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Abstract We give some lower bounds on the description, sample, and computational
complexities of the problems of computing dimension, homology, and topological
type of a manifold, and detecting singularities for a polyhedron.
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The problem of making sense of large and high dimensional data sets is an extremely
difficult and important one. In recent years, there has been a growing amount of work,
with a number of notable successes (see, e.g., the surveys [6, 14, 19] and the book
[38] for an overview, and the recent paper [29] for an outstanding example) in apply-
ing geometric or topological methods to this problem. This is, prima facie, reasonable
in that the crudeness of topological equivalence forgives many sins—small perturba-
tions of a space are apt to be homeomorphic to the original space—so the robust
ideas from topology have the potential to help with a qualitative understanding of
noisy data.
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The basic idea behind this approach is to imagine that the data that one is consid-
ering should be viewed not as merely a sample of an existing population, so that it is
a small fraction of some other, much larger, but finite, set, but rather to imagine that it
is a sample from a “Platonic ideal” that is assumed to be a “nice” topological space.1

The goal is to infer information about this topological space, and use that information
to better understand the data. The ultimate hope is that one can define invariants of
data sets by this method, even if they do not come from any larger topological space.

The basic problem of “topological inference,” that is, the determination of a topo-
logical space from samples taken from it, can be considered in both “clean” and
“noisy” settings. In the clean setting, the sample points (thought of as lying in a Eu-
clidean space) are assumed to be points of the original space, and in the noisy setting,
they are some sort of random perturbation of points of the original space. Even in
the clean setting, the problem is not at all well posed unless one makes an a priori
hypothesis regarding the space. After all, otherwise, the sample could be the whole
space, or one could always fit a (windy) curve through all of the points.

In much of the literature (see, e.g., [1, 3, 9, 11, 12, 16, 30, 31]), the assumption
made regards the scale at which the nontrivial topology occurs. Assuming that our
Platonic model is a smoothly embedded compact submanifold of Euclidean space, we
shall assume that there is a number τ (the reach, or feature size, or condition number)
so that the normal exponential map is a diffeomorphism for vectors of length <τ

(i.e., in the τ -tubular neighborhood of M , each point has a unique nearest neighbor
in M). For a practical data set, such an assumption should be viewed as a provisional
subject to test and retest. Obviously, without such a condition it would be impossible
to distinguish between a wire and the thin rubber insulation that surrounds it.

Our main focus here is on the sample complexity (or almost equivalently, the
information-based complexity; see, e.g., [34, 35]) of some basic problems of topo-
logical inference, such as dimension, diffeomorphism (or homotopy or homeomor-
phism) type, and, in the polyhedral context, detection of singularities. That is, we
shall estimate the number of sample points necessary to solve these topological prob-
lems in various contexts. In dimension 3 and higher, our results on homeomorphism
give lower bounds on the “description complexity” of the solution, so they give lower
bounds on the number of measurements necessary for solving the problem (as op-
posed to the number of samples).

In a couple of cases, we will point out other resource-bounded complexities of
the problems (see the undecidability results on singularity detection). The previous
works on these problems tended to focus on algorithms to solve the problems and
the analysis of those specific algorithms. The work here is complementary and ele-
mentary, giving crude lower bounds that are independent of algorithm. However, our
observations tend to show that some crude aspects of the known algorithms cannot be
improved upon in general (although there is much room for detailed improvement,
such as lowering the base of an exponential). We hope that these results shed light on
the type of problems and data sets for which topological methods are most likely to
be effective.

We state our results in Sect. 1, prove them in Sect. 2, and discuss their implications
in Sect. 3.

1This feels more reasonable for data coming from the physical sciences than for biological or social data.
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1 Statement of Results

1.1 Problem 1: Dimension

Let us consider this in its starkest form. We have two possibilities for our manifold:
it is either Sn or an equator, Sn−1 ⊂ Sn. We shall assume that whatever model we are
discussing, the points are chosen at random and uniformly from the platonic space.

In that case, if the equator is specified, one can solve the problem with one data
point. If this point lies on that equator, then one outputs that the dimension is n−1, if
not, one outputs n. With probability 0, this will give a “wrong” answer. If the equator
is not specified, then one needs n + 1 points, and if they all lie on an equator, one
outputs n − 1 and otherwise n.

However, if we now convolve with some small amount of Gaussian noise (with
some fixed variance that is independent of n), the situation completely changes. The
number of samples necessary to decide between the two hypotheses with a certainty
of 0.51 grows exponentially with n. The same is true without noise, if our assumption
is that either the manifold is the unit sphere Sn or a hypersurface of it which is C2

close the equator.
On the other hand, even if we are in a fixed Euclidean space, and have an a

priori bound on τ and the diameter D of the set (in its Euclidean metric sense),
then [7, 8, 30, 31] give a calculation of dimension that grows exponentially with n.
(See [13] for a survey of persistent homology methods useful for such purposes. Also
see [31] for a discussion of situations in which one can show that these problems can
be bounded in terms of the dimension of the submanifold as opposed to the ambient
dimension.)

Remark 1.1 These lower bounds do not apply if one has adaptive search methods for
the points of M . Essentially this is a bound for unsupervised dimension learning.

1.2 Problem 2: Topological Types

Now we consider a d-dimensional τ = 1 connected compact submanifold of Rk

whose diameter is bounded by D. If d = 0 or 1, then there is a unique manifold
with these conditions. For higher dimensions, we have the following.

Proposition 1.2 The number of possible topological types grows as Dk for d = 2.
For d ≥ 3, it grows as the exponential of this number.

Proposition 1.3 Without the assumption of connectivity, the number of topological
types grows as Dk for d = 0,1, as exp(Dk/2) for d = 2, and as exp(Dk) for d > 2.

Remark 1.4 These propositions are all valid if topological type is interpreted as
meaning homeomorphism, diffeomorphism, or homotopy type.

Given that the number of possible answers grows so quickly, it takes a great many
bits to even express this answer. One needs at least O(Dk) samples to be able to
determine the answer for d > 2 in any setting, deterministic or random.
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Proposition 1.5 For all d , the sample complexity is O(Dk) (in the disconnected case,
or for d > 2 in the connected case).

1.3 Problem 3: Singularities

For many purposes, the assumption that the platonic space is a manifold is unrea-
sonable. Often there are special points where the behavior is different, either because
they are extrema of some defining inequality implicit in the system or because they
correspond to some symmetry. (For instance, in the space of shapes, studied in [25],
singularities can correspond to coincidence of points or more generally to k-points
within the ensemble spanning a subspace of dimension <k − 1.)

Our interest is not in the number of samples it takes to determine a triangulation
of our target space, but rather the computational complexity of solving some natural
algorithmic questions about them. So let us assume that we are given a polyhedron,
i.e., a union of simplices (e.g., encoded by a list of vertices and their sets that span
the simplices).

Proposition 1.6

(a) It is algorithmically undecidable to tell whether a point in a polyhedron is a
singular point or not.

(b) It is undecidable whether or not the singularity set of a polyhedron is connected
or whether a particular pure stratum is.

(c) One cannot algorithmically compute the dimension of the stratum on which a
point lies.

All of the results of this proposition are only true in dimensions >5. For four-
dimensional polyhedra, these problems are actually solvable. In dimension 5 (a) is
open, but (b) and (c) hold.

Finally, we comment as follows.

Proposition 1.7 The problem of homeomorphism for two-dimensional polyhedra is
decidable, but for homotopy equivalence, it is not. The number of homotopy types of
two-dimensional complexes (of bounded geometry)2 in Rk with diameter D grows as
exp(Dk).

2 Proofs

2.1 Dimension

The propositions regarding sample complexity are relatively straightforward conse-
quences of the volume estimates that arise in the “concentration of measure” phe-
nomenon.

Suppose that we have two probability measures on X, μ and ν, that we are trying
to distinguish. A point is chosen from one of the two measures, and we would like to

2This is the analog of the condition on τ in the manifold case.
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have a method, i.e., a function f : X → {μ,ν}, that tells us whether we guess that x

was chosen from μ or from ν. For example, if μ = ν, then any method will be wrong
1/2 of the time.

Clearly, the best one can do is to choose which of dμ
dλ

or dν
dλ

is larger (i.e., the
Radon–Nikodym derivative) where λ is any measure (e.g., μ + ν) for which both μ

and ν are absolutely continuous. The number of errors obtained by this method is

Error(μ, ν) = 1

2

∫
{x| dμ

dλ
(x)< dν

dλ(x)
}
dμ + 1

2

∫
{x| dμ

dλ
(x)≥ dν

dλ(x)
}
dν.

(Note that this is symmetric.) Now, we are not interested in the case of X = Sn, but
rather—if we are considering methods associated to choosing k-samples from these
distributions—the product measures associated to our original possibilities on (Sn)k .
However, the estimates in, e.g., [2] show that unless k grows exponentially in n, this
Error will be 1/2 − o(1). For note that, in this regime, points produced by the Sn

distribution will almost certainly be attributed mistakenly to the Sn−1 distribution
(because in a constant size tubular neighborhood of the equator, the Sn−1 distribution
has infinitesimally slightly larger measure).3

The deterministic version is even simpler. Without an exponential number of
points, almost all of them will be quite near the equator, but not near each other,
and it is easy to find a hypersurface with large τ that goes through them.

2.2 Topological Types

The results on the description complexity of homeomorphism come from a different
source. The upper bound of the type given (with a terrible estimate on the base of the
exponential) follows immediately from known algorithms on topological inference.
With the given number of points, one can completely reconstruct the manifolds (see
[9, 30] for the case of hypersurfaces, [3, 11, 28] for the general case and also [17]).

The reverse requires construction of the manifolds. (In dimension 2, the results
follow immediately from the classification of surfaces, together with, in the discon-
nected case, the well-known asymptotics of Hardy–Ramanujan [22] for the partition
function.)

For higher dimensions, we will use some theory of 3-manifolds (and then cross
with tori to yield the situation for dimension >3).4 Doing it in this way constructs
many aspherical manifolds (i.e., manifolds whose higher homotopy groups are all
trivial), but they are distinguished by their fundamental groups.5 We will drape our
manifolds around the lattice points of a large box [−D,D]k .6 Label each point

3In other words, if the ν measure of points where dλ
dν

is 1 − ε, then with s samples one has at least a
(1 − ε)s/2 chance of being incorrect.
4In dimension >4 many more subtle features can be built into these manifolds, using the methods of [36].
These are not necessary for the current purposes; the construction we give can be viewed as an adaptation
of [5].
5These manifolds actually have nonpositively curved Riemannian metrics using the work of [26].
6We are unconcerned about the 2

√
k factor we’ve introduced to the diameter (or the extra additive constant

that arises for draping the manifold around these points).
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by +/−. There are the requisite number of configurations; we just have to construct
manifolds according to each of these configurations.

Notice that the points of the box have different combinatorial structures, e.g., dif-
ferent numbers of neighbors. Label (arbitrarily) the k edges coming out of a vertex.
We shall need for each k, two different k-component links in S3 whose complement
has a hyperbolic structure (with non-homeomorphic complements: take the comple-
ment of a nonsplittable link, whose individual components are knots of varying genus,
and such that each knot has a hyperbolic complement). Thurston’s theorem readily
provides infinitely many of these (Theorem 0.2 of [33]). That these complements are
non-homeomorphic follows from the observation that the genera of the knots (as an
unordered k-tuple) is a homeomorphism invariant of a link complement, since it is
topologically defined as the minimal genus of the unique homology class that exists
after filling in the other components in the unique way that makes the result into a
knot complement (e.g., by [20]). Use one of these for each + vertex, and the other
for each −.

Now one can embed these link complements around the corresponding vertices
and glue boundary tori around corresponding edges—with a uniform bound on τ .
The manifold is aspherical, since it is obtained by gluing 3-manifolds together along
their incompressible boundary components (see, e.g., [23], Chap. 13). The diffeomor-
phisms (or equivalently homotopy equivalences, or isomorphisms among fundamen-
tal groups, as we have produced closed Haken manifolds; again see [23], Chap. 13)
among these manifolds are all induced by labeled graph isomorphisms among the
initial combinatorial data, because of the canonical torus (Jaco–Shalen–Johannsen)
decomposition of 3-manifolds (the main result of [24]). Each configuration is thus
isomorphic to at most 2kk! others, i.e., a multiplicative constant with respect to the
dependence of D giving the desired result.

The observation concerning sample complexity is straightforward: with fewer
points, an adversary can always find a region big enough to make a change in the
topology.

2.3 Singularities

The results on singularities depend on various undecidability results about manifolds.
(a) The suspension of a homology sphere is a manifold iff the homology sphere

is simply connected (or, equivalently, is the sphere, due to the Poincaré conjecture).
This is undecidable for homology spheres of dimension >4 (according to a theorem
of Novikov, proved in [27]). In other words, if one had an algorithm that could detect
singularities, we would input the cone on a nonsimply connected homology sphere
and see if the cone point were outputted as a singular stratum. Regarding (b) and (c):
Let Mk be a manifold other than the sphere, and Σk+1 a homology sphere that can-
not be distinguished from the sphere. Now consider S1 × Mk#Σ#Σ . There is a map:
S1 × Mk#Σ#Σ → S1 (that crushes each of the copies of Σ to points, and then
projects to the first coordinate) so that in the inverse image of each point aside
from two of them is a copy of M . The inverse images of these two points are
(small intervals × Mk)#Σ . If Σ is a sphere, then the singularity set is a circle; other-
wise, there are two most singular points, and the one-dimensional pure stratum con-
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sists of two open intervals. Thus, these most singular points either lie on a 0-stratum
or a 1-stratum depending on whether or not Σ is a sphere.

The homeomorphism problem for 2-complexes is a straightforward consequence
of the result for surfaces. (One first finds a homeomorphism between the 1-skeleta,
i.e., the unions of graphs and disjoint points, and then runs into easily computed ob-
structions to extending these to the rest of the polyhedron.) The impossibility of de-
termining homotopy type follows readily from the unsolvability of the word problem,
as any finitely presented group is the fundamental group of a finite 2-complex. (More
precisely, a 2-complex with vanishing first homology is homotopy equivalent to a
wedge of 2-spheres (of number necessarily the second Betti number of the complex)
iff it is simply connected.)

The quantitative bound of homotopy types can be obtained by considering the
spines of the 3-manifolds constructed above (i.e., any closed 3-manifold M has a
two-dimensional subcomplex which is a deformation retract of M—any point of the
subcomplex); it can be constructed with bounded geometry if M is given a trian-
gulation with bounded geometry, i.e., one where there are bounds on the number
of the valence of all vertices, the lengths of edges, and the angles between adjacent
edges, since this can be constructed as a subcomplex of any given triangulation of the
manifold. (See [10] for the construction of nice triangulations of manifolds based on
differential-geometric bounds on their geometry.)

3 Remarks

The results given above might have a negative air to them: some very natural prob-
lems have very large (e.g., superexponential) complexities when measured in various
ways. Our view is that they should help guide researchers who wish to apply geomet-
ric topological tools. Some possible implications or interpretations are as follows:

(1) High dimensions are distinctly harder than low, even from the point of view of
qualitative description of answers. Thus, one is more apt to discover “low dimen-
sional features” of general objects of arbitrary dimension than to discover their
higher dimensional features. An important example of this is the development
of novel means of clustering or developing of graphical caricatures of large data
sets (such as Mapper [32] with its remarkable application in [29]).

(2) The above point is true both in the supervised and unsupervised setting, in that the
description complexity of the topology is overwhelming (with a phase transition
in dimension 3 for nonsingular situations).

(3) It thus becomes important to develop methodology to compute topological and
geometric invariants, rather than analyze the full spaces. Even non-abelian low
dimensional invariants, such as the fundamental group, are susceptible to the
growth of descriptive complexity. However, solvable quotients are more likely to
be computable and can still contain applications to, e.g., entropy bounds.

(4) This point is analogous to the insight that underlies the theory of testability of
graph properties (see, e.g., [18]). See [15] for first steps in the direction of ex-
tending these ideas to higher dimensions.
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In this way rather than asking, say, how many components there are, one
should ask how many “components” there are with at least 5 % of the volume,
also understanding that the components might be connected by very thin sets.

(5) This requirement, forced upon us by complexity issues, leads to the study of
mm-spaces, that is metric spaces that have a measure as well as their metric
(see [21]). This is completely natural in a data analytic setting where the metric is
determined by the structural properties of the type of data considered, but where
the measure reflects the incidence of individual types in the population.

(6) If one examines the sketch proof, one discovers that a large part of the explosion
of topological types is due to the fact that the control on diameter allows a rather
large growth in volume, which is what allows a lot of variability for the number
of topological types (at least when the situation is “non-abelian”, as is the case
when the dimension is at least 3). A precursor to this (and it has analogues in
our setting) is the result of [5] on the number of closed hyperbolic manifolds (in
dimension >3) with volume <V that grows as exp(V logV ),7 while according
to [37] the analogous statement for hyperbolic manifolds with diameter <D is
exp(exp(D)).

Thus, a first test that should be applied before trying to apply geometric meth-
ods is whether the volume is much smaller than suggested by the given diameter.
(A second test, in view of item 3, is to see whether the Betti numbers normalized
by the volume are small or large: the latter indicating some kind of “foam” rather
than a geometric complexity that one can hope to exploit.)

(7) Singularities do introduce new, serious computational difficulties. However, this
is not true of all types of singularities; for instance, one can find the boundary of
a manifold algorithmically. Consequently, there is room for much useful work in
the singular setting, but one needs to be aware of not overreaching.
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35. J.F. Traub, H. Woźniakowski, G.W. Wasilkowski, Information-Based Complexity (Academic Press,

New York, 1988).
36. S. Weinberger, Computers, Rigidity, and Moduli (Princeton University Press, Princeton, 2006).
37. R. Young, Counting hyperbolic manifolds with bounded diameter, Geom. Dedic. 116, 61–65 (2005).
38. A. Zomorodian, Topology for Computing (Cambridge University Press, Cambridge, 2005).

http://pub.ist.ac.at/~edels/Papers/2012-P-11-PHTheoryPractice.pdf
http://pub.ist.ac.at/~edels/Papers/2012-P-11-PHTheoryPractice.pdf
http://arxiv.org/abs/arXiv:0907.5302

	The Complexity of Some Topological Inference Problems
	Abstract
	Statement of Results
	Problem 1: Dimension
	Problem 2: Topological Types
	Problem 3: Singularities

	Proofs
	Dimension
	Topological Types
	Singularities

	Remarks
	Acknowledgements
	References


