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SPLITTING THEOREMS

When 1s being a connected sum a homotopy
invariant property?

1. For simply connected manifolds
(Browder)

2. If the fundamental group has no 2-torsion
(Cappell)

Theorem 1. Let Y be a closed manifold or Poincaré complex of dimension n+1,
n=5 with n,(Y)=G and X a closed submanifold or sub-Poincaré complex of
dimension n of Y with trivial normal bundle and n, (X)=H <G a square-root ¢ losed
subgroup'. Assume Y—X has two components (respectively; one component) with
fundamental groups G, and &;: H— G, (resp; group J and &;: H—J), i=1,2 the
induced maps.

() If & —¢&,,: Ko(H) > Ko(G) @ Ko (Gy) (resp; & =&, : Ky (H)— K, (J)) is

injective or even just

H™ 1 (Z,; Ker (R o(H) — R o(G)® K o (G,) =0

HZ‘

(resp; H"t1(Z,; Ker(K, (H)—-" L Ko (W)=0)
then for any homotopy equivalence [: W—'Y, Wa closed manifold, W is h-cobordant
to a manifold W’ with the induced homotopy equivalence f": W' —Y splittable.

(ii) If Wh(G,)® Wh(G,) — Wh(G) (resp; Wh(J)— Wh(G)) is surjective, then
every homotopy equwaleme f: W—Y, W a closed manifold, is splittable.



3. Not in general:

THEOREM 1. There is a closed differentiable 4k + 1 dimensional manifold W, sinple
homotopy equivalent to RP**! % RP**1 [ = |, which is not as a differentiable, piecewise-

linear or even as a topological manifold a non-trivial connected sum.

4. There 1s a general obstruction theory to
solving this and other codimension one

splitting problems that involves new groups
called UNil.

- X@ @

Y in case A Y in case B

Diagram of Yin case A:




And, his work includes interesting vanishing
theorems for this group.

1. The subgroup is square root closed

2. 2€ R (surgery up to homology
equivalence.)

3. Just inverting 2 in the L-group.

If the Farrell-Jones conjecture 1s correct,
then computing UNIil groups will be the
(may I say) ineffable part of the
classification of manifolds.



Some implications.

1. Novikov conjecture for a large class of
groups. (e.g. fundamental groups of
sufficiently large three-manifolds, or almost
flat manifolds).

2. Counterexamples to “equivariant Borel
conjecture”: There are involutions on a
torus that are homotopy affine, but not
topologically affine.

3. Remark: It 1s only in the past few years
that Banagl-Ranicki and Connolly-Davis
have computed the UNil for the infinite
dihedral group (started by Cappell).

Moreover, Connolly-Davis established that
connected sum 1s homotopy invariant (for
oriented manifolds) in half the dimensions.
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CODIMENSION TWO

(joint work with Julius Shaneson)

In Chapter II and § 12 we study the question of when two sufficiently
close embeddings f, and f, of M" in W*** are concordant, at least up to
taking connected sum with a knot. If f, is sufficiently close to f,, it will lie
in a bundle neighborhood. We therefore consider cobordism classes of em-
beddings of M, in the total space E(£) of the disk bundle of a 2-plane
bundle ¢ over M, homotopic to the zero-section. Such an embedding is
called a local kmot of M in &, and the set of cobordism classes is denoted
C(M, &) or just C(M) if & is trivial. (In the sequel, we write C,(M; &),
Cr(M; &), Crop(M; &) to distinguish the various categories; in the last two,
local flatness is understood.) C(M, &) is a monoid; the operation is called
composition or tunnel sum and is defined as the composition 7,,,, where ¢,
and ¢, are local knots of M in & and ¢, is a thickening of ¢, to an embedding
of KE(&) initself. We discuss only the case when M is closed; various rela-
tivizations exist.

THEOREM. (See 4.5, 5.3, 6.2, 6.3, and 6.5.) For n = dim M =3, C(M, &)
s a group under composition, and for n=4 it is abelian. For n=1, C(S*)
1s isomorphic to the n-dimensional knot cobordism group. Conmected sum
with the zero-section defines a homomorphism a: C(S*) — C(M, &). In the
P.L. or topological case, & is a monomorphism onto a direct summand,
provided & is trivial, and n = 4.

We will compute C(M, &) in terms of an exact sequence involving the
I'-groups to be described below. In particular, for dim M = 1 (mod 2), it is
caught in an exact sequence of Wall surgery groups and hence tends to be
fairly small. For example, one has

THEOREM (7.2). For n = dim M = 4 even, there is an injection
o: C(M) — L:H(ﬂ:lM) .

This 1s all based on their “homology surgery
theory”. Their paper went a long way
towards creating the concept of what it
means to have a “surgery theory”.



On the other hand, for M odd-dimensional, C(M, &) is not, in general,
finitely generated. For simply-connected M, the main result is the
following:

THEOREM (6.5 and 6.6). Let M be a simply-connected closed n-manifold,
n =4, and let & be a 2-plane dbundle over M. Then «:. C(S™) — C(M, &) is
onto, and s an isomorphism for & trivial, in the P.L. and topological cases.
For n even, C(M, &) = 0.

We draw some consequences for the study of close embeddings.

THEOREM. (See 12.1 and following discussion.) Let f,: M™— W™ be
an embedding (locally flat, of course) of the closed, simply-connected manifold
M in the (not necessarily compact) manifold W. Assume n = 5. Let f be
another embedding, sufficiently close to f, in the C, topology. Then if the
normal bundle & of f is trivial, or if n 18 even and the Euler class of & 1s
not divisible by two, or if n =2 (mod 4) and the Euler class of & 1is
divisible only by two; then, after composition with a homeomorphism (or
diffeomorphism or P.L. homeomorphism) of M homotopic to the identity,
[ is concordant to f,, for n even and to the connected sum of f, with a knot,
Sfor n odd.

The importance of simple connectivity of M is demonstrated by the next
result.

THEOREM (7.3 and 14.5). Let T"=S8'X «+« XS', n=4 and even. Then,
in the P.L. category,
C(T™ = [X(T* - pt); G/PL],
and every element of C(T") can be represented by an embedding arbitrarily
close to the zero-section T"C T" x D C(T™) is generated by products with
various T"*C T™ of the commected sum of T'c T¢ x D* with knots of
dimension 1.

Subsequent work of J.Smith and of P.Vogel
has clarified some aspects of the
computation of the relevant surgery groups,



but they remain mysterious and relevant to
other problems'.

Applications, also to link cobordism.

(CS) multi-component links that are not
cobordant to split links.”

Subsequent work by Cochran and Orr
applied this to even give links not cobordant
to boundary links.” Le Dimet used the CS
machinery to give a theoretical calculation
of “disk link concordance”.

Worth pointing out that homology surgery
doesn’t do everything that you would want:
categories of modules with particular
properties...

Another breathtaking paper:

' Such as cut paste invariance of higher signatures.

? This was also done by Kawauchi

3 Here the key open problem is whether every even dimensional link is cobordant to a
boundary link.



PIECEWISE LINEAR EMBEDDINGS
AND THEIR SINGULARITIES.

THEOREM (see 6.1). Let f: M"*— W"** be a homotopy equivalence, M and
W compact connected orientable PLi manifolds, M closed, n = 3. If n is
even, assume T, W = 0. Then f is homotopic to a PL embedding.

When the conclusion of this theorem is satisfied, M (more precisely, its
image under a PL embedding homotopic to f) is called a spine of W. This
result is false if 7, W is non-trivial abelian, for # even. In [CST] we con-
structed “totally spineless” manifolds of the homotopy type of M" when n
is even, n = 4, and 7, M is any non-trivial abelian group. (See [Ma] for the
case n = 2.)

Matsumoto gave an example of a
topological spine 1n a PL spineless manifold.

Remark: These results had a strong
motivating impact on the “replacement
theorems for group actions” discussed at the
recent AMS meeting.

Conjecture: Topological wild embeddings
are even nicer. (The value of inclusiveness.)



PROPOSITION (see 6.8). If g: M — W is a PL embedding homotopic to f,
let Si(9) be the set of nonm-locally flat points of intrinsic codimension less
than k, with closure S.(9) © M. Let

L(f) = LAM)LAEs) — g* (W) ,

and let L/ f) be the homogeneous portion of L(f) of degree 41, i.e., L,(f)€
HY(M; Q). Let D: H*(M; Q) — H,_.(M; Q) be Poincaré duality. Then, for
1 < k, DL/f) ts in the tmage of the map

H, (S«(f); Q) — H,_(M; Q)

induced by inclusion.

They establish a classifying space for PL
wild embeddings and then analyze it.

COROLLARY 4.9. (%, 7): BSEN,— BSO, X G/PL has a cross-section.

The homotopy groups of BSRN» are closely

related to knot cobordism. The formula
above gives quantitative weight to these
abstract theorems.

PROBLEM: Is there a PL embedding with
only even codimensional singularities
(analogous to a complex algebraic variety)?
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SOME SIMPLE PIECES.

There exist inequivalent knots with
the same complement

By SYLVAIN E. CAPPELL* AND JULIUS L. SHANESON*

The study and classification of knots has been based upon invariants
of the knot complement. In this paper we give examples of inequivalent
smooth spherical knots with diffeomorphic complements. These examples

(Still unknown whether these exist in every
dimension >3. Best known 1s Suciu giving in all
dimensions =3,4 mod 8.)
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Fake RP4. Also fake 4-dim’l s-cobordisms,
and stable surgery for smooth four-manifolds.
(all CS)

THEOREM (Existence of exotic involutions). There is a smooth, free
involution on a homotopy 4-sphere I', which has mo equivariant diffeo-
morphism or piecewise linear homeomorphism with a linear action on S*.

The quotient space @ = I'/Z, of the involution is a smooth manifold of
the (simple) homotopy type of real projective 4-space P*, but not diffeo-
morphic or even piecewise linear (PL) homeomorphic to P*‘. As a corollary

We don’t have enough of a picture of smooth
four-dimensional topology, even now, to
understand why these manifolds exist and a fake

S1xS3 does not (predicted by the same
heuristic).

We also don’t understand much (aside from one
theorem of Bauer-Furuta) about how much

stabilization 1s necessary in 4 dim’l topology.

And we don’t know whether the Cappell-
Shaneson fake s-cobordisms are smoothable.
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The Oozing problem, Pseudofree actions,
Browder-Livesay groups4, and the calculation

of Lh groups.

I will mention just one theorem from this body
of work, that changed our viewpoint on the
interaction between the geometry of
characteristic classes and the arithmetic of the
fundamental group 1n the finite case.

Theorem (CS): The surgery obstruction of the
product

S3/Qg x (T2 — §2)

1S NONZero.

This direction was very substantially completed by
Hambleton-Milgram-Taylor-Williams, but there are
twisted variants for which we have a burning “need
to know” where nothing has been worked out. Like,
for instance,

* These groups capture difficulties in codimension one splitting when the submanifold
has nontrivial normal bundle.
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Geometric interpretation of Siebenmann
periodicity.

Theorem (Cappell w/o Shaneson) The
composite map

S(M) — S(MxD3,M)  (BCHSW)

— SS 1 (MXD4) (Branched fibration)
— S(MXx D4) (forgetful map)

1S an 1Isomorphism.

Corollary (of proof): If n>4, infinitely many

homotopy CP"s have locally smooth gl
actions.

That this cannot happen smoothly 1s called
the Petrie conjecture, and 1s still open.
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NONLINEAR SIMILARITY. (CS)

When are two linear transformations
topologically conjugate as dynamical
systems? Kuiper and Robin answered it
modulo a positive analysis for periodic
matrices.

Example (in which h = h,). Let k and j be relatively prime to 4¢, and
let B be any matrix with —1 as an eigenvalue. Let A(k) be the 2x 2 matrix

cos km sin em_
2q 2q
—sin km cos km

2q 2q |’

and define A(j) similarly. Let

eA(k) 0
cA(k) \

be the indicated block sum, ¢=+1. Then A4, and A_, will be topologically
similar. However, — A, and — A_, will usually not be topologically similar
(e.g., if B = (—1)) as the next result easily implies.
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NONLINEAR SIMILARITY BEGINS IN DIMENSION SIX

By SyrLvain E. CAppPELL,* JuLIUs L. SHANESON,* MARK STEINBERGER*
and James E. WEsT#*

Also, “topological rationality principle for
finite groups” (relies on the “odd order
group theorem of Hsiang-Pardon and
Madsen-Rothenberg). Also, compact Lie
groups.

Also led to the disproof of Smith’s
conjecture about representations at fixed
points for

. Also beautiful connections to
number theory.

This problem was finally solved for cyclic groups by
Hambleton-Pedersen. But more importantly, it led to
the development of the modern theory of stratified
spaces in general, and much work in transformation
groups 1n particular, partly joint work of Cappell and

16



Another shorter development.

Theorem (C w/o S).

Suppose that X 1s a manifold with singularities
= 2, and that X has simply connected local links.
Then

S(X rel £) = salgx),
where the right hand side 1s what 1s formally
predicted by surgery theory.

Moreover, 1f all the strata of X are even
codimensional, then S(X) ® Z[1/2] can be

analyzed completely in terms of Intersection
Homology.

This then becomes part of a general thrust of
(CS) and other collaborators to understand
invariants of stratified spaces and their
connections to singular maps, and algebraic
geometry and to group actions.

Only some of this can be discussed below.
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CHARACTERISTIC CLASSES FOR
SINGULAR SPACES, EMBEDDINGS,
AND MAPS.

For singular algebraic hypersurfaces, or
more general “even codimensional
embeddings” there 1s a formula:

" THEOREM 1. Assume X C M stratifies X with only even-
codimension strata. Let € be the components V with dim V
< dim X. Assume m(V — V N Y) is trivial, V € €. Then

LM, X) = LX) + > a(k(V)L(V).

For isolated singularities, o will just be the classical signa-
ture of a Seifert surface with boundary Gy in the knot pair
'"k(V) = (Fy, Gy). To describe o in general, the inclusion Gy
C Fy stratifies Gy, and hence also Fy, with top stratum Fy, —
Gy. By Alexander duality (recall Fy is p.l. homeomorphic to
S"H, A =Q[ !, 1 — H7'] becomes a system of local
coefficients over Fy — Gy (see Section 3). Hence by using
ref. 5, the intersection homology groups IH7(Fy; A) are de-
fined, where m = (0, 0, 1, 1, . . .) is the (lower) middle per-
versity. These turn out to be finite-dimensional rational vec-
tor spaces. Further in Section 3 it will be shown that for j =
(n — dim V — 2)/2, this group has a nonsingular (—1)’-sym-
metric bilinear form over Q, ¢y say. We then define o(lk(V))
to be zero in the skew-symmetric case and the usual signa-
ture of ¢ in the symmetric case—i.e., the dimension of the
positive define space less that of the negative definite one.

18



The key hard part is defining a version of
“knot 1nvariants” for singular knots.

Easier, and of very general application 1s the
following.

(CS) Suppose that f: X — V 1s a “stratified
map” so that every stratum has even
codimension, then

Theorem (see (5.8)). Assume that each V € 7" is simply connected. Let y, be
a chosen point of V. Then

LX) =3 o(E, )j,L(V).
7

The simple connectivity 1s just there to
ensure that monodromies are trivial.
Banagl-Cappell-Shaneson removed that
condition.

These formulae all have algebraic geometric
extensions. Some are part of the joint work
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of C-Maxim-S and were discussed by
Maxim at this meeting.

Let me digress for a moment to discuss how
this relates to a theorem about group actions:

Theorem (Cappell, W, Yan) : Suppose G i1s
a compact Lie group that acts “locally
smoothly”, so that the normal representation
1s 2xcomplex representation, then any
manifold ~ F is the fixed set 1s the fixed set
of G acting on a homotopy equivalent
manifold.

For G = S this condition is strongly
motivated by the previous formula: for odd
multiples, the complement determines the
characteristic classes of the fixed set.
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3. INTERSECTION HOMOLOGY EULER CHARACTERISTICS

Let X be a n-dimensional complex algebraic variety which iz not necessarily compact
(i.e., a reduced separated scheme of finite type over the complex numbers). Let JCF ke
the sheaf complex defined by (JTOPF)*(IT) = TCBM(LT) for U © X open (cf. [10]), where
ICEM g the complex of locally-finite chains with respect to the middle-perversity [9). Let
Iy = IC'?P[—H], s the middle-perversity intersection cohomology group THY(X; Q)
is the hypercohomalogy group H*"(X; IC'y). In general, for a I-dimensional stratified
peeudomanifcold L with only even codimension strata (ez., L can bethelink of s stratum),
the interssction cohomology groups are defined by TH¥ L; ) = H*-2( L; 77,

Bince complex algebraic varieties are compactifiable, their rational interssction coho-
mology groups (with sither compact or closed support) are finite dimensional (cof. [3],
V.10.13), therefore the intersection homelogy Euler characteristice of complex algebraic
varieties are well-defined. We let Iy X, resp. Ty X)), dencte the intersection homelogy
Euler characteristic of X with closed, resp. compact support.

For simplicity, we first consider proper algebraic morphisms with a non-singular do-
main. We will alss work under the trivial monodromy assumption 2, e.g. assume that
mVi=0, for all ¥ e V.

The first main result of this nota is the following:

Theorem 3.1, Let f: X" — ¥™ be a proper surjective map of algebraic varietics, and
aezume X s non-zsingular and V iz drreducible, Lef V' be fhe zet of components of sfmia
aof ¥ in a sbmlification of f, and aesume m(Vi=0 for al V 2 V. For each V 2V,
define induckively
TyiVy = Iy(V - Z Iy(W - Iyl L),
Wl

where the sum is over all W = V with W o V' V and &Ly denotes the open cone on
the link of W in V. Then:

(3.1) yiX)=TxY) - % F) 4+ Z Hf’r_"] xl By — x(Filyle® Ly ],
VSV, dimd” o iy

where F' is the generic fiber, F- is the fiber of f above the strafum V' and Lvy is the link
of ¥ V.

and to continue...

Theorem 3.4. Let f : X® — Y™ be a proper surjective map of irreducible compler
algebraic varieties. Under the trivial monodromy assumption, and with the notations
from Theorem 3.1, the following holds:

(3.5)
IN(X) =Ix(Y) - Ix(F)+ S IUY) - [Ix(F (S Luy)) — INCF) I x(e Lyy)]

VeV, dimV <dimy
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where the sum is overall W e V with W c V\V, ¢® Ly denotes the open cone on the link

of W inV, and i, is used universally to denote the appropriate map induced by inclusion.
Then:

(3.7)
FITY(X) = ITy(Y) - Iny(F) + z i.ﬁ‘,( V- [I,\,(f"(c"!.v,y )) = Ixy(F)Ixylc® Lvy )} ,
Vel

where Vg = {V € V, dimV" < dimY'}, and Ly 19 the link of V in V.

This last therem is from a different paper. It takes place is a category of Mixed Hodge
Modules and cannot be explicated here.

All of this work had application to the theory of
toric varieties and indirectly to counting lattice
points and summing functions over lattice points
in polytopes 1n Euclidean space.

For this, the formulae are complicated and
involve a lot of notation, so with your
indulgence, I will just wave my hands, and
explain the 1deas orally.
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Some final examples and gems

A perturbative SU(3) Casson invariant

S. E. Cappell, R. Lee and E. Y. Miller

Abstract. A perturbative SU(3) Casson invariant Aggr(g)(X) for integral homology 3-sphere
is defined. Besides being fully perturbative, it has the nice properties: (1) 4 Agg(g) is an
integer. (2) It is preserved under orientation change. (3) A connect sum formula. Explicit
calculations of the invariant for 1/k surgery of (2, ¢) torus knot are presented and compared with
Boden-Herald’s different SU(3) generalization of Casson’s invariant. For those cases computed,
the invariant defined here is a quadratic polynomial in %k for k£ > 0 and a different quadratic
polynomial for k < 0.

Mathematics Subject Classification (2000). 57M25, 57M05, 58G25.

Keywords. Gauge theory, Malsov index, Floer homology, spectral flow, Chern—Simons, Heegard
decomposition, three manifolds, index theory, eta invariant.

I should point out that this work required a
detailed analysis of how small eigenvalues
decompose when one stretches a neck
separating two pieces of a manifold.

There 1s a Maslov index piece. Cappell, Lee,
and Miller gave a very useful axiomatization
of this and used it to clarify a number of its
many appearances 1n analysis and
symplectic geometry.
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Cappell, S. E. (1-NY-X); Lee, R. [Lee, Ronnie] (1-YALE); Miller, E. Y. (1-PINY)

The action of the Torelli group on the homology of representation spaces is nontrivial.
(English summary)

Topology 39 (2000), no. 4, 851-871.

Let M be a compact Riemann surface of genus g > 2, Rgyy(o)(M ) the space of conjugacy classes of
representations of 71 (M ) into the Lie group SU(2) and Rgy2)( M )irred the subspace of Rgya)(M )
consisting of conjugacy classes of irreducible representations. Then the mapping class group of
M and its subgroup, the Torelli group, act naturally on these representation spaces. The main
result of this paper is that the action of the Torelli group on the rational homology of Rgy2)(M )
and Rgry(g)(M )ired is nontrivial for g > 3. The authors also obtain formulas for the Poincaré
polynomial of Rgy2)( M ) and other related spaces. This nontriviality result contrasts with previous
results of M. F. Atiyah and R. H. Bott [Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505,
523-615; MR0702806 (85k:14006)] and F. C. Kirwan [Proc. London Math. Soc. (3) 53 (1986),
no. 2, 237-266; MR0850220 (88e:14012)] where they studied closely related spaces and showed
in particular that the action of the mapping class group on the homology of those spaces factors
through the symplectic group Sp(2¢g, Z) so that the action of the Torelli group is trivial.

Cohomology of Harmonic Forms on Riemannian Manifolds With Boundary
Sylvain Cappell, Dennis DeTurck, Herman Gluck, and Edward Y. Miller

To Julius Shaneson on the occasion of his 60th birthday

Theorem 1. Let M be a compact, connected. oriented, smooth Riemannian n-dimensional
manifold with non-empty boundary. Then the cohomology of the complex (Harm™ (M), d)
of harmonic forms on M is given by the direct sum.:

HP(Harm™ (M), d) = HP(M;R) + HP"Y(M; R)

forp=0,1...., .
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I have to apologize that I skipped so much.

And, that what I covered, I covered so
superficially.

However, I hope that I showed some of the
breadth and hinted at the depth:

* topics from high and low
dimensional topology.

* analytic aspects, pure geometrical
constructions.

* algebraic-geometric side

* both smooth and singular.

* connections to arithmetic.
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