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Abstract
We consider seriously the analogy between interpolation of nonlinear functions and
manifold learning from samples, and examine the results of transferring ideas from
each of these domains to the other. Illustrative examples are given in approximation
theory, variational calculus (closed geodesics), and quantitative cobordism theory.
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1 Manifesto

There are fundamental connections and analogies between spaces and functions that
are commonplace to the working mathematician—yet for some reason the study of the
former is called analysis and the latter topology.1 This division of intellectual labor is,
of course, natural: a smooth function is a rather different kind of object than a smooth
manifold. Nevertheless, we explore here some ideas that arise naturally when focusing
our attention on similarities between these.

Perhaps the first example of this is the relation between a vector space V and its dual
V ∗, which consists of vectors and which of (linear) functions is entirely arbitrary in
the finite-dimensional case. The use of Euclidean geometry uncritically in an infinite-

1 Or geometry; I shall not distinguish between these.
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dimensional setting leads so naturally to one of the great genius ideas of the nineteenth
century: Fourier series (and other orthogonal series).

A nonlinear version of this considers compact smooth hypersurfaces of, say,Rn and
studies these via a smooth proper map φ : Rn → [−1,∞), so that the hypersurface
corresponds to φ−1(0). (It is also common to dispense with the properness and replace
the range by [−1, 1]; in that case one loses the compactness of the hypersurface.)

Doing this requires a basic theorem of topology guaranteeing the orientability of
(closed) hypersurfaces in Rn (or more generally, in simply connected manifolds), or
the Jordan separation theorem (which enables a concrete version of the orientation,
by pointing outward away from a compact component, or toward infinity). A proof of
this can also be given by a somewhat more sophisticated construction of either a map
φ : Rn → RPk such that the transverse inverse image of RPk−1 is the submanifold
(which captures near the submanifold the geometry of the twisting of the unit normal)
and then extends to the complement by an essentially arbitrary map to the disk—and
then letting k be large, and using elementary homotopy theory.2

We note the importance of considering functions with values in spaces other than
R (or more general linear spaces). In other approaches this is perhaps less apparent:
for learning a classification one will map a space X to say {−1, 1} of labels, embed
the latter in R, use linear methods, and interpret the function values not in {−1, 1} as
being somewhat less certain. (For instance, one compresses f to sign( f ), and is more
highly uncertain when f is near 0.)

Twentieth-century topology saw a similar exploitation of this connection. The
Pontrjagin–Thom construction [57] is a generalization of the above to submanifolds of
arbitrary codimension, but then the target is necessarily more complicated. This arises
already in codimension two—the Klein bottle embeds in R4, and it is not a “smooth
complete intersection.” (See [29] for the application of this idea to manifold learning.)

Many of the successes of high-dimensional topology rest on the effectiveness of this
methodology. One can call this the algebraicization of topology. This trend includes
immersion theory and its subsequent developments [25,34,53] and surgery theory
[9,60], our most powerful tool for the classification of manifolds. If one cares about
the geometric nature of the solutions to these problems, barring a completely new
approach to them,3 one needs to understand the solutions of the problems of nonlinear
algebraic topology.4

Our interest is in learning, describing, and understanding functions and manifolds.
In order to do this, we need to have an understanding of their complexity, and their
natures. Various notions of these will arise in this paper and will occasionally be
compared. On the function side, we will typically use the Lipschitz constant as such a

2 Alternatively, if a connected submanifoldM didn’t separate, onewould construct a closed curve transverse
to M lying in a neighborhood of M , and then argue that this would contradict the simple connectivity of
the sphere (by homotopy invariance of intersection numbers).
3 In some cases the connection between the homotopy theory and the geometric problem is sufficiently tight
that any new geometric complexity statement would readily imply some, although perhaps not optimal,
result about the complexity of homotopies.
4 Many classical problems in analysis are also solved by homotopy methods. Typically, one starts, though,
with an explicit homotopy to apply them to. I hope that the ideas discussed in later sections can be of use
in that setting.
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measure. On the (sub)manifold, we will need to control both size and local geometry.
We begin the discussion in the next section. In all cases, for us a complexity notion
should lead to a precompactness or a finiteness theorem.

In Sect. 2, we will consider linear interpolation and approximation of Lipschitz
functions. This will lead to some simple ideas of approximation theory, manifold
learning, and persistent homology, some of whose discussion will spill into Sect. 3.
We also mention some subtleties that arise in theC0 geometric theory that do not seem
to have counterparts in the function setting. Section 4 is slightly more substantial and
begins a study of PH (persistent homology) of the Lipschitz functional on the free
loop space of a Riemannian manifold, with applications to closed geodesics and also
some less familiar functionals. In the remaining sections, we consider a program
of Gromov’s to understand the complexity of geometric objects whose existence is
predicted by topology and its relation to the geometry (as opposed to topology) of
function spaces.

This paper is a survey of the ideas I discussed at the FOCM meeting in Barcelona
2017 and reflects collaborations I’ve had over the years with G. Chambers, S. Dranish-
nikov, D. Dotterer, S. Ferry, F. Manin, A. Nabutovsky, P. Niyogi, and S. Smale, and the
conversations I’ve had with countless mathematicians during this time. Unattributed
facts are either well known or appear in the work of Gromov, whose work has had too
large an influence on my thinking for me to always be aware of it. As I write these
lines, I realize that I had tried to compress too much material into a one hour lecture; I
apologize to my hosts and the audience at the lecture on which this is based. Although
there has been some substantial advances on topic related to the ones discussed here
(notably [39], but also [43]) since the Barcelonameeting, I have chosen not to consider
how they impact the picture.

And, lastly, I am happy to express my thanks to the referee whose comments have
improved the quality of this paper.

2 Interpolation 101

We begin with the simplest problem. A function f : X → Y is “out there” in some
sense, and we would like to “learn it” (see [19]). The simplest setting might be that
we have access to function values for a set of points that we get to choose. Let’s
also assume that X and Y are “nice spaces”—later more specific hypotheses will be
imposed.

Let’s say that “learning” a function means being able to approximate it within ε (à
la [59]; in particular, we’ll assume that Y is metric, and we shall deal here with the
sup norm on functions). With no information about X , Y , and f , this is impossible.
Even if f is assumed continuous, it could oscillate at a frequency so rapid as to foil
any such attempt. However, with control on the modulus of continuity, we can achieve
this for any compact X : For definiteness, assume that f is K -Lipschitz, i.e., that

d( f (x1), f (x2)) ≤ Kd(x1, x2)

(where d on the left is a measurement in Y and on the right is one in X ).
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In that case, to learn f one can merely choose an ε/K -dense set of points in X and
record (accurately!) the function values at these points, and at any other point output
the function value associated with the nearest point. Notice that the number of points
that we need is the covering number of X at scale ε/K—which, if X is d-dimensional
is O((K/ε)d).

Even the above simple observation has a useful implication.

Corollary 1 If X is a compact d-dimensional space, and Y is compact, the covering
number of the K -Lipschitz functions from X to Y at scale ε is O(exp(K/ε)d).

The base of the exponential has to do with the ε covering number of Y .
This solution is somewhat dissatisfactory, because it will never be right: we always5

output a discontinuous function. It would be nice to be able to output a function fn
that is itself K ′-Lipschitz for a constant K ′ that isn’t much larger than K .

Interpolation is the simplest solution to this problem, but to do so inevitably requires
a condition on Y . We shall assume, at first, the simplest possibility, that Y is a Rie-
mannian manifold with positive convexity radius that is at least ε.

Recall that for a compact Riemannian manifold Y [22] there is an injectivity radius
inj(Y ), so that any two points of a distance at most inj have a unique geodesic con-
necting them. It also has a (typically smaller) convexity radius conv(Y ), so that balls
of size smaller than this are convex, i.e., contain the geodesic connecting any of these
points.

Suppose now that the set in X that we choose forms the vertices of a triangulation
(with none of the simplices terribly eccentric, so we can piece together estimates from
one simplex to their union without much pain6). In that case, we can “connect the
dots”; i.e., extend the map from the vertices of the simplex using iterated coning to
define a map that is piecewise linear in barycentric coordinates.

In this situation, if two functions f and g are at most conv(Y ) apart, then there is a
natural homotopy between them that moves f to g pointwise along the geodesic that
connects f (x) to g(x), and that stays within this class of functions, so the function
space balls of this size are contractible. This means that conv(Y )-close maps X → Y
are homotopic.

Corollary 2 The number of homotopy classes of maps X → Y with Lipschitz constant
K is at most O(exp(Kd)).

For d = 1 this is the theory of the growth of the fundamental group of Y that is
popular in geometric group theory (see, e.g., [33,39]). Growth is at most exponential
(for finitely generated groups) but can be smaller in many interesting cases.

The fact that the function space balls are contractible, not merely connected, has a
nice corollary.

Corollary 3 The map from K − Lip(X : Y ) → C0(X : Y ) factors through a finite
complex (with at most O(exp(Kd)) vertices). In particular, the image in homology
Hi of the former can be bounded by that dimension and vanishes for i high enough
dimension.

5 Unless something extraordinary is happening—say f is locally constant.
6 This can be achieved using either of the subdivision schemes of [23] or [30].
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Frequently, however, the homology of the function space is nonzero in infinitely
many dimensions. This produces interesting variational invariants, e.g., the first K
for which one has i-dimensional homology—which can be thought of as a nonlinear
analog of the spectrum of the Laplacian7 (see [35]). In the next section, wewill observe
other “spectral invariants” within the homology of sublevel sets.

The above leads one to frequently adopt ε = conv(Y ) as a natural scale at which
to study functions. At that scale, one can parametrize balls by picking a center f and
then exponentiating vector fields along f whose uniform norms are at most conv. In
other words, at this scale, we have a useful linear local coordinate chart.

We close this section with a few remarks:

Remark 1 One can give a similar analysis to any equicontinuous function space, e.g.,
the Hölder spaces C1,α etc. The important thing is to have an explicit understanding
of the relationship between ε and δ in the definition of continuity.

Remark 2 In order to do the connect the dots construction, one needs much less than
a convexity radius, one needs a local contractibility function ρ : [0, ε) → [0,∞) for
Y , such that ρ(r) ≥ r (for r < ε) such that every ball of radius r is nullhomotopic in
the concentric ball of radius ρ(r). (Such a space is called LC(ρ).) Note that one needs
to apply this d-times if the domain is d-dimensional, so the scale at which one needs
to work in this setting is much smaller than ε.

Remark 3 Some of these ideas arise naturally when thinking about geometric group
theory and trying to approximate from a group & (or its Cayley graph) the universal
cover of its classifying space B&, assuming that there is a compact model for the latter.
(See [10,52].) In that case, the universal cover will be LC(ρ) with ε infinite, but ρ(0)
positive. LC(ρ) is a homotopical analogue of a, perhaps exotic, regularity condition
on a function.

To approximate this universal cover, one covers the discrete metric space & by
metric balls of size k and takes the nerve of this cover. Let’s call this locally finite
simplicial complex with cocompact& action Nk(&). There are natural simplicial maps
Nk(&) → Nl(&) if l > k; the sequence of locally finite homology groups of this
sequence of spaces carries a lot of information about &: in particular, one can read
off the cohomological dimension (when it’s finite) by seeing in which dimensions the
limit is nontrivial. However, there is a lot of interesting information in the sequence
that is not in the limit, as we will comment in the next section.

Remark 4 These connect the dot ideas yield easily an analogue for metric spaces of the
principle (used in Corollary 2) that close enough K -Lipschitz maps are homotopic. It
is that in the Gromov–Hausdorff space of d-dimensional LC(ρ) spaces, close enough
spaces are homotopy equivalent. (See [28] for a deep analysis that goes considerably
farther.)

Recall that Gromov–Hausdorff space (see [36]) is a metric space whose points
are isometry classes of compact metric spaces. The distance between X and Y is the

7 The first level for E =
∫
⟨∇ f ,∇ f ⟩/

∫
⟨ f , f ⟩ where i-dimensional mod 2 homology appears in the

projective space of the Sobolev space H1,2(M) is in the i th positive eigenvalue of the Laplacian.
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smallest d so that in some metric space containing X and Y isometrically, X and Y
are in the d neighborhoods of each other.

Close enough spaces can be mapped to each other by matching a pair of sufficiently
dense finite subsets of X and Y , and connecting the dots, and the composites can be
checked to be homotopic to the identity by a similar induction. The closeness of the
metric spaces that is sufficient to give the homotopy equivalence can be determined
explicitly in terms of ρ, d , and ε.

In [21] we study the extent to which something similar holds for homeomorphism
for manifolds. Note that if M is a manifold, like the sphere, for which any homotopy
equivalent manifold is homeomorphic to it, then in any LC(ρ)manifold close enough
to any suchmetricM will be homeomorphic to it.We show (that aside from dimension
4) this is true for all manifolds whose universal covers are the sphere or Euclidean
space (although at least in the former case there are many manifolds of homotopy
equivalent to M but not homeomorphic to it—see [60]). But that it is not true in
general. One cannot predict from ρ, d, and ε how close general manifolds have to be
to be homeomorphic.

Let me phrase this somewhat differently. If M is a compact Riemannian manifold,
then there is an εM , so that any LC(ρ) manifold within εM of M is homeomorphic
to M . However, this εM is not bounded below on a precompact set of manifolds in
the Gromov–Hausdorff space of Riemannian LC(ρ) manifolds. (However, for some
manifolds, the issue does not arise, for deep surgery theoretic reasons.)

This suggests an obstruction to C0 sample reconstruction theorems in the LC(ρ)
setting.8 We remark that for some ρ (e.g., linear) this phenomenon does not occur, and
one can hope to try to learn a manifold with such a metric from a sufficiently densely
sampled point cloud.

In theC2 setting, this is indeed possible and is the subject of a rather large literature
that we can just indicate (see, e.g., [2,4,5,12,29,46]). For simplicity, let’s work in the
Euclidean setting and consider manifolds with positive reach τ . This means that the
τ -tubular neighborhood of M is embedded, i.e., that any point of Euclidean space
within τ of M is nearest to a unique point of M . This condition reflects both local
(i.e., the curvature of the second fundamental form) and global properties of M (e.g.,
preventing nearby concentric spheres), see, e.g., [46]. It is a regularity condition on
manifolds like LC(ρ) where ρ is the identity on [0, τ ).

The paper most in the spirit of this section is [29] that uses deep interpolation
ideas for smooth functions (the Whitney problem, see, e.g., [26,27]) to describe how
to interpolate a manifold through a set of noisy samples of a manifold with positive
reach (with high probability) when it’s possible.

3 Persistent Homology

In the previous section, we described the idea of interpolation as connecting the dots
and filling in high-dimensional simplicies of either a graph of a function (implicitly

8 The reader couldwell want to knowwhat can distinguishmanifoldswhichmutually approach one another.
The simplest invariants are odd primary characteristic classes of the topological tangent bundle. However,
there are additional subtle secondary invariants that are torsion analogues of the invariants used by Atiyah
and Bott [1] to distinguish lens spaces from one another.
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defining an approximation to the function) or a manifold based on the proximity of
points to one another.

However, there is a simpler method for getting homotopical information (e.g., the
homology) as alluded to inRemark 3.We refer to [18,24,48,50,62] formore discussion.

Imagine a point cloud, i.e., an abstract discrete metric space. Suppose we know
nothing about the scale at which the sampling took place, or, for example, if it’s
LC(ρ) which set of interlocking scales one should use for the purpose of inference.
Surely we don’t have to just do nothing?

For the infinite metric space, we formed a sequence of nerves of coverings (increas-
ing our scales at each moment) and took a limit (feeling confident, since we were
approximating a hypothetical contractible universal cover9). At the very foundations
of (co)homology theory, the Čech theory is obtained by a similar process using limits
with respect to refinements (i.e., resampling with a denser set of points and adjusting
to use the nerve at a smaller scale) rather than with respect to coarsening.

So, we consider the sequence of nerves, but don’t take the limit. We then have a
sequence of spaces whose homotopy invariants (most simply the homology) we can
study as a sequence, keeping track of when things are born and when they die.

This theory works best over a field. Consider a set that contains 3 points. According
to the triangle inequality, this metric space is actually isometric to a (perhaps degener-
ate) triangle. Let’s consider what happens when we take the nerves at various scales.
On H0 we start at ε = 0 with 3 generators, say [p], [q], and [r ], and this is the case
until ε is the smallest distance between points. At that point, we decide that a better
generating set would be [p], [p] − [q], [r ], where the components of p and q merge.
Note the basis element [p] isn’t quite well defined, but [p] − [q] is. When we hit the
next larger distance, [r ]− [p] or [r ]− [q] is killed. At this point the nerve is connected
and nothing else ever gives us (more or) fewer components. So we can think of this
module as being a sum of 3 modules, all born at ε = 0, one of infinite length, and two
of each of the shortest two legs of the triangle.

If there are only three points, then 1-dimensional homology never forms because
by definition when the three edges are in the complex, so is the 2-simplex that bounds
this. However, if we had, say 4 points isometric to the vertices of a square, then H1

would be formed when ε is the shortest distance between points, but it would die when
ε is the larger diagonal distance. (At that point a 2-sphere would form, but it bounds
a 3-simplex instantaneously).

These data are encoded in a «bar code» or a «persistence diagram» (that is a
collection of points in the first quadrant, above the diagonal, recordingwhen homology
generators are born and when they die.)

In quite great generality, if points are sampled densely enough at a scale r at which
the space is locally contractible, then the homology that is born before r/2 that survives
through scale r is isomorphic to the homology of the space.

An interesting situation happens if one samples very densely a torus R2/(1000Z⊕
.001Z). This is simply the rectangular torus that’s a product of two circles—one of
length 1000 and one of length 1/1000. The 0-dimensional homology will have some

9 The process described, though, is useful even when B& does not exist as a finite complex. The homology
described can be used as a substitute that occasionally has more useful properties. See [20] for an example
of this.
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very tiny bars (as we’ve assumed the sample is very dense), but will quickly stabilize
to the «right answer» . However, H1 will have 2 interesting large bars, (i.e., the bars
that are topological features of this torus) being born around the density of the sample
and surviving until around .001, but then one direction will collapse. This homology
class was honestly part of the space, but it dies anyway. (It’s genuineness was noted
by the fact that it gave a quite long bar: at least the bar is quite long if one sampled at
a .00001 scale!) The other class will die as well at scale 1000.

The Persistent Homology in this case is measuring interesting geometry and telling
us that at a very fine scale we have a torus, but from a larger scale it is more like a
circle.

The H0 story is highly relevant to the problem of «clustering» . We have data and
want to lump them together into various populations. There is no best way to do this
(see [38]), but as argued in [15], PH0 gives a useful tool to come up with a set of
possible clusterings that can each be of value for different purposes.10 This, too, can
be indicative of the multiscale geometry that a (data) set might have.

PH formally speaking just requires a real-valued filtration of a space. Then associ-
ated with ε, one assigns the homology of the part of the space with filtration< ε. This
enables many variations. For example, if we had a point set in Euclidean space, rather
than just an abstract one, one could filter Euclidean space by the distance to the point set
rather than considering the formal nerves.This choice is sometimes referred to in the lit-
erature as choosing the Čech complex over the Rips complex. Each has its advantages.

A good way to get a feeling for persistent homology is to consider aMorse function
on a manifold (see [41]) whose basic object of study is the homology of sublevel sets
of (generic) real-valued smooth functions on manifolds. The main result is that each
critical point of index k creates an endpoint of a persistence interval: either it begins
a k-dimensional homology bar, or marks the end of a (k − 1)-dimensional homology
bar (and conversely, every beginning and end of a bar is due to a critical point of the
required index).

Ordinarily, people tend to record Morse theoretical conclusions by a series of
inequalities relating the ordinary homology of M (the infinite-length bars) to the
critical points, but in PH the relation is as simple as possible. We shall soon see that
sometimes there’s something topological even in finite length bars. For the mean-
time, we will use the notation PHi ( f ) for the i th Persistent Homology of a function
f : M → R. Usually our functions will be bounded below (a real condition when M
is noncompact11 as it will be in some later examples), so that none of the intervals
start at −∞, but this is not essential.

We note an important stability property of PH( f ). Suppose that | f − g| < ε. Then
for every C ,

g−1((−∞,C − ε)) ⊂ f −1((−∞,C)) ⊂ g−1((−∞,C + ε)).

This interleaves the homology of the sublevel sets of f and g. As a result the barcode
of f can only change in the following ways through a small C0 perturbation:

10 We shall not discuss here what to do about noise or when populations have overlapping images.
11 Of course, in the noncompact case, Morse theory in its ordinary sense requires a properness condition,
or a Palais–Smale condition in the infinite-dimensional setting.
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1. Short bars of length at most 2ε can be created.
2. Such short bars can be removed.
3. The top and/or bottom of a long bar can be moved by up to ε.

The above is an inelegant formulation of the following theorem of [17]:

Theorem (StabilityTheorem) If f , g : M → R thendB(PH( f ),PH(g)) ≤ || f −g||C0

where the bottleneck distance used in the left hand side is the inf over all one-to-one
correspondences between the bars in the persistence diagram of f and of g of the
amount that an endpoint has to be moved, allowing for the insertion and deletion at
will of bars of length 0.

For example, any perturbation of sin(x) on R of size < 1 must still have infinitely
many local minima and maxima, or even any bounded size permutation of (x sin x)2

must have infinitely many local minima and maxima (and they will be spaced fairly
densely in R).

Returning now to another of our motivating examples, if one considers a smooth
manifold X in Euclidean space, and Y a sufficiently dense sample (say a finite subset),
and perhaps chosen in slightly noisy fashion, the functions dist(−, X) and dist(−,Y )
will be C0-close. Thus, the intervals longer than the density and the noise will cor-
respond. If the reach is larger than this, then one can infer the homology of X by
considering Y .

Implicit in this theorem is a remarkableC0-semicontinuity of critical values. Defin-
ing the index of critical points requires C2 topology, and Morse theory is C2-stable.
(TheMorse condition is that theHessian ofmixed secondorder derivatives is nonsingu-
lar.) However, because of the connection to PH, anyC0-close function will necessarily
have at least as many critical points of each index.

4 Simple Applications

We now shall try to apply the ideas of the previous section to function spaces. But first
let’s discuss some very classical examples.12

Suppose I ask you to approximate sin(nx) on [0, 2π ] by lower order trigonometric
functions, then you’d ask me to pick a norm. If I pick L2 the answer is trivial: since
sin(nx) is orthogonal to that space, the closest point to it is 0 and that is the best
approximation. But, if I ask you for the C0-closest approximation, that’s trickier, but
the answer is the same. Why?

Consider what PH0( f ) looks like for a degree k trigonometric polynomial. It has
a bunch of bars going from the local minima to various local maxima.13 The number
of these is 1

2 the number of critical points.
The critical points are the zeroes of a degree k trigonometric polynomial (i.e., the

zeroes), which are the roots of a polynomial of degree k: Think of 2 sin and 2 cos as
z − z−1 and z + z−1 on the circle and zk times the trigonometric polynomial will

12 Other applications to approximation theory can be found in [49].
13 Except the global maximum, which doesn’t close any H0 bar. Thought of as being the circle, it begins
the nontrivial H1 bar.
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Fig. 1 The Chebyshev polynomials

be a complex degree 2k polynomial with at most the number of roots as the original
trigonometric polynomial. So there are at most k bars.

Since sin(nx) has n bars, all of length 2, the smallest the bottleneck distance to any
lower-degree trigonometric polynomialmust be at least 1, giving the result. Note by the
way that unlike standard approximation (or Fourier) ideas this also immediately gives
the C0 distance from sin(nx) to even «reparametrized» degree (n − 1) trigonometric
polynomials: composing Tn−1 with a homeomorphism of [0, 2π ] to itself will not
change the barcode in the slightest.

This is a straightforward argument, but here’s a consequence that is not as transpar-
ent. The distance of 5 sin(x) + sin(2x) to the degree-one trigonometric polynomials
is the same as that of sin(2x), but the barcode of this function has only one bar! The
proof fails for this obviously equivalent problem.

The same argument now applies to estimate on [−1, 1] the distance of xn to the
lower-degree polynomials. It has a boring barcode, but instead we realize that this
problem should be done using orthogonal polynomials instead. The Chebyshev poly-
nomials P(x) = cos(n cos−1(x)) are a good choice. (See Fig. 1.) Note there are n bars
for this all going from −1 to 1 (aside from the 1 infinite bar). So the distance one sees
from the Chebyshev polynomial to the lower-degree polynomials is 1, and since the
coefficient of xn in Pn(x) is clearly 2n−1 that the distance from xn to the lower-degree
polynomials is 2−(n−1).

Let’s turn our attention to functions on function spaces, following an example
sketched in [62] explaining a theorem of Gromov. It transpires that PH is an excellent
language for doing «large scale Morse theory» .

Let M be a compact Riemannian manifold, and let )M = C2(S1 : M) be the
space of smooth loops on M . We shall consider the function E : )M → R given by
log(

∫
⟨ f ′, f ′⟩)where ⟨, ⟩ is the Riemannian inner product on M . Notice that changing

the inner product on a compactRiemannianmanifold canonly change E by auniformly
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finite amount (log of the ratio of the two inner products). As a result, PH(E) is well
defined as a set of bars up to finite bottleneck distance.

The bars of infinite length coming from −∞ correspond to the homology of M ,
thought of as the constant loops. (These last forever because there is an evaluation
map )M → M .) The ones lasting to +∞ correspond to the topological invariant
Hi ()M).

Much more interesting are finite length bars. What does a bar of length K in PH0
signify? At the bottom of this bar will be a closed geodesic of some energy eE . When
we try to move this curve to lower the energy (i.e., to connect to a component of E−1

of a lower level), we ultimately succeed in doing so, but to do it, we need to multiply
our energy by eK to do so. By restricting to the component of nulhomotopic loops
)eM , we obtain the following:

Proposition The property of whether all nullhomotopic geodesics on M can be nul-
homotoped through curves of length that is only a linear multiple of their lengths,
is independent of the metric: it is equivalent to PH0(E : )eM → R) having only
bounded bars (aside from the one infinite bar [−∞,∞]).

All of this can be done with an arbitrary polyhedron as well, with slightly different
details. Moreover, with a little thought, one can see that PH0 (up to finite bottleneck
distance) only depends on π1(M).

Proposition If π1(M) has superexponential Dehn function,14 then PH0 has infinitely
many bars of arbitrarily large finite length.

If there were a bound on the bar length, then one could find a C so that every
nulhomotopic curve of length L can be homotoped to one of length L/2 through curves
of length at most CL . The entropy argument in Sect. 2 shows that the area swept out
by this annulus (i.e., this path of curves) is at most exp(CL). As a result, ultimately
all nullhomotopic curves of length L will bound a disk of at most exponential in L
area proving the theorem.

Indeed, if Dπ (L) is a superexponential Dehn function of a group, then there will be
infinitely many closed nullhomotopic geodesics on any closed Riemannian manifold
with fundamental group π that will require multiplying their length by log Dπ (L)/L
to nullhomotope. Thus, groups with radically different Dehn functions will have quite
different barcodes for their PH0’s.

Many other functionals on spaces of Riemannian metrics or function spaces, espe-
cially with nonsimply connected targets tend to have extremely long finite length bars.
For example, the result of Nabutovsky [45] can be expressed as follows:

Proposition Let HS = the space of unparametrized smooth embedded Sn’s in the
unit ball Bn+1, then although HS is connected, PH0(1/τ : HS → R) (recall that τ

denotes the reach of a submanifold) has infinitely many bars of finite length. Given L,
the function that gives the largest length bar going through level L cannot be bounded
by any computable function.

See, e.g., [45,61] for surveys of such ideas and our joint paper [47] for applications
to Riemannian variational problems. It seems that this gives a method for detecting

14 See the proof for a definition, or see, e.g., the Wikipedia page on Dehn functions of groups.
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the existence of a rugged Morse landscape with more critical points being imposed by
“texture” than forced by topology.15

In the case of simply connected function spaces, the kinds of phenomena indicated
in the previous proposition cannot hold: because of the work of Brown [8] bars cannot
be uncomputably long. The following seems just perhaps conceivable (as indicated in
our discussions below). It is closely related to the ideas in [37].

Conjecture Suppose X and Y are finite complexes, Y is simply connected, then

PHi (log(L) : Lip(X : Y ) → R)

has only finite length bars.

All bars for PH0 have at most linear length, when length is plotted as a function of
their bottom value, as a consequence of the important recent paper [39].

5 Unoriented Cobordism

Having turned interpolation into a tool for understanding geometric sampling, and
used PH as a way to use that idea to understand the homology of the underlying space,
we turned around and considered the application of these methods to understanding
functions.

In this section, we will review a basic example of the algebraicization of geometric
problems, the cobordism problem, and give some recent results on the complexity of
nullcobordism, and its connection to the conjecture made at the end of the previous
section.

We recall Thom’s theorem [55,57].

Theorem A smooth closed manifold Mn is the boundary of some compact Wn+1 iff
the cycle represented by M in Hn(Grassmanian of (n+ 1)-planes in RN+1) is trivial.

More precisely, smoothly embed M inRN for N sufficiently large and then at each
point m the tangent plane TmM is an element of the Grassmanian of n-planes in RN .
Using this function, the image of M is a cycle in Hn(Grassmanian of n-planes in RN ).
We just add on a trivial last direction to consider it in Hn(Grassmanian of (n +
1)-planes in RN+1).

Once N is larger than 2n+1, this class is independent of the embedding by standard
differential topological arguments. If M were a boundary then the cycle it defined
would bound (in Hn(Grassmanian of (n+ 1)-planes in RN+1)) the chain represented
by W .

That the converse holds is the result of deep geometric and algebraic topological
arguments.

15 Here I mean a large scale idea of texture that is analogous to the differences that one would notice on
the small scale if one took the graphs of (Baire generic) Hölder functions for different exponents. If you
consider the persistence homology, the Hölder exponent would be apparent in the “length spectrum of the
bars” as will be explained in detail in a future paper with Yuliy Baryshnikov (and is not hard to see by
wrinkling a map by putting in as many bumps at small scale as permitted by dimension and the Hölder
condition).
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Remark The same theorem holds (using oriented Grassmanians) for oriented mani-
folds and oriented as a result of subsequent deep work of Milnor, Averbuch, Novikov
andWall, see [55]. The geometric part is the same, but the algebraic topology is much
more difficult. We shall see that the quantitative aspects of these theorems also have
differences in their level of depth.

Gromov [36,37] pointed out that Thom’s theorem raises a very natural quantitative
problem. Let’s define the complexity ofM , k(M) to be inf(Vol(M, g)) as g ranges over
all Riemannian metrics with sectional curvatures pointwise bounded by 1 (in absolute
value) andwith inj ≥ 1 and, if there is a boundary,we assume that it has a neighborhood
isometric to ∂ × [0, 1], to avoid any local complication near the boundary either in the
interior or near the boundary. Now, suppose that M is a boundary (as Thom tells us
when that is), what is inf(k(W )) as W ranges over manifolds with ∂W = M?

Thom’s proof does not directly give any estimates at all; Gromov [37] sketched an
argument to deduce from Thom’s work a bound that is a tower of exponentials

k(W ) ≤ exp(exp(exp(. . . (k(M)) . . . ))),

where the number of exponentials grows with n—but he speculated that the truth was
linear16! This is still unknown, but the work of [11,30] goes a considerable distance
in that direction.

The reduction to algebraic topology goes like this. Start by embedding M in SN for
N large. The normal bundle ν ofM is pulled back from the universal bundle ξ of N−n
planes in RN+1. By the tubular neighborhood theorem, there is an ε-neighborhood of
M that has a map to the unit disk bundle over the Grassmanian. This map sends the
set of points of distance ε to the unit sphere bundle. The map

(Nε(M), ∂Nε(M)) → (D(ξ), S(ξ))

gives rise to a map ϕM : SN → D(ξ)/S(ξ), the space obtained by identifying the
whole sphere bundle with a point, and which we shall denote by Th(ξ), simply by
mapping all of the complement of Nε(M) to the point that S(ξ) was identified with.

Lemma ϕM : SN → Th(ξ) is nullhomotopic iff M is a boundary.

To themodernmathematician, the proof is almost obvious: Th(ξ) is amanifoldwith
a single singularity at the point ∗ = S(ξ). The Grassmanian in Th(ξ) is entirely in the
manifold part. Ignoring this singularity, ϕM : SN → Th(ξ) is smooth wherever this
makes sense and is transverse to the Grassmanian. (Thom had to define transversality
in his paper, though, and establish its properties.) If M bounded W , we’d embed W
in SN × [0, 1] and repeat his construction making a homotopy of ϕM to the constant
map ∗.

16 This linearity conjecture implies an estimate for η-invariants of manifolds (spectral invariants of odd-
dimensional manifolds defined by Atiyah–Patodi–Singer) in terms of volume; Cheeger and Gromov proved
these directly [13]. While the quantitative cobordism work we discuss is not strong enough to give the
Cheeger–Gromov inequality, a different approach—with very interesting complexity applications—was
given by [14].
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Conversely, if ϕM were nullhomotopic, we’d smoothly approximate the nullho-
motopy (rel ϕM where things are good enough already) and then take the transverse
inverse image of the Grassmanian. The inverse function theorem would tell us that
this is a smooth manifold bounding M .

The rest of the proof of Thom’s theorem goes by relating the condition in the
lemma to the one in the statement of the theorem. Aside from a minor point relating
Grassmanians associated with tangent and normal bundles, and the use of the Thom
isomorphism theorem (relating the homology of Th(ξ) to that of a Grassmanian) this
boils down to showing that in this situation a Hurewicz homomorphism (see, e.g.,
[54]) is essentially an injection.

Recall that for any X , the Hurewicz map is the map πn(X) → Hn(X), sending a
homotopy class to the image of [Sn] in Hn(X). For simply connected X (and Th(ξ)
is simply connected), the Hurewicz theorem says that this map is an isomorphism for
the first n for which either group is nonzero. The problem is that in the cobordism
problem this hypothesis does not hold except for the case relevant to 0-manifolds.

In algebraic topology, the method around this is called the method of killing homo-
topy groups. If X is (n−1)-connected, then we can learn πn(X) by computing Hn(X).
Nowone builds an infinite-dimensional space K (πn(X), n)which has just one nonzero
homotopy group, and up to homotopy makes X a fiber bundle over this space. The
fiber F of this map X → K (πn(X), n) is n-connected, so to compute πn+1(F) one
can compute Hn+1(F)—this is frequently done using spectral sequences or other alge-
braic tools. Note how all the geometry has flown away: only to an algebraic topologist
is K (πn(X), n) a simple space. The map X → K (πn(X), n) also entails significant
geometric cost. General theory shows that πn+1(F) is isomorphic to πn+1(X) and one
can try to repeat the process to learn πn+2(F) = πn+2(X) etc.

There are a number of points to consider in trying to make this type of reasoning
effective:

(1) We need to relate the geometric complexity of M to some kind of analytic com-
plexity of ϕM .

(2) We need to learn something about the complexity of the nullcobordism from that
of the map.

(3) We need to infer from the analytic complexity of the nullhomotopy, geometric
information about the nullcobordism.

Regarding (1) it should not surprise the reader that the focus is on Lipschitz con-
stants. Note that the proof requires a geometric act of violence: embedding M into
a sphere.17 This must cause distortion but we can try to avoid doing too badly, see
[7,31,40] for a beginning. (Metric embedding is amajor subject with deep applications
in theoretical computer science.) Note that the Lipschitz constant of ϕM comes from
the motion of the normal spaces around M , i.e., from curvature, and also the ε which
is essentially the reach of the image of M . If we make M bigger to lower curvature, it
will fold back to itself and make the reach small. We will not discuss the embedding
aspects since they are complementary to the concerns of this paper.

17 Actually, there is a beautiful proof of Thom’s theorem [6] that avoids this. This method actually directly
leads to a polynomial estimate (of degree 2n ) for k(W ). Unlike what we are about to discuss, this does not
extend to the oriented case.
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(3) in general feels like it should be difficult, and involves the issues considered by
Yomdin [63]. However, that work deals with the worst case estimates for geometry
of fibers. Happily in this situation, one can deal with average case (or even best case)
scenarios and the complexity estimates for this last part are dealt with by ideas related
to the simplicial approximation theorem.18

(2) is at the core of our concerns. Essentially Gromov’s analysis was that each step
in the method of killing homotopy groups costs an exponential. It leads to a proof of
the conjecture made in the previous section with a tower of exponentials for the length
of the bars. For our purposes, we just are interested in PH0.

If we had a bounded bar for PH0, then an L-Lipschitz map would be homotopic
through CL-Lipschitz maps to a constant. However, we need the Lipschitz map of the
nullhomotopy to be able to use it to make the Thom lemma effective.

The general methods about covering numbers from Sect. 2 could be applied to give
a Lipschitz constant of exp(LN ) for this nullhomotopy, which would then get rid of
most of the tower of exponentials. However, part of the emerging story is that there is
better information available than this. For now, let’s formulate the following:

Question Suppose Y is a finite complex, and so is X. Is there a C, so that if f , g : X →
Y are homotopic L-Lipschitzmaps, there is aCL-Lipschitz homotopy F : X×[0, 1] →
Y between them?

Of course, we rarely expect a positive answer to this question when Y is not simply
connected, although it isOKwhen Y has nonpositive curvature. It is not true in general
even when Y is simply connected.

Theorem ([30]) The answer to the above question is affirmative with a constant C
that only depends on dim(X) (for X’s with nice local structure) iff all the homotopy
groups of Y are finite.

The condition on Y can be checked. It requires that π1Y is finite (which can be
verified, but cannot be decided) and then that the reducedQ-homology of its universal
cover vanishes. In particular it holds for Th(ξ) and the above theorem implies a poly-
nomial bound in the unoriented case, when combined with efficient treatments of (1)
and (3).

Unfortunately the theorem contains its own obstacle for dealing with the oriented
case. Since no multiple of CP2 is an oriented boundary, there is an element of infinite
order. We have no way of producing Lipschitz nullhomotopies from the [30] method
unless the geometry of X is almost irrelevant.

It is instructive to see what happens for X = Bn(R) a ball of radius R, and Y = Sn .
Of course, with this X all maps from X are nullhomotopic. However, the nullhomotopy
this gives will have proportionality constant around R.

And that is the correct estimate. This is a straightforward Stokes’ theorem argument
about ϕ dVol and/ dVol for a nullhomotopy, assumingCL-Lipschitz, where ϕ : X →
Y is the composite of maps B(R) → B(1) → T n → T n → Sn where B(R) → B(1)
is multiplication by 1/R, B(1) → T n is a standard map which is onto via going onto

18 To see the issue, the number of point inverses for a Lipschitz map from S1 to itself can we be infinite,
even with L = 2. However, the degree of a Lipschitz map is bounded by L and one can C0-approximate
such a map by one where the number inverse images grows linearly with L .
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a fundamental domain, T n → T n is multiplication by ⌈LR⌉ (greatest integer), and
T n → Sn is a standard degree-one map.

6 Rational Homotopy Theory

Let’s reformulate the theorem adumbrated in the previous section: A finite complex
Y has the property that all maps from finite-dimensional X into Y that are Lipschitz
and homotopic are Lipschitz homotopic iff all the homotopy groups of Y are finite.
(The independence of the Lipschitz constant on the geometry of X beyond dimension
enables one to use anArzela–Ascoli argument and see that theorem forfinite complexes
implies the one for infinite.)

However, much more critical is what happens if X is a fixed finite complex, and
we allow the dependence of the Lipschitz constant for the homotopy to involve the
geometry of X .

That this is necessary to make progress is clear. Indeed, the discussion at the end of
the last section even suggests that a key issue is the nature of the kinds of isoperimetric
inequalities that hold on X : the ball’s boundary having o(Vol(Ball)) was the key to
the construction.

The following example from [11] though shows that even this weakening is impos-
sible to accomplish in general. To explain the example,we need a little bit of notation.19

Consider the manifold Sn × Sm with the Morse function ||u||2 + ||v||2 (with obvious
notation). It has 4 critical points, with Morse index 0,m, n, andm+n. As a result, the
boundary of the tubular neighborhood maps to the next sublevel set, clearly homotopy
equivalent to Sn ∨ Sm . We call this map

/m,n : Sn+m−1 → Sn ∨ Sm .

Let L : Sn → Sn be the L-Lipschitz map of degree Ln . The map 0L : S3n−2 →
Sn ∨ Sn ∨ Sn obtained by composing /n,2n−1(L ∨ /n,n(L ∨ L)) is L-Lipschitz and
is L3n01 as an element of π3n−2(Sn ∨ Sn ∨ Sn). Consider the space Y = (Sn ∨ Sn ∨
Sn)∨ (Sn ∨ Sn ∨ Sn) ∪ e3n−1 where we attach a (3n − 1)-cell along 01 − 0 ′

1 where
the ′ denotes the same map with values in the 2nd wedge of n-spheres.

Proposition 0L − 0 ′
L : S3n−2 → Y is L-Lipschitz and nullhomotopic, but the Lips-

chitz constant of any nullhomotopy is at least L3n/(3n−1).

The idea is that one uses the relation 01 − 0 ′
1 = 0 L3n times and that is mediated

over the space S3n−2 × [0, 1] of dimension 3n − 1. The details are rather similar to
the argument for the Bn → Sn example in the previous section.

These examples (and [32]) suggest an important role for rational homotopy theory
in these problems. (We note that Sullivan [56] has given an algebraicization of rational
homotopy theory using differential forms, and their algebraic analogue, commutative
differential graded algebras.) As that theory is simplest for simply connected spaces,

19 The construction we are about to explain is called theWhitehead product in homotopy theory. (See, e.g.,
[54].)
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we’ll henceforth restrict attention to the simply connected case. The result of [30]
gives boundedness (independently of L) of the diameter of the L-Lipschitz maps in
the CL-Lipschitz maps iff Y has the rational homotopy type of a point. On the other
hand, the arguments using differential forms shows that the rational homotopy type of
Y = (Sn ∨ Sn ∨ Sn) ∨ (Sn ∨ Sn ∨ Sn) ∪ e3n−1 doesn’t have linear size homotopies.

The following is an example of the type of reduction to rational homotopy theory
that we currently have. (Of course, the difficult part of the [30] theorem would be a
trivial consequence of rational homotopy invariance: when Y is a point, one has no
trouble getting estimates in the function space.)

Theorem ([16]) Rationally equivalent simply connected finite simplicial complexes
admit nullhomotopies of the same shapes. That is, suppose we are given the following
data:

(1) Rationally homotopy equivalent simply connected finite metric simplicial com-
plexes Y and Y ;

(2) A finite n-dimensional simplicial complex X;
(3) A simplicial pair (K , X × ([0, 1] ∪ [2, 3])) which is homeomorphic to

(X × [0, 3], X × ([0, 1] ∪ [2, 3]))

and given the standard metric on simplicies. Here the product of X with each unit
interval is given an arbitrary fixed simplicial structure which restricts at t = 0
and t = 1 to the simplicial structure on X.

Then there is a constant C = C(X , Y , Z) > 0 such that if for every nullhomotopic
L-Lipschitz map f : X → Y there is an M-Lipschitz homotopy F : K → Y , then for
every L/C-Lipschitz map g : X → Z there is a (CM + C)-Lipschitz nullhomotopy
G : K → Z.

The awkwardness of the precise theorem is due to the fact that rationally equivalent
spaces need not have maps to one another, but they will both have maps into a third
space that induces the equivalence.

In [11,16] we study some special rational homotopy types (and [39] goes much
deeper) and see that for a fixed X , linear (or occasionally higher-degree polynomial)
homotopies can be constructed. In particular, we have the following theorem.

Theorem ([11]) If Y is a finite simply connected complex whose rational cohomology
is that of a product of odd-dimensional spheres, then for any finite complex X, there
is a C, so that if f , g : X → Y are homotopic L-Lipschitz maps, then they are CL-
Lipschitz homotopic.

Remark This theorem is of a different nature than the [30] theorem. (1) In that theorem
one can actually build a map that is CL-Lipschitz in the X direction and 1-Lipschitz
in the [0, 1] direction. And (2), in the [30] situation one can homotope an arbitrary
homotopy between f and g to one that has small Lipschitz constant, but in the situation
of this theorem, that is not possible, as one quickly sees if Y = Sn and X = Sn−1.
In some sense, to prove such theorems it is important to first understand what the
homotopy does at the level of the differential forms, and then try to produce a genuine
geometric homotopy that resembles it.
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As before, following from Thom’s ideas this then gives (using only the simple
embedding ideas), the following quantitative estimate:

Corollary If M is a closed (oriented) manifold with complexity k(M) that bounds a(n
oriented) compact manifold, then there is such a compact manifold W with k(W ) =
O(k(M)c) for some c (depending on n).

Remark In [43] this is improved to c any arbitrary number larger than 1. (Of course,
the implicit constant in the «O» will depend on the dimension.) Here the main tool is
to produce embeddings for which the Thom map has quite small Lipschitz constant.
Interestingly, the best thing to do is not to make the dimension of the ambient sphere
around 2n + 1 (à la Whitney) but to pick a high multiple of n. Doing this lowers
distortion. (Although raising dimension increases the complexity of inverse images,
[43] deals with the tension between these effects.)

Given the ubiquity of the use of Johnson–Lindenstrauss ideas in geometric algo-
rithms, the use of two scales in [43], taken from [31] could be of broader applicability.
We just state the final Gromov–Guth–Whitney embedding theorem:

Theorem Let M be a closed Riemannian m-manifold with complexity V . Then for
every n ≥ 2m + 1, there is a smooth embedding g : M → Rn such that

• g(M) is contained in a ball of radius R = C(m, n)V 1/(n−m)(log V )2m+2.
• For every unit vector v ∈ T M, K0(m, n)R ≤ |Dg(v)| ≤ K1(m, n)R.
• The reach of g(M) is at least 1.

7 Final Remark

The theme of this paper has been the geometricization of analysis, of understanding
the complexity of maps and of spaces, and how doing so helps us understand each.

Although topology has some highly ineffective parts (as was evidenced by the
theorems at the end of Sect. 4, andwhich have some very pleasant positive implications
such as the existence ofmany solutions to certain variational problems), the complexity
of the solution to topological problems is frequently, a posteriori, low.

It is almost tautologous that algebraic topology is really about the algebraic topology
of function spaces. Its successes have told us, for example, about connectedness of
such spaces. However, every driver knows how important it is to have a road map,
rather than the mere knowledge that one is on a connected continent. The results I have
sketched show that certain Lipschitz function spaces not only have boundable «volume
» (asmeasured by covering numbers, themost basic invariant of approximation theory,
or VC dimension, as the machine learning analogue) but frequently unusually small
diameter. For targetswith no rational homotopyLipschitz function spaces had bounded
diameter, and for simple rational homotopy types one had linear results. Determining
exactly how much one needs to give up on Lipschitz constant and length of homotopy
for simply connected targets20 is an important challenge (see [39] for important recent
progress).

20 However, for Lip(S1 : M) for M a 3-dimensional Sol manifold the diameter is exp(L), as suggested by
a worst case analysis based on covering numbers.
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This suggests that the geometry of function spaces is a rich object deserving of
study. It also suggests that even in nonlinear situations (governed by either nonpositive
curvature or simple connectivity) one should be able to navigate these spaces and
(optimistically) produce fast computational algorithms.
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