Thurston polytope. The reader interested in this new
approach and the mentioned applications is directed to Friedl and Liick [50].
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6.5 Torsion in Homology

As announced at the end of Sect.6.2, we will now discuss another striking
parallelism between ¢>-torsion and Euler characteristic. It occurs in a field that
has attracted massive research effort in recent years: homology growth. Liick’s
approximation theorem can be seen as a fundamental result in this area. If X is
a connected finite CW complex with fundamental group G = w1 X, then a positive
n-th £2-Betti number br(,z)(f ) > 0 detects linear free homology growth in degree n.
This means that along the coverings X; of X corresponding to any residual chain
(G}) in G, the rank of the free part of H, (X;) grows asymptotically proportionally to
the index [G : G;]. The asymptotic proportionality constant is precisely b,(lz) (X).In
this vein, the Singer conjecture (Conjecture 1.5) predicts the following phenomenon
for even dimensional aspherical manifolds.

Conjecture 6.21 Let X be an aspherical, 2n-dimensional, closed, connected man-
ifold with residually finite fundamental group G = 71 X. Then for every residual
chain (G;) in G we have

. ranky, H; (X;)free
1 =(-D"x(X).
is%  [G:Gil =0

The left hand side equals b,(lz) (X) by Liick’s approximation theorem and the right
hand side equals b,(,z) (3? ) if the Singer conjecture holds true. So the Singer conjecture
says that a non-zero Euler characteristic detects free homology growth in middle
degree for even dimensional aspherical manifolds. Here is the odd dimensional
cousin of this conjecture.

Conjecture 6.22 Let X be an aspherical, (2n + 1)-dimensional, closed, connected
manifold with residually finite fundamental group G = m1X. Then for every
residual chain (G;) in G we have

im log | Hy (X )tors| _ (_1),1[)(2)(5‘().
i—00 [G: Gi]

So conjecturally, non-zero £2-torsion detects exponential growth of torsion in
middle degree homology of an odd-dimensional aspherical manifold. Be aware that
the conjecture also incorporates the Singer conjecture in the sense that an odd-
dimensional, aspherical manifolds should be ¢?-acyclic. By Corollary 5.50, the
manifold X is moreover of determinant class. Here and elsewhere we assume that
X is endowed with some CW structure. Such a structure always exists for smooth
manifolds. For topological manifolds it exists except possibly in dimension four
which is irrelevant to Conjecture 6.22.

To understand the philosophy behind Conjecture 6.22 we introduce yet another
torsion invariant. It is known as integral torsion, sometimes also Milnor torsion, and
builds the bridge from ¢-torsion to torsion in homology.
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Definition 6.23 Let X be a finite (non-equivariant) CW complex. Then the integral
torsion of X is given by

pP(X) =Y (=1)" log | Ha(X)tors|.

n>0

Of course we can consider a non-equivariant CW complex X as a G-CW complex
X for the trivial group G = {1}. Let us compare integral torsion to ¢>-torsion in
this case. Strictly speaking, the £>-torsion of X is not even defined because X has
at least a positive zeroth £2_Betti number. Nevertheless, we will use the notation
,0(2)({1} ~ X) or just ,0(2) (X) which are to be understood as p(z)(Ciz)(X)) in the
sense of Definition 6.7. We only need to keep in mind that p‘® (X) now depends on
the specific CW structure of X. After an index shift in the defining sum of p® (X),
we obtain

| (X)ors|
PHX) = PP (X) =Y (=1 log T
=0 detr(1y d,

The torsion group order | H, (X)tors| iS given by the absolute value of the product
of the nonzero invariant factors of the Z-module homomorphism d, 1, see for
example [87, Lemma 6]. The Fuglede—Kadison determinant detgyy) d,(li)l, in turn,
is given by the product of the positive singular values of the operator

dy): Cop1 (X5 C) — Cu(X; 0)
as we explained below Definition 5.42. (Also recall from Example 3.14 that
C,(,z)(X ) = C,(X; C) because G is trivial.) We remind the reader that the singular
values of an operator A of finite dimensional Hilbert spaces are by definition
the eigenvalues of the operator |A| = +/A*A. Thus if the differentials in the
cellular chain complex happen to be diagonal matrices with respect to some fixed
cellular basis (meaning the (i, j)-th entry can be nonzero only if i = j) , then
invariant factors and singular values coincide and £2-torsion equals integral torsion.
In general, however, the two concepts are distinct and so called regulators identify
the difference. Let Hy(X)free = Hp(X)/Hp(X)iors be the free part of the n-th
homology. As “C is flat over Z”, we have a canonical isomorphism «,: C ®z

Hy(X)tree — Hyp(C(X; ©)).

Definition 6.24 Pick any Z-basis of Hj,(X)ee to endow C ®7 Hy, (X)free With an
inner product. Then the n-th regulator of X is given by

R, (X) = log detg(1) .
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If we change the Z-basis of H, (X)free, then ¢, gets multiplied by the transition
matrix which is invertible over Z. It thus has determinant £1, so that the Fuglede—
Kadison determinant remains unchanged.

Theorem 6.25 Let X be a finite CW complex. Then

PP (X) = p@(X) =Y (= 1)"Ru(X).

n>0

Proof We describe a procedure to construct Z-bases of the cellular chain groups of
X which diagonalize all differentials. To begin with, let us introduce the standard
notation C,, = C,(X) for the chain groups, Z,, = kerd, for the n-cycles and B, =
imdy 41 for the n-boundaries. Let 7}, be the kernel of the canonical homomorphism
Pn: Zy = Hy(X)free- The image im p,, is a submodule of H, (X)e, hence free, so
we can lift it to a submodule H,, € Z,. Similarly, the image of d,,: C, — C,_1 is
free and we pick a lift S, € C,. Since B, C T,, the differential d,,; restricts to a
homomorphism S, 11 — T}, of free Z-modules which moreover has finite cokernel.
Thus S,+1 and T, have equal rank. Pick bases of S,,11 and T, with respect to which
the homomorphism has Smith normal form. It is thus given by a diagonal matrix
D,,+1 with entries the nonzero invariant factors of d,, 1. Finally, pick any Z-basis of
H,. We have constructed direct sum decompositions which we agree to order as

Cong1 = Sont1 ©® Hopy1 ® Top1 and  Coy = T2y @ Hoyy @ S2a

for the odd and even chain groups. This effects that the differentials dy,+1 and da,
have the block form

D7,+100 00 0
0 00 and 00 O
0 00 0 0 Dy,

with respect to the constructed basis of the chain complex. It makes sense to call
such a basis differentially adapted. Let us complexify our free abelian groups Sy,
H, and T, to C-vector spaces by applying the functor (-)© = C ®z (- ). We obtain
an isomorphism

. C c = C C
D:Coyy ® Hyy — Cp © Hypyy
where in this context the symbol “x”” means direct sum over all x = n. To wit, with

respect to the above decompositions of C,. and the chosen bases, the isomorphism
D is implemented by the invertible (4 x 4)-block matrix

D110 0 O
0 00 1
0 0D;'0

0 1 0O
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We endow the C-vector spaces C EC* 11 EBHéC* and C ;C*EBHEC* 1 With the inner products

for which the canonically included differentially adapted basis is orthonormal.
Recall that the ¢?-chain complex Ciz) (X) = C«(X; C) is likewise endowed with
inner products and for these inner products any cellular basis is orthonormal.
Accordingly, the filtration

0<imd?, Ckerd?? € C?(X)
by subspaces determines orthogonal decompositions

(2)
C2>k+1

2 ~ 2 2 2
CY(X) = imds,, | & HyY(X) @ (kerdy)*t

(X) ®imd>

~ (2) L (2)
(X) = (kerd ) @& H. 24427

2x+1 2x+1

where HE) (X) sitsin Ciz) (X) as the orthogonal complement of im d;ﬁ)l in ker d,(lz).
Similarly as above, we obtain an isomorphism
2)

2 = 2 2
D(Z): Cé*)+1(X) @ HZ(* X) — Cé*)(X) ® H2(*1rl

which has the orthogonal block decomposition

@ L
dy 7 0 0 0

00 0 I

—1
0 0(d2t) 0
o1 0 0

Here diz)l: (kerdiz))l — imdiz) is the isomorphism induced by diz). Let
Syt Ciz) X)) — Cf) (X) be the composition of the following two shear transfor-
mations: The first leaves invariant the subspace im dﬁgl @ (ker diz))J- and restricts
on Hf to the orthogonal projection onto Hﬂfz)(X). The second leaves invariant
the subspace imdii)l 5] H*(z)(X) and projects the image of kac under the first

transformation orthogonally to (ker df))J-. We obtain a commutative diagram of
Hilbert £{1}-module isomorphism

2441 D 024

2 (X)) ® HE (X)free ——— C

1

2)

id ® pS,
C(C
1

S @ Hy, ——— (X) @ H,2(X)

D l l D@
id @ ps, 4 525 D st 1

C(zi ) Héc —— Céi) 2] H£+1(X)free - Céi)(X) @ H(Z)

*+1 2041(X)
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where o, is the isomorphism in Definition 6.24. Beware that the identity map

id . . . . .
ng 5 Cf) (X) is typically not an isometry with respect to the inner products we

assigned to kac and C,(Fz) (X). However, the transition matrix from the differentially
adapted basis to the cellular basis is invertible over Z, thus has determinant +1.
It follows that detgyyid = 1. We can endow Hy(X)fee With the image of our Z-
basis of H, under p, so that pf becomes a unitary, hence also detgyi) pf = 1.
Shear transformations have block diagonal form (%), so detg; s« = 1. The

spectral measures of |di2)| and |d,£2) l| only differ at the point zero which implies
detqg{l}diz) = detR{l}diz)J_. Finally, since det = detg(jy is multiplicative on
compositions of isomorphisms, the above diagram gives

(=pmH! —1)"
]—[ detaay, - ]—[detd,@ = ]_[ | Hpy (X)iors] TP - ]_[ detoamii.

m=>0 n>0 n>0 m=>0

Note moreover that detgy1) d(gz) = detg(1} 0 = 1, so we can leave out the zeroth
factor in the second product. Taking log completes the proof. O

It is instructive to illustrate the vertical isomorphisms from the commutative
diagram appearing in the proof by our beer coaster picture. Since we are working
with finite CW complexes and trivial coefficients, the cellular chain complex will
always have nontrivial homology. This means we have gaps between our beer
coasters which prevent the odd part C(ZC* 1 from being isomorphic to the even part
C(zc*. However, we want them to be isomorphic because we know the Fuglede—
Kadison determinant is multiplicative for compositions of isomorphisms. So the
pragmatic solution is to “fill the gaps” between the beer coasters, and add the even
homology Hg to C(ZC*Jrl and the odd homology Hgﬂ to C(zi. We do the same thing

for the other vertical isomorphism and fill the gaps in Céi)ﬂ (X) and Céi)(X ) with
the ¢2-homology. Finally, the horizontal maps identify the two isomorphisms and
only the regulators oo, and .41 have non-unital Fuglede—Kadison determinant.
This gives the asserted formula.

Finally, we have collected all the preliminaries and are in a position to outline a

tentative proof strategy for Conjecture 6.22.

“Proof” of Conjecture 6.22 The first ingredient we would need is a proof of a
Singer conjecture for torsion in homology that would assert

1yt 108 1 Hn(XDuos]  p5(X0)
[G: Gi] [G: Gi]

for large i. In words, torsion in homology should asymptotically be concentrated
in the middle degree so that all but the middle summand in the alternating sum p%
can be neglected. In an arithmetic setting, this is also suspected to be true by the
so-called Bergeron—Venkatesh conjecture which we will present in the next section.
The second ingredient would be a proof of a small regulators conjecture that should
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say that the alternating sum ano(_ 1)" R, (X;) divided by [G : G;] should become
small for large i. Then Theorem 6.25 would give

pP(X) PP~ Xi)
G : Gi] G : Gi]

for large i. Considering X; as a non-equivariant CW complex implicates again
that p@ ({1} ~ X;) depends a priori on the CW structure of X; because X; has
nontrivial zeroth homology. Similar remarks apply if we consider X; as a G/ G-
CW complex. As such it gives rise to a chain complex of Hilbert £(G/G;)-modules
and

(@) .
AN XD o6/6, A ox
[G: Gi]
because we observed below Definition 5.42 that for a finite group H, the Fuglede—
Kadison determinant is the |H|-th root of the product of positive singular values.
The third and final ingredient to the proof is the determinant approximation
conjecture stated in Remark 5.48. If true, it would immediately allow the conclusion

lim p?(G/Gi ~ X;) = p@(X). O
1—> 00

Each of the three ingredients, the Singer conjecture for torsion, the small
regulator conjecture, and the determinant approximation conjecture is a huge
problem by itself; and each is of independent interest. At the time of writing, all
of them are wide open. Let us however take this opportunity to discuss a possible
proof strategy for the determinant approximation conjecture 5.48 suggested by
Liick [120, Section 16]. The determinant conjecture 5.43 implies the logarithmic
estimate (5.10). The determinant approximation conjecture 5.48 would follow, if
we could improve this estimate as specified in the following theorem.

Theorem 6.26 Suppose that for a given residual system (G;)ic; and A €
M(k,1; QG), there exist constants C,§ > 0 and 0 < ¢ < 1 such that

C
4,100, 0) <
my-4;1(0, ) < log 2|1+

foralli € I and all & < ¢. Then the determinant approximation conjecture 5.48 is

true for G, (G;), and A.

Proof The inequality detg(G)-A > limsup;; detg(G,c;) -Ai follows exactly as in
Proposition 5.47 because we are assuming an even sharper bound as the one in
(5.10).
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Now again, let u; = p,.4,). Differentiation gives the density appearing in the
measure

C@+1)
x - (= log(x))H+2

whose value on (0, A) is the logarithmic bound C/(—log 1) 144 Since the logarithm
is a monotone increasing negative function on (0, ¢), it follows that for all A < ¢
and all i € I we have

- 2 1 _ C@é+1)
/0+ log dti 2 =CO+D | v Clogeen &= 7 s(— log))®”

By the usual argument from Proposition 5.16, we know that the measures p;
converge weakly to © = p).4) on every compact interval [A,a] with0 < A < ¢
anda =k - 4/||A*A||1. Thus we obtain

o a cé+1 a
1 f log du; > — log d
i /0 08 T =7 5(_ log(n))® +/x o8

forall 0 < A < &, hence also

a a
lim inf/ log du; > / log du.
jel 0 o+

[AS] +

Applying the exponential function to this inequality gives

detr(c) -A < lirl%ilnfdetR(G/Gi) Aj. a

The sharpening of the logarithmic bound (5.10) demanded in Theorem 6.26
might look innocuous but rest assured it is not. In fact, Grabowski [60] constructs
for each § > 0 a group G and a self-adjoint S5 € ZG such that

0,2
pss (O A0 = s

for some constant C > 0 and all small A > 0. The groups G; are wreath products
of similar type as were used to answer Atiyah’s Question 3.27. Grabowski’s result
shows that the order of quantors in Theorem 6.26 is important. The constants will
have to depend at least on G. For more information on approximation questions,
including the relation to approximating analytic £>-torsion, the reader is referred to
the survey article [120].
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6.6 Torsion in Twisted Homology

In Sect.6.5 we saw that Conjecture 6.22 expects that £2-torsion should detect
exponential torsion growth in middle degree homology of an odd dimensional
aspherical manifold X. The homology groups of interest were the torsion subgroups
of H,(X;) = H,(X;;Z) for a residual tower of finite Galois coverings X; of
X if X is (2n + 1)-dimensional. Of course integer coefficients are the canonical
choice to work with and it certainly does not make sense to consider coefficients
in representations V of w1 X over fields, as we did in Sect. 6.4, because homology
would then consist of vector spaces so that there is no torsion left to investigate. But
often the manifold of interest X arises from a certain geometric context in which
the fundamental group stabilizes some Z-lattice M C V, so that M is the Z-span
of some basis in the vector space V over a field of characteristic zero and M is an
invariant subset of the 1 X-action. In that case, the free abelian group M is turned
into a finitely generated Z (1 X)-module and it is meaningful to ask for the amount
and growth of the torsion subgroup of H, (X;; M).

Such contexts are typical for arithmetic groups on which we shall now spend
a page or so for a fusillade of definitions and facts. A linear algebraic group G
defined over Q is a subgroup of GL(n; C) which is Zariski closed over Q, meaning
it is the zero locus of a set of polynomials in the #> matrix entries with coefficients
in Q. An example would be G = SLy, which is defined by the polynomial p(A;;) =
det(A;;) — 1. We set G(R) = G N GL(n; R) and similarly G(Z) = G N GL(n; Z).
We say that a subgroup I' C G is called arithmetic if it is commensurable with
G(Z), so that the intersection I' N G(Z) has finite index both in I" and in G(Z).
Any element of G(Z) survives in the finite quotient group G(Z/n) obtained by
reducing matrix coefficients mod n for big enough n. This shows that arithmetic
groups are residually finite. We say that an arithmetic subgroup of G is a congruence
subgroup if for some n it contains the kernel of G(Z) — G(Z/n) as a finite index
subgroup. The kernels themselves are termed principal congruence subgroups.
Already Felix Klein knew that many (in fact most) arithmetic subgroups of SL; are
not congruence subgroups. In contrast, for n > 3 all arithmetic subgroups of SL,, are
congruence subgroups [11]. A little less restrictively, we will say that G satisfies the
congruence subgroup property or, for short, “G has CSP” if G(Z) has a finite index
subgroup I" such that all finite index subgroups of I" are congruence subgroups. For
a quick overview on the congruence subgroup property, the reader may consult [89,
Sections 2.2 and 2.3]. For an extensive survey, we recommend [147]

We say that G is semisimple if the trivial group is the only connected solvable
normal subgroup of G. For example SL, is semisimple whereas GL,, is not because
it has center isomorphic to C* given by constant diagonal matrices. Note that
treating GLy, as a linear algebraic group needs proof. It embeds into GL(n 4 1; C)
via g > (g ( det(;')’l ) and the image is defined by polynomial equations: with the
exception of the lower right corner entry x,1 ,+1, all entries in the last row and
column are required to vanish and in addition we require x,, 1,41 -det(x;;) —1 =10
where x;; is the matrix with the last column and row deleted. The product of two
linear algebraic groups G1 and G is linear algebraic as one can see by using a block
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diagonal embedding into GL(n1+n2; C). In particular, (C*)" = GL; x---xGL; =
T" is a linear algebraic group defined over Q to which we want to refer as the
standard n-dimensional torus. A group homomorphism G; — Gy is called a
k-morphism for some field Q € k C C if after embedding Gj via GL, into
GL(n; + 1; C) as above, the entries of Gy are polynomials in the entries of Gy
with coefficients in k. A linear algebraic Q-group S is called an n-dimensional torus
if it is C-isomorphic to T". An n-dimensional torus S is called k-split if it is k-
isomorphic to T". If G is semisimple, then rankj G is defined as the dimension of a
maximal k-split torus in G. We say that G is k-anisotropic if rank; G = 0.

For a semisimple linear algebraic group G defined over Q, the Borel-Harish-
Chandra theorem says that an arithmetic subgroup I' < G is a lattice in the
semisimple Lie group G(R) and the lattice is uniform if and only if G is Q-
anisotropic. Hence arithmetic groups provide a wealth of lattices in semisimple
Lie groups. Margulis’ seminal arithmeticity theorem asserts a partial converse: if a
semisimple Lie group G maps with compact kernel and compact cokernel to G(R)
for a connected semisimple linear algebraic Q-group G with rankg G > 2, then the
image of every irreducible lattice I' < G is conjugate to an arithmetic subgroup of
G. Here I is called irreducible if it is not virtually a product of lattices I'; "> coming
from a nontrivial decomposition G = G1G7 with G| N G central.

For extensive treatments of this material, the reader is referred to the mono-
graphs [146] by Platonov and Rapinchuk and [125] by Margulis. A more gentle
introduction can be found in Witte Morris [175].

With all these new notions at hand, we can now formulate one of the most influen-
tial conjectures on torsion growth in homology in recent years [18, Conjecture 1.3].
Let G be a Q-anisotropic semisimple linear algebraic group defined over Q and let
I' < G be a congruence subgroup. Consider an algebraic representation of G on a
Q-vector space V. Here “algebraic” means that a choice of a Q-basis of V yields
a Q-morphism G — GL,. We fix a I'-invariant Z-lattice M C V, which always
exists according to [ 146, Remark, p. 173]. Finally, let (I';) be a decreasing chain of
(not necessarily normal) congruence subgroups of I' such that ()., i = {1}.

The semisimple algebraic group G defines the semisimple Lie group G = G(R)
for which the deficiency 6(G) and the symmetric space X = G /K are defined as in
Example 6.14. The Lie algebra £ of K defines the so-called Cartan decomposition
g = £ @ p of the Lie algebra g of G by defining the subspace p as the orthogonal
complement of £ with respect to the “Killing form” on g. This allows us to identify
the tangent space Tx X with p. Since the Killing form is positive definite on p, we
obtain a G-invariant Riemannian metric on X by translation and hence a possible
normalization of the volume vol(I"\ X) of the “orbifold” I'\ X (which is a manifold
if I is torsion-free).

Conjecture 6.27 (Bergeron—Venkatesh [18]) For every n > 1, there exists a
constant C,, g, i > 0 such that

log |Hy, (I's; M)yors| _

lim = Cn,G,m Vol(I'\X)

i—>00 [T: Iy]

and we have C, g, > Oif and only if 5(G) = 1 and dim X = 2n + 1.
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Moreover, Bergeron and Venkatesh give an explicit description of the occurring
positive constants Cy, g, p. Let us consider the case of a group G for which dim X
is odd and suppose the chain (I';) consists of normal and torsion-free congruence
subgroups. If we choose V = Q to be the trivial one-dimensional representation,
then of course M = Z C Q is I'-invariant and the Bergeron—Venkatesh conjecture
makes the same prediction as Conjecture 6.22. Indeed, if n = (dim X — 1)/2, then
(=D"C,, .z is Olbrich’s constant mentioned in Example 6.14, so that the right
hand side of the Bergeron—Venkatesh conjecture equals | p@()|. In general, the
right hand side accordingly has an interpretation as “twisted” £>-torsion.

Recall that in the previous section we extracted three key issues when trying
to prove Conjecture 6.22. Two of these were the following. One needs to get
rid of the regulators which relate torsion in homology with determinants; and
to obtain convergence of these determinants, one would need to know that the
cellular differentials on I';\X do not have too many too small singular values.
Both issues would go away if there was some ¢ > O such that for alli > 0
and all n > 1, the Laplacians on C,(I';\X; C) had spectrum within [e, co). For
firstly, regulators R, (I';\ X) do not occur if H,, (I';\ X; Z)free 1s trivial and secondly,
weak convergence of spectral measures now implies convergence of determinants
because the last inequality in the proof of Proposition 5.47 becomes an equality as
the logarithm is a bounded function on [¢, 1). However, a well-known conjecture of
Gromoyv, the zero-in-the-spectrum conjecture [63, Question 4.B.], asserts precisely
that for a contractible cocompact I'-manifold X, there should be at least one degree
in which the spectrum of the £2-Laplacian contains zero. Consequently, the above
condition would never be satisfied. Even worse, the zero-in-the-spectrum conjecture
follows from the strong Novikov conjecture which is known to hold true for discrete
subgroups of Lie groups [111, Corollary 4]. So in an arithmetic setting as we
consider in this section, there is no hope to find manifolds with uniform spectral
gap about zero in all degrees—as long as we are working with the trivial coefficient
system Z.

The point of this section is that there are however nontrivial coefficient systems
M for which the above condition is satisfied and the Laplacians do have spectrum
bounded away from zero. In fact, Bergeron—Venkatesh show that in the interesting
case when 8§(G) = 1, such strongly acyclic I'-modules M always exist [18,
Section 8.1]. For these coefficient systems, they carry out the second and third step
in the proof strategy for Conjecture 6.22 from Sect. 6.5 in the analytic setting: Strong
acyclicity implies the vanishing of regulators so that the Cheeger—Miiller theorem
for unimodular representations [129] identifies integral torsion p™ (I';\ X), obtained
from Definition 6.23 by using M instead of Z, with the corresponding analytic
Ray-Singer torsion. Strong acyclicity moreover rules out small eigenvalues of the
differential form Laplacians in terms of which Ray—Singer torsion is defined. From
this, Bergeron—Venkatesh conclude convergence of Ray—Singer torsion to analytic
02-torsion with coefficients in M in great generality: it is enough that the injectivity
radius (see p.107) of I';\ X tend to infinity. As pointed out in [2, Section 8.3],
the proof is also easily adapted to the condition that I';\ X Benjamini—Schramm
converges to X. Analytic £2-torsion is proportional to the volume of I'\ X because
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G acts transitively by isometries on X. The sign of the proportionality constant is
(=)™ for dim X = 2m + 1 by an explicit computation as in Oblrich [139]. To sum
up, we obtain

Jim Z( 1y e (ﬁ \f ]M)“”“' = (=1)"Cg.p vol('\X) (6.2)

with Cg,»y > 0. To conclude the Bergeron—Venkatesh conjecture for strongly
acyclic M, it would still remain to resolve the third issue, the “torsion Singer
problem” that in fact only the middle degree summand produces exponential torsion
growth. But at least we can drop the negative summands and get the following result.

Theorem 6.28 (Bergeron—Venkatesh [18]) We have

log | Hy (Ti: M
liminf ) og | ( i Mol ol ).
i—00 Il

n=m (2)

In particular, exponential torsion growth occurs in some degree of the same parity
as (dim X — 1)/2. Moreover, one can see without too much trouble that both
Ho(T'i; M)iors and Hgim x—1(I'i; M)iors grow at most polynomially [18, Section 8.6]
in [[" : I';]. Therefore (6.2) implies more than Theorem 6.28 in low dimensional
examples. If G satisfies G(R) =g SL(2; C), then X = SL(2; C)/SU(2) is isometric
to hyperbolic 3-space H? and we get

. log|H1(I'y; M)ors|
1 =C 1(T\X).

isse  [[:Ti] G.m VOITAX)

If G satisfies G(R) = SL(3; R), then X = SL(3; R)/SO(3) is five-dimensional and
we still get

imint log |f€?(f,£la4)torsl > Con volT\ID.
In both cases the constant Cg, j is positive so that we observe exponential torsion
growth. As opposed to the case G(R) = SL(2; C), in the second case the condition
GR) = SL(3; R) implies that rankr G = 2, so that a well-known conjecture of
Serre [146, (9.45), p. 556], says that G should have CSP. This would allow to control
the growth of H1(T';; M)ors and H3(T';; M)1ors as well, so that we would also get

. log|Ha(I'i; M)ors|
lim =C vol(I'\ X).
oo [[:TY] G.m vol([AX)
But unfortunately, Q-anisotropic arithmetic lattices in SL(3; R) is one of the
notorious open cases in Serre’s conjecture. In contrast, the Q-isotropic arithmetic
lattice SL(3; Z) < SL(3; R) is well-known to have CSP. For Theorem 6.28, we
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needed a Q-anisotropic group to obtain compact locally symmetric spaces I';\ X to
which the Cheeger—Miiller theorem implies. But one might anyway hope to obtain
the conclusion of the Bergeron—Venkatesh conjecture for I' = SL(3; Z) with trivial
coefficients M = Z and any sequence of distinct finite index subgroups (I';) because
CSP implies Benjamini—Schramm convergence of the quotients I';\X to X in a
strong sense [2, Section 5]. As stated in [16, Conjecture 5.1], we would then obtain
the curious formula

i log | Ha (L5 Z)tors| ¢(3)
im = .
i—o0 [T : Ty] 96+/372

The value ¢(3) = 1.202. .. of the Riemann zeta function is known as Apéry’s con-
stant, and enters as part of the volume computation for the locally symmetric space
SL(3; Z)\SL(3; R)/SO(3). Note moreover, that in the hyperbolic case, Miiller—
Pfaff extended the results of Bergeron—Venkatesh to non-uniform lattices [134].

As of now, it seems that all noteworthy positive results on exponential torsion
growth hinge on the existence of strongly acyclic modules. On their construction,
let us only say that the condition that the I'-module M extends to an algebraic G-
representation V has the virtue that the latter are well understood and classified
(over C) by so called “highest weights”: the elements lying in a certain cone of the
character lattice of G. Starting from a highest weight representation one can then
construct strongly acyclic I'-modules M if the highest weight lies outside a finite
union of hyperplanes in the character space (which of course excludes the trivial
representation). In this sense it is fair to say that G possesses a large supply of
strongly acyclic representations.

Sengiin [162, 163] has tested the Bergeron—Venkatesh conjecture numerically in
the case of Bianchi groups I' = PSL(2; Oy) where d is a positive square-free integer
and Qy is the ring of integers in the imaginary quadratic number field Q(+/—d). For
prime ideals p C Oy of residue degree one, he considers the arithmetic subgroup
Io(p) of those elements in I" which reduce to an upper triangular (2 x 2)-matrix
mod p. In the case of the trivial coefficient system M = Z, and for p of growing
norm, the ratio

10g [Hi (To(P); Z)tors|
vol(To(p)\H?)

does indeed come close to the value 1/6 ~ 0.053... as one would expect from
the Bergeron—Venkatesh philosophy (not from the conjecture itself as the groups are
again not cocompact). In non-arithmetic hyperbolic tetrahedral groups, however,
Sengiin considers similar subgroups I'g(p) for which the above ratio only comes
close to 1/6m if Hi(I'o(p); Z) is completely torsion. Otherwise, it is much smaller
which suggests that the arithmetic setting in the Bergeron—Venkatesh conjecture
is important to assure that the regulator contributions become small. Some more
remarks in this direction can be found in [18, Conjecture 9.2 and below].
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Let us finally mention that instead of investigating torsion when fixing a
coefficient module M C V and varying I', one can also ask to quantify the
torsion growth if I' is fixed and M C V varies through rays of highest weight
representations V. Once again, exponential torsion growth can be detected in this
setup as the reader can learn from Marshall, Miiller, and Pfaff in [126, 130-133].
Torsion in homology has recently received additional interest because of Scholze’s
work on the existence of Galois representations associated with mod p classes
in the cohomology of locally symmetric spaces for GL, over totally real or CM
fields [160]. For a readable overview of the various ramifications of the material of
this section, the reader is referred to the survey article [16].

6.7 Profiniteness Questions

The main value of Conjecture 6.22 is that it supplements the homology growth
prediction in Conjecture 6.21 with a statement about torsion. But additionally, it
has a neat and not quite obvious application to a question in group theory and
3-manifolds which we want to present in this section. Part of this material has
previously appeared in the preprint [88].

With any group G we can associate the profinite completion defined as

G = lim G/N,
<—
NG, [G:N]<oo

the projective limit over the inverse system of all finite quotients of G. Hence G
is a compact, totally disconnected group (a profinite group). Totally disconnected
spaces are 77 and topological groups are T3 if they are 77, so profinite groups, in
particular profinite completions of groups, are Hausdorff. The profinite completion
comes with a canonical homomorphism G — G with dense image. Since all the
projections G — G/N factor through G — G, we see that G — G is injective if
and only if G is residually finite. As every profinite group P is the projective limit
of the quotients P/N by open (hence finite index) normal subgroups N < P, we
observe the universal property that every morphism G — P to a profinite group
P factorizes uniquely through G — G. We conclude that passing to the profinite
completion is a functor: Given a group homomorphism f: G — H, we compose it
with H — H so that the universal property induces a continuous homomorphism
f: G—>H covering f. R

The easiest examples of profinite completions are F = Fif F is finite and Z =
[1,Zp by the Chinese remainder theorem, where Z, denotes the p-adic integers.
Moreover:

—

Lemma 6.29 We have a canonical isomorphism ®: G x H =, G x H.
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Proof Consider the three canonical homomorphisms ¢ : G — G, ¢y H — i,
andk: G x H — G x H. The first two yield the product morphlsm ¢: G x H—
G x H and hence the universal property provides a morphism & : GxH—GxH
such that ¢ = & o k. Conversely, the canonical inclusions (g: G — G x H and
tg: H — G x H are split injective, so we obtain embeddings (¢ : G—>GxH
and (3 : H— G/Aﬁ-lzs\atisfying Kotg =igo¢gandk oty = i opy. Therefore,
sending (x, y) € G x H to the commutator of i¢; (x) and (7 (y) defines a continuous
map G x H — G x H thatis cons/t\antly lon /tpe dense subset ¢ (G x H). Hence it
is constantly 1 everywhere and i (G) and i (H) commute. This shows that sending
(x,y) to ig(x) - ig(y) defines a homomorphism W : GxH—>GxH satisfying
k = W o ¢. Thus W o ® restricts to the identity on the dense subgroup « (G x H)
and ® o W restricts to the identity on the dense subgroup ¢ (G x H). By continuity,
® and WV are inverses of one another. O

Now suppose two groups G and K are profinitely isomorphic, meaning G=K
as topological groups. Does it follow that G = K ? The answer is “never”, because
Higman’s group H from p.88 has H = {1}, hence GxH = G forall G by
Lemma 6.29. However, if we assume that G and K are residually finite, the question
becomes interesting.

Definition 6.30 A finitely generated, residually finite group G is profinitely rigid if
for every finitely generated, residually finite group K with K = G, we have K = G.

In this definition, it makes no difference whether “K = G” means topological
or abstract isomorphism because assumlng the groups are finitely generated has the
effect that any abstract isomorphism K = Gisalso a homeomorphism. This is
an immediate consequence of a deep theorem due to Nikolov and Segal [137]. To
get acquainted with the definition, let us convince ourselves that finitely generated
abelian groups are profinitely rigid. To this end, we show the stronger statement
that the abelianization is a profinite invariant or, for short, is profinite: profinitely
isomorphic groups have isomorphic abelianizations [151, Proposition 3.2]. From
now on, G and K shall denote finitely generated and residually finite groups.

Proposition 6.31 If the group K embeds densely into G, then there exists an
epimorphism Hi(K) — Hi(G).

Proof Let p be a prime number which does not divide the group order | H1 (K )ors|
and let us set r = dimg H1(G; Q). It is apparent that we have an epimorphism
G — (Z/pZ)" & Hi(G)iors- By the universal property, this epimorphism extends
uniquely to an epimorphism G — (Z/pZ)" & H1(G)1ors- Since K embeds densely
into 5, the latter map restricts to an epimorphism K — (Z/pZ)" @ H1(G)ors- This
epimorphism must lift to an epimorphism K — Z" @ H{(G)ors = Hj(G) because
p is coprime to | H (K )iors|. The latter epimorphism factors through Hi (K). O

Corollary 6.32 If we have G = K, then H,(G) = H;(K).
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Proof Since there exist surjections in both directions the groups H;(G) and H;(K)
have the same free abelian rank. Thus either surjection restricts to an isomorphism
of the free parts and thus induces a surjection of the finite torsion quotients—which
then must be a bijection. O

While this shows that finitely generated abelian groups are profinitely rigid,
already some virtually cyclic ones are not [151, Theorem 3.3]. Recently, it was
shown with some effort that the figure eight knot group is profinitely rigid among
all 3-manifold groups [25]. In general, however, profinite rigidity of fundamental
groups of hyperbolic 3-manifolds even among themselves is open and appears out
of reach for now. An at least formally easier but still open problem is the following.

Conjecture 6.33 Let M and N be closed, connected, orientable, irreducible 3-

manifolds with infinite fundamental groups. Then m = 71/17V implies vol M =
vol N.

The definition of irreducibility was given in Example 6.13 where we also reported
that M and N have a unique geometric decomposition. Volume is defined as the sum
of the volumes of the hyperbolic pieces in this decomposition. This is an invariant
of the fundamental group only because M and N are aspherical by the sphere
theorem [69, Theorem 4.3, p. 40] and Thurston geometrization also proves the Borel
conjecture in dimension 3 as is surveyed in [98, Theorem 0.7]. So the conjecture
claims that volume is profinite among 3-manifold groups. Conjecture 6.33 is again
not intrinsically concerned with ¢?-invariants. But £>-methods might prove it.

Theorem 6.34 Conjecture 6.22 implies Conjecture 6.33.

The contrapositive of Theorem 6.34 says that constructing two profinitely
isomorphic 3-manifold groups with differing covolume would disprove Conjec-
ture 6.22. Funar [52] and Hempel [71] constructed examples of closed 3-manifolds
with non-isomorphic but profinitely isomorphic fundamental groups. These exam-
ples carry Sol and H? x R geometry, respectively, and thus all have zero volume by
definition. Wilkes [172] showed that Hempel’s examples are the only ones among
Seifert-fiber spaces. No examples with H>-geometry are known and as mentioned
above, a first step in the direction that there should be no such examples was
undertaken by Bridson and Reid [25] who showed that the figure eight knot group
is profinitely rigid among 3-manifold groups.

We prepare the proof of Theorem 6.34 with a couple of propositions loosely
following A.Reid’s survey [151] while filling in some more details. Recall that the
subspace topology of G in G is called the profinite topology.

Proposition 6.35 A subgroup H < G is open in the profinite topology if and only
if H has finite index in G.

Proof By definition, G carries the coarsest topology under which the projections
G — G/G; for finite index normal subgroups G; < G are continuous. Since the
compositions G - G — G/G; are the canonical projections, it follows that a
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subbase for the subspace topology of G C G is given by the cosets of finite index
normal subgroups of G.

If H has finite index in G, then so does the normal core N = [, & ~'Hg. Thus
H = J,cpy hN is open. Conversely, let H < G be open. Then H is a union of finite
intersections of finite index normal subgroups of G. In particular, H contains a finite
index subgroup, so H has finite index itself. O

Recall that open subgroups of G have finite index because the cosets disjointly
cover the compact space G. Though we will not use it, we remark that the Nikolov—
Segal theorem cited above concludes from the finite generation of G that also the
converse is true: finite index subgroups in G are open.

Proposition 6.36 Tuking closure H — H in G defines a 1-1-correspondence
from the open subgroups of G to the open subgroups of G. The inverse is given
by intersection H — H N G with G. The correspondence H +— H preserves the
index, sends a normal subgroup N < G to a normal subgroup N < G, and in the
latter case we have G/N = G/N.

The proof is given in [152, Prop. 3.2.2, p. 84]. Here is an easy consequence.
Corollary 6.37 For H|, H> < G of finite index we have Hy N Hy = H| N H>.

Proof By Propositions 6.35 and 6.36, the subgroups H; and H; are open in G and
(HHNH)NG=H NG)N(HNG) = H| N H,.

Applying Proposition 6.36 again yields H; N Hy = H; N H». O
Recall from the proof of Theorem 5.29 that for a finitely generated, residually
finite group G, we obtain a canonical choice of a chain
G=KizKy=K3>---
of finite index normal subgroups K; < G satisfying ()72 K; = {1} by defining K;
as the intersection of the normal subgroups of G with index at most i.
Proposition 6.38 The intersection (i<, K; is trivial.

Proof By the last two results, K; is the intersection of all open normal subgroups
of G of index at most i. Thus M2, K; is the intersection of all open subgroups and
the proposition just says Gis T, or equivalently {e} is closed in G. But this is true
because {e} is even a connected component. m|

Before we give the proof of Theorem 6.34, we put down one more observation.

Proposition 6.39 If H < G has finite index, then the identity on H extends
uniquely to an isomorphism n: H — H of topological groups.

Proof A unit neighborhood basis of H in the subspace topology of H is given by
the finite index normal subgroups K; N H where K; are the finite index normal
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subgroups of G from above. By Proposition 6.35, a unit neighborhood basis of the
profinite topology of H is given by the finite index normal subgroups of H. But
since H has finite index in G, every finite index normal subgroup K < H still has
finite index in G and therefore K; < K for i large enough. This shows that the two
unit neighborhood bases define the same topology on H. So H embeds continuously
and densely into H and H. As both H and H are complete with respect to the
canonical uniform structures, the identity on H extends uniquely to an isomorphism
n: H—> H by the universal property of the uniform completion of topological
groups. ]

Proof (of Theorem 6.34.) The groups G = miM and H = m N are finitely
generated and residually finite, as a consequence of geometrization [70]. We fix
an isomorphism G =~ H. Again, let K; < G be the intersection of all normal
subgroups of G of index at most i. By Propositions 6.35 and 6.36, the group
L; = H N K; is the intersection of all normal subgroups of H of index at most
iand [G : K;] = [H : L;]. By Proposition 6. 38 we have ﬂ K; = {1} so that
(; Li = {1}. From Proposition 6.39 we get K; = L; so that Corollary 6.32 implies
|Hy(Ki)tors] = |Hi(Li)ors|. By Example 6.13 we have p@ (M) = — vol(M) /67
for the aspherical manifold M and similarly for N. The manifolds M; = K; \M
and N; = L,-\]\~J are aspherical, too, hence models for BK; and BL;. Therefore
Conjecture 6.22, if true, implies

log |H1 (K; log |H1(L;
vol(M) = 67 lim og | H1 (Ki)tors| — 67 lim og |Hi( )tor%| vol(N). O
i—00 |G : K;] i—00 [H : L]
Theorem 6.34 also says that a proof of Conjecture 6.22 would make substantial
progress on the profinite rigidity problem for hyperbolic 3-manifolds.

Corollary 6.40 If Conjecture 6.22 is true, then profinite isomorphism classes of
fundamental groups of closed hyperbolic 3-manifolds are finite.

Proof For n > 3, there are only finitely many hyperbolic n-manifolds of any
given volume. The case n = 3 is due to Jgrgensen—Gromov—Thurston [165,
Corollary 6.6.2]. (The case n > 4 and in fact the corresponding statement for all
closed locally symmetric spaces of noncompact type without H? or H? factors is
due to Wang [170, Theorem 8.1].) O

Generalizing Conjecture 6.33, one might dare and ask whether actually ¢2-
torsion is profinite among £2-acyclic, residually finite groups with finite classifying
space. It turns out that this is overly optimistic [91].

Theorem 6.41 There exist profinitely isomorphic (*-acyclic, residually finite
groups G1, Ga, and Gz which have finite models for EG; and satisfy

pP(G1) <0,  pPGr =0, pP(G3) >0.
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So not even the sign of the £>-torsion is a profinite invariant. The theorem is
actually an easy corollary of the corresponding statement for the even-dimensional
cousin of £2-torsion [91, Theorem 1.3].

Theorem 6.42 There exist profinitely isomorphic, residually finite groups G1, G,
and G3 which have finite models for EG; and satisfy

x(G1) <0, x(G2) =0, x(G3) > 0.

The proof proceeds roughly as follows. The special orthogonal group SO(q)
of an integral quadratic form g has a simply connected covering in the sense of
algebraic groups denoted by Spin(g), the spinor group of g. Of special interest are
the groups Spin(r, s) where ¢ is diagonal and has r times the value “+1” and s
times the value “—1” on the diagonal. Standard quadratic form theory reveals that
the quaternary forms

x12~|—x§+x32+x§ and —x%—x%—x%—xﬁ

are isometric over Z, for each (finite) prime p. This and two deep results in arith-
metic groups, namely strong approximation [146, Chapter 7] and the congruence
subgroup property introduced on p. 151, have the effect that the arithmetic groups
given by the Z-points Spin(8, 2)(Z) and Spin(4, 6)(Z) are profinitely isomorphic.
Yet they are not isomorphic themselves as a consequence of strong rigidity [128].
M. Aka introduced this trick and applied it similarly to come up with two profinitely
isomorphic groups with and without Kazhdan’s property (T) [S]. The torsion-free
congruence subgroups Gg 2 and G4 ¢ given by the kernels of

Spin(8, 2)(Z) — Spin(8, 2)(Z/4) and Spin(4, 6)(Z) — Spin(4, 6)(Z/4)

are still profinitely but not honestly isomorphic. Working with Gg2 and G4¢
also avoids some technicalities when applying Kionke’s adelic version of Harder’s
Gauss—Bonnet formula [95, Theorem 3.3] to compute the Euler characteristics of
Gg,2 and G4¢. It turns out that

x(Gg2) =2%5217 and x(Gag) =2°05%17
so that the two Euler characteristics differ by a factor of two. This shows that the
absolute value of the Euler characteristic is not a profinite invariant. But neither is
the sign because setting ¢ = 28952 17, we can define G, G2, and Gz as the free
product of the free group F,.» with

G2 x Ggo, GgoxGae, and Gye x Gap,

respectively. The groups G; are still pairwise profinitely isomorphic since the profi-
nite completion functor preserves products and coproducts. The Euler characteristic
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is multiplicative for products and additive for pushouts, so
x(G)=—c’ x(G) =0, and x(G3)=2c%

showing Theorem 6.42. To deduce Theorem 6.41, take a closed hyperbolic 3-
manifold M, replace G; by m1M x G4—;, and apply Theorem 6.9 (iv) and (vi).

Because of the Euler—Poincaré formula 3.19, Theorem 6.42 implies that £2-Betti
numbers cannot generally be profinite either. Notwithstanding:

Theorem 6.43 The first (>-Betti number is profinite among finitely presented,
residually finite groups.

This was observed by Bridson et al. [26, Corollary 3.3] to be a consequence of
Liick’s approximation theorem and gave the blueprint for the proof of Theorem 6.34.
It was moreover already mentioned in [151, 6.2, p.88] that the spinor groups
considered by Aka in [5], show that some higher £2-Betti numbers are not profinite.
Using S-arithmetic groups one can improve the construction to see that actually
no higher ¢2-Betti number is profinite. This follows from the following result [90,
Theorem 1].

Theorem 6.44 For k > 2, let py, ..., px be different primes from the arithmetic
progression 89 + 24N. Consider the two S-arithmetic groups

G = Spin((£1, £1, %1, £p1 - pi.3) (20, 1,1).

Then the groups G”i and G*_are profinitely isomorphic and

. b,gz)(Gi) > 0 ifand only ifn =k,
e bP(G*) > 0ifandonlyifn =k + 2.

Let us point out that the theorem is meaningful because 89 and 24 are coprime
so that Dirichlet’s theorem ensures the progression contains infinitely many primes.
The letter “S” in S-arithmetic refers to the set S = {py, ..., pr} of prime numbers
we allow to invert. The S-arithmetic groups appearing in the theorem are finitely
presented [146, Theorem 5.11, p. 272] and residually finite because they are linear.
So not even the property b,(lz) (G) = Ois profinite for n > 2 among finitely presented,
residually finite groups. Note however that the groups Gle from the theorem have
nonzero £>-Betti numbers in degrees which differ by two. This leaves open the
option that the sign of the Euler characteristic is profinite among S-arithmetic
groups, even though we have seen that the absolute value of the Euler characteristic
is not, and neither is the sign among the more general class of residually finite
groups with finite classifying space. For arithmetic groups we have indeed a positive
result [91].

Theorem 6.45 Let Gy and G be linear algebraic groups over number fields ki
and ky and let T'y < Gy and Ty < Gy be arithmetic subgroups. Assume that Gy and
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G2 have CSP and Ty and Ty are profinitely commensurable. Then sign x (I'1) =
sign x (I'2).

Here profinitely commensurable means the groups have finite index subgroups
which are profinitely isomorphic. As usual, sign(x) takes the values —1, 0, 1, for
x <0,x =0, x > 0, respectively. We remind the reader of Serre’s conjecture [146,
(9.45), p. 556], already mentioned on p. 154, which says CSP is granted if the group
has “higher rank”.

The Singer conjecture is known for arithmetic groups I' < G in the sense that
they have a non-zero £2-Betti number in at most one degree which would be the
middle dimension of the associated symmetric space if G is semisimple. Thus,
Theorem 6.45 shows that being ¢-acyclic is profinite for arithmetic groups with
CSP. In particular, it makes sense to ask for profiniteness of the sign of x’s cousin
0? and the following companion to Theorem 6.45 is obtained in [91, Theorem 1.4].

Theorem 6.46 In addition to the assumptions of Theorem 6.45, assume that
ranky, (G1) = ranky,(G2) = 0 and that I'y (equivalently T'3) is 02-acyclic. Then
sign p®(I'y) = sign p® ().

Generalizing the situation on p. 152 where k; = Q, the assumption of G; being
ki-anisotropic effects that the arithmetic groups I'; are uniform lattices in the Lie
groups G; = G;(R)"" x G;(C)% where r; and s; is the number of real embeddings
and pairs of conjugate complex embeddings of k;, respectively. We conjecture that
this assumption is not needed so that the result also holds for non-uniform I';. But
in view of the discussion in Example 6.15, dropping the uniformity assumption
would either require proving the Liick—Sauer—Wegner proportionality conjecture for
£2-torsion or finding any other way to compare cellular and analytic ¢>-torsion of
non-uniform lattices. At least it follows again from [84, Theorem 1.2] that the non-
uniform extension of the theorem holds true if one of the Lie groups G; has even
deficiency.

Profinite rigidity remains a rapidly developing field with numerous challenging
open problems. For further reading, we recommend the introductory overview [151]
by Reid as well as Nikolov’s informative survey [136] on general algebraic
properties of profinite groups.
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C*-algebra, 18, 94 additivity, 31,73, 133
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finite, 37 matrix, 139
finite type, 37 polynomial, 139
free, 37 amenable group, 77, 107, 111, 115
proper, 37 anisotropic, 152, 163
T-space, 42, 159 Apéry’s constant, 155
¢2-Alexander invariant, 142 arithmetic group, 136, 151
£2-Alexander torsion, 138 arithmeticity, Margulis, 152
£2-Betti number Artin group, 109
of a G-CW complex, 46 aspherical, 4, 66, 70, 71, 83, 144
of a G-space, 75 asymptotically monomial, 142
of a group, 77 asymptotic degree, 142

relative, 56
£2-Euler-Poincaré formula, 51
(Z-acyclic, 47 B

group, 77, 115
¢%-chain complex, 44
£2-cohomology, 53
£2-homology

Banach algebra, 91

Baumslag—Solitar group, 88
Benjamini—Schramm convergence, 107, 155
Bianchi group, 155

redu(cied, 35 46 bicommutant, 17
unrf: uced, Borel construction, 77
£2-torsion

Borel-Serre compactification, 136

analytic, 150 boundary of a tree, 103

of an automorphism of a group, 137
of a chain complex, 132
of a G-CW complex, 133

of a group, 135 C
A—genus, 62, 66 Cauchy formula, 90
C-category, 73 Cayley graph, 84, 111
Z-lattice, 151 cellular action, 35
n-connected, 67 chain contraction, 129
p-adic analytic pro-p group, 125 characteristic function, 20
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classifying space, 160
for families, 69
for free actions, 70
model, 70, 160
for proper actions, 70
cofibration, 39
cofinality, 73
commutant, 17
complete digraph, 110
complexity, 140
congruence
subgroup, 151
principal, 109, 151
subgroup property, 151
conjecture
approximation, 5, 116

Atiyah, 3,59, 83,106, 117, 123, 125, 143,

150
Bergeron—Venkatesh, 148, 152
Borel, 158
determinant, 119

determinant approximation, 122, 149

Hopf, 4,51
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direct finiteness, 33
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nilpotents, 61
units, 61
zero divisors, 3, 60, 61, 124
Liick—Sauer—Wegner, 136, 163
Poincaré, 112
rank vs. Heegard genus, 112
Serre, 154, 163
Singer, 4,51, 144,163
strong Novikov, 153
torsion growth, 6, 144
virtually fibered, 141
zero-in-the-spectrum, 153
continuity, 73
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cost, 110

D

decomposition
£2-Hodge—de-Rham, 55
Cartan, 152

deficiency
of a finitely presented group, 81
of a semisimple Lie group, 136

determinant class, 118, 132, 133
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dual
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duality
Poincaré, 55
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E
elementary amenable group, 60
ergodic, 103
essentially
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free, 104
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faithfulness, 31
family of subgroups, 67
Farber, 104
fiber bundle, 64
fibered class, cone, and face, 141
fibration, 64, 86
finitely co-Hopfian, 80
fixed price problem, 111
forest, 111
Fourier
coefficients, 15
series, 15
transform, 14
Fox matrix, 139
free factor problem, 21
Fuglede—Kadison determinant, 118
functional calculus, 89
Borel, 92
continuous, 91
holomorphic, 90

G
geometrization, 88, 135
GNS-construction, 72
graphing, 112
graph manifold, 135, 141
group
algebra, 19
(co-)homology, 71
von Neumann algebra, 19
amplified, 21
groupoid cost, 113
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H
Hamel basis, 12
Heegard genus, 112
highest weight, 155
Higman’s group, 88, 157
Hilbert
direct sum, 27
finitely generated, 25
L(G)-module, 25
quotient module, 27
restricted module, 27
R(G)-module, 53
space, 11
submodule, 27
tensor product, 27
homologically 1-connected, 84
homology growth, 6, 88, 134, 144
homotopy lifting problem, 86
hyperbolic space, 3, 154
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i.c.c.,, 21
inequality
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Cauchy-Schwarz, 10
Kazhdan’s, 98
Morse, 52
injectivity radius, 107
inner
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integral torsion, 144
invariant factor, 145
isometry, 13, 17
partial, 17

K

Karoubi envelope, 74

Kazhdan’s property (7'), 115, 161
knot complement, 139

Kiinneth formula, 48, 76

L
lattice, 85, 133
integral, 151
irreducible, 152
non-uniform, 136
uniform, 135
left regular representation, 19
Legendre polynomial, 15
lens space, 80, 128
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linear
algebraic group, 151
forms in logarithms, 122
group, 88

logarithmic bound, 99, 119, 150

M
main inequality, 116
3-manifold group, 133, 140, 158
mapping

class group, 109

torus, 63

group, 108

measure

basic, 93, 118

Dirac, 93

edge, 110

Haar, 136

Mahler, 139

projection valued, 95

spectral, 92, 118

Haar, 85
Milnor torsion, 144
minimal volume, 116
Minkowski sum, 143
morphism

of algebraic groups, 152

of Hilbert module, 26

of von Neumann algebras, 21
multiplicatively convex, 139
multiplicativity, 32, 133

N

net, 16

noncommutative geometry, 21
normal core, 105, 109, 159
normalization, 31, 73
Novikov—Shubin invariants, 47

(0]

obstruction, 61

one relator group, 83

operator
adjoint, 17
bounded, 13
normal, 17
positive, 17
self-adjoint, 17

operator topology
norm, uniform, 16
strong, 16
ultraweak, 22
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weak, 16
orbit equivalence relation, 110
orthonormal basis, 12
outer regularity, 31

P

Parselval’s identity, 15

p.m.p., 110

Poincaré duality, 134

polar decomposition, 23

polarization, 15

polyhedron, 141

polytope homomorphism, 143

predual, 21

presentation complex, 81

profinite
completion, 156
group, 156
invariant, 157
topology, 158

profinitely
commensurable, 163
isomorphic, 157
rigid, 157

projection
oblique, 17,72
orthogonal, 17

projective module, 71

pro-p group, 79

proportionality principle
Gaboriau’s, 136
Hirzebruch’s, 82
Gaboriau’s, 85

R
rank
gradient, 108
relative, 111
of a group, 108
of a semisimple algebraic group, 152
von Neumann, 74
Ray-Singer torsion, 153
regulator, 145, 153
Reidemeister torsion, 127
representation variety, 143
residual
chain, 87
system, 116
residually finite group, 88, 123, 133, 140

residually finite rationally solvable (RFRS),

141
resolvent mapping, 90

restriction, 32, 76

Riesz lemma, 17

right regular representation, 19
root, 103

S
Seifert surface, 142
semihereditary, 74
semisimple

Lie group, 135

linear algebraic group, 151
separable Hilbert space, 13
shadow, 103
shear transformation, 147
simplicial volume, 66
singular value, 119, 145
Smith normal form, 146
sofic group, 123
spanning tree, 108
special group, 125
spectral

distribution function, 99, 119

projections, 95

radius formula, 89, 96
spectrum, 89
spine of outer space, 137
spinor group, 161
Stiefel-Whitney numbers, 62
strong
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Atiyah conjecture (see conjecture, Atiyah)

rigidity, 161
strongly acyclic, 153
surface, 56
symmetric space, 135, 160
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Tarski monster, 88

theorem
Abért—Nikolov, 111
Austin, 57
Baker, 122
Bergeron—Venkatesh, 154
bicommutant, von Neumann, 18
Borel-Harish-Chandra, 152
Cheeger—Miiller, 153
Farber, 105
inverse mapping, 16
Jaikin-Zapirain, 125
Kuratowski, 104
Linnell, 61
Liick approximation, 5, 88, 144
Nikolov—Segal, 157
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open mapping, 16
Ornstein—Weiss, 111
Portmanteau, 98
Riesz representation, 92
Schick-Elek—-Szabé, 123
spectral, 95

thin part, 107

Thurston norm, 141

torsion
linking form, 131
part, 74

torus
algebraic, 152
incompressible, 135
mapping, 63

trace
von Neumann, 24

U

unimodular, 85

unitary, 13, 17

universal ¢2-torsion, 143
upper half plane, 78

\%

vector
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cyclic, 23
separating, 23
virtually, 67
von Neumann
algebra, 18, 94
dimension, 29, 53
extended, 73
rank, 74

W
weak
algebraic K -theory, 143
isomorphism, 31
operator topology, 16
Whitehead group, 143
weakly
contractible, 67
convergent, 97, 120
exact, 31
weak-* topology, 22
Weyl’s criterion, 91, 96
Wirtinger presentation, 139

Z
Zariski closed, 151
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