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0. Introduction

0.1. In 1994 Wolfgang liick [L] proved a beautiful theorem stating that von
Neumann Betti numbers of the universal covering of a finite polyhedron can be
found as the limits of the normalized Betti numbers of finitely sheeted normal
coverings. Before lck it was only known that there is an inequality (called
Kazhdan’s inequality [Ka], cf. also Gromov [Gr], pages 13 and 153).

One of the goals of the present paper is to generalize thek’s theorem
in two directions. First, instead of finitely sheeted normal coverings we consider
flat vector bundles of finite dimension. Secondly, insteati’eBetti numbers we
study the von Neumann dimensions of the homology of infinite dimensional flat
bundles determined by unitary representations in a von Neumann category with
a trace.

The other main purpose of this paper is to investigate the situations, when the
statement of the lick’s theorem in its original form is incorrect. We show that the
correcting additional term has a very interesting meaniing forsion dimensign
it can be understood in the framework of the formalism of extended cohomology
and von Neumann categories. As examples in the paper show, vanishing of this
correcting term happens in fact rarely, under very special arithmetic assumptions.

0.2.1n order to illustrate our results, we formulate here three approximation the-
orems, dealing with the towers of coverings and tRéBetti numbers, which are
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corollaries of the main Theorem 9.2 below. The first (Theorem 0.3) generalizes
the Liick’s theorem by admitting towers of non-normal finitely sheeted coverings.
The second (Theorem 0.4) generalizes Theorem 0.3 by allowing twisted coeffi-
cients; here we impose some important restrictions coming from the algebraic
number theory.

0.3. Theorem. Let w be an infinite discrete group and let> 17 D I D ...
be a sequence of subgroups of finite index. For anylk?2, ... denote by pthe
total number of the subgroups ef conjugate tal; giveng € =, we denote by
nk(g) the number of subgroups conjugate i, containingg. Suppose, that for
g # 1 holds
im k()
k—oo Nk

=0. (0-1)

For any finite polyhedron X withr;(X) = m, consider|r : I]-sheeted coverings
Xk — X corresponding to the subgrougg& C =, where k=1,2,.... Then the
sequence of the normalized Betti numbers

- dimHi(Xe) _ ) _
Jm. [7: I}] = b7 ) 0-2)

converges to the3-Betti number [£(X).

Proof of Theorem 0.3 will be given in Sect. 9.

Note that the condition (0-1) of Theorem 0.3 implies thafs residually
finite: for fixed k denote byPx C = the intersection of all the subgroups of
conjugate tol; then because of (0-1) we havé®, = {1}.

Assuming that all subgroupS C 7 are normal, Theorem 0.3 reduces to the
theorem of lilck.

Here is another generalization of the theorem dtk:

0.4. Theorem. Letw be an infinite discrete groupandlet> 1 D I, D ... bea
sequence of normal subgroups of finite index such that the intersetckips {1}
is trivial. Let

p . m— Mat(m x m, o) (0-3)

be a unitary representation, wheredenotes the ring of algebraic integers in
an algebraic number field7Z c C. We assume tha# comes imbedded into

C such that it is invariant under the complex conjugation and we consider the
induced involution on and ono. For any finite polyhedron X with(X) = 7,
consider the normal covering, — X, where k= 1,2, ..., corresponding to the
subgrouply and denote by ¥ the flat vector bundle ovey, determined by the
representatiorp, restricted ontalk. Then the sequence

i _dim Hi (Xq, V¥)

- h@ !
k—oo dimVK-[m: 1] by (X) (0-4)

converges to the3-Betti number [P(X) of X.
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The proof of Theorem 0.4 will be given in 9.3; it follows from a more general
Theorem 9.2, dealing with sequences of flat bundles, satisfying some arithmeticity
conditions, and such that their normalized characters converge to the character of
a unitary representation in a von Neumann category. The properties of arithmetic
approximation include an important condition on the sequence of Galois groups
acting on the characters of the approximating sequence of representations; we
show in Sect. 10 that the theorem becames false, if this condition is violated.

It is interesting to emphasize that under the conditions of arithmetic approx-
imation the dimensions of the flat bundles, approximating a von Neumann flat
bundle, have to tend to infinity.

Here is another corollary of Theorem 9.2, which we prove in Sect. 9:

0.5. Theorem. Let X be a finite polyhedron, and let: 7;(X) — Mat(m x

m, 05-) be a unitary representation, wher# C C denotes a cyclotomic field
ando g C .7 denotes its ring of algebraic integers. Suppose ha injective
and its image has trivial intersection with the the center of the matrix algebra
Mat(m x m,07). Let& — X denote the flat vector bundle of rank m determined
by the representatiop. Then

o sk
i GmH; (X, 29

e T @dmey b®(X). (0-5)

A more general statements of this type can be found in Sect. 9, cf. Theorem
9.6.

0.6. In this paper we use the language of von Neumann categories, which pro-
vides a natural environment for developing tifehomology theory, cf. [F]. We
review this material briefly in Sect.1. Traces on von Neumann categories play
an important role; the traces allow to assign dimensions to objects of the von
Neumann category, which generalize the von Neumann dimension.

Given a polyhedroiX and a representation of the fundamental grougf X
on an object of a von Neumann category with a trace, they detemtharacter
on. Itis a class functiory : # — C, which satisfies certain positivity condition,
cf. Sect.7. We show here that knowing this character as the only information
about the representation allows to find the von Neumann Betti numbers and the
spectral density function of the extendeédhomology. Conversely, we show
that one may construct von Neumann categories with traces starting from class
functions on the fundamental group

The problem of describing the behavior of th&invariants under deforma-
tions of the von Neumann representation, seems to be of central importance.
For example, one wants to approximate von Neumann representations by finite
dimensional ones (as in thditk's theorem). Since the character of a von Neu-
mann representation determines completely the most impdrfanbmological
invariants, we study situations, when we have a sequence of finite dimensional
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representations with the property that their normalized characters converge (point-
wise, i.e. as functions on the group) to the character of the given infinite di-
mensional representation. Our aim is to find the homological (spectral) invariants
corresponding to the infinite dimensional representation in terms of the approxi-
mating finite dimensional family; this seems to be a natural generalization of the
situation studied by fick [L].

0.7.1t turns out that any approximating sequence of finite dimensional represen-
tations can also be treated as a single representation is a finite von Neumann
category. Moreover, this von Neumann category admaiBixmier type(i.e. not
normal)trace the construction of this trace uses universal summation machines
of von Neumann [vN]. Note that Dixmier type traces play a very important role
in the noncommutative geometry of A. Connes [C]. We show in Sect. 2, that not
normal traces allow to define a dimension type function for the torsion objects
of the extended category. We call this functithre torsion dimensianits main
property is that it determines a non-trivial homomorphism on the Grothendieck
group of the torsion subcategory.

This von Neumann category allows to stuilie growth processesfamilies
of finite dimensional chain complexes. A sequence of flat bundles over a finite
polyhedron (more precisely, the corresponding sequence of the chain complexes)
is an instance of a growth process. Any growth process defines its asymptotic
invariants: the projective dimension, the torsion dimension, and the spectral den-
sity function. As another geometrically interesting example of growth processes
we may mention the sequence of choppings (exhaustion) of a non-compact Rie-
mannian manifold.

0.8.In the most general approximation theorems established in Sect. 8 (cf. The-
orems 8.2, 8.3), we find that the torsion dimension of the extended homology
appears as the additional correcting term. In many cases one may expect the
torsion dimension to be independent of the choice of the summation machine
which is a part of the Dixmier type trace. We show that such independence hap-
pens in the analytic situation (Theorem 8.4). We also analyse examples showing
that sometimes one may realize a sequence of approximating Betti numbers by
an arbitrary sequence consisting of 0's and 2’s, cf. 6.3.

However, if we want to guarantee vanishing of the torsion dimension in the
general approximation theorem 8.2, we have to impose some assumptions from
algebraic number theory. The idea iotegrality is also very important in the
original Luck’'s theorem. We develop this idea further, by allowing representa-
tions over the algebraic integers of algebraic number fields; this adds flexibility
and makes possible many interesting applications.

0.9. Finally, | want to mention an approximation theorem of a different type;

it is Theorem 11.1. Here we assume that the fundamental group admits a chain
of normal subgroups with index being a powermfwherep is a fixed prime
number. We show that the Betti numbers over the finite flgldoehavein a
monotone fashigrthis produces an inequality
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b®(X) < dimg, H; (X, Fy) (0-6)

between the.2-Betti numbers and the usulij-homology, cf. Corollary 11.2.

0.10. This paper was written while the author was visiting IHES in Bures-sur-
Yvette (France); | am very thankful to the IHES for hospitality.

| am also grateful to D. Burghelea, A. Connes and M. Gromov for a number
of stimulating discussions.

1. A review of extendedL2-homology, von Neumann categories, and traces

Intuitively, the extended homology provides a rigorous formalism to study a
homology theory based on the (usual) infirlifecycles together with the “cycles”
of the form

b ]

Fig. 1

More precisely, we study geometry of non-compact manifolds or flat infinite
dimensional bundles over compact manifolds; the cycle on the Fig. 1 above
represents in fact a sequence of cyadgswheren = 1,2, ... such that eacl,
is a boundary, but thsizeof a minimal chain, spanned hy, is much greater
(asymptotically than the volume ot,.

A precise definition of the extendeéd homology uses a generalization of the
notion of Hilbert space — the functor of extended homology assigns to a manifold
such generalized Hilbert space. It turns out that the familiar category of Hilbert
spaces is not good enough; we complete it by addiogsion Hilbert spaces’,
such that the obtained category becomes an abelian category. In order to obtain
a good category and to include some interesting applications, it is reasonable
to study this construction of abelian extension starting from a von Neumann
category.

In this section we will give a brief review of the notion of von Neumann
category, the extended abelian categories, and traces, which will be used in the
rest of the paper. In full detail all this material is described in [F].

1.1. von Neumann categoridset. 4 be an algebra ovet having an involution
which will be denoted by the star A Hilbert representation of2 (or a Hilbert
module)is a Hilbert space7 supplied with a left action of 4 on .72 by
bounded linear maps such that for aamy . 4 holds

(ax,y) = (x,a%y) (1-1)
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for all x,y € .7Z. A morphismbetween Hilbert representatiogs. .74, — .74

is a bounded linear map commuting with the action of the algel#raNe obtain

the additive category of all Hilbert representations of a givealgebra. 2.
Assume tha¥z , is an additive subcategory of the category of all Hilbert rep-

resentations of-4. We say thatZ_ , is a von Neumann categoii/the following

properties are verified:

(i) The kernel of any morphisgh: .74, — .74, in &, and the natural inclusion
ker¢ — .77, belong to? ,.

(iiy For any morphismg : .74, — .97, of €, the adjoint operatow* : .74, —
T, is also a morphism ot ,.

(iii) for any pair of representations#,,.72, € ob(¢_,), the corresponding set
of morphismddomy,(7#1,.7%>) is a weakly closed subspace in the space of
all bounded linear operators betweef?; and. 7.

Note, that for any object” € ob(# ;) of a von Neumann category the set
of endomorphisms Hom, (77 ,.77) is a von Neumann algebra.

1.2. Finite objectsWe will say that an objectZ < ob(% ;) of a von Neumann
categoryis finite if any closed?’ ,-submodule74; C .7Z which is isomorphic
to .7 in ¢ ,, coincides with7%.

This property is equivalent to the requirement that the von Neumann algebra
Homy (7% ,.72) of endomorphisms of# is finite. Cf. [Di], part lll, chapter
8, Sect. 1.

A von Neumann categor¥, , is calledfinite if all its objects are finite.

1.3. Trace and dimensioibet Z , be a von Neumann category.

Definition. A trace on category¥ , is a function, denotetr, which assigns to
each object7Z € ob(Z,) a finite, non-negative trace

trs, : Homy (92,.90) — C (1-2)

on the von Neumann algebtéomy (.77, .7%); in other wordstr 5, assumes (fi-
nite) values inC, tr,(a) is non-negative on positive elements aHaimy (.77,
F6), andtr g is traceful, i.etr 5, (ab) = trg»(ba), for a,b € Homy (77, .77). It
is also assumed that for any pair of representatio#g and.7, the correspond-
ing tracestr.z, , tro, andtr, .o, are related as follows: if fe Homy, (71 @
T, T B .F5) is given by & x 2 matrix(f ), where § . .F4 — F7,1,j = 1,2,
then

troneam () = tron(fn) + try,(f22). (1-3)

For the notion of positive elements of the von Neumann algebraH@#
F) we refer to [T], page 24.

We will say that a trace tr on a von Neumann categoryasmal iff for
each non-zero7Z% € ob(%Z ,) the trace tg, on the von Neumann algebra
Homg (77 ,.77) is normal. Recall that this means that
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sup{tro (&)} = tro(sup(a }) (1-4)

for any bounded increasing nef € Homy (7% ,.7%) consisting of positive
operators; cf. [T], page 309.
Given a trace tr on a categots ,, one can define the followindimension
function
dim.Z = dimy T2 = try(id ) . (1-5)

The real number digh 77 is calledthe von Neumann dimension (or the projective
dimension) of# with respect to the tract.

1.4. The abelian extensioGiven a von Neumann catego ,, there exists
a bigger categorys (Z ,), which is abelian and which contair§ , as a full
subcategory. The construction &f(% ;) was suggested in [F1], [F] using ideas
of P. Freyd [Fr].

An objectof the category? (¢ ,) is defined as a morphisna( A” — A) in
the categoryZ . Given a pair of objects?” = (. : A = A)and¥/ = (6 : B’ —
B) of £ (% ,), amorphism% " — %/ in the categorys (% ;) is an equivalence
class of morphism$ : A — B of category? , such thatf o « = 3o g for some
morphismg : A — B’ in ¢ ,. Two morphismsf : A — B andf’ : A— B
of  , represenidentical morphisms?™ — %/ of £(¢ ,) iff f —f' = oF
for some morphisn¥ : A — B’ of category? ,. This defines an equivalence
relation. The morphisni¥” — %/, represented by : A — B, is denoted by

fl: («:A—-A) — (8:B"—=B) orby [f]:. 2 — ¥. (1-6)

The compositiorof morphisms is defined as the composition of the corresponding
morphismsf in the categoryZ, ,.

1.5. Embedding of , into & (% ;). Given an objectA € ob(% ;) one defines
the following object (0— A) € ob(£ (% ;)) of the extended category. Since any
morphismf : A — B determines a morphisni]: (0 — A) — (0 — B) in the
extended category, we obtain a full embeddifigg — & (% ,).

It is possible to characterize the objects of the extended category which are
isomorphic in& (4 ;) to objects coming fron¥Z” , in intrinsic terms. Namely,
an objectZ” € ob(#(Z_,)) is projective if and only if it is isomorphic i (Z_ ;)
to an object of the fornf0 — A), where Ac ob(Z ;)

1.6. The torsion subcategonAn object.#" = (o : A — A) of the extended
category& (¢ ,) is calledtorsioniff the image ofa is dense inA.

We will denote by.7 (% ,) the full subcategory o# (% ,) generated by all
torsion objects.7 (¥ ,) is calledthe torsion subcategory éf (7 ,). If Z ,is a
finite von Neumann category, then the torsion subcategoy. ;) is an abelian
subcategory o#5(Z ).

Given an arbitrary object?” = (o« : A — A) of & (% ,) one considers
the following torsion objecT (#") = (o : A’ — cl(im(c))) which is calledthe
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torsion part of. Z". There is an obvious monomorphish(.2") — .%". The factor
P(Z) = X&' /T(XZ") is projective, calledthe projective part ofZ". We have
A =T(Z) @ P(#"). Thus,the isomorphism type of an object of the extended
category & (¢ ;) is determined by the isomorphism types of its projective and
torsion parts.

1.7. Novikov-Shubin invariant§&iven a trace on a von Neumann categéry,,
one obtains the numerical invariand(.%") of torsion objects, called the Novikov
- Shubin invariant. We refer to [F], Sect. 3.9, where it is described. There exist
also other invariants of torsion objects, independent of the Novikov - Shubin
invariant, cf. [F1].

In the next section we will define new numerical invariant of torsion objects,
which is sometimes more convenient.

1.8. Extended homologyrhe functor of extended homology is constructed as
follows, cf. [F], [F1]. Suppose thaX is a finite polyhedron with fundamental
groupm. Let £, be a von Neumann category, andpetr — Homy (.22, 70)

be a representation, whereZ € ob(Z ;). Consider the chain compleg, (X)
(the cellular chain complex of the universal coveriy Then

A @ Co(X)

is a chain complex in catego®® ,. Thus, it lies in the abelian catego#/(%. ,))

and its homology (calculated i (¢ ,), calledextended £ homology of X with
coefficients in#2) is denoted byZZ, (X, . #2). Being an object o5 (2 ,), itis a
direct sum of its projective and torsion parts. The projective part of the extended
homology coincides with the reducéd homology, cf. [A] (defined by dividing

the space of infinité.? chains by the closure df? boundaries). The torsion part

of the extended homology is responsible for the “almost cycles” or “asymptotic
cycles” as the one shown on Fig. 1.

2. Torsion dimension

In this section we define a new numerical invariant of torsion objects, which
we call torsion dimension. It behaves in better way, than the known invariants
(such as the Novikov-Shubin invariant and the minimal number of generators,
introduced in [F1]). We will use the torsion dimension in the next section to
study the Grothendieck group of torsion objects. Also, we will use the torsion
dimension in approximation theorems 1ot topological invariants, cf. Theorems
8.2 and 8.4, where it produces a correcting additional term.

Everywhere in this sectiof , will denote a finite von Neumann category.
We will assume that we have a fixed trace tr@n, cf. Subsect. 1.3. We wilthot
assume that the trace tr is normal, since in the case of normal traces the torsion
dimension is always zero. Also, the trace tr is not supposed to be faithful.
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Not normal traces are usually call@ixmier type tracescf. [C], since J.
Dixmier [D] was the first who constructed such traces. Dixmier type traces play
very important role in the non-commutative geometry of A. Connes [C].

2.1.First we will show that any non-normal trace determiagimension function

of torsion objects. We will see that it behaves sub-additively under extensions.
Let. 2" = (a: A — A) be a torsion object of the extended categér{”z )

and letF ()\) be its spectral density function with respect to the trace tr, cf. [F],

formula (3-12).

Definition. We will definethe torsion dimension of¢” (with respect to the trace
tr) as the following real number

tordim. %" = tordimy. 2" = lim _F(A). (2-1)
A—+0

Note thatF () is increasing and so the limit exists.
We will also define theeduced spectral density functidoy

F(\) =F()\) — tordim. 2. (2-2)

Note, that if the trace tr is normal, then the torsion dimensioRim.2" is
always zero.

2.2. Proposition. The torsion dimensiotoroim.2" depends only on the isomor-
phism type of#" as an object of the extended category. The reduced spectral
density functions corresponding to isomorphic torsion objeétsand %/ are
dilatationally equivalent.

Proof. The proof of Proposition 3.8 in [F] does not use the assumption of nor-
mality of the trace. It shows that if#Z" and %/ are isomorphic torsion objects

of the extended category then the corresponding spectral density functions are
dilatationally equivalent. This implies our statement. O

Now we will establish the following internal characterization of the torsion
dimension. Let us recall that any trace tr on von Neumann cateqgoyydeter-
mines a dimension function o ,, cf. 1.3.

2.3. Proposition. Given a torsion object?” of the extended catego¥ (% ,),

its torsion dimensiortordim. ", equals to the infimum of the von Neumann di-
mensiongimP (with respect to the tract) of projective objects P o€, such
that there exists an epimorphism-B .%".

Proof. Suppose that?” = (o : A’ — A) and« is injective. Recall that the spectral
density functionF () is defined as follows. We consider the positive square root
T of the equatiorT? = a*« and the spectral decompositidn= [~ AdE,. Then
F () is the von Neumann dimension of the subspBg4'.

Thus, for any)\ > 0 the spectral projectioB, determines a projective object
P = E,\A’ which has von Neumann dimensidé()\) and which maps epimor-
phically onto.#". Indeed, the torsion objectr} = (o : E\A — «a(ExA)) is
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isomorphic to.2" andE,A’ anda(E,A') are isomorphic (by Lemma 2.3 of [F].
Therefore dim%™ > inf P.

On the other hand, P is projective and maps epimorphically ont¢’ then
%" admits a representation of the form (P’ — P) with someP’ and~ and
thus we obtain (using Proposition 2.2) thatoim.2” < infP. O

Now we will show that the torsion dimension is sub-additive for extensions.

2.4. Proposition. For any short exact sequence
0% -2 —-.%" =0, (2-3)
consisting of torsion objects of the extended abelian categdiy. ,), holds

max{tordim(.2"), tordim(Z")} < tordim(Z") < tordim(.2"”) + tordim(.2").
(2-4)
Moreover, if the sequence (2-3) splits, then

tordim(.2") = tordim(.2") + tordim(.2"). (2-5)

Proof. We will use the internal characterization of the torsion dimension given by
Proposition 2.3. It is clear that B’ can be mapped epimorphically onts” and

P can be mapped epimorphically ont&™, then their direct sunfP’ © P can

be mapped epimorphically ont@". Thus we obtain the right side of inequality
(2-4).

From Proposition 2.3 clearly follows th&attdim(.2") > tordim(.#& ™). Sup-
pose now that — .2 is an epimorphism witHP being a projective object
of ¢ ,. Let PP — P be the kernel of the compositt — 2" — 2.
Then we have an epimorphis®’ — .%". Observe thaP’ is isomorphic to
P in &, by Lemma 2.3 of [F]; therefore difd = dimP’. This proves that
tordim(.2") > tordim(2").

The equality (2-5) obviously follows from the definitions. O

3. Grothendieck group of torsion objects

Note that equality (2-5) represents a very important distinction between the prop-
erties of two functions on isomorphism types of torsion objects - the torsion
dimension, which we introduced above in Sect. 2, and the well known Novikov
- Shubin invariant. Recall that the Novikov - Shubin invariant of a direct sum
equals to the minimum of the Novikov - Shubin invariants of the summands:

ns(Z7 @ 2" = min{ns(Z"),ns(Z")}. (3-1)

The advantage of (2-5) is that it implies thiée torsion dimension determines
a homomorphism with values It from the Grothendieck group constructed out
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of abelian category” (¢ ,) of torsion objects in% ,. Thus existence of a non-
normal trace orZ , implies non-triviality of the Grothendieck group. We will
make all this precise in the following subsection.

3.1. Grothendieck group of torsion objects#®f,. We will denote byK (7 (£ ,))

the Grothendieck group of the abelian categefy{Z ,), cf. [K], page 53. Recall
thatK (7 (£ ,)) is an abelian group generated by the symbdis][ one for each
isomorphism type of torsion object®” in Z,, with the addition given by.f "]+
[/]=[% & %/]. The torsion dimension gives a well-defined homomorphism

tordim : K(7 (%2 ,) — R (3-2)

(by Propositions 2.2 and 2.4).

3.2. Theorem. If the given tracetr on the categoryZ , is non-normal, then
homomorphism (3-2) is non-trivial and thus the Grothendieck grogpK%_ .))
iS non-zero.

Proof. If the trace is non-normal then we may find a sequence

FE =T, D Ty D T3 D ...,

where .77 is an object of 2, and .77,'s are its closed subobjects, such that
N4, = 0 and limdim(#%,) = ¢ > 0. Define the following projector valued
functionE, for A € [0, 1], by settingE, = the projection onta’,, for (n+1)~1 <

A < n~L Then we consider the morphism

1
oI — . F, where a:/ ME,.
0

Then.#" = (o : I — F¥) is a torsion object, and cleartgrdim(.#") =c > 0.
O

4. An example of von Neumann category with Dixmier type trace

Our purpose now is to describe the simplest example of a finite von Neumann
category with a Dixmier type trace. This category will be important for our ap-
plications to the problem of approximation bf invariants; we will see in Sub-
sect. 4.8 that this category allows to describe geometry and topology of growth
processes.

4.1. Fix a sequence of non-negative real numbers (u"), p" > 0, " € R.

We will call i the growth rate Normally, we will have in our applicationg"
tending to O, or being constant. The von Neumann category, we are going to
construct will depend on this choice; we will denoteit().
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Objectsof the categoryZ (1) are sequence®” = (V") of finite dimensional
Euclidean spaces, whereruns over non-negative integers, such that the growth
rate of the dimension oV " is bounded above by the given sequepce

dimV" = O((u")Y). (4-1)

In other words, we assume that the prodult dimV" is bounded. Note that
eachV" is Euclidean i.e. it is supplied with a scalar product.
Each objectZ” of # (1) determinesa Hilbert space74,-, where

Fz={v="),0" € V") "] < oo} (4-2)

Here the normn|v"|| denotes the norm of the spavé.
A morphism f: 77— Z/" in ¢ (1), whereZ" = (V") and 77" = (W"), is
a sequencé = (f"), wheref" : V" — W" is a linear map, such that there exists
a common upper bound
1£7]] < M (4-3)

(M is independent of). Any morphismf : 7" — 77~ of ¢ (u) clearly induces
a bounded linear map of the corresponding Hilbert spaces, which we denote
f . I — F5-. Now one checks easily, that all properties from the definition
of von Neumann category (cf. 1.1) are satisfied. The algel#ran this case is
4 =C.

The categoryZ (1) is clearlyfinite, cf. 1.2.

4.2.Now we will describe a Dixmier type trace ofi (). First, we recall from
[D] and [C], page 305, that there exists a linear form Liginvented by J. von
Neumann [vN]) on the spac&°(N) of bounded sequences of complex numbers,
that satisfies the following conditions:

(@)  Limgy(an) >0 if an >0,
B) Lim,(an) =Lima, if an is convergent
(’7) Limw(alvalaa27a27a3aa37 e ) = Limw(an)‘

Note that the form Lim is not unique; it depends on the choice of the “rulg”
which is sometimes callethe summation machine

Now for any objectZ” of ¢ (1) and for any endomorphisin: Z° — 7" in
¢ (u) define its trace ty(f) by

tr,(f) = Lim,,(u" - Tr(f")). (4-4)

Here on the right hand side of (4-4) Tf) denotes the usual finite dimensional
trace of the linear map" : V" — V". Note that because of condition (4-3) we
have| Tr(f")] < M dimV" and using (4-1) we see that the sequep€dr(f")
is bounded, and therefore the definition is correct.

It is easy to see that (4-4) defines a trace on the categdyy) (in the sense
of [F], Definition 2.7) which is non-negative and traceful. We will see later that
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tr,, is not normal and not faithful. Note that the constructed tragéstnot unique
— it depends on the choice of the functional Ljrfi.e. on the “rule”w).

According to philosophy of A. Connes [C], in problems, having geometric
origin, the answer will be often independent ©f such problems A. Connes
calls measurable Cf. for example Proposition 5 in [C], chapter IV, Sects2.
concerning the Wodzicki residue.

We will also see examples of measurable problems (Theorems 8.4, 9.2 and
11.1) and not measurable problems (example 6.3) later in this paper.

4.3. The projective dimensiolVe know that any trace on a von Neumann cat-
egory determines a dimension function, cf. 1.3 above. The tracenr? (i)
defined by (4-4) determines the following dimension function

projdim,Z" = Lim,(u" - dimVv"), (4-5)

which we will call the projective dimensioof V.

Note that the projective dimensignojdim, 7" depends only on the asymp-
totic behavior of the numbers dii" for large n and does not depend on any
finite number of dinV". In particular, the projective dimensiamojoim,Z”
vanishes ifV" is non-zero only for finitely many. This shows that the pro-
jective dimensiorprojoim,, (or, more precisely, the trace (4-4)) is not faithful —
nontrivial object may have trivial dimension.

Also, given an objec?” of ¢ (i) with projoim,Z” # 0, consider the fol-
lowing sequencez’(m), m =123, ... of truncated objects of (1), where
7" (m" equals toV" for n < mandV(m)" = 0 for n > m. We see that
7' (m)yc 7" and

supZ’ ' (m)=7".
m

Howeverprojoim, Z°(m) = 0 # projoim, 7" for all m. Thereforethe trace (4-4)
is not normal

4.4. The torsion dimensio#ny torsion object of the extended abelian category
& (€ (w)), constructed out o (u), cf. 1.4 and also [F], Sect. 1, is represented
by a morphism of& (u) & = (a : Z© — Z7),. Recall thata = ("), where

a" V" — V" is a linear map. We want to translate the general definition of
the spectral density function cf. [F], Subsect. 3.7, to the present situation. Given
a positive A > 0, denote byF"()\) the maximal dimension of a linear subspace
contained in the following cone

{v e V™ (a"(v), a"(v)) < N3(v, v)}. (4-6)

It is also equal to the number of eigenvalues @f)ta" : V" — V" which are
less than\. Then the spectral density function of" is given by

F(A) = Lim,(u"F"(\)). (4-7)

The torsion dimensior{defined in Sect. 1 above) a#" is by definition
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tordim,. 2" = lim F"(\). (4-8)
A—+0

Roughly, the torsion dimension in this situation can be characterizibe aensity
near zero of eigenvalues @i")*a" with respect to the chosen scale= (u").

4.5. An exampleFix an arbitrary sequena® of positive real numbers with tends
to 0. Consider an arbitrary objeZ” = (V") of ¢ (1) and let the morphism
a7 — 7 be given as followsa" : V" — V" is multiplication bya". Then
we obtain a torsion objectt” = (o : 7" — Z7) of € (u). For this.%" we have

ey {0 a" >\,
dimv", if a" <

Thus we obtain that the spectral density functionfF ()\) = Lim,, u"F"(\) is
constant and equals the Dixmier dimensiordf, F ()\) = projoim,,(Z"). There-
fore the torsion dimension of%" (defined in Sect. 2) equals f@ojoim,, (7).

This is example shows that the torsion dimension may assume arbitrary non-
negative real numbers.

4.6. Extended homology ' (1). Consider a chain complex i (1) of lengthm.
Any such chain compleg is just a sequenc€ = (C",d"), wheren=1,2,...
of finite-dimensional complexes

cr=0-ch L e, Ty cr-0) (4-9)

such that

(1) each chain space;C where i=0,1,...,m, has a fixed Euclidean struc-
ture;

(2) the dimension growth rate satisfigsn C" = O((u")~1);

(3) the norm of the differentials"dhas a common upper bound"|| < M.

Given such chain comple&, it determines the extended homology, having
the projective and torsion parts, and we want to understand the Dixmier dimen-
sion of the projective part and also the torsion dimension of the torsion part.
Let Z" denote the space of cycles ke#t[: C" — C" ,]; thenz = (Z") and
Ci = (C") are objects ofz"(1). We clearly have for the extended homology of
C:

F6(C)=(d:Ci— ). (4-10)

The projective part of7; (C) is just Hi(C")), i.e. it is given by the sequence
consisting of the usual homology of the complex&@s Therefore, the Dixmier
dimension of the projective part of the extended homology is given by

projdim, (P( (C))) = Lim, (1" - dimH; (C")). (4-11)

Let B" be the subspace of boundariB8 = im[d" : C, — C"] and letB; =
(B") € ob(%"(1)). Then the torsion part of the extended homology is given by

T(76/| (C)) = (d . Ci+1/Zi+1 — Bi) (4-12)
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We summarize now the above discussion as follows:

4.7. Proposition. Suppose that a chain complex (4-9) #(u) is given. For
any pair of integers n and i denote by tthe number of zero eigenvalues of the
operator

@d")d": Gy — Gl (4-13)

(the “Half-Laplacian”) and for any A > 0 denote by B(\) the number of
eigenvalues of (4-13) lying in the intervéd, A\?). Then the Dixmier dimension
of the projective part of the extended i-dimensional homolegj(C) equals
Lim,, x"h" and the spectral density function of the torsion part.#f; (C) is
Gi(\) = Lim,, u"G"(N). In particular, the torsion dimension of the torsion part
of 77 (C) is

tordim,, T(7 (C)) = Ali_r)rlO(Limw p"G(N\) (4-14)

4.8. Asymptotic invariants of a growth procegs.typical geometric situation,
when the above numerical invariants of chain complexes () (the projective

and torsion dimension and the Novikov - Shubin invariants) can be applied
consists in the following.

Suppose thaK = (K") is growth processi.e. a sequence of finite simplicial
complexes, such that for any integethe number of -dimensional simplices in
KM is O((u") ™).

As a concrete example (which will be studied in detail later in this paper)
we may assume that the complexes= (K") form a tower of finitely sheeted
coverings over a fixed finite polyhedron.

Another source of examples of growth processes is the following. Suppose
that we have an infinite polyhedron and the finite polyhetifavith K" ¢ K1
form its exhaustion.

Fig. 2

Growth process of this type was considered in a recent preprint [DM] of J.
Dodziuk and V. Mathai.

Another example of a growth process provides a sequence of smaller and
smaller polyhedral approximations to a given compact Riemannian manifold.

Let us return now to the general situation. Given a growth prodé€8y (ve
obtain the chain complexe8" = C,(K") corresponding to the given simplicial



350 M. Farber

structures on the complexds”. We may introduce the euclidean structure on
C.(KM), such that the simplices &€" form an orthonormal base. (Note, that in
fact there may be different geometrically interesting ways of choosing the scalar
product on the chain spacg (K").)

We also have to verify condition (3) in Subsect. 4.6. Note that this condition
will be automatically satisfied if the growth proce$s™) hasbounded geometry:

there is a constant M (independent of n) such that each i-dimensional simplex
of K" is adjacent in K' to at most M simplices of dimensidin+ 1).

The sequenc€ = (C") of chain complexes is now a single chain complex
in the abelian category’ (1) considered above (with an appropriately chosen
growth rateu), so we may apply the construction of extended homology and
study the projective dimension, the torsion dimension, and the Novikov - Shubin
invariants. We will call these invariantee asymptotic invariantsf the sequence
K". Note that the asymptotic invariants really depend only on the geometry of
K" for largen — oo.

In order to construct the chain compl€(K"), one has to choose orien-
tations for all simplices oK". But it is easy to see that different choices of
orientations do not influence the spectrum of the “Half - Laplacians” (4-13) and
so the obtained invariants do not depend on these orientations.

Note also that the asymptotic invariants are in gengedmetric and not
topological i.e. they will depend on the simplicial decompositionkof’s and
not on the topology oK".

For future references, let us make the following simple observation.

4.9. Proposition. Given a growth procegK ") as above, its asymptotic invariants

in dimension i depend only on the growth process consisting of the skeletons of
K" of dimensior(i +1). In particular, the asymptotic invariants in dimension zero
depend only on the 1-skeletons of.K O

5. Spectrum of towers: theorem of Lick

In this section we will reformulate the theorem ofidk [L].
Liick considers a sequence of normal subgroups

.chimcIlyc---chCcnm

such that the indexn : Iy] is finite for all k and the intersectiom/§ is the
trivial group. LetX be a finite polyhedron with fundamental growp For each
k we have the finite sheeted coveriX§ — X corresponding to the subgroup
Ik, and therefore we have a growth proceX§)((in the terminology of Sect. 4)
determined by this tower of covering. The theorem dfck [L] computes the
asymptotic invariants of this growth process.

5.1. Theorem (Luck [L]). Choose for the growth ratg = (4¥) the numbers

pk = Lt (5-1)
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(the inverses of the orders of the quotientd k). Then

(i) The projective dimension of the growth proc€X$) equals to the £ Betti
number of the universal covering of X in the corresponding dimension.

(ii) The torsion dimension of the extended homology vanishes.

We may conclude that the towers of coverings represent a very special class
of growth processes.

6. Growing flat bundles

Here we will consider an example of a growth process, which is a generalization
of the construction of tower of coverings, considered in the previous section. We
will fix a polyhedronX and study a sequence of flat bundles oXeof growing
dimension. Our aim is to understand the asymptotic invariants in this situation.

This section contains only a general discussion of the problem; the results
are given by Theorems 8.2, 8.3, 8.4, 9.2 and 11.1.

6.1. Let X be a fixed finite simplicial polyhedron and lét* be a sequence of
finite dimensional flat bundles ovét. We will assume that each bund#€ is
supplied with a flat metric.

Define the growth rate = (1X) as

pX = (rank& )L, (6-1)

For each integek we have the chain comple®k = C,(X, &%) overC. The
basis of this chain complex is formed by the flat sectiong& éfdefined over the
oriented simplices oX. The boundary homomorphism is given by restricting
a flat section over a simplex on all the faces ofr, multiplied by the sign,
expressing compatibility of the orientations of the simptewith the orientation
of the face.

We want to view this sequence of complex@$, wherek =1,2,3,..., as a
single complex in the categorg (1). To meet all the requirements of Sect. 4.6,
we need to introduce a scalar productn(X, <*). We will do it as follows: the
scalar product of two flat sectiorsg ands,, which are defined over two different
simplices ofX is zero; ifs; ands, are defined over the same simplexof X,
then the scalar producsy( s,) equals to the scalar product sf(v) ands,(v) in
the fiber of the bundlgs® over v, wherev is any vertex of the simplex - the
result is independent on the choicewfsince the metric o ¥ is supposed to
be flat.

We obtain a chain compleg = (CK) in the abelian categor¢ (1) and we
want to understand its asymptotic invariants.

6.2. Note, that the construction of the tower of coverings (cf. Sect.5) is a special
case of this construction. In fact, in the situation of Sect. 5 forlamge have the
action ofr on the group ring of the finite quotiekt* = C[r/I]. More precisely,
we consider the action of from the left on the group algebf@[«/Ik] and the
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corresponding flat bundl&* over X. Note that this bundle has a flat metric,
which comes from the metric &f[n/Ik] in which the elements ofr/Ix form
an orthonormal base. The homology of the flat buriifteover X coincides with
the homology of the normal covering — X, corresponding td.

Example 6.3Here we consider an example, which behaves unlikely the situation
with the towers of coverings.
Let X be the closed 3-manifold obtained from the trefoil knot

Fig. 3

by O-framed surgery. We have the canonical epimorphismri(X) — Z (the
abelinization), and therefore for any complex numbewith |¢| = 1, there is a
unique flat Hermitian line bundl&; with monodromy given by — x:(g) =
¢%9 for g € w. The dimension of homologiii(X, %) is zero for all¢ with
€2 —¢+1#0. HereA(€) = €2 — ¢ +1 is the Alexander polynomial of the trefoil.
If £ is one of the roots of the Alexander polynomial, i.e¢ i ¢4 = e=7/3, then
the dimension of the homology1(X, &¢) is 2.

Now, choose a sequence of complex numbgrsvith |&| = 1, such that
& — &+ Then we have a sequence of flat bundtgs, such thatthe sequence
of dimensionsglimH;(X, &) may be an arbitrary sequence consisting of 0 and
2: we obtain 0 if¢ # & and we obtain 2 iy = &;.

Therefore, the projective dimension in this situatidrim,, dime H1(X, &)
may actually depend on the choice of the summation machine

Note also that in this example the corresponding charagigreonverge and
their limit is the charactex,, at the root of the Alexander polynomial.

Suppose now that in the situation described ab§véends to&,, but & #
&+. Then we see that the projective dimension of the growth process is zero
(independently ofv). However, we will have the torsion dimension equal to 2.

7. Characters of representations and extendetl?>-homology

In this section we will show that the extended homology of a finite polyhedron

with coefficients in a representatio# in a von Neumann category with a trace,
depends mainly on the character, : = — C of the fundamental group of
determined by Z£. We also show that any positive self-adjoint class function on
the fundamental group can be realized as the character of a unitary representation
in a von Neumann category.
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7.1. Suppose tha? , is a von Neumann category with a fixed trace tr.

Let = be a discrete group. We will consider representations oh objects
of & ,. More precisely, let# be an object oz ,; then a representation afis
a ring homomorphism : C[7] — homy (.72, 72). Such representation will be
calledunitary if p is ax-homomorphism, i.e. if it preserves the involutions. Here
we assume that the group ring is supplied with the standard involgtieng—!
for g € .

Any representatiorp : C[n] — homy (.74, 72) as above determinehe
character

Xnw:-m—C, g—1r(p(g)), gem. (7-1)

The charactey. , is clearly constant on the conjugacy classeg.oAlso, if
the representation is unitary, then the charagter has the property

X297 = x #(9) (7-2)

for any g € 7. Class functions with this property are callgelf-adjoint Another
important property of characters sitivity. for any elementa € C[~x] of the
group algebraC[=] holds

x.~(@*a) > 0. (7-3)

It is not true in general that the character determines the representation up to
the natural equivalence.

Using the construction of [F], we know that to any finite CW spXcevith
fundamental groupr1(X) = = we may assign extended homolog¥. (X, #2)
with coefficients in 7.

Our observation here is that (assuming that the trace tZonis normal)
the most important invariants of the extended homology can be computed using
only the charactey. ,, of the representation/z:

7.2. Theorem. Suppose that the chosen tracen the von Neumann categaoty .

is normal. Let X be a finite polyhedron with fundamental grau@hen for any
unitary representatiop : = — hom, (.44, .#4), one can find the spectral density
function F (\) of the extended homolog¥#; (X, . #2) with coefficients inZz using

the charactery_,, of .Z£ as the only information on the representatioft. In
particular, the von Neumann dimension and the Novikov - Shubin invariants of
T (X, #6) depend only on the character ., (and on X, of course).

The proof of Theorem 7.2 is given in Sect. 12.

We will see later in 10.1 that Theorem 7.2 is false without assuming normality
of the trace tr.

Also, the Theorem is not true if the representatiois not unitary. Although
Theorem 7.2 can be generalized to non-unitary representations, but the conclusion
then is different; we will consider this generalization elsewhere.

As a simple example, consider a finite dimensional unitary representation
V of = and form the tensor produc?Z = V ®c ¢?(n). The charactex_,, of
this representation equals to the character&f = (3(1) & - - - @ (?(n) (dimV
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times). Then we obtain from Theorem 7.2 that the spectral density functions of
F6,(X, . 46) and.Z%4, (X,..#¢') coincide.

7.3. Constructing representations with given charactétere we will consider
the following problem: given a class function: = — C, which is self-adjoint
(7-2) and non-negative (7-3), we want to construct a unitary represeniation
m — homy (.74, #2) in certain von Neumann catego?y , with a normal trace
tr such that the character 4, of this representation is the given functign We
will see that there is a canonical construction for this purpose. This construction
is very similar to the classical constructions (cf. [N], Sect. 30, and also [G]);
therefore we will be very brief.

First, we will associate a Hilbert spac#), with a given self-adjoint non-
negative class functiog : 7 — C. We will denote byJ,, the following two-sided
ideal of C[x]:

J, ={a e C[n]; x(ab)=0 for any b e C[n]}. (7-4)

Then we define the Hilbert space”, as the completion of the factor-ring
C[~]/J, with respect to the following scalar product

(a,b) = x(ab*), a,b e C[n]. (7-5)

It is easy to check that the obvious left and right actionsroén the factor-

ring C[~r]/J, are continuous with respect to the norm determined by the scalar
product (7-5), and thus these actions extend to the left and right action®wof
Fb,. Both these actions are in fact unitary.

Note that the previous construction applied to the case whenthe delta-
function at the unit element of the group gives the standard Hilbert space
/2(7) which is usually associated with the group

Now we will construct a von Neumann algebr& (x) acting on.7%,,. We
will denote by.4"(x) the space of all bounded linear mafs .72, — .7,
commuting with the action of from the left. We obtain that

Crl/3, € A7) (7-6)

(whereC[~] acts from the right on the Hilbert spac#, ).
Now we will define the following function (the trace)

T:.47(x) — C. (7-7)
ForAe 47 (x) set
TA)=(A-1,1) (7-8)

where 1€ C[n]/J, C .4 (x) denotes the unit element and the brackets)(
denote the scalar product (7-5). One easily check that:

(1) 7 is a trace on the von Neumann algebr& (x);
(2) 7 is normal;
(3) 7 is faithful;
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(4) on the subringC[x]/J, C .47 (x) the tracer coincides withy.

As shown in Sect. 2.6 (example 3) of [F], the von Neumann algebréy)
acting on.7%, generates a finite von Neumann categéry,, where. 4 is the
group algebraC[x]. The tracer on the algebra/ () determines a trace tr on
the categoryZ ,. This trace on?% , is clearly normal (since is normal).

Now, we have a unitary action of on .# = .7, € ob(Z ;) and the
corresponding character ,, equalsy.

8. Approximating characters

Here we study the general problem about the relation between the von Neumann
Betti numbers and the dimensions of the homology of a sequence of finitely di-
mensional representations, assuming that their characters converge to the charac-
ter of the von Neumann representation. We find a relation, involving an additional
term, the torsion dimension, which was studied in Sect. 2.

In the next section we consider the situation (which we call arithmetic ap-
proximation) when this additional term vanishes.

8.1. In this section we will study the following generalization of the situation
considered by W. tick [L].

Suppose thatr is a discrete group and we are given a sequence of finite
dimensional unitary representatiopg: © — End(V), wherek = 1,2,.... We
will denote by yx : # — C the corresponding characters. The dimensions of
these representations dirf = y, (1) are not supposed to be constant. We will
denote byuX = (xk(1))~* the inverse numbers; the numerical sequemee(u~)
describes the growth rate of the dimensions. We will consider alsedimalized
charactersyyx = ufxx : 7 — C, wherek = 1,2, .. ..

Using the von Neumann categoty (1) of Sect. 4.1 (wherg: = (u*) is
the growth rate specified in the previous paragraph), we can view the given
sequence of representations : @ — End(VK), wherek = 1,2,... as a single
representatiopo : 7 — homy(,\(#", 7"). Here7" = (V¥) is the object of (1)
determined by the given sequen¢é of finite dimensional Hilbert spaces.

Using the construction of 1.8, for any finite polyhedrdnwith fundamen-
tal groupm we have the extended homolog¥., (X, Z") with coefficients in
7. If we choose the Dixmier type trace (4-4) on the categor{u), we ob-
tain the numerical invariants of the extended homology - the projective dimen-
sion, the torsion dimension, and the Novikov - Shubin invariants, cf. Sect. 1.
We will denote byprojoim, P (7 (X, 7)) the projective dimension and by
tordim, T (7% (X, Z")) the torsion dimension. Recall that the projective dimen-
sion is just
dime Hi (X, V)

dim«;Vk
Note also that these invariants depend in general on the choice of the summation
procedurev.

projdimy,P (T (X, 7)) = Lim, 1. (8-1)
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8.2. Theorem. In the situation described in Subsect. 8.1, suppose that we are
given another von Neumann categdfy, with a normal tracetr and a unitary
representation : m — homy (.74, .74). Suppose that the normalized characters

of the finite dimensional representatiofig converge pointwise (as functions on

the groupr) to the charactery ,, : 7 — C of .Z4, when k— oco. In other words,

we assume that for any € 7 holdslimy_, -, X(9) = x.«(g). Then the follow-

ing formula holds, which expresses the von Neumann dimension of the extended
homology.7 (X, . 74) with coefficients inZZ (with respect to the trac#r) by
means of the dimensions of the homology of the approximating finite dimensional
representations:

dimy P(.7% (X, A2)) = projoim P (T4 (X, Z))+tordoim, T (7% (X, Z7)). (8-2)
Note that the RHS of (8-2) contains only information obtained from the finite

dimensional flat bundles. The LHS of (8-2) is th&Betti number with respect to

a normal trace; it is independent of the choice of the summation pracedsus,

(8-2) implies that the sum of the projective dimension and the torsion dimension
is independent ofu. Note, however, that the choice of may influence each of
the numbers in the RHS of (8-2), as example 6.3 shows.

Compared with lick’s theorem [L], formula (8-2) contains an additional
summand (the torsion dimension). We will discuss in Sect. 9 the conditions
under which this torsion dimension vanishes.

The proof of Theorem 8.2 is given in Sect. 12.

The following statement shows that one may recapture the entire spectral
density function of the extended homolog¥; (X,. #2) in terms of the finite
dimensional approximations.

8.3. Theorem (Approximation of the spectral density function). Under the
condition of Theorem 8.2 the spectral density functipt\J-of extended homol-
ogy .74 (X, 76) and the spectral density function; @) of extended homology
TG, (X, 7") are related as follows

Fi(\) = lim Gi(A+¢) forall A> 0. (8-3)
e—+0

In other words, - coincides with G made right continuous.

The proof of Theorem 8.3 is also postponed until Sect. 12.

In the next theorem we point out conditions under which the projective di-
mension and the torsion dimension in the RHS of (8-2) are both independent of
the summation procedute.

8.4. Theorem (Analytic curve of representations).Let be a discrete group and

let. 22\ () denote the real analytic variety of all representationsrahto the N -
dimensional unitary grougZ(N). Suppose, that, € .72y (7), wheren=1,2, ...

is an infinite sequence of representations such that there exists a real analytic
curvep : [0,e) — &N (7) and a sequence, te [0, ¢), such thatp, = p(tn),

th — 0, ty # 0. Let pp = p(0) denote the limit representation. Then for any finite
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polyhedron X and for any homomorphigm 71 (X) — 7 we obtain the sequence
of unitary representations

Un s m(X) —2 s 1 P 24(N). (8-4)

Each ¢, produces a flat N-dimensional unitary bundle over X, which we will
denote by V. Then the dimension of the homology(X, V") is constant for
large n. Therefore, the torsion dimension of the sequesice (V") of these flat
bundles equals to the jump in the Betti number

tordim,, Hi (X, Z°) = dimH; (X, V%) — dimH; (X, V"), (8-5)

where n is sufficiently large. In particular, we see that the torsion dimension is
independent of the choice of

Proof of Theorem 8.4We only have to show that the dimension diff{X,V")

stabilizes for largen; the rest follows from Theorem 8.2.

We use the well known property of upper semi continuity of the dimension,
cf. [H], Ch.3, Sect.12. For any € [0, ¢) denote byV! the flat bundle oveX
with monodromyg o p(t). Then there exists a non-constant real analytic function
f (t) such that the dimension dik (X, V') assumes the constant value, $ay
for all t with f (t) # 0; moreover, dinH;(X,V') > D for all t. Suppose that we
have a sequence of poiriswith t, — O, t, # 0. If f(t,) is zero only for finitely
many n, then we obtain that the dimension din(X, V") is constant for large
n. However, iff (t,) = O for infinitely manyn, then the functiorf (t) must be
identically zeo — a contradiction. O

9. Arithmetic approximation

It turns our that one may impose some arithmetic conditions on the approximating
sequence of flat bundles, which would imply vanishing of the additional correct-
ing term (the torsion dimension), appearing in Theorems 8.2 and 8.4. Roughly,
the arithmeticity condition requires that each approximating finite dimensional
representation be definable over the ring of algebraic integers of an algebraic
number field, and the degrees of these number fields must have a common upper
bound.

This result implies the theorem ofiick. Namely, liick [L] considers the
tower of finitely sheeted regular coverings, which is equivalent to studying the
homology ofX with coefficients in the representationsmobn C[x /] (cf. 6.2);
these representations are clearly defined over the intégers

The main theorem of this section contains also a statement that the torsion
part of the extended homolog¥%; (X, #2) is of determinant class assuming
that the charactex ,, of . admits an arithmetic approximation . This result
generalizes a theorem proven by D. Burghelea, L. Friedlander and T. Kappeler
[BFK] for the case # = ¢(r). The proof presented in this paper (cf. Sect. 12),
is quite similar to the proof suggested in [BFK].
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9.1. Definition (Arithmetic approximationpuppose thag : = — C is a positive
self-adjoint class functiogy : # — C, cf. 7.1. We will assume that is normalized
so thaty(1) = 1. We will say thaty admits an arithmetic approximatiorif
there exists a sequence of finite dimensional unitary representations —
End:(V¥), wherek = 1,2, ..., such that the following conditions are verified:

A. Let Xk : m — C denote the normalized character pf, i.e. xx =
xk(1)"Yxk, wherey is the character of. Then the sequencg(y) converges
to x(g) for any g € .

B. For eachk there is given an algebraic number fielgd > Q, imbedded
into the field of complex number§ such that its imageA C C is invariant
under the complex conjugation. We will consid&f together with the involution
induced fromC. We suppose thadhe representatiopy, can be defined over. In
other words, there exists a representatipn 7 — Endz (W, W), preserving a
positively defined Hermitian forng , )« : Wk x Wk — .7 C C, which produces
pk by extension of the scalars from to C.

C. Denote byoy the ring of algebraic integers o#,. We suppose that for
eachk there exists ang-lattice Zx C Wk (i.e. a finitely generatedy-submodule
generating over.%), which is invariant under the action af and such that
the form ( , )¢ restricted on%y assumes values i.

D. Denote by, the dual lattice

L2 = {w € W; (w,x) € o forany x e %},

cf. [FT], page 122. ThertZ, C %P and the factor/P /% is a finite group.
We suppose that one can choose the lattiggssuch that that there is an integer
M > 0 (independent ok) with M - 4P /% = 0.

E. Let hy denote the degree of the number fielff (cf. above) over the
rationals. We assume that there exists a common upper bound

h« <h (9-1)
for all k.
F. There exists a functioM : 7 — R., having the property
N(g9') <N(g9)N(¢) forany g,¢ €, (9-2)
and such that for any group element = the following inequality holds
loj (X (9))] < N(9) (9-3)

for all k = 1,2,... and for all the embeddings; : A& — C,j =1,...h of the
algebraic number field%.

Note, that condition& andF imply that, if the dimensions of the represen-
tations dimV ¥ are bounded, then for any € = the sequencex{y) stabilizes
for largek. This statement easily follows applying Lemma A (cf. Subsect. 12.3).
However, this is not true if the dimensions diffi grow; for example this sta-
bilization does not happen in Theorem 0.5, although all the conditions above
hold.
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The numberh (appearing in propertf) will be called the degreeof the
arithmetic approximation. The numb&t (appearing inD) will be called the
denominatorof the arithmetic approximation.

Now we show that the conditions of arithmetic approximation imply vanish-
ing of the torsion dimension, which appears in Theorem 8.2.

9.2. Theorem. Suppose that , is a finite von Neumann category with a fixed
normal trace, 74 < ob(Z ,) is a fixed object witidimy(.#2) = 1, andp : 7 —
End, ,(.#4) is a unitary representation, having character,, : # — C. Suppose
that we are given a sequence of finite dimensional representatipnsm —
End:(V¥) which provide an arithmetic approximation of the charactey,, cf.
Sect. 9.1. Then for any finite polyhedron X with fundamental grotiplds:

(i) the sequence of the normalized Betti numbers

dime H; (X, V)
dim(ch
converges and its limit coincides with the von Neumann dimension of the projective
part of the extended homology
- odimeHiX vl oo
kI|_>mOO —amovE dimy .7 (X, . A40). (9-9)

(i) Let Fi()\) denote the spectral density function of extended homology
T4 (X, #4). Then the following inequality holds

c
—log(M\)

Fi(\) —Fi(0) < (9-5)
for small A > 0, where ¢c> 0 is a constant.

(iii) For any i the torsion part of the extended homolog¥; (X,. #2) is of
determinant class.

Luck’s theorem [L] follows from this by takiny % = C[x/Ik], cf. 6.2. This
flat bundle can be defined over the integers.

Intuitively, the integrality condition in Theorem 9.2 allows to conclude at
some point of the proof, that certain nonzero quantity cannot be too small.

The proof of Theorem 9.2 is given in Sect. 12.

For the definition of the notiodeterminant clas¢which appears in the state-
ment (i) of Theorem 9.2) we refer to [BFKM]. Cf. also [CFM], Sect. 3.8, where
it is explained why the condition of being of determinant class depends only on
the torsion part of the extended homology.

It is natural to ask for which groups the character of the natural repre-
sentation ofr on ¢?(r) (which is the delta-function at the unit & =) admits
an arithmetic approximation. It is easy to see thdtappens if and only ifr is
residually finite.In fact, if 7 is residually finite, we may construct the arithmetic
approximation as in iick’s theorem: itt > I'1 D I, ... is a sequence of normal
subgroups with trivial intersection, then we may také = C[x/Ik], which can
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be realized over integers. Conversely, if we are given an arithmetic approxima-
tion (cf. 9.1) with xx converging toy, then for anyg € =, whereg # 1, we
have xk(9) — 0, and so there exists with \x(g) < 1. This implies that the
image ofg under thek-th representationgy is nontrivial, px(g) # 1. Since the
automorphism of the lattice GL(%x) is residually finite, we obtain that must
be residually finite.

Now we will give proofs of Theorems 0.3, 0.4 and 0.5 (cf. Sect. 0), deduced
from Theorem 9.2.

9.3. Proof of Theorem 0.3Ve will use the notations introduced in Theorem 0.3.

With the sequence of subgroups> 1 O ... we associate the sequence
of the unitary representations : # — End@[=/I]) defined overZ. Here we
assume that acts on the group ring[« /] as the left regular representation. It
is clear that ifv ¥ denotes the flat bundle ovrdetermined by this representation
thenH; (X, V¥) ~ H; (X).

All conditions of arithmetic approximation (of Sect. 6.1) are obviously satis-
fied. We only need to compute the normalized charagtesf px. An elementary
calculation shows that foj € 7

g = X9

Nk

)

whereny is the total number of different subgroups ofconjugate tolk, and
ng(g) is the number of them, containing Therefore, our assumption (0-1) im-
plies that the normalized charactegs Converge pointwise to the character of
the standard representation sofon /2(r). Applying Theorem 9.2, we complete
the proof. O

9.4. Proof of Theorem 0.4 onsider the representation
v — Endy(Z[7] @211 ™), (9-6)
induced from the restriction ontby of the given unitary representation
p .7 — End,(o™). (9-7)

We want to apply Theorem 9.2 to the obtained sequence of representatidhs
is clear that ifX is any polyhedron withr; (X) = 7, then the homology oX with
coefficients twisted by is the same as the homology of the covering spéce
with coefficients twisted byy (hereX, — X denotes covering corresponding to
I).

From the general properties of induced representations (cf. [CR], Sect. 10)
we see that the conditior3, C, D, E of Sect. 9.1 are satisfied. We only need to
check that the sequence of normalized characterg ebnverge toyg : @ — C,
wherexo(g) =0 forg € m, g # 1 andy,(1) = 1. Also, we need to check condition
Fin9.1.
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If we denote byy : I' — C the character gb and byny : @ — C the character
of v, thenn(g) = x(g) for g € I'k andnk(g) = 0 for g ¢ Ik. Therefore we see
thatn, — xo. The propertyF of Sect. 9.1 holds with the functioN (¢) given by

N(g)=m- rq.aX{HUj (I}

Herej runs over 12, ..., h (whereh denotes the degree 6F ), 0; : . # — C are
the embeddings of7 into C, ando; (p(g)) denotes the complex matrix obtained
by applying the embedding; to the matrixp(g) with entries in.7". Applying
Theorem 9.2 finishes the proof. O

9.5. Proof of Theorem 0.9.et x : # — 05 denote the character of the given
representatiop : 7 — Mat(m x m, 05). Then the character of the tensor power
p® is g — x(g). We claim that forg # 1 holds|x(g)| < m and therefore the
normalized character gf*% tends to 0O:

Ix(9)[¢

— 0.
mk

In fact, p(g) viewed as a complem x m matrix, can be diagonalized, and on
the diagonal we will obtairm numbers with norm 1. Therefolig(g)] < m and
the equality holds if and only ib(g) belongs to the center.

Thus we obtain conditiorA of 9.1. ConditionsB, C, D, E are obvious.
Condition F follows from the assumption that the fiel& is cyclotomic: then
all the Galois transformations preserve the complex norm. O

Next we will formulate a corollary of Theorem 9.2 which may be useful.

9.6. Theorem. Let.7# < C be an algebraic number field invariant under the
complex conjugation, and l1e¥’ C C be a cyclotomic field. We will denote by
0~ and o the corresponding rings of algebraic integers. lzebe a discrete
group and letp : 7 — Mat(n x n,0) and px : # — Mat(nk x ng, 0.7/), where

k=12,..., be unitary representations, such that for apg = the limit
im X9 = (9) ©8)
k—oo Nk

exists; hereyx : m — C denotes the character ¢f. Let X be a compact poly-
hedron with71(X) = 7 and let& and & (for k = 1,2,...) denote the complex
flat vector bundles over X determined pyand px correspondingly. Then the
sequence of the normalized Betti numbers

dimH;i (X, & ® %)
n-ng

, where k=12,... (9-9)

converges and its limit can be found as follows. ¥et be a finite von Neumann
category with a normal tracé and let. 2 be an object ofZ_, supplied with a
unitary action ofr having the character

xo(9)x(9)

g X/K(g) = *7 gem, (9'10)
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where y denotes the character ¢f (we know from Sect.7 that such von Neu-
mann representationZz exists). Then the limit of the sequence (9-9) equals to
the dimension (with respect to the trackof the extended homolog¥; (X, . 74):

lim dimH;(X, & ® &)
k—oo dime - dim &

= dimy .74 (X, 20). (9-11)

Proof. Theorem 9.6 follows by applying Theorem 9.2 similarly to the arguments
given in 9.3, 9.4, 9.5. We will only point out here how one constructs the function
N : 7w — R4, which appears ifr. For g € 7 we define

N(g)=n""- SjUp{HUi I}, (9-12)

whereo; : .7 — C runs over all the embeddings oF . We consider the
representationg ® px, wherek =1,2 ..., as defined over the ring of algebraic
integers of the compositunZ7 "’ of the fields.7 and.7’; any embedding of
.77 into C determines embeddings.6f and.7 ", and (9-12) is clearly enough
to establish property (cf. 6.1), since7 ' is assumed to be cyclotomic and so
its Galois transformations are unitary. O

10. Examples

10.1. Here we show that Theorem 7.2 is false if the trace tr on von Neumann
category%_, is not normal.

We will construct two finite von Neumann categories with traces (one normal
and one not normal) and two unitary representations of the fundamental group
of a polyhedronX on objects of these categories, such that the characters of
this representations are equal but the projective dimensions of the corresponding
homology are distinct.

As the first von Neumann category we will take the categoiyof finite
dimensional Euclidean vector spaces with the usual trace. As the second category
&2 we will take the categorys (1) (cf. Sect. 4), where is the constant sequence
p¥ = 1. We will consider the Dixmier type trace,tin 5, cf. (4-4).

Now we will return to the example described in Subsect.6.3. The sgace
was obtained by O-framed surgery on the trefoil knot, and for @ry S* we
had a unitary flat bundl€; over X. We will suppose that the sequence of points
£ on the unit circle is chosen so that — & and &g # &, whereé, = e™/3 is
a root of the Alexander polynomial, cf. 6.3. Then the sequence of flat bundles
“e. viewed as a single flat bund&” with fiber an object ofZ;, has character
g &89 whereg € m(X) and¢ : m1(X) — Z is the abelinization. We see that
the same character has the line bundle (viewed as bundle ir¢7). Then we
have dim, . 721(X, Z") = 0, however dinH(X, &) = 2.
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10.2.Here we will show that Theorem 9.2 is false without assumption (9-1) that
the degrees of the number fieltg are bounded.

We will again use the example 6.3. We choose pofat®n the unit circle
such thatt, converges t@., and¢&, for anyk is a root of 1. We will assume that
J ={k;& = &4} is a subsequence; we may actually choose the seqygrsteh
thatJ is arbitrary. Note that the corresponding sequence of flat line burgles
satisfies all the conditions of arithmetic approximation, cf. 9.1, besides (9-1). We
see that the sequence of dimensions HirfX, #¢,) is the following: we have 2,
for k € J and we have 0, fok ¢ J. Thus sequence (9-4) is not convergent.

10.3. Algebraic integers on the unit circlélere (preparing tools for the next
example) we observe thétere exist algebraic integers on the unit circle, which
are not roots of unityThe simplest example is as follows. Consider the roots of
the equation

24—z 72 —z+1=

, 1+V13 1-13 (10-1)
2

=(z -z+1)~(2277~z+1):o.

Two of its roots are complex, lying on the unit circle, they are roots of the second

factor in (10-5). We will denote them* ande™'*. Herea ~ 1306463 degrees.
Two other roots are real, we will denote them byandr %, wherer ~

0.5807.

N.-
\:
d
L
Y

Fig. 4

The numberg'®, e~'@, r andr —! are algebraic integers, which are all con-
jugate to each other. We conclude tiekt is not root of 1 since otherwise all its
conjugates would be roots of 1, and so they would be points of the unit circle.

Also, the numberg'®, e~'®, r andr —* are in fact units of the corresponding
ring of algebraic integers.

We observe that the powers ef* are dense on the unit circle. The powers
of r tend to O.

10.4.Here we will show that Theorem 9.2 is false without conditiom 9.1.
Let X be the 3-manifold obtained by O-framed surgery from the trefoil, as in
example 6.3. We will use the notations introduced in 6.3 and in 10.1 and 10.2.
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Let € denote the algebraic integer on the unit circle, constructed in 10.3.
The powerse™®, wheren < Z, are dense on the circle, and thus we can find
a subsequence such thate™> converges tat, (recall thaté, denotes the
root of the Alexander polynomial of the trefoil). We will denote I the
unitary flat line bundle oveX corresponding to the poirg™® (as in 10.1).
Then we obtain, that the sequence of Betti numbersHi(X, &) consists of
zeros, and the corresponding characters converge to the charactey, djut
dimHi(X, &) = 2.

Note that in this example all the conditions of arithmetic approximation of
9.1 except- are satisfied. Our field# in this example has 4 embeddings:

7 — C,j =1,2,3,4. The embedding, which sends the numbir to r —* (cf.
notations of 10.3) sendd™ to r —™, which tends tao, violating F.

11. Approximation in characteristic p

11.1. Theorem. Let p be a prime number. Suppose that
#O>I1 DI >..., where NIj={1} (11-1)

is a chain of normal subgroups such that for each j the indexj] is a power
of p. Let X be a finite CW complex with fundamental gretgnd letX; — X be
the normal covering corresponding 1G. Then for any i the sequence

dims, Hi (%, Fp)

. j=12... 11-2
[r: ] j (12-2)
decreases and so the limit
_dimg, Hi (%, Fp)
lim —— 1B 11-3
j—oo [7: 3] ( )

exists.

11.2. Corollary. If for some prime p the fundamental groupof a finite CW
complex X admits a chain of normal subgroups (11-1) such that all the factors
w/I} are p-groups, then the following inequality holds

bP(X) < dimg, Hi (X, Fp), (11-4)

for the L2-Betti number [f(X).

Corollary 11.2 follows immediately from Theorem 11.1 using the Theorem
of Luck [L] and the inequality

dime Hi (%, C) < dimg, H; (%, Fp).

Proof of Theorem 11.1Using Corollary on page 25 of [La], we may assume that
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in the given chain of normal subgroups (11-1) all the factof$; are cyclic of
orderp. Thus, to prove Theorem 11.1 it is enough to show that

dimg, Hi (X+1, Fp) < p - dimg, Hi (X, Fp) (11-5)
for anyj.
Fix a tringulation ofX and consider the induced triangulations on all the
coveringsX;.

From this moment we will assume thatis fixed. We will consider thep-
sheeted covering.; — X;. LetC denote the chain complex of simplicial chains
of X1 with coefficients in the finite field,. C is a free finitely generated chain
complex over the ringl = Fp[Z/p]. Note thatA has a unique maximal ideal
m = (t — 1)A, wheret denotes the generator @/p. We have the following
filtration on A:

Aom>oOm?>.--omP o0

Therefore, we obtain the filtration
ComCom’C>o---omPIC >0

and all the factor-complexas’'C /m"*1C, wherer =0,1,...p — 1, are isomor-
phic to the chain complex of; with coefficients inF,. We obtain that there is
a spectral sequence, starting from

@ Hi(Xj,Fp)

p times

and converging td; ()N(,- +1,Fp). This proves (11-5). O

11.3. QuestionsCan limit (11-3) be greater than thé-Betti numberb®(X)?
Does sequence (11-3) always stabilize after a finitely many steps?

12. Proofs of Theorems 7.2, 8.2, 8.3, 9.2

Here we finally present proofs of the main theorems of this paper. These proofs
are related to each other. Therefore we use the same notations and terminology. In
fact, we assume that the reader will read the proofs in the proper order (7.2, 8.2,
8.3 and then 9.2 - lexicographical ordering!). Also, we very much use arguments
of Luck’s paper [L], and sometimes we do not repeat them, but instead refer to
[L]. Thus, it will be very helpful for the reader to have a copy of [L] at hand
while reading this section.

12.1. Proof of Theorem 7.&uppose thaX has a fixed tringulation. Consider the
chain complexC, (X) of the simplicial chains in the universal coveriig It is a
complex of free finitely generated[=]-modules; its basis is formed by the lifts
of the oriented simplices of. Note that each chain modu@ (X) is naturally
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supplied with a non-degenera#r]-valued Hermitian scalar product which is
defined using the basis formed by the lifts of the cells as the orthonormal basis.
The boundary homomorphisth: Ci,1(X) — C;(X) is given by the matrix with
entries inZ[x]. Consider the “adjoint” homomorphism* : Cj(X) — Ci:+1(X)
which is defined using the above mentiori#dr]-valued Hermitian scalar prod-

uct. Then we have the following self-adjoint homomorphism

d*d : Cis1(X) — Cisa(X), d*d € Z[r] ® Mat(@ x a, Z), (12-1)

(wherea denotes the number of ¢ 1)-dimensional simplices iX). If p(z) is

any polynomial with real coefficients then we may fop{d*d) and the result

will be a self-adjoint matrix with entries ifR[7]. Now, applying the character
X.» to this matrix produces a matrix_,(p(d*d)) with entries inC, which is
Hermitian. We will consider then the trace (in the usual sense) of this Hermitian
matrix Tr(y, »(p(d*d))). Note that the same answer will be obtained if we will
first map the matrixd*d via the representatiop : C[7] — Homy (.74, 72),

then applying the polynomigl(z) to get

p(p(d*d)) € Homy (.22, 727), (12-2)
and finally computing the trace . of (12-2):

Tr(x.~(p(d*d))) = tr_za(p(p(d"d))). (12-3)

This follows from the definition of the trace on a category (cf. 1.3) and the
definition of the character.

We would like to be able to compute (using only the character) more general
expressions of the form Ty(,(f (d*d))), wheref (z) is a real valued function.
The most important for us is the case, when the funcfi@) above is the
characteristic function of an interval [8%], which we will denote byf,(z).

According to W. Lliick [L], this can be done as follows. Choose a sequence
of real polynomialsp,(z) such that

p(z) = fx(2) and |p(2)| <L, (12-4)

where both properties (12-4) hold for amyc [0, N]. Here N is a fixed apriori
large number such that

|p(d*d)| < N for any unitary representationp. (12-5)

We will take N to be a times the sum of all coefficients, which appear in the
matrix elements ofl*d (this claim is similar to Lemma 2.5 in [L]). To be more
precise, we know, thati*d = (b;), where the entried; of this a x a-matrix
belong to the group rin€[~], bj = >" G (g) - g, where the sum is taken over
g € m (only finitely many terms are nonzero). We defiNeas

N =16 (9)l-

i.j.9
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Using the Lebesgue theorem on Majorized convergence and the assumption
that the trace tr is normal and, therefore it is continuous with respect to the
ultraweak topology on hom, (242, #2?) (cf. [Di], Part |, chapter 6, Sect. 1),
we obtain that the operaty,(p(d*d)) converges ultraweakly to

/\2
fa(p(d™d)) = A dE,, (12-6)

in the von Neumann algebra hem(.#22,.#/%), whereE, is the right continu-
ous spectral decomposition pfd*d). Thus using (12-3), we find

Tr(x. 22(Pn(d"d))) = tr_z2(Pn(p(d*d))) — tr_za(fr(p(d"d))). (12-7)

We obtain finally the following formula for the spectral density functigif))
of the extended homology#; (X, .Z¢):

Fi() = im Troc (o d)), A >0, (12-8)

The last formula involves only the characfel,. SinceF; () is right continuous,
we find also (using only the charactgr,) the von Neumann dimension of
the extended homology dipiP (.7 (X, #2)) as the limit limy_,.oF;()\). This
completes the proof of Theorem 7.2. O

12.2. Proof of Theorems 8.2 and 8131e proof uses the methods afitk [L] with
certain adjustments. We will use the notations introduced in the proof of Theorem
7.2, cf. 12.1. In particular we will use formula (12-8). As in the proof of 7.2
we will denote byF;()\) the spectral density function of the extended homology
T4 (X, #6). Since the trace tr is assumed to be normal, we will assume that
Fi () is right continuous. The von Neumann dimension @ini. 7 (X,. 20) is

by the definitionF; (0).

Fork =1,2,... denote byFX(\?) the spectral density function of the finite
dimensional operatop(d*d), wherepy : © — End(\V¥) is thek-th representa-
tion. As in the proof of 7.2, we regard hedéd as the matrix with entries in the
group ringZ[x], i.e. d*d € Z[r] ® Mat(a x a, Z), wherea denotes the number
of (i +1)-dimensional cells ixX. Therefore p(d*d) € End(V*) @ Mat(a x a, Z).
Similarly to (12-8) we have fon > 0

FEO) = lim Tr(xi(pa(d"d))). (12-9)

wherep,(z) is any sequence of polynomials constructed as in the proof of The-
orem 7.2. Let us introduce also the functions

Gi(\) = Lim, [p*F¥())] and (12-10)
G'(\) = lim Gi(\ +¢), (12-11)
e—+0
defined forA > 0. According to our definitions, we have

Gi (0) = projdim,P(F% (X, 7)) and (12-12)
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G;*(0) = projoim P (.7 (X, 7)) + tordim, T (T4 (X, 7)) . (12-13)

Therefore to prove Theorem 8.2 we have to show Eébd) = G;(0).

Note that Gj()\) is the spectral density function of extended homology
F6, (X, 7") as defined in [F], Sect. 3.7. We will see now that the second function
G () is in fact more important.

We will choose the polynomialg,(z) as follows. Denote by, : R — R the
function

1+1/n for z<\?
(@) =<1+1/n—-n(z— X% for N <z<\+1/n, (12-14)
1/n for M+1/n<z

and construct the polynomias,(z) such that
9n(2) <pn(2) <2 and nﬂgl Pn(2) =fr(2)

for all z € [0,N]. Herefy(z) denotes the characteristic function of the interval
[0,)?] and N is the large number constructed in the proof of Theorem 7.2, cf.
(12-5).

With this choice of the polynomialp,(z) we may show that for any, k
and A\ > 0 holds

PRFEO) < Tr(R(pa(dd))) < (L + I/n)ukFE(\ +1/n) +a/n,  (12-15)

wherea denotes the number of € 1)-dimensional cells irXX. To prove this one
denotes byEi()\) the ordered set of eigenvalugsof p(d*d) satisfyingz < A
listed with multiplicities. Then

Tr(Rk(pa(d*d) = 4+ >~ pa(2),

Z€E(N?)

and now to obtain (12-15) one just repeats the arguments on page 469 of [L].
Taking in (12-15) for fixech the limit Lim,, with respect tak and using the
assumption thatx — x. we obtain

Gi(\) < Tr(x. 4(pa(d”d))) < (1 +1/n)Gi(A + 1/n) +a/n. (12-16)
Therefore, taking the limit in (12-16) wheam — oo and using (12-8) we get
G(\) <Fi(N) <G, (12-17)
From the last inequality we obtain fer> 0
Fi() <G'(\) <Gi(A+e) <Fi(A+e), (12-18)

and since we know thdg; (\) is right continuous, this shows (by passing to the
limit when e — 0) that
Fi(\) = G (V). (12-19)



Geometry of growth: approximation theorems fdr invariants 369

This is precisely the statement of Theorem 8.3.
Since both functions in the last equality are right continuous, we obtain
Fi(0) = G"(0), which completes the proof of Theorem 8.2 (cf. 12-13)). O

12.3. Proof of Theorem 9.2.(i) and 9.2.(ifVe will use the following Lemma
from algebraic number theory:

Lemma A. Let.7 C C be a number field of degreg k< h and letok be the ring
of algebraic integers oP4. Letoy, 02, ...,0n .7 — C denote all the distinct
embeddings aof%4 into the complex numbers. Then for any elememt o with
a # 0, the condition

loi(@)] <R forall i=12,... h (12-20)
implies
|0 ()| > RV (12-21)
foranyj=12 ... hg.

This Lemma is well known, however we will give a simple independent
proof. Similar argument is used in [Sh], in the proof of Theorem 11 in chapter
1.

Proof of Lemma AThe product

hy
[
i=1
(the norm ofa) is a nonzero integer. Therefore we obtain

hy
o) > [ loie) ™ > R
i=Li#

This completes the proof of Lemma A.
Here is another lemma, which we will need:

Lemma B. Let A= (a;) be a kx k-matrix with complex entries. Suppose that
for some C> 0 and K > 1 holds

| Tr(A")] < C -K' (12-22)

forallr = 1,2,...k. Then we have the following estimate for the coefficients
s = s (A) of the characteristic polynomialet(z — A) = Z‘r‘zo(—l)"—rsk,r(A)>\r
of A:

5(A)] < C(C+1)..r.!(C +r _1)-Kr.

Proof of Lemma BForr = 1,2,...k denote

(12-23)
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k
pr=Tr(A) =) N,
i=1
wherer, Ay, ... A\ denote the eigenvalues 8f We have

S=SA= D AN, A (12-24)

1< <ir

We will prove (12-23) by induction on using the following Newton’s iden-
tity

(1) r s =sp_1— Pzt +(=1)'s_1p1 — pr, (12-25)

cf. [CR], page 314.

Sinces; = p;, the inequality (12-23) holds for = 1; suppose that it has
been established for all values ofvhich are less than the given one. Then from
(12-25) we obtain

r—1 .
STETHEN) S G EE S

i=1

and now the desired inequality (12-23) follows from the identity

r—1 .
?'{Z<C+;_l)+l}= (C+rr—1>’ (12-26)
j=1

which can be easily checked by induction. This completes the proof of Lemma
B.

Now we will prove statement (i) of Theorem 9.2. We will use the notations
introduced in the proofs of Theorems 7.2 and 8.2. Also we will use the notation