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Abstract

In this article, we give a survey of results on L?-Betti numbers and their analogues
in positive characteristic. The main emphasis is made on the Liick approximation
conjecture and the strong Atiyah conjecture.
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1 Introduction

Let G be a group and let K be a field. For every matrix A € Mat,,x,, (K[G]) and
every normal subgroup N of G of finite index let us define

¢an: KIG/N* —  K[G/N]™
(T1,. . xn) = (21,...,25)A

This is a K-linear map between two finite-dimensional K-vector spaces. Thus, we
can define
dimg Im g,y dimg ker gy ,
iGN " G N| (1)
Now, let G > G1 > G2 > ... be a descending chain of subgroups such that G; is
normal in G, the index |G : G| is finite and N;>1G; = {1}. For a given matrix A
over K[G], we want to study the sequence {rkg,q,(A4)}i>1. Concretely, we would
like to answer the following questions.

rkq/n(A) =

Question 1.1 Let us assume the previous notation.
1. Does the sequence {rke/,(A4)}i>1 converge?
2. Assume that the limit lim rkg g, (A) exists. Does it depend on the chain
G>G1>Gy>...7 i
3. Assume that the limit 11;120 kg, (A) exists. What are the possible values of

the limit lim rkg/q,(A)?
1—00

These questions arise in very different situations. We will present several examples
in Section 13. Let us formulate a conjecture which answers all these three questions.

Conjecture 1.2 Let us assume the previous notation. Then the following holds.
(1) The sequence {rkq,q,(A)}i>1 converges.
(2) The limit lim rkg/q,(A) does not depend on the chain G > G > Ga > .. ..
1—00

(3) Assume that there exists an upper bound for the orders of finite subgroups
of G and let lem(G) be the least common multiple of these orders. Then

. 1
zliglo rkG’/Gi (A) € mz
Informally, the first and second part of the conjecture is called the Liick approx-
imation conjecture and the third part is called the strong Atiyah conjecture. In
Section 2, we will introduce the original Liick approximation and strong Atiyah
conjectures. They are formulated only for fields K which are subfields of the field
C of complex numbers. The numbers rkg(A) which will appear in these conjec-
tures are generalizations of the L2-Betti numbers invented by M. Atiyah. If K is of
characteristic p > 0, then Zlggo kg, (A) is what we call an analogue of an L2-Betti

number in positive characteristic.
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If K is of characteristic 0, the parts (1) and (2) of Conjecture 1.2 are known to be
true and the part (3) holds for many families of groups which include the groups
from the class D, Artin’s braid groups, virtually special groups and torsion-free
p-adic compact groups. If K is of positive characteristic, the parts (1) and (2) are
only known when G is amenable and the part (3) when G is elementary amenable.

If the reader sees Conjecture 1.2 for the first time he or she might wonder what
makes the cases of characteristic 0 and positive characteristic so different. A quick
answer is that in characteristic 0 we can use different techniques from the theory
of operator algebras, but we do not have any analogue of them in positive char-
acteristic. Nevertheless, in this survey we will try to give a uniform treatment of
both cases using the notion of Sylvester matrix rank function. This is the main
difference of our exposition of this subject from the previous ones.

Our first motivation is to explain the main ideas behind the proofs of positive
results concerning Conjecture 1.2 and the related conjectures. We will present
the complete proofs of several results. Some of them are not new but they are
formulated in the literature differently, so we think it will be convenient to include
their proofs. In most cases we will give only a sketch of the proofs, providing
the references where the complete proofs can be found. Another motivation is
to collect together the main open problems in the area. We hope that this will
stimulate further research in this subject.

The article is organized as follows. In Section 2 we introduce L?-Betti numbers
of groups and formulate the strong Atiyah conjecture and different variations of
the Liick approximation conjecture. In Section 3 we recall basic facts about von
Neumann regular and x-regular rings. In Section 4 we explain the notion or epic
homomorphism and present the Cohn theory of epic division R-algebras. Section 5
is devoted to the theory of Sylvester matrix rank and Sylvester module rank func-
tions. These concepts unify the notion of L2-Betti numbers with their analogues in
positive characteristic. Until now this subject has been presented in the literature
only partially. Therefore, we try to describe a complete picture. We formulate
several exciting questions about Sylvester rank functions. Some of them are not
related to L2-Betti numbers, but we still believe that they are of big interest. In
Section 6 we give an algebraic reformulation of the conjectures described in Section
2. This algebraic point of view allows to use the techniques introduced in Sections
3, 4 and 5 in order to attack the conjectures formulated in Section 1 and 2. In
Section 7 we prove the parts (1) and (2) and in Section 9 the part (3) of Conjecture
2.4 (this is a strong version of Conjecture 1.2) over an arbitrary field for amenable
groups. In Section 8 we discuss the notions of natural extensions of Sylvester rank
functions. They play an important role in the proofs of many results of this survey.
In Section 10 we explain the proof of the general Liick approximation conjecture
over the field of complex numbers for sofic groups. Section 11 is devoted to the
Liick approximation and strong Atiyah conjecture for completed group algebras of
virtually pro-p groups. We formulate questions similar to the ones from Section 1.
Section 12 describes the known positive results on the strong Atiyah conjecture.
Finally, in Section 13 we present several applications of Sylvester matrix rank func-
tions and, in particular, L?-Betti numbers in other parts of mathematics. The list
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of applications is far from being complete, and represents mathematical interests
of the author of this survey.

There are many good sources to learn about L2-invariants and their approxi-
mations, mostly due to W. Liick. First, of course, one should mention his book
[78]. We also highly recommend a recent Liick’s survey [81]. Other useful sources
are the Ph.D. thesis of H. Reich [98], expository papers by P. Pansu [94] and B.
Eckmann [29], another survey by W. Liick [79] and two recent lecture notes, one
by H. Kammeyer [59] and another by S. Kionke [62].
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General conventions and notations

In this paper all rings and homomorphisms are unital. The letter K is reserved for
a field and by an algebra we will mean always a K-algebra.

If R is a ring, an R-module will usually mean left R-module. The category of
R-modules is denoted by R-Mod. R[z] is the ring of polynomials over R and R[zT!]
is the ring of Laurent polynomials.

A x-ring is a ring R with a map * : R — R that is an involution (i. e.
(") ==z, (r+y)" =2"+vy", (vy)" =y*z* (x,y € R)). If K is a #-ring, then a -
algebra is an algebra with an involution # satisfying (Az)* = \*z* (A € K, = € R).

An element of a *-ring e is called a projection if e is an idempotent (e? = ¢)
and e is self-adjoint (e* = e).

If n > 1 we denote by I, the n by n identity matrix. For matrices A and B,
A & B denotes the direct sum of A and B:

A 0
reno (40,
For a group G, d(G) denotes the minimal number of generators of G. We denote
by F(G) the set of finite subgroups of G. If there is an upper bound on the orders
of finite subgroups of G, we denote by lem(G) the least common multiple of these
orders. We will write lem(G) = oo if there is no such bound.

For a countable set X, [2(X) will denote the Hilbert space with Hilbert basis the
elements of X; thus [*(X) consists of all square summable formal sums Y _y a,x
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with a, € C and the inner product is

(Z Ay, Z byx) = Z ayby.

zeX rzeX rzeX

2 L2-Betti numbers and generalizations of Conjecture 1.2

A countable group G acts by left and right multiplication on [?(G). The right
action of G on I?(G) extends to an action of C[G] on I?(G) and so we obtain that
the group algebra C[G] acts faithfully as bounded linear operators on I?(G). In
what follows we will simply consider C[G] as a subalgebra of B(I%(G)), the algebra
of bounded linear operators on [2(G).

A finitely generated Hilbert G-module is a closed subspace V < (I2(G))", invari-
ant by the left action of G. A morphism between two finitely generated Hilbert
G-modules U and V is a bounded G-equivariant map o : U — V.

Let V < (I?(@))" be a f.g. Hilbert G-module and projy, : (I2(G))" — (I*(G))"
the orthogonal projection onto V. We put

n

dimg V := Trg(projy ) = Z(projv 1i, L) 2@y
i=1

where 1; is the element of (I?(G))™ having 1 in the ith entry and 0 in the rest of
the entries. The number dimg V' is the von Neumann dimension of V. It does
not depend on the embedding of V' into [?(G)™. The reader can consult [78] where
other properties of dimg V' are described.

Let A € Maty,xm(C[G]) be a matrix over C[G]. The action of A by right multi-
plication on /2(G)" induces a bounded linear operator ¢ : (I2(G))" — (I*(G))™.
Let us define

rkg(A) = dimg Im qbé = n — dimg ker ¢é
Observe that this notation is compatible with the formula (1), because if G is finite,
then rkg = T%C‘.

If G is a quotient of a group F' and A € Mat,,x, (C[F]) is a matrix over C[F],
we denote by A the image of A in Matyx,(C[G]). Abusing the notation, we will
write ¢é for qbé and tkg(A) for tkg(A).

If G is not a countable group then rkq is also well defined. Take a matrix A
over C[G]. Then the group elements that appear in A are contained in a finitely
generated subgroup H of G. We will put rkg(A) = rky(A). One easily checks that
the value rky(A) does not depend on the subgroup H.

In [9] M. F. Atiyah introduced for a closed Riemannian manifold (M, ¢g) with uni-

versal covering M the analytic L2-Betti numbers bg)(M , g) which measure the size
of the space of harmonic square-integrable p-forms on M. J. Dodziuk [24] extended
the notion of L2-Betti numbers to the more general context of free cocompact ac-
tions of discrete groups on C'W-complexes. In particular, he also showed that the
analytic L?-Betti numbers do not depend on the metric.
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For a given subfield K of C we denote by Cx(G) the set of possible values
rkg(A) where A is a matrix over K[G| and by Agk (G) the additive group generated
by Cx(G). Over time it has been realized (see [29, Proposition 3.10.1]) that L?-
Betti numbers, arising from a given group G acting freely and cocompactly on
CW-complexes, form a set that can be defined purely in terms of G, without
mentioning CW-complexes. In our notation it is the set Co(G). In this survey
we will consider not only Cg(G) but also the sets Cx(G) where K is an arbitrary
subfield of C.

2.1 Atiyah’s question and the general Atiyah problem

In [9, page 72] M. F. Atiyah asked whether L2-Betti numbers of a closed manifold
can be irrational. We reformulate this question as the following problem and we
refer to it as the general Atiyah problem for G.

Problem 2.1 For a given group G and a given subfield K of C determine the
group Ak (G).

Before the work of R. Grigorchuk and A. Zuk [50], it had been conjectured that

1
Ag(G) <|H| :H <G).
However, in [50] the authors showed that if G = C3Z is the lamplighter group,
then 1/3 € Ag(G). Observe that the finite subgroups of the lamplighter group
have orders which are powers of 2. This result was used in [48] to produce a
closed Riemannian manifold (M, g) of dimension 7 with 71 (M) having only finite
subgroups of order a power of 2 and such that b:(f)(M ,g) = %

Shortly afterwards W. Dicks and T. Schick described in [22] an element T from
the group ring of Z[G] where G = (Ca1Z) x (C2 1 Z) such that rkg(T") looked like
an irrational number. The question of irrationality of that specific number remains
open. This was the first evidence that the question of Atiyah has an affirmative
answer. It was T. Austin [10] who first proved the existence of a group G with an
irrational element in Cg(G). His construction was not explicit. Concrete examples
appear in [42, 67, 97, 44]. These examples also leaded to constructions of closed
Riemannian manifolds with irrational L2-Betti numbers confirming the prediction
of M. Atiyah. Moreover, in [42] L. Grabowski showed that any non-negative real
number belongs to Cy(G) for some elementary amenable group G and the set of L2-
Betti numbers arising from finitely presented groups contains the set of all numbers
with computable binary expansions.

All the previous examples involve groups having finite subgroups of unbounded
order. This suggests that we have to consider the general Atiyah problem for groups
with bounded orders of finite subgroups and, in particular, for torsion-free groups.

2.2 The strong Atiyah conjecture

Now let us state a conjecture that got the name of the strong Atiyah conjecture
[78].



Andrei Jaikin-Zapirain: L*-Betti numbers 7

Conjecture 2.2 (The strong Atiyah conjecture over K for a group G) Let
G be a group and let K be a subfield of C. Assume that lem(G) < oco. Then

! :H <G).

Asc(G) = s = (g H <

There is a considerable body of work to establish the strong Atiyah conjecture
for suitable classes of groups and fields. We will present these results in Section 12.
At this moment the conjecture is known over C for many families of groups which
include the groups from the class D, Artin’s braid groups, virtually special groups
and torsion-free p-adic compact groups.

2.3 The Liick approximation conjecture

Now we introduce the Liick approximation conjecture. It arised from a question of
M. Gromov (which was solved by W. Liick in [76]) of whether L?-Betti numbers
of a compact Riemannian manifold can be approximated by ordinary normalized
Betti numbers of finite covers of the manifold.

Conjecture 2.3 (The Liick approximation conjecture over K for a group
G) Let K be a subfield of C, F' a finitely generated free group and F' > N; > Ny >

. a chain of normal subgroups of F' with intersection N = NN;. Put G; = F/N;
and G = F/N. Then for every A € Mat,xm (K[F]),

lim rkg, (A) = rkg(A).
k—o00

This conjecture was formulated by W. Liick. When K is of characteristic 0, Con-
jecture 2.3 implies the first and the second part of Conjecture 1.2 and Conjecture
2.2 and Conjecture 2.3 together imply the third part of Conjecture 1.2.

2.4 The sofic Liick approximation conjecture

Let F' be a free finitely generated group and assume that it is freely generated
by a set S. Recall that an element w of F' has length n if w can be expressed
as a product of n elements from S U S~! and n is the smallest number with this
property. By (1) will denote the set of elements of F' of length at most k.

Let N be a normal subgroup of F. We put G = F//N. We say that G is sofic if
there is a family { Xy }ren of finite F-sets (F acts on the right) such that if we put

Tps={reXy: z=z-wifwe Bs(1p) NN, and z # 2w if w € Bs(1p) \ N},

then for every s,
lim 7‘Tk’s| =
k—o0 |Xk’
The family of F-sets {X}} is called a sofic approximation of G.
This is one of many equivalent definitions of soficity for a finitely generated

group; we have borrowed this one from [109, Proposition 1.4].
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This definition has the following geometric meaning. The action of F' on X}
converts X, in an S*'-labeled graph. Let T, . s be the set of vertices z of X},
such that the s-ball Bs(z) in X} and the s-ball Bs(1g) in G are isomorphic as
S+l ]abeled graphs. It is clear that

Tlé,s c Tk,S < Tlg,2s'

Thus, the soficity condition says that for every s most of the vertices of X} are in
T} , when k tends to infinity.

For an arbitrary group G we say that G is sofic if every finitely generated
subgroup of G is sofic. Amenable groups and residually finite groups are sofic. It is
important to note that no nonsofic group is known at this moment. On the other
hand, all the results presented in this survey are about sofic groups.

Now, let us generalize slightly the notation introduced in Section 1. Let F' be a
group acting (on the right) on a finite set X and let K be a field. For every matrix
A € Maty,xm (K[F]) let us define

ot KX - KX
(1., xn) = (x1,...,2p)A "

This is a K-linear map between two finite-dimensional K-vector spaces, and so, we

can define " "
dimg Im ¢ dim g ker ¢
tkx(A)= ———==n— ————=. (2)
| X | X|
Conjecture 2.4 (The sofic Liick approximation conjecture over K for a
group G) Let {X}} be a sofic approximation of G = F'/N. Then

(1) for every A € Mat,,xm (K[F]), there exists the limit klim rkx, (A4);
—00

(2) the limit does not depend on the sofic approximation {X;};
(3) If K is a subfield of C, then klim rky, (A) =rkg(A).
—00

This conjecture generalizes the parts (1) and (2) of Conjecture 1.2. Conjecture
2.4 holds when K is of characteristic 0. When K is of positive characteristic, the
first and second parts of Conjecture 2.4 hold when G is amenable. These results
will be explained in Sections 7 and 10.

2.5 The Liick approximation in the space of marked groups.

Let F' be a free group freely generated by a finite set S. The space of marked
groups MG(F, S) can be identified with the set of normal subgroups of F' with the
metric d(N1, N2) = e™™ where n is the largest integer such that the balls of radius
n in the Cayley graphs of F'//N; and F/Ny with respect to the generators S are
simplicially isomorphic (with respect to an isomorphism respecting the labelings).
In this setting the approximation conjecture is stated in the following way.

Conjecture 2.5 (The Liick approximation conjecture in the space of marked
groups over K for a group G) Let K be a subfield of C. Let { N, € MG(F, S)}
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converge to N € MG(F,S). Put G = F/N and Gy = F/Nj. Then for every
A € Maty,xm(K[F)),

klim rkg, (A) = rkg(A).

— 00

Clearly Conjecture 2.5 is a strong version of Conjecture 2.3. It is known in the case
where the groups G; are sofic. This will be a part of a more general conjecture
which we discuss in the next subsection.

2.6 The general Liick approximation conjecture

In this subsection we will introduce a new type of approximation that unify together
the sofic approximation and the approximation in the space of marked groups. Then
we will formulate the Liick approximation conjecture for this general situation.
As before, let F' be a finitely generated free group, freely generated by a finite set
S, N a normal subgroup of F' and G = F//N. Let {H}ren be a family of groups
and Xy an (Hy, F)-set (i.e. Hy acts on the left, F' acts on the right and these two
actions commute) such that Hj acts freely on Xy and Hy\ X} is finite. We define

Ths={reXy: e=z-wifwe Bs(lp) NN, and z #z-wif we Bs(1p) \ N}.
Then we say that {X}} approximates G if for every s,

L H\ T
m —-——— =

The sofic approximation is a particular case of the general approximation and
corresponds to the case when the groups Hy are trivial. The approximation in the
space of marked groups arises from the general approximation in the case when Hy
and F' act transitively on X}, for every k.

As in the case of sofic approximation, the general approximation has a geometric
interpretation. We see X}, as an S*!-labeled graph. Since the action of Hj, and
F commutes, the elements of Hj, act on X}, as S*!-labeled graph isomorphisms.
Therefore, for every s € N the balls of radius s centered in the vertices of an Hj-
orbit in X} are isomorphic. There are only finitely many Hp-orbits in X and the
approximation condition says that when k tends to infinity, for almost all of them,
the ball of radius s centered in a point of the orbit is isomorphic to Bs(1g).

Now, we can generalize the previous notation in the following way. Let A €
Maty,sm (C[F]) be a matrix over C[F|. Let H be a group and let X be an (H, F)-
set such that H acts freely on X and H\X is finite. By multiplication on the right
side, A induces a linear operator ¢% : (12(X))" — (12(X))™. We put

Ty (A) = dimgy Im qﬁ‘;‘( dimgs ker gi)’;‘(

X[ T T H\X]

Conjecture 2.6 (The general Liick approximation conjecture over K for
a group G) Let K be a subfield of C, F' a finitely generated free group and N a
normal subgroup of F. For each natural number k, let Xj be an (Hy, F')-set such
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that Hy is a group that acts freely on X and Hj\ X}, is finite. Assume that { X}
approximates G = F//N. Then for every A € Maty,xm (K[F]),

lim rkyx, (A) = rkg(A4).
k—o0
This conjecture generalizes all the previous variations of the Liick approximation
conjecture over fields of characteristic 0. We will explain in Section 10 the proof of
this conjecture over C in the case where all groups Hj, are sofic.
If G is an arbitrary group, we say that G satisfies the general Liick approximation
conjecture over K if all its finitely generated subgroups do.

3 Von Neumann regular and *-regular rings

3.1 Von Neumann regular rings

An element z of a ring R is called von Neumann regular if there exists y € R
satisfying zyz = x. A ring U is called von Neumann regular if all the elements of
U are von Neumann regular. In the following proposition we collect the properties
of von Neumann regular rings that we will need later.

Proposition 3.1 [46] Let U be a von Neumann regular ring. Then the following
statements hold:

1. every finitely generated left ideal of U is generated by an idempotent;

2. every finitely generated left submodule of a projective module P of U is a
direct summand of P (and, in particular, it is projective);

3. every finitely generated left projective module of U is a direct sum of left cyclic
ideals of U.

3.2 The ring of unbounded affiliated operators of a group

The ring of unbounded affiliated operators U(G) of a group G is one of the main
examples of a von Neumann regular ring that appear in this survey. The Ph.D
thesis of H. Reich [98] is a good source to learn basic facts about the ring U(G).
We briefly define it in this subsection and also introduce additional notions that
will motivate further definitions.

Let G be a countable group. The group von Neumann algebra NV (G) of G
is the algebra of G-equivariant bounded operators on I2(G):

N(G) ={¢ € BI*(G)) : ¢(gv) = go(v) for all g € G, v € I*(G)}.

It can be defined also as the weak closure of C[G] in B(I?(G)) or, algebraically, as
the second centralizer of C[G] in B(I*(G)).

The ring N (G) satisfies the left Ore condition (a result proved by S. K. Berberian
n [13]). We recall this notion in Subsection 4.1. The left classical ring of fractions
Qi(N(@)) is denoted by U(G). The ring U(G) can be also described as the ring
of densely defined (unbounded) operators which commute with the left action of
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G. Therefore, U(G) is called the ring of unbounded affiliated operators of G.
The ring U(G) is a *-regular ring. We will consider such rings in more detail in
Subsection 3.4.

We can define a rank function rkg on U(G) in the following way

rkg(s7ir) = rkg(r) = dimg(2(G)r) = <projm 1, 1)), (3)

where 7 € N(G) and s € N(G) is a non-zero-divisor in N(G). Note that if
u € U(G), then

rkg(u) =1 if and only if w is invertible in U(G). (4)

The function rkg can be extended to all matrices over U(G) and it is an example
of a faithful Sylvester matrix rank function on a x-regular ring. We will consider
the Sylvester rank functions in more detail in Section 5. The Sylvester matrix rank
function rkg induces a Sylvester module rank function dimg on finitely presented
left modules of U(G) (see Subsection 5.3 for more details) that satisfies

dimg(U(G)u) = rkg(u), v e U(G).

3.3 Von Neumann regular elements in a proper *-ring

Let R be a *-ring. The involution x is called proper if z*z = 0 implies x = 0 and
it is called n-positive definite if > | xfz; = 0 implies z; = --- = x, = 0. Thus,
the involution is proper if and only if it is 1-positive definite. If the involution is
n-positive definite for all n, then we say that it is positive definite. We say that
a *-ring is proper if its involution is proper.

In general if x is a von Neumann regular element there are several elements y
satisfying xyx = x. However, if R is a proper x-ring there is a canonical one. In
the following proposition we collect the main properties of regular elements in a
proper x-ring.

Proposition 3.2 (/46/,/56]) Let R be a proper x-ring and let x € R. Assume that
x*x and xx* are von Neumann reqular elements. Then the following holds.

1. Rx = Rx*x.

2. x and x* are von Neumann regular.

3. There exists a unique projection e in R such that Re = Rx and there exists a
unique projection f such that fR = xR (we put e = RP(z) and f = LP(x)).

4. There exists a unique y € eRf such that yr = e and xy = f (we put =y
and call it the relative inverse of z).

5. RP(z) = RP(z*z) = LP(z) and (%)Y = (2[-1)*,
6. (*x)"0 = 2@ and 21 = (2*2) o,

7. If x is self-adjoint, then x commutes with zl=1].
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3.4 Von Neumann *-regular rings

A s-ring U is called von Neumann #-regular (or simply x-regular) if it is von
Neumann regular and its involution is proper. The ring Mat,, (C) is x-regular. The
ring C[G] is *-regular if and only if G is locally finite. However, we can embed C[G]
in the x-regular ring U(G) for an arbitrary group G.

A direct product of x-regular rings is again x-regular. If I/ is a x-regular ring,
then Mat, (i) is again a *-ring: if M = (m;;) then M* = (n;;) with n;; = (mj;).
Also Mat, (U) is von Neumann regular. However, in general * is not proper in
Mat,, (U). We say that U is a positive definite x-regular if Mat, (/) is *-regular
for every n € N. It is equivalent to the condition that x is positive definite. For
example, Mat,,(C) and U(G) are positive definite x-regular rings.

Although in the definition of a *-regular ring the properties to be von Neumann
regular and to be proper do not interact, using them together we obtain many
interesting consequences. For example, if I is an ideal of a x-regular ring i/, then
I is automatically *-invariant and moreover * induces a proper involution on U/I.

The following proposition explains how to construct the minimal x-regular sub-
ring containing a given x-subring. This was proved first for positive definite *-
regular rings by P. Linnell and T. Schick in [72] and by P. Ara and K. Goodearl in
the form that we present here in [6, Proposition 6.2].

Let R be a #-subring of a *-regular ring /. We denote by R1(R,U) the subring
of U generated by R and all the relative inverses of all the elements z € R. Clearly
R1(R,U) is again a *-subring of Y. We put

Rng1 (R, U) = Ry(Ru(R,U), U).

Proposition 3.3 [6, Proposition 6.2] Let U be a x-regular ring and let R be a
x-subring of U. Then there is a smallest x-reqular subring R(R,U) of U containing
R. Moreover,

R(R,U) = U2 1 Ri(R,U).

The subring R(R,U) is called the x-regular closure of R in Y. It was observed
in [56] that, in fact, Rq1(R,U) can be also defined as the subring of U generated by
R and all the relative inverses of the elements of the form z*z for x € R.

If K is a subfield of C closed under complex conjugation and G is a countable
group, then the xregular closure of K[G] in U(G) is denoted by Rp|g. For an
arbitrary group G, R is defined as the direct union of {Rx: H is a finitely
generated subgroup of G}.

4 The Cohn theory of epic division R-algebras

4.1 The Ore localization

In this subsection we recall the definition of the left Ore condition and the con-
struction of the Ore ring of fractions.

An element r € R is a non-zero-divisor if there exists no non-zero element
s € R such that rs = 0 or sr = 0. Let T be a multiplicative subset of non-zero-
divisors of R. We say that (7, R) satisfies the left Ore condition if for every
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r € R and every t € T, the intersection Tr N Rt is not trivial. If T consists of all
the non-zero-divisors we simply say that R satisfies the left Ore condition.

The goal is to construct the left Ore ring of fractions T-!R. Let us recall
briefly this construction. For more details the reader may consult [84, Chapter 2].
As a set, T~'R coincides with the set of equivalence classes in 7' x R with respect
to the following equivalence relation:

(t1,71) = (t2,r2) if and only if there are

ri,r € R such that rit; = rito € T and riry = rhro.

The equivalence class of (¢,a) is denoted by ¢t~!a. Note that there is no obvious
interpretation for the sum s~'a + ¢t~ and the product (t~'7)(s~'a) (a,r € R,
s,t € T). In order to sum s 'a and t~!7, we observe that for every s,t € T there
exists s',t' € R such that s's = t't € T. Hence,

sla+t7lr = (s's) a4 (') HWr = (s's) 7 (s'a + t'r)

1 1

In order to multiply s 'a and t~1r, we rewrite rs~! as a product (s¢)~'rg with
ro € Rand sg € T. The condition T'rNRs is not trivial implies exactly the existence
of sp € T and 79 € R such that sqr = rgs, and so rs~! = (s0) "'ro. Hence,

(t_lr)(s_la) = (t_l)(so)_lToa = (sot)_lroa.

When T consists of all the non-zero-divisors of R and (T, R) satisfies the left Ore
condition, we denote T™'R by Q;(R) and we call it the left classical ring of
fractions of R.

An important result in the theory of classical rings of quotients is Goldie’s the-
orem [47, Theorem 6.15]. One of its consequences (see [47, Corollary 6.16]) is that
every semiprime left Noetherian ring has a semisimple Artinian classical left ring
of fractions.

4.2 Rational closure

Let R be a subring of S. Denote by GL(R;S) the set of square matrices over R
which are invertible over S. The rational closure of R in S is the subring of S
generated by all the entries of the matrices M1 for M € GL(R;S) (in fact, the
entries of the matrices M~! for M € GL(R; S), form a subring).

Let f : R — S be a map and let ¥ be a set of matrices over R such that
f(X) € GL(f(R);S). Then there exists the universal localization of R with
respect to X. It is an R-ring A : R — Ry such that every element from A\(X) is
invertible over Ry and every X-inverting homomorphism from R to another ring
can be factorized uniquely by A (see [19, Theorem 4.1.3]). An Ore localization is a
particular case of universal localization.

A useful result to study rational clousures is Cramer’s rule ([19, Proposition
4.2.3], [20, Proposition 7.1.5]). One of its consequences is the following proposition.
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Proposition 4.1 Let S be a rational closure of R. Then for every matrix A over
S there are k > 1, a matriz A’ over R and matrices P and Q which are invertible

over S such that
A® Ik = PA/Q

4.3 Epic homomorphisms

Let f: R — S be a ring homomorphism. We say that f is epic if for every ring @
and homomorphisms «, 3 : S — @, the equality a o f = fo f implies @« = 5. An
epic R-ring is a pair (S, f) where f : R — S is epic. For simplicity we will write S
instead of (S, f) when f is clear from the context. For example, if S is the rational
closure of f(R) in S, then f is epic.

We will say that two epic R-rings (S1, f1) and (Ss, f2) are isomorphic if there
exists an isomorphism « : S — Sy for which the following diagram is commutative:

R MR
L L f2

Sl — SQ.
Epic homomorphisms can be characterized in the following way.

Proposition 4.2 [107, Proposition XI1.1.2] Let f : R — S be a ring homomor-
phism. Then f is epic if and only if the multiplication map

m:S®rS — S

is an isomorphism of S-bimodules.

More generally if f : R — S is a ring homomorphism, we say that s € S is
dominated by f if for any ring () and homomorphisms «, 8 : S — @, the equality
ao f = o fimplies a(s) = B(s). The set of elements of S dominated by f is a
subring of S, called the dominion of f. The following result implies that an epic
homomorphism from a von Neumann regular ring is always surjective.

Proposition 4.3 [107, Proposition XI1.1.4] Let U be a von Neumann regular ring.
Then for every ring homomorphism v : U — S, the dominion of 7y is equal to y(U).

4.4 A characterization of epic division R-rings

An epic division R-ring is an epic R-ring f : R — D, where D is a division ring.
Applying Proposition 4.3, it is not difficult to see that for an epic division R-ring
(D, f), D is the rational closure of f(R) in D.

If R is a commutative ring, then there exists a natural bijection between Spec(R)
and the isomorphism classes of division R-rings: a prime ideal P € Spec(R) corre-
sponds to the field of fractions Q(R/P) of R/P and f : R — Q(R/P) is defined as
f(r)=r+ P for any r € R.

If R is a domain and satisfies the left Ore condition then its classical left ring
of fractions Q;(R) is a division ring. Moreover, as in the commutative case, the
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division R-ring Q;(R) is the unique (up to R-isomorphism) faithful division R-ring.
Thus, if R is a left Noetherian ring, then there exists a natural bijection between
the strong prime ideals of R (ideals P such that R/P is a domain) and the
isomorphism classes of division R-rings.

For an arbitrary ring R, P. Cohn proposed the following approach to classify
division R-rings. If D is a division ring, let rkp(M) be the D-rank of a matrix M
over D.

Theorem 4.4 [19, Theorem 4.4.1] Let (D1, f1) and (Da, f2) be two epic division
R-rings. Then (D1, f1) and (D2, f2) are isomorphic if and only if for each matrix
M over R

rkp, (f1(M)) = rkp, (f2(M)).

5 Sylvester rank functions

The functions rkg/n and rky which have appeared in Sections 1 and 2 are examples
of Sylvester matrix rank functions on the algebra K[G]. In this section we introduce
the notion of Sylvester rank functions on an arbitrary algebra and study their
properties.

5.1 Sylvester matrix rank functions

Let R be an algebra. A Sylvester matrix rank function rk on R is a function
that assigns a non-negative real number to each matrix over R and satisfies the
following conditions.

(SMatl) rk(M) = 0 if M is any zero matrix and rk(1) = 1;
(SMat2) rk(M;Ms) < min{rk(M;),rk(M2)} for any matrices M; and My which can
be multiplied;
My O
0 M
M, Ms
0 M-
appropriate sizes.

(SMat3) rk < ) = rk(M;) + rk(Ms) for any matrices My and Mo;

(SMat4) rk( > > rk(M;) + rk(Ms) for any matrices M, My and Mz of

If ¢ : F1 — F5 is an R-homomorphism between two free finitely generated R-
modules F} and Fy, then rk(¢) is rk(A) where A is the matrix associated with ¢
with respect to some R-bases of F} and Fy. It is clear that rk(¢) does not depend
on the choice of the bases.

The following elementary properties of a Sylvester matrix rank function can be
obtained from its definition.

Proposition 5.1 Let R be an algebra and let tk be a Sylvester matriz rank function
on R. Let A, B € Maty,xm(R), and C € Mat,,«x(R). Then

1. rk(A+ B) <rk(A) + rk(B).
2. 1k(AC) > rk(A) + rk(C) — m.
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Proof The first statement is proved in [56]. Let us show (2). Indeed, we have
that

SMat2
rk(AC) +m SMat3 < AC Onxm > >t

Omxk Im B

rk 0m><n _Im AC 0n><m Ik kam o
In A Omxk Im -C Im B

_ SMat4
rk ¢ I > 1k(A) +rk(C).
0n><k A

O

For any algebra R we denote by P(R) the set of the Sylvester matrix rank
functions on R. The set P(R) is a compact convex subset of functions on matrices
over R (with respect to the point convergence topology). It is hard to calculate
P(R) for a general algebra R (see [57] where various examples of explicit calculations
of P(R) are presented).

For a given homomorphism f : R — S of algebras, we define f# : P(S) — P(R)
by

(k) (M) = rk(f(M)), where M is a matrix over R.

5.2 Sylvester matrix rank functions and rational closures

Proposition 5.2 Let f : R — S be a homomorphism of algebras. Assume that S
is a rational closure of f(R). Then f# is injective.
Moreover, if S = Ry, is a universal localization, then

Im f# = {rk € P(R) : tk(A) =n if A€ XN Mat,(R)}.

In particular, if T is a multiplicative set of non-zero-divisors of R, (T, R) satisfies
the left Ore condition and S = TR, then

Im f# = {rk € P(R) : rk(t) =1 for allt € T}.

Proof The first part of the proposition follows from Proposition 4.1 and the
second one is proved in [105, Theorem 7.4]. The proof of [105, Theorem 7.4] is quite
technical. Let us present here the proof of the last statement of the proposition,
which will also give an idea about the proof of the general case.

Let rk € P(R) be such that rk(¢) = 1 for all t € T. We want to extend rk on
T7'R. Given A = t7'B € (t € T, B a matrix over R) we put tk(A) = rk(B).
The main difficulty is to show that this definition does not depend on the choice of
the pair (t, B). Assume that we can write A also as t;'By" (t; € T, By a matrix
over R). We have to show that rk(B) = rk(B;). Applying the definition of Ore
condition, we obtain that there are a,b € R such that at = bty € T and aB = bB;.
Since rk(at) = rk(bt2) = 1, we have that rk(a) = rk(b) = 1. Hence

Proposition 5.1(2) Proposition 5.1(2)
= T == T

rk(B) k(aB) = tk(bB;) k(By).
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Thus, the extension of rk on TR is well-defined. Now, it is not difficult to see
that it is indeed a Sylvester matrix rank function on 7 'R. U

In view of this proposition, we will identify P(Ryx) with the corresponding subset
of P(R).

5.3 Sylvester module rank functions

A Sylvester module rank function dim is a function that assigns a non-negative
real number to each finitely presented R-module and satisfies the following condi-
tions.

(SModl) dim({0}) =0, dim(R) = 1;
(SMOd2) d1m(M1 D MQ) = dim M7 + dim Mo;
(SMod3) if My — My — M3 — 0 is exact then

dim Mj + dim M3 > dim My > dim Ms3.

Given a matrix A € Maty, xm,(R) we put My = R™/(R™)A. It is clear that M4
is a finitely presented left R-module. Conversely, given a finitely presented left
R-module M we can find a matrix A € Mat, x,(R) such that M4 = M. This
observation allows to construct a natural one-to-one correspondence between the
Sylvester matrix rank functions and the Sylvester module rank functions.

Proposition 5.3 (/83/,/105, Chapter 7]) Let R be an algebra.
1. Let rk be a Sylvester matriz rank function on R and let A € Mat,xm(R). We
put
dim(Ma) = m — rk(A).
Then dim is well defined and it is a Sylvester module rank function on R.

2. Let dim be a Sylvester module rank function on R and let A € Maty,xm(R).
We put
rk(A) = m — dim(My).

Then tk is a Sylvester module rank function on R.
If rk and dim are related as described in Proposition 5.3 we will say that they are
associated.
5.4 The pseudo-metric induced by a Sylvester matrix rank function

Given a Sylvester matrix rank function rk on R, we define
(S(.fE,y) = rk(x - y)7 T,y € R.

Proposition 5.1(1) implies that the function § is a pseudo-metric on R. Even though
0 is not always a metric, we refer to it as rk-metric for convenient abbreviation.
Observe that the set

kerrk = {a € R: rk(a) =0}
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is an ideal of R. We say that rk is faithful if kerrk = 0. By Proposition 5.1(1),
rk may be seen as a faithful Sylvester matrix rank function on the quotient ring
R/kerrk, and so, 0 is a metric on R/kerrk. Since the multiplication and addition
on R are uniformly continuous with respect to J, the (Hausdorff) completion of
R/ kerk, which we denote by Ry (or simply R when rk is clear from the context)
is a ring. The kernel of the natural map R — R,y is kerrk. The function rk can be
extended by continuity on R, and on matrices over R, and one easily may check
that this extension (denoted also by rk) is a Sylvester matrix rank function on Ryy.

If G'is a group and K a subfield of C, then the completion of Rx/g] with respect

to the rkg-metric is denoted by Ry (g

5.5 Exact Sylvester rank functions

We say that a Sylvester module rank function dim on R is exact if it satisfies the
following condition

(SMod3') given a surjection ¢ : M — N between two finitely presented R-modules,
dimM —dim N = inf{dim L : L — ker ¢ and L is finitely presented}.
The following result is proved by S. Virili in [112].

Proposition 5.4 ([112]) Let R be an algebra and let dim be an exact Sylvester
module rank function on R. For every finitely generated R-module M put

dimM =inf{dim L : L — M and L is finitely presented},
and for every arbitrary R-module put
(LF1) dim M =sup{dim L : L < M and L is finitely generated}.

Then the extended function dim : R-Mod — Rx>g U {400} satisfies the following
condition.

(LF2) if 0 — My — My — M3 — 0 is exact then dim M; + dim M3 = dim M.

A function on R-Mod satisfying (LF1) and (LF2) is called a length function. If
a length function [ satisfies [(R) = 1, then the restriction of [ on finitely presented
R-modules is an exact Sylvester module rank function on R. Moreover, [ can be
recovered from this restriction using the formulas which appear in Proposition 5.4.

Length functions were first considered by D. Northcott and M. Reufel [90], gen-
eralizing the composition length of modules. This concept was investigated later
by P. Vamos [111]. For more recent results the reader may consult [100, 113] and
references therein. Note that the most interesting examples of length functions [
on an algebra R do not satisfy the condition {(R) is finite, and so, do not induce
Sylvester module rank functions on R. Thus, the theory of length functions is
almost parallel to the theory of Sylvester module rank functions.
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5.6 Sylvester rank functions on von Neumann regular rings

An arbitrary algebra may not have an exact Sylvester module rank function. How-
ever, if U is von Neumann regular, then, by Proposition 3.1(2), finitely presented
U-modules are projective, and so, all the exact sequences of finitely presented -
modules split. Thus, every Sylvester module rank function on a regular algebra U
is exact. Note also that, by Proposition 3.1(3), a Sylvester matrix rank function on
a von Neumann regular algebra U is completely determined uniquely by its values
on elements from Y. Thus, pseudo-rank functions studied in [46] are exactly our
Sylvester matrix rank functions. Let us mention one result from this book.

Proposition 5.5 [/6] Let U be a von Neumann regular algebra and rk a Sylvester
matriz rank function.

1. The algebra Uy is also von Neumann regular.

2. The following conditions are equivalent:
(a) Z(Us) is a field;
(b) Uy is simple;

(c) 1k is the only Sylvester matrixz rank function on Uyy.

The conditions of the previous proposition hold in the following example. Recall
that a group G is called ICC group if all the non-trivial conjugacy classes of G
are infinite.

Proposition 5.6 [56] Let G be an ICC group and K a subfield of C closed under
complex conjugation. Then Z(Rg|q)) is a subfield of C.

We finish this subsection with the following definition. A Sylvester matrix rank
function rk on an arbitrary algebra R is called regular if there exists an algebra
homomorphism f : R — U such that I/ is von Neumann regular and rk € Im f#. In
this case U is called a regular envelope of rk. Clearly, rk may have many regular
envelopes. Later we will see that in some cases we can speak about the canonical
regular envelope attached to rk. At this moment all known examples of Sylvester
rank functions on an algebra are regular.

Question 5.7 Let R be an algebra. Is it true that every Sylvester rank function
on R is regular?

5.7 Ultraproducts of von Neumann regular rings

Given a set X, an ultrafilter on X is a set w consisting of subsets of X such that
1. the empty set is not an element of w;

2. if A and B are subsets of X, A is a subset of B, and A is an element of w,
then B is also an element of w;

3. if A and B are elements of w, then so is the intersection of A and B;
4. if A is a subset of X, then either A or X \ A is an element of w.
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If a € X, we can define w, = {A C X : a € A}. It is a ultrafilter, called a
principal ultrafilter. It is a known fact that if X is infinite, then the axiom of
choice implies the existence of a non-principal ultrafilter.

Let w be a ultrafilter on X and {a; € R};cx a family of real numbers. We write
a = liOIJnai if for any € > 0 the set {i € X : |a — a;| < €} is an element of the

ultrafilter w. It is not difficult to see that for any bounded family {a; € R}iex
there exists a unique a € R such that a = lim a;.
w

Now, let {U;}icx be a family of von Neumann regular rings and for each i € X

let rk; be a Sylvester matrix rank function on ;. Then H U; is a von Neumann
1€X
regular ring. Let w be a ultrafilter on X. We put
rk,,(r) = limrk;(r;), where r = (ry,re,...) € H U;.
w 1€X

One easily obtains that rk,, is a Sylvester matrix rank function on H U;. We define
1€X

Hlxli = (H U;)/ ker(rky,).

1€eX
Then Hui is a von Neumnn regular ring and rk,, is a faithful Sylvester matrix

w
rank function on HL{Z-.

w
For an algebra R, we denote by P,.4(R) the space of regular Sylvester matrix
rank functions on R. The previous construction implies the following proposition.

Proposition 5.8 [56] Preq(R) is a closed convex subset of P(R).

5.8 Sylvester rank functions on epic von Neumann regular R-rings

Let R be an algebra and let f : R — U be an epic von Neumann regular R-ring.
From the following proposition, proved in [56], we obtain that any Sylvester matrix
rank function on U is completely determined by its values on matrices over f(R).

Proposition 5.9 [56] Let R be a subalgebra of a von Neumann regqular algebra U.
Assume that the embedding of R in U is epic. Then for any ri,...1r, € U, there is
a matriz M of size a x b over R and there are vectors vy, . ..,v; € R? such that for
every ti,...,tr € R and every Sylvester matriz rank function rk on U,

M ) k(M)

k(t ot =rk
T (17"1—|— + krk) r (t1v1+---+tk7}k

This proposition can be applied, for example, in the case where U is a division al-
gebra. But in this case it follows already from Proposition 4.1. Another interesting
application of this proposition is presented in Subsection 5.10.

In the proof of Proposition 5.9 the condition that U/ is regular plays an important
role. Nevertheless, we want to raise the following question.
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Question 5.10 Let f: R — S be an epic homomorphism between two algebras.
Is it true that the map f# : P(S) — P(R) is injective?

If S is a rational closure of R, then a positive answer on the previous question
follows from Proposition 5.2.

Proposition 5.9 suggests that if R is an algebra and rk is a Sylvester matrix rank
function on R having an epic von Neumann regular envelope, then this envelope
might be “canonical”. As we have seen this happens in the case where the envelopes
are division algebras. We formulate this precisely as the following question.

Question 5.11 Let rk be a Sylvester matrix rank function on R having two epic
von Neumann regular envelopes U; and Us. Is it true that U; and Uy are isomorphic
as R-rings? More generally, let U be another von Neumann regular envelope for
rk. Is there an R-homomorphism f : U; — U7

As we have mentioned before, the answer to both questions is positive if U; is a
division algebra.

5.9 Sylvester matrix rank functions on *-regular rings

Now consider Sylvester rank functions on *-regular rings. In the following propo-
sition we see that a Sylvester matrix rank function on a %-regular ring is always
*-invariant.

Proposition 5.12 Let rk be a Sylvester matrixz rank function on a x-regular ring
U and M € Maty,xm(U). Then rk(M) = rk(M*).

Proof Without loss of generality we may assume that n = m and M € Mat,, ().
It is clear that if a,b € U and ald = bU or Ua = UD, then rk(a) = rk(b). Hence
for every r € U,

rk(r) = rk(RP(r)) = rk(LP(r*)) = rk(r"). (5)
Observe that the function rk* defined as
rk*(X) = rk(X™), X is a matrix over R,

is also a Sylvester matrix rank function on U/. We want to show that rk = rk*.
This will follow immediately if we show that the Sylvester module rank functions
dim and dim* associated with rk and rk* respectively, defined as in Proposition
5.3, coincide. Note that if X € Maty,x.m, (U), then

rk(X) =m —dimU™/U" - X) = dim (U™ - X) and
k(X)) = m — dim* U™ U - X) = dim* (U™ - X).
Now, from (5) we obtain that
dim(Ur) = rk(r) = rk*(r) = dim™ (Ur).

Note also that, by Proposition 3.1, any left finitely presented U/-module is a direct

sum of modules Ur (r € U). Hence we are done.
]
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5.10 =x-regular Sylvester rank functions

Now we consider the representations of *-rings in #-regular algebras. In [56] the
following proposition was proved.

Proposition 5.13 [56] Let R be a x-ring, U a x-reqular ring and f : R — U a
x-homomorphism. Then f: R — R(f(R),U) is epic.

By analogy with the notion of epic division R-rings, introduced by P. Cohn we
propose the following definition. Let R be a *-ring. An epic *-regular R-ring is
a triple (U, rk, f), such that

1. U is x-regular ring;

2. rk is a faithful Sylvester matrix rank function on U;

3. f: R— U is a *-homomorphism;

4. R(f(R),U) =U.
We will write simply (U, rk) or U instead of (U, 1k, f) if f or (rk, f) are clear from
the context. Observe that if U is a division algebra, there is only one possibility
for rk. But in general this is not the case.

We will say that two epic x-regular R-rings (U,rky, fi) and (Us,rke, f2) are
isomorphic if there exists an *-isomorphism « : Uy — Uy for which the following
diagram

R SR
Lh P
u1 — Z/[Q

is commutative and rky(a(a)) = rky(a) for every a € U;.

The following result, which follows from Proposition 5.9, shows that, as in the
case of epic division R-rings, the values rk(f(M)), where M is a matrix over R,
determine the epic *-regular ring (U, f,rk) uniquely up to isomorphism.

Theorem 5.14 [56] Let (U, 1k, f1) and (Us, ke, f2) be two epic x-regular R-rings.
Then (Uy,rky, f1) and (Ua,tke, f2) are isomorphic if and only if for every matriz
M over R

rky (f1(M)) = rka(f2(M)).

A Sylvester matrix rank function rk on an a *-algebra R is called x-regular if
there exists a *-algebra homomorphism f : R — U such that U/ is x-regular
and tk € Im f#. The previous theorem shows that the epic *regular R-ring
(R(f(R),U),rk, f) is completely determined by rk. We say that R(f(R),U) is
the x-regular R-algebra associated with rk.

We denote by P,.cq(R) the space of x-regular rank functions on R.

Proposition 5.15 [56] Let R be a x-algebra. Then Pireq(R) is a closed convex
subset of P(R).

By Theorem 5.14, every element of P,,.4(R) has a canonical envelope if we require
that this envelope has a compatible x-structure. It will be interesting to understand
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whether the same holds without this additional assumption and whether Question
5.11 has a positive solution in this particular case.

Question 5.16 Let R be a *-ring and rk € Py¢q(R). Is it true that the two
questions in Question 5.11 have a positive answer for rk?

6 Algebraic reformulation of the strong Atiyah and Liick approx-
imation conjectures

6.1 An algebraic variation of the strong Atiyah conjecture

In this subsection we formulate an algebraic variation of the strong Atiyah conjec-
ture inspired by results of A. Knebusch, P. Linnell and T. Schick from [63]. First let
us present Linnell’s reformulation of the strong Atiyah conjecture for torsion-free
groups.

Theorem 6.1 [68] Let K be a subfield of C closed under complex conjugation. Let
G be a torsion-free group.Then G satisfies the strong Atiyah conjecture over K if
and only if Ri(q) is a division algebra.

Let R be an algebra. We denote by Ky(R) the abelian group generated by the
symbols [P], where P runs over all finitely generated projective R-modules, with
the relations [Pl] + [PQ] = [Pg} if P Py, = Ps.

Every homomorphism f : R — S induces a map f# : Ko(R) — Ko(S) that sends
[P] to [S ®g P]. For any finite subgroup H of a group G, the map Ky(K[H]) —
Ko(Rkq) is injective. Therefore we will consider Ko(K[H]) as a subgroup of
Ky (R K[G])-

Conjecture 6.2 (The algebraic Atiyah conjecture for G over K.) Let K be
a subfield of C closed under complex conjugation. Let G be a group with lem(G)
finite. Then {Ko(K[H])}rer(e) generate Ko(Ri(q))-

In view of Theorem 6.1, if G is torsion-free, then the strong Atiyah conjecture
and the algebraic Atiyah conjecture are equivalent, because for a von Neumann
regular ring U the condition Ky(U) =< [U] > is equivalent to U being a division
algebra.

In general, the algebraic Atiyah conjecture implies the strong Atiyah conjecture.
In this survey we will consider only the strong Atiyah conjecture, but it will be
interesting to check whether the algebraic Atiyah conjecture holds in the cases
where we know that the strong Atiyah conjecture holds.

6.2 A structural reformulation of the general Liick approximation con-
jecture

Let H be a countable group and let X be a set on which H acts on the left side.
Assume that H acts freely on X and H\X is finite. We denote by Uy (I*(X)) the
algebra of unbounded operators on 12(X) commuting with the left H-action.
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If we fix a set of H-representatives X = {x1,...,2,} in X (n = |H\X]|), we
obtain a natural isomorphism of H-Hilbert modules I2(H)" and 12(X):

(a1,...,an) — a1 + -+ + apxy (a1,...,an ElQ(H)),

which induces a *-isomorphism VU ¢ : Uy (12(X)) — Mat, (U(H)).

Let K be a subfield of C closed under complex conjugation. Let F' be a finitely
generated free group. If F' acts on X on the right and this action commutes with
the H-action, we obtain a *-homomorphism fy : K[F] — Uy (I*(X)).

Now, let us use the notation of Conjecture 2.6. Fix a set of Hp-representatives
X in Xy, put ng, = | Xx| and let

fk = \I/Xk o ka : (C[F] — Matnk(C[Hk])

Remark 6.3 Note that if A € KJ[F], then f;(A) € Mat,, (K[Hg]). Thus, the
w-regular closure R( fx(K[F]), Maty, (U(Hy)) of fr(K[F]) in Mat,, (U(H})) is con-
tained in Mat,,, (Rgm,))-

Conjecture 2.6 claims that klim rkx, = rkg as Sylvester matrix rank functions
—00

on K[F|. However, observe that in general we do not know whether klim rkx,
— 00
exists. In order to avoid this difficulty we will work with rk, = limrky, in-
w
stead of klim rkx, , where w is a non-principal ultrafilter on N. Note that equality
—00

klim rkx, = rkg is equivalent to the equality rk, = rkg for every non-principal
—00
ultrafilter w on N.

Therefore, we fix a non-principal ultrafilter w on N. We can define

fu : C[F] — [ Mat,, U(Hy))

by sending A € C[F] to

fu(A) = (fe(A)).
Then, since { X} approximates G = F//N, ker f,, is the ideal of C[F] generated by
{g—1: g € N}. In particular, f,(K[F]) = K[G]. We put

Ritarw = R(fu(K[F]), | [ Mat,, @(Hy))).

Thus, Ri(g)w 18 a *regular algebra associated with rky, € Pupeq(K[G]).

Now, we reformulate the general Liick approximation conjecture using Theorem
5.14. In the case where G is amenable this result was proven by G. Elek in [32]
and in this general form it appears in [56].

Theorem 6.4 [56] Let K be a subfield of C closed under complex conjugation, F
a finitely generated free group and N a mormal subgroup of F. For each natural
number k, let Xy be an (Hy, F')-set such that Hy, is a group that acts freely on Xy
with finitely many orbits. Assume that the family {Xy} approximates G = F/N.
Then the following two conditions are equivalent:
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1. For any matriz A over K[F],

lim rkx, (A) = rkg(4).

k—o00

2. For every non-principal ultrafilter w on N,

(Rk(a) tka) and (Rk(G)w, Tke)

are isomorphic as epic x-reqular K[F]-rings.

7 The solution of the sofic Liick approximation conjecture for
amenable groups over fields of arbitrary characteristic

In this section we explain the proof of the following theorem.

Theorem 7.1 Let K be a field and F' a finitely generated free group. Let { Xk }ren
be a family of finite F-sets. Assume that {Xy} approximates an amenable group
G =F/N. Then

(1) for every A € Maty,sm(K[F)), there exists the limit klim rky, (A);
—00

(2) the limit does not depend on the sofic approzimation { Xy} of G.

Moreover, if we put
rkg = klim rkx, € Preg(K[G])
— 00

(in view of Theorem 10.1 this is coherent with the previous definition of rkg when
K is a subfied of C) and denote by dimg the associated Sylvester module rank
function, then dimg is exact.

Observe that the most interesting case of Theorem 7.1 corresponds to the case
where K is of positive characteristic, because in the case of characteristic 0 we will
prove a much stronger result in Theorem 10.1.

In this general form the theorem is stated for the first time. Several particular
cases were considered previously in the literature.

1. When K = Q, in order to obtain the conclusions of the theorem, one can use
the argument from [76]. A variation of this case appears also in [25].

2. Observe that Conjecture 2.3 for amenable groups is a direct consequence of
Theorem 7.1. In [31] G. Elek proved Conjecture 2.3 for amenable groups. D.
Pape gave an alternative proof of this case in [95].

3. In [30] the theorem is proved, by G. Elek, in the case when X} are built from
a Fglner family. G. Elek also showed that the Sylvester module rank function
dim¢ associated with rke is exact.

4. In [2], it is proved a particular case of the theorem corresponding to the
situation described in the parts (1) and (2) of Conjecture 1.2. This case is
also considered in [14].
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7.1 Sofic approximations of amenable groups

The main idea behind the proof of Theorem 7.1 is to show that any two sofic
approximations of a given amenable group are very similar. This was proved by G.
Elek and E. Szabé in [37]. Let us formulate their result.

Let X be a finite set. The Hamming distance on Sym(X) is defined as follows.

dutorr) - [EEX s o 27

Assume now that F' is a finitely generated free group and let {X;} be a sofic
approximation of G = F'/N. Fix a non-principal ultrafilter on N and let d,, be the
pseudo-distance on [[, Sym(X;):

dw((04), (13)) = 1131 du(oi, 7).

We put N, = {0 € [[;Sym(X;) : du(o,1) = 0} and X, =
The actions of F' on X; induce a homomorphism t;x,3, : F
ker @Z){Xi},w = N.

Now, let {X}} and {X?} be two sofic approximations of G = F/N. We put
YZ-1 = Yi2 = Xi1 X XZ-2 and let F' act on Yi1 by acting only on the first coordinate
and F act on Y2 by acting only on the second coordinate. Then {Y;!} and {Y?}
are two approximations of F'/N.

[1; Sym(Xi)/Ne.
— X,. Clearly

Theorem 7.2 ([37, Theorem 2]) The representations ¢yy1y , and ¢yy2y , are con-
Jjugate.

The proof of this theorem uses in an essential way the results of a fundamental
work of D. Ornstein and B. Weiss [91] on amenable groups.

7.2 Proof of Theorem 7.1

Observe that an infinite subfamily of a family that approximates a group G also
approximates G. Thus, if (1) or (2) does not hold we will be able to find two
families {X}}ieny and {X?}ien such that the limits hm rkX1(A) and hm rsz (A)

exist but they are different. Let us use the notatlon of Theorem 7.2. Then clearly
rkX} = rkyz; and rka = rka‘
On the other hand, Theorem 7.2 implies that
limrky1(A) = limrky2(A)
w i w i
for any non-principal ultrafilter w on N. Thus,

lim rkX1(A) = limrky1(A) = limrky2(A) = lim rsz(A)

i—00 w K w ? 1—+00

We have obtained a contradiction.
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8 Natural extensions of Sylvester rank functions

Let R < S be two algebras and let rk € P(R). In this section we consider the
following question.

Question 8.1 When is it possible to extend rk to a Sylvester matrix rank function
on S?7 If there are several extensions, can we define a canonical one?

We will see that if S is an “amenable” extension of R (we do not have a precise
definition for this notion), then we can expect to be able to construct the “natural”
extension of rk. It will be interesting to investigate further the examples presented
in this section and produce a general definition for natural extensions.

8.1 A generalization of the construction of rkg

The construction of rkg may be generalized in the following may. Let S = R*G be
a crossed product of an algebra R and an amenable group G, that is S = ©geqSy
is a G-graded ring such that S, = R and for every g € G there exists an invertible
g € Sy. Let dim be an exact Sylvester module rank function on R, satisfying

dim L = dim gL, for every g € G, L € R — mod. (6)

Then we can construct a Sylvester module rank function dim on S , which we will
call the natural extension of dim.

Theorem 8.2 ([112]) Let S = R G be a crossed product of an algebra R and an
amenable group G and let dim be an exact Sylvester module rank function on R
satisfying (6). Let M be an S-module. Then
1. Let {F;} be a Folner family of G. For any finitely generated R-submodule K
of M, there exists
dim gK
() = lim T 20er K
2. e(K) does not depend on the Folner family {F;}.

3. dim M = supg e(K) is an exact Sylvester module rank function on S.
If 1k is associated with dim and 1k is associated with dim, we also say that rk is
the natural extension of rk (notice that, by [112], the restriction of rk on R is

indeed equal to rk). The compatibility condition (6) can be also expressed in terms
of rk:

k(A) = 1k(g7' Ag), for every g € G and every matrix A over R. (7)
We can also express rk in terms of k.

Proposition 8.3 Let S = R x G be a crossed product of an algebra R and an
amenable group G and let tk be an exact Sylvester matrix rank function on R
satisfying (7). Fiz {F;} a Folner family of G. Let A € Matyxm(S) be a matriz
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over S and let T be a finite set of elements of G such that the entries of A lie in

>_ger Sg- Denote by
¢ (D S)" = (P 5™

geF; geF;T

the R-homomorphim of free R-modules induced by lright multiplication by A. Then

F(4) = lim )

Thus, in view of Theorem 7.1, if G is amenable, then rkg € P(K[G]) is the natural
extension of rkx € P(K). It seems logical to ask the following questions.

Question 8.4 Let S = R x G be a crossed product of an algebra R and a group
G and let tk € P(R) be G-invariant. Is it possible to extend rk on S7 Assuming
that rk is faithful, is it possible to find a faithful extension?

One of the motivations for these questions is Kaplansky’s direct finiteness conjec-
ture (see Subsection 13.4).

8.2 Other instances of natural extensions

There are other instances where we can speak about the notion of natural extension.
They appeared in the proof of some results from [56]. We call them algebraic and
transcendental natural extensions.

Let R be an algebra and rk a Sylvester matrix rank function on R. Let E/K be
an algebraic extension of fields. Take a matrix A € Mat, xm(R ®x E). Then there
exists a finite subextension Ey/K of E/K such that A € Mat,,xm (R @k Ep).

The action of A € Mat,xm(R @k FEp) by right multiplication on (R @ Ey)"™
defines an R-homomorphism

¢ (Rok Eo)" — (R®x Eo)™

of free R-modules. We put
o rk(¢?)
rk(A) = ———=.
( ) ’EO . K’
Observe that r~k(A) does not depend on the choice of Ey. It is clear that rk is a
Sylvester matrix rank function on R ® ¢ F and we call it the natural algebraic
extension of rtk on RQy F .

Now consider a matrix A € Mat,,«, (R][t]) over the polynomial ring R[t] and let

¢£[t}/(ti) : (R[t]/(tz))” — (R[t]/(ti))m, (a1,...,ap) — (ay,...,a,)A.
We put B
) = )

Proposition 8.5 [112, 56/ Let vk be a regular Sylvester matriz rank function.
Then for every matriz A there exists lim rk;(A), which we denote by rk(A)
11— 00
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Note that rNk(p) = 1 for every 0 # p € K|[t]. Thus, taking into account a remark
after Proposition 5.2, we can think about rk as a Sylvester rank function on R ®
K (t). The Sylvester matrix rank function rk on R ® x K (t) is called the natural
transcendental extension of rk.

As we will see later the notions of natural algebraic and transcendental exten-
sion appear in the proof of Theorem 10.1. We will use them to prove the equality
between some Sylvester matrix rank functions. We can recognize the natural tran-
scendental extension using the following result.

Proposition 8.6 [56] Let U be a von Neumann regular algebra and let tk be a
Sylvester matriz rank function on U. Let 1k’ be a Sylvester matriz rank function
on U[tT] which extends tk. Assume that for any n by n matriz A,

k' (I, + tA) = n.
Then rk’ is the natural transcendental extension of rk.

We want to mention an interesting question, which arose when we were working
on [56]. By Proposition 5.5, if U is a simple von Neumann regular ring and rk is
a Sylvester matrix rank function on U such that U/ is complete with respect to the
rk-metric, then P(U/) = {rk}. Thus, one can expect to be able to describe P(U[t]).
In particular, we want to ask the following question.

Question 8.7 Let U be a simple von Neumann regular ring and rk a Sylvester
matrix rank function on U such that U is complete with respect to rk-metric. Let
K =Z(U). Is it true that P(U @k K(t)) = {rk}?

In [57] we answer this question positively in the case where U is a simple Artinian
ring.
We finish this subsection with the following general question.

Question 8.8 Let R be an algebra and rk € P(R). Let E/K a field extension. Is
there a general definition for the natural extension rk € P(R ®x F) that unifies
the notions of algebraic and transcendental natural extensions introduced in this
subsection?

9 The solution of the strong Atiyah conjecture for elementary
amenable groups over fields of arbitrary characteristic

9.1 A variation of Moody’s induction theorem

Let R be an algebra. We denote by Gy(R) the abelian group generated by the
symbols [M], where M runs over all finitely generated R-modules, with the relations
[M1] 4 [M3] = [M>] if there exists an exact sequence 0 — M; — My — M3z — 0.
If dim is an exact Sylvester module rank function on a Noetherian ring R then
dim can be extended to an homomorphism dim : Go(R) — R. Conversely any
homomorphism ¢ : Go(R) — R such that ¢([R]) = 1 can be viewed as an exact
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Sylvester module rank function on R. Thus, the study of exact Sylvester module
rank functions on R and of the group Go(R) are very related.

Clearly there exists a natural map Ko(R) — Go(R). This is an isomorphism if
any finitely generated R-module has a finite resolution consisting of finitely gener-
ated projective R-modules.

Any flat homomorphism f : R — S induces the natural induction map f :
Go(R) — Gp(S) that sends [M] to [S ®r M]. Recall that the embedding of an
algebra in an Ore ring of fractions is flat. If R % G is a crossed product and H is a
subgroup of GG, then the embedding of R * H into R * (G is also flat.

In [86] J. Moody proved the following result.

Theorem 9.1 Let R be a right Noetherian ring, let G be a polycyclic-by-finite
group, and let F(G) denote the set of finite subgroups of G. Then the natural
induction map

@He}-(g)Go(R x H) = Go(R x G)

18 surjective.

Corollary 9.2 [65] Let R be a left Artinian ring, let G be an elementary amenable
group such that the orders of finite subgroups of G are bounded. Then the following
holds.

1. R*G satisfies the left Ore condition and the ring Q(R* G) is left Artinian .

2. The natural induction map
@He}-(g)Go(R x H) = Go(Qi(R*Q))
18 surjective.

Proof The first part of the corollary is proved in [65, Proposition 4.2]. Let us
prove the second one.

We follow the proof of [65, Lemma 4.1]. First recall an alternative description
for the class of elementary amenable groups given in [65]. Let B denote the class of
all finitely generated abelian- by-finite groups. For any class of groups C we denote
by LC the class of locally-C groups. For each ordinal «, define &, inductively as
follows: & consists of trivial groups. & = (LEy—1)B if a is a successor ordinal.
Ea = Ug<a€p if a is a limit ordinal. Now, U,&, is the class of elementary amenable
groups.

The result will be proved by transfinite induction. Choose the least ordinal «
such that G € &,, and assume that the result is true whenever G € £3 and 8 < «.
Now « cannot be a limit ordinal, and the result is clearly true if a = 0. Therefore
we may assume that o = v + 1 for some ordinal ~.

Take A € LE,. Since Q;(Rx* A) is left Artinian, any finitely generated Q;(R* A)-
module is finitely presented. Hence we obtain that (2) holds for A because it holds
for any finitely generated subgroup of A. Also recall that virtually LE,-groups are
in LE, too (see [68, Lemma 4.9]).
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Since G € &,, there exists a normal subgroup A € L&, such that G/A € B. Let
S be the set of non-zero-divisors of R * A. Then for any normal subgroup N of G
containing A such that N/A is finite we have that

Srern)Go(R = H) = Go(Qi(R* N)) = Go(S~ (R N))
is surjective. On the other hand, applying Moody’s theorem we obtain
Dn/acr(c/a)Go(STHR* N)) = Go(ST (R G))
is surjective. Therefore,
Brerc)Go(R* H) = Go(ST (R G))
is surjective. Since, by [65, Lemma 2.2], the map
Go(S™H (R * G)) = Go(Qu(R * G))

is surjective, we obtain (2) for G.

9.2 The strong Atiyah conjecture for elementary amenable groups

We have the following immediate application of Corollary 9.2.

Corollary 9.3 Let S = Rx* G be a crossed product of an Artinian algebra R and
an elementary amenable group G. Assume that lem(G) is finite. Let rk € P(S) be
the natural extension of an exact Sylvester matrix rank function rk on R.

1. Qi(S) is an envelope of rk.
2. We have the following equality.

<r~k(A) : A is a matriz over S) =
<1"T<(A) : A is a matriz over some Rx H,H € F(Q)).

Proof Observe that if s € S is a non-zero-divisor, then since rk is exact, r~k(s) =1.
Hence, by Proposition 5.2, rk is extended to Q;(5). This implies (1). The second
statement follows from Corollary 9.2.

O

Applying the previous result to K[G], we obtain the positive solution of Conjecture
1.2 (3) and Conjecture 2.2 for elementary amenable groups.

Corollary 9.4 Let G be an elementary amenable group and let K be a field. As-
sume that lem(G) is finite. Then for any matriz A over K|G], rkg(A) € mZ.

Moreover, K[G] satisfies the left Ore condition and Q;(K|[G]) is a left Artinian
envelope of tkg. In particular, if Q;(K[G]) is simple (for example, when K[G] is
prime), then tkq(A) = rkg,(k(a)) (A) for every matriz A over K[G].

Some variations of this result appear in [68] when K is of characteristic 0 and in
[69] when K is of positive characteristic.
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9.3 The Atiyah question in positive characteristic

If G is an amenable group we have constructed rkg as a Sylvester matrix rank
function not only on C[G] but also on K[G] for every field K. In particular, we
can formulate an analogue of Atiyah’s question in characteristic p: is it true that
rk¢ takes only rational values as a Sylvester matrix rank function on IF,[G]? This
question was considered in [45] where it was shown that for every real number r
there exists an amenable group G such that r € Ap,(G). Again, as in the case of
similar examples in characteristic 0, the examples of groups from [45] have finite
subgroups of unbounded order.

10 The solution of the general Liick approximation conjecture for
sofic groups in characteristic 0

In this section we present the main ideas of the proof of Conjecture 2.6 for sofic
groups.

Theorem 10.1 Let K be a subfield of C, F' a finitely generated free group and N
a normal subgroup of F. For each natural k, let Xj be an (Hy, F')-set such that
Hy, is a sofic group that acts freely on Xy and Hi\ Xy is finite. Assume that { Xy}
approzimates G = F/N. Then for every A € Maty,xm(K[F]),

lim rkyx, (A) = rkg(4).
k—ro0

The proof combines several different tools. The case where K is a number field is
obtained using analytic methods. In particular, the proof of this case uses a partial
solution of the determinant conjecture. We will explain this approach in Subsection
10.3. This idea has its origin in a very influential paper by W. Liick [76] and was
developed later in [26, 35]. The passage from algebraic number fields to arbitrary
fields K uses algebraic techniques presented in Sections 3, 4 and 5. These methods
were introduced in [56].

10.1 Representations of operators

Let G be a countable group. The main results of this section are about the G-
equivariant operators ¢ : [?(G)" — l2(Cj‘)m that can be realized as the multiplica-
tion on the right side by some matrix A € Mat,,», (C[G]):

d(v1,. . vp) =14(01, ) = (V1. .., 00) A, v € ZQ(G).

More concretely, we are interested in the value rkg(A). Let Go be the subgroup of
G generated by the group elements of GG involved in the coefficients of A . Then

tkg(A) = rkg, (A).

Thus, without loss of generality, we can assume that G is finitely generated.
Since we consider different approximations of the operator 3, it is convenient
for us to consider r4 in the form ¢4 (as defined in Subsection 2.1). Here A €
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Mat,,xm(C[F]), F is a free finitely generated group, G = F/N and A coincides
with the image of A in Mat,,x.m (C[G]).

Different types of approximations, that we use in the paper, lead us not only to
consider ¢4 but also H-equivariant operators ¢% : [2(X)™ — 12(X)™ (such as it has
been defined in Subsection 2.6), where H is a countable group, X is an (H, F')-set
such that H acts freely on X and H\X is finite.

For any = € X we denote by x; the element of (12(X))" having x in the ith entry
and 0 in the rest of the entries. Note that 12(X) 2 12(H)"\XI as H-Hilbert modules,
and so, we can, if we need it, represent qb§ again as the multiplication on the right
side of I2(H)H#\XI" by some matrix over C[H]. For this we fix a set of representa-
tives X of H-orbits in X and denote by

Ag = (bxiy;)ayex 1<icni<icm
a | X|n x | X|m matrix over C[H], such that if z € X we have
P (%) = ;A = Z bxiy; ¥i-
yeX,1<j<m

In the following lemma we collect the properties of the matrices A ¢ which we will
need later.

Lemma 10.2 The following properties hold.
1. Let rg_ : P(H)XIM 5 2(H)XI™ be the operator that can be realized as

multiplication on the right side by the matriz Ag. Then

>

rky(Ag) = |

2. If A, B € Mat,,(C[F]), then (AB)x = -By.

3. If A € Mat,xm(C[F]), then (A%) g = (Ag)*.

| tkx (A).

|5

For any element f = >,y fuh (fa € C) of the group algebra C[H] we denote
by
S(f)=Kh: fn# 0}

the size of the support supp f of f and we put

HEDI Y

heH

If M = (mj;) is a matrix over C[H], then we define
S(M) = max » " S(my;) and |M| = max [m;|.
5 i
The parameter S(M) was introduced in [26]. The parameter |M| is a variation

of the parameter |M| that appears also in [26]. The following lemma is a direct
consequence of the definitions.
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Lemma 10.3 We have that S(Ag) and |Ag| do not depend on X and moreover
S(Ax) < S(A) and [Ax]| < |A].

As corollary we obtain a uniform upper bound for the norm of gi)’;‘( that depends
only on the matrix A and not on the set X (we follow the proof of [26, Lemma
3.15]).

Lemma 10.4 We have that
1. Foranyz,y€ X,1<i<nandl <j<m,

|(@% (xi),y5)| < |Ax].
2. Foranyy e X and 1 < j <m,

{(z,) € X x {1,...,n} : (@% (xi),y;) # 0}] < S(Ax).

3. |loxll < \/S(Ax)S(A%)|Axg| < /S(A)S(A)|A].

Proof The first and the second statements are clear. Let us prove the third one.
Let v = Z vy, X; € 12(X)" (vx, € C). Then

zeX,1<i<n

lex > =" > o), y)))* =
yeX,1<j<m
2
by (1) and (2)

> S o (08 (xi),y5) <

yeX,1<j<m |ze€X,1<i<n

SAD (A )] > jox,|? =
YeX,1<j<Sm ze X, 1<i<n, (¢4 (x;),y;)#0
o by (2)
SARDIAx)? > > ox,? <
TEX SIS ye X 1<j<m, (xi,6% " (¥;))7#0

SADSAD (AN Y el = SADSED(A 2 E

zeX,1<i<n

S(A)S(A) AP v]*.

O

10.2 The probability measure associated with ¢‘)4(

Let F be a free finitely generated group, H a countable group and X an (H, F')-set
such that H acts freely on X and H\X is finite. Let A be a matrix over C[F]. The
operator gbé‘(* is adjoint to the operator gb’;‘(. Observe also that ker gbﬁ‘( = ker gb’;‘(A*.
Thus, the change of A by AA* allows us to assume that A in Conjecture 2.6
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is square and hermitian (x-symmetric) and so the operators qb’;(k and d)é are self-
adjoint and positive. Therefore, from now on, we will assume always that A = BB*
for some B € Mat,,xm (C[F]). Let us recall the following result from the theory of
self-adjoint operators on a Hilbert space.

Proposition 10.5 [64, Proposition 3.11] Let H be a Hilbert space, T € B(H) a
self-adjoint operator and v € H a fixed vector. There exists a unique positive Radon
measure i on Spec(T'), depending on T and v, such that

/ fdu = (f(T)v,v), for all continuous functions f on Spec(T).
Spec(T)

In particular, we have p(Spec(T)) = ||v||?; so it is a finite measure.

The measure p from the proposition is called the spectral measure associated
to v and T. In a similar way we can associate to the operators (;5‘)4( probability
Radon measures p§ on [0,a], where a = /S(A)S(A*)|A| (see Lemma 10.4). Tt
can be done in the following way.

Fix a set X of representatives of H-action on X. For each Z € X and 1 < i < n,

let (u%)z; be the Radon measure associated to (0,...,%,...,0) (Z is on the ith
place) and ¢‘)4(. Now, we put

1
M?(:@ Z (M?{)m-

z€X,1<i<n

If G is a group, then ué will denote the measure associated with qbé.

Let S be a metric space with its Borel o-algebra . We say that a sequence
of positive probability measures p; (i € N) on (S,3) converges weakly to the
measure p, if

/ fdp; — / fdu (when i — o00)
S S

for all bounded, continuous functions f on S.

From now on, let F' be a finitely generated free group and N a normal subgroup
of F. For each natural k, let Xj be an (Hy, F')-set such that Hj is a countable
group that acts freely on X and Hy\ X is finite. Assume that {X}} approximates
G = F/N. Let A = BB* for some B € Mat,,xm (K[F]).

Lemma 10.6 The measures ,u‘)‘}k converge weakly to ,ué.

Proof We should check that for any continuous function f on [0, a]
fux, — / fdug.
[0,a] [0,a]

Since, by the Weierstrass Approximation Theorem, any continuous function can be
approximated by polynomials, we can assume that f = x*. Note that

/ :L‘Zd,u’)q( _ Trp, (gbl)qfk)z _ Trm, (bl)q(; '
[0,a] P [ H\ Xk | Hjo\ X |
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Now, since X}, approximate G, we obtain that

Al

Ter ¢Xk k—oco Al - A
Trg ¢ :/ z'dup.
| Hp\ Xk | “ [0,a] fe

]

Clearly the previous lemma does not imply directly that u‘;‘(k({()}) converges to
14({0}) (note that this is an equivalent reformulation of Conjecture 2.6). However,
it implies one of the two inequalities of Conjecture 2.6.

Proposition 10.7 (Kazhdan’s inequality) The following inequality holds:

lim sup dim x, ker ¢34(k < dimg ker ¢é.
k—o00

Proof Note that by the Portmanteau theorem (see, for example, [27, Theorem
11.1.1)),
pA(C) > limsup uf(k(C’) for all closed sets C' of [0, al. (8)

k—o0
Thus, we obtain the following

dimg ker ¢& = p&({0}) > lim sup u‘;{k({O}) = lim sup dimx, ker ¢}4(k.
k—o0

k—o0

10.3 The determinant conjecture

Observe that the Portmanteau theorem i