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A topological approach to Cheeger-Gromov universal
bounds for von Neumann rho-invariants

Jae Choon Cha

Abstract. Using deep analytic methods, Cheeger and Gromov showed that for any smooth
(4k — 1)-manifold there is a universal bound for the von Neumann L? p-invariants associated to
arbitrary regular covers. We present a new simple proof of the existence of a universal bound for
topological (4k — 1)-manifolds, using L*-signatures of bounding 4k-manifolds. For 3-manifolds,
we relate the universal bound to triangulations, mapping class groups, and framed links, by giving
explicit estimates. We show that our estimates are asymptotically optimal. As an application,
we give new lower bounds of the complexity of 3-manifolds which can be arbitrarily larger than
previously known lower bounds. As ingredients of the proofs which seem interesting on their
own, we develop a geometric construction of efficient 4-dimensional bordisms of 3-manifolds over
a group, and develop an algebraic notion of uniformly controlled chain homotopies.
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1. Introduction and main results

In [CG85], Cheeger and Gromov studied the L? p-invariant p(® (M, ¢) € R, which they
defined for a closed (4k — 1)-dimensional Riemannian manifold M and a homomorphism
¢: (M) — G into a group G. Briefly speaking, p(?)(M, ¢) is the difference of the 7-
invariant of the signature operator of M and the L? n-invariant of that of the G-cover of
M which is defined using the von Neumann trace. As a key ingredient of their study of
topological invariance, Cheeger and Gromov showed that there is a universal bound of the
L? n-invariants of arbitrary coverings of M, by using deep analytic methods. Equivalently,
there is a universal bound of the Cheeger-Gromov p-invariants of M:

Theorem 1.1 (Cheeger-Gromov [CG85]). For any closed smooth (4k — 1)-manifold M,
there is a constant Cyy such that |p® (M, ¢)| < Cyr for any homomorphism ¢: w1 (M) — G
into any group G.

In this paper we develop a topological approach to the Cheeger-Gromov universal
bound Cjp;. Our method presents a topological proof of the existence, and gives new
topological understanding of the universal bound with applications to low dimensional
topology. In particular, we reveal an intriguing relationship of the Cheeger-Gromov p-
invariant and the complexity theory of 3-manifolds.

In this section, we discuss some backgrounds and motivations, state our main results
and applications, and introduce some ingredients of the proofs developed in this paper,
which seem interesting on their own.

As a convention, we assume that manifolds are compact and oriented unless stated
otherwise.

1.1. Background and motivation

A known approach to p-invariants is to use a standard index theoretic fact that if a (4k—1)-
manifold M is the boundary of a 4k-manifold W to which the given representation of
m1 (M) extends, then the p-invariant of M may be computed as a signature defect of W. For
the von Neumann L? case, as first appeared in the work of Chang and Weinberger [CW03],
we can recast this index theoretic computation to provide a topological definition: for any
M and ¢, p®(M,$) can be defined as a topological L?-signature defect of a certain
bounding manifold, in the topological category as well as the smooth category. This
is done using a theorem of Kan and Thurston that any group embeds into an acyclic
group [KT76] and using the invariance of the von Neumann trace under composition with
a monomorphism. Also, instead of Hilbert modules and L?-(co)homology, we can use
standard homology over the group von Neumann algebra, by employing the L2-dimension
theory of Liick [Li1c98| [Liic02]. For the reader’s convenience, we provide precise definitions
and detailed arguments in Section [Z] for topological (4k — 1)-manifolds.

Although the Cheeger-Gromov p-invariant can be defined topologically, known proofs
of the existence of a universal bound are entirely analytic [CG85 [Ram93], and provide
hardly any information on the topology of M. From this a natural question arises:

Question 1.2. Can we understand the Cheeger-Gromov bound topologically?

This question is intriguing on its own, along the long tradition of the interplay between
geometry and topology. Because of the deep analytic aspect, it has been regarded as a
hard problem. Attempts to understand the Cheeger-Gromov bound using L2-signature
defects have failed (for instance see [CTO7, p. 348]). The key reason is that the bounding
4k-manifold used to define p® (M, ¢) in known arguments depends on the choice of ¢.
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Topological understanding of the Cheeger-Gromov bound is also of remarkable impor-
tance for applications, particularly to knots, links, and low dimensional manifolds. Since
the work of Cochran, Orr, and Teichner on knot concordance [COTO03], several recently
discovered rich structures on topological concordance of knots and links, topological homol-
ogy cobordism of 3-manifolds, and symmetric Whitney towers and gropes in 4-manifolds
have been understood by using the Cheeger-Gromov invariant. The most general known
obstructions from the Cheeger-Gromov invariant in this context are given as the amenable
signature theorems in [CO12, Theorems 1.1 and 7.1] and [Chal4, Theorem 3.2]. In many
applications, it is essential to control p(®) (M, ¢) for certain homomorphisms ¢. In [CT07],
Cochran and Teichner first introduced the influential idea that the Cheeger-Gromov bound
is extremely useful for this purpose. Since then, the Cheeger-Gromov bound has been used
as a key ingredient in various interesting works (some of them are listed at the end of Sec-
tion [L2). It is known that many existence theorems in these works could be improved to
give explicit examples if we had a better understanding of the Cheeger-Gromov bound.
A key question arising in this context is the following: if M is the zero surgery manifold
of a given knot K, how large is Cj/? For instance, for the simplest ribbon knot K = 64
(stevedore’s knot), is Cjs less than a billion?

In spite of these desires, almost nothing beyond its existence was known about the
Cheeger-Gromov bound.

1.2. Main results on the Cheeger-Gromov universal bound

As our first result, we present a topological proof of the existence of the Cheeger-Gromov
bound that directly applies to topological manifolds, based on the L?-signature defect
approach.

Theorem 1.3. For any closed topological (4k — 1)-manifold M, there is a constant Cyy
such that |p? (M, ¢)| < Cyr for any homomorphism ¢: 71 (M) — G into any group G.

The outline of the proof is as follows. As the heart of the argument, we show that for an
arbitrary (4k — 1)-manifold M, there is a single 4k-manifold W with OW = M from which
every Cheeger-Gromov invariant p(2)(M ,®) of M can be computed as an L?-signature
defect. Once it is proven, it follows that twice the number of 2-cells in a CW structure
of W is a Cheeger-Gromov bound, by using an observation that any L2-signature of W
is not greater than the number of 2-cells. A key ingredient used to show the existence of
W is a functorial embedding of groups into acyclic groups due to Baumslag, Dyer, and
Heller [BDHS0]. More details are discussed in Section

Beyond giving a topological proof of the existence, our approach provides us a new
topological understanding of the Cheeger-Gromov bound. For 3-manifolds, we relate the
Cheeger-Gromov bound to the fundamental 3-manifold presentations: triangulations, Hee-
gaard splittings, and surgery on framed links, by giving explicit estimates in terms of
topological complexities defined from combinatorial, group theoretic, and knot theoretic
information respectively.

Regarding triangulations, we consider the following natural combinatorial measure of
how much complicated a 3-manifold is topologically. In this paper, a triangulation desig-
nates a simplicial complex structure.

Definition 1.4. The simplicial complexity of a 3-manifold M is the minimal number of
3-simplices in a triangulation of M.

The following result relates the combinatorial data to the Cheeger-Gromov bound,
which was analytic, via a topological method.



CHEEGER-GROMOV UNIVERSAL BOUNDS FOR VON NEUMANN RHO-INVARIANTS 4

Theorem 1.5. Suppose M is a closed 3-manifold with simplicial complezity n. Then
10 (M, ¢)| < 363090 - n
for any homomorphism ¢: w1 (M) — G into any group G.

In the next subsection, we will discuss an application of Theorem to the complexity
theory of 3-manifolds. In the last two subsections of this introduction, we will introduce
two key ingredients of the proof of Theorem (and Theorems [[.8 and below), which
are essentially topological and algebraic respectively.

The linear bound given in Theorem is asymptotically optimal. To state it formally,
we define the “most efficient” Cheeger-Gromov bound as a function B*(n) in the simplicial
complexity n, as follows:

sc _ (2)
B¥(n) = sup {|p (M 9)] ¢ is a homomorphism of 71 (M)

M has simplicial complexity n and}
Theorem [[H tells us that B5¢(n) is at most linear asymptotically. In other words, B5¢(n) €
O(n); recall that f(n) € O(g(n)) if limsup,,_,. |f(n)/g(n)| < co. In our case, by Theo-
rem [[L5] we have

BSC
lim sup # < 363090.

n—oo

Also, recall that the small o notation formalizes the notion that f(n) is strictly smaller
than g(n) asymptotically, that is, f(n) is dominated by g(n): we say f(n) € o(g(n))
if limy, 00 |f(n)/g(n)| = 0. As another standard notation, we say that f(n) € Q(g(n))
if f(n) is not dominated by g(n), that is, limsup,,_, |f(n)/g(n)| > 0. We prove the
following result in Section [[3l

- : B*(n) 1
Theorem 1.6. B*(n) € Q(n). In fact, limsup > —.
n—so0 n 288

Recall that any closed 3-manifold M admits a Heegaard splitting, namely a decomposi-
tion of M into two handlebodies. A Heegaard splitting is determined by a mapping class
h in the mapping class group Mod(X,) of a surface ¥, of genus g. (For a more precise
description, see the beginning of Section[6.3l) A natural way to measure its complexity is
to consider the word length of h in the group Mod(X,). It is well known that Mod(X,) is
finitely generated by standard Dehn twists; Lickorish showed that Mod(X,) is generated
by the £1 Dehn twists about the 3g — 1 curves «y, 3;, and ; shown in Figure [T [Lic62].

FIGURE 1. Lickorish’s Dehn twist curves.

Definition 1.7. The Heegaard-Lickorish complexity of a closed 3-manifold M is defined
to be the minimal word length, with respect to the Lickorish generators, of a mapping
class h € Mod(X,) which gives a Heegaard splitting of M.
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We remark that the Heegaard-Lickorish complexity tells us more delicate informa-
tion than the Heegaard genus, in the sense that the difference of the Heegaard-Lickorish
complexities of two 3-manifolds with the same Heegaard genus can be arbitrarily large,
whereas the Heegaard genus is bounded by twice the Heegaard-Lickorish complexity (see
Lemma [6.7]).

The following result relates the above geometric group theoretic data to the Cheeger-
Gromov bound.

Theorem 1.8. Suppose M is a closed 3-manifold with Lickorish-Heegaard complexity £.
Then
PP (M, ¢)| < 251258280 - ¢

for any homomorphism ¢: 711 (M) — G into any group G.

Our next result is about surgery presentations of 3-manifolds. It is well known that any
3-manifold is obtained by surgery along a framed link in S3, that is, Dehn surgery with
integral coefficients. For a framed link L in S®, let n;(L) € Z be the framing on the ith
component L;, that is, n;(L) = 1k(L,, L;) where L/ is the parallel copy of L; taken along
the given framing. We define f(L) =", [ni(L)|. We denote by ¢(L) the crossing number
of a link L in S3, that is, the minimal number of crossings of a planar diagram of L.

Theorem 1.9. Suppose M is a 3-manifold obtained by surgery along a framed link L
in S3. Then
1P (M, $)| < 69713280 - ¢(L) + 34856640 - f(L)

for any homomorphism ¢: 71 (M) — G into any group G.

Similarly to Theorem [[LG] we show that the linear bounds in Theorems [[.8 and are
asymptotically optimal. We omit details in this introduction; for formal statements and
proofs, see Definition [.7] Theorem [T.8 and related discussions in Section

Remark 1.10. While the linear bounds in Theorems[[.5] [[.8 and [[L9] are asymptotically
optimal, it seems that the coefficients in these linear bounds can be improved. Although
we do not address it in this paper, finding optimal or improved coefficients seems to be an
interesting problem.

As an application, our explicit universal bounds for the Cheeger-Gromov invariants are
useful in improving several recent results in low dimensional topology related to knots,
links, 3-manifolds, and their 4-dimensional equivalence relations. For instance, in light
of Theorem (and Theorem [6.3] in the body of the paper, which is another similar
result), now the proofs of the following existence results of various authors can give us
explicit examples of: (i) knots of infinite order in the graded quotient of the Cochran-Orr-
Teichner n-solvable filtration, and similarly for the grope filtration [CT07, Theorems 1.4
and 4.2], [CHL09, Theorems 9.1 and 9.5 and Corollary 9.7]; (ii) slice knots which are
algebraically doubly slice but nontrivial in the graded quotient of the double n-solvable
filtration (and consequently not doubly slice) |[Kim06, Theorem 1.1]; (iii) knots whose
iterated Bing doubles are in n-solvable but not (n+1)-solvable (and consequently not slice)
[CHLO8, Corollaries 5.2 and 5.3 and Theorem 5.16]; (iv) 2-torsion knots generating (Zg)>
in the graded quotients of the n-solvable filtration [CHLI11, Theorems 5.5 and 5.7 and
Corollary 5.6]; (v) non-concordant knots obtained from the same knots by infection using
distinct curves [Fral3, Theorem 3.1 and Corollaries 3.2 and 3.3]; (vi) knots which generate
Z* in the graded quotients of the n-solvable filtration and have vanishing Cochran-Orr-
Teichner PTFA signature obstructions [Chal, Theorems 1.4 and 4.11]; (vii) links which are
height n grope concordant to but not height n.5 Whitney tower concordant to the Hopf link
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[Chal4l Theorem 4.1]; (viii) non-concordant m-component links with the same arbitrarily
given multivariable Alexander polynomial A, if m > 2 or A # 1 [CFP Theorems A, B,
3.1, and 4.1]; (ix) non-concordant links admitting a homology cobordism between their
zero surgery manifolds in which the meridians are homotopic [CP, Theorems 1.1 and 1.2].

1.3. Applications to lower bounds of the complexity of 3-manifolds

The notion of the complexity of 3-manifolds have been an intriguing subject of study. In
the literature, the following variation of the simplicial complexity is often considered: a
pseudo-simplicial triangulation of a 3-manifold is defined to be a collection of 3-simplicies
whose faces are identified in pairs under affine homeomorphisms to give the 3-manifold as
a quotient space. Similarly to Definition [[L4], the pseudo-simplicial complezity ¢(M) of a
3-manifold M is defined to be the minimal number of 3-simplices in a pseudo-simplicial
triangulation. Following conventions in the literature, we call ¢(M) the complezxity of M.
(cf. we use the terminology simplicial complezxity in Definition [[4] to avoid confusion.) In
[Mat90], Matveev defines the notion of complexity using spines in a 3-manifold, which
turns out to be equal to ¢(M) except the case of M = S3, RP3, and L(3,1), and develops
some fundamental results.

Finding an efficient (pseudo-simplicial) triangulation is essential to several aspects of
3-manifold topology, from the normal surface theory initiated in the 1920’s by Kneser,
to recent quantum invariants and computational approaches. Nonetheless, understanding
the complexity for the general case remains as a difficult problem. While we easily obtain
an upper bound from a triangulation, finding a lower bound has been recognized as a hard
problem [Mat03, [TRT13].

We briefly overview known results on lower bounds of ¢(M). In [MPOI], Matveev
and Pervova obtain basic lower bounds of ¢(M) from H;(M) and from the presentation
length of 71 (M) (see the end of Section [[2]). We remark that in most cases finding the
presentation length of a group is another hard problem. In [MPV09], Matveev, Petronio,
and Vesnin show that for a hyperbolic 3-manifold M, vol(M)/vs is a lower bound for
c(M), where v3 is the volume of a regular ideal tetrahedron in H®. In a series of papers
[JRT09, JRT11) JRT13|, Jaco, Rubinstein and Tillman develop remarkable techniques to
understand the complexity, particularly to find lower bounds, using double covers and a
Zo-version of the Thurston norm.

As an application of our results on the Cheeger-Gromov bound, we present new lower
bounds of the complexity of 3-manifolds. For the simplicial complexity, note that Theo-
rem [[.5] already told us that for any homomorphism ¢ of (M)

0@ (M

is a lower bound. Since the second barycentric subdivision of a pseudo-simplicial triangula-
tion is a simplcial complex and since each tetrahedron in a pseudo-simplicial triangulation
gives (4!)2 = 576 tetrahedra in its second barycentric subdivision, we immediately obtain
the following corollary of Theorem

Corollary 1.11. If M s a closed 3-manifold, then for any homomorphism ¢ of w1 (M),

M)>—— 1M ).
o(M) 2 555139820 1P (M9l

Although the constant factor in the above inequality is small, the Cheeger-Gromov p-
invariants of 3-manifolds are often so large that they give interesting new results. First,
we have the following:
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Theorem 1.12. There are 3-manifolds M for which the lower bound for ¢(M) in Corol-
lary LT is arbitrarily larger than the lower bound information from (i) the fundamental
group and first homology [MPO1], (ii) the hyperbolic volume [MPVQ9], and (iii) double
covers and Zo Thurston norm [JRT09 [TRTTIL [JRTT3].

In fact, there are 3-manifolds for which the lower bound in Corollary [[.T1] grows linearly
while the lower bounds in [MPO01], [MPV09], [JRT09, JRT11l [JRT13] vanish or have
logarithmic or square root growth. More details is discussed in Section [7l

As an infinite family of explicit examples, we consider lens spaces. In [JRT09, [JRT11],
Jaco, Rubinstein, and Tillman determine the complexity of L(p,q) in certain cases for
which p is even, including the case of L(2k,1). Nonetheless, for the general case, current
understanding of the complexity of lens spaces is far from complete. In particular, for
L(n,1) with n odd, it turns out that previously known lower bounds are not sharp even
asymptotically. (For more details, see the discussion at the end of Section[721) In [Mat90]
and [JR], it was conjectured that for p > ¢ > 0, p > 3, if we write p/q as a continued
fraction [ng,n,...], then the complexity c¢(L(p, q)) is equal to > n; — 3. It specializes to
the following;:

Conjecture 1.13 ([Mat90], [JR]). For n > 3, ¢(L(n,1)) =n — 3.

In [JR], Jaco and Rubinstein show that ¢(L(n,1)) < n — 3 for general n. In [JRT09],
Jaco, Rubinstein, and Tillman prove Conjecture for even n. The case of odd n is still
open.

We consider the 3-manifold M (K, n) obtained by n-surgery on a knot K in S% (n € Z),
as a generalization of the lens space L(n,1). Recall that we say f(n) € O(g(n)) if the
asymptotic growth of f(n) and g(n) are identical, that is, there exist Cy, Co > 0 such
that Cilg(n)] < [f(n)] < Cslg(n)| for all sufficiently large n. (This is different from
f € O(g(n)), which requires the second inequality only.) The following result tells us that
the complexity of M (K, n) is always linear asymptotically.

Theorem 1.14. For any knot K in S3, ¢(M(K,n)) € ©(n).

The proof of Theorem[[.T4lemploys the Cheeger-Gromov invariants using Corollary[L.T1]
In fact, we give an explicit linear lower bound for ¢(M (K, n)); see Theorem for more
details. Applying it to the unknot, we immediately obtain the following corollary, which
determines the asymptotic growth of the complexity of L(n,1).

Corollary 1.15. ¢(L(n,1)) € ©(n). In fact, for each n > 3,
o
627419520

This result supports Conjecture [[LI3] by telling us that it is asymptotically true.
More applications of our results to the complexity of 3-manifolds will appear in a
subsequent paper.

n—3) <c¢(L(n,1)) <n-—3.

1.4. Efficient 4-dimensional bordisms over a group

One of the key ingredients of the proofs of Theorems [[LO] [[L8 and 9 is a new result
on the existence of an efficient 4-dimensional bordism over a group. More precisely, we
address the following problem, which looks interesting on its own.

We consider manifolds over a group G, namely manifolds endowed with a map into BG,
the classifying space of G. As usual, we say that W is a bordism over G between M and
N if OW = M U —N as manifolds over G.
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Question 1.16. Given a 3-manifold M over G, how efficiently can M be bordant to a
3-manifold which is over G via a constant map?

To define the efficiency of a bordism rigorously, we consider the following notion of
complexity of a (co)bordism, which is most natural for the study of signature invariants.

Definition 1.17. The 2-handle complezity of a 4-dimensional smooth/PL (co)bordism is
the minimal number of 2-handles in a handle decomposition of .

Although Definition [[LT1 (as well as Question [[L.T0) generalizes to higher dimensions in
an obvious way, in this paper we focus on the low dimensional case only.

It is a standard fact that any L2-signature of a 4-manifold (in particular the ordinary
signature) is not greater that the 2-handle complexity.

Suppose M is a triangulated 3-manifold endowed with a cellular map ¢: M — BG,
and (y € C3(M) is the sum of the oriented 3-simplices representing the fundamental
class. Then the Atiyah-Hirzebruch bordism spectral sequence tells us that the existence
of a bordism W from M to another 3-manifold which is over G via a constant map is
equivalent to the existence of a chain level analog: such W exists if and only if there exists
a 4-chain u € Cy(BQ) satisfying Ou = ¢4 (Car). For the reader’s convenience we discuss
details as Lemma in Section B.11

Our result (Theorem B.9] stated below) concerning Question is essentially that if
the chain level analog u € Cy(BG) of a desired W exists for (M, ¢), then there exists a
corresponding bordism W whose 2-handle complexity is controlled linearly in the “size”
of w and M. To measure the size of a chain, we define an algebraic notion of diameter as
follows:

Definition 1.18. Suppose C, is a based chain complex over Z, and {e*} is the given basis
of Ci. The diameter d(u) of a k-chain u = >__n_ek € Oy is defined to be the L'-norm

d(w) = Y, |nal- e

Note that the number of tetrahedra in a triangulation of a closed 3-manifold M is equal
to the diameter of the chain (5 € C5(M) representing the fundamental class.

In order to use the notion of the diameter for a chain in BG (particularly in Theorem B.9]
stated below), we need to fix a CW structure of BG. It is known that we can obtain a
K(G,1) space BG as the geometric realization of the simplicial classifying space of G
(i.e., the nerve) which is a simplicial set. Due to Milnor [Mil57], this gives us an explicit
CW structure for BG. In addition, Milnor’s geometric realization tells us that each n-cell
of BG is naturally identified with the standard n-simplex. Another useful fact is that
any map of a simplicial complex into BG is homotopic to a cellular map which, roughly
speaking, sends simplices to simplices affinely; we call such a map simplicial-cellular. We
give precise definitions and provide more details in Section and in the appendix (in
particular see Definition [B.0]).

Now we can state our main result about Question

A special case of Theorem Suppose M is a triangulated closed 3-manifold with
d(Car) tetrahedra, and M is over G via a simplicial-cellular map ¢: M — BG. If there
is a 4-chain u € Cy(BG) satisfying Ou = ¢x(Car), then there exists a smooth bordism
W, between M and a 3-manifold which is over G via a constant map, whose 2-handle
complexity is at most 195 - d(Car) + 975 - d(u).

Our proof provides a geometric construction of a desired bordism W using transversality
and surgery arguments over G. It may be viewed as a “geometric realization” of the
algebraic idea of the Atiyah-Hirzebruch bordism spectral sequence constructed from the
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exact couple arising from skeleta. To control the 2-handle complexity of W carefully,
we carry out transversality and surgery arguments simplicially. Details can be found in
Section Bl

We also show that the linear 2-handle complexity in (the special case of) Theorem [3.9
is asymptotically best possible. To state it, we formally define “the best possible 2-handle
complexity” as a function in k := d(Cpr) + d(u) as follows:
Definition Let M(k) be the collection of pairs (M, ¢) of a closed triangulated 3-
manifold M and a simplicial-cellular map ¢: M — BG admitting a 4-chain u € Cy(BG)
such that du = ¢x((nm) and k = d(Car) + d(u). For a given (M, ¢), let B(M, ¢) be the
collection of bordisms W over G between M and another 3-manifold which is over G via
a constant map. Define

B (k) := sup min  {2-handle complexity of W}.
(M,p)eM(k) WeB(M,p)

In other words, B2"(k) is the optimal (smallest) value for which the following holds: for
any (M, ¢) in M(k) there is a desired bordism W with 2-handle complexity not greater
that B2 (k).

Theorem B?(k) € O(k) N Q(k). In fact,
B2h(l€)
k

< lim sup < 975.

107712 T k50

Our linear optimal bound of the 2-handle complexity in Theorem 3.9 may be compared
with a result of Costantino and Thurston [CT08] that a closed 3-manifold (which is not
over a group) of complexity n bounds a 4-manifold whose complexity is bounded by O(n?).

Theorem [3.9] plays an essential role in the proofs of the explicit estimates of the Cheeger-
Gromov bound in Theorems [[H] [[L8 and [[L9 Briefly, we compute the Cheeger-Gromov
invariants of a given 3-manifold M by using bordism W obtained by applying Theorem [3.9]
and by controlling the 2-handle complexity of W efficiently, we obtain the explicit universal
bounds. For this purpose, we need a chain level analog u of W required in Theorem 3.9
and more importantly, we need to control the diameter of u. We do this by applying a
general algebraic idea introduced in the next subsection.

1.5. Controlled chain homotopy

The second key ingredient of the proofs of Theorems [[H 8 and is a method to
estimate of the size of certain chain homotopies, which is best described using a notion of
controlled chain homotopy.

Controlled chain homotopy seems to be an interesting algebraic notion on its own,
which may be compared with the topological notion of controlled homotopy. We begin by
introducing the basic definition. Recall that the diameter d(u) of a chain u is defined to
be its L'-norm (see Definition [[IX). As a convention, we assume that a chain complex
C, is positive, namely C; = 0 for ¢ < 0.

Definition 1.19. Suppose C, and D, are based chain complexes, and P: Cy — D41 is
a chain homotopy. We define the diameter function dp: Z — Z>o U {0} of P by
dp(k) := max{d(P(c)) | c € C; is a basis element, i < k}.

For a partial chain homotopy P defined on C; for i < N only, we define dp(k) for k < N
exactly in the same way.

Let § be a function from the domain of dp to Z>o. We say that P is a §-controlled
(partial) chain homotopy if dp(k) < §(k) for each k in the domain of dp.
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Note that dp(k) may be infinity in general. If P is a (partial) chain homotopy defined
on a finitely generated positive chain complex, then dp(k) is finite whenever defined.

Definition 1.20. Suppose S = {Pa: C2 — D2, } 4e7 is a collection of chain homotopies,
or a collection of partial chain homotopies defined in dimensions < n for some fixed n.
We say that S is wuniformly controlled by ¢ if each P4 is a d-controlled (partial) chain
homotopy. The function § is called a control function for S.

Our focus is to understand how various families of chain homotopies can be uniformly
controlled. A few additional words might make it clearer. In many case the conclusion
of a theorem on chain complexes can be understood as the existence of a certain chain
homotopy, and in addition, such a theorem usually holds for a collection of objects, so
that it indeed gives a family of chain homotopies indexed by the objects. For example,
the classical Eilenberg-Zilber theorem says that C.(X x Y) and C(X) ® C.(Y) are chain
homotopy equivalent, that is, for every (X,Y) there are chain homotopies which tells us
that the chain complexes are chain homotopy equivalences. Are these chain homotopies
indexed by (X,Y’) uniformly controlled?

In general, we consider the following meta-question:

Question 1.21. Pick a theorem about chain complexes or their homology. In case of
based chain complexes or their homology, can the theorem be understood in terms of
uniformly controlled chain homotopies? If so, find (an estimate of) a control function.

In this paper, we observe several interesting cases for which a family of uniformly
controlled chain homotopies exists, and we analyze the control functions in detail, aiming
to applications to our study of the Cheeger-Gromov bound.

Our first theorem concerns the acyclic model theorem of Eilenberg and MacLane, which
gives a family of functorial chain homotopies. As a fundamental observation, we show that
if we use finitely many models in each dimension, then there is a single control function
0 such that all the resulting functorial chain homotopies obtained by an acyclic model
argument are uniformed controlled by 4. It holds even when infinitely generated chain
complexes are involved (e.g., the chain complex of an infinite CW complex). This result,
which we call a controlled acyclic model theorem, is stated as Theorem We discuss
more details in Section ET1

As an application, we apply the controlled acyclic model theorem to products. In Sec-
tion 2] we consider simplicial sets and the Moore complexes of the associated freely
generated simplicial abelian groups, as a general setup for products and based chain com-
plexes. We present a controlled Eilenberg-Zilber theorem, which essentially says that the
chain homotopy equivalence between the chain complex of a product and the tensor prod-
ucts of chain complexes can be understood in terms of uniformly controlled functorial
chain homotopies. See Theorem 4.4 for more details.

We also consider the context of group homology. Recall that conjugation on a group
induces the identity on the homology with integral coefficients. Generalizing this quanti-
tatively in terms of chain homotopies, we show that for each pair (G, g) of a group G and
an element g € G, there is a d-controlled chain homotopy between the chain maps on the
bar complex (with integral coefficients) induced by the identity and the conjugation by g
on G, where § is the function defined by 6(k) = k+ 1, independent of (G, g). For a precise
statement and related discussions, see Theorem [£.7] and Section .3l

We give another uniformly controlled chain homotopy result, concerning the result of
Baumslag, Dyer, and Heller [BDHS8(] which was already mentioned as a key ingredient of
our topological proof of the existence of the Cheeger-Gromov bound (Theorem [[3]): there
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is a functorial embedding, say i¢: G < A(G), of a group G into an acyclic group A(G)
for each group G. From the viewpoint of controlled chain homotopy, the following natural
question arises: for each G, is there a chain homotopy between the chain maps induced
by the identity id 4g) and the trivial endomorphism of A(G), which forms a uniformly
controlled family?

We give a partial answer. In [BDHS0], for each n > 1, they constructed a functorial
embedding that we denote by i¢s: G — A"™(G), which induces a zero map H;(G;k) —
H;(A™"(G);k) for 1 <4 <n and any field k. (See Definition b1 for a precise description
of A"(@G).) This may be viewed as an approximation of a functorial embedding into acyclic
groups up to dimension n; in fact it turns out that lim A™(G) is acyclic and G embeds
into it functorially. The following result is a controlled chain homotopy generalization of
the homological property of .

Theorem For each n, there is a family {®% | G is a group} of partial chain homo-
topies ®F defined in dimension < n between the chain maps induced by the trivial map
e: G — A™(G) and the embedding it,: G — A™(G), which is uniformly controlled by a
function dppu. For k < 4, the value of dppu(k) is as follows.

k 0 1 2 3 4
dpu(k) 0 6 26 186 3410

Our proof of Theorem consists of a careful construction of the chain homotopy
®F and its diameter estimate, using the above results on the acyclic model theorem and
conjugation. We provide more detailed discussions and proofs in Section [Bl

We remark that Theorem for n = 3 (together with dppu(3) = 186) is sufficient
for our proofs of the Cheeger-Gromov bound estimates for 3-manifolds. See Section [ for
more details.

Organization of the paper. In Section B} we review the L?-signature approach to the
Cheeger-Gromov p-invariant and give a topological proof of Theorem In Section B
we give a construction of 4-dimensional bordisms and estimate the 2-handle complexity
to prove Theorem [LT7 In Section Ml we develop basic theory of controlled chain homo-
topy, including a controlled acyclic model theorem. In Section Bl we present a chain level
approach to Baumslag-Dyer-Heller’s result and then prove Theorem In Section [@]
we obtain explicit estimates for the Cheeger-Gromov universal bound by proving The-
orems [L3 [[8 and In Section [{l we discuss the application to the complexity of
3-manifolds, and prove that our linear Cheeger-Gromov bounds and geometric construc-
tion of efficient bordisms are asymptotically optimal. In the appendix, we discuss basic
definitions and facts on simplicial sets and simplicial classifying spaces which we use in
this paper, for the reader’s convenience.

Acknowledgements. The author thanks for the hospitality of Indiana University at
Bloomington, where part of this paper was written. This work was partially supported by
NRF grants 2013067043 and 2013053914.

2. Existence of universal bounds

In this section we give a topological proof of the existence of a universal bound for the
Cheeger-Gromov invariant p(?) (M, ¢).
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2.1. A topological definition of the Cheeger-Gromov p-invariant

We begin by recalling a known topological definition of p(?) (M, ¢). We follow the approach
introduced by Chang and Weinberger [CW03]|; see also Harvey’s work [Har08].

Suppose M is a closed topological (4k — 1)-manifold, and ¢: 71 (M) — G is a homo-
morphism. When X is not path connected, as a convention, we denote by m(X) the
free product of the fundamental groups of the path components of X. Suppose W is a
4k-manifold with OW = rM, r disjoint copies of M. Suppose there are a monomorphism
G — T and a homomorphism 71 (W) — I' which make the following diagram commute:

& ¢

[Im (M) =m(rM) C}i
(2.1)
ﬂ'l(W) .................. =T

For a (discrete) group T, the group von Neumann algebra NT is defined as an algebra
over C with involution. Liick’s book [Liic02] is a useful general reference on N'T; see also
his paper [L1ic98]. In this paper we need the following known facts on NT: (i) CT' C NT
as a subalgebra. Consequently, in our case, NT is a local coefficient system over W via
C[m1 (W)] — CI' € NT. The homology H,(W;NT) is defined as usual, and by Poincaré
duality, the intersection form

A Hgk(W,NF) X Hgk(W,NF) — NT

is defined. (ii) AT is semihereditary, that is, any finitely generated submodule of a finitely
generated projective module over N'T is projective; consequently, in our case, Hay (W; NT)
is a finitely generated module over NT. (iii) For any hermitian form over a finitely gener-
ated NT-module, there is a spectral decomposition; in our case, for the intersection form
A, we obtain an orthogonal direct sum decomposition

(2.2) Hopy(Wi;NT) =Vea Vo d V)
such that A is positive definite, negative definite, and zero on V., V_, and Vj respectively.
(iv) There is a dimension function

dim{?) : {finitely generated NT-modules} — R>g

which is additive for short exact sequences and satisfies dimg)(./\/' r)=1.
The L2-signature of W over I is defined to be

sign® W = dim? v, — dim{> v_.
Now the L? p-invariant of (M, ¢) is defined to be the signature defect

1
(2.3) PP (M, ¢) =~ ( signl(?) W —sign W)
T

where sign W denotes the ordinary signature of W.

It is known that this topological definition of p(?) (M, ¢) is equivalent to the definition of
Cheeger and Gromov given in [CG8H] in terms of n-invariants. The proof depends on the
L2-index theorem for manifolds with boundary [CG85, Ram93] and the fact that various
known definitions of L2-signatures are equivalent [LS03]. We remark that Cochran and
Teichner present an excellent introduction to the analytic definition of p(M, ¢) in [CTOT,
Section 2].
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Although the L2-signature defect definition involves the bounding manifold W (and
the enlargement I" of the given G), it is known that a topological argument using bordism
theory shows that such a W always exists and that p®) (M, ¢) in ([Z3) is independent of
the choice of W, without appealing to analytic index theory. To the knowledge of the
author, this method for the L?-case first appeared in [CW03]. Since it is closely related to
our techniques for the universal bound of the p-invariants that will be discussed in later
sections, we give a proof below, without claiming any credit.

For the existence of W, we use a result of Kan and Thurston [KT76] that a group
G embeds into an acyclic group, say I'. Denote by Q3TOP and QSTOP(X) the ori-
ented topological cobordism and bordism groups. By the foundational work of Kirby-
Siebenmann [KS77] and Freedman-Quinn [FQ90], Q5T9P(X) is a generalized homology
theory. Since H,(I') = 0 for p # 0, all the E? terms of the Atiyah-Hirzebruch spectral
sequence

By, = Hy(I) @ QT — Q)T (BI)

vanish except Ef ,, = QSTOP Tt follows that the inclusion {*} < BI" induces an isomor-
phism Q,SLTOP = Q,SLTOP(BF). Since Qigf’lp Q== Qi,%l ® Q = 0 due to Thom’s classical
work [Tho54], it follows that M bounds a 4k-manifold W over BT for some r > 0. This
gives us the diagram (ZT).

For the independence of the choice of W, suppose the diagram (21 is also satisfied
for (W’ 7', T") in place of (W,r,T'). By L%induction (see, e.g., [CG85, Equation (2.3)],
[Liic02, p. 253], [COT03, Proposition 5.13]), sign(? is left unchanged when I is replaced by
another group containing I' as a subgroup. Thus we may assume that I' = I by replacing
I' and IV with the amalgamated product of them over G, and furthermore we may assume
that T is acyclic using Kan-Thurston. Let V = W U,vas —rW’. Then V is a closed
4k-manifold over T'. Since T is acyclic, Q57 °F = QFFOP(BT), and therefore V is bordant

to another V' which is over BT via a constant map. We have signg) V' =signV’. Using
Novikov additivity and that sign(Q) and sign are bordism invariants, we obtain

% (signl(?) W —signW) — %(signg) W' —signW’)

(2) 1

signy’ V —signV) = W(signl(?) V' —sign V') = 0.

We remark that we may assume the codomain G of ¢: (M) — G is countable. In
fact, by L2-induction, p(® (M, $) is left unchanged when G is replaced by the countable

group ¢(m (M)).

2.2. Existence of a universal bound

In this subsection we give a new proof of the existence of the Cheeger-Gromov universal
bound, which applies directly to topological manifolds. Recall Theorem from the
introduction: for any closed topological (4k — 1)-manifold M, there is a constant Cps such
that |p® (M, ¢)| < Cyr for any homomorphism ¢ of mi (M).

In proving this using the topological definition of the Cheeger-Gromov invariants in
Section 211 it is crucial to understand the “size” of the bounding 4k-manifold W, since
02 (M, ¢) is given by the L?-signature defect of W as in (23)). The key difficulty which is
well known to experts is that the 4k-manifold W in Section 2Tl depends on ¢: m (M) — G
in general, since W is obtained by appealing to bordism theory over an acyclic group I,
which depends on the group G.
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We resolve this difficulty by employing the following functorial embedding of groups
into acyclic groups, which was given by Baumslag, Dyer, and Heller.

Theorem 2.1 (Baumslag-Dyer-Heller [BDHS80, Theorem 5.5]). There exist a functor
A: Gp — Gp on the category Gp of groups and a natural transformation ¢: idgp — A
such that A(G) is acylic and 1q: G — A(QG) is injective for any group G.

We remark that A(G) given in [BDHS8(] has the same cardinality as G if G is infinite,
and is generated by (n + 5) elements if G is generated by n elements.

Proof of Theorem[L.3. Consider t,, (ar): 1 (M) — A(my (M)) given by Theorem 2.1l Since
A(m1(M)) is acyclic, there is a 4k-manifold W bounded by M over A(mi(M)) for some
r > 0, by the bordism argument in Section 2l Suppose ¢: 71 (M) — G is arbitrarily given.
Let ' := A(G). Then we have the following commutative diagram, by the functoriality

of A:
[0
‘wf) \
_Aw

m (W)
From this it follows that we can define p(®) (M, ¢) as the L?-signature defect of W over I',
as in ([23). Note that our W is now independent of the choice of ¢.

Recall that W has the homotopy type of a finite CW complex. Let C,(W;NT') be the
cellular chain complex defined using this CW structure. We have Caor(W; NT) = (NT)N
where N is the number of the 2k-cells. By the additivity of the L?-dimension under short
exact sequences, we have

|s1gn W| < dlm(Q) Vi + dlm( a'a
< dimé ) Hop,(W;NT) < dimg) Cop(W;NT) =

A similar argument shows that |sign W| < N. By (@3), it follows that |p®) (M, ¢)| < 2N.
This completes the proof, since W, and consequently N, are independent of the choice of
¢ and G. O

3. Construction of bordisms and 2-handle complexity

In this section, we introduce a general geometric construction which relates chain level
algebraic data to a 4-dimensional bordism of a given 3-manifold. It may be viewed as a
geometric incarnation of the Atiyah-Hirzebruch bordism spectral sequence. Furthermore,
we give a more thorough analysis to obtain an explicit relationship between the complexity
of the given algebraic data and the number of the 2-handles of an associated 4-dimensional
bordism.

The results in this section will be used to reduce the problem of finding a universal
bound for the p-invariants to a study of algebraic topological chain level information.



CHEEGER-GROMOV UNIVERSAL BOUNDS FOR VON NEUMANN RHO-INVARIANTS 15

3.1. Geometric construction of bordisms

We begin with a straightforward observation on the Atiyah-Hirzebruch bordism spectral
sequence, which is stated as Lemma B2 below. In this and following sections, we consider
the category of spaces X endowed with a map ¢: X — K, where K is a fixed connected
CW complex. We say that X is over K. If K = BT for a group I', we say that X is
over T'. In this case we often view ¢: X — K as ¢: m1(X) — I' and vice versa.

We say that X is trivially over K if X is endowed with a constant map into K.

Definition 3.1. A bordism W with OW = M U —N over K is called a bordism between
M and a trivial end if N is trivially over K.

Lemma 3.2. For a closed 3-manifold M endowed with ¢: M — K, the following are
equivalent.

(1) M bounds a smooth 4-manifold V over K.
(2) There is a smooth bordism W over K between M and a trivial end.
(3) The image ¢.[M] of the fundamental class [M] € Hs(M) is zero in H3(K).

Proof. (1) implies (2) obviously. (2) implies (1) since N := W ~. M bounds a 4-manifold
which can be used to cap off W. From the Atiyah-Hirzebruch spectral sequence

Epq = Hy(K) © 0% — Q°(K)

and from that Q5° = Z, QF° = O5° = Q5° = 0, it follows that Q5°(K) = H3(K) under
the isomorphism sending the bordism class of ¢: M — K to ¢.[M] € H3(K). This shows
that (1) is equivalent to (3). O

Remark 3.3. If (M, ¢) is as in LemmaB2and K = BT, then p(® (M, ¢) can be defined as
the L?-signature defect of the bordism W in Lemma[3.2] (2), as well as V in Lemma[3.2](1).
For, if N is over I via ¢ and OW = M U —N over I, then p (M, ¢) — p(® (N, 1)) is the
L?-signature defect of W by (23], and since the L?-signature over a trivial map is equal
to the ordinary signature, we have p(?) (N, ) = 0 if ¢ is trivial.

Suppose M is a closed 3-manifold equipped with a CW structure, whose 3-cells are
oriented so that the sum (s of the n-cells is a cycle representing the fundamental class
[M] € H,(M). We may assume that ¢: M — K is cellular by appealing to the cellular
approximation theorem. Let ¢ be the chain map on the cellular chain complex C,(—)
induced by ¢. Then we can restate Lemma [32 (3) as follows:

Addendum to Lemma (3)" ¢ (Car) = Ou for some 4-chain u in Cy(K).

The goal of this section is to discuss a more explicit relationship of the 4-dimensional
bordism W in Lemma (2) and the 4-chain u in Lemma (3)".

As an easier direction, if W is a bordism between M and a trivial end N, then for the
sum (y of oriented 4-cells of W which represent the fundamental class of (W,0W), we
have 0w = (pr — (. Since the image of ¢ in C4(K) is zero, the image u € Cy(K) of
Cw satisfies Ou = ¢4 (Car)-

For the converse, for a given 4-chain v € Cy4(K) satisfying Lemma B2 (3)’, we will
present a construction of a bordism W between M and a trivial end. The rest of this
subsection is devoted to this. This will tell us how the Atiyah-Hirzebruch spectral sequence
is reinterpreted as a geometric construction, and provide us the foundational idea of the
more sophisticated analysis accomplished in Section
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Preparation and strategy. As above, suppose a given closed 3-manifold M has a fixed
CW complex structure, and ¢: M — K is cellular. Suppose ¢x({np) = Ou for some
u € Cy (K)

Our construction of W is based on the following observation. Let K () be the i-skeleton
of K. By Atiyah-Hirzebruch, Q§°(G) is filtered by

B°@) =030 D1 DJDJ1=0
where J; = Im{Q5° (K@) — Q$°(K)}, and as in the proof of Lemma B2, we have

Hsy(K) ifi=3

3.1 Ji)Jioi ©EX 2 EX, = Hi(K)o 50, =
( ) / 1 1,3—1 4,3—1 ( ) 3 0 lf’LZO,LQ

Let Ms := M. Obviously ¢ maps Ms into K®). For i = 3, (3 tells us that the existence
of u implies that the bordism class of (M3, ¢) in Q5° (K ) lies in the image of Q5O (K (),
that is, there is a bordism W3 over K between M3 and another 3-manifold, say Ms, such
that My maps into K(?). Similarly, for i = 2 and then for i = 1, (B)) tells us that Q§°, = 0
implies that M; over K (@) admits a bordism W; over K to another 3-manifold M;_; that
maps into K1),

Once we have the bordisms W; for ¢ = 3,2,1, by concatenating them, we obtain a
bordism W between the given M and the 3-manifold NV := Mj. Since K is a connected
CW complex, N — K(©) is homotopic to a constant map. By altering the map W — K
on a collar neighborhood of N using the homotopy, we may assume that N is over K via a
constant map. This gives a desired bordism W between the given M and a trivial end N.

In Steps 1, 2, and 3 below, we present how to actually construct W3, W, and W7, using
the given u and the facts Qg?l = 0, respectively.

Step 1: Reduction to the 2-skeleton K(?. We will construct W3 using the given
4-chain u. Denote the characteristic map of a 4-cell e of K by ¢,: DL — K® where
D? is a 4-disk. We may assume that the center of each 3-cell of K is a regular value of
¢: M — K® and a regular value of each attaching map ¢a|aDgi oD% — K®) . Write
the 4-chain u as u = — Y _ n,el, and consider the 4-manifold X = M x [0,1]U| |, n,D4.
View X as a bordism over K between M x 0 and M’ := 90X ~ M x 0, via the map X — K
induced by ¢ composed with the projection M x [0,1] — M and the maps ¢,. Let
: M' — K be its restriction. The relation ¢4 ({ar) — Ou = 0 implies that for the center
y of each 3-cell of K, the points in 1»~!(y) € M’ signed by the local degree are cancelled
in pairs. For each cancelling pair, attach to X a 1-handle joining these; the attaching
0-sphere is framed by pulling back a fixed framing at the regular value y, as usual. Let
W3 be the resulting cobordism, which is from M = M x 0 to another 3-manifold, say M.
The map 1 induces a map W5 — K® which maps M U M, into K. In addition, the
image of M, is disjoint to the centers of 3-cells in K (). Tt follows that by a homotopy
on a collar neighborhood, we may assume that M, is mapped into K (?). This completes
Step 1, as summarized in the following diagram:

M = M; > W; > My
|¢ |¢2
L 5 K3 5 K@)

Step 2: Reduction to the 1-skeleton K. For the map ¢o: My — K3 obtained
above, we may assume that the center y of a 2-cell of K2 is a regular value. Then fux 1(y)
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is a disjoint union of framed circles in M. Take Ms x [0, 1], and attach 2-handles along
the components of the framed 1-manifold ¢;'(y) x 1 C My. This gives a 4-dimensional
cobordism W5 from My = M x 0 to another 3-manifold M7, and ¢- extends to Wy — K®),
By the construction, the image of M; in K () is disjoint to the centers of 2-cells. Therefore
by a homotopy we may assume that Wy — K () restricts to a map ¢ : M; — K1),

We remark that in the above argument Q5 = 0 is used as that a circle bounds a disk
so that we can attach a 2-handle along a circle.

Step 3: Reduction to the 0-skeleton K. For the map ¢;: M; — KU, we may
assume that the center of each 1-cell of K is a regular value of ¢. Then S :=
o7 ({centers of 1-cells}) is a framed 2-submanifold in M. Since there is a union of han-
dlebodies, say R, bounded by S, we can do “surgery” along S. More precisely, we obtain
the trace of surgery by attaching R x [—1,1] to M; x [0,1] along S x [—1,1] = normal
bundle of S in M; x 1. Performing this for each I-cell of K(!), we obtain a cobordism
Wi from M; = M; x 0 to another 3-manifold My, which is endowed with an induced map
Wi — KW, Similarly to the above, since the image of My in K" under this map is away
from the centers of 1-cells, we may assume that M is mapped into K (9, by a homotopy.

We remark that in the above argument Q5° = 0 is used as that the 2-manifold S bounds
a 3-manifold R.

The following diagram summarizes the above construction:

M3 W3 <=2 My~ Wy <=2 M; = W1 <= M,

K® D K(3) D K(2) > K1) D [ (0)

Remark 3.4. The operation of “surgery along a surface S” in Step 3 above can be
translated to standard handle attachments as follows. Let g; be the genus of a component
S; of S = ¢! ({centers of 1-cells}), and R; be a handlebody bounded by S;. Viewing R;
as a 0-handle D? with g; 1-handles D; x [~1,1] (1 < j < g;) attached, and then turning it
upside-down, we see that attaching R; X [—1, 1] along S; x [—1, 1] is equivalent to attaching
ij x [—1,1]% along 6Di2j x [~1,1]? as 2-handles, and then attaching D?® x [—1,1] along
OD3 x [—1,1] as a 3-handle. It follows that the bordism W; in Step 3 above consists of
(91 + -+ gr) 2-handles and r 3-handles, where r is the number of components of S. This
observation will be useful in Section

Remark 3.5. From Steps 1, 2, and 3 above and from Remark B.4] we obtain a han-
dle decomposition of the bordism W. However, the above construction which uses CW
complexes does not give bounds on the number of handles of W. For instance, regarding
2-handles, if we write s = the number of components of ¢, ' ({centers of 2-cells}), and if r
and the g; are as in Remark [34] then our W has s+ (g1 + - - + ¢»-) 2-handles. Transver-
sality arguments do not provide any control on the number of components s and r and
the genera g; of the pre-image; in fact, a homotopy can increase s, r and g; arbitrarily.
In order to provide an efficient control, we will use a simplicial setup and perform a more
sophisticated analysis in Section

3.2. Simplicial-cellular approximations of maps into classifying spaces

In this subsection, we discuss some geometric ideas that arises from elementary simplicial
set theory, for readers not familiar to simplicial sets. (We present a short brief review
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of basic necessary facts on simplicial sets in the appendix, for the reader’s convenience.)
These will be used in the next subsection, in order to control the 2-handle complexity of
a bordism W.

We first formally state a generalization of simplicial complexes and simplicial maps, by
extracting geometric properties of simplicial sets (and their geometric realizations) that
we need.

Definition 3.6. Let A" be the standard n-simplex.

(1) A CW complex X is a pre-simplicial-cell complex if each n-cell is endowed with a
characteristic map of the form A™ — X . In particular, an open n-cell is identified
with the interior of A™. Often we call an n-cell an n-simplezx. Note that a simplicial
complex is a pre-simplicial-cell complex in an obvious way.

(2) A cellular map X — Y between pre-simplicial-cell complexes X and Y is called a
simplicial-cellular map if its restriction on an open k-simplex of X is a surjection
onto an open /-simplex of Y (¢ < k) which extends to an affine surjection A — A?
sending vertices to vertices.

(3) A pre-simplicial-cell complex X is a simplicial-cell complex if the attaching map
OAF — X (=1 of every k-cell is simplicial-cellular. Here we view the simplicial
complex AF as a pre-simplicial-cell complex.

As abuse of terminology, we do not distinguish a simplicial-cell complex from its underlying
space. Similarly for simplicial and and CW complexes.

We note that the composition of simplicial-cellular maps is simplicial-cellular.

As an example, a simplicial complex is a simplicial-cell complex, and a simplicial map
between simplicial complexes is a simplicial-cellular map. More generally, simplicial sets
give us simplicial-cell complexes. More precisely, a simplicial set has the geometric real-
ization, which is a CW complex due to Milnor [Mil57]; in fact, his proof shows that the
geometric realization is a simplicial-cell complex in the sense of Definition See the
appendix for a more detailed discussion.

The following special case will play a key role in the next subsection. It is well known
that for a group G a K (G, 1) space is obtained as the geometric realization of the simplicial
classifying space, that is, the nerve of G (for example see [GJ09, p. 6], [Wei94, p. 257)).
From now on, we denote this K (G, 1) space by BG. By the above, BG is a simplicial-cell
complex. We remark that BG is not necessarily a simplicial complex.

Theorem 3.7 (Simplicial-cellular approximation of maps into BG). Suppose X is the
geometric realization of a simplicial set. Then any map X — BG is homotopic to a
simplicial-cellular map.

In this paper, we will apply Theorem [B.7] to a simplicial complex X; we note that a
simplicial complex gives rise to a simplicial set (by ordering the vertices).

Since the author did not find it in the literature, a proof of Theorem [3.7]is given in the
appendix; see Proposition [A.T]

Remark 3.8. Theorem B.7 may be compared with the standard simplicial and cellular
approximation theorems. The simplicial approximation respects the simplicial structure
but requires a subdivision of the domain. On the other hand, the cellular approximation
does not require a subdivision but does not respect simplicial structures. Theorem [3.7]
respects the simplicial structures and requires no subdivision. The latter is an important
feature too, since controlling the number of simplicies is essential for our purpose.
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3.3. Estimating the 2-handle complexity

In this subsection we present a simplicial refinement of the transversality-and-surgery
arguments used in Section [3.I] and find an upper bound of the 2-handle complexity of the
resulting bordism.

We define the complezity of a triangulated 3-manifold to be the number of 3-simplices.
(Note that this is different from the notion of the (simplicial) complexity of a 3-manifold.)
Recall from the introduction that the 2-handle complexity of a 4-dimensional bordism W
is the minimal number of 2-handles in a handle decomposition of W.

For a triangulated closed 3-manifold M, let (3 be the sum of oriented 3-simplices of
M which represents the fundamental class, as we did for a CW complex structure. Recall
that the diameter d({ys) is equal to the complexity of the triangulation.

The main result of this subsection is the following.

Theorem 3.9. Suppose M is a closed triangulated 3-manifold with complexity d(Car)-
Suppose M is over a simplicial-cellular complex K via a simplicial-cellular map ¢: M —
K. If there is a 4-chain v € Cy(K) satisfying Ou = ¢ (Car), then there exists a smooth
bordism W between M and a trivial end whose 2-handle complexity is at most 195-d((ar) +
975 - d(u).

We remark that when K = BT, any map ¢: M — K may be assumed to be a simplicial-
cellular map up to homotopy, by Theorem B.71

Recall that in Section Bl we constructed a bordism W between M and a trivial end by
stacking bordisms W3, Wy, and Wy such that OW; = M;1U1—M;_; over K, where M3 := M
is the given 3-manifold, and M; is over K via a map ¢;: M; — K into the i-skeleton for
each i. The main strategy of our proof of Theorem is to refine the construction of the
W; carefully to control the number of 2-handles. For this purpose, we will triangulate M;
and make ¢; simplicial-cellular. For the initial case, M3 = M is triangulated and ¢3 = ¢
is simplicial-cellular by the hypothesis of Theorem Arguments for W; and M,;_; for
i =3,2,1 are given as the three propositions below.

Proposition 3.10 (Step 1: Reduction to K (?) and complexity estimate). Suppose M, ¢, u
are as in Theorem[39Q. Then there is a triangulated 3-manifold My with complexity at most
ng := 18-d(Car) + 90 - d(u), which is over K via a simplicial-cellular map ¢o: Mo — K®,
and there is a bordism W3 over K between M and Ms which has no 2-handles.

Proof. Following Step 1 in Section Bl we write u = —__ n,04,

simplices of K with attaching maps ¢ : 9A% — K@), Here A% is a standard 4-simplex.
Let X := (M x [0,1]) U (1, n,A%). The 4-manifold X is a bordism over K between
M =M x0and M := (M x 1)U (], n,0A%), via the map X — K induced by ¢ and
the ¢n. Let ¥: M’ — K be the restriction. The 3-manifold M’ is triangulated using the
given triangulation of M and the standard triangulation of 9A%. The map 1 is simplicial-
cellular since ¢ and the ¢, are simplicial-cellular. From the relation ¢4 ((a) — Ou =0, it
follows that the 3-simplices of M’ whose image under 1) is nonzero in C3(K) are canceled
in pairs in the image under 1. For each canceling pair of 3-simplices of M’, we attach a
1-handle to X which joins their barycenters. To do it simplicially, we subdivide relevant
3-simplices as follows.

Recall that the product A% x 0, 1] is triangulated by a prism decomposition; see Figure 2l
More precisely, ordering vertices of A% as {ug, u1,us} and vertices of [0, 1] as {wp,w } and
letting v;; = (uj,w;) € A? x [0,1], the standard prism decomposition has 3-simplices
[’Uoo, V10, V20, ’021], [’Uoo, V10, V11, ’021], and [’Uoo, Vo1, V11, 1)21]. We note that we obtain several
different prime decompositions by reordering vertices of A% and [0, 1].

where the o2 are 4-
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FIGURE 2. The standard prism decomposition of A% x [0, 1].

Take a 3-simplex A’ embedded in the interior of a standard 3-simplex A2, and subdivide
OA3 x [0,1] = A%\ int A’ by taking a prism triangulation of 7 x [0, 1] for each face 7 of A3,
As in Figure [B] one can choose prime decompositions appropriately in such a way that
they agree on the intersections. This gives us a subdivision of A2, which contains A’ as a
simplex. We call A’ the inner subsimplez of this subdivision. We apply this subdivision to
each 3-simplex of M’ whose image under 1) is nonzero in C3(K), and then attach 1-handles
A3 % [0,1] to X by identifying A3 x 0 and A3 x 1 with inner subsimplices of a canceling
pair of 3-simplices. This gives a cobordism W3 between M = M3 and a new 3-manifold
My obtained from M’ by surgery. By triangulating the belt tube A3 x [0,1] of each
1-handle using a prism decomposition of (each face of A3) x [0, 1], and by combining it
with the subdivision on M’, we obtain a triangulation of M.

4-3+1=13
3-simplices

FIGURE 3. A subdivision of a 3-simplex for 1-handle attachment.

We want to show that there is a simplicial-celluar map ¢o: My — K such that
¢3 U o M3 LI My — K extends to W3. To do this explicitly, first observe that there is
a map A% — A3 which is (i) simplicial with respect to the subdivision in Figure B (ii)
collapses the collar A% — int A’ onto A3, (iii) stretches the inner subsimplex onto A3,
and (iv) is homotopic to the identity rel 9A3. Composing it with the map : M’ — K
on each subdivided 3-simplex on M, we obtain a simplicial-cellular map ': M’ — K
with respect to the subdivision. Note that ¢’ is homotopic to 1. Thus we may assume
that the 4-manifold X is over K via a map X — K that restricts to ¢’ on M’. Then
X — K extends to the 1-handles, and induces a map W3 — K, since the restrictions
of 1/ on two inner subsimplices joined by a 1-handle are the same. Let ¢o: My — K
be the restriction. Since 1’ is simplicial-cellular, ¢, is simplicial-cellular. Since v’ sends
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M’ ~ | |(inner simplices) to K (), it follows that ¢o sends My into K (). This completes
the construction of the desired Wy, My and ¢o: My — K3,

Now we estimate the complexity of the triangulation of M. Let n = d({u), the
complexity of the given triangulation of M. Since u has diameter d(u) = ) [na/, the
initial triangulation of M’ = (M x 1) U (], n,0A%) has complexity n + 5d(u). Since
our subdivision in Figure Bl produces 13 3-simplices from one 3-simplex, the complexity of
the new subdivision of M’ is at most 13(n + 5d(u)). The number of 1-handles attached
is at most (n 4+ 5d(u))/2, and each 1-handle attachment removes two 3-simplices (inner
subsimplices) and adds 4 - 3 = 12 3-simplices (those in the belt tube). Therefore, as
claimed, the complexity of the triangulation of M5 is at most

5d
ng = 12(n + 5d(u)) + 12 - %(u) = 18n + 90d(u).
From our construction, it is obvious that W has no 2-handle. ([l

Proposition 3.11 (Step 2: Reduction to KM and complexity estimate). Suppose Ms is a
closed triangulated 3-manifold with complexity no, which is over K via a simplicial-cellular
map ¢o: My — K3 Then there is another triangulated 3-manifold My with complexity at
most n1 1= 21ne, which is over K via a simplicial-cellular map ¢1: My — K(l), and there
is a bordism Wy over K between Ms and My with 2-handle complexity at most |n2/3].

Proof. To obtain Wy, we will attach 2-handles to My x [0,1] along the inverse image of
the barycenter of each 2-simplex of K under ¢s, similarly to Step 2 of Section Bl Fix a
2-simplex of K and denote its barycenter by b. If the interior of a 3-simplex of M, meets
o ! (b), then since ¢ is a simplicial-cellular map, it follows that ¢o on the 3-simplex is an
affine projection A3 — A? onto the 2-simplex sending vertices to vertices; see Figure []
which illustrates the case [0,1,2,3] = [0, 1,2, 2]. Figure @ also shows the pre-image ¢, *(b)
in the 3-simplex.

FIGURE 4. A simplicial projection A3 — A2,

We take a sufficiently thin tubular neighborhood U = ¢5'(b) x A2 of ¢ ' (b) in M,
in such a way that the intersection of U and a 3-simplex of M> is a triangular prism or
empty. We triangulate the exterior My ~ int(U) by subdividing each 3-simplex with a
triangular prism removed as in Figure Bl we first decompose it into one 3-simplex, one
triangular prism, and 4 quadrangular pyramids, and then divide the triangular prism and
quadrangular pyramids along the dashed lines to obtain a subdivision with 14+3+4-2 = 12
3-simplices. Since the subdivision of the two front faces of the original 3-simplex shown in
the left of Figure[H are identical and the two back faces are not subdivided, our subdivisions
agree on the intersection of any two such 3-simplices. Observe that (M \ int(U)) = U
meets a 3-simplex of My in three squares forming a cylinder as in Figure Bl where each
square has been triangulated into two 2-simplices. For later use, we note that we can
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alter the triangulation of these squares by changing the subdivisions of the quadrangular
pyramids and the triangular prism in Figure

FI1GURE 5. A subdivision of a 3-simplex with a triangular prism removed.

Now we consider 2-handle attachment. The pre-image ¢;*(b) C My is a disjoint union
of piecewise linear circles. Suppose C'is a circle component of ¢5 L(b). Let r be the number
of 3-simplices of My which C passes through as in the local picture shown in Figure [l
that is, C' is an r-gon. Take a 2-handle D x A2, where D is a 2-disk. Triangulate D
into r triangles by drawing r line segments from the center to the perimeter, and then
triangulate D x (each face of A%) 2 D x [0, 1] by ordering the O-simplices of D and then
taking the prism decomposition of (each 2-simplex of D) x [0,1]. Glueing these, we obtain
a triangulation of the belt tube D x A2 of the 2-handle. We attach the 2-handle D x A?
to My x [0,1] by identifying the neighborhood C' x A2 C My = My x 1 with the attaching
tube D x A?. We may assume that the triangulation of 9D x OA? agrees with that of
O(M N int(U)), by altering the latter as mentioned above if necessary. We note that our
triangulation of the belt tube of this 2-handle has 3 - 3r = 9r 3-simplices.

Attaching 2-handles for each 2-simplex of K in this way, we obtain a cobordism Wy
between Ms and another 3-manifold M, together with a triangulation of M;.

We make W5 a bordism over K similarly to Step 1 above: observe that there is a
piecewise linear endomorphism of the 3-simplex A% shown in the left of Figure [ which
restricts to a simplicial-cellular map of the exterior A? \ int(U) onto A := A3 \ (interior
of the two faces of A? meeting ¢~1(b)), and is homotopic to the identity rel A. From
this it follows that the map ¢o: My — K@ is homotopic to a map, which restricts to a
simplicial-cellular map M\ int(U) — K1) and extends to Wy — K. Also, Wy — K
restricts to a simplicial-cellular map ¢1: My — K@), In particular Ws is a bordism over
K between (M2,¢2) and (Ml, ¢1)

Now we estimate the complexity of M;. Recall the hypothesis that Ms has no 3-
simplices. Our subdivision of M ~ int(U) has at most 12ns 3-simplices, since each 3-
simplex that meets an attaching circle contributes 12 3-simplices as observed above (see
Figure [Bl). Suppose we attach s 2-handles and the ith 2-handle is attached along an r;-
gon. As observed above, the belt tube of the ith 2-handle has 9r; 3-simplices. Therefore
our triangulation of M; has complexity at most 12ny 4+ 9(r1 + -+ 4+ r5). Since each 3-
simplex of My can contribute at most one line segment to the attaching circles, we have
r1+ -+ 715 < ng. It follows that My has complexity at most 21ns. Since r; > 3, we also
obtain that 3s < ng as claimed. O
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Proposition 3.12 (Step 3: Reduction to K and complexity estimate). Suppose M is a
closed triangulated 3-manifold with complexity ny, which is over K via a simplicial-cellular
map ¢1: My — KU, Then there is another 3-manifold My which is over K via a map
bo: My — KO and there is a bordism Wi over K between M, and My whose 2-handle
complexity at most |nyi/2].

Proof. We construct the bordism W similarly to Step 3 of Section 3.1} namely by attaching
R; x [0,1] to M7 x [0,1], where R; is a handlebody bounded by a component S; of the
pre-image of the barycenter of a 1-simplex of K under ¢;. Recall from Remark that if
S; has genus g;, then attaching R; is equivalent to attaching g; 2-handles and one 3-handle.

Since ¢; is simplicial-cellular, the pre-image (bfl(b) of a barycenter b of a 1-simplex of
K intersects a 3-simplex A3 of M; as shown in Figure G we have two possibilities, where
¢~ 1(b) N A3 is either a triangle or a quadrangle. By dividing each quadrangle in ¢~1(b)
into two triangles, we obtain a triangulation of the 2-manifold ¢;*(b). Since M; has ny
3-simplices and each 3-simplex can contribute at most two triangles to ¢~1(b), it follows
that the 2-manifold |_|l S; is has a triangulation with at most 2n; 2-simplices.

0 0 1 0
0
N b —_ b
3
1 2
2 1 3 1
[O, 1,2,3] — [0, 1,1, 1] [0, 1,2,3] — [0,0, 1, 1]

FIGURE 6. Simplicial projections A% — Al

To estimate the genera, we invoke the following observation:

Lemma 3.13. A connected closed surface admitting a triangulation with n 2-simplices
has genus at most |“72].

Proof. Since there are 37" 1-simplices, the Euler characteristic 2 — 2g is equal to n — 37” + v,
where v is the number of 0-simplices. Since v > 3, it follows that g < ”T*Q. O

Returning to the proof of Proposition B.12, suppose the inverse image of the union of
the barycenters of 1-simplices of K under ¢; has r components Sy, ..., S, and suppose
S; has m; 2-simplices in its triangulation. By Lemma [3.I3] the genus g; of S; is at most
m;/4. Since m1 + -+ + m, < 2nq, it follows that g1 + -+ + g, < n1/2. Therefore, the
2-handle complexity of W is at most n;/2 as claimed. O

Now we combine the above three propositions to give a proof of Theorem [3.9

Proof of Theorem[Z9. Let Mz = M and ¢3 = ¢, and apply Propositions B.10, 111
and to obtain bordisms W3, Wa, and W; together with (Ma, ¢2), (Mi,¢1), and
(Mo, ¢p). Concatenating W3, Wa, and Wi, we obtain a bordism W over K between M
and N := M. Since ¢ is into K, ¢q is homotopic to a constant map, and so we may
assume that N is trivially over K. By Propositions 310 B.1Tl and B12, M> and M; have
complexity at most ny := 18n + 90d(u) and n; := 21ny = 378n + 1890d(u), respectively.
Also, W3 has no 2-handles, W» has at most ny/3 = 6n + 30d(u) 2-handles, and W has at
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most n1/2 = 189n 4+ 945d(u) 2-handles. It follows that the 2-handle complexity of W is
not greater than

6n + 30d(w) + 189n + 945d(u) = 195n + 975d(u). O

4. Controlled chain homotopy

In this section we develop some useful results on controlled chain homotopy. We recall
basic definitions from the introduction. In this paper we assume that chain complexes are
always positive. We also assume that chain complexes are over Z, although everything
holds over a ring R endowed with a norm | - |. The diameter d(u) of a chain u in a based
chain complex is defined to be its L'-norm, that is, if u = Y naeq where {e,} is the
given basis, then d(u) = ) [na|. For a chain homotopy P: C, — D, between based
chain complexes C, and D, the diameter function dp of P is defined by

dp (k) :=max{d(P(c)) | c € C; is a basis element, i < k}.

If P is a partial chain homotopy which is defined on Cj for ¢ < N only, then dp(k) is
defined for £ < N. Note that dp(k) may not be finite if @, , C; is not finitely generated.
For a function ¢ from the domain of dp to Zsq, we say that P is a §-controlled (partial)
chain homotopy if dp(k) < 6(k) for each k.
Similarly to the chain homotopy case, the diameter function dys(k) of a chain map
¢: Cy = D, is defined by

dy(k) = max{d(¢(u)) | u € C; is a basis element, ¢ < k}.

We say that a chain map f: Cy, — D, between based chain complexes C, and D, is based
if f takes a basis element to a basis element. A based chain map ¢ has dy(k) = 1.

For a chain homotopy or a chain map P, d(P(z)) < dp(k) - d(z) for any chain z of
dimension at most k. We state a few more basic facts for later use:

Lemma 4.1.
(1) (Sum) If P: ¢ =~ and Q: ¢ ~& for ¢, ¢, (, &: Cp — Dy, then P+Q: ¢+( ~ p+£
and dpo(k) < dp(k) + dg (k).
(2) (Composition) If P: ¢ ~ ¢ and Q: ¢ ~ £ for chain maps ¢, : C, — D, and ¢,
§: Dy — By, then (P+Qy: (¢ = & and d¢pyqy (k) < dc(k)-dp(k)+dq(k)-dy (k).
(3) (Tensor product) If P: ¢ ~ ¢ and Q: { ~ &£ for chain maps ¢, : Cy — D, and
¢, &:CL— D, then

PowT):=(Pe¢+(-)YeQ)(sar)
is a chain homotopy ®: ¢ R ~ Y ®E, and do(k) < dp(k) - d¢(k) +dy(k) - do(k).

The analogs for partial chain homotopies hold too.

The proof of Lemma [£.1]is straightforward. We omit details.

From Definition in the introduction, we recall the notion of a uniformly control
family of chain homotopies: suppose S = {Pa: CA — Df+1} Aez 1s a collection of chain
homotopies or a collection of partial chain homotopies defined in dimensions < n for some
fixed n. We say that S is uniformly controlled by § if each P4 is a d-controlled chain
homotopy.

In many cases a family of chain homotopies comes with functoriality, in the following
sense. Let Ch be the category of positive chain complexes over Z; morphisms are degree
zero chain maps as usual. Suppose C is a category, F', G: C — Ch, are functors, and ¢,
1: F — @G are natural transformations, that is, for each A € C we have chain complexes
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F(A), G(A) and chain maps ¢4, ¥4: F(A) — G(A) which are functorial in A. We say
that {Pa: ¢4 ~ Yatacc is a family of natural chain homotopies between ¢ and 1 if
Py: F(A), = G(A)s41 is functorial in A and P40+ 0P4 = 14 — ¢4 for each A € C. The
partial chain homotopy analog is defined similarly.

We denote by Chljr the category of positive based chain complexes and (not necessarily

based) chain maps. The above paragraph applies to Chi similarly.

4.1. Controlled acyclic model theorem

Our first source of a uniformly controlled family of natural chain homotopies is the classical
acyclic model theorem of Eilenberg and MacLane [EM53].

We recall two basic definitions used to state the standard acyclic model theorem. We
say that F': C — Chy (or Chi) is acyclic with respect to a collection M of objects in
C if the chain complex F(A) is acyclic for each A in M. Also, we say that F is free
with respect to M if for each i there is a collection M; = {(A4x,ca)}r with Ay € M
and ¢y € F(Ay); such that for any object B in C, F(B); is a free abelian group and the
elements F(f)(cn) € F(B); for f € Mor(Ay, B) are distinct and form a basis. We define
analogs for based chain complexes:

Definition 4.2. (1) A functor F: C — Chi is based if for any f € Morc(A, B),
F(f) e Morgys, (F(A), F(B)) is a based chain map. Also, F' is based-acyclic if F
is based and acyclic.

(2) A functor F': C — Chljr is based-free with respect to M if for each ¢ there is a
collection M; = {(Ax,ca)}r with Ay € M and ¢y € F(A)); such that for any
A € C, the elements F(f)(cy) € F(A); for f € Mor(Ay, A) are distinct and form
the preferred basis of the based free abelian group F(A);. In addition, if M; is
finite for each i, then we say that F is finitely based-free.

Observe that F' is automatically based if F' is based-free.

Theorem 4.3 (Controlled acyclic model theorem). Suppose F, G: C — Chi are func-
tors, F' is finitely based-free with respect to M, and G is based-acyclic with respect to M.
Then the following hold.

(1) Any natural transformation ¢o: Hygo F — Hy o G extends to a natural transfor-
mation ¢: F — G.

(2) Suppose ¢, b: F — G are natural transformations that induce the same transfor-
mation Hyo ' — Hy o G. Then there exist a function §: Z — Z>o and a family
of natural chain homotopies {Pa: ¢4 ~ 1¥a} which is uniformly controlled by 0.

The key is that that even when the rank of the chain complexes is unbounded, we have
a uniform control ¢ if there are only finitely many models in each dimension.

Proof. Recall that (1) is a conclusion of a standard acyclic model argument.
For (2), recall the construction of a family of chain homotopies

P4y = {(PA)z F(A)i_l — G(A)Z}, AeC

from the standard acyclic model argument: assume (P4);—1 has been defined. Using
that G(A,) is acyclic for each (Ax,cn) € M;, we obtain a chain, which we denote by
(Pa,)i(ex) € G(Ay)i+1 as abuse of notation for now, that makes the equation Pa, 0 +
OPa, = 1A, — ¢a, satisfied at ¢y € F(A));; then for an arbitrary A € C, using that F
is free, we define (P4); on a basis element by (Pa):(F(f)(ca)) := G(f)((Pa, )i(cr)) and
extend it linearly.
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Since G(f) is based, the diameter of (P4);(F(f)(cx)) is equal to that of (P4, ):(cy).
Since F'(A); is based by {F(f)(cx)}, it follows that for any A € C the diameter function
dp, of P4 is equal to the function § defined by

8(k) := max{d((Pa,)i(cy)) |t <k, (Ax,cn) € M;}.

The value 6(k) is finite for any k, since M, is a finite collection for any i. O

The proof of Theorem tells us that the control function §(k) is obtained from the
diameter of the chain homotopy on the models. Using this, we can often compute (k)
explicitly, at least for small k. We deal with an example in the next subsection.

4.2. Controlled Eilenberg-Zilber theorem

In this subsection, we investigate uniform control for the chain homotopies of the Eilenberg-
Zilber theorem for products. Our result is best described using simplicial sets. Readers
not familiar with simplicial sets may refer to our quick review of basic definitions in the
appendix.

We first state a theorem, and then recall the terminologies used in the statement for
the reader’s convenience.

Theorem 4.4 (Controlled Eilenberg-Zilber Theorem). For simplicial sets X and Y, let
Axﬁy: C*(X X Y) — C*(X) ® C*(Y)
VX,yZ C*(X) X C*(Y) — C*(X X Y)

be the Alexander-Whitney map and the shuffle map. Then there is a natural family of
chain homotopies

{Px,y:VxyoAxy ~idc,(xxy) | X andY are simplicial sets}

which is uniformly controlled by a function dgz(k). Furthermore, the value of dgz(k) for
k <4 is as follows.

k0 1 2 3 4
Spz(k) 0 1 4 11 26

Remark 4.5. (1) Of course the existence of the chain homotopy Pxy is due to
Eilenberg-Zilber [EM53]. What Theorem [4.4] newly gives is an addendum that
{Px,y} is uniformly controlled, and that the values of the control function dgyz are
as above.

(2) In our applications, explicit values of dgz(k) for k& < 3 are sufficient, since we are
interested in chains arising from 3-manifolds.

Recall, for instance from the appendix, that a simplicial set X consists of sets X,
(n =0,1,...), face maps d;: X,, — X,,_1, and degeneracy maps s;: X,, = X,1 (i =
0,1,...,n). We call o € X,, an n-simplex of X. Let ZX be the simplicial abelian group
generated by X, and denote its (unnormalized) Moore complex by ZX,. In other words,
7.X,, is the free abelian group generated by X,,, and the boundary map 0: ZX,, — ZX,,_1
is defined by 9o = Y ,(—1)'d;o for o € X,,. We always view ZX, is a based chain complex;
each ZX,, is based by the n-simplices. We denote the homology by H.(X) := H.(ZX.).

For two simplicial sets X and Y, the product X xY is defined by (X xY),, := X,, xYy,;
writing o X 7 := (0,7) € X,, XY}, the face and degeneracy maps are defined by d;(c x 1) =
dio x d;7 and s;(0 X T) = ;0 X 8;T.
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The Alexander- Whitney map
A=Axy: Z(X xY), — ZX, QLY.
is defined by

(4.1) Ao x7) = dis1--dno @ (do)'r
1=0

for o x 7 € X, X Y,,. To define its chain homotopy inverse, we use the following notation.
A (p,q)-shuffle (pw,v) = (p1,---, fp,V1,--.,Vq) is a permutation of (1,...,p + ¢) such
that {p;}, {vi} are both increasing. Let e(u,v) be the sign of the permutation, and Sp 4
be the set of (p,q)-shuffles. Then the shuffle map (or the Eilenberg-Zilber map or the
Eilenberg-MacLane map)

V=Vxy: ZX.QZLY, — Z(X xY).
is defined by

(4.2) Viear) = 3 (00 (s, 50,0) X (s, 57)
(1,v)ESp.q

foroc® 1€ ZX, ®LY,.

It is verified straightforwardly that A and V are chain maps and A oV = id on
72X, ®ZY,. It is known that V o A is chain homotopic to id on Z(X x Y),, by an acyclic
model argument with M = {A™ x A™ | n > 0} as models. By using our controlled version
of the acyclic model theorem (Theorem [.3]), we can obtain the additional conclusions on
the chain homotopy V o A ~ id as stated in Theorem .4l We describe details below.

Proof of Theorem[{-4] We follow the standard acyclic model argument for a product. Let
sSet be the category of simplicial sets, and define a functor F': sSet x sSet — Chi by
F(X,Y):=Z(X xY),. By definition, F is based. Let A™ be the standard n-simplex as
a simplicial set; we write a k-simplex of A™ as a sequence [vp, ..., vk of integers v; such
that 0 <wvg < -+ <wp <n. Let M ={(A", A™) | n > 0}. Then F is acyclic with respect
to M, since A™ x A™ is contractible. Also, F is finitely based-free with respect to M since
Z(X xY), is freely generated by

{fl0,...,n] xg[0,...,n] € (X xXY), | f: A" =5 X, g: A" — Y are morphisms}.

Note that there is only one model (A™, A™) in each dimension n.

By Theorem[43] it follows that there is a function dgz(k) and a natural family of chain
homotopies Pxy: Z(X X Y), — Z(X X Y).41 between Vxy o Axy and id, which is
uniformly controlled by dgy.

We will explicitly compute the value dgz(k) for small k. For convenience, denote

P = (PAk_’Ak)k: Z(Ak X Ak)k — Z(Ak X Ak)k_H.

The proof of Theorem tells us that dgz(k) is exactly the diameter of the chain
P([0,...,k] x[0,...,k]), where Pg([0,...,k] x[0,...,k]) is defined inductively as follows:
assuming that P,_1([0,...,k — 1] x [0,...,k — 1]) has been defined, Pj_; is determined
by naturality and Py ([0,...,k] x [0,...,k]) € Z(A¥ x AF), 41 is defined to be a solution z
of the system of linear equations

(4.3) 9z = (—Pe_10+ Vo A —id)([0,..., k] x [0,...,K])

where 9: Z(AF x A*)11 — Z(AF x AF) is viewed as a linear map.
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We remark that

2k +2

rank Z(AF x AF), 1 = < f

) and rankZ(AF x A*), = <2k+ 1>,

k

that is, the system (E3) consists of (**") linear equations in (**?) variables. It can be

seen that the ranks grow exponentially, by using Stirling’s formula. Fortunately for small
k we can still find (or at least verify) solutions. We describe details below.

For k = 0, Py([0] x [0]) = 0 satisfies (£3)) since Vo A = id on Z(A? x A®)g. From this
it follows that dgz(0) = 0.

For k = 1, straightforward computation shows that

VA([0,1] x [0,1]) = V([0] ® [0,1] 4+ [0,1] ® [1]) = [0,0] x [0, 1] + [0, 1] x [1,1].
Since it is equal to 9([0,0,1] x [0, 1,1]), P1(]0,1] x [0,1]) :=

[
of ([@3). Since this is a chain of diameter one, we have dgz(1
For k = 2, we have that

0,0, ] x [0,1,1] is a solution
) =

VA([0,1,2] x [0,1,2]) = V([0] ®[0,1,2] + [0,1] ® [1,2] + [0, 1,2] ® [2])
=10,0,0] x [0,1,2] — [0,0,1] x [1,2,2]
+100,1,1] x [1,1,2] +[0,1,2] x [2,2,2]

and that

Pa(]0,1,2] x [0,1,2]) = P([1,2] x [1,2] — [0,2] x [0,2] 4 [0,1] x [0,1])
=[1,1,2] x [1,2,2] — [0,0,2] x [0,2,2] + [0,0,1] x [0,1,1].

Using these, it is straightforward to verify that

P5([0,1,2] x [0,1,2]) = —[0,0,0,1] x [0,1,2,2] +[0,0,1,1] x [0,1,1,2]
+ [05 07 15 2] X [05 27 25 2] - [07 15 17 2] X [07 15 27 2]
is a solution of ([@3)). Since its diameter is 4, we have dgz(2) = 4.
For k = 3, [@3)) is a system of 1225 linear equations in 3136 variables. Aided by a
computer, we found the following solution of ([£3)):

Ps([0,1,2,3] x [0,1,2,3]) =10,0,0,0,1] x [0,1,2,3,3] — [0,0,0,1,1] x [0,1,2,2, 3]

+10,0,0,1,2] x [0,2,3,3,3] +[0,0,1,1,1] x [0,1,1,2, 3]

—10,0,1,1,2] x [0,2,2,3,3] + [0,0,1,2,2] x [0,2,2,2, 3]
+10,0,1,2,3] x [0,3,3,3,3] + [0,1,1,1,2] x [0,1,2,3,3]

—10,1,1,2,2] x [0,1,2,2,3] — [0,1,1,2,3] x [0,1,3,3, 3]
+100,1,2,2,3] x [0,1,2,3,3].

We remark that we can verify by hand that it is a solution of (£3)). From this it follows
that dpz(3) = d(Ps([0,1,2,3] x [0,1,2,3])) = 11.
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For k = 4, our computation fully depends on a computer. A solution of the system
([@3), which has 15876 equations in 44100 variables in this case, is given by

Py((0,1,2,3,4] x [0,1,2,3,4]) =

—-0,0,0,0,0,1] x [0,1,2,3,4,4] + [0,0,0,0,1,1] x [0,1,2,3, 3,4]
+10,0,0,0,1,2] x [0,2,3,4,4,4] — [0,0,0,1,1,1] x [0,1,2,2,3,4]
—-10,0,0,1,1,2] x [0,2,3,3,4,4] 4+ [0,0,0,1,2,2] x [0,2,3,3, 3, 4]
—10,0,0,1,2,3] x [0,3,4,4,4,4] + [0,0,1,1,1,1] x [0,1, 1,2, 3, 4]
+10,0,1,1,1,2] x [0,2,2,3,4,4] — [0,0,1,1,2,2] x [0,2,2,3,3,4]
+10,0,1,1,2,3] x [0, 3,3,4,4,4] 4+ [0,0,1,2,2,2] x [0,2,2,2,3,4]
-10,0,1,2,2,3] x [0,3,3,3,4,4] 4+ [0,0,1,2,3,3] x [0, 3,3, 3, 3,4]
+100,0,1,2,3,4] x [0,4,4,4,4,4] —[0,1,1,1,1,2] x [0,1,2, 3,4, 4]
+10,1,1,1,2,2] x [0,1,2,3,3,4] — [0,1,1,1,2,3] x [0,1, 3,4, 4,4]
-10,1,1,2,2,2] x [0,1,2,2,3,4] + [0,1,1,2,2,3] x [0,1, 3,3, 4, 4]
—[0,1,1,2,3,3] x [0,1,3,3,3,4] — [0,1,1,2,3,4] x [0,1,4,4, 4, 4]
—[0,1,2,2,2,3] x [0,1,2,3,4,4] +[0,1,2,2,3,3] x [0,1,2,3,3,4]
+100,1,2,2,3,4] x [0,1,2,4,4,4] — [0,1,2,3,3,4] x [0,1,2,3,4, 4].
It follows that dgz(4) = 26. O

Remark 4.6. In spite of Remark @), it would be nicer if we had an explicit closed
formula for Pg([0,...,k] x [0,...,k]) for general k; this would give a general formula for
the chain homotopy Px y for any X, Y, and possibly a closed formula for dgz(k). The
author does not know the answer.

4.3. Conjugation on groups

Recall that for a group G, the (unnormalized) Moore complex ZBG, associated to the
simplicial classifying space BG (which is a simplicial set) can be used to compute the
group homology H.(G) with integral coefficients. For example, see the appendix
and . In fact ZBG, is equal to the unnormalized bar resolution tensored with Z. An
explicit description of ZBG, is as follows: ZBG,, is the free abelian group generated by
BG,, :={[g91,---,9x) | 9i € G}, and the boundary map 9: ZBG,, — ZBG,,_1 is given by
dc =31 (=1)"d;c, where d; is defined by

[927"'7971] lf’l,:o,
dilgrs .-y gn] = 915+ -2 9im1, GiGit1, Giv2s - gn) 0 <i <,
[91s- - gn—1] if i =n.

As abuse of notation, for a group homomorphism f, we denote by f the induced based
chain map on ZB(—)., that is, flg1,...,9a]) = [f(91),-- -, f(gn)]-

It is well known that for any group G and g € G, the conjugation homomorphism
pg: G — G defined by pg(h) = h9 := ghg™! induces the identity map on H.(G). For
example, see [Wei94l p. 191, Theorem 6.7.8]. In the following theorem, we give a chain level
statement in terms of controlled chain homotopies, from which the homological statement
is immediately obtained.
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Theorem 4.7. There is a family of chain homotopies
{Sc,¢: ldzpa., ~ pg | G is a group, g € G}

which is uniformly controlled by the function dconj(k) := k + 1. The chain homotopy Sc 4
is natural with respect to (G, g), in the sense that fSg g = Sr f(g)f for any homomorphism
f:G—T.

To motivate of our chain homotopy construction for Theorem (7], we recall a geometric
interpretation of an n-simplex [g1,...,gn] of BG that arises from the nerve construction
for G: there is exactly one 0-simplex [] in BG which is the basepoint, and for n > 0,
[91,---,9n] € BG,, corresponds to an (possibly degenerate) n-simplex [v,...,v,] in the
geometric realization of BG whose edge [v;_1,v;] is a loop representing g; € 71 (BG) = G.

Consider a prism A™ x [0,1]. For convenience, we write A™ = [eg...,e,], and denote
the vertices of A™ x [0,1] by vi; = (e4,7), 1 =0,...,n, j = 0,1. If there is a geometric
homotopy from idge to the conjugation pg, then the restriction on a simplex [g1, ..., gn)
should give a map of A" x [0, 1] that sends the edges [v(;_1)0,vi0] and [v(;_1)1,vi1] tO g;
and f14(g;) = g7 respectively. This tells us what the restriction A™ x {0,1} — BG should
be. The standard prism decomposition divides the product A™ x [0, 1] into n+ 1 simplices.
It turns out that, for instance as illustrated in Figure [0 for n = 2, we can label edges of
the resulting simplices in such a way that the prescribed A™ x {0,1} — BG extends to
A™ x [0, 1] simplicially. Note that in Figure [l each path e; x [0, 1] is sent to the loop g~1,
so that the basepoint change effect of the homotopy is exactly the conjugation by g on
1 (BG) =G.

V21

Vo1 g_l
[v00, V10, V20, V21] > [91, 92,9 ']
9! V20 [v00, V10, V11, v21] = (91,97 ", 93]

[v00, Vo1, V11, V21) —> [9_17919793]

2
Voo g

g1
V10

FIGURE 7. Prism decomposition of a homotopy for conjugation.

Generalizing Figure [ to an arbitrary dimension n, we obtain the chain homotopy
formula used in the formal proof of Theorem 7] given below.

Proof of Theorem[{.7] For a group G and an element g € G, we define a chain homotopy
S =S¢4: ZBG. — ZBG.4+1
by

S[gla v 7gn] = Z(il)i[glv oo agiagilvgig-i-lv e 7g7gz]
i=0
By a straightforward computation it is verified that S0+ 0S5 = 4 —id. From the defining
formula, it follows that Sg 4 is natural and that ds, , (k) < k+ 1. O



CHEEGER-GROMOV UNIVERSAL BOUNDS FOR VON NEUMANN RHO-INVARIANTS 31

5. Chain homotopy for embeddings into mitoses

We begin by recalling a definition of Baumslag, Dyer, and Heller to set up notations. As
before, we write g" := hgh™.

Definition 5.1 ([BDHS&0]). Suppose G is a group. A group M endowed with an embedding
1: G — M is a mitosis of G if there are elements u, t € M such that M is generated by
1(G) U{u,t} and gt = gg*, [h,g"] = e for any g, h € 1(G). In particular, define

m(G) = (G, u,t|[h,g"] = e, g" = gg" for any g, h € G).
Then m(G) together with the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>