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How do we interpret the dots of this painting as the picture of a boat and a canoe and a tree? 



 
 

Cat vs. Dog 
       

                        



 
 

Cat vs. Dog 
       

                        
 
 TWO RATHER DIFFERENT ASPECTS OF THE PROBLEM: 
  

1. Pattern recognition  
2. Concept formation and clustering in a Hilbert Space. 

 
 



 
 
 

Observe Data.  When can you hope to learn about it? 
 
  
 

 
 

This doesn’t look like it’s near any lower dimensional linear subspace so the usual statistical 
methods, e.g. PCA don’t directly apply. 
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2 . Dimensional i ty . 
 
3 . Entropy for time ser ies .  
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KEY PROBLEMS 
 
 

    1 . Clustering . 
 

    2 . Dimensional i ty . 
 

    3 . Entropy for time ser ies .  
 
 
 
  

 
ALL OF THESE ARE RELATED TO HOMOLOGY. 
 

 

AND WE MUST ALSO DISCUSS A TOOL, Persistent homology, FOR INFERRING 

HOMOLOGY OF A SPACE FROM ITS SAMPLES. 
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For lattices in Rn, the volume growth is like (radius)n, so the growth rate distinguishes 

in this case. 

 

For lattices in SLn(R) the growth rate is EXPONENTIAL for every n>1.  So we need a 

new idea. 

 

But not completely new… 



 

 

Volume growth (of a lattice)  

=  Hausdorff dimension of the 

enveloping space. 

 

Recall:  Hausdorff dimension essentially measures how many balls of 

radius R does it take to cover the ball of radius 2R.  It should be 

2dimension. 



Since Hausdorff dimension doesn’t work, we can try topolog ical 

d imens ion instead.  (The topological dimension is always at most 

the Hausdorff dimension.)
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Since Hausdorff dimension doesn’t work, we can try topolog ical 

d imens ion instead. 

 

Just like in sampling:  We need a method, intrinsic to a sampled set, 

do determine a topological feature of a space. 

 

We will do so, later, using persistent homology.   
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Theorem (Gromov 1970’s):  If M is a compact Riemannian 

manifold whose fundamental group has unsolvable word problem, 

then M has infinitely many closed contractible geodesics. 

 

Where’s the sampling?  The inference of an enveloping structure 

from a substructure? 

 

    We will see later… 



 



 

 



 

Basic facts about homology: 

1. It is well defined (i.e. independent of triangulation – 
although it can be computed from a triangulation). 

 
2. It only depends on the homotopy type (=deformation 

type) of the space. 
 

3. H0(X) measures how many components X has. 
 

4. H1(X) is a commutative measure of whether X is 
simply connected (or whether irrotational vector fields 
on X are necessarily gradient). 

 
5. The dimension of X (if < ∞) = sup {k | Hk+1(U) = 0 for 

all open U⊂X}.  



 

Basic facts about homology: 

1. It is well defined (i.e. independent of triangulation – 
 although it can be computed from a triangulation). 
So the construction is intrinsic. 

 
2. It only depends on the homotopy type (=deformation 
 type) of the space. 
This is the key to avoiding “overfitting”.   

 
3. H0(X) measures how many components X has. 
So we can solve “clustering” problems. 

 
4. H1(X) is a commutative measure of whether X is 
 simply connected (or whether irrotational vector fields 
 on X are necessarily gradient). 
In general, the k-th homology of a space only depends in 
its k dimensional aspects. 

 
5. The dimension of X (if < ∞) = sup {k | Hk+1(U) = 0 for 
 all open U⊂X}.  
So we will be able to use homology to decide problems of 
dimensionality (especially relevant to the group theory 
example). 
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define persistent homology PHk(X) by the formula: 
 

PHk(X) = Π Hk(Xr). 
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Here is an example: 
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Examples: 

 

(1)  Given X, use a function f: X → R. 

Xr = { x ∈ X | f(x) ≤ r} 

 

(2) For X ⊂ Rn , let  

Xr = { u ∈ Rn | ∃ x∈ X, such that  ||x-u|| ≤ r} 

 

(3’) Let (X,d) be a metric space, * a base point.  We can 

embed X in L∞(X) by x → d(x, ?) – d(*, ).  Now define 

Xr = { u ∈ L∞(X)  | ∃ x∈ X, such that  ||x-u||∞ ≤ r}. 

 

(3) is sometimes better for “small scale” and (3’) is always 

better for large scale problems. 



The key to applications of PH is that it has some stability 

properties. 
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The key to applications of PH is that it has some stability 

properties. 

 

We will focus on example (1) since it is typical. 

 

In some sense:  PH(f) is a continuous function of f.   

Note: This is a change of perspective from usual topology – 

where invariants are supposed to be “functorial”.  Here they 

are “functional”. 



Stability theorem.  (Cohen-Steiner, Edelsbrunner, Harer). 

If f, g: X → R are functions, then  

dBottleneck(PH(f), PH(g)) ≤  || f – g ||∞ 

 

 
Technical issue:   
In this theorem we should allow arbitrary numbers of 0-
length homology intervals. 
 
 
 
Example of “bottleneck distance”: 
__________ __________________________________ 
--   __________ -             -            - -          -  
 
is close to 
__________    ________________________________ 
      ________                         -         - -          ----  
--- -- - -------- ------------------------  ---- --- -----   --- ----- 
because the “long intervals” are placed with close start- and 
end-points. 
 



 

 

A more typical barcode taken from a computer experiment by Steve Ferry.



Application to sampling. 

 

Hypotheses: 

1. Mn is a compact smooth submanifold of Rd. 

2. We are given τ > 0 that is a condition number if mi ∈ 

M and υi  ∈ TMmi with || υi || < τ then  

m1 + υ1 = m2 + υ2 ⇒ m1 = m2  and υ1 = υ2. 

 

The line segment below has length 2τ.



 

Theorem (Niyogi-Smale-Weinberger):  Suppose that M is as 

above, and that one knows (and upper bound on) vol(M) or 

diam(M).  Then it is possible to calculate a lower bound on 

the probability that for a sample S = { mi i=1….N} chosen 

uniformly from M, that one has an isomorphism between 

H*(M)  and the intervals of size > [ε/4, ε] for PH*(S) for any 

ε <τ. 
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the probability that for a sample S = { mi i=1….N} chosen 

uniformly from M, that one has an isomorphism between 

H*(M)  and the intervals of size > [ε/4, ε] for PH*(S) for any 

ε <τ. 

 

Remarks:  

1. This is a paraphrase of the theorem in [NSW], which 

gives a related statement even for integral homology. 

2. τ incorporates 2 aspects: 

a. Local: measuring the second fundamental form of 

M. 

b. Global, e.g. measuring the separation between two 

parallel planes. 

3. There is an algorithm for computing the persistence 

homology.  We will discuss this a bit later. 



4. The definition of PH for our purpose uses either of the 

inequivalent definitions (2) and (3).  Using (2) one does 

not need positive length intervals, because of the 

following remark: 

5. The paper actually gives a fixed scale where calculation 

is possible.  As a result, the main result of [NSW] is 

rather stronger than the above formulation. 

6. Related work was done by [Cohen-Steiner, 

Edelsbrunner, Harer], [Chazal-Liutier], [Chazal-Cohen-

Steiner-Merigot]. 

7. That we can work at a fixed scale is useful for our 

approach to dealing with the problem of noise.  [NSW2, 

to appear]. 

8. The use of the Xr of type (3) is  

a. Closely related, for samples, to Rips complexes, 

that have computational and theoretical 

advantages over the geometrically more natural 

Cech complexes, and 

b. Seems related to one of the ideas in the recent 

paper of [Bartholdi, Schick, Smale and Smale] on 

Hodge theory. 

9. We will discuss more details of this at the end of the 

talk. 



 

 

Example II.  (Discrete groups). 

 

Let X be a discrete metric space.  

  

A finitely generated discrete group is made into a metric 

space using the word metric.  (d(g,h) = smallest number of 

generators it takes to write g-1h.) 

 

The version of HP(X), where the filtration comes from type 

(3’) can be concretely described as follows.   

 

XR is a simplicial complex, whose k simplices are k+1 tuples 

such that all pairwise distances are ≤ R.  Now we will let R 

→ ∞. 

 



Proposition:  If π is a discrete group acting properly 

discontinuously and cocompactly on a contractly polyhedron 

Z, then the limit as R → ∞ of Hilf(π) = Hilf(P). 

 

Thus the right hand side has a “coarse meaning”.  The 

infinitely long persistence intervals reflect something 

interesting about the geometry of the group. 

 

For i=1, this tells us how many ends the group has (which 

equals the number of ends the universal cover of any 

compact space with that fundamental group has). 

 



We can also consider the largest i for which this is non-zero.  

This is strong enough to distinguish many lattices from each 

other. 

 

Corollary (Gersten, Block-Weinberger)  For groups of finite 

type, cohomological dimension is a coarse quasi-isometry 

invariant. 

 

In particular as cd(SLn(Z)) = n(n-1)/2, no lattices 

commensurable to SLn(Z) can be bi-Lipschitz to a lattice 

commensurable to SLm(Z), for n ≠ m. 

 

 

 

 

 



Example III:  Closed geodesics. 

 

We recall Gromov’s theorem: 

 

Theorem:  If M is a compact Riemannian manifold whose 

fundamental group has unsolvable word problem, then M has 

infinitely many closed contractible geodesics. 

 

Definition:  We say that a manifold M has property S 

(Shrinking) if there is a constant C, such that any contractible 

curve of length L can be contracted through curves of length 

≤ CL to one of length L/2.  

 

Theorem:  The question of whether a compact manifold M 

has property S only depends on π1M. 

 

Theorem:  The C implicit in property S is a function of the 

metric on M.  It only depends on (inj, sup(|K|), vol(M)).  



However C(inj, sup(|K|), vol(M)) cannot be bounded by any 

recursive (=computable) function of these arguments – even 

for metrics on the n-sphere, at least for n>4.   

 

(For n=3 there is such a computable function.  Indeed I 

believe that all compact 3-manifolds have property S as a 

consequence of Perelman’s work.) 

 

To understand these we need another notion, the Dehn 

function of a presentation of a group. 

 

Definition:  Let π = < g1 , g2 …., gk | r1 , r2 , …., rm > be a 

finitely presented group.   

Dπ(n) = inf {s | any word of length ≤ n is a product of 

at most s relations}. 



D(n) depends on the presentation, but its “growth rate” 

(e.g.polynomial, exponential, superexponential, computably 

bounded, etc.) does not. 

 

D measures the following Riemannian property of manifolds 

with fundamental group π:  What is the smallest area of all 

disks bounded by nullhomotopic curves of length ≤ L?  So 

for free abelian groups of rank > 1, D grows quadratically. 

 

Remark:  D is bounded by a computable function if and only 

if the fundamental group has a solvable word problem.  

 

We now can assert our strengthening of Gromov’s theorem: 

 

Theorem:  If the Dehn function of π is super-exponential, 

then M does not have property S. 

 



Simultaneous with proving this we give a characterization of 

Property S.   

 

We still need one more idea: 

Let M be a compact Riemannian manifold, and ΛM = {f: S1 

→ M}.  We let E: ΛM → R denote the energy 

E(f) = ∫ <f’(t),f’(t)> dt. 

 

Proposition:  Although the Energy of a curve depends on the 

Riemannian metric, the difference  

 ||log E1 – log E2||∞  ≤   sup |log( <,>1/<,>2)| 

is bounded. 

 

Hence: 

 

Theorem:  The “barcodes” PH(ΛM, log(E)) are well defined 

module “short intervals” of uniformly bounded size. 



Property S  ⇔ PH0(ΛM ; log(E)) has arbitrarily long finite 

length intervals. 

 

Note that the bottom of a PH0(ΛM ; log(E)) interval 

corresponds to a local minimum.  The intervals in general all 

correspond exactly to various closed geodesics of various 

indices. 

 

The rest of the theorem comes from an analysis of 

PH0(ΛK(π,1) ; log(E)). 

 

This uses the combination of the Dehn function hypothesis 

and the topological entropy of ΛM. 

 

Implicit in this are new types of algebraic topological 

invariants of finite complexes with variational meaning.  We 

will later discuss some partial explorations of these.



 IV.              Further and future directions 

 

Data Analysis. 

1. What are the actual computational and sample 

complexities of these problems? 

2. Are there topological features that are 

discoverable before the full homotopy type? 

3. Can one use persistence homology at scales where 

the actual homology is not visible. 

4. How does one measure the statistical significance 

of a persistence calculation of data? 

5. What are the mechanisms for dealing with noise?  

(Cleaning, or kernel methods) 

6. Extend the theory of PH for metric spaces to 

metric measure spaces. 

7. What are the borders of well-posedness of these 

problems?  Can complexity then be viewed as a 

measure of distance to the ill-posed set? 



Geometric Group Theory and Large Scale Geometry. 

 

1. Other functors, such as K-theory (applied to 

disprove Gromov’s conjecture that uniformly 

contractible manifolds are hyperspherical) 

2. Homotopy with coefficients can be used to 

produce barcodes.  Ferry and I have studied this 

for [X: Y], Y simply connected and finite. 

This has many geometric applications, 

potentially, because of h-principles, surgery, 

cobordism…. 

3. It becomes necessary to develop new algebraic 

topology for this setting. 

4. Dehn functions extend to other filling functions, 

and persistent homology has been varied into 

other coarse theories (e.g. uniformly finite, L^2, 

etc. that could have other applications). 



5. Bounded propagation speed operators on metric 

spaces relates both to K-theory and to parallel 

processing. 

6. Families of these can be applied to the Novikov 

conjecture (Ferry-W, Gromov-Lawson, Kasparov, 

Higson-Roe, Yu….) which gives information 

about compact manifolds, via the family of 

universal covers. 

 

  



Landscapes: 

   

(Epi)genetic & Economic. 

 

Two mechanisms for the construction of “nontopological” 

critical points (and especially optima). 

 

Logical and computational complexity implies 

geometric complexity. 

 

Competition leads to computational complexity. 

 

Perturbation by random fields gives rise to these 

in a fashion, sometime computable by Rice-type 

formulae. 


