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$4X INTRODUCTlON 

LETY be an arbitrary topological space and let I be a countable group which acts on Y. In 

this paper we study some homotopy theoretic invariants of such actions. In many respects, 

our treatment parallels more standard discussions of Betti numbers and the Euler 

characteristic. The main novelty is that our invariants are defined using the concept of I-- 

dimension (Von Neumann dimension) of singular L,-cohomology. 

If r is a finite group which acts on a finite dimensional vector space V, the I-dimension of 

V is given by 

1 
dim, I’ = ___ 

ord (r) 
dim V. (0.1) 

If I has infinite order, dim V is an extended real number, 0 S dim, V I co, which is defined 

for certain actions of I on a vector space V (whose dimension in the usual sense is infinity). 

In $1, seven key properties of the r-dimension are listed. These are the basis of the 

simplicial L2 cohomology theory for free, simplicial, cocompact actions, considered in [ 11, 

[3], [4], [S], [7] and [17]. Here, we define L,-cohomology spaces, A{,, (I’: I), for arbitraryy 

and countable r, by starting with the simplicial theory and taking suitable inverse limits. 

Thus, it is necessary to verify that the concept of I-dimension extends to inverse limits of 

r-modules and that the above-mentioned properties continue to hold. This is done in the 

Appendix. 

The A12j (Y: I) are I-equivariant homotopy invariants. Moreover, they satisfy 

- i - i 
H~*,(Y:~)=H~~)~~x~:~), (0.2) 

where K, is a contractible complex on which I acts freely, and the action on Y x K, is the 

diagonal action. Thus, if we set 

bf2) (I’: r) = dim fi[,, (Y: I), (0.3) 

these L2 -Betti numbers satisfy 

bfz, (Y, : r) = bf,, (Y, : n (0.4) 

ifY, x K, is I-equivariantly homotopic to Y, x K,. From now on, we express this by saying 

that Y, is free homotopy equioalent to Y,. 

The b12, (I’: r) have formal properties analogous to those of ordinary Betti numbers. They 

have some additional nice features as well. For example, they are sometimes finite even 

though Y x K,/T has infinite topological type. Also, unlike ordinary Betti numbers, they 

behave multiplicatively under finite coverings. Finally, we mention that in certain circum- 

stances, bf,, (3’: r) = 0 for all i (including i = 0). 

If 

i=O 

189 
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we define the &-Euler characteristic by 

If Y = X, an arbitrary simplicial complex on which r acts by simplicial automorphisms, 

there is a simple sufficient condition which guarantees that (0.5) holds and that xct, (X : I-) can 

be expressed as a sum of local terms, as in usual combinatorial formula for the Euler 

characteristic. When these local terms can be calculated explicitly, the resulting expression no 

longer directly involves L2 -cohomology, which enters only in the proof of its free homotopy 

invariance. 

In order to describe matters in more detail, first ofall, we define the isotropy group r(s), of 

an open simplex s E X. It consists of those y such that ys = s, or equivalently, those 7 which fix 

the barycentre of s. 

For A, a discrete group, we put 

(0.7) 

b;l) (A) = bf,, (K, : A), 

32) (A) = m(z) W, : A). 

If mf2) (A) < co, we define 

~(2) (A) = x(z) (K, :A). (0.8) 

Clearly, for X, I- as above, the function m (2) (r(s)) is constant on r-orbits of simplices. Let 
S’ be a set of simplices which meets each such orbit exactly once. 

An action is called L2-finite if 

THEOREM 0.1. 

mc2) (x : r) 5 C mc2) u-w. 

(0.9) 

(0.10) 

If the right-hand side of (0.10) is finite, then 

x,~,(x : r) = c (- l)dim5~~~) u-w 
IES 

(0.11) 

Theorem 0.1 is proved by an argument which, at the formal level, is quite standard, 

together with a general property of r-dimension (reciprocity) which allows us to pass from 

dim, to dim,(,, (see §l and $2 for details). 

As we have indicated, Theorem 0.1 is of particular interest when the bfz, (r(s)) can be 

computed explicitly. One case in which this is possible is that in which all r(s) are amenable. 

The definition of amenability is recalled in $3. For the moment, we will simply list some 

important examples of amenable groups: 

(a) Every finite group is amenable. 

(b) Every abelian group is amenable. 

(c) The union of an increasing family of amenable groups is amenable. For instance, every 

locally finite (that is, a union of an increasing family of finite subgroups) is amenable. 

(d) Subgroups and quotient groups of amenable groups are amenable. Furthermore, if Ai is 
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an amenable normal subgroup of A, and if the quotient group A/A, is amenable, then A 

is amenable. In particular, solvable and locally solvable groups are amenable. 

Let X be the infinite triadic tree (three edges at every vertex) and let Go be the group of 

automorphisms of X keeping fixed a point x0 E X. Grigorchuck [lo] has constructed 

remarkable examples of finitely generated amenable subgroups A c Go (of subexponen- 

tial growth) which cannot be obtained from finite and abelian groups by successive 

extensions and increasing unions. 

If B contains a non-abelian free subgroup, then B is non-amenable. All known finitely 

presented non-amenable groups admit such subgroups; compare [ 151. 

THEOREM 0.2. If A is amenable 

where we consider 

if ord (A) = co.+ Thus, 

1 

bf2) (A) = 
i=O 

ord (A) 

0 i>O 

1 
- = 0, 
ord (A) 

xca (A) = --!--. 
ord (A) 

We call an action co-amenable if all r(s) are amenable and if 

rEY ord (r(s)) < co’ c l 

(0.12) 

(0.13) 

(0.14) 

(0.15) 

A co-amenable action for which all r(s) are of finite order is called co-finite. 

Example 0.1. Let I be a discrete subgroup of a semisimple Lie group over a locally 

compact field of positive characteristic. Then I acts by simplicial automorphisms on the 

corresponding Bruhat-Tits building. As G. Prasad pointed out to us, there exist examples for 

which this action is co-finite and for which no subgroup of finite index acts freely. 

By combining Theorems 0.1 and 0.2 we obtain: 

THEOREM 0.3. (1) Zf r acts co-amenably on X, then 

m,,,(X:r) < co. 

(2) Moreover, 

(0.16) 

x(z) (x : r) = c ( - i)dims ord (lr (s)). 

SES 

(0.17) 

In particular, rhe expression on the right-hand side of (0.17) is a free homotopy invariant in the 

class of co-amenable actions. 

(3) Zf ord (r(s)) = co for all s, then 

rnC2) (X : r) = xt2) (x : r) = 0. (0.18) 

The vanishing of xt2)(X: r) in (3) is especially meaningful when JQ~)(X: I) can be 

t This convention will be in force from now on. 
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expressed in terms of more standard topological invariants. Suppose X, as in Theorem 0.3, is 

free homotopy equivalent to a complex Z, on which some subgroup, r’, of finite index. acts 

freely, with compact quotient. Define 

Xvjrt(X : l-) = l 
ind(r’:r) 

X(X x K,ir’) 

= Xvirt (Z : n 

where x denotes the usual Euler characteristic. 

(0.19) 

PROPOSITION 0.4. 

xc2)(X: n = XvirttX: n. (0.20) 

Proof. Let S be a set of simplices of Z which meets each r-orbit exactly once and let S’ 

2 S be such a subset for I-‘. Then 

X(X x K/r’) = xpy-‘) (0.2 1) 

= sz, ( - l)di? 

Since r’ acts freely, distinct elements of T(s) belong to distinct cosets of r’ in r. It follows that 

each element, YES’ is equivalent to exactly 

ind (r’ : r ) 
ord (r 6)) 

(0.22) 

elements of S’ under the action of r. Substituting this in (0.21), and using (0.17) and (0.19) 

gives: 

Xvirt(X:r) = 1 (- l)dims ’ 
srs ord (r 6)) 

= xc2)(Z: I-) 

(0.23) 

= x,2)(x : r). 

Now, by combining Proposition 0.4 with (3) of Theorem 0.3, we get: 

COROLLARY 0.5. Let I- act on a complex X. Suppose X is free homotopic to Y, on which 

some subgroup, r’, ofjinite index, acts freely with compact quotient. If X is also free homotopic 

to Z, on which r acts co-amenably with all isotropy groups of infinite order, then 

Xvirt(~: r) = 0. (0.24) 

We emphasize that in the above case, we do not require that the isotropy groups T(s) be 

finitely generated. 

If, in (0.19), Z is contractible, by definition, 

X++rt (Z : r) = Xvirt u-h (0.25) 

the virtual Euler characteristic introduced by Wall [20] ( see also [S], [18]). Note that if, for 

example, r1 c r2 with r2 finite, the usual Euler characteristics x(r,) are defined (with real 
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coefficients) but do not satisfy the expected multiplicative property. That is, 

X(l-t) = 1 (0.26) 

# ind (I, : r,)x(r,). 

This stems from the fact that Kr,/Ij) is not finite dimensional, and hence, that x(rj) 

= x(Kr,/Ij) is not given by the usual local formula. On the other hand, x,,,(r) behaves 

multiplicatively, essentially by definition [as does x,~)(X : r)]. 

By specializing Corollary 0.5, we now obtain one of our main results. 

COROLLARY 0.6. Let I- contain a subgroup, I-‘, offinite index such that K,./r’ is homotopy 

equivalent to afinite complex. If I- also contains an infinite amenable normal subgroup, A, then 

XvirtUT = 0. (0.27) 

Proof. If I contains an infinite amenable normal subgroup, A, then I acts co-amenably 

on K,,, by composition with the quotient map I --* T/A. But KriA is free homotopy 

equivalent to K,, since K,,, x K, and K, are r-equivariantly homotopy equivalent. 

For abelian normal subgroups, the above result is due to Rosset [16], who generalized 

earlier theorems of Stallings [19] and Gottlieb [8]. They assumed that A is central. 

We are grateful to Professor Rosset for having communicated his results to us prior to 

their publication. His method, like ours, is based on the notion of Von Neumann dimension. 

The vanishing of x (K,/A) for a compact aspherical manifold, K,/A, with amenable 

fundamental group is due to Morgan and Phillips (unpublished). 

There is also a relation between the present paper and the results of [4] concerning 

complete manifolds of finite volume and bounded covering geometry. There, we considered 

isometric actions of a discrete+ group I on a complete Riemannian manifold fi, whose 

sectional curvature, K, and injectivity radius, i(R) satisfy IKyI I 1, i(fi) 2 1 [we write 

geo (fi) 2 11. In our present terminology, we showed that if Vol (&?/I) < co;, then 

bf2) (&f : r) can be calculated analytically, 

bf2, (A : r) = dim, I?‘, (0.28) 

where i? is the space of &-harmonic forms on &?. Let P, (0) denote Chern-Gauss-Bonnet 

form. By the &-index theorem proved in [3] (see also Theorem 5.3) 

s Pz@) = 1 (- l)‘b&?: r). (0.29) 
.ic:i- L 

Thus, in view of Corollary 0.6, we obtain: 

THEOREM 0.7. Let r act discretely and isometrically on a contractible manifold, ?;i, with 

geo (.a) 5 1, Vol (A/I’) < co. If r contains an infinite amenable normal subgroup, rhen 

s Px(!2) = 0. 
.a!r 

(0.30) 

Some further results in the Riemannian case will be discussed in $5. The remainder of the 

t In [4] we considered free actions, but the proofs remain valid for r discrete. 
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paper is organized as follows: 

$1. r-Modules and simplicial L, -cohomology 

$2. Singular L2 cohomology 

$3. Vanishing in the amenable case 

$4. Amalgamated products 

$5. L2 -Cohomology of Riemannian manifolds 

Appendix: Inverse limits of r-modules. 

The proofs of Theorems 0.1 and 0.2 are given in $2 and $3, respectively. As we have 

indicated, the other results stated in this section are direct consequences of these theorems. 

5 1. I--MODULES AND SIMPLICIAL L,-COHOMOLOGY 

Let I- be a countable group and let I, (I-) denote the Hilbert space of real valued square 

integrable functions on I’. Let A be a pre-Hilbert space on which r acts by isometries. We call 

A a r-mod& if it is equivariantly isometric to a subspace of 12(r) @H, where H is some 

Hilbert space and I’ acts by the regular representation on /(2)(I) and acts trivially on H. To 

such an A, one can attach an extended real number, dim, A E [0, co], which [is independent of 

the particular identification with a subspace of I,,, (I’) @H and] enjoys the following seven 

properties (for further details on r-modules we refer the reader to [l], [3], [4], [5], [6], [12]): 

(4 
(b) 
(4 
(4 

(4 

(0 

dim, A = 0 if and only if A = 0. 

dim, A = dim, A, for the completion A of A. 

dim, l2 (I-) = 1. 

If A is complete and if a: A + B is a bounded r-invariant operator, then 

dim, A = dimrker z + dim, Im a. (1.1) 

(Continuity). Let A, 3 A, 2 . . . Ai 3 . . . be closed subspaces and let dim, Al < CO. 

Then 

dim, R Aj = lim dim, Aj. (1.2) 
j=l j-m 

(Reciprocity). Let Ii c I2 and let A, be a r,-module induced by the induced 

representation from a I-i-module Al. Then 

dimrl Al = dim,* A,. (1.3) 

(g) Let Ii c Tz with ind (r, : r,) < 00 and let A be a I’,-module. Then A is a Ii -module (by 

restriction) and 

dimrl A = dimrz A.ind (I-, : r,). (1.4) 

Let X be a simplicial complex on which I acts by simplicial automorphisms. A cochain, 

CEC’(X, R), is called I*, if 

(1.5) 

where the summation runs over all i-simplices of X. If the action of r on X isfree, the space 

Cf2) (X) of I(,,-cochains is isometric to I,,, (I) OH, where dim H is equal to the number of 

i-simplices in X/r. 

More generally, if the isotropy subgroup, T(s), of each simplex s, is finite, then the 

subspace of Cfz, (X) which is supported on the orbit of s, is isometric to l2 (T/T(s)). This space 

in turn is isometric to the subspace of I, (I-) spanned by those functions which are constant on 
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cosets of F(s). Since C&,(X) is isometric to the direct sum of such subspaces, it is also a I- 

module in this case and 

dim, Cf,,(X) = 1 ’ 
JES, ord (Us)) 

(1.6) 

where S’ is a set of i-simplices which meets each orbit exactly once. 

If, however, F(s) has infinite order, functions which are constant on cosets of F(s) are not 

in I,(F), and the above construction breaks down. This case will be dealt with in $2 by 

introducing the singular L,-cohomology of X. 

The coboundary operator, 

di : Cf,, (X) + Ci;j ’ (X), (1.7) 

is clearly a bounded operator and di + 1 di = 0. We define 

Af,,(X: r) = ker di/Im di_ 1 , (1.8) 

where Im di_ I denotes the closure of the image (compare Cl], [7], [17] ). Thus, if Irndi- 1 is 

not closed, af,,(X : r) is a so-called reduced cohomology space and not a cohomology space 

in the usual sense. When there is no danger ofconfusion, we will write fif,,(X) for @,,(X : r). 

The space, Z?f,,(X) embeds isometrically into kerdi c Cf,,(X) as the orthogonal 

complement of Im di_ 1. Thus it acquires the structure of a F-module. The image of the 

embedding is, by definition, the space of harmonic cochains on X. 

Example 1.1. If X is connected, every cochain, c, in Ci(X) satisfying d, c = 0 is 

automatically harmonic and equal to a constant function. Hence 

q_,(X) = 0, (1.9) 

if X is connected and F is infinite [since in that case c $Cf,,(X)]. 

For the remainder of this section, we will restrict our attention to the cofnite case [see 

(0.15)]. 

Let E, denote the family of spectral projections associated to the bounded self adjoint 

operator d: di. Since dim C{,,(X) < co, for any E., < co, 

dim,E10 < co, (1.10) 

and it follows from (1.5) and (d) and (e) above that 

lim dim, (E, A Et) = 0. 
1-O 

(1.11) 

Hence, off a subspace of arbitrarily small F-dimension, d;’ is a bounded operator (by 

definition d; ’ I ker di = 0). An operator with this property is called IF-Fredholm. For such di, 

all the standard homological computations with exact sequences can be carried over in a 

straightforward manner [even though R:,,(X) is a reduced cohomology space]; see [4], 92 

for further details. In particular, if ;t(,(X: F) is defined as in (0.6) by (1.6), we have 

xcz,(x:r) = 1 (-i)dims ’ 
SE.7 ord (r(s))’ 

(1.12) 

which is (0.17) for the cofinite case. 

Similarly, it follows that the spaces Af2) enjoy the following properties: 

(i) (Functoriality and homotopy invariance). Let f: X +Y be a F-equivariant simplicial 

map. Then the obvious homomorphism Cf,, @‘) --+ Cf,, (X) induces the homomorphism 
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(ii) 

f* : fii,,(Y) + fit,, (X), which depends only on the I--equivariant homotopy class off; 

see [7].t 

(Exact sequence of a pair). Let X’ c X be a I invariant subcomplex. The relative 

L2-cohomology, Rfz, (X, X’),is defined in the usual way. The relative cohomology sequence 

(iii) 

Af2) (X, X’) --* I-lf2) (X) + Rf,,(X’) + Fz;p (X, X’) -+ (1.13) 

is defined by a trivial modification of the standard procedure. It is weakly exact in the 

sense that the closure of the image of every map equals the kernel of the succeeding map; 

(see [4], $2). Since by (b) above, for any r-module A, dim, A = dim, A, (1.13) is exact for 

all practical purposes. 

(Excision). For all T-invariant subsets I’ c X’, whose complement X’\V is a closed 

subcomplex in X’, we have 

z&,(X, X’) = &,(X\V, X’\V). (1.14) 

As a consequence of properties (i)-(iii), we also have the standard cohomological 

formalism of Mayer-Vietoris, Leray’s spectral sequence, etc.; compare [4]. 

52. SINGULAR L,-COHOMOLOGY 

Let Y be an arbitrary topological space on which I’ acts. 

Definition 2.1. Let Q?(Y) denote the small category whose objects are pairs, (X,f), where 

X is a simplicial complex with free, simplicial cocompact r-action, X is a subcomplex of the 

standard simplex, CP c R”, and f: X +Y is a I-equivariant continuous map.? The set of 

morphisms from (X,,fi) to (Xz,f2) is empty unless Xi is a subcomplex of X2 andf, 1 Xi 

=fi. In this case it contains a single element, the inclusion map. 

Corresponding to such a morphism we have the restriction map, 

px,, x1: fl:2) (X, : n + fif2) w, : 0, (2.1) 

where flf2) (Y: r) is as in 9 1. We define the singular L,-cohomology, flf,, (Y: I-), to be the 

inverse limit (with its usual topology): 

-i 
der _, 

Ho,(Y:IJ = limHf,,(X:r)cx.n. 
y(r) 

(2.2) 

If Yitself is a simplicial complex on which r acts freely with finite quotient, then the inverse 

limit in (2.2) is canonically isomorphic to nj,, (Y: I) as defined in $1. Thus it inherits the 

structure of a r-module. This would be obvious if we had defined the morphisms between any 

two objects (X,,ft), (X,,j,) of %‘(Y), to be a/l I--equivariant maps, g:Xi +X,, with fi 

= f2g. Then, V(Y) would have a final object, (Y, Ident). But it is easy to see that this second 

definition is actually equivalent to Definition 2.1. This is because up to homotopy, any map 

can be made simplicial and replaced by the inclusion into the mapping cone. Definition 2.1 is 

somewhat more convenient in the context of Lemma 2.3. 

In general, although fi f2) (Y : r) cannot be given the structure of a r-module in a canonical 

t Actually, theargument of [7] assumes that T acts freely with X/l-compact. The general case follows, for example, 
from the homotopy invariance of the singular theory together with Remark 2.2. 
t If T is not finitely generated, then X cannot be connected. However, the f-module I?;,, (X f) is induced from the 
TO-module A;,, (X0: r), where TO is the (finitely generated) isotropy group of some component. X0, of X; compare 
(f) of $1 and Proposition 2.5. 
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way. it does have a well defined I-dimension, for which the usual properties hold. In the 

cofinite case, the natural map from simplicial L,-cohomology to singular L,-cohomology is 

always an injection with dense range, and the corresponding L,-Betti numbers coincide. This 

explains our use of the same notation for both theories. 

To define the r-dimension, we first consider any system ofcomplete, I-finite dimensional 

I-modules and bounded I--equivariant operators indexed by a category Cs. We assume, as is 

the case for ‘S = V(Y), that for any pair of objects a, 5’: 

(1) There is at most one operator, 

Pi. 1 . ‘A, -+ A,,. 

In this case we write a 2 z’. 

(2) There exists CZ” such that 

Pl. 2” 

/\ 

Pa’, 1” . 

4 Ad 

(2.3) 

(2.4) 

For the remainder of this section, we also make the following provisional technical 

hypothesis. 

(3) There exists a linearly ordered subset Y t V such that for all a E % there exist /l E 9 with 

/? 2 a. 

Assumption (3) is valid, for example, for U(Y x Kr), where Y is a countable simplicial 

complex, as follows from the fact that Y x K, has a I-equivariant exhaustion,Y = u Yj, with 

Yj/I compact. This suffices for all applications of the present paper. However, in the 

Appendix we will explain how assumption (3) can be removed. 

Recall that an element of lim A, is, by definition, a function, a --f u,, such that 

’ pz,, z (a,) = a,,, for all ~~9, ‘I’ If ps is the natural projection, 

ps : lim A, + A,, (2.5) 
Q 

and V c lim A,, we put 
‘% 

def 

dim, V = sup dim, Imps(V). (2.6) 
8 

Properties (a)-(g) of $1 have an obvious interpretation for inverse limits, lim A,, and [for 

(d)] I-equivariant bounded operators. These are verified in the Appendix. In ict, for (d), we 

will consider only a somewhat restricted class of maps of inverse systems, see (A26), (A27). 

However, all maps which occur in the applications to L,-cohomology are of this type. 

The following basic Lemma 2.1 is also proved in the Appendix. 

Let (A,, U) be as above and let B, c A, be closed. By a slight abuse of notation we denote 

by lim B,, the subspace of lim A,, of elements a, such that a, c B,, for all a. Let d denote the 
v 

closure of the I-module D. 

LEMMA 2.1. 

(2.7) 

The intersection in (2.7) is over all j?‘, B“ with Bg- + B,, BBS + BP- (including /?’ = /I”). 
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Remark 2.1. For inverse limit systems of arbitrary objects, it is easy to check that if the 

bars in (2.7) are removed, then the left-hand side is contained in the right. However, (2.7) 

itself is peculiar to inverse limits of r-modules. It stems from the continuity property of 

r-dimension, (e) of $1. 

Lemma 2.1 has the following particular consequence which is worth noting at this point. 

Let X by an arbitrary countable simplicial complex with free simplicial I-action (if the action 

is not free replace X by X x K, in what follows; see Proposition 2.2). Let X = u Xj be an 

exhaustion of X by I--equivariant subcomplexes, with Xj/r compact. Then by (2.7) and the 

continuity property of r-dimension, 

bf,, (X: r) = lim lim dimrIm (Z?f2) (X,: I-)) c fif,, (Xj: r); 
j-cc k-m 

(2.8) 

compare [4] and see the Appendix for further details. 

The basic properties of singular L,-cohomology are formal consequences of (a)-(g), 

Lemma 2.1, and the corresponding properties of the simplicial theory. 

Let g : Y + 2 be a I--equivariant map. Let (X,f) E U(Y) and 

1: f% v : r)cx,f, 2: Hfz, (x : r)cx. sl) (2.9) 

be the identity map. Then for ptx,f, as in (2.5) the family of compatible maps 

1 3 pCx./, : f% (z: r)cx.f, + f%, (X: r)Cx.d) (2.10) 

induces 

g* : A;,, (2: r) -+ Af2) (y: r). 

If go, g1 :Y ---* Z are T-equivariantly homotopic, there are morphisms 

ij: (X~gjf)+(Xx1~.C7~f) j=O, 1 

for which the maps 

(2.11) 

(2.12) 

iT:Ri,,(X)-+Rf,,(XxI) j=O, 1 (2.13) 

are isomorphisms with it = i: . Th us, the induced maps in (2.10) coincide for the choices 

g = go, g = gi, and the same holds for (2.11). In particular, W:,,(Y) is a r-equivariant 

homotopy invariant.t 

Note that if T does not act freely, Y and Y x K, need not be r-equivariantly homotopy 

equivalent. However, we have 

P~o~os~rro~ 2.2. Let 7c:Y x K, --*Y be the projection. Then 

-i ~~*:H~~,(Y:~)-*R~,,IYxK~: r) (2.14) 

is an isomorphism. 

Proof. Recall that for all complexes, X, as above, there is a I--equivariant map, 

/:X + Kr, which is unique up to homotopy. 

Let a ~flf*) (Y: I-) be non-zero. To show that x*(a) # 0, we choose f: X +Y such that 

P(X.f, (a) f 0, (2.15) 

t Here, and occasionally below, we have omitted some trivial details which are necessary to make the construction 
conform logically to Definition 2.1. 
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for the natural projection, 

P(X.f, : q2) r’: n --* q,, (X: ncx./,. (2.16) 

Since n 2 (J f) = A by (2.15), the image of a in fl& (X : r),, tf. f)) is non-zero (for any choice of 

r). Thus, n*(a) # 0. 

To see that JT* is surjective, choose b EH~~, BX K,:r). Let b(Jr,,e(X, (A fj)) be 
components of b,j = 0. 1. It suffices to show that 

b,f. fo, = bU f,) = b, (2.17) 

is independent of fj. For then, (b, 1 determines an element in H -f2) (Y: I-) whose image is b. But 

since f,, f, are I--equivariantly homotopic, 

and 

(X, (A fj)) 2 (X X 1, (_L fJ) i = 0, 1 

b(Jr,) = i: (io*)-’ (b(JrO,) 

= b(/.r,,,. 

(2.18) 

(2.19) 

The relative spaces, H[,,(Y,Y’: I’J are defined by 

Af,, (Y, ykr) = lim A’ t2) (X7 Xl : nx. x.f,y v(y y,) (2.20) 

wheref: (X, X’) + (Y. Y’) and the objects of V(Y, Y’) are (X, X’,f). To each (X,~)E V(Y) we 

associate (X,f-‘(Y’),~)E %‘@‘,Y’), wheref-‘(Y’) is the subcomplex of X consisting of those 

closed simplices s, with f(s) c Y”. The corresponding map 

Af2) (Y,Y’: r) --* Af2) (y: r) (2.21) 

is induced by the family of compatible maps, 

B’f2, WI) --+ A;,, (X,f-W: I),x,rla,r.r, 
(2.22) 

-i 
--t ffo, m : rh-). 

Similarly, the coboundary map, 6, in the cohomology sequence 

d Hf,, (Y, Y’: r) I, q,, (Y: IT) h;21(y~:~)~ (2.23) 

is induced by the compatible family 

Ail) cy’ : r) -+ Hf2) (x’ : r),x.,f, -t A;2:l (x x1, r)cx.x’.f, (2.24) 

where X’ c X is arbitrary. 

LEMMA 2.3. The cohomology sequence (2.23) is weakly exact. Thus, the r-dimension of 

the kernel of any map is equal to that of the image of the preceding one. In particular, if 

Hi2)(Y, Y’ : r), fl[,,(Y’ : r) have finite r-dimension, so does & (Y: r). 

Proof: Since by the Appendix, (d) of $1 holds in the present context, it suffices to show 

that (2.23) is weakly exact. This is a straightforward (but somewhat tedious) application of 

Lemma 2.1. So we will only give the details for the case Im r = ker t. 
Let (X, f) E V(Y), X’ c X and f(X’) c Y’. Put 

KM, X')(XJ~ = kerpx'.x (2.25) 
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where 

and 

is the restriction map. 

px,, x: Hf2) (x : r) + Af2) (xf : r) 

If X c Xi and f: (Xi, Xl) -+ (Y, Y’), put 

UX1, JG 7 Xh.Y*/, = Px, x, CK w, 3 x; )(X,./,1. 

Then by (2.7), for the map t in (2.23), we have 

P(XJ) (ker 11 = n UX1 T X’, , X)(X./) (2.29) 

= xc^x uxl~f-‘tn X)(X,/, 
L 

(2.26) 

(2.27) 

(2.28) 

[wheref-‘(Y’) c Xl and the first intersection is over all (Xi, X;) as above.] 

On the other hand, 

where 
?+x,/,r = Px, (X./_‘~‘))P(X,/_!(Y’),f) (2.30) 

P~.(~,~I~~)): %(X,f W):r) --, Rf,,(x:r). (2.31) 

To compute RX.,- I(Y’),~), let (X,f-l(Y)) c (Xi, X;) andf: (Xi, Xl)+ (Y,Y). Put 

where 
1(X1, X1, X~XJ-v-bj) = Im ~~~.f-w), (x,. x;) (2.32) 

P(~.~I~~)). (x,. x;): %, (Xi, X; : r) + flLl w-V~): n. (2.33) 

Then by (2.7), 

~(~,~-l(~~,.~, U%,K Y’ : r)) 

= n 1(X, 7 xi, x)(x.f-yYt,,f, 

(2.34) 

Finally, 

=n x,=x IV1 f-'~'),X)(X,/-1(Y'),/). 

Im PX. M,I-w)) = ker PJ-‘~Y,), x (2.35) 

by weak exactness for the simplicial &-theory. By putting together (2.29), (2.30), (2.34) and 

(2.35), we see that Im r = ker t q.e.d. 

Let 7 c int (Y’) c Y. Then we have the exision map 

-i -i 
H,,,~,Y’)-tH,,,CY\~,Y’\V). 

(2.36) 

That this map is an isomorphism follows from the fact that to each (X, x’,f)~g(Y,Y’), 

we can associate a pair (2, Z’, f) E V (I'\, Y’\V), where 2 is a subcomplex of a sufficiently 

fine subdivision of X and the excision map 

is an isomorphism. 

- i -i 
H,,, lx, X’) 4 Ho, (Zt 2 1 

(2.37) 

As a consequence of the results given so far, we obtain other standard cohomological 

machinery such as Mayer-Vietoris and spectral sequences. 

The following are some further useful properties of singular L,-cohomology. 
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PROPOSITION 2.4. If Y is path connected, then+ 

b& (Y: I-) = -!-- 
ord (I-) ’ 

(2.38) 

PROPCMTION 2.5. If I- acts transitively on the path connected components of Y and To 

denotes the isotropy group of some fixed component YO, then 

bf,, B: r) = bfz) (YlJ, r,). (2.39) 

PROPOSITION 2.6. If r’ c r with ind (I-‘: I-) < co, then 

bf,, (Y: r’) = bf,, (Y: r) ind (r’ : r). (2.40) 

In particular, taking Y = K,, 

bf,, (r’) = bf,, (r) ind (r’ : IT). (2.41) 

Proposition 2.4 is clear. Propositions 2.5 and 2.6 follow from (f) and (g) of $1, 

respectively. 

PROPOSITION 2.7. (Kunneth formula). If 

(X, r) = (Y, x Y,, rl x r,) 
then 

(2.42) 

bf,, (r, r) = c b{l) (Y1 : r,) b&j (Y, : r,) (2.43) 
j=O 

where we interpret 

00x0=0. (2.44) 

Proof If f: X --) Y, x Yz, then f = ( fi, fi), where fj: X + Yj. Thus f can be factored as 

x:xXx 
fi xh 

+ Y, xY2 (2.45) 

where A denotes the inclusion of X into X x X as the diagonal. The claim now follows easily 

from the Kunneth formula for X x X in the simplicial theory. 

COROLLARY 2.8. L&Y = Y, x Y, . . . , an infinite direct product and r = @ rk. Then if the 

spaces Yk are path connected and the groups Tt have infinite order, then for all i, 

bf,, (X : I-) = 0. (2.46) 

Proof This follows from Propositions 2.4 and 2.7. 

Let b’(X, R) denote the ordinary Betti number for real coefficients. 

PROPOSITION 2.9. Let To act by simplicial automorphisms on afinite complex X. Then 

bf,, (X : r,) = i bqx, R) b&i (r,). (2.47) 
j=O 

Proof. Since X is finite, there is a subgroup r’ c To, of finite index, which acts trivially on 

t See (0.13). 
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X. By Propositions 2.2 and 2.7 

bf2JX:I-)=b;‘2j(X~Kr~:~) 

= bf2) (X x Kr,: 1 x I’) 

= ,To b&, (X: 1) bj,‘(~r: I-‘) 

= i @(X, R)bf,‘(I-‘). (2.48) 
j=O 

Then (2.47) follows from (2.40), (2.41) and (2.43) q.e.d. 

We note that Proposition 2.9 has an obvious generalization to the case in which X is 

replaced by a pair (X, X’). The case (X, X’) = (s”, ds”), s” an n-simplex, also follows directly 

from excision and (2.47). It states 

- i ff,,, (f, a~#: r,) = 0 i<n 

b&” u-,) i 2 n. 
(2.49) 

We can now give the proof of Theorem 0.1. 

Proof oj Theorem 0.1. For X of dimension zero, the statement is immediate from 

Proposition 2.5. In general, we choose an exhaustion, X = u Xj, by r-invariant sub- 

complexes, such that for allj, Xj+ 1 is obtained from Xi by attaching the orbit of a simplex, s’, 

the orbit of whose boundary lies in Xj. Let Tj 3 Xj denote a small r-equivariant tubular 

neighbourhood of Xi in Xj+ 1. Then 

where si c s’ is a smaller simplex. Moreover Tj is r-equivariantly homotopic to Xi and the 

isotropy group, I+:) of st coincides with I-@). However, if Y @ T(sf) then 

Y(Sf) n si = 0 (2.51) 

(which is not the case for s’). Thus, by (the relative version of) Proposition 2.5 and (2.49), 

b&, u y($), u Y(as:): r 

(2.52) 

A standard cohomological argument based on (d) of $1, Lemma 2.3 and excision now 

shows that 

lim lim dimr Im (A{,, (X,: T))c g12) (Xj: r) 
j--rk-r 

= lim bf,,(Xj:r) 
j-m 

(2.53) 

is finite. By Proposition 2.2 we can replace Xk, Xjin (2.53) by XI, x K,, Xj x K,. Now choose 

an exhaustion of Xj x K, by I--equivariant subcomplexes Zj. I c Xj x K, such that Zj, ,/I is 

compact. Then exhaust X x K by 

Z 1.7, = Zl,r, c ZZ,r, c Z2.r:. . (2.54) 
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where 

- i lim dim, Im (Ho, (Zj,f,: I) -i c Ho, (Zj.7,: I)) --* bf,, (Xj X Kr: I-). (2.55) 
j+cr2 

By combining (2.53), (2.55) and applying (2.8), the proof of Theorem 0.1 is easily completed. 

Remark 2.2. An argument completely analogous to the above shows that the map from 

the simplicial &-theory to the singular &-theory is always an isomorphism with dense range 

and that the Betti numbers defined by these theories coincide. 

$3. VANISHING IN THE AMENABLE CASE 

It is well known and easy to see that for the standard action of 2 or R, 

bf2) (R : 2) = bf@) i20 

= 0. 

Thus, if A is any infinite abelian group, by Theorem 0.1 and Proposition 2.2, 

(3.1) 

0 = m(2) W,,/, : A 1, 

= m(2) (KAIZ x K,: A), 

= mc2) (4. (3.2) 

This, together with Theorem 0.1, gives the remaining results of $1 for infinite abelian A, and in 

particular, Rosset’s Theorem. 

We now prove Theorem 0.2 [m,,,(A) = 0 for infinite amenable groups, A]. A group A is 

called amenable if for every action of A on a compact space, there is an A-invariant Bore1 

measure. For us, the relevant property of amenable groups is the following (see [9]). Let A act 

freely, simplicially and with compact quotient on a complex X. Then there exists a so-called 

Folner exhaustion, X = uXj, of X with the following property: Xj is the union of Nj 

translates of some finite subcomplex, D c X, which is a fundamental domain D for A. Let N; 

denote the number of translates of D which intersect the topological boundary of Xj. Then 

lim NJ/Nj = 0. (3.3) 
j - 30 

The proof of Theorem 0.2 is obtained by combining the following two lemmas. 

LEMMA 3.1. Let X be as above and let p : flf,,(X : A) + H’(X, R) be the natural map. Then 

ker p = 0. (3.4) 

LEMMA 3.2. For any (possibly non-amenable) group A, let (X,~)E V(K,). Then for i > 0, 

P(XJ) @f2,W, : A)) = ker P. (3.5) 

Proof of Lemma 3.1. We have 

tif,,(X:A) = {hECf2,(X)ldh = dh = Oj, (3.6) 

where ah = d*h; see [7]. Let xi c C{,,(X) denote the subspace of cochains h, such that 

dh = dh = 0 and [h] E ker p. Let II,, denote orthogonal projection onto xi and IIx, denote 

orthogonal projection onto the space of L,-cochains which are supported on Xj, i.e. 
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restriction to Xj. Let mi denote the number of i-simplices of D. Then for any j, we have 

dimr xi = & trace (~-IX, &~I 
1 J 

< & rank (I-lx, I&), - 

1 J 

(3.7) 

where the second inequality follows from 

II IIX,I-IYll 2 1. (3.8) 

Note that in general, 8 = d* does not commute with restriction. But if dg = h EX’ and h 

vanishes on all i-simplices intersecting the boundary of Xi, 

d* I-Ix, h = 0. (3.9) 

Then, as usual, IIx,h = 0, since 

(II,/, nx,h ) = (nx,g, d*I-Ix,h ) 

= 0. (3.10) 

It follows that 

rank (IIxj no) I NJ, (3.11) 

which together with (3.3) and (3.7) gives 

dim, ker p = dim, xi 

= 0. (3.12) 

Proofof Lemma 3.2. By Proposition 2.2, we may replace K, by a point x, (with trivial A 
action). For any X on which A acts freely with finite quotient there is a unique A-equivariant 

map, fx: X + x. Thus, we may identify V(x) with the category of all such spaces X and all 

A-equivariant maps. 

Let z be any cycle with support in a finite subcomplex, 1 z 1 c X. For each y E A, let 

C(y, ~‘(1~0) denote the cone with vertex y, and base, ~(1~1) c X. The space 

W=X u 
i 

uC(‘i,‘i(lzl)) 
‘/ I 

> (3.13) 

has an obvious free, simplicial A-action, with compact quotient, for which the inclusion, 

X 4 W, is A-equivariant. The image of z is homologous to zero in W. Thus, 

U(Z) = 0, (3.14) 

if u E H’(X, R) is the pullback of a class in W. Since any class in p(x,y,) (l?f,, (x: A)) has this 

property, and z is arbitrary, the lemma follows. 

$4. AMALGAMATED PRODUCTS 

Let I-r, I2 be groups with a common subgroup A and I,i I2 the free product with 

amalgamation along A. Recall that a model for K r,i,r//r,i Tz can be obtained as follows. Let 

fi: K,fA + K,,/Tj j = 1,2 (4.1) 
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be the natural maps (unique up to homotopy) and let 

(K, /A) “/, Kr,ITj (4.2) 

be the mapping cylinder off,. Then 

K r,,r,/Tt; Tz = CKJA uf, Kr, /r,l LJ CK,lA uf2 Kr21r21 (4.3) 

where the union is along K,/A, the base of the mapping cylinders. 

We can now apply the Mayer-Vietoris sequence and Proposition 2.4 to relate the 

L,-cohomology of T,; r2, with that of l-t, T2 and A. 

Example 4.1. Let A = A, * A2 be the free product of non-trivial amenable groups, Al, AZ. 

Then 

bfa (A) 
0 

= I 
if1 

1 1 
1__-_ i = 1. 

ord (A,) ord (A*) 

Example 4.2. Let I-t, Tz, . . . satisfy 

bf,, (T,) = 0 

for all i 2 0 and all k. Let T(k) be the amalgamated product, 

T(k) = rt;,T+ . . . Tr 

where F,, . . are finite subgroups, of orders d 1, . . . Then 

0 
1 

a+ . . 
1 

Furthermore, r = 6 T(k) satisfies 
k=l 

if1 

’ i=l 
& . 

if1 

i= 1. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Since we can choose d,, d, . . . such that 

(4.9) 

for any real number /I, we obtain a group Ts with b&, (r,) = j? and bf2) (I-,) = 0 for i # 1. 

Then, for 

we have 

b:,, (r;) = 
0 i#k 

B’ i = k. 
(4.11) 

Now let bk be any sequence of real numbers. By amalgamating the groups T’i; L along 

any sequence of infinite cyclic subgroups, we obtain a countable group I-, with by2, (r) = 0, 
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and 

k 
b,z, tn = Bk, k21 (4.12) 

for any given sequence of real numbers, pk. 

Example 4.3. Let /IIt fi2, , . . be an arbitrary sequence of real numbers, with fil rational. 

We construct afinitely generated group I-‘, with bF2; (r’) = 0 and 

bf,, (I-‘) = pi, i 2 1 (4.13) 

as follows. By Example 4.2, there is a countable group r with 

bf2) (r) = pi+1 i 2 1. (4.14) 

By [ 143, T’ can be imbedded as a subgroup of some finitely generated group f. We can assume 

bf,, (l=) = 0 for i 2 0; if not use l= @ 2. The group 

satisfies 

r. = I=* l= 
r 

(4.15) 

bL, m = 
i 

fii if1 
o j = 1 

Finally, take afinitely generated group TB, as in Example 4.2 with 

bf,, u-,,I = 
0 if1 
B 

1 i=l 

(4.16) 

(4.17) 

where j?r is the given rational number. Then 

r-t = r; * rs, 
Z 

(4.18) 

satisfies (4.15). 

Example 4.4. Let /It, /Iz, . . be a constructive sequence of real numbers with bl, fi2 

rational. Then there is ajinitely presented group r” with 

bf,, (I-“) = /Ii i 2 1. (4.19) 

Recall that “constructive” means that there exists of Turing machine which computes at the 

N-th step, the m-th digit of /Ill, for the standard numeration of pairs (m, k) by integers 

1 ) . . . N,.... 

To see this, consider the construction of Example 4.3 and make the orders of the 

underlying finite groups form a recursive sequence. Then one can imbed r’ into a finitely 

presented group, r’ (see [13]) with b{2j (f’) = 0 for all i. Now take 

Then 

(4.20) 

bft, (r;) = 
/Ii i22 

0 i=O,l. 
(4.21) 

Finally, take 

r” = r; * rB,. 
Z 

(4.22) 
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Remark 4.1. There is no known example of a free simplicial action with X/T compact for 

which any of the numbers bf,, ( X: r) are irrational: compare [S]. 

$5. L,-COHOMOLOBY OF RIE,MANNIAN MIASIFOLDS 

For the most part, the results of this section are essntially restatements of those of [4], in 

the language of the present paper. So we will be rather brief. 

Let I be a discrete subgroup of the isometry group of a complete Riemannian manifold Y. 

Then space 2” of L,-harmonic forms has a natural r-module structure; see [3], [4]. If the 

quotient, Y/r, is a compact manifold, $?’ is canonically isomorphic to fif2) (Y: I); see [7]. 

Thus, for example, if Y” is oriented, the Hodge *-operator gives Poincare duality, 

bf2) fy:r) = b;Gi (ykr). (5.1) 

Remark 5.1. Actually, one can show that (5.1) holds for real homology manifolds. 

Now assume that Y has bounded geometry (see $0) and that Y/T has finite volume. 

THEOREM 5.1. The r-moduleJ?:f2, hasfinite r-dimension and is canonically isomorphic to 

E7f2) (Y: r-1. In particular, 

biz, (Y: r) = dim, 22 < co. (5.2) 

Proof. For the case of free actions, this was proved in [4]. The proof given there applies to 

the case of discrete actions with only minor changes. 

COROLLARY 5.2. Ifgeo (Y”) I 1, Vol (Y”jr) < co and Y” is oriented, 

b;2j (Y” : r) = b;$ (Y” : r). (5.3) 

In particular the dimension, n, of Y” is a r-equivariant homoropy invariant of such actions, 

provided that for some i, bfz, (Y”: r) # 0. 

Proof: The duality arises from the Hodge *-operator. 

Example 5.1. The condition, bf,, ( Y: I) # 0 for some i, is actually necessary. For example, 

in addition to the standard action of 2 on R, one has the action of 2 on R2 whose quotient is 

double cusp depicted below (Fig. 1). 

If the metric on Y ‘” is Kahler for some complex structure, Hodge theory puts further 

restrictions on A& (Y ‘“: r), e.g. 

bi2) (Y ‘” : I-) I bo, i+2 (Y2”: r-1, 0 I i I n - 2. (5.4) 

Fig. I 
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Exnmple 5.2. Let Y 2 denote the double cusp manifold of Fig. 5.1. ThenY 2 is conformally 

equivalent to S’ with two points deleted. Since b f2) (Y2 : Z) = 0, i I 2n, it follows that 

W2”=Y2x. y’ . . 
satisfies 

bi2) ( W2”, Z”) = 0, i I 2n (5.5) 

and hence for the connected sum, W2” # W2”, we have 

bf2) (W’“# W2”: Z”*Z”) = 
0 ifl, 2n-1 
1 i = 1 

) 2n-1. 
(5.4) 

Since, for n 2 3 

b;2J (W2” # W2”, Z” * Z”) 2 bF2) (W” # W”, Z” * Zn) (5.7) 

by (5.4), W2” # W2” admits no complete Kahler metric of finite volume for which the 

universal covering space has bounded geometry. On the other hand, in view of Fig. 5.1 it 

obviously admits a metric of this type which is not Kihler. Finally W2” # W2” does admit 

incomplete Klhler metrics [since it can be regarded as an open subset of CP(n) with a point 

blown up]. 

The specific example above can be generalized considerably. Every projective algebraic 

manifold, W”, admits a Zariski open subset, V”, which carries a complete Kahler metric of 

finite volume such that the universal covering, p, has bounded geometry. Moreover, T/” can 

be chosen such that pn is contractible and F = lT r( V”) admits a chain of subgroups, II = 

r13r2...rn+l = 0 (n = dim, Y”) with Fj normal in Fj_ 1 and Fj_ r/Fj free (see [ll]). 

Then 

b12) (V: r) = bf,, (r) = 

1 

0 i#n 

i (rank Fj/Fj+ 1 - 1) 
(5.8) 

i = n. 
j=l 

For n 2 3, the connected sum, V’ = V # V satisfies, b&, ( 8’ : I-‘) = 1, bf2) ( 8’ : F’) = 0. 

Hence there is no complete KChler metric of finite volume on V’ for which p has bounded 

geometry, even though (non-Kahler) Riemannian metrics of this type clearly exist. 

Example 5.2. We continue to assume that Y is a Riemannian manifold of bounded 

geometry and that Vol (Y/F) < co. Let P, (Cl) denote the Chern-Gauss-Bonnet form of Y. 

THEOREM 5.3. 

J p, v-4 = X(2, (Y 2n: r). (5.9) 
YZ’,‘i- 

Proof. As in [4] this follows from Theorem 5.1 and the L,-index Theorem of [3] (whose 

proof in the discrete case requires no modification). 

For an arbitrary space Y, the L,-cohomology with compact supports, I?,$J.0 (Y: I-) is 

defined as follows: 

def 
A&,,o (Y: r) = lim Eif,, (Y,Y\Y’ : r), 

Y’ 
(5.10) 

where the inverse limit in (2.45) is over all setsY’ with compact closure. Clearly, H,$).o (Y: r) is 

a r-equivariant proper homotopy invariant. If Y” is an oriented pseudo-manifold and if the 
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action of F preserves the orientation, then there is a pairing, 

%,.o @?I-)@@,;‘(Y:T)+R. (5.11) 

For this, we define the cup product, ZJ u VE~;~),~ (Y: r), of u ~flf~,,~ (Y: r) and 

v E #;2; i (Y: r) by starting with complexes X, as in 92, and passing to the inverse limit. Then 

Q(uO~=P(~U~)CYI, (5.12) 

where [Y ] E H,,, (Y, R), and 

p:A;,,., (Y: r) + A; (Y, R) (5.13) 

is the natural map. If Y is a rational homology manifold, the pairing is easily seen to be non- 

singular, and this implies Poincare-Lefschetz duality, 

bf2).o (Y:r) = b;Gi (Y:r). (5.14) 

For n = 4/c, if the bounded symmetric bilinear form Q has finite F-rank, its F-signature, 

D (Y: r), is defined in the usual way. 

THEOREM 5.4. Let Y” be a complete oriented Riemannian manifold of bounded geometry on 

which r acts by orientation preserving isometries. Then for all i, 

-i ffc2j,o (Y” : r) = Rf2) (Y” : r). (5.15) 

If n = 4k, then 

ju.rPr.(~) = o(Y:r), (5.16) 

where PL(R) denotes the Hirzebruch L-form. 

Proof. See [4]. 

Remark 5.2. If F acts freely and the quotient is compact, Theorem 5.4 reduces to the 

L,-index theorem for the signature operator of [l] and [17]: 

d (Y: r) = g (Y/r). (5.17) 

Remark 5.3. The identity (5.17) generalizes to free cocompact actions on topological 

manifolds. In fact, the whole bounded geometry-finite volume discussion extends to a purely 

topological framework, including, for example, lattices in locally compact groups. This will 

be discussed in a future paper. 
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APPENDIX: INVERSE LIMITS OF I--MODULES 

In this Appendix we verify properties (a)-(f) of $1 for inverse limits of T-modules, and prove 

Lemma 2.1. 

In fact, (a), (c), (f) and (g) are trivial. To state (b), we assume that A is a subspace of some lim A,, and 

A its closure. Then (b) is trivial as well. Since (e) is not used in the body of the paper, its prooy, which is 

similar to that of(d), will be omitted. Before proceeding to (d) for inverse limits, we will sharpen (e) in the 

usual case. 

Let H, be a collection of closed submodules of some f-finite dimensional T-module, indexed by 
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some possibly uncountable set a. We claim that 

dim, n H, = lim inf dim, A H, (Al) 
*El FCU xe3 

where9 ranges over the finite subsets ofa. If a is countable this is equivalent to (e) of $1. Otherwise, use 

the Well Ordering Principle to write 

a=nS, 
B 

(AZ) 

where j3 < j’ implies S, c Bs. and each S, has cardinality strictly smaller than that of a. Since B < B 

implies 

n H,c n H,, (A3) 
PlES# lSS# 

by a trivial extension of (e) of $1, 

lim inf dim, n H, = dim, n n H, 
B ZES# P i 1 .ESp 

= dim, n H,. 
IIEO 

(A4) 

By transfinite induction, we can assume that for each B, 

dim, n H, = lim inf dim, n H, W) 
ZES# 3CS, zr3 

which, together with (A4) implies (Al). 

Next, we observe that the condition that H, is closed can also be weakened. A I-module. B, will be 

called F-weakly closed if there exist closed B, c B2 c . . c B, with u Bj dense in B. Equivalently, 

lim dim, Bj = dim, B. WI 
j-a 

Let dim, C < CD and letf: A -+ C be bounded. It follows from (d) of $1 that if W c C is F-weakly 

closed so isf- L (W). More significantly, if V c A is F-weakly closed, then by the F-Fredholm property 

discussed in $1, so is f( V ). 
Now let B,, B2 . be F-weakly closed, dim, B, < co. Let Cj c Bj, with Cj closed, 

Then using (d) of $1, one sees that 

dim, B, n 

which gives 

dim, B, - dim, Cj < sj, 

: Ej < E. 

j=l 

(A7) 

648) 

n Bj-dim,C, A . . Cj < si + . Ej> 

lim inf dim, B, n . . Bj, 
j 

(A9) 

IliminfdimrC,n... nCj+c 

= dim, n Cj + E, 

It follows that (Al) holds for countable intersections of F-weakly closed submodules and such 

intersections are again r-weakly closed. If we now assume that both of these properties hold for index 

sets of less than a fixed cardinality, it follows as above, by transfinite induction, that they hold in general. 
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Let (A,,‘#) be as in $2 and let B, c A, be closed for all z. We turn to the proof of Lemma 2.1 which 

describes the subspace lim B,, of elements a, such that a, E B, for all z. 
‘Q 

Clearly, we have 

and Qg. is T-weakly closed. Moreover, if /I I r, obviously 

PB.B- (QB') = Qs. 
In view of (All), 

dcf 
=R 83 

and R, is r-weakly closed. 

By (d), the continuity property, for fixed b, we can choose, b, > /?, j = 1, 

dimrn pg.!, (Qpi)-dimr R, <E. 
j 

By (2.4) we can choose f10 > Jj, j = 1,. , n, and by (A12) 

Thus, 
dimr ~g.6~ (Q~.)--dim,R,+ <E. 

dim, R, = lim inf dim, pg,Bo (Q,,). 
Bo 28 

(All) 

(A12) 

(A13) 

(‘~14) 

(Al51 

6416) 

Let ,!?’ 2 fi and choose /&, and /?b such that (A15) holds and the corresponding relation holds for fib 

and /I’. Then, if we choose y > Jo, y > Bb, we have 

dim, pE.? (Q,)-diq& 

din-v PE,,~ (QJ-dlmr RB 
Since 

Pt.7 = P8.4’ Pe..y, 

it follows that 

<E (A17) 

< E. (~18) 

(A19) 

Hence. 

dim, R, - dim, pg. ,V ( R,Y) < 2 E. L4W 

LEMMA Al. pp.,. (Rr) is weakly r-closed and dense in R,. 

According to the assertion of Lemma 2.1, p,, 
( > 

lim B, is dense in R,, provided that V is dominated by a 
‘p 

linearly ordered subset Y (for the application to L,-cohomology, this would mean 

restricting attention to spaces with countable homotopy groups). As we indicated, the assumption can 

be removed, but some details must be modified slightly. First we will complete the discussion assuming 

the existence of Y. 

Since the maps p8,#. have dense range and dim, R, < co for all B, we can assume that Y is countable 

and in fact Y = {fit I /?2 I . . . >. 

Proof of Lemma 2.1 when Y exists. By (A13), relation (2.7) follows from 

dim, li: B, = s;p dim, R,. WI) 
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By (2.4), for fixed {B,}, we can assume that Y has been chosen so that 

Put 

s;p dim, R, = SUP dim, Rb,. 
j 

rs, = %I, 

Ts, = Pa,!l,sj CT&_,) n Cker P&4 ,-,. s,l’. 

(A22) 

(A23) 

(~24) 

Then TV, is r-weakly closed. It follows from (e) and Lemma Al that n P~,,~~(T~,) is dense in R,,. 
j 

Moreover, clearly 

(A25) 

In the same way, (A2.5) holds with fl, replaced by pi. This together with (A22) gives (AZl). 

We now consider maps, g, between inverse limits. We will restrict attention to those g which have a 

special character enjoyed by all the maps of $2 (actually it is possible to reduce the case of arbitrary 

bounded operators g to this one). 

Let 5?%z c we2 be a subcategory satisfying (2.3). (2.4) and such that for all z E V,, there exits BE 9, 

with /I 2 2. Let T: CSa, + WL be a functor. Assume that there exist bounded operators, gTcs,: A $, -+ Ai, 

such that 
Q(8) 

‘4 :cs, - ‘4; 

(A261 

commutes. The collection, { gTtBbj, determines a unique 

satisfying 

P: 9 = gr,s,P:cs,. (~27) 

Such a map is called a morphism (of inverse systems). 

Proojof(d)for morphisms, ifU exists. Clearly, it suffices to assume that dim, ker g + dim, Im g is 

finite. 

Let f: lim Ai -+ lim A; be a morphism. An element, a, of lim Af is in kerg, if and only if 

aT,B,E ker gr)B1, for a;p E 9 
VI 

*. Let Q, (kerg), R, (kerg) denote the corresponding subspaces of A,. 

If follows that 

QL &erg) = ,,,:: =, P&,~, (kergrtm). 

NOW fix z. By (A17), there exists z’ such that 

dim, p..., (Qz. (kerg)) I dim, R, (kerg) + E. 

Choose fiI . 8. such that 

6428) 

(~29) 

dim, n 
r,&9,sz.P- I.= 

T,i ) (kergTcB,,) I dim, Q,, &erg) + E. 

Then choose /30 2 fijj = 1, . , n. For any z” with z” 2 z’, z” 2 r(fiO), we have 

dim, Pi.=- (p;,~,,.- Wrgr,18,,) 1 S dim, R, @erg) + 2~ 

(A30) 

(A311 
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Since, by Lemma A 1, 

it follows that 

dim, ker (p,.,,.) = dim, R,.. -dim, R,, (A32) 

Finally. 

dim, p;,~0lz.. (ker gTIsO))- [dim, R,,, -dim, R,]. 

2 dim, P..~,~ (P&,~... WrgT,Bo,) ). (A33) 

dim, p;,&L1.. (kergr,80,) = dim, R,,, -dim, Rrtp,) + dim, ker grtpO) 

= dim, R,., -dim, Im gTtB 0 ). 

Since E is arbitrary, combining (A31), (A33) and (A34) gives 

dim, R, I dim,- R, (kerg) + dim, Im grtfiO). 

Using (2.4) and Lemma 2.1, we can let x + ~13, r(/?,,) + w in such a way that 

(A34) 

(A39 

lim dim, R, = dim, lim Ai, 
il-D ‘61 

(A36) 

lim dim, Rr,80, (kerg) = dim, kerg. 
Bo-io 

(A37) 

Then (A35) gives 

dim, lim A;f 5 dim, kerg + dim, Img. 
‘81 

(A3S) 

In particular, if the right-hand side is finite then so is the left. Thus, as Q + co, 

dim, ker p,.,, + 0, (A39) 

and in the limit, (A33) is an equality. Hence, so is (A36). This completes the proof. 

Our assumption concerning the existence of 49 entered the above argument only indirectly, in our 

appeal to Lemma 2.1. However, we can also prove a version of Lemma 2.1 under the sole assumption 

that 

def- 

lim sup dim, R, = dim, lim B,, 

B ‘B 

< co. (A40) 

In this form, Lemma 2.1 asserts that dim, = dim,, p rovided dim, < co. However, if dim, = 30, the 

proof breaks down and u priori, one could have 

dim, lim B, = co, 
‘4 

(A41) 

dim, lim B, = 0. 
‘8 

(~42) 

Since dim, is actually an invariant of a collection 8, c Af , . m order to state (d) in this context we 

must define dim, (kerg), dim, (Img). For kerg we take Q,, (kcrg) as in (A28). Then R,. (kerg), 

dim, (kerg) are determined as usual and dim, Img is defined similarly. 

The generalization of (d) is 

(d)’ Let g : lim Af -+ lim Af be a morphism. Then 
v8, ‘82 

dim r lim A: = dim, kerg + dim, Im g. 
‘8, 

(A43) 
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In particular, if the right-hand side is finite then 

dim, lim Ai dim, kerg + dim, Img. 
‘8, 

As we have mentioned. (d)’ follows as above from 

LEMMA 2.1’. If B, c A, and dimrlim B, < co, then 
‘61 

dim, Jim B, = dim, Jim I?,. 
VI VI 

Proof. Let Y = 18, 5 fiz , . , ) with 

(A45) 

lim dim, Rg, = dim, lim B, < co. (A46) 
1-m ‘g1 

If 9’ = {fl’t 5 /?; . . ] is another such system, we write 9’ 2 8 if for allj there exists N(j) with p>( j, 

2 Bj. Let py,y be the induced map, 

ey,y:Ji9mR,s; -. lim Rg. (A47) y , 

Since dim, lim B, < co, by (d) for the case in which Y exists, 
Q 

ker plp,y = 0. 

By the extension of (e) 

- 
n e8, Ume9,,.) = %, 

9-2..Y 

(A48) 

(A49 

Thus, by (A48), every a E lim Rbj with 
_Y 

aa, E ~8, (Imp,, Y), 

determines a unique element, a’sJim Rg,, for all 9’ > Y. 
Y 

(AW 

Given 8, using (2.4), there exists 44’ 2 Y with /?; = fi. Moreover, if 9”’ is another such there exists a 

third 9”’ with 9”’ 1 Y, 2”’ > 9”. It follows from (A48) that 

py. y. (a”‘) = a’, (A51) 

pY.lp... (a”‘) = a”, (A52) 
and hence that 

0; = ai = ai’. (A53) 

Thus, every element a as above determines a unique element of R, for all fi, and it follows as above that 

these determine a unique element of Jim f?,. This suffices to complete the proof. 
VI 

1. 

2. 

3. 
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