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INTRODUCTION 

EWING [7] showed that the G-signature of a smooth G-manifold for G = Z,, p an odd prime, 

is essentially unrestricted if and only if the class number of the cyclotomic field containing 

the p-th roots of unity is odd. Katz [9] has elaborated on this, using results from smooth 

equivariant cobordism theory, to prove precise integrality formulae; in particular, he 

connects the G-signature mod 4 to the signatures and local representations occurring at 

components of the fixed set. 

In a different direction the author [21] showed that the existence of certain group 

actions on nonsimply connected manifolds forces their higher structures to vanish. In fact, 

the Novikov conjecture is equivalent to a statement about group actions. 

In yet another direction, S. Cappell and the author constructed [S] certain characteristic 

classes for semifree PI!. (locally linear) G-actions; these were applied there to prove a 

splitting theorem for some classifying spaces. This splitting, crucial for many equivariant 

existence and classification problems, at the prime 2 depends on understanding peripheral 

invariants of free group actions on sphere bundles. For locally-nonlinear actions, the results 

are deduced by means of comparison to the locally linear case. 

In this paper, we study the cobordism of homologically trivial actions and use it to unify, 

extend, and improve our understanding of all the above phenomena. The method is to 

consider, say, QHT, (Z,, X) which is roughly speaking the cobordism group of n-manifolds 

with rationally homologically trivial Z,-action. mapping into X. This is not a representable 

functor, and one cannot reduce the problem to stable homotopy theory of some Thorn 

spectrum. (It is not always possible to make a transverse inverse image have a homologi- 

tally trivial action). The solution (Theorem 1) to this difficulty, similar to that for Poincart 

cobordism, measures the deviation through an exact sequence involving L.i(R[n,X]) (for 

an appropriate ring R) as the “third term”. 

At this point one easily recovers the result that the Novikov conjecture implies the 

vanishing of higher signatures-for homologically trivial actions. This then gives information 

about which classes in the bordism group R(B(n x G)) have such G-actions, while [21] only 

solves (in some cases) this for R(&r). (Of course, the exact sequence also computes how 

many actions there are corresponding to a given class.) 

Now, for X = point, the Atiyah-Singer invariant is essentially a cobordism invariant, 

and the next order of business is to compute its role in the theory. Using the connection 
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between surgery groups, discriminants, and multisignature one recovers a weak form of 
Katz’s formula for PL actions. (It is unreasonable to expect to re-derive his entire result 
because of ignorance of equivariant PL-cobordism.) Reversing the smooth program further, 
we study the effect of PL-local linearity and recover Ewing’s theorem for PL-locally linear 
actions. For arbitrary PL actions the multisignature is unrestricted for some primes with 
even class numbers, and for topologically locally linear actions it is never restricted.t These 
same ideas give an interpretation of the parity of the second factor of the class number in 
terms of a refined G-signature for G = 2,. 

The divisibility theorems necessary for the PL-classes of [S], at least for Z,, are now 
immediate in a much more general form. In the present development the locally linear case 
is the more difficult, requiring the notion of a simple homologically trivial action, and is 
derivative of the nonlocally linear case. In addition, away from 2,: these classes are given a 
totally new description using a blocked version of the calculation, which yields a slightly 
more conceptual definition. (Of course, these results do not yield the desired geometric 
consequences of [S] without the material on classifying spaces from that paper; we 
construct obstructions but do not prove that they are the only obstructions for the relevant 
problems.) 

The organization of this paper is as follows: section 1 gives a theoretical calculation of 
homologically trivial cobordism, and gives the characteristic classes away from 2 inter alia. 
In section 2 we derive immediate consequences including connections with the Novikov 
conjecture. An appendix reviews the conjecture and proves a form, in many cases, that is 
useful for transformation groups. Section 3 deals the cobordism of nilpotent manifolds as a 
special case, and derives some results on the range of p-invariants, relevant to [S] and 
section 3. Section 4 is brief, introducing simple actions and their cobordism. The last section 
is devoted to the PL analogues and extensions of the work of Katz and Ewing. 

In a future paper we will extend this last application to Z, for n not a prime. Here there 
are a number of differences because of the number theory of composite cyclotomic fields 
which differs from the prime power case. However, much of section 5 is relevant to this case 
as well. 

1. THE EXACT SEQUENCE 

We begin with a definition: 

DEFINITION. A free action ofG on M is R-(twisted) homologically trioial if(a) rc,(M/G) is 

isomorphic to x,(M) x G and (b) the action ofG on H,(M;R[n,M]) is trivial. 

It is the aim of this section to compute the cobordism groups of these objects for R a 
subring of Q containing l/ICI. The Lefshetz fixed point theorem implies that a manifold 
having a free homologically trivial action of any non-trivial group necessarily has vanishing 
Euler characteristic. Therefore one makes another: 

DEFINITION. fi(Bn) is the cobordism group of (oriented) manifolds with fundamental group 

7c and Euler characteristic zero. (Ordinary cobordism is obtained by deleting the bar from the 

notation.) 

tNever, at least for n > 4. In dimension 4, the topological locally linear result agrees with the smooth result, and it 
is ANR actions that have unrestricted multisignatures. 

:This is not crucial: a trick from [S] can be combined with the methods here to complete the description, even at 2. 
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PROPOSITION. n,(Brr) + R,(Bn) is an isomorphism for n E 2, 3 mod 4, an injection for 

n s 0 mod 4 and a (split) surjection for n E 1 mod 4. In the last two cases the cokernel 

and kernel (respectively) are Z,. 

The proof is not difficult. The splitting, for n E 1 mod 4, of &(Bn) + Z, is given by the 
rational semicharacteristic (see [21]). 

We introduce one last bit of (nonstandard!) notation: 

Notation. ~,(R[K x G]) = Ker Li(R[rc x G]) + Li(R[n]). If --!-E R, it can be identified 
IGI 

with Li(9[n]) where 9 is the augmentation ideal of R[G] viewed as a unitary ring with 

involution 
( 

the unit being [1 --&~g]. of course . ) We shall use these notations 

interchangeably. 

DEFINITION. RHT,(G, Brr) is the n-dimensional cobordism group of manifolds with fun- 

damental group 7c and with free R-twisted homologically trivial G action. 

Our calculation is: 

THEOREM 1. For n 3 5 there is an exact sequence, assuming Z & 
[ 1 sRcQ. 

. . . : L:+i(9[~]) : RHT,(G,Bn) : Si,(B(rr x G)) : L;(9[n]) 

The map from RHT,(G, Bn) -+ !&(B(lr x G)) is just given by taking the quotient. The 

map Q,UV x G)) -+ CVCnl) is induced by considering the local surgery obstruction of 
the problem M/G + M/G x BG. (By [21, II] this is a surgery problem since x(M) = x(M/G) 
= 0.) Here the obstruction lies in Li(R[n,(M/G) x G]) which we map to LE(R[n,(M) x G]) 

using the splitting given in the definition of Q,(B(n x G)). Since H,(BG;R) = 0, this is 
already an equivalence with R[lr,M] coefficients so the obstruction lies in the correct 
relative group. 

The map from Li+ r(Y[n]) to RHT,(G, Brt) is given as an action, so it is first logically 
necessary to show that RHT,(G, Bn) is not empty. This follows quite easily from [21, II] or 

the proof of exactness given below. (Consider O~li,.) Note however, that for ‘6 R this 
IGI 

may already fail. (Think about R = Z and G a large elementary p-group.) (For certain 

groups RHT,(G,{e}) might be empty for n = 4.) Now, let Li+ I(9[n]) act on M/G 2 MFG 

by the local form of the Wall realization theorem [IS]. The “other end” of the cobordism is 
a manifold R[n x G]-homology equivalent to M/G so that its cover corresponding to G has 
the appropriate twisted homological triviality. 

Now, let us consider exactness. 8 0 a = 0 since homological triviality implies that one is 
computing the obstruction of a homology equivalence. Conversely, if @CM]) = 0 then 
applying local surgery one obtains a manifold N, R[ 7c x G] equivalent to M/G x BG. The G 
action on lif is R-homologically trivial. That fi a = 0 is clear for n f 1 mod 4 since “a” 
is defined by constructing a cobordism, so the image in R,(B(n x G)) vanishes and 

%(B(x x G)) --, Q,,(B( 7c x G)) injects. For n = 1 mod 4 there is no longer an injection, but 
the additional information is carried by the rational semicharacteristic, but the rational 
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homotopy type of the action is unchanged by the L-group action. On the other hand 

from an element of RHT which bounds in R one can construct the above surgery prob- 

lem with obstruction in Lt+ 1 (.P[n]). We give the reader a hint on checking that the image 

of this element is the original action (up to RHT cobordism). The difficulty is that 

one uses different surgery problems in the definitions of the relevant obstructions. Recall 

that the element dies in Li+ ,(R[x]) so that if N is a cobordism erected in the definition 

of a, the map N/G x BG + (F/G x I) x BG has a trivial surgery obstruction (rel S). The 

result of surgery rel ? is the desired RHT-cobordism. a 9 0 = 0 for the same sort of 

reason, and if a acts trivially one can glue in an R-homologically trivial cobordism 

between the ends to get an element of a,,+ ,(B(n x G)). Q.E.D. 

Remarks. (1) If $E R (e.g., we have already assumed this if G is of even order) then 

LI:(.f[x]) 2: Li(.F[lr]) (see [14] for definitions) and the map 0 is easier to understand. It is 

simply the symmetric signature of M/G pushed into the augmentation ring. 

(2) Rather than considering manifolds with fundamental group rr one can instead 

consider manifolds with equivariant maps to X (trivial action on X). Almost identical 

reasoning yields the exact sequence (obvious notation) 

. . + Lf:+,(.f[zlX])+ RHT,(G,X)+f$(X xBG)+L;(S[n,X]) 

(3) Consider the case where Xk is a manifold of dimension k. It is also of some interest to 

consider actions that are homologically trivial over X, because they are homologically 

trivial over small pieces of X. There are a number of equivalent ways of formalising this 

notion. The simplest is to demand the map to X be transverse to some very fine 

triangulation so that inverse images of simplices of X have a R-homologically trivial action. 

We call this set RHT,(G,X). One can also form the obvious A-set whose 0-simplices are 

such objects, 1-simplices such cobordisms, etc. and call it RHT(G,X). The calculation, 

which is just a formal A-version of the above is a fibration. 

RHT,+k(G,X) + n,(G)x + L;(P)’ 

where zi is a spectrum for cobordism with vanishing X and is related to the ordinary 

spectrum R by a fibration !3 + R + V K(Z,, 2k) and L is a Quinn-Ranicki surgery 
k 

spectrum. We refer to this fibration as “Fine Theorem 1” or “h-Theorem 1”. If one studies 

RHp(G, X) with some canonically given ordinary coboundary over X (this can always be 

made 4 by ordinary transversality) one sees directly from the fine theorem that, away from 

2 and (Cl, this is given by homotopy classes of maps X --t Li+ r(Y)&. Applying this to the 

boundary of an equivariant regular neighborhood of the fixed set S of a semifree G action 

one obtains the characteristic classes (inverting 2 if ICI is odd) of [S]. For more on these, see 

section 4. 

2. FIRST APPLICATIONS 

The material of section 1 can be immediately applied to give interesting information 

without any additional development. We always assume that R is a subring of Q containing 

l/ICI. We begin with what might be the most interesting case, rt the trivial group. 

COROLLARY 1. RHT,(G, {e}) is Jinitely generated for all * if and only if there are only 
jnitely many primes inverted in R. 
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Proof: This is the result of well-known calculations of Wall groups. For G = Zz the 
relevant calculations are in [l I]. 

COROLLARY 2. For R c Q, RHT,(G, X) + QHT,(G, X) is an isomorphism away from 2. 

Proof: This follows from Ranicki’s localization sequence [15]. 
The next result shows the relationship between RH@(G. X) and RHT(G, X). 

COROLLARY 3. RHT ‘+‘(G, X) + RHT(G, X) is an isomorphism if and on/J- lf an 

assembly map H(X; L(J)) + L,(#[n, X]) is an isomorphism. 

ProoJ: Apply the 5-Lemma to Theorem 1 and its fine version. 
As a result, unless X is aspherical there are almost always transversality obstructions. In 

the aspherical case, it depends on the Novikov conjecture and on G. From material 
explained later, (see section five) the reader can easily deduce that for X = S’ and G = G, 
and p with odd class number RHF + RHTis an isomorphism, but that for p = 29 it is not. 

Another application of this approach to homologically trivial transversality to “higher 
equivariant signature formulae” will appear in [25]. 

Before continuing, it is of use to describe the G-signature and p-invariants of the 
appropriate sorts of G-manifolds. If G acts orientation-preservingly on M4’ then it acts as a 
group of isometries on the intersection cup product pairing HZk(M;R). In particular it 
preserves the positive and negative definite pieces. We let a(G, M)ER+(G) denote the 
difference between the representations of G on these pieces. The + subscript indicates that 
the character of the representation is real. This is an equivariant cobordism invariant. There 
is a similar definition possible for manifolds of dimension 4k + 2 except that the character is 
purely imaginary (see [2]). Key facts are that the G-signature of a free action on a closed 
manifold is always a multiple of the regular representation and that Novikov additivity 
holds for computing the G-signature of a manifold obtained by glueing two manifolds with 
boundary together along some components of their boundary. These allow the definition of 
the p-invariant of an odd dimensional free G-manifold, M. In short, bordism theory shows 

that for some r > 0, rM = 8N for a free G-manifold N. p(M) = i a(G, N) modulo the regular 

representation, e.g., ME W(G) @ Q, 

COROLLARY 4. RHT(G, (e}) 0 Z[$ is detected by the bordism class of the manifold and 
the p-invariant of the action (module the trivial representation in dimension 4k- 1). 

Proof: That these are cobordism invariants is obvious. That they detect follows from the 
connection between G-signature and L-groups (see e.g. [13], [19]) and Theorem 1. 

In section 4 we shall examine more closely the role of the p invariant in homologically 
trivial cobordism theories to prove integrality formulae for it and for 6. 

The methods of this paper also allow a result not 0 Z[$J. 
The same reasoning, coupled with calculations found in the Appendix one has: 

COROLLARY 5. If 7c is free, free abelian, a surface group or more generally lies in Cappell’s 
class V, (see [4]) then RHT$(G, B7r) -+ RHT,(G, Bn) is an isomorphism after @ Z[+]. After 
tensoring with Q these are detected bql the bordism class in R*(B~L) @ Q and a “reduced higher 
p-invariant (analogous to Nocikov’s higher signature). 

We leave as an exercise the situation of TC finite for comparison. 
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In terms of realization of these invariants, one knows that everything is realized except 

for cobordism classes with nontrivial Novikov higher signature, again by examining the 

exact sequence. The details are similar to (but easier than) the ones in [21,II]. 

As a last general point one has 

COROLLARY 6. As a function of G, RHT,(G, X) satisfied induction (i.e., after @ Z,,, one 
can apply p-hyperelementary induction). 

Proof. This, of course, is ultimately a consequence of Dress induction. A complete proof 

of a similar sort is carried out in Nicas’ thesis [123. Recent (as yet unpublished) work of 

I. Hambleton, J. Milgram, L. Taylor, and B. Williams provides a context in which such 

induction results become routine. 

APPENDIX TO SECTION 2. 

A REFINED NOVIKOV CONJECTURE 

The Novikov conjecture as it is usually constructed is the homotopy invariance of 

certain generalized Pontrjagin numbers. More precisely, let M be a manifold with funda- 

mental group identified with rt via a mapf: M -+ B7c. Then one can push the homology L- 

class of M into the group homology, i.e., if L(M) is the Hirzebruch L-polynomial (con- 

sidered as a graded cohomology class) in the Pontrjagin classes of M, then one defines 

a,(M) =f,(L(M) n CMI)E H,VWQ). 

The Novikov conjecture states that if h: M + N is a homotopy equivalence of manifold that 

preserves orientation and identification of fundamental group then C,(M) = a,(N). Notice 

that for II the trivial group, a,(M) is just the ordinary signature by Hirzebruch’s formula 

and that homotopy invariance is then trivial. 

A link between the Novikov conjecture and surgery theory can be forged as follows. (See 

the last section of [18] or [4].) There is a natural map (regarding the objects as being Zq- 

graded) 

A:H,@;Q) --+ L*(n) 0 Q. 

The image of the higher signature in the L-theory is a homotopy invariant. Thus, to 

prove the Novikov conjecture for a group rt it suffices (and, in fact, is also necessary) to show 

that A is injective. In all the presently known examples, if rr is torsion free, A is actually an 

isomorphism. One can generalize A somewhat. Let S be an arbitrary unitary ring with 

involution then there is a homomorphism (induced by a map of spectra): 

A:H,(n;L(S)) -+ f&h). 

(We have shifted viewpoints a bit now-we view @ Hi(rc;Q) as the rationalization of 
I z h(4) 

H,(&r;L(Z)).) It is unreasonable to demand that this map be an isomorphism for n torsion 

free. This is due to the contribution of the Tate cohomology of the K-theory of S. (Think 

about Shaneson’s Z x G formula [17], L:(S[Z]) = L:(S) x LP,_ l(S), so H(Z,; K,(S)) messes 

up the isomorphism.) There are two solutions. The simpler is to @Z[f]. The more refined is 

to work with L-” rather than any of the usual L-theories. These groups solve the problem 

of when a surgery problem crossed with some (unspecified) torus can be coborded to a 

homotopy equivalence. With either of these emendations it might be reasonable to suggest 

the conjecture that A is an isomorphism. 
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A case of particular importance is S = R[G]. Then A can be viewed as a “partial 

assembly” via 

H(G x 7~; L(R)) ” H(n;H(G;L(R)) 

\_j\j_l 

1 Ac (on CoefficientsI 

A G.n HW4RCGl)) 
14 

WCGICnl) = -WCG x ~1) 

Notice that we immediately have 

PROPOSITION 7. Strong Novikov conjectures for G x x follow from the conjectures for G 

and for R. 

For IC trivial, the conjecture is trivial, and for n = 2 this is Shaneson’s thesis again 
(actually the algebraic version due to Ranicki), and hence the conjecture is true for free 
abelian groups. Using the splitting theorem of Cappell [4] one obtains 

THEOREM 8. Let V?‘1 be the class of groups obtained,from the trivial group from amalga- 

matedfree products (along square root closed subgroups), HNN extension and direct products. 

Then for rr~%??, the (more) rejined Novikov conjecture holds. (Recently, S. Ferry and the 
author have obtained a version of the strong Novikov conjecture for discrete subgroups of 
semisimple Lie groups.) 

Even for the ordinary Novikov conjecture this is a (slightly) stronger result than [4]. 
Also if the ordinary conjecture holds for G then it does for %?I x G. We leave the proof of this 
and the obvious analogues of other statements from [4] to the reader. 

The case relevant for section 2 is S = .P the augmentation ring of RG . We remark that 
the simple ideas of this appendix can be used to short circuit some calculations in the 
literature. (For instance, to take a personal example, using Z2 x 71 where II has infinite ooze 
as in 1223 one can give a less calculational example of a non-CP homotopy equivalence, 
using S = Z[Z2] than one given in [23].) 

3. COBORDISM OF NILPOTENT MANIFOLDS 

Recall that a space is nilpotent if its fundamental group is, and its fundamental group 
acts nilpotently on its higher homotopy groups. Thus all simply connected spaces are 
nilpotent. In particular, elementary surgeries show that every oriented manifold is cobor- 
dant, by a simply connected cobordism, to a simply connected manifold, so that ordjnary 
(oriented) cobordism coincides with cobordism of nilpotent manifolds. However, things 
heat up a bit if one considers just examples with a fixed fundamental group. Here we restrict 
attention to 7c an odd p-group, and in fact to 71 = Z,,. The latter restriction is reasonable 
because we are mainly interested in 2-torsion and Corollary 6 will permit restriction to 2- 

hyperelementary subgroups which are cyclic. The situation for more general 7~~ is unclear. 
In order to apply our methods to the problem we invoke: 

LEMMA 9. If Tc = n,X is a p-group, then X is nilpotent if and only ifz acts trivially on 

where 8 is the universal cover of X. 

Proof: Note that the action on homotopy groups is nilpotent 

trivially on X* @Z . If X is nilpotent then localization theory 

if and only if 7c acts 

applies to show that 
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[Z,] homotopy type”. )Fromthis 

equivalence, the statement on homology follows. Conversely, one can make a p-plus 

1 
construction ([21, I]) X -+ X+ that kills x,X and is a Z - [I P 

homology isomorphism, that is, 

z[;] + x+[;] is a homotopy equivalence by the homology assumption so that there is an 

equivalence X + 8 x Bn so the usual definition of nilpotence can be verified. 

Thus, for 7c a p-group, nilpotent cobordism is just Z 

exact sequence 

HT(n, { e>). Therefore we have an 

where Nil,(BZ,,) is the n-dimensional cobordism of nilpotent manifolds with n1 = Z,,.. 
Now, for odd n the L-group Lz vanishes. (This can be proved by the same methods as the 
analogous result for Lidd(Zn).) For n even one can compute as follows: L -+ L 0 Z,,, is an 
. . . . . 
inJectIon so It is safe to 0 Z,,,. Now n(pt) -+ Q(BZ,,) becomes an isomorphism. The map 

sends [MJ to the obstruction of M + M x BZ,, [I ! 
P 

which vanishes ‘if and only if the 

ordinary signature of M does (see [21, II]). Thus one has, 

PROPOSITION 10. An element of ITn(BZp.) has a nilpotent representative if and only if its 
signature vanishes (i.e. automatically if n $ 0 mod 4). 

Next we study the 2-torsion in nilpotent cobordism. To identify the part not coming 
from ordinary cobordism we study only those elements which are trivial in fi,. Now we 
identify several sources of 2-torsion. For n even, of course, there is none. 

If n E 1 mod 4, the rational semicharacteristic detects a Z,. 

If n - 1 mod 4, then Z [I ! 
P 

[Z,,] breaks up into r components so that L, contains 

(Z,)‘- ’ coming from different Arf invariants. 
For n 5 3 mod 4 then there are (r - 1) copies of the Witt group W (Z,) coming up. This is 
Z, + Z,or Z, depending on p mod 4; and 

For n odd, there is 2-torsion coming from 0 H(Z,; Cl(Z[[J)) where ii is a primitive 
i<r 

pi-th root of unity, Cl is the ideal class group and Z, acts by complex conjugation. 

This is just the result of an analysis of the L-theory localization sequence obtained for 
inverting p. (More details are in section 5.) Thus, the 2-torsion is rather regular except for a 
part related to the number theory of p, i.e., which vanishes for odd class number. We will 
discuss this aspect of the calculation more thoroughly in section 5. As examples, Z, for 
p = 29 has some “interesting” 2-torsion, but for p = 163 does not although it has an even 
class number. The involution is such that the cohomology vanishes (see [7]). 

As a final conclusion we have 

PROPOSITION 11. If Zpr acts nilpotrntl_~ on M4k+ ’ which is a boundary then ME 

R,(Z,,)@ Q lies in rhe image of Li(Z[Z,,]) @ Z b [I . For M4k+3 this is true module the 

trivial representation. 
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Proof: The exact sequence and localization for the L-groups (or an argument in [6)) 

immediately yields this. 

By a refinement of this result, or the use of a “x D2” (with multiplication by ezniip as 

action) trick one now has enough of an integrality theorem for p-invariants to construct the 

classes, at the prime 2, for semifree PL Z,. actions on manifolds with manifold fixed sets 

constructed in [S] by other means. Moreover, using the material of the next two sections 

one can obtain the improved classes that exist for locally linear actions. 

4. SIMPLE HOMOLOGICALLY TRIVIAL ACTIONS 

This section is little more than a definition, and that definition is taken from 

Milnor [lo]. 

DEFINITION. If G acts freely and R-homologically trivially on X then 

s(G,X)~K~(.f[rr])/+ (G x rr) = Wh(.f[z]) 

is the torsion of the based acyclic chain complex C,(X/G) ORIn x GI S[x]. The action is simple 
if and only if t = 0. 

Now one can classify simple homologically trivial actions up to cobordism, (calling the 

equivalence classes RHTi(G, X), of course) and one obtains 

THEOREM 12. For n > 5 the following is exact, 

. . . -L~+,(9[lr,X])+RHT;(G,X)-+~,(XxBG)-+L;(~~[~,X])-~~~ 

Proof The proof is almost the same as that given in section 1. The only subtlety 

involved is the fact that if S is finitely dominated (in our case, S being K(G, 1)) and E is finite 

with x(E) = 0 then X x E can be given canonically a simple homotopy type. For E = S’ this 

is due to Ferry and in general to Ranicki [16]. In any case it is easy for our application 

where one can define the canonical type in terms of the vanishing of the (Reidemeister) 

torsion. We leave verification to the reader. 

Note that there is a Duality theorem for T so that T actually defines an element in 

H(Z,; Wh(.f[lr])). From the theorem, we derive (see also [6] on simplicity obstructions): 

COROLLARY 13. For n 2 4, there is an exact sequence 

. . . + RHTXG,X)-* RHT,(G,X): H(Z,; Wh(.P[n])) + . . 

5. THE TORSlON SlGNATURE FORMULA 

In this section we derive various formulae for topological invariants such as the 

p-invariant and G-signature in terms of units in number rings and using this to interpret 

ideal class phenomena of cyclotomic fields geometrically. We begin with some algebraic 

preliminaries. 

To effectively exploit the previous section it is useful to recall the results of Cl93 

computing Ls groups. For a cyclic group Z, there is the multisignature map 

L;,(Z,) + R(Z,) to the complex representations with image the set of in R(Z,) satisfying 

TOP 27:3-H 
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(1) i. = (- l)k7: 

(2) i. = 4R(Z,) 

(3) The coefficient of a real one-dimensional representation is 

0 odd 

Omod8 
if k is 

even 

This map is an isomorphism for k even and has kernel Z, for k odd corresponding to the Arf 

invariant. If we work with reduced L-groups the result is easily seen to be the same except 

that in (3) one makes the coefficient 0 in all cases. Furthermore, in this case, the method of 

[19] shows that the same holds for Z”(R[Z,]) for any ring Z E R E Q. (Note the 

calculation for R the real number ring in that paper.) It now follows from the proof of 

Proposition 11 and section 4 that 

PROPOSITION 14. The p-invariant (modulo the trivial representation) of a free simple 

Q-homologically trivial Z, action on a manifold M4k’1 which bounds, lying in 

iT * (Z,) @ Z i [I , is a multiple of 4. 

(This divisibility is exactly what is needed for [SJ.) 

The next step is to analyze the effect of nonsimplicity. However, this is implicit already in 

section 4’s comparison of RH T” and RH T. As one goes from L” to Lh some multiples of 4 

become slightly less divisible, and one obtains certain multiples of 2. This is controlled by 

the discriminant map 

&(Q[Z.]) : H(Z,; ~WQECJ)). 
If p(M) in Lh,,(Z,) is the preimage of (M, Z,) in the main exact sequence then 

&p(M)) = r(M, Z,)E H(Z,; ~h(QCZ,l)). 

Moreover, this determines the value of PE 2i?,(Z,)/4iTk(Z,). It is interesting to see what 

this says about the G-signature. 

THEOREM 15. (Torsion Signature Theorem). ZfZ, acts semifreely and PL locally linearly 

on M2k with jxed set components Fi with normal representations pi then 

h(a(Z”, M)) = CX(Fi)r(Pi) 

so that the value of the signature mod 4 and modulo tlze trivial representation the trivial 
representation is determined by the Euler churacteristic mod 2 of,fixed set components and 

their normal representations. 

This theorem, in the smooth case, is subsumed in work of Katz [9] in a different 

language. Note that r(pi) is explicitly computed in [lo] and that it is a square (a multiple of 

2 in the above additive notation) if pi is, and thus does not contribute to the formula. (This 

can be seen noncomputationally as well.) 

The proof is entirely obvious; one examines p for the restriction of the action of Z, to the 

boundary of a regular neighborhood of Fi. The torsion is computed in [6] by a direct 

Mayer-Vietoris argument using local linearity and is, of course, just the right hand 

expression of the theorem. 

For the remainder of the paper we restrict our attention to the case of n an odd prime p. 

The general case is deferred to a future paper. 

We will phrase our result in Ewing’s terminology [7]. Here one has a map from smooth 
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(or PL, PL locally linear, topological, etc.) bordism of Z,-actions, denoted c’, to the Witt- 

group of Z,-isometries of f symmetric bilinear forms over Z (just by examining middle 

dimensional cup product) 

This Witt-group was computed by Alexander, Conner, Hamrick and Vick [I] and is torsion 

free and detected by multisignature. The image, by straightforward calculation (using the 

irreducibility of cyclotomic polynomials) is essentially the regular representation, the trivial 

representation and multiples of 2. Ewing proves for cur = smooth 

THEOREM (Ewing). ab smoorh is onto if h(p) is odd, where h(p) is the class number of the 

cyclotomic field Q(iJ, {, a pth root of unity. 

Actually, Ewing states his result slightly different1y.t The study of h(p) traditionally 

breaks up into two pieces based on a factorization h(p) = h _ (p)h + (p). h _ , sometimes called 

the first factor, can be described as the order of the - 1 eigenspace of complex conjugation 

on the ideal class group. h + , the second factor, is much more difficult to analyze and can be 

viewed as the order of the class group of the real subfield Q([ + [- ’ ). We will return to h + in 

a moment. From the description of h- given it is clear that h is odd if and only if h- is. 

Ewing stated his result in terms of h-, which was entirely natural given his method of proof. 

We consider the categories of PL, topological locally linear (t. I. 1.) actions, PL locally linear 

(PL. 1.1.) actions, and smooth actions and have the following: 

(b) 
(4 

THEOREM 16. (a) ab’,‘.‘~ is always unto. 
abPL.l.l. is onto if h(p) is odd (and hence ifs absmooth is). 

In all but the topological category here is a lfi 

i 
Ir;“‘(Z,)$ W,(Z;Z,)/trivial rep. 

which can be viewed as a refined multisignature. ahpL is always onto, so abPL is onto exactly 

when the vertical map is. 

(d) abpL.l.l. and ah -smooth are onto exactly when h + (p) is odd. 

The sequence of proof is (c), (d), then (b) and (a). It is interesting to note that in our proof 

of (b), the PL.l.l. version of Ewing’s result, makes use of (d), so that h + phenomena are 

conceptually tied to what is naturally an It- phenomenon. (Of course, h, even implies h- 

even, but it seems that something deeper is going on.) 

Proof: (c) The map from Lh is just multisignature, since its image in R f (Z,) is included 

in the image of W, by the calculation cited above. ab is defined by the p-invariant of the 

tHe also has more precise results on cok ah when it is nontrivial. In another paper we will obtain this from the 
methods of this section together with Cappell and Shaneson’s calculations of torsion in Lh. 
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boundary of a regular neighborhood.? That ab is onto for PL actions is a consequence of 

the Wall realization theorem, and the surgectivity of the images in the Witt group under the 

map L:(Z[Z,]) + L: Z 6,: 
u I) Act on a lens space by an element of Lin(Z[Zp]), pass to 

the universal cover, and cone both boundary components, extending the action radially to 

get an arbitrary element. 

(d) We first recall the interpretation of h, in terms of units. According to the Dirichlet 

unit theorem, the units of Z[[] form a group which is the product of a finite group, clearly 

P-l 
Z,, generated by --ij, and a free abelian group of rank 2. There are a number of 

1 -ii 
obvious candidates for generators, called the cyclotomic units, namely ___ 

1-i’ 
1 a+ 

These are multiplicatively independent and thus generate a subgroup of finite index. The 

index turns out to be h+(p) according to a beautiful result of Kummer. For all this, see [20]. 

In Z 
[ 1 i,c the addition unit is 1 -< (see [6]). 

With this preparation we can derive (d) from the torsion signature theorem ideas. From 

manifolds with even Euler characteristic fixed set components one gets elements of L”. Thus 

one has to see which discriminants arise from which normal representations. ab will be onto 

only ifall of H(Z2;Wh(Z[~,I])) is realized. Modding out by 1 - 5 which is realized by 

2x 
rotation by -on S’, one need deal with the units of Z[[]. Up to multiplication by a root of 

P 
unity, they are all real (Kummer’s lemma, see [20]). Thus the cohomology is units modulo 

squares. Now s(Ca,e’) = lI(l -oj)“’ where ij 3 1 mod p, so one obtains exactly the 

cyclotomic units. Thus, the map is onto cohomology if and only if cyclotomic units have 

odd index, i.e., h+(p) is odd. 

Conversely, if h + (p) is odd then one can do a Wall realization type argument to get the 

element of L”. (One looks at, say, CP’ x S4 by rotation on S4, and acts by L” on a small disc 

on say CP2 x *, to obtain a locally linear action.) Now, p’.u representations bound, for some 

i, and one realizes all discriminants in this way. Smoothly, rather than acting by L”, one uses 

the fact that Ewing showed cok ab is always a 2-group, and ah and ah differ only at 2 and 

then use the PL argument. 

(b) First, if h(p) is odd then h+(p) is and ah is onto. Now, using calculations of Bak 

and Scharlau [3], W,(Z;Z,) is essentially the same as Lp, so one has the comparison 

Lh+Lp: Ho Z .K ( 2, o(Z[;]))- Now Eo(Z[;i]) = C/(Z[i]) so if h is odd the vertical 

map is onto as well, so ah is onto. 

Conversely, if ab is onto, the vertical map had better be, so H’(Z,;K,) = 0. (The map in 

the Rothenberg sequence is onto since Lodd vanishes.) Now, if this vanishes, H’(Z,; C’I) = 0 

as well by Herbrand’s lemma (see [S]), as Cl is finite, so that we have ah is onto, and hence 

by (d), h + (p) is odd. In that case h _ (p) must also be odd, for if not the cohomology would be 

nonzero. 

tSince one has an explicit coboundary (i.e.. the complement) one need not work mod the trivial representation. In 

any case, this does not atTect cok calculations. For topological locally linear actions there need not be an 
equivariant regular neighborhood and therefore the construction fails. 
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(a) One gives the same argument a for PL.I.1. (starting from CP2 x lens space to get 
some positive dimensionality) using Lp and one-point compactifying instead of using L”. 

Local linearity follows readily from the Quinn regularity theorem as in [24). 
We note that these topological locally linear manifolds have arbitrary finiteness obstruc- 

tion in K,(Z,). This construction works in all even dimensions 2 6. In dimension 4 it gives 
an ANR action. The footnote to the proof of(c) explains why such a point cannot have even 
an invariant homology sphere near that point. 
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