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An infinite-dimensional phenomenon in

finite-dimensional metric topology

Alexander N. Dranishnikov∗ , Steven C. Ferry
and Shmuel Weinberger†

Abstract: We show that there are homotopy equivalences h : N → M
between closed manifolds which are induced by cell-like maps p : N → X
and q : M → X but which are not homotopic to homeomorphisms. The
phenomenon is based on the construction of cell-like maps that kill certain
L-classes. The image space in these constructions is necessarily infinite-
dimensional. In dimension > 5 we classify all such homotopy equivalences.
As an application, we show that such homotopy equivalences are realized
by deformations of Riemannian manifolds in Gromov-Hausdorff space pre-
serving a contractibility function.
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1. Introduction

The authors were led to the questions studied in this paper by two different
routes. The first route was via a quest to understand precompact subsets of
Riemannian manifolds in Gromov-Hausdorff space, while the second arose via
our efforts to understand cell-like maps, homology manifolds, and topological
resolutions. Connecting these problems to each other led to a new functorial
subgroup of the structure group of topological surgery theory and to examples
casting light on both of these problems.

Beginning with the first question, recall that the Gromov-Hausdorff metric is
a complete metric on the isomorphism classes of compact metric spaces. The
Gromov-Hausdorff distance from a metric space X to the one-point metric space
P is diam(X)/2, so Gromov-Hausdorff closeness imposes little connection be-
tween the topologies of compact metric spaces.

However, if one assumes a uniform local contractibility condition, then much
more structure is preserved. Let ρ : [0, R)→ [0,∞) be a function with ρ(0) = 0
and ρ(t) ≥ t, such that ρ is continuous at 0. Following Borsuk [10] and Gromov
[36], we say that X is LGC(ρ) if every ball of radius r < R in X is nullhomotopic
in the concentric ball of radius ρ(r). This is a generalization of the idea of
injectivity radius for Riemannian manifolds. Sufficiently Gromov-Hausdorff close
n-dimensional LGC(ρ) spaces are homotopy equivalent – and there are explicit
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estimates on the required degree of closeness in terms of n and ρ. See [10] and
especially the theorem on p. 392 of [62].

A theorem of Chapman and Ferry [17] implies that if M is a closed n-manifold
with a fixed topological metric, n ≥ 5,1 with contractibility function ρ then
there is an ε > 0 such that any LGC(ρ) n-manifold within ε of M in Gromov-
Hausdorff space is homeomorphic to it. A natural question is whether we can
make this relationship depend solely on ρ and n? If the answer were yes, one
would obtain a straightforward explanation of the following result of Ferry, [27].

Theorem For every n and contractibility function ρ, precompact collections of
closed LGC(ρ) Riemannian manifolds in Gromov-Hausdorff space contain only
finitely many homeomorphism types. (Here again, dimensions 3 and 4 are due
to Perelman [61] and Freedman-Quinn [34].)

If the ε above depended only on n and ρ, we could cover a given precompact
space by finitely many ε-balls and each of these balls would contain a unique
homeomorphism type, giving us our finiteness result. This strategy is correct
with respect to homotopy types, as mentioned above, and for simple homotopy
types and rational Pontrjagin classes, as shown in [27], but it fails for homeo-
morphism types. It can happen that for certain precompact collections of closed
Riemannian manifolds with contractibility function ρ, there are limit points X
with the property that every ε neighborhood of X contains manifolds of differ-
ent homeomorphism types. This only happens when the limit points in question
are infinite-dimensional spaces with finite cohomological dimension.

The most straightforward way to detect this phenomenon is via the symbol of
the signature operator on a Riemannian manifold. This lies in KO∗(M). (By
work of Sullivan and Teleman, this makes sense for topological manifolds, except
in dimension 4.) We will show that for n ≥ 6, there exist ρ and arbitrarily close
n-manifolds in a suitably chosen precompact subset of LGC(ρ) whose symbols
can differ by any given odd torsion element of KO∗(M).

Definition.

1. We will say M deforms to N with contractibility function ρ if there are
paths Mt and Nt, 0 ≤ t < 1, M = M0 and N = N0, in a precompact subset
of Gromov-Hausdorff space consisting of manifolds with contractibility
function ρ such that the Gromov-Hausdorff distance between Mt and Nt
goes to zero as t approaches 1. Note that this definition is symmetric in
M and N .

2. If we allow ρ to vary, we obtain an equivalence relation called deformation
equivalence where M is deformation equivalent to N if there is a closed
manifold P such that M deforms to P and P deforms to N . Theorem 2.7
implies that in this case M also deforms to N with some contractibility
function ρ̄, so deformation equivalence is an equivalence relation.

1This theorem is also true in the remaining dimensions < 5 by work of Freedman-Quinn
and Perelman.
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The notion of deformation in part (1) of the definition above arose naturally in
differential geometry. See [36], [37], [38], [39].

Theorem 1. If Mm, m ≥ 6, is a closed simply connected manifold such that
π2(M) is finite, then there are manifolds M̄ which are deformation equivalent
to M in some precompact collection of LGC(ρ)-manifolds for some ρ if and only
if KOm(M) has odd torsion. Indeed, for each odd torsion class τ in KOm(M)
there is a unique homotopy equivalence f : N → M which is realized by a
deformation and whose signature operator differs from that of M by τ . This
gives many examples – for instance between S3-bundles over S4. See Proposition
2.16.

For the general non-simply-connected-or-π2-not-finite situation, there are sec-
ondary invariants that arise in the problem. These invariants are related to η
invariants, except that the familiar Atiyah-Patodi-Singer η invariants usually
give rise to torsion-free invariants, and the generalization we need must contain
torsion information. We shall give a complete analysis of the deformation prob-
lem for dimensions ≥ 6 in Theorem 2.7.2 We mention here some consequences
and examples:

Definition. If M is a closed n-manifold, a homotopy structure on M is a homo-
topy equivalence f : N → M from another closed n-manifold to M . Homotopy
structures f and f ′ : N ′ → M are equivalent if there is a homeomorphism
Φ : N ′ → N so that f ◦Φ is homotopic to f ′. The set of homotopy structures on
M is denoted by S(M). S(M) is an abelian group, the abelian group structure
being obtained geometrically, through Siebenmann Periodicity, or algebraically
through work of Ranicki.

Theorem 2. For any closed n-manifold M , the set of homotopy structures
f : M ′ →M that are obtainable by deformations in some precompact subset of
LGC(ρ) manifolds in Gromov-Hausdorff space defines a subset SCE(M) that is
an odd torsion subgroup of the structure group S(M).

This notation will be explained below.

Theorem 3. If the Farrell-Jones conjecture is true for Γ and EΓ is equivariantly
finite, then SCE(M) is finite for any M with fundamental group Γ. In particular,
if M has word hyperbolic fundamental group, or has fundamental group that is
a lattice is a semisimple Lie group, then SCE(M) is finite.

Theorem 3 depends on the work of Farrell and Jones [26], Bartels and Lück
[6], and Kammeyer-Lück-Rüping [43] on the Farrell-Jones conjecture3. See the

2Our construction requires us to embed a certain 3-dimensional metric space into M .
In dimensions ≥ 7, this is similar to the technique used in [21] to study large Riemannian
manifolds and disprove a variant of the Novikov Conjecture. In dimension 6, a good deal of
extra care is required to ensure embeddibility.

3The Borel Conjecture is the torsion-free version of the Farrell-Jones conjecture. Originally,
the Borel Conjecture proposed that closed aspherical manifolds with isomorphic fundamental
groups should be homeomorphic. It has since been generalized to Farrell-Jones, which includes
groups with torsion.
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discussion following Corollary 2.8.

Theorem 4. There is a closed M such that SCE(M) is infinite.

This theorem is in sharp contrast with Ferry’s theorem mentioned above. The
resolution of this tension is that for any given ρ only a finite subset (no reason to
believe it is a subgroup!) of S(M) occurs. By varying ρ we obtain this plenitude
of deformations.

The fundamental group involved in Theorem 4 is linear, being one of the sub-
groups of right angled Artin groups, studied in [9] and [51]. The invariant that
detects infinitely many homeomorphism types is based on a modification of the
theory of higher rho invariants of [74].

The Borel conjecture is currently unresolved in its full generality, so the following
corollary to our analysis is especially gratifying.

Theorem 5. If Mn, n ≥ 6, is closed aspherical then SCE(M) = 0.

We now turn to the second source of motivation, which is the direction from
which our proofs develop. The theorem of Chapman and Ferry mentioned earlier
implies that the limit points of manifolds in Gromov-Hausdorff space which are
limits of more than one topological type are not manifolds. In this case, it turns
out that the limit points are infinite-dimensional homology manifolds with finite
cohomological dimension. The possibility of infinite dimensional limit points in
a precompact subset of Gromov-Hausdorff space was established by T. Moore
in [57], based on work of the first author [18] and R. D. Edwards [72].

Definition.

(i) A compact subset X of an n-manifold Mn is said to be cell-like if for every
open neighborhood U of X in Mn, the inclusion X → U is nullhomotopic.
This is a topological property of X [48] and is the Čech analogue of “con-
tractible”. The space sin(1/x)-with-a-bar is an example of a cell-like set
which is not contractible.

(ii) A map f : Y → Z between compact metric spaces is cell-like or CE if
for each z ∈ Z, f−1(z) is cell-like. The empty set is not considered to be
cell-like, so cell-like maps must be surjective.

Cell-like maps with domain a compact manifold or finite polyhedron are weak
homotopy equivalences over every open subset of the range [47, 49]. That is,
if c : M → X is cell-like, then for every open U ⊂ X, c|c−1(U) : c−1(U) → U
is a weak homotopy equivalence. The Vietoris-Begle Theorem implies that the
range space of such a cell-like map always has finite cohomological dimension. If
the range has finite covering dimension, then c is a homotopy equivalence over
every open set.

When X is infinite-dimensional, the range X need not have the homotopy type
of a CW complex and f need not be a homotopy equivalence.
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The first example of this sort was given by J. Taylor in [69], exploiting maps
discovered by J. F. Adams [2] that go from an iterated suspension of a Moore
space to the Moore space. These maps are zero 0 on reduced homology, yet
induce an isomorphism on (nontrivial) complex K-theory.

Taylor’s examples have infinite-dimensional domain and range. Cell-like maps
with finite dimensional domain and infinite dimensional range were constructed
by the first author in [18], using a result of Edwards [72]. The resulting cell-like
images have paradoxical properties. If f : M → X is a CE map with infinite-
dimensional range, the classical Vietoris-Begle Theorem shows that X neverthe-
less has finite cohomological dimension and that X can contain no finite dimen-
sional subsets of dimension exceeding the dimension of M . The map f induces
isomorphisms on any connective homology theory [30] but need not induce iso-
morphisms on periodic K and L theories. We will have particular interest in cell-
like maps f : Mn → X such that the induced map f# : KOn(M) → KOn(X)
has kernel.

Section 2 reviews information about cell-like maps and classical surgery. This
section also contains statements of our main results and sets the stage for the
work to follow. It also contains detailed calculations for several classes of mani-
folds. Section 3 contains the details of the construction of useful cell-like maps
from manifolds to compact metric spaces. The main theorems are proved in
sections 4 and 5, using controlled surgery over these cell-like images. Finally
in section 6 this is related to LGC(ρ) subsets of Gromov-Hausdorff space as
well other natural geometric questions (such as the existence of a topological
injectivity function for deformations). The proof of this connection depends on
our main theorem that constructs CE maps and, therefore, deformations. At the
end, we discuss a modification of the higher ρ-invariants that contains enough
torsion information to give the examples in Theorem 4.

Our work leaves open the following question:

Question 1.1. Can nonhomeomorphic Riemannian manifolds M and M ′ be
deformed to each other in a precompact subset of Gromov-Hausdorff space,
respecting a contractibility function as above, while maintaining an upper bound
on volume? Greene and Petersen [35] have shown that this cannot happen in
the presence of an upper bound on volume for certain contractibility functions

2. Surgery and cell-like maps

We begin by formulating a useful lifting property of cell-like maps:

LIFTING PROPERTY: Let f : M → X be a cell-like map with M an absolute
neighborhood retract.4 Given a space W with dimW < ∞, ε > 0, a closed
subset A ⊂ W , a map g : W → X, and a map h : A → M with f ◦ h = g|A,

4If M is compact metric with finite covering dimension, M is an absolute neighborhood
retract ≡ ANR if and only if it is locally contractible.
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there is a map h̄ : W → M extending h such that g is ε-homotopic to f ◦ h̄ rel
A:

A
h //

_�

��

M

f

��
W

g //

h̄

77

X.

See [47, 49] for details. Note that the upper triangle is strictly commutative
while the lower triangle is ε homotopy commutative.

Definition 2.1. A homotopy equivalence f : N →M between closed manifolds
is realized by cell-like maps if there exist a space X and cell-like maps c1 : N →
X, c2 : M → X so that the diagram

N
f //

CE   

M

CE~~
X

homotopy commutes. We will also say that f factors through cell-like maps and
we will call closed manifolds N and M satisfying this property CE-related.

In view of the lifting property, every pair of cell-like maps c1 : N → X, c2 : M →
X induces a homotopy equivalence f : N →M . Relative lifting implies that the
induced homotopy equivalence is unique up to homotopy. If dimX < ∞ and
n ≥ 5, Quinn’s uniqueness of resolutions theorem asserts that this homotopy
equivalence is homotopic to a homeomorphism. See [63], Prop 3.2.3. In case the
range space X is infinite dimensional the uniqueness of resolutions need not
hold and the induced map f need not be homotopic to a homeomorphism.

Two simple homotopy equivalences of manifolds f1 : N1 →M and f2 : N2 →M
are called equivalent if there is a homeomorphism h : N1 → N2 such that
f2 ◦h is homotopic to f1. We recall that the set Ss(M) of equivalence classes of
simple homotopy equivalences f : N →M is called the set of simple topological
structures on M . The structure set Ss(M) is functorial and has an abelian
group structure defined either by Siebenmann periodicity [46] or by algebraic
surgery theory [64]. Ranicki’s theory gives the induced homomorphism formula
for topological structures [65]:

Proposition 2.2. Let Mn be a closed topological n-manifold, n ≥ 5 and let h :
M → N be a simple homotopy equivalence, [h] ∈ Ss(N). Then the isomorphism
h∗ : Ss(M)→ Ss(N) is defined by the formula

h∗([f ]) = [h ◦ f ]− [h].

The structure set Sh is defined similarly, using homotopy equivalences and re-
placing the relation of homeomorphism by h-cobordism. The next proposition
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shows that the homotopy equivalences arising most naturally in this paper are
simple. We will omit the decorations unless we explicitly wish to study Sh.
Similarly, L will be an abbreviation for Ls.

Proposition 2.3. A homotopy equivalence f : M → N that factors through
cell-like maps is a simple homotopy equivalence.

Proof. Let p : M → X and q : N → X be cell-like maps such that f is a
homotopy lift of p with respect q. Theorem D of [29] states that there is a
simple homotopy equivalence g : M → N such that p is homotopic to q ◦ g. As
noted above, f is homotopic to g. This implies the equality of the Whitehead
torsions: τ(f) = τ(g) = 0. Hence f is a simple homotopy equivalence.

We denote the subset of structures realized by cell-like maps by SCE(M) ⊂
S(M).

Theorem 2.4. Let Mn be a closed simply connected topological n-manifold with
finite π2(M), n > 5. Then SCE(M) is the odd torsion subgroup of S(M).

The proof of Theorem 2.4 follows Corollary 4.6.

Remark 2.5. On page 531 of [50], Lacher asks whether two closed manifolds
that admit CE maps to the same space X must be homeomorphic. The theorem
above shows that the answer to his question is “no” when X is allowed to be
infinite-dimensional. See Corollary 2.15 below for an example.

We recall the Sullivan-Wall surgery exact sequence [70] for closed orientable
high-dimensional topological manifolds:

· · · // Ln+1(Zπ1(M)) // S(M)
η // [M,G/TOP]

θ // Ln(Zπ1(M)) (1)

The map η is called the normal invariant and the homomorphism θ is called the
surgery obstruction. The Sullivan-Wall surgery exact sequence was extended by
Quinn and Ranicki5 to the functorial exact sequence of abelian groups below:

· · · // Ln+1(Zπ1(M)) // Sn(M)
η′// Hn(M ;L)

θ′//// Ln(Zπ1(M)) // · · · (2)

whereHn(M ;L) = H0(M ;L) = [M,G/TOP×Z], S(M) ⊂ Sn(M), and η′|S(M) =
η. The homomorphism θ′ is called the assembly map for M . This sequence is
defined and functorial when M is a finite polyhedron. This was extended to
arbitrary CW complexes in [76]. See also [74], page 89. We write Ln = Ln(Z)
and recall that Ln = Z if n = 4k, Ln = Z/2 if n = 4k + 2, and Ln = 0 for odd
n.

5Our notation differs from Ranicki’s in that we’ve shifted the index on the structure set
by one and omitted a bar over S.
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In general, Ranicki’s algebraic surgery functor gives us a long exact sequence

· · · → Sn(P, Q)→ Hn(P, Q;L)→ Ln(Zπ1P, Zπ1Q)→ · · ·

for any CW pair (P, Q). If P happens to be a compact n-dimensional manifold
with nonempty boundary Q, then Sn(P ) is the usual rel boundary structure
set.6

In the closed connected case, Sn(P ) differs from the usual geometrically defined
structure set by at most a Z. We also have a long exact sequence

· · · → Sn+1(P, Q)→ Sn(Q)→ Sn(P )→ Sn(P, Q)→ · · ·

where for an n-dimensional manifold with nonempty boundary (P, ∂P ), Sn(P, ∂P )
is the not rel boundary structure set.

All of these sequences are 4-periodic. If Q→ P induces an isomorphism on π1,
then Sk(P,Q) ∼= Hk(P, Q;L) because the Wall groups L∗(Zπ1P, Zπ1Q) are zero
by Wall’s π−π Theorem. See Corollary 3.1.1 [70] . Composing this isomorphism
with the boundary map in Ranicki’s exact sequence, we have a homomorphism
∂′ : Hk+1(P, Q;L)→ Sk(Q). For a closed connected n-manifold there is a split
monomorphism

0 // S(M)
i // Sn(M) // Z . (3)

To state the main theorem for closed connected non-simply connected manifolds
we need the following.

Definition 2.6. If K is a CW complex, let P2(K) be the CW complex obtained
fromK by attaching cells in dimensions 4 and higher to kill the homotopy groups
of K in dimensions 3 and above. Thus, K ⊂ P2(K), πi(P2(K)) = 0 for i ≥ 3,
and P2(K)−K consists of cells of dimension ≥ 4. Note that P2(K) will not, in
general, be a finite complex. The space P2(K) is called the second stage of the
Postnikov tower of K.

Let M be a closed n-manifold. We denote by

δ : Hn+1(P2(M),M ;L)→ S(M)

the composition:

Hn+1(P2(M),M ;L) ∼= Sn+1(P2(M),M)
∂→ Sn(M)

p→ S(M).

where p is any splitting of i.

6In particular, our notation for a manifold with boundary (M,∂M) has Sn(M,∂M) denot-
ing structures on the pair (M,∂M) and does not indicate structures on M rel ∂M . Restriction
gives a natural boundary map Sn(M,∂M)→ Sn−1(∂M).
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Let φ : A→ B be a homomorphism of abelian groups. By φT : T(A)→ T(B) we
denote the restriction φ|T(A) of φ to the torsion subgroups and by φ[q] : A[q] →
B[q] we denote the localization of φ away from q.

Here is our main theorem for non-simply connected manifolds.

Theorem 2.7. Let Mn be a closed topological n-manifold, n > 5. Then

SCE(M) = im(δT[2]).

In particular, SCE(M) is a subgroup of the odd torsion of S(M).7 8

For the remainder of Section 2 we will derive consequences of Theorem 2.7, which
is proven following Proposition 5.4. Since torsion elements of Sn(M) lie in the
kernel of the map Sn(M) → Z, ∂ maps T (Sn+1(P2(M),M)) into T (S(M)) ≡
T (Sn(M)), so im(δT[2]) is independent of the choice of the splitting p. Since the

study of SCE(M) reduces to an analysis of odd torsion, we can invert 2 in
most of our applications. This allows us to omit decorations on L-groups and
structure sets.

Corollary 2.8. If Ln+1(π1(M)) has finitely generated odd torsion, then SCEn (M)
is finite.

Proof. Examination of the surgery exact sequence

Hn+1(M ;L) // Ln+1(π1(M)) // Sn(M) // Hn(M ;L)

together with the observation that the L-homology terms are finitely generated,
shows that the odd torsion subgroup of Sn(M) is finite.

This implies Theorem 3. The Farrell-Jones conjecture for L(Γ)⊗Z[ 1
2 ] only makes

use of the equivariant homotopy theory of EΓ = the classifying space for proper
Γ-actions. For a lattice, K\G/Γ is finite (by the Borel-Serre compactification)
and similarly the Rips complex is a suitable space when Γ is hyperbolic [58]. In
these cases, the Farrell-Jones conjecture is affirmed (even integrally) in [43], [6]
and [7].

Corollary 2.9. Let f∗ : S(M) → S(N) be the induced homomorphism for a
continuous map f : M → N between two closed n-manifolds, n > 5. Then
f∗(SCE(M)) ⊂ SCE(N).

7Using results of [11] and [3], one sees that replacing P2(M) by Pk(M), k ≥ 2, would not
not change im(δT

[2]
).

8An important step in the proof of Theorem 2.7 consists of showing that if an odd torsion
element α ∈ Hn(M ;L) dies under the inclusion M → P2(M), then there is a CE map f :
M → X such that f∗(α) = 0 in Steenrod L-homology. Since 2-local L-homology is Eilenberg-
MacLane, see Remark 4.36 of [52] and Proposition 6.8, the Vietoris-Begle theorem says that
2-torsion cannot be killed by cell-like maps.



Dranishnikov, Ferry, and Weinberger/An infinite-dimensional phenomenon 10

Proof. We have a commuting diagram

Sn+1(P2(M),M) //

f∗

��

S(M)

f∗

��
Sn+1(P2(N), N) // S(N)

from which the result follows immediately.

Corollary 2.10. Let n ≥ 6 and let f : N → M be a homotopy equivalence
between closed n-manifolds that is realized by cell-like maps. Then f preserves
rational Pontrjagin classes.

Proof. This is Remark 1.7 of [28]. Rationally, the group of normal invariants is
isomorphic to 4-periodic rational cohomology. Under this isomorphism, a nor-
mal invariant corresponds to the difference of the L-polynomials. Since the L-
polynomials agree, the rational Pontrjagin classes also agree.

Corollary 2.11. Being CE-related is an equivalence relation on closed n-manifolds,
n > 5.

Proof. We prove transitivity. Let M1 be CE-related to M2 and M2 CE-related
to M3. Let h1 : M1 → M2 and h2 : M2 → M3 be corresponding homotopy
equivalences. It suffices to show that the composition h2 ◦ h1 is realized by cell-
like maps. In view of Corollary 2.9 we have (h2)∗([h1]) ∈ SCE(M3) and hence
by the formula for the induced homomorphism (Proposition 2.2 ) we obtain that
[h2 ◦ h1] = [h2] + (h2)∗([h1]) ∈ SCE(M3) .

We will refer to a manifold that admits a nontrivial deformation as being “mal-
leable”. Manifolds which are not malleable are “immutable”. In special cases, it
is not hard to understand the map Hn+1(P2(M),M ;L) → S(M) well enough
to get concrete “immutability” and “malleability” results. We begin with two
typical immutability statements:

Corollary 2.12. If Mn is a closed manifold with n ≥ 6 and either

(i) M is aspherical, or
(ii) M is homotopy equivalent to a complex projective space, or

(iii) M is homotopy equivalent to a lens space,

then any homotopy equivalence f : N → M that factors through cell-like maps
is homotopic to a homeomorphism.

Proof. If M is aspherical, then M = P2(M) and Hn+1(P2(M),M ;L) = 0, so
structures in the image of Hn+1(P2(M),M ;L) = 0 are trivial.

If M is homotopy equivalent to CP k, then P2(M) = CP∞. But

Hn+1(CP∞,CP k;L) = lim
`→∞

Hn+1(CP `,CP k;L)
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which has no odd torsion, so no nontrivial element of S(M) can be the image
of an odd torsion element. See Lemma 2.13 below.

If M is homotopy equivalent to a 2k−1-dimensional lens space, then P2(M) is an
infinite dimensional lens space, constructed by attaching one cell in each dimen-
sion 2k and above to M . It’s straightforward to write down the chain complex
for C∗(P2(M),M) and compute the integral homology. A quick calculation using
the Atiyah-Hirzebruch spectral sequence shows that H2k(P2(M),M ; L) = Z, so
M is immutable.

Lemma 2.13. If (K,L) is a CW pair and H∗(K,L;Z) has no odd torsion, then
H∗(K,L;L) has no odd torsion.

Proof. For CW pairs, Hn(K,L;L) ⊗ Q ∼=
⊕

kHn−4k(K,L;Q). Comparing this
to the Atiyah-Hirzebruch spectral sequence gives the result, since there can be
no nonzero differentials between terms of the form Hp(K,L;L4k) on the E2-
page.

Corollary 2.14. It follows that all simply connected manifolds with finite π2

and no odd torsion in homology are immutable in the sense of Corollary 2.12.

Here is a simple example of malleability.

Corollary 2.15. There are closed nonhomeomorphic 6-dimensional manifolds
M and N which are CE-related.

Proof. Let p ≥ 5 be a prime number. By general position, the Moore complex
P = S1∪pB2 can be PL-embedded in R6. Suspending embeds P ′ = S2∪pB3 into
R7. Let W be a regular neighborhood of P ′ in R7 and let ∂W = M . The manifold
M is stably parallelizable because it is a closed codimension one submanifold
of euclidean space R7. Clearly, M is simply connected. By Lefschetz duality,
H2(W,M) = H5(W ) = H5(P ′) = 0 and H3(W,M) = H4(W ) = H4(P ′) = 0.
The exact sequence of the pair (W,M) implies H2(M) = Z/p.

By the Atiyah-Hirzebruch spectral sequence H2(M ;L) ∼= Z/p. Choose a non-
trivial p-torsion element α ∈ H6(M ;L) ∼= H2(M ;L).

The Sullivan-Wall and the Quinn-Ranicki exact sequences form a commuta-
tive diagram

S(M)
η //

⊂
��

[M ; G/TOP ]

D

��

// Z/2

=

��
0 // S6(M)

η′ // H6(M,L) // Z/2.

Let β = η̄′−1(α). Since β is a torsion element, β ∈ S(M) ⊂ S6(M). Thus, by
Theorem 2.4, β defines a homotopy equivalence f : N → M that belongs to
SCE(M). It remains to show that N is not homeomorphic to M .

We show that N has a nontrivial topological stable normal bundle. Since
Dη(β) = α 6= 0, we have η(β) = [γ] 6= 0 for some map γ : M → G/TOP . The
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class [γ] represents the difference between topological stable normal bundles on
M and N which are defined by two lifts νM : M → BTOP and σ : M → BTOP
of the Spivak map M → BG with respect to the fibration p : BTOP → BG.
Here νM denotes a classifying map for the topological stable normal bundle on
M . Note that νN = σ ◦f . Thus, the lifts νM and σ are not fiberwise homotopic.
We need to show that νM and σ are not homotopic in BTOP .

Since the stable normal bundle of M is trivial, the map νM : M → BTOP is
nullhomotopic. Note that the map σ is homotopic to i ◦ γ where i : G/TOP →
BTOP is the inclusion of the fiber into the total space of the fibration p. We
recall that the groups πi(BG) = πi−1(G) = πsi−1 are 2 and 3 torsion for i ≤ 8.
The homotopy exact sequence of the fibration p implies that after inverting
2 and 3 the inclusion i is an 8-equivalence. Therefore, the map i ◦ γ is not
nullhomotopic.

Thus, νN is not nullhomotopic, the topological stable normal bundle of N is
nontrivial and, hence, N is not homeomorphic to M .

Thanks to Diarmuid Crowley for pointing out malleable examples in which both
M and N are smooth 3-sphere bundles over S4.

Proposition 2.16. There are nonhomeomorphic S3-bundles over S4 which are
equivalent under deformation.

Proof. π3(SO(4)) ∼= Z ⊕ Z, so 3-sphere bundles over S4 are classified by pairs
of integers (m,n) corresponding to elements mσ + nρ ∈ π3(SO(4)) with re-
spect to generators σ, ρ introduced by James and Whitehead and described
in [16]. If Mm,n is the sphere bundle corresponding to mσ + nρ, we have
H4(Mm,n) ∼= Z/n and the only other nonvanishing cohomology groups are
H0(Mm,n) ∼= H7(Mm,n) ∼= Z.

The paper [16] gives a complete classification of these manifolds up to homo-
topy equivalence, homeomorphism, and diffeomorphism and includes a com-
putation of normal invariants of homotopy equivalences between nonhomeo-
morphic manifolds, allowing a complete classification of these manifolds up to
deformation. The classification is somewhat lengthy to write down, however, so
we content ourselves with a simple example. There are homotopy equivalences
fp : M0,p → M12,p for all integers p. According to Proposition 2.1 of [16], the
normal invariant of fp is 1, which implies that M0,p deforms to M12,p. In case
p ≡ 3 mod 4 is a prime, Corollary 1.3 of [16] shows that M0,p and M12,p are
not homeomorphic.

We remind the reader that this means that there exist a contractibility function
ρ : [0, R)→ [0, ∞) and precompact families of Riemannian metrics M0,p,t and
M12,p,t with 0 < t ≤ 1 such that ρ is a contractibility function for each of these
metrics and such that limt→0 dGH(M0,p,t,M12,p,t) = 0. As t approaches 1, M0,p,t

and M12,p,t are homotopy equivalent with control going to zero. Crossing with
CP2, gives examples with a topological injectivity function.9

9See Definition 6.1.
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Proposition 2.17. For the M of Corollary 2.15 we have SCE(M) ∼= Z/p⊕Z/p.

Proof. H7(M ;L•) ∼= [M ; G/TOP] and H̄7(M ;L) ∼= [M, ∗; G/TOP×Z, ∗], so

S(M) = SCE(M) = H7(M ;L•) ∼= H̄7(M ;L) ∼= Z/p⊕ Z/p.

Crossing with a sphere produces further examples of malleability.

Corollary 2.18. (i.) If f : M ′ → M is a simple-homotopy equivalence be-
tween closed n-manifolds with odd order normal invariant in Hn(M ;L),
then idSk ×f : Sk ×M ′ → Sk ×M factors through cell-like maps, k ≥
3, n+ k ≥ 7.

(ii.) If f : M ′ → M is a homotopy equivalence, not necessarily simple, with
odd order normal invariant in Hn(M ;L) and k is even, then idSk ×f is
h-cobordant to a map that factors through cell-like maps, k ≥ 3, n+k ≥ 7.

(iii.) If f : M ′ → M is a homotopy equivalence, not necessarily simple, with
odd order normal invariant in Hn(M ;L) and k is odd, then idSk ×f :
Sk ×M ′ → Sk ×M factors through cell-like maps, k ≥ 3, n+ k ≥ 7.

Proof. (i) If f : M ′ → M is a simple-homotopy equivalence, then the normal
invariant of [f ] is a homotopy class of maps η(f) : M → G/TOP. The normal
invariants of idSk ×f and idBk+1 ×f are the composition of projection onto M
with η(f), so the normal invariants of idSk ×f and idBk+1 ×f have odd order.
Pushing forward to L and dualizing, we have a diagram

Hn+k+1(Bk+1 ×M,Sk ×M ;L)
∼= // Ssn+k+1(Bk+1 ×M,Sk ×M)

��

∂ // Ssn+k(Sk ×M)

Ssn+k+1(P2(Bk+1 ×M), Sk ×M)

∂

77

Hn+k+1(P2(Sk ×M), Sk ×M ;L)
∼= // Ssn+k+1(P2(Sk ×M), Sk ×M)

∼=

OO

∂

;;

where both horizontal isomorphisms come from the π− π theorem and we have
used the inclusion-induced homotopy equivalences P2(M) ∼= P2(Sk × M) ∼=
P2(Bk+1 × M) when k ≥ 3. This shows that [idSk ×f ] is in the image of
Hn+k+1(P2(Sk ×M), Sk ×M ;L) via the composition of the dashed arrow with
the bottom horizontal arrow and that it comes from an odd order element,
namely, the image of η(idBk+1 ×f) in Sn+k+1(P2(Bk+1 ×M), Sk ×M).

(ii) Consider the diagram above with Ss replaced by Sh. The homotopy equiv-
alence f : M ′ → M satisfies a symmetry τ(f) = (−1)n−1τ(f)∗ which can
be seen in the PL case by computing torsions using triangulations and dual
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triangulations. This shows that 2τ(f) = (−1)n−1(τ(f)∗ + (−1)n−1τ(f)). Tor-
sions of the form τ + (−1)n−1τ can be varied away by including into an h-
cobordism of torsion τ and retracting to the other end. After crossing with Sk,
τ(idSk ×f) = 2τ(f) so [idSk ×f ] therefore lies in the image of Ssn+k(Sk ×M) in

Shn+k(Sk×M), which is to say that idSk ×f is h-cobordant to a simple homotopy
equivalence. The result follows as in case (i).

(iii) The product formula for Whitehead torsion implies that τ(idSk ×f) = 0
and argument in (i) applies as above.

We recall that by definition a fake lens space of order p is the orbit space of a
free action of Z/p on a sphere. Since simple homotopy equivalent lens spaces
are diffeomorphic, the actions giving rise to the fake lens spaces L′ below are
topologically nonlinear. Explicit constructions of fake lens spaces as quotients
of Brieskorn spheres are studied in [59].

Corollary 2.19. There exist a 5-dimensional lens space L and a fake lens space
L′ such that L′×S3 and L×S3 are CE-related and L′×S3 and L×S3 are not
homeomorphic.

Proof. Let L be the lens space L11(1, 1, 3) in the notation of [53], p. 403. The
first Pontrjagin class of this manifold is zero. Thus, Hi(pt;L•) = Li for i > 0
and Hi(pt;L•) = 0 for i ≤ 0. In the Atiyah-Hirzebruch spectral sequence for
the lens space L the term E2

1,4 = H1(L;H4(pt;L•)) = H1(L) = Z/11 survives
to E∞1,4 and hence to H5(L;L•). By Theorem 10.1 of [40], L5(Z[Z/11]) = 0, so
this homology class comes from the structure set S(L). Thus there is a simple
homotopy equivalence f : L′ → L with nontrivial normal invariant of order
11. It follows from Proposition 2.18 that L × S3 and L′ × S3 are CE-related.
Theorem 6.3 will show that they deform to each other.

By Corollary 2.18 the simple homotopy equivalence f × 1S3 : L′ × S3 → L ×
S3 also has nontrivial normal invariant of order 11, so by the argument of
Corollary 2.15 the manifolds L×S3 and L′×S3 cannot be homeomorphic, since
the first Pontrjagin class is topologically invariant and zero for L and nonzero
for L′.

Remark 2.20. According to [53], L11(1, 1, 4) and L11(1, 6, 4) are homotopy
equivalent. The first Pontrjagin class of L11(1, 1, 4) is zero and the first Pontr-
jagin class of L11(1, 6, 4) is three, so they are not homeomorphic and, therefore,
not simple-homotopy equivalent. The normal invariant of the homotopy equiva-
lence has odd order, so crossing with S3 produces nonhomeomorphic lens spaces
crossed spheres that deform to each other.

In contrast, if L and L′ are as in Corollary 2.19, then the induced homotopy
equivalence between L′×S2 and L×S2 is not realized by a deformation. P2(L×
S2) = L∞ × CP∞, where L∞ is an infinite lens space. The Künneth Theorem
for ordinary homology together with the Atiyah-Hirzebruch spectral sequence
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shows that the normal invariant of f does not go to zero in H7(P2(L× S2);L),
so the structure [f ] cannot lie in the image of H8(P2(L× S2), L× S2;L).

Manifolds with finite fundamental group.

We continue to derive further consequences of the as yet unproven Theorem 2.7.

Proposition 2.21. Let M be a manifold with finite fundamental group such
that π2(M) is finite. Then for n > 5,

SCE(Mn) ∼= OddTorsion(Ker(KOn(M)→ KOn(K(π1M, 1)))).

Proof. The homotopy fiber of P2(M) → K(π1M, 1) = Bπ is K(π2(M), 2). By
[77], Theorem 2, P2(M)→ Bπ induces an isomorphism on L∧M(p) homology,
so we can use K(π1M, 1) and P2(M) interchangeably in our calculations. Also,
S(M) ∼= S(M, ∗).

To begin, we have a commuting diagram of surgery exact sequences below:

Hn+1(P2(M), ∗;L)

��
Sn+1(P2(M),M)

∼=//

��

Hn+1(P2(M),M ;L)

��
Hn+1(M, ∗;L) //

��

Ln+1(π1M, e) //

��

Sn(M, ∗) //

��

Hn(M, ∗;L) //

��

Ln(π1M, e)

��
Hn+1(P2(M), ∗;L) //Ln+1(π1M, e) //Sn(P2(M), ∗) //Hn(P2(M), ∗;L) //Ln(π1M, e)

By the π − π theorem, the top horizontal arrow is an isomorphism. Since we
are interested in odd primary behavior, we can invert 2, which replaces L-
homology by KO-homology and P2(M) by Bπ, where π = π1(M). By a trans-
fer argument, see [1], the reduced KO-homology of Bπ is torsion, so the map
Ln+1 → Sn(Bπ, ∗) is a rational isomorphism. This gives us the diagram below
at odd primes:

KOn+1(Bπ, ∗)

��
Sn+1(Bπ,M)

∼= //

��

KOn+1(Bπ,M)

∼=⊗Q

��

δ

vv
KOn+1(M, ∗) //

��

Ln+1(π, e) //

∼=
��

Sn(M, ∗) //

��

KOn(M, ∗) //

��

Ln(π, e)

��
KOn+1(Bπ, ∗) //Ln+1(π, e)

∼=⊗Q //Sn(Bπ, ∗) //KOn(Bπ, ∗) //Ln(π, e).

In [71], page 2, Wall shows that for π finite, Ln(π) is the direct sum of a free
abelian group and a 2-torsion group. We draw two conclusions:
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1. Conclusion 1: Let α be an odd torsion element in the kernel of Sn(M, ∗)→
KOn(M, ∗). α is the image of α′ ∈ Ln+1(π, e), which is impossible since α′

must have infinite order and also go to zero in Sn(Bπ, ∗). Thus, Sn(M, ∗)→
KOn(M, ∗) is a monomorphism on odd torsion.

2. Conclusion 2: Suppose that β is an odd torsion element in the kernel of
KOn(M, ∗) → KOn(Bπ, ∗). β is the image of β′ ∈ KOn+1(Bπ,M) and
must be odd torsion since KOn+1(Bπ,M) → KOn(M, ∗) is a rational
isomorphism.

This shows that SCE(M, ∗) maps isomorphically onto the odd torsion in the
kernel of KOn(M, ∗) → KOn(Bπ, ∗), completing the proof of the proposition.

Remark 2.22. A related result holds for manifolds with abelian fundamental
group π = Zk ⊕ A. Splitting off infinite cyclic factors using Shaneson’s thesis
shows that the Wall groups of finitely generated abelian groups are sums of free
abelian groups and finite 2-groups. Bπ = T k×BA and an easy spectral sequence
argument shows that the groups KO∗(T

k, Bπ) are torsion, where Bπ → T k

is the projection. The result is a diagram (see below) with the same formal
properties as the second diagram in the proof of Proposition 2.21. The short
exact sequence

→ S∗+1(T k,M)→ S∗(M)→ S∗(T k)→
shows that S∗+1(T k,M) ∼= S∗(M). Comparing the long exact KO-homology
sequences of (T k,M) and (T k, Bπ) shows that the odd KO-homology in the
kernel of KOn+1(T k,M)→ KOn+1(T k, Bπ) is isomorphic to SCE(M).

KOn+1(T
k, Bπ)

��
Sn+1(Bπ,M)

∼= //

��

KOn+1(Bπ,M)

��

δ

vv
KOn+2(T

k,M) //

��

Ln+2(Zk, π) //

∼=
��

Sn+1(T
k,M) //

��

KOn+1(T
k,M) //

��

Ln(Zk, π)

��
KOn+1(T

k, Bπ) //Ln+1(Zk, π)
∼=⊗Q //Sn(T k, Bπ) //KOn(T k, Bπ) //Ln(Zk, π)

Proposition 2.23. Let Mn be a closed manifold, n ≥ 7, π1(M) = π and with
π2(M) finite. If π has split injective assembly map away from 2, then SCE(M)
is isomorphic to the odd torsion subgroup of Hn+1(Bπ,M ;L).
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Proof. Consider the diagram below (away from 2).

Sn+1(Bπ,M)

��

∼= // Hn+1(Bπ,M ;L)

��

δ

vv
Hn+1(M ;L)

��

// Ln+1(π)

id

��

w // S(M)

q

��

// Hn(M ;L)

��
Hn+1(Bπ;L)

A
// Ln+1(π) //

jpp
Sn(Bπ)

0 //
sqq

Hn(Bπ;L)

The assembly map A is a split monomorphism, so there are splittings j and s,
as shown. w ◦ s is a splitting of q, so δ maps Hn+1(Bπ,M ;L) isomorphically
onto a direct summand of S(M). The result now follows from Theorem 2.7. A
great many torsion-free groups satisfy this version of the Novikov Conjecture.
See [41, 67].

Remark 2.24. One can unify some of the calculations we have given in this sec-
tion when the C∗-algebra assembly map is known to be split injective and one
consequently has “a refined normal invariant” S(M) → KOπn+1(Eπ, M̃)[1/2]
analogous to the map in the preceding proposition given by the projection
S(M)→ Hn+1(Bπ,M ;L) (under an L-theory integral Novikov hypothesis), e.g.
groups that admit uniform embeddings in Hilbert space, see [67]. In that case,
SCE(M) is isomorphic to the the image of the odd torsion of KOn+1(Bπ,M) ∼=
KOπn+1(Eπ, M̃) in KOπn+1(Eπ, M̃)[1/2].

Spherical space forms.

We now give a proof of immutability valid for all spherical space forms. We
begin by recalling that Conclusion 1 in the proof of Proposition 2.21 said the
map S(M) → Hn(M ;L) is a monomorphism on odd torsion, so SCE(M) →
Hn(M ;L) is a monomorphism.

As above, for any X with free action of a group G with p-Sylow subgroup Gp,
the map X/Gp → X/G is split surjective in any p-local homology theory, with
a splitting induced by the transfer. In particular, the transfer τ : KOn(X/G)→
KOn(X/Gp) is split injective on p-torsion.

Now, let G be a finite group acting freely on Sn with quotient M = Sn/G and
let p be an odd prime. By Thm. 11.6 of [15], the p-Sylow subgroup Gp of G must
be cyclic so, as Wall observes, L = Sn/Gp has the homotopy type of a linear lens
space. There is a transfer τ : SCEn (M) → SCEn (L) described as follows: A CE
map M → X induces an isomorphism on π1 which induces a bijection between
covering spaces of M and covering spaces of X. Let XL be the covering space
of X corresponding to L → M . X is locally n-connected for all n, so covering
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space theory gives us a pullback diagram

NL

h.e.

��

// N

h.e.

��
L //

CE

��

M

CE

��
XL

// X

and the vertical map on the left is CE because the pullback of a CE map is CE.
The homotopy equivalence NL → L is controlled over XL because the tracks of
the homotopies are the lifts of the tracks of the homotopies over X.

By Wall, [70], Chapter 14, the structure group of an odd lens space is torsion
free. See also [74], pp 110-111. This implies that SCE(L) is trivial. The diagram
below then shows that the p-torsion in SCE(M) must be trivial.

SCEn (L) // Sn(L) // Hn(L;L)

SCEn (M)
1−1 //

τ

OO

1−1

33Sn(M) //

τ

OO

Hn(M ;L)

τ1−1

OO

Repeating for each odd p, it follows that SCE(M) is trivial.

Proposition 2.25 (Proof of Theorem 4). SCE(M) can be infinite.

Proof. LetM(Z/p, n) be a Moore space, p an odd prime. TriangulateM(Z/p, n)
as a flag complex L and form the Bestvina-Brady group π = HL as in [9], [51].
For n ≥ 3, Bπ has free, finitely generated homology through dimension n and its
homology in dimension n+ 1 contains an infinite sum of Z/p’s. See Corollaries
8 and 9 in [51]. It also follows that Hn+2(π) is finitely generated free abelian
and all higher homology is zero, whence it follows immediately from the Atiyah-
Hirzebruch spectral sequence that Hn(π;L) contains an infinite sum of Z/p’s.
By periodicity, the same is true for Hn−4k(π;L) for any k.

Let K be the 3-skeleton of Bπ, which is finite for n ≥ 3. Embed K in Rm+1,
m ≥ 8, and let Mm be the boundary of a regular neighborhood. Consider the
diagram

Sm+1(Bπ,M)

∼=
��

∼= // Hm+1(Bπ,M ;L)

δ

vv
Hm(M ;L)

By the Borel Conjecture for Bestvina-Brady groups [6], the vertical arrow on
the left is an isomorphism, so δ is an isomorphism. (Actually for the purposes
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of this argument, the much easier integral Novikov conjecture would suffice,
see [14, 22, 42, 5]). Since π2(M) = 0, we have Bπ = P2(M), so Theorem 2.7
tells us that SCE(M) is the image of the odd torsion under the map δ. Let
m + 1 = n − 4k, k ≥ 1. By our construction, Hm+1(Bπ;L) contains infinitely
generated p torsion. Since Hm+1(M ;L) is finitely generated, Hm+1(Bπ,M ;L)
contains infinitely generated p torsion and S(M) contains infinitely generated p
torsion in the image of δ.

Each structure [α] above is represented by a homotopy equivalence α : Mα →M .

Proposition 2.26. There are infinitely many nonhomeomorphic manifolds
Mα ∈ SCE(M) when m ≥ 8.

Proof. If m ≥ 8, the manifold M has a handle decomposition with no handles
in the middle dimension. As in [75], this allows us to define an absolute “higher
ρ invariant” for our manifolds Mα in a quotient group of Lm+1(π). Since the
construction in [75] was rational and we are interested in torsion phenomena,
we will review the construction.

Let Nm be a closed, oriented m-manifold such that the Zπ1N -chain complex
C∗(N) is chain-homotopy equivalent to chain complex of finitely generated pro-
jective Zπ1N -modules {Pi} with Pi = 0, i = [m/2]. Following Hausmann, we
call such manifolds anti-simple. Let P<i∗ be the truncation of P∗. There is a
chain retraction P∗ → P<i∗ and (P<i∗ , P∗) is a symmetric algebraic Poincaré
pair. This is well-defined in that if Q∗ is a chain complex of finitely generated
projective modules chain-homotopy equivalent to P∗ with Qi = 0, then there
is a chain-homotopy equivalence of pairs (P<i∗ , P∗) ∼ (Q<i∗ , Q∗). If the mani-
fold N is the boundary of an oriented manifold Wm+1 with a map to Bπ1N
extending N → Bπ1N , the pair (W,N) gives us another symmetric algebraic
Poincaré pair over Zπ1N and we can paste the two together along P∗ to get a
closed (m + 1)-dimensional symmetric algebraic chain complex and, therefore,
an element of Lm+1(π1(N)). Two such coboundaries of N define an element
ω of Ωm+1(Bπ1N), so our element of Lm+1(π1(N)) is well-defined up to the
image of the map Ωm+1(Bπ1N)→ Lm+1(π1(N)) that sends each element to its
symmetric signature. The resulting element in Lm+1(π1(N))/Ωm+1(Bπ1N) is
the higher ρ invariant of N .

Remark 2.27. One can define the higher ρ invariant without assuming ex-
plicitly that Mn bounds if one inverts the torsion present in Witt bordism in
dimension n of Bπ. (This follows from the argument in [74].) Thus, for the
Bestvina-Brady groups used here, in low dimensions one need not invert any-
thing and one has a more general higher ρ invariant available to distinguish
homotopy equivalent anti-simple manifolds with Bestvina-Brady fundamental
groups.

Returning to our manifold M , let P∗ be the Zπ-chain complex obtained by
gluing together two copies of a handle decomposition of a regular neighborhood
of K in Rm. We have Pi = 0 for 3 < i < m − 3. Since the manifolds Mα are
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homotopy equivalent to M , they are also anti-simple. Since they are obtained
from M by Wall realization, they are cobordant to M , so they bound and have
higher ρ invariants. By construction, the higher ρ invariant of Mα differs from
the higher ρ invariant of M by the image of α′′ in Lm+1(π)/Ωm+1(Bπ). Since
Bπ has finite m + 1-skeleton, the Atiyah-Hirzebruch spectral sequence shows
that Ωm+1(Bπ) is finitely generated. Since the collection of α’s in Lm+1(π) is
infinitely generated, there are infinitely many nonhomeomorphic Mα’s.

Next we show that, by itself, infinite odd torsion in the L-group does not suffice
to produce infinitely many deformable manifolds.

Proposition 2.28. There is a closed manifold Mn such that Ln+1(π) has in-
finitely generated odd torsion but SCE(M) = 0.

Proof. Let A be the universal finitely presented acyclic group of [8] and let Σ
be a homology sphere with fundamental group A. Since H1(A) = H2(A) = 0,
such a homology sphere exists in dimensions ≥ 5 by a well-known theorem of
Kervaire [44]. The surgery exact sequence for Σ is

Hn+1(Σ;L) // Ln+1(A) // S(Σ) // Hn(Σ;L)

Inspection of this sequence gives us

L̃n+1(A) ∼= S(Σ),

where L̃n+1(A) = Ln+1(A)/Ln+1(e). Now consider the commutative diagram
of topological surgery exact sequences

0 // L̃n+1(A)
∼= //

∼=
��

S(Σ) //

��

0

0 = H̄n+1(BA;L) // L̃n+1(A) // S(BA)

If an element of S(Σ) goes to 0 in S(BA), then it comes from an element of
L̃n+1(A) which maps to a nonzero element of S(BA), yielding a contradiction.
Since elements of SCE(Σ) must die in S(BA), SCE(Σ) = 0. If Ln+1(A) contains
infinitely generated odd torsion, we are done. Otherwise, let π be a finitely
presented group such that Ln+1(π) has infinitely generated odd torsion. Note
that in view of the Borel conjecture for Bestvina-Brady groups, the group π
from Proposition 2.25 is such for an appropriate choice of n. We consider the
amalgamated free product Γ = A ∗π (π × Z/2). Γ is Z[1/2]-acyclic. Using the
isomorphism (away from 2)10

L(π × Z/2) ∼= L(π)× L(π)

10By [66], Prop. 4.4, Ln(Zπ) → Ln(Qπ) is an isomorphism modulo 8 torsion. Inverting
2, we have Ln(Z[π × Z/2]) ∼= Ln(Q[π × Z/2]) ∼= Ln(Q[π] × Q[π]) ∼= Ln(Q[π]) × Ln(Q[π]) ∼=
Ln(Z[π])× Ln(Z[π])
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and Cappell’s Mayer-Vietoris sequence [12], we have

0 // L̃n(A)⊕ L̃n(π) // L̃n(Γ) // 0

after inverting 2. This shows that Γ has infinite odd torsion in L-theory with
H1(Γ) = Z/2. Suspending once to A ∗Γ A kills H2, so a Z[1/2] version of Ker-
vaire’s theorem produces a Z[1/2]-homology sphere with fundamental group
A ∗Γ A. Cappells’s theorem mod finitely generated odd torsion shows that the
L-theory of Ln−1(A ∗Γ A) contains infinite odd torsion, and we can complete
the argument as above.

3. Cell-like maps that kill L-classes

Singular homology behaves badly for non-ANRs. This is illustrated in [4],
where it is shown that an infinite compact wedge of S2’s has uncountable sin-
gular rational homology in infinitely many dimensions. Since we will be dealing
with compact non-ANR spaces, we use the Steenrod extension of a generalized
homology theory h∗, [54],[27], [13], [24], which satisfies the usual Eilenberg-
Steenrod axioms for (generalized) homology theories, together with the union
axiom. For the Steenrod homology defined by a homology theory h∗ we use the
same notation h∗ since they agree on CW complex pairs. As every generalized
homology theory h∗ has reduced and nonreduced versions, the same holds true
for the Steenrod homology. For a nonreduced theory h∗ we denote by h̄∗ its
reduced version.

Though the reduced homology h̄∗ is defined for single spaces, still one can de-
fine it for pairs by setting h̄∗(X,A) = h̄∗(X/A) = h∗(X,A). A reduced Steenrod
homology theory is determined by two axioms:

1. (Exactness) Given any compact metrizable pair (B,A), there is a long
exact sequence

. . .→ h̄i(A)→ h̄i(B)→ h̄i(B/A)→ h̄i−1(A)→ . . .

2. (Milnor’s Additivity Axiom [55]) Given a countable collectionXi of pointed
compact metric spaces and letting

∨
Xi ⊂

∏
Xi be the null wedge, we have

an isomorphism

h̄∗(
∨
Xi) ∼=

∏
h̄∗(Xi).

We emphasize that h is homotopy invariant. Every homology theory has a unique
Steenrod extension satisfying these two axioms.

We use the notation KO∗(X) = H∗(X;KO) for periodic KO-homology and we
use KO∗ to stand for reduced KO homology. We need the following facts [3],
[11], [77].

Theorem 3.1. If p > 1 is an integer and n ≥ 3, KO∗(K(π, n);Z/p) = 0 for
any group π. If π is torsion, KO∗(K(π, n)) = 0, for n = 2.
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Let M(p) denote the Z/p Moore spectrum. For odd p, we have a chain of ho-
motopy equivalences of spectra

KO∗ ∧M(p) ∼ KO∗[
1

2
] ∧M(p) ∼ L[

1

2
] ∧M(p) ∼ L ∧M(p).

This implies the following:

Corollary 3.2. Let p be odd, then for any finite group H̄∗(K(π, 2);L∧M(p)) =
0 where L ∧M(p) is L-theory with coefficients in Z/p.

We recall that for an extraordinary homology theory given by a spectrum E of
CW complexes there are Universal Coefficient Formulas for coefficients Z/p and
Q:

0→ Hn(K;E)⊗ Z/p→ Hn(K;E ∧M(p))→ Tor(Hn−1(K;E), Z/p)→ 0 (4)

and
Hn(K;E(0)) = Hn(K;E)⊗Q.

Here Tor(H, Z/p) = {c ∈ H | pc = 0} and E(0) denotes the localization at 0.
Every compact metric spaceX can be written as an inverse limitX = lim←−{Ki} of

finite polyhedra and any two such sequences are pro-equivalent. By Ȟ∗(X;E) =
lim←−{H∗(Ki,E)} we denote the Čech E-homology. The Steenrod homology [54],
[27], [13], [24] Hn(X;E) of X fits into the following exact sequence

0→ lim1{Hn+1(Ki;E)} → Hn(X;E)→ Ȟn(X;E)→ 0.

If Hk(pt;E) is finitely generated for each k, the Mittag-Leffler condition holds
with rational or finite coefficients, so we have

Hn(X;E ∧M(p)) = Ȟn(X;E ∧M(p)) and Hn(X;E(0)) = Ȟn(X;E(0)).

In the case of Z/p-coefficients we obtain an exact sequence which is natural in
X:

0→ lim←−(Hn(Ki;E)⊗Z/p)→ Hn(X;E∧M(p))
φ′→ Tor(Ȟn−1(X;E), Z/p). (5)

Lemma 3.3. Let M be a simply connected finite complex with finite π2(M).
Then for every element γ ∈ Hk(M ;L) of odd order p there exists an odd torsion
element α ∈ Hk+1(P2(M),M ;L) such that ∂(α) = γ where ∂ is the connecting
homomorphism in the exact sequence of the pair (P2(M),M).

Proof. Note that P2(M) = K(π2(M), 2).

If π2(M) = 0, the space P2(M) is contractible and the lemma is trivial.
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If π2(M) is torsion, then by Corollary 3.2, H̄∗(P2(M);L ∧M(p)) = 0. Then by
the Universal Coefficient diagram

Hk+2(P2(M),M ;L ∧M(p))
epi//

∂iso

��

Tor(Hk+1(P2(M),M ;L), Z/p)mono// Hk+1(P2(M),M ;L)

∂

��
Hk+1(M ;L ∧M(p))

epi // Tor(Hk(M ;L), Z/p) mono // Hk(M ;L)

(6)

we obtain the required result.

The following proposition is proven in [72] Appendix B.

Proposition 3.4. Let E be a CW complex with trivial homotopy groups πi(E) =
0, i ≥ k for some k, and let q : X → Y be a cell-like map between compacta.
Then q induces a bijection of the homotopy classes q∗ : [Y,E]→ [X,E].

Remark 3.5. If E does not satisfy this condition, then the conclusion does not
hold, despite the map being an ordinary homology isomorphism with arbitrary
coefficient systems. Indeed this remarkable possibility is precisely the basis of the
examples given in [18] of infinite dimensional compacta with finite cohomological
dimension. What follows is the systematic exploitation of this.

Let q : M → X be a cell-like map. According to Proposition 3.4 for every
map h : M → P2(M) there is a map g : X → P2(M) such that g ◦ q is
homotopic to h. In particular, there is an induced map g̃ : Mq → Mh between
their mapping cylinders, g̃|M = idM , g̃|X = g. We apply this when h is the
inclusion j : M ⊂ P2(M) and denote the induced map by i : Mq →Mj . Denote
by

i∗ : H∗(Mq,M ;L)→ H∗(P2(M),M ;L)

the induced homomorphism for Steenrod L-homology groups [27], [45].

Proposition 3.6. Let Mn be a closed connected topological n-manifold, n ≥ 6,
let p be odd, and let β ∈ H∗(P2(M),M ;L ∧M(p)), then there exist a cell-like

map q : M → X and an element β̂ ∈ H∗(Mq,M ;L∧M(p)) such that i∗(β̂) = β.

The proof of Proposition 3.6 will follow Lemma 3.12.

Proposition 3.7. Let Mn be a closed connected topological n-manifold, n ≥ 6.
If α ∈ H∗(P2(M),M ;L) is an odd torsion element, then there exist a cell-
like map q : M → X and an odd order element α̂ ∈ H∗(Mq,M ;L) such that
i∗(α̂) = α.

Proof. Let α ∈ Hk(P2(M),M ;L) be an element of order p where p is odd. Then
by the universal coefficient formula, there is an epimorphism

φ : Hk+1(P2(M),M ;L ∧M(p))→ Tor(Hk(P2(M),M ;L), Z/p).
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Note that Tor(H, Z/p) = {c ∈ H | pc = 0} so that there is an inclusion
Tor(H, Z/p) ⊂ H which is natural inH. Thus, α ∈ Tor(Hk(P2(M),M ;L), Z/p).
Hence, there is an element β ∈ Hk+1(P2(M),M ;L∧M(p)) such that φ(β) = α.

By Proposition 3.6 there exist a cell-like map q : M → X and an element β̂

such that i∗(β̂) = β. The commuting diagram of universal coefficient formulas
gives (see Equation (4)):

Hk+1(Mq,M ;L ∧M(p))
φ′ //

i∗

��

Tor(Hk(Mq,M ;L), Z/p) ⊂ //

��

Hk(Mq,M ;L)

i∗

��
Hk+1(P2(M),M ;L ∧M(p))

φ // Tor(Hk(P2(M),M ;L), Z/p)⊂ // Hk(P2(M),M ;L)

which implies that i∗(α̂) = α where α̂ = φ′(β̂) is an element of order p.

Remark 3.8. By Proposition 3.4 a cell-like map induces a rational isomorphism
on L-homology. Therefore, H∗(Mq,M ;L) is a torsion group.

Theorem 3.9. Let Mn be a closed simply connected topological n-manifold,
n ≥ 6, with π2(M) finite. Then for every odd torsion element γ ∈ H∗(M ;L)
there exist X and a cell-like map q : M → X such that q∗(γ) = 0.

Proof. By Lemma 3.3 there is an odd torsion element α ∈ H∗(P2(M),M ;L)
such that ∂(α) = γ. By Proposition 3.7 there exists a cell-like map q : M → X
and an element α̂ ∈ H∗(Mq,M ;L) such that i∗(α̂) = α. Then the commutative
diagram

H∗+1(Mq,M ;L) //

i∗

��

H∗(M ;L)
q∗ //

=

��

H∗(X;L)

��
H∗+1(P2(M),M ;L) // H∗(M ;L) // H∗(P2(M);L)

implies that q∗(γ) = 0.

Remark 3.10. Without the finiteness assumption on π2(M) one can show that
q kills an element γ ⊗ 1Z/p with Z/p coefficients.

We recall that the cohomological dimension of a topological space X with respect
to the coefficient group G is the following number:

dimGX = max{n | Ȟn(X,A;G) 6= 0 for some closed A ⊂ X}.

We recall that the existence of cell-like maps of manifolds that raise dimension
to infinity follows from the following two theorems. First we apply Theorem D by
the first author that produces examples of infinite dimensional compact metric
spaces with finite integral cohomological dimension [18]:
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Theorem D. Let h∗ be a generalized homology theory. Suppose that h̄∗(K(Z, n)) =
0. Then for any finite polyhedron P and a nonzero element α ∈ h̄∗(P ) there is
a compact metric space Y and a map f : Y → P such that

(i) dimZ Y ≤ n;
(ii) α ∈ im{f∗ : h̄∗(Y )→ h̄∗(P )}.

Since Y is not a CW complex, h̄(Y ) above is Steenrod homology. Theorem
D when applied to P = Sm with m > n produces Y with dimZ Y ≤ n and
dimY > n. Alexandroff’s theorem [18], [72] about coincidence of cohomologi-
cal and covering dimensions of compacta when the latter is finite implies that
dimY =∞.

Then we apply the following Edwards Resolution Theorem [25][72]:

Theorem E. For any compact metric space Y with dimZ Y = n there is a
n-dimensional compact metric space X and a cell-like map f : X → Y .

Any embedding of the above compactum X ⊂ M in a manifold M defines a
cell-like map p : M → Z extending f where p restricted to M −X is one-to-one.
We note that in the formulation of Theorem D in [18] the cohomology h∗ were
used instead of homology with the corresponding conclusion (ii) f∗(α) 6= 0. The
same proof works for homology.

We recall that proofs of both theorems deal with inverse sequences of finite
polyhedra. In the proof of Theorem D we construct Y as the limit of an inverse
sequence of polyhedra {Pi, gi+1

i } with P1 = P where a polyhedron Pi+1 is
constructed by a certain modification of Pi. In the proof of Theorem E we
present Y as the limit of an inverse sequence of polyhedra {Ki, p

i+1
i } with mesh

of triangulations tending to zero when i→∞. Then we form an inverse sequence

{K(n)
i ; qi+1

i } of the n-skeletons where bonding maps are cellular approximations

of the restrictions pi+1
i to K

(n)
i . It was well known in 40s-50s that the limit

space X is n-dimensional and it admits a natural UV n−1-map f : X → Y . The
condition dimZ Y = n allows us to improve the map f to a cell-like map.

Relative versions of Theorems D and E were established by adjustments of
proofs of Theorems D and E. A map of pairs f : (X,L)→ (Y,L) is called strict
if f(X − L) = Y − L and f |L = idL.

The following theorem is taken from [20] (Theorem 7.2).

Theorem D1. Let h∗ be a generalized homology theory. Suppose that h̄∗(K(G,n))
is 0. Then for any finite polyhedral pair (K,L) and any element α ∈ h∗(K,L)
there is a compactum Y ⊃ L and a strict map f : (Y,L)→ (K,L) such that

(i) dimG(Y − L) ≤ n;
(ii) α ∈ im{f∗ : h∗(Y,L)→ h∗(K,L)}.

For G = Z this is Theorem 3.3′ in [21].
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Theorem E1.(Theorem 8.6 [20]) For any pair of compact metric spaces (Y,Z)
with dimZ(Y − Z) = n there is a compact metric space X containing Z with
dim(X − Z) = n and a strict cell-like map f : (X,Z)→ (Y,Z).

Theorems D1 and E1 are proven by the same techniques as Theorems D and
E. In the proof of Theorem D1 we consider a triangulation of K −L with mesh
of simplexes tending to zero when they are approaching to L and apply the
construction from the proof of Theorem D. In the proof of Theorem E1 we
consider a presentation of (Y,Z) as the limit of an inverse sequence {(Ki, Z)}
such that for each i the space Ki − Z is a simplicial complex with mesh of
simplexes tending to zero when they are approaching to Z and the bonding
maps pi+1

i : (Ki+1, Z) → (Ki, Z) restricted to Z being the identity. Simplicial

approximations of the restriction of pi+1
i to the n-skeleta K

(n)
i define the maps

qi+1
i : (Ki+1 ∪ Z,Z) → (Ki ∪ Z,Z). Then X = lim←{Ki ∪ Z, qi+1

i }. A cell-like
map f : X → Y is defined by the same reasoning as in the proof of Theorem E.

Lemma 3.11. Let (Z,M) be a compact pair such that dim(Z−M) ≤ n and let
M be a manifold of dimension 2n+ 1. Suppose there is a retraction ρ : Z →M .
Then ρ is homotopic relM to a retraction r : Z →M with r|(Z−M) one-to-one.

Proof. The condition dimX ≤ n for a compact metric space X implies that
every continuous map φ : X → M to a 2n + 1-dimensional manifold can be
approximated by an embedding. Moreover, the space of embeddings Emb(X,M)
is a dense Gδ in the space of mappings Map(X,M). The same argument shows
that under the condition dim(Z −M) ≤ n the space of retraction-embeddings

RetEmb(Z,M) = {f : Z →M | f |M = idM , f |Z−M is one-to one}

is dense in the space of all retractions Ret(Z,M).

The following lemma is a reformulation of Lemma 3.7 from [21].

Lemma 3.12. Let Z be a compact and r : Z →M be a retraction with r|(Z−M)

one-to-one. Let g : (Z,M) → (Y,M) be a cell-like map which is the identity
over M . Then there is a cell-like map q : M → X and a map r′ : Y → X such
that the diagram

Z
r //

g

��

M

q

��
Y

r′ // X

commutes.

Proof of Proposition 3.6. First we consider the case dimM ≥ 7. We consider
the generalized homology theory h∗ = L∧M(p), i.e., L-theory with coefficients
in Z/p. Let β ∈ hk+1(P2(M),M). There is a finite complex K, M ⊂ K ⊂
P2(M), and an element γ ∈ h∗(K,M) such that γ is taken to β by the inclusion
homomorphism.
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By Theorem 3.1, h̄∗(K(Z, 3)) = 0. Then we apply Theorem D1 to (K,M)
and γ to obtain a strict map f : (Y,M) → (K,M) satisfying the conditions
dimZ(Y − M) ≤ 3 and γ ∈ im{f∗ : h(Y,M) → h(K,M)}. Then we apply
Theorem E1 to obtain a cell-like map g : (Z,M)→ (Y,M) with dim(Z−M) ≤ 3.

Because P2(M) − M has no cells of dimension ≤ 3, there is a homotopy of
f ◦ g rel M that sweeps Z −M to M . Thus, f ◦ g is homotopic to a retraction
ρ : Z → M . Since dimM ≥ 7, by Lemma 3.11, f ◦ g is homotopic rel M to a
retraction r : Z →M which is one-to one on Z −M . By Lemma 3.12 there is a
cell-like map q : M → X and a commutative diagram

Z
r //

g

��

M

q

��
Y

r′ // X.

By Proposition 3.4 there is a map g′ : X → P2(M) such that g′ ◦ q is homotopic
to the inclusion M ⊂ P2(M). Hence f ◦ g ∼ r ∼ g′ ◦ q ◦ r = g′ ◦ r′ ◦ g. Since g
is cell-like, the map f is homotopic to g′ ◦ r′ by Proposition 3.4. Then there is
a homotopy commutative diagram of the mapping cylinders

Mj′
r′ //

f

��

Mq

i
ww

Mj

where j : M → P2(M) and j′ : M → Y are the embeddings. For Steenrod
h∗-homology this gives us the following diagram:

h∗(Y,M)
= //

f∗

��

h∗(Mj′ ,M)
r′∗ //

��

h∗(Mq,M)

i∗ww
h∗(P2(M),M) // h∗(Mj ,M)

By condition (ii) of Theorem D1 there is γ′ ∈ h∗(Y,M) such that f∗(γ
′) = γ.

Then i∗(β̂) = β where β̂ = r′∗(γ
′).

The rest of this section is devoted to the case of n = 6. To cover this case we
extend Theorem E1 to the following.

Theorem E2. Let (Y,L) be a pair of compacta such that

dimZp
(Y − L) ≤ 2 and dimZ[ 1p ](Y − L) ≤ 2.

Then there is a strict cell-like map g : (Z,L)→ (Y,L) such that

dim(Z − L) ≤ 3, dimZ/p(Z − L) ≤ 2, and dimZ[ 1p ](Z − L) ≤ 2.
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We note that these conditions imply that dim(Z − L)2 ≤ 5 [20].

Theorem E2 is a relative version of Theorem 3 from [19]. Its proof is a modifi-
cation of the proof of Theorem 3 [19] which is performed in the same lines as
the proof of Theorem E1 is obtained as a modification of the proof of Theorem
E.

Lemma 3.11 can be accordingly modified by using results of [23], [68] about
approximations by embeddings of maps f : X → M2n of a compact metric
space X with dimX2 ≤ 2n− 1 to a 2n-dimensional manifold:

Lemma 3.13. Let (Z,M) be a compact pair such that dim(Z−M)2 ≤ 2n−1 and
let M be a manifold of dimension 2m. Suppose there is a retraction ρ : Z →M .
Then ρ is homotopic relM to a retraction r : Z →M with r|(Z−M) one-to-one.

Proof of Proposition 3.6, the case of dimension 6. In view of Corollary 3.2,
h̄∗(K(G, 2)) = 0 for h∗ = L∧M(p) and G = Z/p⊕Z[ 1

p ]. By Theorem D1 there

is a strict map f : (Y,M)→ (K,M) satisfying the conditions dimG(Y −M) ≤ 3
and γ ∈ im{f∗ : h∗(Y,M)→ h∗(K,M)}. Then we apply Theorem E2 to obtain
a cell-like map g : (Z,M)→ (Y,M) with dim(Z−M) ≤ 3 and dim(Z−M)2 ≤ 5.
Since P2(M)−M has no cells of dimension ≤ 3, there is a homotopy of f◦g rel M
that sweeps Z −M to M . Thus, f ◦ g is homotopic to a retraction ρ : Z →M .
Since dimM = 6, by Lemma 3.13, f ◦ g is homotopic rel M to a retraction
r : Z →M which is one-to one on Z −M . The rest of the proof is the same as
for n > 6.

4. Continuously controlled topology and cell-like maps of simply
connected manifolds

We recall that a map of pairs f : (Z, Y )→ (Z ′, Y ) is strict if (Z − Y ) ⊂ Z ′ − Y
and f |Y = idY . A proper homotopy ft : Z → Z ′ which is strict at each level is
called strict if the homotopy ft : (Z, Y )→ (Z ′, Y ) is continuous.

Let X be a locally compact space compactified to X̄ by a compact corona
Y = X̄ −X. A proper map f : Z → X is a strict homotopy equivalence if there
is a proper map g : X → Z such that g ◦ f and f ◦ g are strictly homotopic to
idZ̄ and idX̄ respectively where Z is given a compactification as above.

Definition 4.1.

(i) Let X be an open manifold and let Y be the compact corona of a com-
pactification X̄ of X. Two strict homotopy equivalences f : W → X and
f ′ : W ′ → X are equivalent if there is a homeomorphism h : W → W ′

such that f = f ′ ◦ h.
(ii) The set of the equivalence classes of strict homotopy equivalences of man-

ifolds is called the set of continuously controlled structures on X at Y and
it is denoted by Scc(X̄, Y ).
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We note that if X̃ is another compactification of X with compact corona Y ′

such that there is a continuous strict map φ : X̄ → X̃ which is the identity on
X, then there is a map φ∗ : Scc(X̄, Y )→ Scc(X̃, Y ′).

Definition 4.2. A pair (X,Y ) is said to be locally 1-connected at Y if for each
y ∈ Y and neighborhood U of y in X there is a smaller neighborhood V of y in
X so that the inclusion-induced map π1(V − Y )→ π1(U − Y ) is zero.

Proposition 4.3. Let X be a simply connected open manifold of dimension
n ≥ 5 compactified by a compact corona Y in such a way that the pair (X̄, Y )
is locally 1-connected. Then there is a surgery exact sequence

· · · → H̄n(Y ;L)→ Scc(X̄, Y )→ [X,G/TOP]→ H̄n−1(Y ;L)

which is natural with respect to maps between coronas, as above. Here H∗(−;L)
is Steenrod L-homology.

Proof. This sequence can be obtained by adjusting the bounded surgery theory
of [32] to the continuously controlled case. It is presented on p. 313 of [60] in a
form where the homology terms are Ranicki-Wall L-groups of the continuously
controlled additive category B(X̄, Y ;Z). Theorem 2.4 of [60] states that these
terms are in fact the Steenrod L-homology groups of the corona.11

The naturality follows from the definition of the continuously controlled category
.

Definition 4.4. A subset X of a manifold M has property UV 1 if for every
neighborhood U of X there is a neighborhood V of X contained in U so that
π1(V ) → π1(U) is trivial. A map f : M → Z is said to be UV 1 if each point-
inverse f−1(z) is nonempty and UV 1 in M . See section 2 of [50] for details.

Let M be a closed simply connected n-manifold and let q : M → Y be a UV 1-
map. Then the mapping cone Cq is a compactification of M ×R by Y+ = Y tpt
which is locally 1-connected at Y+. Since (Cq − Y+) is homotopy equivalent to
M and H̄∗(Y+;L) = H∗(Y ;L), the controlled surgery exact sequence becomes
the following

· · · → Hn+1(Y ;L)→ Scc(Cq, Y+)→ Hn(M ;L•)→ Hn(Y ;L)

where L• is the connected cover of the spectrum L. Note that (L•)0 = G/TOP
and by Poincaré duality over L• [64], [M,G/TOP] = H0(M,L•) = Hn(M,L•).
Thus the nth homotopy group Sccn (Cq, Y+) of the fiber of the controlled assembly
map of spectra H∗(M ;L)→ H∗(Y ;L) differs from Scc(Cq, Y+) by at most a copy
of Z.

11As explained in [60], the proof is axiomatic and the axioms given on p. 315 of [60] are
the usual ones that we listed in the previous section.
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Proposition 4.5. Let M be a simply connected n-manifold, n ≥ 5, and let
q : M → X be a UV 1 map and let Mq be its mapping cylinder. Then there is a
commutative diagram:

Scc(Cq, X+)
split−mono //

forget

��

Sccn+1(Cq, X+)
η| // Hn+1(Mq,M ;L)

∂̄
��

S(M)
split−mono // Sn(M)

η̄ // H̄n(M ;L)

where η| and η̄ are isomorphisms.

Proof. We have two vertical fibration sequences of spectra on the right, leading
to the diagram below at level n:

�� �� ��
Scc(Cq, X+)

��

// Sccn+1(Cq, X+)

η

��

η| // Hn+1(Mq,M ;L)

∂̄

��
Hn(M ;L•) ∼=[M × (0, 1), G/TOP]

q∗

��

// Hn(M ;L)

q∗

��

∼= // Hn(M ;L)

q∗

��
Hn(X;L)

∼= // Hn(X;L)
∼= //

��

Hn(X;L)

��

from which we see that η| is an equivalence. Using the exact sequence

0 // Hn(M ;L•) // Hn(M ;L) // Hn(M ;L/L•) ∼= Z

one chases the diagram above to show first that the composition

η′ : Scc(Cq, X+)→ Hn+1(Mq,M ;L)

is a monomorphism and then that its cokernel is a subgroup of Z. From this
Hn(M ;L/L•) ∼= Z follows from the observation that Hn(M ;L/L•) is rationally
isomorphic to Q and that the only nonzero term in degree n on the E2 page of
the Atiyah-Hirzebruch spectral sequence computing Hn(M ;L/L•) is isomorphic
to Z.

If [g] ∈ Scc(Cq, X+) is a structure, then there is a manifold N compactified by
X+ so that g : N →M × (0, 1) extends over X+ by the identity and such that
this extended map is a strict homotopy equivalence rel X+.
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If q : M → X is cell-like, then X is locally k-connected for all k, so there is a
retraction from a neighborhood of X+ in the compactification of N to X+. The
proof of the existence of mapping cylinder neighborhoods in [63] now shows
that X+ has a mapping cylinder neighborhood in the compactification of N.
This splits N as N ′ × (0, 1) and gives a homotopy equivalence N ′ → M . The
thin h-cobordism theorem guarantees that this gives a well-defined forgetful
map from Scc(Cq, X+) → S(M). The mapping cylinder projection provides a
cell-like map qN : N → X.

We put H̄n(M ;L), rather than Hn(M ;L) in the lower right corner of this dia-
gram because both the vertical and horizontal maps have images in H̄n(M ;L)
and, as observed in Proposition ??, η̄ is an isomorphism.

The argument above gives us an important corollary.

Corollary 4.6. Let q : M → X be a cell-like map of a simply connected closed
manifold M . Then

(1) Scc(Cq, X+) is generated by strict maps f : (Cp, X) → (Cq, X) where
p : N → X is a cell-like map.

(2) The forget control map takes f to a homotopy equivalence h : N → M
which factors through the cell-like maps q and p.

Proof of Theorem 2.4. (Todd(S(M)) ⊂ SCE(M).)
Let α be an odd torsion element of S(M). Let γ = η(α) ∈ H̄n(M ;L). By
Theorem 3.9 there is a cell-like map q : M → X such that q∗(γ) = 0. Consider
the diagram of Proposition 4.5. By Lemma 3.7 there is a torsion element γ̂ ∈
Hn+1(Mq,M ;L) such that ∂̄(γ̂) = γ. Let α′ = η′−1(γ̂). Since α is the image of
α′ under the forgetful map, by Proposition 4.6 we have α ∈ SCE(M).

(Todd(S(M)) ⊃ SCE(M).)
Suppose that c : N → X and q : M → X are cell-like maps and that f : N →M
is a homotopy equivalence such that q ◦ f ' c.

N
f //

CE

c   

M

CE

q
~~

X

We consider the diagram of Proposition 4.5:

Scc(Cq, X+)
η′ //

forget

��

Hn+1(Mq,M ;L)

∂̄
��

S(M)
η // H̄n(M ;L) // Z
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By the Vietoris-Begle theorem a cell-like map induces an isomorphism of or-
dinary cohomology or Steenrod homology with any coefficients (see Propo-
sition 3.4). Therefore Hn(M ;L) → Hn(X;L) is an isomorphism rationally
and the image of Hn+1(Mq,M ;L) in Hn(M ;L) is therefore a torsion group.
Since L is an Eilenberg-MacLane spectrum at 2, Hn(M ;L) → Hn(X;L) is
an isomorphism at 2 and hence the image of Hn+1(Mq,M ;L) in Hn(M ;L)
is odd torsion. By Proposition 4.6 [f ] is the image of [c] ∈ Scc(Cq, X+) un-
der the forgetful map. Then [f ] = η−1∂̄(γ) is an odd torsion element where
γ = s̄([c]) ∈ Hn+1(Mq,M ;L).

5. Continuous control near the corona

We move on to the nonsimply connected case. We will use germs of continuously
controlled structures near infinity to recover the main diagram in the proof
of Proposition 4.5. The computation of SCE(M) in the nonsimply connected
case is made more complicated because we no longer have the isomorphism
S(M) ∼= H̄n(M ; L). We note, that by Proposition 3.4, if q : M → X is cell-like,

then there are maps M
q // X // P2(M) such that the composition is

the inclusion, where P2(M) is the second stage of the Postnikov system of M .
Elements of Hn(M ; L) which survive to Hn(P2(M); L) therefore cannot be in
the kernel of Hn(M ; L) → Hn(X; L), so we are led to examine the boundary
map Hn+1(P2(M),M ; L)→ Hn(M ; L), leading to a proof of our main result.

Proposition 5.1. Let (P,Q) be a CW pair with an inclusion isomorphism
π1(Q) = π1(P ) = π. Then the homomorphism ∂′ : Hn+1(P,Q;L) → Sn(Q)
defined in §2 coincides with the induced homomorphism on homotopy groups in
the diagram below:

H∗+1(P,Q; L) //

∂′

��

H∗(Q;L) //

��

H∗(P ;L)

AP

��
S∗(Q) // H∗(Q;L)

AQ // L∗(Zπ)

where AP and AQ are the assembly maps for P and Q.

Proof. The proof is a diagram chase.

We recall the notation δ = p ◦ ∂′ where p : Sn(M)→ S(M) is the projection.

To prove Theorem 2.7 we need the germ version of continuously controlled
surgery theory constructed in [60].

Definition 5.2.

(i) Let N be an open manifold and let X be a compact corona of a com-
pactification N̄ of an end of N . A strict homotopy equivalence near X is
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a strict map f̄ : W̄ → N̄ , where W̄ is a compactification of an end of W
by X and f̄ |X = idX , such that there are neighborhoods Ū ⊃ V̄ of X in
N̄ and Ū ′ ⊃ V̄ ′ of X in W̄ such that f(Ū) ⊂ Ū ′ and there is a strict map
ḡ : Ū ′ → Ū with ḡ|X = idX such that

(a) ḡ ◦ f̄ |V̄ is strict homotopic in Ū to idV̄ .

(b) f̄ ◦ ḡ|V ′ is strict homotopic in Ū ′ to idV̄ ′ .

(ii) Two strict homotopy equivalences near X, f̄ : W̄ → N̄ and f̄ ′ : W̄ ′ → N̄
are equivalent if there exist a neighborhood V̄ of X in W̄ and a strict map
h : V̄ → W̄ ′, h|X = idX which is an open imbedding and f̄ ′ ◦ h : V̄ → N̄
is strict homotopic to f̄ |V̄ .

(iii) The set of the equivalence classes of strict homotopy equivalences of mani-
folds near X is called the set of germs of continuously controlled structures
on N at X and it is denoted as Scc(N̄ ,X)∞.

One can define Top reductions near the boundary as germs of homotopy classes
[N,G/TOP]∞ of maps at X and the corresponding L-groups and form a surgery
exact sequence. This was done in §15 of [32] in the case of bounded control and
in §2 of [60] for continuous control. We are interested in the case from [60] where
U is X and Z is empty. Thus, in our case of interest, N = M×(0, 1) and the Top
reductions of the Spivak bundle are just Top reductions of the Spivak bundle of

M . Here, N̄ is an open mapping cylinder12
◦
Mq of a cell-like map q : M → X of

a closed orientable manifold.

Proposition 5.3. Let q : M → X be a cell-like map of a closed orientable
n-manifold, then there is an exact sequence

· · · → H̄n+1(X;L)→ Scc(
◦
Mq, X)∞ → [M,G/TOP]→ Hn(X;L).

By Proposition 4.6, forget control defines a map φ : Scc(
◦
Mq, X)∞ → S(M).

Moreover, there is a commutative diagram:

Scc(
◦
Mq, X)∞ //

φ

��

[M,G/TOP] //

��

Hn(X;L)

A

��
S(M) // [M,G/TOP] // Ln(Zπ1(M)).

Here A is the assembly map for X.

Proposition 5.4. If q : M → X is a cell-like map of a closed connected n-

manifold, then the forget control map φ : Scc(
◦
Mq, X)∞ → S(M) factors as

Scc(
◦
Mq, X)∞

j→ Hn+1(Mq,M ;L)
i∗→ Hn+1(P2(M),M ;L)

δ→ S(M)

where j is a monomorphism with cokernel Z or 0.

12This is the usual mapping cylinder of q with the domain copy of M stripped off.
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Proof. Proposition 3.4 defines a map g : X → P2(M) such that g◦q is homotopic
to the inclusion M → P2(M). We consider the diagram of (horizontal) fibrations
of spectra

H∗+1(X,M ;L)

��

// H∗(M ;L) //

=

��

H∗(X;L)

g∗

��
H∗+1(P2(M),M ;L)

��

// H∗(M ;L) //

=

��

H∗(P2(M);L)

AE

��
S∗(M) // H∗(M ;L) // L∗(Zπ).

In dimension n the homomorphism between homotopy groups of the fibers gives

Hn+1(Mq,M ;L)
i∗→ Hn+1(P2(M),M ;L)

∂′→ Sn(M)

where Hn+1(Mq,M ;L) differs from Scc(
◦
Mq, X)∞ by a potential summand Z.

The proof of this is similar to the proof of Proposition 4.5, using the fibration
sequence

Scc∗+1(
◦
Mq, X)∞ → Hn(M ; L)→ Hn(X; L)

in place of
Scc∗+1(Cq, X+)→ Hn(M ; L)→ Hn(X; L)

The result then follows from Proposition 5.1.

Proof of Theorem 2.7. (SCE(M) ⊃ im(δT[2]).) We are given an odd torsion ele-

ment α ∈ Hn+1(P2(M),M ;L) with δ(α) = [f ] ∈ S(M) where δ is the composi-
tion

Hn+1(P2(M),M ;L) ∼= Sn+1(P2(M),M)→ Sn(M)→ S(M).

By Proposition 3.7, there exist a cell-like map q : M → X and an odd torsion el-

ement α̂ ∈ Hn+1(Mq,M ;L) ∼= Sccn+1(
◦
Mq, X)∞ so that α is the image of α̂ under

the inclusion-induced map i∗ : Hn+1(Mq,M ;L) → Hn+1(P2(M),M ;L). Since

α̂ has finite order and j : Scc(
◦
Mq, X)∞ → Sccn+1(

◦
Mq, X)∞ is an isomorphism

on torsion subgroups, α̂ = j(α′), where α′ ∈ Scc(
◦
Mq, X)∞. By Propostion 5.4

φ(α′) = [f ]. Let g : W →M × (0, 1) be a representative for α′. As in the proof
of Corollary 4.6 we may assume that W = N × (0, 1) and W̄ = Mp, where
p : N → X is cell-like. Thus, [f ] = φ(α′) is realized by cell-like maps p and q.

(SCE(M) ⊂ im(δT[2])). Suppose that c : N → X and q : M → X are cell-like
maps and that f : N →M is a homotopy equivalence such that q ◦ f ' c.

N
f //

CE

c   

M

CE

q
~~

X
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As above, there is an inclusion-induced map p : X → P2(M) and the forgetful
mapHn+1(Mq,M ;L) ∼= Scc∞(Mq, X)→ S(M) factors throughHn+1(P2(M),M ;L).
It therefore suffices to show that the image ofHn+1(Mq,M ;L) inHn+1(P2(M),M ;L)
is an odd torsion group. By the Vietoris-Begle theorem a cell-like map induces
an isomorphism of ordinary cohomology or Steenrod homology with any coeffi-
cients (see Proposition 3.4). Therefore H∗(M ;L)→ H∗(X;L) is an isomorphism
rationally, and hence, the image of H∗(Mq,M ;L) in H∗(P2(M),M ;L) is tor-
sion. Since L is an Eilenberg-MacLane spectrum at 2, H∗(M ;L)→ H∗(X;L) is
an isomorphism at 2 and hence H∗(P2(M),M ;L) is odd torsion.

6. Deforming Riemannian manifolds in Gromov-Hausdorff space

In this section, we apply the theory of CE equivalence, developed above, to study
one parameter families of Riemannian manifolds in Gromov-Hausdorff space.

Definition 6.1.

(i) A continuous function ρ : R+ → R+ with ρ(0) = 0, continuous at 0, with
ρ(t) ≥ t for all t is a contractibility function for a metric space X if there
is R > 0 such that for each x ∈ X and t ≤ R, the t-ball Bt(x) centered at
x can be contracted to a point in the ρ(t)-ball Bρ(t)(x).

(ii) Similarly, if X is an n-manifold, ρ is a topological injectivity function for
X if for each x ∈ X and t ≤ R there is an open subset U ⊂ X so that U
is homeomorphic to Rn and Bt(x) ⊂ U ⊂ Bρ(t)(x).

Let ρ = ρ1 : [0, R) → [0, ∞) be a contractibility function. The theorem of
Petersen on page 392 of [62] shows that for every ε > 0 there is a δ > 0 so that if
X and Y are compact n-dimensional metric spaces with contractibility function
ρ such that dGH(X, Y ) < δ, then X and Y are homotopy equivalent by maps
and homotopies that move points by less than ε. Moreover, given ε, there is an
explicit computation of the necessary δ.

Combining this with the results of Chapman-Ferry, Freedman-Quinn, and Perel-
man cited in the introduction, we see that if M is a closed topological n-manifold
with a given metric dM , and a contractibility function ρ, then there is a δ > 0
such that any other topological n-manifold with contractibility function ρ and
dGH(M,N) < δ must be homeomorphic to M .

In this section, we show that the condition that M be stationary with a fixed
metric is necessary: that there are families of nonhomeomorphic Riemannian
manifolds with a common contractibility function that can be deformed arbi-
trarily close to each other in a precompact region of Gromov-Hausdorff space.
We get a complete algebraic description of this behavior and produce many ex-
amples of nonhomeomorphic families of manifolds with common contractibility
functions and/or topological injectivity functions that can be similarly pushed
together.
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Definition 6.2.

(i) If Z is a metric space, X ⊂ Z, and ε > 0, Nε(X) = {z ∈ Z | d(z,X) < ε}.
(ii) IfX and Y are compact subsets of a metric space Z, the Hausdorff distance

between X and Y is

dH(X,Y ) = inf{ε > 0 | X ⊂ Nε(Y ), Y ⊂ Nε(X)}.

Here, X and Y are isometrically embedded in Z.
(iii) If X and Y are compact metric spaces, the Gromov-Hausdorff distance

from X to Y is

dGH(X,Y ) = inf
Z
{dH(X,Y ) | X,Y ⊂ Z}.

(iv) Let CM be the set of isometry classes of compact metric spaces with the
Gromov-Hausdorff metric.

(v) LetMman(n, ρ) be the set of all (X, d) ∈ CM such that X is a topological
n-manifold with (topological) metric d with contractibility function ρ.

It is well-known that CM is a complete metric space (see [37] or [62] for an
exposition).

Theorem 6.3.

(i) If n 6= 3 and X ∈ CM is in the closure ofMman(n, ρ), then there is an ε >
0 so that there are only finitely many homeomorphism types of manifolds
M ∈ Mman(n, ρ) with dGH(M,X) < ε. If dGH(M,X), dGH(M ′, X) <
ε, then there exists a simple homotopy equivalence h : M ′ → M which
preserves rational Pontryagin classes.

(ii) If [f ] ∈ SCE(M) with f : N → M , M and N smooth, then there exist a
contractibility function ρ and a compact metric space X such that every
neighborhood of X in CM contains manifolds lying in Mman(n, ρ) and
homeomorphic to both M and N .

(iii) There exist examples as in (ii) such that M and N are not homeomorphic.

Proof. Part (i) is Theorem 2.10 of [27].

For part (ii), and let q : M → X and p : N → X be cell-like maps. By
the main results of [31] and [57], there exist a contractibility function ρ, and
sequences of Riemannian metrics {dMi } and {dNi } on M and N respectively
lying in Mman(n, ρ) and converging in CM to (X, d) for some metric d.

For part (iii), let M and N be the manifolds from Corollary 2.15 or Proposition
2.16.

Let Mman(n, ρ) be the closure of Mman(n, ρ) in Gromov-Hausdorff space and
let ∂Mman(n, ρ) be the boundary. For a compact metric space X, we will denote
its isometry class by the same letter X.
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Theorem 6.4. Suppose that the isometry type of a metric space X belongs
to ∂Mman(n, ρ). Then there is an ε > 0 such every two manifolds M,N ∈
Bε(X) ∩Mman(n, ρ) are CE-related.

Proof. The proof will follow Proposition 6.9.

Definition 6.5. A map f : M → X has the δ-lifting property in dimensions
≤ k if for every PL pair (P,Q), dimP ≤ k for every commutative diagram

Q
g′ //

��

M

f

��
P

g //

ḡ

88

X.

there is a map ḡ : P →M extending g′ such that dist(f ◦ ḡ, g) < δ.

Proposition 6.6. Let X be a locally k-connected space for k > n, then there
exists δ > 0 such that every map f : Z → X from a compact n-dimensional ANR
with the δ-lifting property in dimensions ≤ n+1 is a weak homotopy equivalence
through dimension n (i.e., such that f is n + 1-connected). Furthermore, f
induces isomorphisms of Steenrod homology groups f∗ : Hi(M) → Hi(X) for
i ≤ n.

Proof. The weak homotopy equivalence in dimension n easy follows from the
lifting property. This implies the result for singular homology. We note that
the Steenrod homologies coincide with the singular homologies in the locally
n+ 1-connected case.

Proposition 6.7. If X ∈ ∂Mman(n, ρ), then for every δ > 0 there exists ε > 0
such that for every M ∈ Mman(n, ρ) with dGH(M,X) < ε there is a map
f : M → X with the δ-lifting property in dimensions ≤ n+ 1.

Proof. The space X is locally k-connected for all finite k (see [29]). Then for
small ε a map f : M → X can be constructed by induction by means of a small
triangulation on M (if M does not admit a triangulation, one can embed M in
euclidean space, take a fine triangulation of a neighborhood of M , and lift all of
the simplices in the neighborhood that meet M). Given δ0 > 0, we may assume
that d(x, f(x)) < δ0. Clearly, for a proper choice of δ0 the map f will have the
δ-lifting property.

Proposition 6.8 ([52] Remark 4.36). For any CW complex K there is an
isomorphism

Hn(K;L(2)) ∼=
⊕
i

Hn+4i(K;Z/2)⊕Hn+4i−2(K;Z/2)

which is natural with respect to maps K → L.

Proposition 6.9. If X ∈ ∂Mman(n, ρ), then there exists ε > 0 such that for
every M ∈ Mman(n, ρ) with dGH(M,X) < ε there is a map f : M → X such
that f∗ : H∗(M ;L(2))→ H∗(X;L(2)) is an isomorphism.
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Proof. Since L(2) is an Eilenberg-MacLane spectrum, we can take ε from Propo-
sition 6.7. Then Proposition 6.6 and the fact that Hi(M) = Hi(X) = 0 for i > n
imply the required result. This last fact follows from the arguments above. Given
k, one shows that there is a δ > 0 so that if dGH(Mn, X) < δ, there is a k-
connected map M → X. Repeating this for a sequence of M ’s shows that the
homology groups of X are trivial in dimensions > n.

Petersen [62] correctly concludes from similar arguments that X can have no
finite-dimensional subsets of dimension > n and incorrectly concludes from this
that X must have covering dimension ≤ n. The limit spaces X constructed
in this paper are infinite-dimensional spaces containing no finite-dimensional
subspaces of dimension > n. See [73], [18] for further explanation.

Proof of Theorem 6.4. We take ε from Proposition 6.9. Let c : N → X and
q : M → X be corresponding maps. We may assume that there is a homotopy lift
f : N →M of c which is a homotopy equivalence. Then f induces isomorphisms
f∗ : H∗(N ;L(2))→ H∗(M ;L(2)).

As was shown in [29] (P4, page 98), there are finite polyhedra P1, P2 and maps
p1 : X → P1, p2 : X → P2 and g : P2 → P1 such that p1 = g ◦ p2, p2 is n + 3-
connected and g is (dimP1 +3)-connected. Let qi = pi ◦q, i = 1, 2. We note that
these conditions imply that q2 induces isomorphisms of homology in dimension
≤ n + 3 and g induces isomorphisms of homology in dimension ≤ dimP1 + 3.
The latter implies that im g∗ = im(q1)∗ for homology of dimension ≤ dimP1 +3.
In view of Proposition 6.8 we obtain the following:

1. (q2)∗ : Hn(M ;L(2))→ Hn(P2;L(2)) is a monomorphism;
2. im g∗ = im(q1)∗ for the (n+ 1)-dimensional L(2)-homology.

We claim that g∗ : Hn+1(P2,M ;L(2)) → Hn+1(P1,M ;L(2)) is the zero homo-
morphism.

Consider the commutative diagram generated by exact sequences of pairs

Hn+1(M ;L(2))
(q2)∗−−−−→ Hn+1(P2;L(2))

j2∗−−−−→ Hn+1(P2,M ;L(2))
∂2−−−−→

=

y g∗

y g∗

y
Hn+1(M ;L(2))

(q1)∗−−−−→ Hn+1(P1;L(2))
j1∗−−−−→ Hn+1(P1,M ;L(2))

∂1−−−−→ .

Let α ∈ Hn+1(P2,M ;L(2)). By the property (1) ∂2(α) = 0. Hence α = j2
∗(β) for

some β. By the property (2) there is γ ∈ Hn+1(M ;L(2)) such that (q1)∗(γ) =
g∗(β). Hence 0 = j1

∗ ◦ g∗(β) = g∗(α) and the claim is proven.

Since H∗(Y ;L(2)) = H∗(Y ;L)⊗ Z(2), g∗ takes Hn+1(P2,M ;L) to odd torsion.

Since pi ◦ q is 2-connected, the space P2(M) can be constructed out of Pi by
killing higher dimensional homotopy groups. Thus the inclusion M ⊂ P2(M)
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can be factored through X and Pi, i = 1, 2. Hence there is a commutative
diagram

Hn+1(P2,M ;L)
∼= //

��

Sn+1(P2,M)
φ2 //

��

Sn(M)

=

��
Hn+1(P1,M ;L)

∼= //

��

Sn+1(P1,M)
φ1 //

��

Sn(M)

=

��
Hn+1(P2(M),M ;L)

∼= // Sn+1(P2(M),M)
∂ // Sn(M).

(7)

We show that the element [f ] ∈ S(M) comes from an odd torsion element
of Hn+1(P2(M),M ;L). By Theorem 2.6 of [29] the structure [f ] defined by f :
N →M belongs to the kernel of the induced map (q2)∗ : Sn(M)→ Sn(P2). Thus
[f ] ∈ im(φi), i = 1, 2. By the above φ2 factors through odd torsion. Therefore
[f ] is the image under ∂ of an odd torsion element. Hence, [f ] ∈ im(δT[2]).

Applying Theorem 2.7 shows that N and M are CE-related.

Next, we demonstrate the existence of topological injectivity functions. Our
argument is an easy modification of McMillan’s Cellularity Criterion [56], which
says that a compact subset X of a closed manifold Mn, n ≥ 5 is a nested
intersection of open sets homeomorphic to Rn if and only if X is cell-like and
for every open neighborhood U of X there is an open neighborhood V of X
contained in U such that the inclusion induced map π1(V −X) → π1(U −X)
is trivial. 13

Theorem 6.10. Let M be a closed topological n-manifold with a contractibility
function ρ : [0, R) → [0, ∞). If Q is a closed k-manifold, k ≥ 1, n + k ≥ 5,
then M ×Q has a topological injectivity function.

Proof. McMillan shows that if X is cell-like and Mi, i = 0, 1, 2, 3 are nested
compact PL manifolds, Mi+1 ⊂ Mi, containing X with the inclusion of Mi+1

into Mi nullhomotopic, i = 0, 1, 2, and the inclusion induced map π1(
◦
M3−X)→

π1(
◦
M2 − X) is zero, then there is an open set U with M3 ⊂ U ⊂ M0 and U

homeomorphic to Rn.14

By immersion theory, any open subset of a topological manifold that contracts to
a point in that manifold has a PL structure, so for any x ∈M , the contractibil-
ity function allows us to find arbitrarily long nested sequences of compact PL
manifold neighborhoods Mi of x with Mi+1 → Mi nullhomotopic for all i. A

13Using work of Perelman and Freedman, the cellularity criterion is now known to be true
in all dimensions.

14McMillan’s argument shows X ⊂ U ⊂ M0, but adding one more layer gives the stated
result.
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bit of manipulation to fill in holes, see [56], allows us to assume that each Mi is

connected with connected boundary and that Mi −
◦
M i+1 is connected for each

i. If q ∈ Q is written as a nested intersection {q} = ∩Bi of balls in Q, then the
sequence Mi × Bi satisfies McMillan’s conditions and guarantees the existence
of a topological injectivity function. With a bit of care, this function τ can be
written explicitly in terms of ρ.

Remark 6.11. For each x ∈M ×Q, this allows us to construct a sequence of
homeomorphisms between euclidean neighborhoods of x and euclidean neigh-
borhoods of nearby points in M ′×Q, where M is deformable to M ′. Evidently,
these homeomorphisms cannot be controlled well enough to stitch them to-
gether to provide an isomorphism of tangent microbundles, since that would
contradict the characteristic class computations of Corollary 2.15. This sug-
gests that there is no reasonable way of assigning a tangent bundle to the
infinite-dimensional (but finite cohomological dimensional) homology manifold
X. Nevertheless, the controlled Mischenko-Ranicki symmetric signatures ∆M ∈
Hn(M ; L) and ∆M ′ ∈ Hn(M ′; L) map to the same class in Hn(X; L) after
inverting 2. This suggests that X may possess a well-defined characteristic class
theory.
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