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0. Introduction

0.1. In 1994 Wolfgang L̈uck [L] proved a beautiful theorem stating that von
Neumann Betti numbers of the universal covering of a finite polyhedron can be
found as the limits of the normalized Betti numbers of finitely sheeted normal
coverings. Before L̈uck it was only known that there is an inequality (called
Kazhdan’s inequality [Ka], cf. also Gromov [Gr], pages 13 and 153).

One of the goals of the present paper is to generalize the Lück’s theorem
in two directions. First, instead of finitely sheeted normal coverings we consider
flat vector bundles of finite dimension. Secondly, instead ofL2-Betti numbers we
study the von Neumann dimensions of the homology of infinite dimensional flat
bundles determined by unitary representations in a von Neumann category with
a trace.

The other main purpose of this paper is to investigate the situations, when the
statement of the L̈uck’s theorem in its original form is incorrect. We show that the
correcting additional term has a very interesting meaning (the torsion dimension);
it can be understood in the framework of the formalism of extended cohomology
and von Neumann categories. As examples in the paper show, vanishing of this
correcting term happens in fact rarely, under very special arithmetic assumptions.

0.2. In order to illustrate our results, we formulate here three approximation the-
orems, dealing with the towers of coverings and theL2-Betti numbers, which are
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corollaries of the main Theorem 9.2 below. The first (Theorem 0.3) generalizes
the Lück’s theorem by admitting towers of non-normal finitely sheeted coverings.
The second (Theorem 0.4) generalizes Theorem 0.3 by allowing twisted coeffi-
cients; here we impose some important restrictions coming from the algebraic
number theory.

0.3. Theorem. Let π be an infinite discrete group and letπ ⊃ Γ1 ⊃ Γ2 ⊃ . . .
be a sequence of subgroups of finite index. For any k= 1,2, . . . denote by nk the
total number of the subgroups ofπ, conjugate toΓk; given g ∈ π, we denote by
nk(g) the number of subgroups conjugate toΓk, containingg. Suppose, that for
g /= 1 holds

lim
k→∞

nk(g)
nk

= 0. (0-1)

For any finite polyhedron X withπ1(X) = π, consider[π : Γk ]-sheeted coverings
X̃k → X corresponding to the subgroupsΓk ⊂ π, where k= 1,2, . . . . Then the
sequence of the normalized Betti numbers

lim
k→∞

dimHi (X̃k)
[π : Γk ]

= b(2)
i (X) (0-2)

converges to the L2-Betti number b(2)
i (X).

Proof of Theorem 0.3 will be given in Sect. 9.
Note that the condition (0-1) of Theorem 0.3 implies thatπ is residually

finite: for fixed k denote byPk ⊂ π the intersection of all the subgroups ofπ,
conjugate toΓk ; then because of (0-1) we have∩Pk = {1}.

Assuming that all subgroupsΓk ⊂ π are normal, Theorem 0.3 reduces to the
theorem of L̈uck.

Here is another generalization of the theorem of Lück:

0.4. Theorem. Letπ be an infinite discrete group and letπ ⊃ Γ1 ⊃ Γ2 ⊃ . . . be a
sequence of normal subgroups of finite index such that the intersection∩Γk = {1}
is trivial. Let

ρ : π → Mat(m × m, o) (0-3)

be a unitary representation, whereo denotes the ring of algebraic integers in
an algebraic number fieldF ⊂ C. We assume thatF comes imbedded into
C such that it is invariant under the complex conjugation and we consider the
induced involution onF and ono. For any finite polyhedron X withπ1(X) = π,
consider the normal covering̃Xk → X , where k= 1,2, . . . , corresponding to the
subgroupΓk and denote by Vk the flat vector bundle over̃Xk, determined by the
representationρ, restricted ontoΓk. Then the sequence

lim
k→∞

dimHi (X̃k ,V k)
dimV k · [π : Γk ]

= b(2)
i (X) (0-4)

converges to the L2-Betti number b(2)
i (X) of X .
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The proof of Theorem 0.4 will be given in 9.3; it follows from a more general
Theorem 9.2, dealing with sequences of flat bundles, satisfying some arithmeticity
conditions, and such that their normalized characters converge to the character of
a unitary representation in a von Neumann category. The properties of arithmetic
approximation include an important condition on the sequence of Galois groups
acting on the characters of the approximating sequence of representations; we
show in Sect. 10 that the theorem becames false, if this condition is violated.

It is interesting to emphasize that under the conditions of arithmetic approx-
imation the dimensions of the flat bundles, approximating a von Neumann flat
bundle, have to tend to infinity.

Here is another corollary of Theorem 9.2, which we prove in Sect. 9:

0.5. Theorem. Let X be a finite polyhedron, and letρ : π1(X) → Mat(m ×
m, oF ) be a unitary representation, whereF ⊂ C denotes a cyclotomic field
and oF ⊂ F denotes its ring of algebraic integers. Suppose thatρ is injective
and its image has trivial intersection with the the center of the matrix algebra
Mat(m×m, oF ). LetE → X denote the flat vector bundle of rank m determined
by the representationρ. Then

lim
k→∞

dimHi (X,E ⊗k)
(dimE )k

= b(2)
i (X). (0-5)

A more general statements of this type can be found in Sect. 9, cf. Theorem
9.6.

0.6. In this paper we use the language of von Neumann categories, which pro-
vides a natural environment for developing theL2-homology theory, cf. [F]. We
review this material briefly in Sect. 1. Traces on von Neumann categories play
an important role; the traces allow to assign dimensions to objects of the von
Neumann category, which generalize the von Neumann dimension.

Given a polyhedronX and a representation of the fundamental groupπ of X
on an object of a von Neumann category with a trace, they determinea character
onπ. It is a class functionχ : π → C, which satisfies certain positivity condition,
cf. Sect. 7. We show here that knowing this character as the only information
about the representation allows to find the von Neumann Betti numbers and the
spectral density function of the extendedL2-homology. Conversely, we show
that one may construct von Neumann categories with traces starting from class
functions on the fundamental groupπ.

The problem of describing the behavior of theL2-invariants under deforma-
tions of the von Neumann representation, seems to be of central importance.
For example, one wants to approximate von Neumann representations by finite
dimensional ones (as in the Lück’s theorem). Since the character of a von Neu-
mann representation determines completely the most importantL2-homological
invariants, we study situations, when we have a sequence of finite dimensional
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representations with the property that their normalized characters converge (point-
wise, i.e. as functions on the groupπ) to the character of the given infinite di-
mensional representation. Our aim is to find the homological (spectral) invariants
corresponding to the infinite dimensional representation in terms of the approxi-
mating finite dimensional family; this seems to be a natural generalization of the
situation studied by L̈uck [L].

0.7. It turns out that any approximating sequence of finite dimensional represen-
tations can also be treated as a single representation is a finite von Neumann
category. Moreover, this von Neumann category admitsa Dixmier type(i.e. not
normal) trace; the construction of this trace uses universal summation machines
of von Neumann [vN]. Note that Dixmier type traces play a very important role
in the noncommutative geometry of A. Connes [C]. We show in Sect. 2, that not
normal traces allow to define a dimension type function for the torsion objects
of the extended category. We call this functionthe torsion dimension. Its main
property is that it determines a non-trivial homomorphism on the Grothendieck
group of the torsion subcategory.

This von Neumann category allows to studythe growth processes- families
of finite dimensional chain complexes. A sequence of flat bundles over a finite
polyhedron (more precisely, the corresponding sequence of the chain complexes)
is an instance of a growth process. Any growth process defines its asymptotic
invariants: the projective dimension, the torsion dimension, and the spectral den-
sity function. As another geometrically interesting example of growth processes
we may mention the sequence of choppings (exhaustion) of a non-compact Rie-
mannian manifold.

0.8. In the most general approximation theorems established in Sect. 8 (cf. The-
orems 8.2, 8.3), we find that the torsion dimension of the extended homology
appears as the additional correcting term. In many cases one may expect the
torsion dimension to be independent of the choice of the summation machineω,
which is a part of the Dixmier type trace. We show that such independence hap-
pens in the analytic situation (Theorem 8.4). We also analyse examples showing
that sometimes one may realize a sequence of approximating Betti numbers by
an arbitrary sequence consisting of 0’s and 2’s, cf. 6.3.

However, if we want to guarantee vanishing of the torsion dimension in the
general approximation theorem 8.2, we have to impose some assumptions from
algebraic number theory. The idea ofintegrality is also very important in the
original Lück’s theorem. We develop this idea further, by allowing representa-
tions over the algebraic integers of algebraic number fields; this adds flexibility
and makes possible many interesting applications.

0.9. Finally, I want to mention an approximation theorem of a different type;
it is Theorem 11.1. Here we assume that the fundamental group admits a chain
of normal subgroups with index being a power ofp, wherep is a fixed prime
number. We show that the Betti numbers over the finite fieldFp behavein a
monotone fashion; this produces an inequality
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b(2)
i (X) ≤ dimFp Hi (X,Fp) (0-6)

between theL2-Betti numbers and the usualFp-homology, cf. Corollary 11.2.

0.10. This paper was written while the author was visiting IHES in Bures-sur-
Yvette (France); I am very thankful to the IHES for hospitality.

I am also grateful to D. Burghelea, A. Connes and M. Gromov for a number
of stimulating discussions.

1. A review of extendedL2-homology, von Neumann categories, and traces

Intuitively, the extended homology provides a rigorous formalism to study a
homology theory based on the (usual) infiniteL2-cycles together with the “cycles”
of the form

Fig. 1

More precisely, we study geometry of non-compact manifolds or flat infinite
dimensional bundles over compact manifolds; the cycle on the Fig. 1 above
represents in fact a sequence of cyclescn, wheren = 1,2, . . . such that eachcn

is a boundary, but thesizeof a minimal chain, spanned bycn is much greater
(asymptotically) than the volume ofcn.

A precise definition of the extendedL2 homology uses a generalization of the
notion of Hilbert space – the functor of extended homology assigns to a manifold
such generalized Hilbert space. It turns out that the familiar category of Hilbert
spaces is not good enough; we complete it by adding“torsion Hilbert spaces”,
such that the obtained category becomes an abelian category. In order to obtain
a good category and to include some interesting applications, it is reasonable
to study this construction of abelian extension starting from a von Neumann
category.

In this section we will give a brief review of the notion of von Neumann
category, the extended abelian categories, and traces, which will be used in the
rest of the paper. In full detail all this material is described in [F].

1.1. von Neumann categories.Let A be an algebra overC having an involution
which will be denoted by the star∗. A Hilbert representation ofA (or a Hilbert
module) is a Hilbert spaceH supplied with a left action ofA on H by
bounded linear maps such that for anya ∈ A holds

〈ax, y〉 = 〈x,a∗y〉 (1-1)
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for all x, y ∈ H . A morphismbetween Hilbert representationsφ : H1 → H2

is a bounded linear map commuting with the action of the algebraA. We obtain
the additive category of all Hilbert representations of a given∗-algebraA.

Assume thatCA is an additive subcategory of the category of all Hilbert rep-
resentations ofA. We say thatCA is a von Neumann categoryif the following
properties are verified:

(i) The kernel of any morphismφ : H1 → H2 in CA and the natural inclusion
kerφ → H1 belong toCA.

(ii) For any morphismφ : H1 → H2 of CA the adjoint operatorφ∗ : H2 →
H1 is also a morphism ofCA.

(iii) for any pair of representationsH1,H2 ∈ ob(CA), the corresponding set
of morphismsHomCA

(H1,H2) is a weakly closed subspace in the space of
all bounded linear operators betweenH1 andH2.

Note, that for any objectH ∈ ob(CA) of a von Neumann category the set
of endomorphisms HomCA

(H ,H ) is a von Neumann algebra.

1.2. Finite objects.We will say that an objectH ∈ ob(CA) of a von Neumann
categoryis finite if any closedCA-submoduleH1 ⊂ H which is isomorphic
to H in CA, coincides withH .

This property is equivalent to the requirement that the von Neumann algebra
HomCA

(H ,H ) of endomorphisms ofH is finite. Cf. [Di], part III, chapter
8, Sect. 1.

A von Neumann categoryCA is calledfinite if all its objects are finite.

1.3. Trace and dimension.Let CA be a von Neumann category.

Definition. A trace on categoryCA is a function, denotedtr, which assigns to
each objectH ∈ ob(CA) a finite, non-negative trace

trH : HomCA
(H ,H ) → C (1-2)

on the von Neumann algebraHomCA
(H ,H ); in other wordstrH assumes (fi-

nite) values inC, trH (a) is non-negative on positive elements a ofHomCA
(H ,

H ), andtrH is traceful, i.e.trH (ab) = trH (ba), for a,b ∈ HomCA
(H ,H ). It

is also assumed that for any pair of representationsH1 andH2 the correspond-
ing tracestrH1, trH2 and trH1⊕H2 are related as follows: if f∈ HomCA

(H1 ⊕
H2,H1 ⊕H2) is given by a2×2 matrix(fij ), where fij : Hi → Hj , i , j = 1,2,
then

trH1⊕H2(f ) = trH1(f11) + trH2(f22). (1-3)

For the notion of positive elements of the von Neumann algebra HomCA
(H ,

H ) we refer to [T], page 24.
We will say that a trace tr on a von Neumann category isnormal iff for

each non-zeroH ∈ ob(CA) the trace trH on the von Neumann algebra
HomCA

(H ,H ) is normal. Recall that this means that
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sup
i

{trH (ai )} = trH (sup
i

{ai }) (1-4)

for any bounded increasing netai ∈ HomCA
(H ,H ) consisting of positive

operators; cf. [T], page 309.
Given a trace tr on a categoryCA, one can define the followingdimension

function:
dimH = dimtr H = trH (idH ) . (1-5)

The real number dimtr H is calledthe von Neumann dimension (or the projective
dimension) ofH with respect to the tracetr.

1.4. The abelian extension.Given a von Neumann categoryCA, there exists
a bigger categoryE (CA), which is abelian and which containsCA as a full
subcategory. The construction ofE (CA) was suggested in [F1], [F] using ideas
of P. Freyd [Fr].

An objectof the categoryE (CA) is defined as a morphism (α : A′ → A) in
the categoryCA. Given a pair of objectsX = (α : A′ → A) andY = (β : B′ →
B) of E (CA), a morphismX → Y in the categoryE (CA) is an equivalence
class of morphismsf : A → B of categoryCA such thatf ◦ α = β ◦ g for some
morphismg : A′ → B′ in CA. Two morphismsf : A → B and f ′ : A → B
of CA representidentical morphismsX → Y of E (CA) iff f − f ′ = β ◦ F
for some morphismF : A → B′ of categoryCA. This defines an equivalence
relation. The morphismX → Y , represented byf : A → B, is denoted by

[f ] : (α : A′ → A) → (β : B′ → B) or by [f ] : X → Y . (1-6)

Thecompositionof morphisms is defined as the composition of the corresponding
morphismsf in the categoryCA.

1.5. Embedding ofCA into E (CA). Given an objectA ∈ ob(CA) one defines
the following object (0→ A) ∈ ob(E (CA)) of the extended category. Since any
morphismf : A → B determines a morphism [f ] : (0 → A) → (0 → B) in the
extended category, we obtain a full embeddingCA → E (CA).

It is possible to characterize the objects of the extended category which are
isomorphic inE (CA) to objects coming fromCA in intrinsic terms. Namely,
an objectX ∈ ob(E (CA)) is projective if and only if it is isomorphic inE (CA)
to an object of the form(0 → A), where A∈ ob(CA)

1.6. The torsion subcategory.An object X = (α : A′ → A) of the extended
categoryE (CA) is calledtorsion iff the image ofα is dense inA.

We will denote byT (CA) the full subcategory ofE (CA) generated by all
torsion objects.T (CA) is calledthe torsion subcategory ofE (CA). If CA is a
finite von Neumann category, then the torsion subcategoryT (CA) is an abelian
subcategory ofE (CA).

Given an arbitrary objectX = (α : A′ → A) of E (CA) one considers
the following torsion objectT(X ) = (α : A′ → cl(im(α))) which is calledthe
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torsion part ofX . There is an obvious monomorphismT(X ) → X . The factor
P(X ) = X /T(X ) is projective, calledthe projective part ofX . We have
X = T(X ) ⊕ P(X ). Thus, the isomorphism type of an object of the extended
categoryE (CA) is determined by the isomorphism types of its projective and
torsion parts.

1.7. Novikov-Shubin invariants.Given a trace on a von Neumann categoryCA,
one obtains the numerical invariantns(X ) of torsion objects, called the Novikov
- Shubin invariant. We refer to [F], Sect. 3.9, where it is described. There exist
also other invariants of torsion objects, independent of the Novikov - Shubin
invariant, cf. [F1].

In the next section we will define new numerical invariant of torsion objects,
which is sometimes more convenient.

1.8. Extended homology.The functor of extended homology is constructed as
follows, cf. [F], [F1]. Suppose thatX is a finite polyhedron with fundamental
groupπ. Let CA be a von Neumann category, and letρ : π → HomCA

(M,M)
be a representation, whereM ∈ ob(CA). Consider the chain complexC∗(X̃)
(the cellular chain complex of the universal coveringX̃). Then

M ⊗π C∗(X̃)

is a chain complex in categoryCA. Thus, it lies in the abelian categoryE (CA))
and its homology (calculated inE (CA), calledextended L2 homology of X with
coefficients inM) is denoted byH∗(X,M). Being an object ofE (CA), it is a
direct sum of its projective and torsion parts. The projective part of the extended
homology coincides with the reducedL2 homology, cf. [A] (defined by dividing
the space of infiniteL2 chains by the closure ofL2 boundaries). The torsion part
of the extended homology is responsible for the “almost cycles” or “asymptotic
cycles” as the one shown on Fig. 1.

2. Torsion dimension

In this section we define a new numerical invariant of torsion objects, which
we call torsion dimension. It behaves in better way, than the known invariants
(such as the Novikov-Shubin invariant and the minimal number of generators,
introduced in [F1]). We will use the torsion dimension in the next section to
study the Grothendieck group of torsion objects. Also, we will use the torsion
dimension in approximation theorems forL2 topological invariants, cf. Theorems
8.2 and 8.4, where it produces a correcting additional term.

Everywhere in this sectionCA will denote a finite von Neumann category.
We will assume that we have a fixed trace tr onCA, cf. Subsect. 1.3. We willnot
assume that the trace tr is normal, since in the case of normal traces the torsion
dimension is always zero. Also, the trace tr is not supposed to be faithful.
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Not normal traces are usually calledDixmier type traces, cf. [C], since J.
Dixmier [D] was the first who constructed such traces. Dixmier type traces play
very important role in the non-commutative geometry of A. Connes [C].

2.1.First we will show that any non-normal trace determinesa dimension function
of torsion objects. We will see that it behaves sub-additively under extensions.

Let X = (α : A′ → A) be a torsion object of the extended categoryE (CA)
and letF (λ) be its spectral density function with respect to the trace tr, cf. [F],
formula (3-12).

Definition. We will define the torsion dimension ofX (with respect to the trace
tr) as the following real number

tordimX = tordimtrX = lim
λ→+0

F (λ). (2-1)

Note thatF (λ) is increasing and so the limit exists.
We will also define thereduced spectral density functionby

F̃ (λ) = F (λ) − tordimX . (2-2)

Note, that if the trace tr is normal, then the torsion dimensiontordimX is
always zero.

2.2. Proposition. The torsion dimensiontordimX depends only on the isomor-
phism type ofX as an object of the extended category. The reduced spectral
density functions corresponding to isomorphic torsion objectsX and Y are
dilatationally equivalent.

Proof. The proof of Proposition 3.8 in [F] does not use the assumption of nor-
mality of the trace. It shows that ifX and Y are isomorphic torsion objects
of the extended category then the corresponding spectral density functions are
dilatationally equivalent. This implies our statement. ut

Now we will establish the following internal characterization of the torsion
dimension. Let us recall that any trace tr on von Neumann categoryCA deter-
mines a dimension function onCA, cf. 1.3.

2.3. Proposition. Given a torsion objectX of the extended categoryE (CA),
its torsion dimensiontordimX , equals to the infimum of the von Neumann di-
mensionsdimP (with respect to the tracetr) of projective objects P ofCA such
that there exists an epimorphism P→ X .

Proof.Suppose thatX = (α : A′ → A) andα is injective. Recall that the spectral
density functionF (λ) is defined as follows. We consider the positive square root
T of the equationT2 = α∗α and the spectral decompositionT =

∫ ∞
0 λdEλ. Then

F (λ) is the von Neumann dimension of the subspaceEλA′.
Thus, for anyλ > 0 the spectral projectionEλ determines a projective object

P = EλA′ which has von Neumann dimensionF (λ) and which maps epimor-
phically onto X . Indeed, the torsion objectXλ = (α : EλA′ → α(EλA′)) is
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isomorphic toX andEλA′ andα(EλA′) are isomorphic (by Lemma 2.3 of [F].
Therefore dimX ≥ inf P.

On the other hand, ifP is projective and maps epimorphically ontoX then
X admits a representation of the form (γ : P′ → P) with someP′ andγ and
thus we obtain (using Proposition 2.2) thattordimX ≤ inf P. ut

Now we will show that the torsion dimension is sub-additive for extensions.

2.4. Proposition. For any short exact sequence

0 → X ′ → X → X ′′ → 0, (2-3)

consisting of torsion objects of the extended abelian categoryE (CA), holds

max{tordim(X ′), tordim(X ′′)} ≤ tordim(X ) ≤ tordim(X ′) + tordim(X ′′).
(2-4)

Moreover, if the sequence (2-3) splits, then

tordim(X ) = tordim(X ′) + tordim(X ′′). (2-5)

Proof.We will use the internal characterization of the torsion dimension given by
Proposition 2.3. It is clear that ifP′ can be mapped epimorphically ontoX ′ and
P′′ can be mapped epimorphically ontoX ′′, then their direct sumP′ ⊕ P′′ can
be mapped epimorphically ontoX . Thus we obtain the right side of inequality
(2-4).

From Proposition 2.3 clearly follows thattordim(X ) ≥ tordim(X ′′). Sup-
pose now thatP → X is an epimorphism withP being a projective object
of CA. Let P′ → P be the kernel of the compositeP → X → X ′′.
Then we have an epimorphismP′ → X ′. Observe thatP′ is isomorphic to
P in CA by Lemma 2.3 of [F]; therefore dimP = dimP′. This proves that
tordim(X ) ≥ tordim(X ′).

The equality (2-5) obviously follows from the definitions. ut

3. Grothendieck group of torsion objects

Note that equality (2-5) represents a very important distinction between the prop-
erties of two functions on isomorphism types of torsion objects - the torsion
dimension, which we introduced above in Sect. 2, and the well known Novikov
- Shubin invariant. Recall that the Novikov - Shubin invariant of a direct sum
equals to the minimum of the Novikov - Shubin invariants of the summands:

ns(X ′ ⊕ X ′′) = min{ns(X ′), ns(X ′′)}. (3-1)

The advantage of (2-5) is that it implies thatthe torsion dimension determines
a homomorphism with values inR from the Grothendieck group constructed out
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of abelian categoryT (CA) of torsion objects inCA. Thus existence of a non-
normal trace onCA implies non-triviality of the Grothendieck group. We will
make all this precise in the following subsection.

3.1. Grothendieck group of torsion objects ofCA. We will denote byK (T (CA))
the Grothendieck group of the abelian categoryT (CA), cf. [K], page 53. Recall
thatK (T (CA)) is an abelian group generated by the symbols [X ], one for each
isomorphism type of torsion objectsX in CA, with the addition given by [X ]+
[Y ] = [X ⊕ Y ]. The torsion dimension gives a well-defined homomorphism

tordim : K (T (CA)) → R (3-2)

(by Propositions 2.2 and 2.4).

3.2. Theorem. If the given tracetr on the categoryCA is non-normal, then
homomorphism (3-2) is non-trivial and thus the Grothendieck group K(T (CA))
is non-zero.

Proof. If the trace is non-normal then we may find a sequence

H = H1 ⊃ H2 ⊃ H3 ⊃ . . . ,

where H is an object ofCA and Hn’s are its closed subobjects, such that
∩Hn = 0 and lim dim(Hn) = c > 0. Define the following projector valued
functionEλ for λ ∈ [0,1], by settingEλ = the projection ontoHn, for (n+1)−1 <
λ ≤ n−1. Then we consider the morphism

α : H → H , where α =
∫ 1

0
λdEλ.

ThenX = (α : H → H ) is a torsion object, and clearlytordim(X ) = c > 0.
ut

4. An example of von Neumann category with Dixmier type trace

Our purpose now is to describe the simplest example of a finite von Neumann
category with a Dixmier type trace. This category will be important for our ap-
plications to the problem of approximation ofL2 invariants; we will see in Sub-
sect. 4.8 that this category allows to describe geometry and topology of growth
processes.

4.1. Fix a sequence of non-negative real numbersµ = (µn), µn > 0, µn ∈ R.
We will call µ the growth rate. Normally, we will have in our applicationsµn

tending to 0, or being constant. The von Neumann category, we are going to
construct will depend on this choice; we will denote itC (µ).
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Objectsof the categoryC (µ) are sequencesV = (V n) of finite dimensional
Euclidean spaces, wheren runs over non-negative integers, such that the growth
rate of the dimension ofV n is bounded above by the given sequenceµ:

dimV n = O((µn)−1). (4-1)

In other words, we assume that the productµn · dimV n is bounded. Note that
eachV n is Euclidean, i.e. it is supplied with a scalar product.

Each objectV of C (µ) determinesa Hilbert spaceHV , where

HV = {v = (vn), vn ∈ V n;
∑

||vn||2 < ∞}. (4-2)

Here the norm||vn|| denotes the norm of the spaceV n.
A morphism f: V → W in C (µ), whereV = (V n) andW = (Wn), is

a sequencef = (f n), wheref n : V n → Wn is a linear map, such that there exists
a common upper bound

||f n|| ≤ M (4-3)

(M is independent ofn). Any morphismf : V → W of C (µ) clearly induces
a bounded linear map of the corresponding Hilbert spaces, which we denote
f : HV → HW . Now one checks easily, that all properties from the definition
of von Neumann category (cf. 1.1) are satisfied. The algebraA in this case is
A = C.

The categoryC (µ) is clearlyfinite, cf. 1.2.

4.2. Now we will describe a Dixmier type trace onC (µ). First, we recall from
[D] and [C], page 305, that there exists a linear form Limω (invented by J. von
Neumann [vN]) on the spacè∞(N) of bounded sequences of complex numbers,
that satisfies the following conditions:

(α) Limω(αn) ≥ 0 if αn ≥ 0,

(β) Limω(αn) = Lim αn if αn is convergent,

(γ) Limω(α1, α1, α2, α2, α3, α3, . . . ) = Limω(αn).

Note that the form Limω is not unique; it depends on the choice of the “rule”ω,
which is sometimes calledthe summation machine.

Now for any objectV of C (µ) and for any endomorphismf : V → V in
C (µ) define its trace trω(f ) by

trω(f ) = Limω(µn · Tr(f n)). (4-4)

Here on the right hand side of (4-4) Tr(f n) denotes the usual finite dimensional
trace of the linear mapf n : V n → V n. Note that because of condition (4-3) we
have | Tr(f n)| ≤ M dimV n and using (4-1) we see that the sequenceµn Tr(f n)
is bounded, and therefore the definition is correct.

It is easy to see that (4-4) defines a trace on the categoryC (µ) (in the sense
of [F], Definition 2.7) which is non-negative and traceful. We will see later that
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trω is not normal and not faithful. Note that the constructed trace trω is not unique
– it depends on the choice of the functional Limω (i.e. on the “rule”ω).

According to philosophy of A. Connes [C], in problems, having geometric
origin, the answer will be often independent ofω; such problems A. Connes
calls measurable. Cf. for example Proposition 5 in [C], chapter IV, Sect. 2.β
concerning the Wodzicki residue.

We will also see examples of measurable problems (Theorems 8.4, 9.2 and
11.1) and not measurable problems (example 6.3) later in this paper.

4.3. The projective dimension.We know that any trace on a von Neumann cat-
egory determines a dimension function, cf. 1.3 above. The trace trω on C (µ)
defined by (4-4) determines the following dimension function

projdimωV = Limω(µn · dimV n), (4-5)

which we will call the projective dimensionof V .
Note that the projective dimensionprojdimωV depends only on the asymp-

totic behavior of the numbers dimV n for large n and does not depend on any
finite number of dimV n. In particular, the projective dimensionprojdimωV

vanishes ifV n is non-zero only for finitely manyn. This shows that the pro-
jective dimensionprojdimω (or, more precisely, the trace (4-4)) is not faithful –
nontrivial object may have trivial dimension.

Also, given an objectV of C (µ) with projdimωV /= 0, consider the fol-
lowing sequenceV (m), m = 1,2,3, . . . of truncated objects ofC (µ), where
V (m)n equals toV n for n ≤ m and V (m)n = 0 for n > m. We see that
V (m) ⊂ V and

sup
m

V (m) = V .

HoweverprojdimωV (m) = 0 /= projdimωV for all m. Thereforethe trace (4-4)
is not normal.

4.4. The torsion dimension.Any torsion object of the extended abelian category
E (C (µ)), constructed out ofC (µ), cf. 1.4 and also [F], Sect. 1, is represented
by a morphism ofC (µ) X = (α : V → V ),. Recall thatα = (αn), where
αn : V n → V n is a linear map. We want to translate the general definition of
the spectral density function cf. [F], Subsect. 3.7, to the present situation. Given
a positiveλ > 0, denote byF n(λ) the maximal dimension of a linear subspace
contained in the following cone

{v ∈ V n; (αn(v), αn(v)) ≤ λ2(v, v)}. (4-6)

It is also equal to the number of eigenvalues of (αn)∗αn : V n → V n which are
less thanλ2. Then the spectral density function ofX is given by

F (λ) = Limω(µnF n(λ)). (4-7)

The torsion dimension(defined in Sect. 1 above) ofX is by definition
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tordimωX = lim
λ→+0

F n(λ). (4-8)

Roughly, the torsion dimension in this situation can be characterized asthe density
near zero of eigenvalues of(αn)∗αn with respect to the chosen scaleµ = (µn).

4.5. An example.Fix an arbitrary sequencean of positive real numbers with tends
to 0. Consider an arbitrary objectV = (V n) of C (µ) and let the morphism
α : V → V be given as follows:αn : V n → V n is multiplication byan. Then
we obtain a torsion objectX = (α : V → V ) of C (µ). For thisX we have

F n(λ) =

{
0, if an > λ,

dimV n, if an ≤ λ.

Thus we obtain that the spectral density function ofX F (λ) = Limω µ
nF n(λ) is

constant and equals the Dixmier dimension ofV , F (λ) = projdimω(V ). There-
fore the torsion dimension ofX (defined in Sect. 2) equals toprojdimω(V ).

This is example shows that the torsion dimension may assume arbitrary non-
negative real numbers.

4.6. Extended homology inC (µ). Consider a chain complex inC (µ) of lengthm.
Any such chain complexC is just a sequenceC = (Cn,dn), wheren = 1,2, . . .
of finite-dimensional complexes

Cn = (0 → Cn
m

dn

−−−−→ Cn
m−1

dn

−−−−→ . . .Cn
0 → 0) (4-9)

such that
(1) each chain space Cni , where i = 0,1, . . . ,m, has a fixed Euclidean struc-

ture;
(2) the dimension growth rate satisfiesdimCn

i = O((µn)−1);
(3) the norm of the differentials dn has a common upper bound||dn|| ≤ M .
Given such chain complexC , it determines the extended homology, having

the projective and torsion parts, and we want to understand the Dixmier dimen-
sion of the projective part and also the torsion dimension of the torsion part.
Let Zn

i denote the space of cycles ker[dn : Cn
i → Cn

i −1]; then Zi = (Zn
i ) and

Ci = (Cn
i ) are objects ofC (µ). We clearly have for the extended homology of

C :
Hi (C) = (d : Ci +1 → Zi ). (4-10)

The projective part ofHi (C) is just (Hi (Cn)), i.e. it is given by the sequence
consisting of the usual homology of the complexesCn. Therefore, the Dixmier
dimension of the projective part of the extended homology is given by

projdimω(P(Hi (C))) = Limω(µn · dimHi (C
n)). (4-11)

Let Bn
i be the subspace of boundariesBn

i = im[dn : Cn
i +1 → Cn

i ] and let Bi =
(Bn

i ) ∈ ob(C (µ)). Then the torsion part of the extended homology is given by

T(Hi (C)) = (d : Ci +1/Zi +1 → Bi ) (4-12)
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We summarize now the above discussion as follows:

4.7. Proposition. Suppose that a chain complex (4-9) inC (µ) is given. For
any pair of integers n and i denote by hn

i the number of zero eigenvalues of the
operator

(dn)∗dn : Cn
i +1 → Cn

i +1 (4-13)

(the “Half-Laplacian”) and for any λ > 0 denote by Gn
i (λ) the number of

eigenvalues of (4-13) lying in the interval(0, λ2). Then the Dixmier dimension
of the projective part of the extended i -dimensional homologyHi (C) equals
Limω µ

nhn
i and the spectral density function of the torsion part ofHi (C) is

Gi (λ) = Limω µ
nGn

i (λ). In particular, the torsion dimension of the torsion part
of Hi (C) is

tordimωT(Hi (C)) = lim
λ→+0

(Limω µ
nGn

i (λ)) (4-14)

4.8. Asymptotic invariants of a growth process.A typical geometric situation,
when the above numerical invariants of chain complexes inC (µ) (the projective
and torsion dimension and the Novikov - Shubin invariants) can be applied
consists in the following.

Suppose thatK = (K n) is growth process, i.e. a sequence of finite simplicial
complexes, such that for any integeri the number ofi -dimensional simplices in
K n is O((µn)−1).

As a concrete example (which will be studied in detail later in this paper)
we may assume that the complexesK = (K n) form a tower of finitely sheeted
coverings over a fixed finite polyhedron.

Another source of examples of growth processes is the following. Suppose
that we have an infinite polyhedron and the finite polyhedraK n with K n ⊂ K n+1

form its exhaustion.

Fig. 2

Growth process of this type was considered in a recent preprint [DM] of J.
Dodziuk and V. Mathai.

Another example of a growth process provides a sequence of smaller and
smaller polyhedral approximations to a given compact Riemannian manifold.

Let us return now to the general situation. Given a growth process (K n), we
obtain the chain complexesCn = C∗(K n) corresponding to the given simplicial
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structures on the complexesK n. We may introduce the euclidean structure on
C∗(K n), such that the simplices ofK n form an orthonormal base. (Note, that in
fact there may be different geometrically interesting ways of choosing the scalar
product on the chain spaceC∗(K n).)

We also have to verify condition (3) in Subsect. 4.6. Note that this condition
will be automatically satisfied if the growth process (K n) hasbounded geometry:

there is a constant M (independent of n) such that each i -dimensional simplex
of Kn is adjacent in Kn to at most M simplices of dimension(i + 1).

The sequenceC = (Cn) of chain complexes is now a single chain complex
in the abelian categoryC (µ) considered above (with an appropriately chosen
growth rateµ), so we may apply the construction of extended homology and
study the projective dimension, the torsion dimension, and the Novikov - Shubin
invariants. We will call these invariantsthe asymptotic invariantsof the sequence
K n. Note that the asymptotic invariants really depend only on the geometry of
K n for largen → ∞.

In order to construct the chain complexC∗(K n), one has to choose orien-
tations for all simplices ofK n. But it is easy to see that different choices of
orientations do not influence the spectrum of the “Half - Laplacians” (4-13) and
so the obtained invariants do not depend on these orientations.

Note also that the asymptotic invariants are in generalgeometric and not
topological, i.e. they will depend on the simplicial decomposition ofK n’s and
not on the topology ofK n.

For future references, let us make the following simple observation.

4.9. Proposition. Given a growth process(K n) as above, its asymptotic invariants
in dimension i depend only on the growth process consisting of the skeletons of
K n of dimension(i +1). In particular, the asymptotic invariants in dimension zero
depend only on the 1-skeletons of Kn. ut

5. Spectrum of towers: theorem of L̈uck

In this section we will reformulate the theorem of Lück [L].
Lück considers a sequence of normal subgroups

· · · ⊂ Γk+1 ⊂ Γk ⊂ · · · ⊂ Γ1 ⊂ π

such that the index [π : Γk ] is finite for all k and the intersection∩Γk is the
trivial group. LetX be a finite polyhedron with fundamental groupπ. For each
k we have the finite sheeted coveringXk → X corresponding to the subgroup
Γk , and therefore we have a growth process (Xk) (in the terminology of Sect. 4)
determined by this tower of covering. The theorem of Lück [L] computes the
asymptotic invariants of this growth process.

5.1. Theorem (Lück [L]). Choose for the growth rateµ = (µk) the numbers

µk = |π : Γk |−1 (5-1)
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(the inverses of the orders of the quotientsπ/Γk). Then
(i) The projective dimension of the growth process(Xk) equals to the L2 Betti

number of the universal covering of X in the corresponding dimension.
(ii) The torsion dimension of the extended homology vanishes.

We may conclude that the towers of coverings represent a very special class
of growth processes.

6. Growing flat bundles

Here we will consider an example of a growth process, which is a generalization
of the construction of tower of coverings, considered in the previous section. We
will fix a polyhedronX and study a sequence of flat bundles overX of growing
dimension. Our aim is to understand the asymptotic invariants in this situation.

This section contains only a general discussion of the problem; the results
are given by Theorems 8.2, 8.3, 8.4, 9.2 and 11.1.

6.1. Let X be a fixed finite simplicial polyhedron and letE k be a sequence of
finite dimensional flat bundles overX. We will assume that each bundleE k is
supplied with a flat metric.

Define the growth rateµ = (µk) as

µk = (rankE k)−1. (6-1)

For each integerk we have the chain complexCk = C∗(X,E k) over C. The
basis of this chain complex is formed by the flat sections ofE k defined over the
oriented simplices ofX. The boundary homomorphism is given by restricting
a flat section over a simplexσ on all the faces ofσ, multiplied by the sign,
expressing compatibility of the orientations of the simplexσ with the orientation
of the face.

We want to view this sequence of complexesCk , wherek = 1,2,3, . . . , as a
single complex in the categoryC (µ). To meet all the requirements of Sect. 4.6,
we need to introduce a scalar product inC∗(X,E k). We will do it as follows: the
scalar product of two flat sectionss1 ands2, which are defined over two different
simplices ofX is zero; if s1 and s2 are defined over the same simplexσ of X,
then the scalar product (s1, s2) equals to the scalar product ofs1(v) ands2(v) in
the fiber of the bundleE k over v, wherev is any vertex of the simplexσ - the
result is independent on the choice ofv, since the metric onE k is supposed to
be flat.

We obtain a chain complexC = (Ck) in the abelian categoryC (µ) and we
want to understand its asymptotic invariants.

6.2. Note, that the construction of the tower of coverings (cf. Sect. 5) is a special
case of this construction. In fact, in the situation of Sect. 5 for anyk we have the
action ofπ on the group ring of the finite quotientV k = C[π/Γk ]. More precisely,
we consider the action ofπ from the left on the group algebraC[π/Γk ] and the
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corresponding flat bundleE k over X. Note that this bundle has a flat metric,
which comes from the metric ofC[π/Γk ] in which the elements ofπ/Γk form
an orthonormal base. The homology of the flat bundleE k overX coincides with
the homology of the normal coveringXk → X, corresponding toΓk .

Example 6.3.Here we consider an example, which behaves unlikely the situation
with the towers of coverings.

Let X be the closed 3-manifold obtained from the trefoil knot

Fig. 3

by 0-framed surgery. We have the canonical epimorphismφ : π1(X) → Z (the
abelinization), and therefore for any complex numberξ with |ξ| = 1, there is a
unique flat Hermitian line bundleEξ with monodromy given byg 7→ χξ(g) =
ξφ(g) for g ∈ π. The dimension of homologyH1(X,Eξ) is zero for allξ with
ξ2 − ξ + 1 /= 0. Here∆(ξ) = ξ2 − ξ + 1 is the Alexander polynomial of the trefoil.
If ξ is one of the roots of the Alexander polynomial, i.e. ifξ = ξ± = e±πi /3, then
the dimension of the homologyH1(X,Eξ) is 2.

Now, choose a sequence of complex numbersξk with |ξk | = 1, such that
ξk → ξ+. Then we have a sequence of flat bundlesEξk , such thatthe sequence
of dimensionsdimH1(X,Eξk ) may be an arbitrary sequence consisting of 0 and
2: we obtain 0 ifξk /= ξ+ and we obtain 2 ifξk = ξ+.

Therefore, the projective dimension in this situationLimω dimC H1(X,Eξ)
may actually depend on the choice of the summation machineω.

Note also that in this example the corresponding charactersχξk converge and
their limit is the characterχξ+ at the root of the Alexander polynomial.

Suppose now that in the situation described aboveξk tends toξ+, but ξk /=
ξ+. Then we see that the projective dimension of the growth process is zero
(independently ofω). However, we will have the torsion dimension equal to 2.

7. Characters of representations and extendedL2-homology

In this section we will show that the extended homology of a finite polyhedronX
with coefficients in a representationM in a von Neumann category with a trace,
depends mainly on the characterχM : π → C of the fundamental group ofX
determined byM. We also show that any positive self-adjoint class function on
the fundamental group can be realized as the character of a unitary representation
in a von Neumann category.
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7.1. Suppose thatCA is a von Neumann category with a fixed trace tr.
Let π be a discrete group. We will consider representations ofπ on objects

of CA. More precisely, letM be an object ofCA; then a representation ofπ is
a ring homomorphismρ : C[π] → homCA

(M,M). Such representation will be
calledunitary if ρ is a∗-homomorphism, i.e. if it preserves the involutions. Here
we assume that the group ring is supplied with the standard involutiong 7→ g−1

for g ∈ π.
Any representationρ : C[π] → homCA

(M,M) as above determinesthe
character

χM : π → C, g 7→ tr(ρ(g)), g ∈ π. (7-1)

The characterχM is clearly constant on the conjugacy classes ofπ. Also, if
the representation is unitary, then the characterχM has the property

χM(g−1) = χM(g) (7-2)

for anyg ∈ π. Class functions with this property are calledself-adjoint. Another
important property of characters ispositivity: for any elementa ∈ C[π] of the
group algebraC[π] holds

χM(a∗a) ≥ 0. (7-3)

It is not true in general that the character determines the representation up to
the natural equivalence.

Using the construction of [F], we know that to any finite CW spaceX with
fundamental groupπ1(X) = π we may assign extended homologyH∗(X,M)
with coefficients inM.

Our observation here is that (assuming that the trace tr onCA is normal)
the most important invariants of the extended homology can be computed using
only the characterχM of the representationM:

7.2. Theorem. Suppose that the chosen tracetr on the von Neumann categoryCA

is normal. Let X be a finite polyhedron with fundamental groupπ. Then for any
unitary representationρ : π → homCA

(M,M), one can find the spectral density
function Fi (λ) of the extended homologyHi (X,M) with coefficients inM using
the characterχM of M as the only information on the representationM. In
particular, the von Neumann dimension and the Novikov - Shubin invariants of
Hi (X,M) depend only on the characterχM (and on X , of course).

The proof of Theorem 7.2 is given in Sect. 12.
We will see later in 10.1 that Theorem 7.2 is false without assuming normality

of the trace tr.
Also, the Theorem is not true if the representationρ is not unitary. Although

Theorem 7.2 can be generalized to non-unitary representations, but the conclusion
then is different; we will consider this generalization elsewhere.

As a simple example, consider a finite dimensional unitary representation
V of π and form the tensor productM = V ⊗C `

2(π). The characterχM of
this representation equals to the character ofM′ = `2(π) ⊕ · · · ⊕ `2(π) (dimV
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times). Then we obtain from Theorem 7.2 that the spectral density functions of
Hi (X,M) andHi (X,M′) coincide.

7.3. Constructing representations with given characters.Here we will consider
the following problem: given a class functionχ : π → C, which is self-adjoint
(7-2) and non-negative (7-3), we want to construct a unitary representationρ :
π → homCA

(M,M) in certain von Neumann categoryCA with a normal trace
tr such that the characterχM of this representation is the given functionχ. We
will see that there is a canonical construction for this purpose. This construction
is very similar to the classical constructions (cf. [N], Sect. 30, and also [G]);
therefore we will be very brief.

First, we will associate a Hilbert spaceHχ with a given self-adjoint non-
negative class functionχ : π → C. We will denote byJχ the following two-sided
ideal of C[π]:

Jχ = {a ∈ C[π]; χ(ab) = 0 for any b ∈ C[π]}. (7-4)

Then we define the Hilbert spaceHχ as the completion of the factor-ring
C[π]/Jχ with respect to the following scalar product

(a,b) = χ(ab∗), a,b ∈ C[π]. (7-5)

It is easy to check that the obvious left and right actions ofπ on the factor-
ring C[π]/Jχ are continuous with respect to the norm determined by the scalar
product (7-5), and thus these actions extend to the left and right actions ofπ on
Hχ. Both these actions are in fact unitary.

Note that the previous construction applied to the case whenχ is the delta-
function at the unit element of the groupπ, gives the standard Hilbert space
`2(π) which is usually associated with the groupπ.

Now we will construct a von Neumann algebraN (χ) acting onHχ. We
will denote byN (χ) the space of all bounded linear mapsA : Hχ → Hχ,
commuting with the action ofπ from the left. We obtain that

C[π]/Jχ ⊂ N (χ) (7-6)

(whereC[π] acts from the right on the Hilbert spaceHχ).
Now we will define the following function (the trace)

τ : N (χ) → C. (7-7)

For A ∈ N (χ) set
τ (A) = (A · 1,1) (7-8)

where 1∈ C[π]/Jχ ⊂ N (χ) denotes the unit element and the brackets (, )
denote the scalar product (7-5). One easily check that:

(1) τ is a trace on the von Neumann algebraN (χ);
(2) τ is normal;
(3) τ is faithful;



Geometry of growth: approximation theorems forL2 invariants 355

(4) on the subringC[π]/Jχ ⊂ N (χ) the traceτ coincides withχ.

As shown in Sect. 2.6 (example 3) of [F], the von Neumann algebraN (χ)
acting onHχ generates a finite von Neumann categoryCA, whereA is the
group algebraC[π]. The traceτ on the algebraN (χ) determines a trace tr on
the categoryCA. This trace onCA is clearly normal (sinceτ is normal).

Now, we have a unitary action ofπ on M = Hχ ∈ ob(CA) and the
corresponding characterχM equalsχ.

8. Approximating characters

Here we study the general problem about the relation between the von Neumann
Betti numbers and the dimensions of the homology of a sequence of finitely di-
mensional representations, assuming that their characters converge to the charac-
ter of the von Neumann representation. We find a relation, involving an additional
term, the torsion dimension, which was studied in Sect. 2.

In the next section we consider the situation (which we call arithmetic ap-
proximation) when this additional term vanishes.

8.1. In this section we will study the following generalization of the situation
considered by W. L̈uck [L].

Suppose thatπ is a discrete group and we are given a sequence of finite
dimensional unitary representationsρk : π → End(V k), wherek = 1,2, . . . . We
will denote byχk : π → C the corresponding characters. The dimensions of
these representations dimV k = χk(1) are not supposed to be constant. We will
denote byµk = (χk(1))−1 the inverse numbers; the numerical sequenceµ = (µk)
describes the growth rate of the dimensions. We will consider also thenormalized
charactersχ̃k = µkχk : π → C, wherek = 1,2, . . . .

Using the von Neumann categoryC (µ) of Sect. 4.1 (whereµ = (µk) is
the growth rate specified in the previous paragraph), we can view the given
sequence of representationsρk : π → End(V k), wherek = 1,2, . . . as a single
representationρ0 : π → homC (µ)(V ,V ). HereV = (V k) is the object ofC (µ)
determined by the given sequenceV k of finite dimensional Hilbert spaces.

Using the construction of 1.8, for any finite polyhedronX with fundamen-
tal groupπ we have the extended homologyH∗(X,V ) with coefficients in
V . If we choose the Dixmier type trace (4-4) on the categoryC (µ), we ob-
tain the numerical invariants of the extended homology - the projective dimen-
sion, the torsion dimension, and the Novikov - Shubin invariants, cf. Sect. 1.
We will denote byprojdimωP(Hi (X,V )) the projective dimension and by
tordimωT(Hi (X,V )) the torsion dimension. Recall that the projective dimen-
sion is just

projdimωP(Hi (X,V )) = Limω[
dimC Hi (X,V k)

dimC V k
]. (8-1)

Note also that these invariants depend in general on the choice of the summation
procedureω.
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8.2. Theorem. In the situation described in Subsect. 8.1, suppose that we are
given another von Neumann categoryCA with a normal tracetr and a unitary
representationρ : π → homCA

(M,M). Suppose that the normalized characters
of the finite dimensional representationsχ̃k converge pointwise (as functions on
the groupπ) to the characterχM : π → C of M, when k→ ∞. In other words,
we assume that for anyg ∈ π holds limk→∞ χ̃(g) = χM(g). Then the follow-
ing formula holds, which expresses the von Neumann dimension of the extended
homologyHi (X,M) with coefficients inM (with respect to the tracetr) by
means of the dimensions of the homology of the approximating finite dimensional
representations:

dimtr P(Hi (X,M)) = projdimωP(Hi (X,V ))+tordimωT(Hi (X,V )). (8-2)

Note that the RHS of (8-2) contains only information obtained from the finite

dimensional flat bundles. The LHS of (8-2) is theL2-Betti number with respect to
a normal trace; it is independent of the choice of the summation processω. Thus,
(8-2) implies that the sum of the projective dimension and the torsion dimension
is independent ofω. Note, however, that the choice ofω may influence each of
the numbers in the RHS of (8-2), as example 6.3 shows.

Compared with L̈uck’s theorem [L], formula (8-2) contains an additional
summand (the torsion dimension). We will discuss in Sect. 9 the conditions
under which this torsion dimension vanishes.

The proof of Theorem 8.2 is given in Sect. 12.
The following statement shows that one may recapture the entire spectral

density function of the extended homologyHi (X,M) in terms of the finite
dimensional approximations.

8.3. Theorem (Approximation of the spectral density function). Under the
condition of Theorem 8.2 the spectral density function Fi (λ) of extended homol-
ogy Hi (X,M) and the spectral density function Gi (λ) of extended homology
Hi (X,V ) are related as follows

Fi (λ) = lim
ε→+0

Gi (λ + ε) for all λ ≥ 0. (8-3)

In other words, Fi coincides with Gi , made right continuous.

The proof of Theorem 8.3 is also postponed until Sect. 12.
In the next theorem we point out conditions under which the projective di-

mension and the torsion dimension in the RHS of (8-2) are both independent of
the summation procedureω.

8.4. Theorem (Analytic curve of representations).Letπ be a discrete group and
let RN (π) denote the real analytic variety of all representations ofπ into the N -
dimensional unitary groupU (N ). Suppose, thatρn ∈ RN (π), where n= 1,2, . . .
is an infinite sequence of representations such that there exists a real analytic
curve ρ : [0, ε) → RN (π) and a sequence tn ∈ [0, ε), such thatρn = ρ(tn),
tn → 0, tn /= 0. Let ρ0 = ρ(0) denote the limit representation. Then for any finite



Geometry of growth: approximation theorems forL2 invariants 357

polyhedron X and for any homomorphismφ : π1(X) → π we obtain the sequence
of unitary representations

ψn : π1(X)
φ−−−−→ π

ρn−−−−→ U (N ). (8-4)

Eachψn produces a flat N -dimensional unitary bundle over X , which we will
denote by Vn. Then the dimension of the homology Hi (X,V n) is constant for
large n. Therefore, the torsion dimension of the sequenceV = (V n) of these flat
bundles equals to the jump in the Betti number

tordimωHi (X,V ) = dimHi (X,V
0) − dimHi (X,V

n), (8-5)

where n is sufficiently large. In particular, we see that the torsion dimension is
independent of the choice ofω.

Proof of Theorem 8.4.We only have to show that the dimension dimHi (X,V n)

stabilizes for largen; the rest follows from Theorem 8.2.
We use the well known property of upper semi continuity of the dimension,

cf. [H], Ch.3, Sect. 12. For anyt ∈ [0, ε) denote byV t the flat bundle overX
with monodromyφ◦ρ(t). Then there exists a non-constant real analytic function
f (t) such that the dimension dimHi (X,V t ) assumes the constant value, sayD ,
for all t with f (t) /= 0; moreover, dimHi (X,V t ) ≥ D for all t . Suppose that we
have a sequence of pointstn with tn → 0, tn /= 0. If f (tn) is zero only for finitely
many n, then we obtain that the dimension dimHi (X,V n) is constant for large
n. However, if f (tn) = 0 for infinitely manyn, then the functionf (t) must be
identically zero – a contradiction. ut

9. Arithmetic approximation

It turns our that one may impose some arithmetic conditions on the approximating
sequence of flat bundles, which would imply vanishing of the additional correct-
ing term (the torsion dimension), appearing in Theorems 8.2 and 8.4. Roughly,
the arithmeticity condition requires that each approximating finite dimensional
representation be definable over the ring of algebraic integers of an algebraic
number field, and the degrees of these number fields must have a common upper
bound.

This result implies the theorem of Lück. Namely, L̈uck [L] considers the
tower of finitely sheeted regular coverings, which is equivalent to studying the
homology ofX with coefficients in the representations ofπ on C[π/Γk ] (cf. 6.2);
these representations are clearly defined over the integersZ.

The main theorem of this section contains also a statement that the torsion
part of the extended homologyHi (X,M) is of determinant class assuming
that the characterχM of M admits an arithmetic approximation . This result
generalizes a theorem proven by D. Burghelea, L. Friedlander and T. Kappeler
[BFK] for the caseM = `(π). The proof presented in this paper (cf. Sect. 12),
is quite similar to the proof suggested in [BFK].
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9.1. Definition (Arithmetic approximation).Suppose thatχ : π → C is a positive
self-adjoint class functionχ : π → C, cf. 7.1. We will assume thatχ is normalized
so thatχ(1) = 1. We will say thatχ admits an arithmetic approximation, if
there exists a sequence of finite dimensional unitary representationsρk : π →
EndC(V k), wherek = 1,2, . . . , such that the following conditions are verified:

A. Let χ̃k : π → C denote the normalized character ofρk , i.e. χ̃k =
χk(1)−1χk , whereχk is the character ofρk . Then the sequence ˜χk(g) converges
to χ(g) for any g ∈ π.

B. For eachk there is given an algebraic number fieldFk ⊃ Q, imbedded
into the field of complex numbersC such that its imageFk ⊂ C is invariant
under the complex conjugation. We will considerFk together with the involution
induced fromC. We suppose thatthe representationρk can be defined overFk . In
other words, there exists a representation ˜ρk : π → EndFk

(Wk ,Wk), preserving a
positively defined Hermitian form〈 , 〉k : Wk × Wk → Fk ⊂ C, which produces
ρk by extension of the scalars fromFk to C.

C. Denote byok the ring of algebraic integers ofFk . We suppose that for
eachk there exists anok-latticeLk ⊂ Wk (i.e. a finitely generatedok-submodule
generatingWk over Fk), which is invariant under the action ofπ and such that
the form〈 , 〉k restricted onLk assumes values inok .

D. Denote byL D
k the dual lattice

L D
k = {w ∈ Wk ; 〈w, x〉 ∈ ok for any x ∈ Lk},

cf. [FT], page 122. ThenLk ⊂ L D
k and the factorL D

k /Lk is a finite group.
We suppose that one can choose the latticesLk such that that there is an integer
M > 0 (independent ofk) with M · L D

k /Lk = 0.
E. Let hk denote the degree of the number fieldFk (cf. above) over the

rationals. We assume that there exists a common upper bound

hk ≤ h (9-1)

for all k.
F. There exists a functionN : π → R+, having the property

N (gg′) ≤ N (g)N (g′) for any g, g′ ∈ π, (9-2)

and such that for any group elementg ∈ π the following inequality holds

|σj (χ̃k(g))| ≤ N (g) (9-3)

for all k = 1,2, ... and for all the embeddingsσj : Fk → C, j = 1, . . .hk of the
algebraic number fieldFk .

Note, that conditionsE andF imply that, if the dimensions of the represen-
tations dimV k are bounded, then for anyg ∈ π the sequence ˜χk(g) stabilizes
for largek. This statement easily follows applying Lemma A (cf. Subsect. 12.3).
However, this is not true if the dimensions dimV k grow; for example this sta-
bilization does not happen in Theorem 0.5, although all the conditions above
hold.
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The numberh (appearing in propertyE) will be called the degreeof the
arithmetic approximation. The numberM (appearing inD) will be called the
denominatorof the arithmetic approximation.

Now we show that the conditions of arithmetic approximation imply vanish-
ing of the torsion dimension, which appears in Theorem 8.2.

9.2. Theorem. Suppose thatCA is a finite von Neumann category with a fixed
normal trace,M ∈ ob(CA) is a fixed object withdimtr(M) = 1, andρ : π →
EndCA

(M) is a unitary representation, having characterχM : π → C. Suppose
that we are given a sequence of finite dimensional representationsρk : π →
EndC(V k) which provide an arithmetic approximation of the characterχM, cf.
Sect. 9.1. Then for any finite polyhedron X with fundamental groupπ holds:

(i) the sequence of the normalized Betti numbers

dimC Hi (X,V k)
dimC V k

converges and its limit coincides with the von Neumann dimension of the projective
part of the extended homology

lim
k→∞

dimC Hi (X,V k)
dimC V k

= dimtr Hi (X,M). (9-4)

(ii) Let Fi (λ) denote the spectral density function of extended homology
Hi (X,M). Then the following inequality holds

Fi (λ) − Fi (0) ≤ c
− log(λ)

(9-5)

for smallλ > 0, where c> 0 is a constant.
(iii) For any i the torsion part of the extended homologyHi (X,M) is of

determinant class.

Lück’s theorem [L] follows from this by takingV k = C[π/Γk ], cf. 6.2. This
flat bundle can be defined over the integers.

Intuitively, the integrality condition in Theorem 9.2 allows to conclude at
some point of the proof, that certain nonzero quantity cannot be too small.

The proof of Theorem 9.2 is given in Sect. 12.
For the definition of the notiondeterminant class(which appears in the state-

ment (iii) of Theorem 9.2) we refer to [BFKM]. Cf. also [CFM], Sect. 3.8, where
it is explained why the condition of being of determinant class depends only on
the torsion part of the extended homology.

It is natural to ask for which groupsπ the characterχ of the natural repre-
sentation ofπ on `2(π) (which is the delta-function at the unit 1∈ π) admits
an arithmetic approximation. It is easy to see thatit happens if and only ifπ is
residually finite.In fact, if π is residually finite, we may construct the arithmetic
approximation as in L̈uck’s theorem: ifπ ⊃ Γ1 ⊃ Γ2 . . . is a sequence of normal
subgroups with trivial intersection, then we may takeV k = C[π/Γk ], which can
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be realized over integers. Conversely, if we are given an arithmetic approxima-
tion (cf. 9.1) with χ̃k converging toχ, then for anyg ∈ π, whereg /= 1, we
have χ̃k(g) → 0, and so there existsk with χ̃k(g) < 1. This implies that the
image ofg under thek-th representationsρk is nontrivial, ρk(g) /= 1. Since the
automorphism of the lattice GLok (Lk) is residually finite, we obtain thatπ must
be residually finite.

Now we will give proofs of Theorems 0.3, 0.4 and 0.5 (cf. Sect. 0), deduced
from Theorem 9.2.

9.3. Proof of Theorem 0.3.We will use the notations introduced in Theorem 0.3.
With the sequence of subgroupsπ ⊃ Γ1 ⊃ Γ2 . . . we associate the sequence

of the unitary representationsρk : π → End(Z[π/Γk ]) defined overZ . Here we
assume thatπ acts on the group ringZ[π/Γk ] as the left regular representation. It
is clear that ifV k denotes the flat bundle overX determined by this representation
thenHi (X,V k) ' Hi (X̃k).

All conditions of arithmetic approximation (of Sect. 6.1) are obviously satis-
fied. We only need to compute the normalized character ˜χk of ρk . An elementary
calculation shows that forg ∈ π

χ̃k(g) =
nk(g)

nk
,

wherenk is the total number of different subgroups ofπ conjugate toΓk , and
nk(g) is the number of them, containingg. Therefore, our assumption (0-1) im-
plies that the normalized characters ˜χk converge pointwise to the character of
the standard representation ofπ on `2(π). Applying Theorem 9.2, we complete
the proof. ut

9.4. Proof of Theorem 0.4.Consider the representation

νk : π → Endo(Z[π] ⊗Z[Γk ] om), (9-6)

induced from the restriction ontoΓk of the given unitary representation

ρ : π → Endo(om). (9-7)

We want to apply Theorem 9.2 to the obtained sequence of representationsνk . It
is clear that ifX is any polyhedron withπ1(X) = π, then the homology ofX with
coefficients twisted byνk is the same as the homology of the covering spaceX̃k

with coefficients twisted byρk (hereX̃k → X denotes covering corresponding to
Γk).

From the general properties of induced representations (cf. [CR], Sect. 10)
we see that the conditionsB, C, D, E of Sect. 9.1 are satisfied. We only need to
check that the sequence of normalized characters ofνk converge toχ0 : π → C,
whereχ0(g) = 0 for g ∈ π, g /= 1 andχo(1) = 1. Also, we need to check condition
F in 9.1.
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If we denote byχ : Γ → C the character ofρ and byηk : π → C the character
of νk , thenηk(g) = χ(g) for g ∈ Γk andηk(g) = 0 for g /∈ Γk . Therefore we see
thatηk → χ0. The propertyF of Sect. 9.1 holds with the functionN (g) given by

N (g) = m · max
j

{||σj (ρ(g))||}.

Herej runs over 1,2, . . . ,h (whereh denotes the degree ofF ), σj : F → C are
the embeddings ofF into C, andσj (ρ(g)) denotes the complex matrix obtained
by applying the embeddingσj to the matrixρ(g) with entries inF . Applying
Theorem 9.2 finishes the proof. ut

9.5. Proof of Theorem 0.5.Let χ : π → oF denote the character of the given
representationρ : π → Mat(m × m, oF ). Then the character of the tensor power
ρ⊗k is g 7→ χ(g)k . We claim that forg /= 1 holds|χ(g)| < m and therefore the
normalized character ofρ⊗k tends to 0:

|χ(g)|k
mk

→ 0.

In fact, ρ(g) viewed as a complexm × m matrix, can be diagonalized, and on
the diagonal we will obtainm numbers with norm 1. Therefore|χ(g)| ≤ m and
the equality holds if and only ifρ(g) belongs to the center.

Thus we obtain conditionA of 9.1. ConditionsB, C, D, E are obvious.
Condition F follows from the assumption that the fieldF is cyclotomic: then
all the Galois transformations preserve the complex norm. ut

Next we will formulate a corollary of Theorem 9.2 which may be useful.

9.6. Theorem. Let F ⊂ C be an algebraic number field invariant under the
complex conjugation, and letF ′ ⊂ C be a cyclotomic field. We will denote by
oF and oF ′ the corresponding rings of algebraic integers. Letπ be a discrete
group and letρ : π → Mat(n × n, oF ) andρk : π → Mat(nk × nk , oF ′ ), where
k = 1,2, . . . , be unitary representations, such that for anyg ∈ π the limit

lim
k→∞

χk(g)
nk

= χ0(g) (9-8)

exists; hereχk : π → C denotes the character ofρk. Let X be a compact poly-
hedron withπ1(X) = π and letE and Ek (for k = 1,2, . . . ) denote the complex
flat vector bundles over X determined byρ and ρk correspondingly. Then the
sequence of the normalized Betti numbers

dimHi (X,E ⊗ Ek)
n · nk

, where k= 1,2, . . . (9-9)

converges and its limit can be found as follows. LetCA be a finite von Neumann
category with a normal tracetr and letM be an object ofCA supplied with a
unitary action ofπ having the character

g 7→ χM(g) =
χ0(g)χ(g)

n
, g ∈ π, (9-10)
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whereχ denotes the character ofρ (we know from Sect. 7 that such von Neu-
mann representationM exists). Then the limit of the sequence (9-9) equals to
the dimension (with respect to the tracetr) of the extended homologyHi (X,M):

lim
k→∞

dimHi (X,E ⊗ Ek)
dimE · dimEk

= dimtr Hi (X,M). (9-11)

Proof. Theorem 9.6 follows by applying Theorem 9.2 similarly to the arguments
given in 9.3, 9.4, 9.5. We will only point out here how one constructs the function
N : π → R+, which appears inF. For g ∈ π we define

N (g) = n−1 · sup
j

{||σj (χ(g))||}, (9-12)

where σj : F → C runs over all the embeddings ofF . We consider the
representationsρ⊗ ρk , wherek = 1,2, . . . , as defined over the ring of algebraic
integers of the compositumFF ′ of the fieldsF and F ′; any embedding of
FF ′ into C determines embeddings ofF andF ′, and (9-12) is clearly enough
to establish propertyF (cf. 6.1), sinceF ′ is assumed to be cyclotomic and so
its Galois transformations are unitary. ut

10. Examples

10.1. Here we show that Theorem 7.2 is false if the trace tr on von Neumann
categoryCA is not normal.

We will construct two finite von Neumann categories with traces (one normal
and one not normal) and two unitary representations of the fundamental group
of a polyhedronX on objects of these categories, such that the characters of
this representations are equal but the projective dimensions of the corresponding
homology are distinct.

As the first von Neumann category we will take the categoryC1 of finite
dimensional Euclidean vector spaces with the usual trace. As the second category
C2 we will take the categoryC (µ) (cf. Sect. 4), whereµ is the constant sequence
µk = 1. We will consider the Dixmier type trace trω in C2, cf. (4-4).

Now we will return to the example described in Subsect. 6.3. The spaceX
was obtained by 0-framed surgery on the trefoil knot, and for anyξ ∈ S1 we
had a unitary flat bundleEξ overX. We will suppose that the sequence of points
ξk on the unit circle is chosen so thatξk → ξ+ andξk /= ξ+, whereξ+ = eπi /3 is
a root of the Alexander polynomial, cf. 6.3. Then the sequence of flat bundles
Eξk , viewed as a single flat bundleV with fiber an object ofC2, has character
g 7→ ξφ(g)

+ , whereg ∈ π1(X) andφ : π1(X) → Z is the abelinization. We see that
the same character has the line bundleEξ+ (viewed as bundle inC1). Then we
have dimtrω H1(X,V ) = 0, however dimH1(X,Eξ+) = 2.
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10.2.Here we will show that Theorem 9.2 is false without assumption (9-1) that
the degrees of the number fieldshk are bounded.

We will again use the example 6.3. We choose pointsξk on the unit circle
such thatξk converges toξ+ andξk for any k is a root of 1. We will assume that
J = {k; ξk = ξ+} is a subsequence; we may actually choose the sequenceξk such
that J is arbitrary. Note that the corresponding sequence of flat line bundlesEξk

satisfies all the conditions of arithmetic approximation, cf. 9.1, besides (9-1). We
see that the sequence of dimensions dimH1(X,Eξk ) is the following: we have 2,
for k ∈ J and we have 0, fork /∈ J . Thus sequence (9-4) is not convergent.

10.3. Algebraic integers on the unit circle.Here (preparing tools for the next
example) we observe thatthere exist algebraic integers on the unit circle, which
are not roots of unity.The simplest example is as follows. Consider the roots of
the equation

z4 − z3 − z2 − z + 1 =

= (z2 − 1 +
√

13
2

· z + 1) · (z2 − 1 − √
13

2
· z + 1) = 0.

(10-1)

Two of its roots are complex, lying on the unit circle, they are roots of the second
factor in (10-5). We will denote themei α ande−i α. Hereα ' 130.6463 degrees.

Two other roots are real, we will denote them byr and r −1, where r '
0.5807.

Fig. 4

The numbersei α, e−i α, r and r −1 are algebraic integers, which are all con-
jugate to each other. We conclude thatei α is not root of 1 since otherwise all its
conjugates would be roots of 1, and so they would be points of the unit circle.

Also, the numbersei α, e−i α, r andr −1 are in fact units of the corresponding
ring of algebraic integers.

We observe that the powers ofei α are dense on the unit circle. The powers
of r tend to 0.

10.4.Here we will show that Theorem 9.2 is false without conditionF in 9.1.
Let X be the 3-manifold obtained by 0-framed surgery from the trefoil, as in

example 6.3. We will use the notations introduced in 6.3 and in 10.1 and 10.2.
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Let ei α denote the algebraic integer on the unit circle, constructed in 10.3.
The powerseinα, wheren ∈ Z, are dense on the circle, and thus we can find
a subsequencenk such thateinkα converges toξ+ (recall that ξ+ denotes the
root of the Alexander polynomial of the trefoil). We will denote byEk the
unitary flat line bundle overX corresponding to the pointeinkα (as in 10.1).
Then we obtain, that the sequence of Betti numbers dimH1(X,Ek) consists of
zeros, and the corresponding characters converge to the character ofEξ+ , but
dimH1(X,Eξ+) = 2.

Note that in this example all the conditions of arithmetic approximation of
9.1 exceptF are satisfied. Our fieldF in this example has 4 embeddingsσj :
F → C, j = 1,2,3,4. The embedding, which sends the numberei α to r −1 (cf.
notations of 10.3) sendseinkα to r −nk , which tends to∞, violating F.

11. Approximation in characteristic p

11.1. Theorem. Let p be a prime number. Suppose that

π ⊃ Γ1 ⊃ Γ2 ⊃ . . . , where ∩ Γj = {1}, (11-1)

is a chain of normal subgroups such that for each j the index[π : Γj ] is a power
of p. Let X be a finite CW complex with fundamental groupπ and letX̃j → X be
the normal covering corresponding toΓj . Then for any i the sequence

dimFp Hi (X̃j ,Fp)

[π : Γj ]
, j = 1,2, . . . (11-2)

decreases and so the limit

lim
j →∞

dimFp Hi (X̃j ,Fp)

[π : Γj ]
(11-3)

exists.

11.2. Corollary. If for some prime p the fundamental groupπ of a finite CW
complex X admits a chain of normal subgroups (11-1) such that all the factors
π/Γj are p-groups, then the following inequality holds

b(2)
i (X) ≤ dimFp Hi (X,Fp), (11-4)

for the L2-Betti number b(2)
i (X).

Corollary 11.2 follows immediately from Theorem 11.1 using the Theorem
of Lück [L] and the inequality

dimC Hi (X̃j ,C) ≤ dimFp Hi (X̃j ,Fp).

Proof of Theorem 11.1.Using Corollary on page 25 of [La], we may assume that
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in the given chain of normal subgroups (11-1) all the factorsπ/Γj are cyclic of
orderp. Thus, to prove Theorem 11.1 it is enough to show that

dimFp Hi (X̃j +1,Fp) ≤ p · dimFp Hi (X̃j ,Fp) (11-5)

for any j .
Fix a tringulation ofX and consider the induced triangulations on all the

coveringsX̃j .
From this moment we will assume thatj is fixed. We will consider thep-

sheeted covering̃Xj +1 → X̃j . Let C denote the chain complex of simplicial chains
of X̃j +1 with coefficients in the finite fieldFp. C is a free finitely generated chain
complex over the ringΛ = Fp[Z/p]. Note thatΛ has a unique maximal ideal
m = (t − 1)Λ, where t denotes the generator ofZ/p. We have the following
filtration onΛ:

Λ ⊃ m ⊃ m2 ⊃ · · · ⊃ mp−1 ⊃ 0.

Therefore, we obtain the filtration

C ⊃ mC ⊃ m2C ⊃ · · · ⊃ mp−1C ⊃ 0

and all the factor-complexesmr C/mr +1C , wherer = 0,1, . . .p − 1, are isomor-
phic to the chain complex of̃Xj with coefficients inFp. We obtain that there is
a spectral sequence, starting from⊕

p times

Hi (X̃j ,Fp)

and converging toHi (X̃j +1,Fp). This proves (11-5). ut

11.3. Questions.Can limit (11-3) be greater than theL2-Betti numberb(2)
i (X)?

Does sequence (11-3) always stabilize after a finitely many steps?

12. Proofs of Theorems 7.2, 8.2, 8.3, 9.2

Here we finally present proofs of the main theorems of this paper. These proofs
are related to each other. Therefore we use the same notations and terminology. In
fact, we assume that the reader will read the proofs in the proper order (7.2, 8.2,
8.3 and then 9.2 - lexicographical ordering!). Also, we very much use arguments
of Lück’s paper [L], and sometimes we do not repeat them, but instead refer to
[L]. Thus, it will be very helpful for the reader to have a copy of [L] at hand
while reading this section.

12.1. Proof of Theorem 7.2.Suppose thatX has a fixed tringulation. Consider the
chain complexC∗(X̃) of the simplicial chains in the universal coveringX̃. It is a
complex of free finitely generatedZ[π]-modules; its basis is formed by the lifts
of the oriented simplices ofX. Note that each chain moduleCi (X̃) is naturally
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supplied with a non-degenerateZ[π]-valued Hermitian scalar product which is
defined using the basis formed by the lifts of the cells as the orthonormal basis.
The boundary homomorphismd : Ci +1(X̃) → Ci (X̃) is given by the matrix with
entries inZ[π]. Consider the “adjoint” homomorphismd∗ : Ci (X̃) → Ci +1(X̃)
which is defined using the above mentionedZ[π]-valued Hermitian scalar prod-
uct. Then we have the following self-adjoint homomorphism

d∗d : Ci +1(X̃) → Ci +1(X̃), d∗d ∈ Z[π] ⊗ Mat(a × a,Z), (12-1)

(wherea denotes the number of (i + 1)-dimensional simplices inX). If p(z) is
any polynomial with real coefficients then we may formp(d∗d) and the result
will be a self-adjoint matrix with entries inR[π]. Now, applying the character
χM to this matrix produces a matrixχM(p(d∗d)) with entries inC, which is
Hermitian. We will consider then the trace (in the usual sense) of this Hermitian
matrix Tr(χM(p(d∗d))). Note that the same answer will be obtained if we will
first map the matrixd∗d via the representationρ : C[π] → HomCA

(M,M),
then applying the polynomialp(z) to get

p(ρ(d∗d)) ∈ HomCA
(Ma,Ma), (12-2)

and finally computing the trace trMa of (12-2):

Tr(χM(p(d∗d))) = trMa (p(ρ(d∗d))). (12-3)

This follows from the definition of the trace on a category (cf. 1.3) and the
definition of the character.

We would like to be able to compute (using only the character) more general
expressions of the form Tr(χM(f (d∗d))), wheref (z) is a real valued function.
The most important for us is the case, when the functionf (z) above is the
characteristic function of an interval [0, λ2], which we will denote byfλ(z).

According to W. L̈uck [L], this can be done as follows. Choose a sequence
of real polynomialspn(z) such that

pn(z) → fλ(z) and |pn(z)| ≤ L, (12-4)

where both properties (12-4) hold for anyz ∈ [0,N ]. Here N is a fixed apriori
large number such that

|ρ(d∗d)| ≤ N for any unitary representationρ. (12-5)

We will take N to be a times the sum of all coefficients, which appear in the
matrix elements ofd∗d (this claim is similar to Lemma 2.5 in [L]). To be more
precise, we know, thatd∗d = (bij ), where the entriesbij of this a × a-matrix
belong to the group ringC[π], bij =

∑
βij (g) · g, where the sum is taken over

g ∈ π (only finitely many terms are nonzero). We defineN as

N =
∑
i ,j ,g

|βij (g)|.
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Using the Lebesgue theorem on Majorized convergence and the assumption
that the trace tr is normal and, therefore it is continuous with respect to the
ultraweak topology on homCA

(Ma,Ma) (cf. [Di], Part I, chapter 6, Sect. 1),
we obtain that the operatorpn(ρ(d∗d)) converges ultraweakly to

fλ(ρ(d∗d)) =
∫ λ2

0
dEλ, (12-6)

in the von Neumann algebra homCA
(Ma,Ma), whereEλ is the right continu-

ous spectral decomposition ofρ(d∗d). Thus using (12-3), we find

Tr(χM(pn(d∗d))) = trMa (pn(ρ(d∗d))) → trMa (fλ(ρ(d∗d))). (12-7)

We obtain finally the following formula for the spectral density functionFi (λ)
of the extended homologyHi (X,M):

Fi (λ) = lim
n→∞ Tr(χM(pn(d∗d))), λ > 0. (12-8)

The last formula involves only the characterχM. SinceFi (λ) is right continuous,
we find also (using only the characterχM) the von Neumann dimension of
the extended homology dimtr P(Hi (X,M)) as the limit limλ→+0 Fi (λ). This
completes the proof of Theorem 7.2. ut

12.2. Proof of Theorems 8.2 and 8.3.The proof uses the methods of Lück [L] with
certain adjustments. We will use the notations introduced in the proof of Theorem
7.2, cf. 12.1. In particular we will use formula (12-8). As in the proof of 7.2
we will denote byFi (λ) the spectral density function of the extended homology
Hi (X,M). Since the trace tr is assumed to be normal, we will assume that
Fi (λ) is right continuous. The von Neumann dimension dimtr P(Hi (X,M) is
by the definitionFi (0).

For k = 1,2, . . . denote byF k
i (λ2) the spectral density function of the finite

dimensional operatorρk(d∗d), whereρk : π → End(V k) is the k-th representa-
tion. As in the proof of 7.2, we regard hered∗d as the matrix with entries in the
group ringZ[π], i.e. d∗d ∈ Z[π] ⊗ Mat(a × a,Z), wherea denotes the number
of (i +1)-dimensional cells inX. Therefore,ρk(d∗d) ∈ End(V k)⊗Mat(a×a,Z).
Similarly to (12-8) we have forλ > 0

F k
i (λ) = lim

n→∞ Tr(χk(pn(d∗d))), (12-9)

wherepn(z) is any sequence of polynomials constructed as in the proof of The-
orem 7.2. Let us introduce also the functions

Gi (λ) = Limω[µkF k
i (λ)] and (12-10)

G+
i (λ) = lim

ε→+0
Gi (λ + ε) , (12-11)

defined forλ ≥ 0. According to our definitions, we have

Gi (0) = projdimωP(Hi (X,V )) and (12-12)
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G+
i (0) = projdimωP(Hi (X,V )) + tordimωT(Hi (X,V )) . (12-13)

Therefore to prove Theorem 8.2 we have to show thatFi (0) = G+
i (0).

Note that Gi (λ) is the spectral density function of extended homology
Hi (X,V ) as defined in [F], Sect. 3.7. We will see now that the second function
G+

i (λ) is in fact more important.
We will choose the polynomialspn(z) as follows. Denote bygn : R → R the

function

gn(z) =




1 + 1/n for z ≤ λ2,

1 + 1/n − n(z − λ2) for λ2 ≤ z ≤ λ2 + 1/n,

1/n for λ2 + 1/n ≤ z

(12-14)

and construct the polynomialspn(z) such that

gn(z) ≤ pn(z) ≤ 2 and lim
n→∞ pn(z) = fλ(z)

for all z ∈ [0,N ]. Here fλ(z) denotes the characteristic function of the interval
[0, λ2] and N is the large number constructed in the proof of Theorem 7.2, cf.
(12-5).

With this choice of the polynomialspn(z) we may show that for anyn, k
andλ > 0 holds

µkF k
i (λ) ≤ Tr(χ̃k(pn(d∗d))) ≤ (1 + 1/n)µkF k

i (λ + 1/n) + a/n, (12-15)

wherea denotes the number of (i + 1)-dimensional cells inX. To prove this one
denotes byEk(λ) the ordered set of eigenvaluesz of ρk(d∗d) satisfyingz ≤ λ
listed with multiplicities. Then

Tr(χ̃k(pn(d∗d))) = µk ·
∑

z∈Ek (λ2)

pn(z),

and now to obtain (12-15) one just repeats the arguments on page 469 of [L].
Taking in (12-15) for fixedn the limit Limω with respect tok and using the

assumption that ˜χk → χM we obtain

Gi (λ) ≤ Tr(χM(pn(d∗d))) ≤ (1 + 1/n)Gi (λ + 1/n) + a/n. (12-16)

Therefore, taking the limit in (12-16) whenn → ∞ and using (12-8) we get

Gi (λ) ≤ Fi (λ) ≤ G+
i (λ). (12-17)

From the last inequality we obtain forε > 0

Fi (λ) ≤ G+
i (λ) ≤ Gi (λ + ε) ≤ Fi (λ + ε), (12-18)

and since we know thatFi (λ) is right continuous, this shows (by passing to the
limit when ε → 0) that

Fi (λ) = G+
i (λ). (12-19)
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This is precisely the statement of Theorem 8.3.
Since both functions in the last equality are right continuous, we obtain

Fi (0) = G+
i (0), which completes the proof of Theorem 8.2 (cf. 12-13)). ut

12.3. Proof of Theorem 9.2.(i) and 9.2.(ii).We will use the following Lemma
from algebraic number theory:

Lemma A. LetFk ⊂ C be a number field of degree hk ≤ h and letok be the ring
of algebraic integers ofFk. Let σ1, σ2, . . . , σhk : Fk → C denote all the distinct
embeddings ofFk into the complex numbers. Then for any elementα ∈ ok with
α /= 0, the condition

|σi (α)| ≤ R for all i = 1,2, . . . ,hk (12-20)

implies
|σj (α)| ≥ R1−hk (12-21)

for any j = 1,2, . . . ,hk.

This Lemma is well known, however we will give a simple independent
proof. Similar argument is used in [Sh], in the proof of Theorem 11 in chapter
1.

Proof of Lemma A.The product

hk∏
i =1

σi (α)

(the norm ofα) is a nonzero integer. Therefore we obtain

|σj (α)| ≥
hk∏

i =1,i /=j

|σi (α)|−1 ≥ R1−hk .

This completes the proof of Lemma A.

Here is another lemma, which we will need:

Lemma B. Let A = (aij ) be a k× k-matrix with complex entries. Suppose that
for some C> 0 and K ≥ 1 holds

| Tr(Ar )| ≤ C · K r (12-22)

for all r = 1,2, . . . k. Then we have the following estimate for the coefficients
sr = sr (A) of the characteristic polynomialdet(λ − A) =

∑k
r =0(−1)k−r sk−r (A)λr

of A:

|sr (A)| ≤ C(C + 1) . . . (C + r − 1)
r !

· K r . (12-23)

Proof of Lemma B.For r = 1,2, . . . k denote
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pr = Tr(Ar ) =
k∑

i =1

λr
i ,

whereλ1, λ2, . . . λk denote the eigenvalues ofA. We have

sr = sr (A) =
∑

i1<···<ir

λi1λi2 . . . λir . (12-24)

We will prove (12-23) by induction onr using the following Newton’s iden-
tity

(−1)r · r · sr = s1pr −1 − s2pr −2 + · · · + (−1)r sr −1p1 − pr , (12-25)

cf. [CR], page 314.
Since s1 = p1, the inequality (12-23) holds forr = 1; suppose that it has

been established for all values ofr which are less than the given one. Then from
(12-25) we obtain

r · |sr | ≤ C · K r · {
r −1∑
j =1

(
C + j − 1

j

)
+ 1},

and now the desired inequality (12-23) follows from the identity

C
r

· {
r −1∑
j =1

(
C + j − 1

j

)
+ 1} =

(
C + r − 1

r

)
, (12-26)

which can be easily checked by induction. This completes the proof of Lemma
B.

Now we will prove statement (i) of Theorem 9.2. We will use the notations
introduced in the proofs of Theorems 7.2 and 8.2. Also we will use the notations
introduced in 9.1.

Let us fix somek. We know that the matrixρk(d∗d) ∈ End(V k) ⊗ Mat(a ×
a,Z) is congruent overC to the matrix ˜ρk(d∗d) ∈ EndFk

(Wk) ⊗ Mat(a × a,Z)
(by conditionB in 9.1. The latter matrix has entries in the fieldFk and therefore
the characteristic polynomial

qk(t) = det(t − ρk(d∗d)) (12-27)

(of ρk(d∗d) or equivalently of ˜ρk(d∗d)) has coefficients inFk . Write qk(t) =
tνqk(t), whereqk(0) /= 0 andqk(0) ∈ Fk .

We claim now that

M a dim V k · qk(0) belongs to ok , (12-28)

whereM is the denominator of the arithmetic approximation, cf. 9.1. To show
this we note, that from our assumptionsC andD in 9.1 it follows thatM times
the dual (over the fieldFk) of the ok-homomorphism
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d : Lk ⊗π Ci +1(X̃) → Lk ⊗π Ci (X̃)

is well defined as a homomorphism

Lk ⊗π Ci (X̃) → Lk ⊗π Ci +1(X̃).

In other words,

M · ρ̃k(d∗d) : Wk ⊗π Ci +1(X̃) → Wk ⊗π Ci +1(X̃)

preserves theok-lattice Lk ⊗π Ci +1(X̃). If we assume that the last lattice is free
over ok , then we may take its basis as the basis ofWk ⊗π Ci +1(X̃) and compute
the characteristic polynomial with respect to this basis. We obtain that the poly-
nomial M a dim V k · qk(tM −1) has all coefficients inok . Therefore all coefficients
of M a dim V k−ν · qk(tM −1) belong took and thereforeM a dim V k−ν · qk(0) ∈ ok ,
which implies our statement (12-28).

In order to prove (12-28) in the general case (not assuming that the lattice
Lk ⊗π Ci +1(X̃) is free), we proceed as follows. For any prime idealp ⊂ ok we
consider the localization ofLk ⊗π Ci +1(X̃) with respect to the complement ofp

which is now a free (ok)p-module (since (ok)p is a principal ideal ring, cf. [FT],
page 59). The arguments of the previous paragraph show that the valuation

vp(M a dim V k · qk(0)) ≥ 0

is non-negative. Since this is true for any prime idealp of ok , we obtain that the
fractional ideal generated byM a dim V k · qk(0) is contained inok , which proves
(12-28).

We know thatqk(0) is the product of all the nonzero eigenvalues of the
matrix ρk(d∗d) and from (12-5) we know that any of these eigenvalues is less or
equal thanN , where the numberN ≥ 1 was constructed in the proof of Theorem
7.2. Note thatN is determined only by the matrixd∗d (i.e. by the polyhedron
X) and does not depend onk. Therefore we obtain that

|qk(0))| ≤ N a dim V k

, i = 1,2, . . . ,hk . (12-29)

We claim that a similar estimate

|σj (qk(0))| ≤ N a dim V k

1 , i = 1,2, . . . ,hk . (12-30)

holds for any embeddingσj : Fk → C of the number fieldFk into C, where
the constantN1 is independent onk and of j = 1,2, . . .hk . To show this, we will
denote byg1, g2, . . . gs all elements ofπ, which appear with nonzero coefficients
in the matrixd∗d. We set

N1 = 4 · N · L, where L = max{N (g1),N (g2), . . . ,N (gs),1}; (12-31)

the numbersN (gi ) are given by propertyF in 9.1. In order to prove inequality
(12-30) we will apply Lemma B to the following (a dimV k × a dimV k)-matrix

A = σj (ρk(d∗d)) (12-32)
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for fixed k and j ; here we viewρk(d∗d) as the matrix with entries in the field
Fk and we obtain a complex matrix applying the embeddingσj : Fk → C. An
obvious argument using our assumption (9-3) gives the estimate

| tr(A)| ≤ a dimV k · N · L. (12-33)

Similarly, using our assumption (9-2) about the behavior of the functionN (g),
gives

| tr(Ai )| ≤ a dimV k · (NL)i (12-34)

for all i . Now, by Lemma B, we may conclude (using the notation introduced in
Lemma B) that

|sr (A)| ≤
(

a dimV k + r − 1
r

)
· (NL)r (12-35)

for r = 0,1,2, . . . ,a dimV k . Clearly, σj (qk(0)) = sr (A) for the largestr ≤
a dimV k with sr (A) /= 0, and since we have the following obvious estimate for
the binomial coefficient(

a dimV k + r − 1
r

)
≤ 22a dim V k−1 < 4a dim V k

, (12-36)

combining (12-35) and (12-36), we obtain (12-30).
Using inequality (12-21) of Lemma above and also (12-23), we obtain

|M a dim V k

qk(0)| ≥ (MN1)a dim V k (1−hk ), (12-37)

which implies

|qk(0)| ≥ M −ha dim V k

N (1−h)a dim V k

1 . (12-38)

Now we use Lemma 2.8 of L̈uck [L]. We apply it to the operatorρk(d∗d)
and estimate (12-38). We obtain (using the notations introduced in the proofs of
Theorems 7.2 and 8.2 and after some elementary transformations)

µk [F k
i (λ) − F k

i (0)] ≤ c
− ln(λ)

, (12-39)

where the constantc is c = h logM + (h − 1) logN1 + logN . Taking Limω with
respect tok → ∞ in (12-27) we obtain

Gi (λ) − Gi (0) ≤ c
− ln(λ)

. (12-40)

By the definitiontordimωT(Hi (X,V )) = G+
i (0) − Gi (0) (cf. (12-12) and (12-

13)). Comparing this with (12-40) we see that the torsion dimension vanishes.
Now to finish the proof we only have to show that the sequenceµk dimHi (X,

V k) = µkF k
i (0) converges. To do so, we will introduce the following notations:

Gi (λ) = lim inf
k→∞

µkF k
i (λ),

Gi (λ) = lim sup
k→∞

µkF k
i (λ),
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G+
i (λ) = lim

ε→+0
Gi (λ + ε),

G
+
i (λ) = lim

ε→+0
Gi (λ + ε).

From (12-15) we obtain (by passing to the limits with respect tok)

Gi (λ) ≤ Tr(χM(pn(d∗d)))) ≤ (1 + 1/n)Gi (λ + 1/n) + a/n

and the limitn → ∞ gives

Gi (λ) ≤ Fi (λ) ≤ G+
i (λ).

Now we see that forε > 0 we have

Fi (λ) ≤ G+
i (λ) ≤ G+

i (λ + ε) ≤ Gi (λ + ε) ≤ Fi (λ + ε)

and thus whenε → 0 we get

Fi (λ) = G+
i (λ) = G

+
i (λ). (12-41)

In particular, we obtain
Fi (0) = G+

i (0) = G
+
i (0). (12-42)

On the other hand, using inequality (12-27) we obtain

Gi (λ) ≤ Gi (0) +
c

− ln(λ)
,

Gi (λ) ≤ Gi (0) +
c

− ln(λ)
,

which give forλ → 0

G+
i (0) = Gi (0), and G

+
i (0) = Gi (0).

Comparing the last equalities with (12-42) givesGi (0) = Gi (0). This proves the
convergence ofµk dimHi (X,V k) and completes the proof of (i).

Statement (ii) was proven above by (12-40).

12.4. Proof of Theorem 9.2.(iii).The arguments here are similar to those used by
D.Burghelea, L.Friedlander and T.Kappeler, cf. Appendix of [BFK].

We will use the notations introduced in the proof of Theorem 8.2 and in
Theorem 7.2. We want to show that

log det′(ρ(d∗d))
def→=

∫ ∞

+0
ln(λ)dFi (λ) > −∞. (12-43)

If N is the large number constructed in Proof of Theorem 7.2, (cf. (12-5)), then
Fi (λ) is constant forλ ≥ N and so we may write (integrating by parts)

log det′(ρ(d∗d)) =(Fi (N ) − Fi (0)) · ln N +

+ lim
ε→+0

{[Fi (ε) − Fi (0)](− ln ε) −
∫ N

ε

Fi (λ) − Fi (0)
λ

dλ}.
(12-44)
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From the last formula we obtain the inequality

log det′(ρ(d∗d)) ≥ (Fi (N ) − Fi (0)) · ln N −
∫ N

+0

Fi (λ) − Fi (0)
λ

dλ. (12-45)

Note that in the similar formula for the finite dimensional operatorρk(d∗d) we
have the equality

log det′(ρk(d∗d)) = (F k
i (N ) − F k

i (0)) · ln N −
∫ N

0

F k
i (λ) − F k

i (0)
λ

dλ}, (12-46)

since the spectral density functionF k
i (λ) is constant for smallλ /= 0. Now using

inequality (12-38) we find

log det′(ρk(d∗d)) = log |qk(0)| ≥ −ha log(MN1) · dimV k , (12-47)

where a denotes the number of (i + 1)-dimensional simplices inX and N1 is
given by (12-31). Multiplying byµk = (dimV k)−1, we get

µk · log det′(ρk(d∗d)) ≥ −ha log(MN1). (12-48)

Similarly to statement 1 of Lemma 3.3 of Lück [L], we obtain the inequality∫ N

0

Fi (λ) − Fi (0)
λ

dλ ≤ lim inf
k→∞

{
∫ N

0

µkF k
i (λ) − µkF k

i (0)
λ

dλ}. (12-49)

Now, we multiply equality (12-34) byµk and pass to the limit infimum, whenk
tends to infinity. SinceµkFi (N ) → Fi (N ) (by Theorem 8.3) andµkFi (0) → Fi (0)
(by Theorem 9.2.(i)), we obtain finally (combining inequalities (12-45), (12-48)
and (12-49))

log det′(ρ(d∗d)) ≥ −ha log(MN1). (12-50)

This completes the proof. ut
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