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We consider when it is possible to bound the Lipschitz constant a
priori in a homotopy between Lipschitz maps. If one wants uniform
bounds, this is essentially a finiteness condition on homotopy. This
contrasts strongly with the question of whether one can homotop
the maps through Lipschitz maps. We also give an application to
cobordism and discuss analogous isotopy questions.
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Introduction

he classical paradigm of geometric topology, exempli-

fied by, at least, immersion theory, cobordism, smooth-

ing and triangulation, surgery, and embedding theory is that

of reduction to algebraic topology (and perhaps some addi-

tional pure algebra). A geometric problem gives rise to a map

between spaces, and solving the original problem is equivalent

to finding a nullhomotopy or a lift of the map. Finally, this

homotopical problem is solved, typically by the completely

nongeometric methods of algebraic topology, e.g. localization
theory, rational homotopy theory, spectral sequences etc.

While this has had enormous successes in answering classi-
cal qualitative questions, it is extremely difficult (as has been
emphasized by Gromov [11]) to understand the answers quan-
titatively. One general type of question that tests one’s under-
standing of the solution of a problem goes like this: introduce
a notion of complexity, and then ask about the complexity of
the solution to the problem in terms of the complexity of the
original problem. Other possibilities can involve understand-
ing typical behavior or the implications of making variations
of the problem.

In this task, often the complexity of the problem is reflected,
somewhat imperfectly, in the Lipschitz constant of the map.
Indeed, one can often view the Lipschitz constant of the map
as a measure of the complexity of the geometric problem.

For concreteness, let us quickly review the classical case of
cobordism, following Thom [17]. Let M be a compact smooth
manifold. The problem is: When is M" the boundary of some
other compact smooth W"*1?

There are many possible choices of manifolds in this construc-
tion, such as oriented manifolds, manifolds with some struc-
ture on their (stabilized) tangent bundles, PL and topological
versions and so on. But, for now, we will confine our attention
to this simplest version.

Thom embeds M™ in a high dimensional euclidean space
M c S™*FN=1 c R™*N and then classifies the normal bundle
by amap va : vM — E(&Y | Gr(N, m+N)) from the normal
bundle to the universal bundle of N-planes in m + N space.
Including R™™¥ into S™* via one-point compactification,
we can think of M as being a neighborhood of M in this
sphere (via the tubular neighborhood theorem), and extend
this map to S™ if we include E(¢Y | Gr(N,m 4+ N)) into
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its one point compactification E(¢Y | Gr(N,m 4+ N)), the
Thom space of the universal bundle. Let us call this map

B S™N S B(EN | Gr(N,m+ N))
Thom shows, among other things, that:

1. M bounds iff ®,; is homotopic to a constant map. If M
is the boundary of W, one embeds W in D™+ N1 extending
the embedding of M into S™. Extending Thom’s construc-
tion over this disk gives a nullhomotopy of ®,;. Conversely,
one uses the nullhomotopy and takes the transverse inverse of
Gr(N, m+N) under a good smooth approximation to the ho-
motopy to the constant map oo to produce the nullcobordism.

2. @ is homotopic to a constant map iff va([M]) = 0 €
H,(Gr(N,m+ N); Z3). This condition is often reformulated
in terms of the vanishing of Stiefel-Whitney numbers.

It is now reasonable to define the complexity of M in terms of
the volume of a Riemannian metric on M whose local struc-
ture is constrained, e.g., by having curvature and injectivity
radius bounded appropriately, |[K| < 1, inj > 1, or, alter-
natively, by counting the number of simplices in a triangula-
tion (again whose local structure is bounded). In that case,
supposing M bounds, i.e., the conclusion of Thom’s theorem
holds, then can we bound the complexity of the manifold that
M bounds?

Note that the Lipschitz constant of ®,; is related to the com-
plexity that we have chosen in that the curvature controls
the local Lipschitz constant of v, but that there is an ad-
ditional global aspect that comes from the embedding. It
is understood that, because of expander graphs, for example,
one might have to have extremely thin tubular neighborhoods
when one embeds a manifold in a high dimensional Euclidean
space. This increases the Lipschitz constant accordingly when
extending var to ®pr. We shall refer to the Lipschitz constant
of a Thom map for M as the Thom complezity of M.

Of course, we can separate the problems and deal with
the problem of understanding the complexity of embedded
coboundaries based on a complexity involving |K| and T,
which is by definition, the feature size of computational topol-
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ogy, the smallest size at which normal exponentials to M in
a high-dimensional sphere collide. Doing this, studying the
Lipschitz constant of ®,; essentially is the same as consider-
ing sup(|K|,1/7). In this paper, that is the approach we take,
but in a sequel, we plan to use the method of [3] to avoid
embeddings for application to unoriented cobordism.

The second issue, then, is item (2). How does one get informa-
tion about the size of the nullhomotopy? Algebraic topology
does not directly help us because it reasons algebraically in-
volving many formally defined groups and their structures,
constantly identifying objects with equivalence classes. De-
spite this, Gromov has suggested the following:

Optimistic possibility [11]: If X and Y are finite complexes
and Y is simply connected, then there is a constant K, such
that if f,g : X — Y are homotopic Lipschitz maps with
Lipschitz constant L, then they are homotopic through KL-
Lipschitz maps.

The rest of this paper makes some initial comments regarding
this problem. We shall first discuss a stronger problem, that
of constructing a K L-Lipschitz homotopy. We give necessary
and sufficient conditions for there to be a K L-Lipschitz ho-
motopy between homotopic L-Lipschitz maps with constant
K only depending on dim(X). The hypotheses of this situa-
tion are sufficient for unoriented cobordism and give a linear
increase of Thom complexity for the problem of unoriented
smooth embedded cobordism because in that case the Thom
space is a finite complex with finite homotopy groups. How-
ever, we leave open natural extensions even to unoriented PL
manifolds or oriented smooth manifolds, as well as the more
natural volume measures of complexity, which we hope to dis-
cuss in a future paper.

We also give some contrasting results where, essentially for
homological reasons, one cannot find Lipschitz homotopies,
but homotopies through Lipschitz maps are possible.

Finally, we make some comments and conjectures about the
related problem of isotopy of embeddings in both the Lips-
chitz setting and in the C* setting. Both of these contrast
with the C' setting considered in [10].

Constructing Lipschitz homotopies

Theorem 1. Let Y be a finite complex with finite homotopy
groups in dimensions < d. Then there ezxists C(d) so that
for all simplicial path metric spaces X with dimension X <d
such that the restriction of the metric to each simplex of X
is standard, if f, g : X — Y are homotopic L-Lipschitz maps
with L > 1, then there is a C(d)L-Lipschitz homotopy F from
f tog.

Conversely, if a Lipschitz homotopy always exists, then the
homotopy groups of Y are finite in dimensions < d.

Proof: We begin with the positive direction; the argument is
a slight adaptation of that in [15] which can be referred to
for more detail and for a generalization. We may assume that
Y is a compact smooth manifold embedded in R% for some
k, with Y C R*~!. The normal bundle projection from a
tubular neighborhood N of Y to Y retracts N to Y by a Lip-
schitz map which we may assume to have Lipschitz constant
less than 2. Choose an ¢ > 0 so that the straight line con-
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necting points 3’ and y” in Y is contained in N whenever
d(y', y") < e

The space of p-Lipschitz maps dA* — Y is compact for each
£ and p > 0, so for each £ < d+1 and px > 0, we can choose a
finite collection {¢; ¢, : OA* — Y} of u-Lipschitz maps which
is e-dense in the space of all u-Lipschitz maps OA* — Y. For
each such map that extends to A’ choose Lipschitz exten-
sions, ¢y @ AY — Y in each homotopy class of exten-
sions of ¢;¢,. Since the homotopy groups of Y are finite,
there are only finitely many such extensions for each ¢;¢,,,. If
f : OA* — Y is p-Lipschitz, f is homotopic to some Dig .t
by a linear homotopy in Ri. Retracting this into Y along
the normal bundle gives a 2u-Lipschitz homotopy from f to
big.0.u- If f extends over A*, then some ¢, ¢,,..; can be pieced
together with the Lipschitz homotopy from f to ¢;,,¢,. to give
a Lipschitz extension of f|8A[.

The result of this is that for every ¢, u, there is a v so that if
f:AY - Y is a map with f|8A‘Z p-Lipschitz, then f|8A[ has
a v-Lipschitz extension to A® which is homotopic to f. Tt is
now an induction on the skeleta of X to show that there is a
v so that if f and g are homotopic 1-Lipschitz maps from X¢
to Y, then f and g are v-Lipschitz homotopic. The rest of the
argument in the forward direction is a rescaling and subdivi-
sion argument. If f and g are homotopic L-Lipschitz maps,
L > 1, as in the statement of the theorem, we can rescale the
metric and subdivide to obtain maps with Lipschitz constant
1. After extending, we rescale back to the original metric,
obtaining the desired result.

For the rescaling argument, it is helpful to work with cubes,
rather than standard simplices because subdivisions are eas-
ier to handle. We consider X as a subcomplex of the stan-
dard simplex, embedded as a subcomplex of the standard
N-simplex, thought of as the convex hull of unit vectors in
RM*1. There is a map sending the barycenter of each simplex
< €iy, ..., i), > to ejy + ... + e;,, which is a vertex of the unit
cube in R¥*!. Extending linearly throws our complex onto a
subcomplex of the unit cube via a homeomorphism whose bi-
Lipschitz constant is controlled by d. It is now an easy matter
to subdivide the cube into smaller congruent pieces. Here, by
the “bi-Lipschitz constant,” we mean the sup of the Lipschitz
constants of the embedding and its inverse.

We now proceed to the converse. Assuming that Y is a finite
complex with at least one non-finite homotopy group, we will
show that there is a nullhomotopic Lipschitz map R" — Y
for some n which is not Lipschitz nullhomotopic. The argu-
ment shows that there is no constant C'(n) that works for all
subcubes of R™.

Suppose that 71 (Y) is infinite. We give Y the path metric ob-
tained by pulling the metric in Y up locally. Then by Konig’s
Lemma [12], the 1-skeleton of Y contains an infinite path R
that has infinite diameter in Y. Let X = [0, co) with the
usual simplicial structure. The map f : X — R is 1-Lipschitz
and nullhomotopic. If there were a Lipschitz homotopy F
from f to a constant, then the length of each path F|{z} x I
would be bounded independently of z. Lifting to ¥ would
give uniformly bounded paths from f(z) to the basepoint for
all z, contradicting the fact that R has infinite diameter.

Assume that 7 (Y) is finite for k <n —1, n > 2, and assume
that 7, (Y") is infinite. Let us first consider the case in which
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Y is simply connected. By Serre’s extension of the Hurewicz
theorem, the first infinite homotopy group of Y is isomorphic
to the corresponding homology group modulo torsion, so we
have maps S™ — Y — K(Z,n) such that the generator of
H"(K(Z,n)) = Z pulls back to a generator of H"(S™). The
image of Y is compact, so the image of Y lies in a finite skele-
ton of K(Z,n) which, for definiteness, we could take to be
a finite symmetric product of S™’s. The composition is ho-
motopic to a map into S™ C K(Z,n) and this composition
S™ — S™ has degree one.

Consider the map R" — T" — S", where the last map is
the degree one map obtained by squeezing the complement
of the top cell to a point. The n-form representing the gen-
erator of H" (K (Z,n)) pulls back to a form cohomologous to
the volume form on S™ and, therefore to a closed form on 7™
cohomologous to a positive multiple of the volume form. This
pulls back to a closed form on R™ boundedly cohomologous
to a multiple of the volume form.

Suppose that the map R™ — Y is Lipschitz nullhomotopic.
The Lipschitz nullhomotopy can be approximated by a smooth
Lipschitz nullhomotopy. See, for example, [2]. By the proof of
the Poincaré lemma, this shows that the volume form on R" is
da for some bounded form «. This is easily seen to be impos-
sible by Stokes’ theorem, since the integral of the volume form
over an m X m X --- X m cube grows like m"™ in m, while the
integral of a over the boundary grows like m"™~!. This con-
tradiction shows that the composition R" — T" — S" — Y
is not Lipschitz nullhomotopic.

In case Y has nontrivial finite fundamental group, the uni-
versal cover Y is compact and simply connected. As above,
we assume that our map R™ — Y is Lipschitz nullhomotopic.

The Lipschitz nullhomotopy lifts to Y. Applying the argu-
ment above in Y produces a contradiction.

In [5], Block and Weinberger discuss uniformly finite cohomol-
ogy theory for manifolds of bounded geometry. This theory
uses cochains that are uniformly bounded on simplices in a
triangulation of finite complexity or, in the de Rham version,
uses k-forms that are uniformly bounded on k-tuples of unit
vectors. The argument above, then, shows that there is an
obstruction in this theory which must vanish in order for a
nullhomotopic map to be Lipschitz nullhomotopic. We will
develop this theory explicitly in a future paper.

Under favorable circumstances, it is also possible to use this
theory to construct Lipschitz nullhomotopies.

Theorem 2. Let M be a closed orientable manifold with non-
amenable fundamental group. Then the composition

M— M —S"

18 Lipschitz nullhomotopic. Here, M — S™ is the degree one
map obtained by crushing out the n — 1-skeleton of M and
sending the interior of one n-simplex homeomorphically onto
S™ — {x}, as in the proof of the first theorem. Everything else

goes to *. Conversely, if the fundamental group is amenable,
then this composite is not Lipschitz nullhomotopic.

Proof: Triangulate M by pulling up a triangulation of M. The
composition in the statement of the theorem gives an element
of the n** uniformly finite cohomology of M with coefficients
in m, (S™) = Z. There is a duality theorem stated in [5] to the

effect that the nt® uniformly finite cohomology of M is iso-
morphic to its 0" uniformly finite homology. One of the main
theorems of [4] says that the 0'" uniformly finite homology of
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the universal cover of a manifold is trivial if and only if the
fundamental group is non-amenable.

Since the proof of the duality theorem quoted above is previ-
ously undocumented, we outline a proof in the case we used.

Orient the cells of M, and therefore of M in such a way that
the sum of the positively oriented top dimensional cells is a
locally finite cycle. Consider the dual cell decomposition on

M. Each vertex in the dual cell complex is the barycenter of
a top dimensional cell, so we can assign an element of 7,(S™)
to each vertex in the dual complex. By the theorem from
[4] quoted above, this chain is the boundary of a uniformly
bounded 1-chain in the dual skeleton. Assigning the coeffi-
cient of each 1-simplex to the (n — 1)-cell it pierces, gives a
uniformly bounded cochain whose coboundary is the original
cocycle, up to sign, exactly as in the classical PL proof of
Poincaré duality.

It follows, then, that there is a uniformly bounded (n — 1)-
cochain whose coboundary is equal to the obstruction. One
uses this cochain exactly as in ordinary obstruction theory to
build a homotopy from the given composition to a constant
map. Since the maps used in the construction were chosen
from a finite collection, this nullhomotopy can be taken to be
globally Lipschitz.

The converse follows from the de Rham argument used in the
proof of theorem 1 applied to a Fglner sequence.

We note that the theory of homotopies h: that are Lipschitz
for every t is quite different from the theory of Lipschitz ho-
motopies. For instance, contracting the domain in itself shows
that every Lipschitz map R™ — S™ is nullhomotopic through
Lipschitz maps, while the construction in Theorem 1 shows
that such a map need not be Lipschitz nullhomotopic. In
fact, we have

Theorem 3. If M is a closed connected manifold with infinite
fundamental group, the map described in Theorem 2 is null-
homotopic through Lipschitz maps.

Proof: We may assume that M has dimension > 2, since the
circle is the only one-dimensional example and the theorem
is clearly true in this case. We may also assume that M is
1- or 2-ended, since Stallings’ structure theorem for ends of
groups implies that otherwise 71 (M) is nonamenable, [8]. We
will begin by assuming that M is 1-ended, which means that
for any compact C C M, there is a compact C C D C M
so that any two points in M — D are connected by an arc in
M — C. By induction, we can write M as a nested union of
compact sets C; C Ciy1, so that any two points in M — Cj41
are connected by an arc in M — C;. See figure 1.

Shrink the support of the map M — S™ to lie in a small ball
in the interior of a top-dimensional simplex. Here, by sup-
port, we mean the inverse image of S™ — {*}. Run a proper

ray out to infinity in the 1-skeleton of M, as in the proof of
Theorem 1 and connect the ray by a geodesic segment to the

Fig. 1: A one-ended manifold
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Fig. 2: The support of the degree one map is pushed to infin-
ity

center of a lift of the support ball. Smooth the ray by round-
ing angles in the 1-skeleton and thicken the ray to a map of

[0, c0) x D"t — M. Since there are only finitely many dif-
ferent angles in the 1-skeleton of M, we can assume that this

thickened ray has constant thickness larger than the diameter
of the lifted support ball.

Homotop the map M — S™ to a map which is constant on this
tube by pushing the support out to infinity during the interval
t € [0, 1/2]. This homotopy is Lipschitz for every t because it
is smooth and agrees with the original Lipschitz map outside a
compact set for every t. Repeat this construction for every lift
of the support ball, being careful to choose each ray so that if
the support ball lies in M — C;41, the ray lies in M — C; and
parameterizing these pushes to infinity to occur on intervals
[1/2, 3/4], [3/4, 7/8], etc. The resulting homotopies are con-
stant on larger and larger compact sets and converge to the
constant map when ¢ — 1. Note that the Lipschitz constants
of these Lipschitz maps are globally bounded. See figure 2.

The argument for the two-ended case is similar, except that
the complements of the C;’s will have two unbounded com-
ponents. One must be careful that for ¢ > 1 a ball which lies
in an unbounded component of M — C;4+1 should be pushed
to infinity in that component after dropping back no further
than into C; — Ci_1.

Remark 1. Calder and Siegel [6] have shown that if Y is a finite
complex with finite fundamental group, then for each n there
is a b so that if X is n-dimensional and f, g : X — Y are ho-
motopic maps, then there is a homotopy ht from f to g so that
the path {hi(z)|0 < t < 1} 4s b-Lipschitz for every x € X.
In the case of our map R? — S2, such a homotopy can be
obtained by lifting to S° via the Hopf map and contracting the
image along geodesics emanating from a point not in the im-
age of R?. One way to prove the general case uses a construc-
tion from [9]. IfY is a finite simplicial complex with finite
fundamental group, given n > 0, Theorem 2 of [9] produces
a PL map q from a contractible finite polyhedron to Y that
has the approzimate lifting property for n-dimensional spaces.
Taking a regular neighborhood in some high-dimensional eu-
clidean space gives a space PL homeomorphic to a standard
ball. Composing q with this PL homeomorphism and the regu-
lar neighborhood collapse gives a PL map from a standard ball
PL ball, B, to Y which has the approximate lifting property
for n-dimensional spaces. If dimX <nand f: X — Y isa
nullhomotopic map, there is a map f : X — B so thatpo f
is e-close to f, with € as small as we like. Coning off in B
gives a nullhomotopy in B with lengths of paths bounded by
the diameter of B. Composing with p gives a nullhomotopy of
f where the lengths of the tracks of the homotopy are bounded
by the diameter of B times the Lipschitz constant of p.
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Thus, in our construction M — M — S™, we can achieve
Lipschitz nullhomotopies in the t-direction whenever n > 2

and Lipschitz nullhomotopies in the M -direction whenever the
fundamental group of M is infinite, but we can achieve both
simultaneously if and only if the fundamental group of M is
nonamenable.

Remark 2. As mentioned in the introduction, for geometric ap-
plications it is much more useful to have Lipschitz homotopies
than homotopies through Lipschitz maps. However, as pointed
out in [19], pp. 102-104, it is possible to turn the latter into
the former at the cost of increasing the length of time the
homotopy takes. More precisely, if one is a situation where
any two e-close maps are homotopic, then the length of the
homotopy does not have to be any larger than the number of
e-balls it takes to cover the space of maps with Lipschitz con-
stant at most CL. In our situation, if X is compact and
d-dimensional, then this observation would allow a Lipschitz

homotopy that is roughly of size el Our examples of homo-
topic Lipschitz maps that are not at all Lipschitz homotopic
thus, of course, require the noncompactness of the domain.

Some remarks on Isotopy classes.

If X and Y are manifolds, then we can consider analo-
gous problems for embeddings rather than just maps. In
his seminal paper [10], Gromov used Haefliger’s reduction of
metastable embedding theory to homotopy theory (i.e. the
theory of embeddings M — N when the dimensions satisfy
2n > 3m + 2) to show that a bound on the bi-Lipschitz con-
stant of an embedding cuts the possible number of isotopy
classes down to a finite (polynomial) number when the target
is simply connected.

In general he pointed out that because of the existence of Hae-
fliger knots, that is infinite families of smooth embeddings of
G4k=1 < §6% there are infinite smooth families with a bound
on the bi-Lipschitz constant.

It is possible to continue this line of thought into much lower
codimension with the following theorems, by changing the
categories. See figure 3. The picture represents a sequence
of Haefliger-knotted spheres with bi-Lipschitz convergence to
an embedding which is bi-Lipschitz but not C'. If the Hae-
fliger knots are replaced by ordinary codimension two knots,
this becomes an example showing that Theorem 4 is false in
codimension 2.

Theorem 4. The number of topological isotopy classes of em-
beddings of M — N represented by locally flat embeddings with
a given bi-Lipschitz constant is finite whenever m — n # 2.

/
%7‘

Fig. 3: The Lipschitz norm is uniformly bounded, yet the C*
norm necessarily grows

g
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This is proved in codimension > 2 in J. Maher’s University
of Chicago thesis [13] by using the Browder-Casson-Haefliger-
Sullivan-Wall analysis of topological embeddings in terms of
Poincaré embeddings (see [18]) together with the observation
that any such embedding will be topologically locally flat us-
ing the 1-LC flattening theorem, [7], corollary 5.7.3, p. 261,
and the fact that the image has Hausdorff codimension at least
3. More precisely, let {f;} be a sequence of K-bi-Lipschitz
embeddings. Using Arzela-Ascoli we can extract a convergent
subsequence that remains K-bi-Lipschitz. Since the codimen-
sion is at least three, this image with have Hausdorff codimen-
sion 3, and therefore will be 1-L.C, as observed by Siebenmann
and Sullivan in [16]. All the f; sufficiently C° close to this
limit will be topologically isotopic to it because they induce
the same Poincaré embedding. In codimension 1, a similar ar-
gument works, except that the limit cannot be assumed to be
locally flat. However, by theorem 7.3.1 of Davermann-Venema
[7], any two locally flat embeddings C° close enough to the
limit must be isotopic, so the conclusion follows in this case,
as well.

Theorem 5. The same is true in the smooth category (in all
codimensions) if one bounds the C* norms of the embeddings.

A linear homotopy between sufficiently C'-close C' embed-
dings gives an isotopy of embeddings which extends to an
ambient isotopy. Thus, a sequence of C? embeddings which
C' converges contains only finitely many topological isotopy
classes of embeddings.

Both of these theorems then give rise to interesting quanti-
tative questions, both in terms of bounding the number of
embeddings and also in terms of understanding how large the
Lipschitz constants must grow during the course of an isotopy.

At the moment, unlike the situation for maps, we do not even
see any effective bounds on the number of isotopy classes.
Nevertheless, based on Gromov’s ideas, the following conjec-
ture seems plausible:

Conjecture 6. If N is simply connected, and dim M < dim N -
2, then the number of L-bi-Lipschitz isotopy classes of em-
beddings of M in N grows like a polynomial in L. Further-
more, there is a C so that any two such embeddings that are
isotopic are isotopic by an isotopic through CL-bi-Lipschitz
embeddings.
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A very interesting case suggested by the techniques of this
paper is the following:

Proposition 7. Let X" be a rational homology sphere. Then the
number of isotopy classes of topological bi-Lipschitz embed-
dings of X" in S"* is finite for k > 2.

The finiteness follows from considerations about Poincaré em-
beddings. Standard facts about spherical fibrations give finite-
ness of the normal data, and Alexander duality enormously
restricts the homology of the complement. The number of ho-
motopy types is readily bounded via analysis of k-invariants to
be at most a tower of exponentials where the critical param-
eter is the size of the torsion homology, and then obstruction
theory allows only finitely many possibilities for each of these
(when taking into account that the total space of this Poincaré
embedding is a homotopy sphere).

We note that the homotopy theory of this situation can be
studied one prime at a time using a suitable pullback dia-
gram. For large enough primes, the issues involved resemble
rational homotopy theory — the core homotopical underpin-
ning of Gromov’s paper [10]. This gives us some hope that
this special case of Conjecture 5 might be accessible.

We now turn to the case of hypersurfaces: dim M = dim N—1.

Remarks

1. For codimension two embeddings of the sphere, [14] shows
that one cannot tell whether a C? knot is isotopic to the
unknot. Therefore there is no computable function that
can bound the size of an isotopy.

2. By taking tubular neighborhoods, this gives an analogous
result for S* x S™72 in 8™, for n > 4.

3. Perhaps more interesting from the point of view of this pa-
per is that the same holds true in the smooth setting even
if the hypersurface has nontrivial finite fundamental group
by [17], pp. 83-85, so that finiteness of a homotopy group
is not enough to give a quantitative estimate on the size
of an isotopy. It still seems possible that a version of con-
jecture 5 can saved for embeddings in codimension 1 that
are “incompressible”, i.e. that induce injections on their
fundamental group.
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