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ALGORITHMIC ASPECTS OF IMMERSIBILITY AND EMBEDDABILITY

FEDOR MANIN AND SHMUEL WEINBERGER

Abstract. We analyze an algorithmic question about immersion theory: for which m, n, and
CAT = Diff or PL is the question of whether an m-dimensional CAT -manifold is immersible
in Rn decidable? As a corollary, we show that the smooth embeddability of an m-manifold with
boundary in Rn is undecidable when n−m is even and 11m ≥ 10n+ 1.

1. Introduction

The problem of classifying immersions of one smooth manifold M in another N was, in a sense,
solved by Smale and Hirsch [Smale] [Hir], who reduced the question to one in homotopy theory.
This is now viewed as an important example of the philosophy of h-principles [Gro86] [EM02].
While embedding seems to be much harder, many relevant questions have likewise been reduced to
algebraic topology at least in principle, with, in our view, the signal achievements due to Whitney,
Haefliger [Hae, e.g.], and Goodwillie–Klein–Weiss [GKW, e.g.].

Analogous work has been done, to a less complete degree, in the PL category, with an analogue
of the Smale–Hirsch theorem given by Haefliger and Poénaru [HaeP].

In this paper we discuss, mainly in the case N = Rn (or, equivalently, Sn), whether these
classifications can actually be performed algorithmically given some finite data representing the pair
of manifolds. This has consequences not only for computational topology but also for geometry.

In several papers, Gromov emphasized that topological existence results do not directly enable
us to understand the geometric object that is supposed to exist. Indeed, the eversion of the sphere
took quite a while to make explicit (and is now visible in several nice animations). A basic question
is: how complicated are embeddings or immersions, when they exist?

In [CDMW], an analogous problem was studied in the case of cobordism, which, since Thom,
has had a similar structure. In that case, we showed that the problem has an at worst slightly
superlinear solution, if it has one at all, with respect to a natural measure of the complexity of the
manifold. In contrast, in the setting of immersion and embedding, there is no computable upper
bound to the complexity of solutions.

Corollary 1.1. Consider smooth m-manifolds M with sectional curvature |K| ≤ 1 and injectivity
radius ≥ 1. By results of Cheeger and Gromov, this gives a bound on the amount of topological
information per unit volume. Therefore, there is a function Fc(V ) such that any such M has an
immersion whose second fundamental form has norm bounded by Fc(volM). On the other hand, if
c ≤ m/4 and is even, Fc(V ) is not bounded by any computable function.

Results of this sort derive from the idea of Nabutovsky [Nab] wherein logical complexity of deci-
sion problems is reflected in lower complexity bounds for solutions of related variational problems.
The difference between the above theorem and the situation in [CDMW] is that in the case of
cobordism, the relevant algebraic topology is stable homotopy theory, while for immersions the
relevant problems are unstable.

1.1. Immersion vs. embedding. Some prior work has been done on the decidability of various
questions involving embeddings. In a pair of papers from the 1990’s, Nabutovsky and the second
author [NW99] [NW96] considered the problem of recognizing embeddings, that is, deciding whether
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two embeddings of a manifold M in a manifold N are isotopic. When M and N are both simply
connected, this is decidable as long as the codimension is not 2; in codimension 2, even equivalence
of knots (embeddings of Sn−2 in Rn) for n ≥ 5 is not decidable.

A related result asserted in [NW99] says that for closed (even simply-connected) manifolds the
problem of embedding is in general undecidable, as in our paper, for reasons related to Hilbert’s
tenth problem. Here, we study the special case where the target is a sphere, and do not know what
to expect for the case of closed manifolds embedding in the sphere.

More recent work has considered the problem of embedding simplicial complexes in Rn. In
[MTW] it is shown that this problem is undecidable in codimensions zero and one, when n ≥ 5;
in [ČKV], that it is decidable in the so-called metastable range, when the dimension of the complex
is at most roughly 2

3n.
Between codimension 3 and the metastable range, embedding theory is best described via the

calculus of embeddings, due to Goodwillie, Klein and Weiss. This describes smooth embeddings of
manifolds via a rather complicated homotopical construction which nevertheless can be arbitrar-
ily closely approximated via finite descriptions (see e.g. [GKW]); unlike in the metastable range,
where work of Haefliger shows that immersion theory is essentially irrelevant, immersions form the
“bottom layer” of this construction. Thus, understanding immersion theory from a computational
point of view seems to be a good first step towards solving this set of problems. As we show, it
also directly leads to some results regarding embeddings.

While a similar construction for PL embeddings of simplicial complexes is not currently in the
literature, it seems plausible that such a construction can be developed and will be quite similar to
the smooth version. We believe that many variations of the embeddability question can eventually
be shown to be undecidable using this correspondence.

1.2. Summary of old and new results. The properties of embedding and immersion questions,
including their decidability, depend heavily on the ratio between the dimensions m and n of the
two objects considered. Our main result concerns the decidability of immersibility in Rn.

Theorem 3.1. The results break up into the following ranges.

The stable range, m < 1
2n+ 1: TheWhitney immersion theorem states that every manifold

in this range has an immersion in Rn.
The metastable range, 1

2n+ 1 ≤ m < 2
3n: For manifolds in this range, both smooth and

PL immersibility are always decidable.
2
3n ≤ m < 4

5n: In this range, PL immersibility of manifolds in Rn is decidable, as is smooth
immersibility as long as n −m is odd. We do not know whether smooth immersibility in
even codimension is decidable.

4
5n ≤ m ≤ n− 3: In this range, PL immersibility of manifolds is decidable, whereas smooth
immersibility is decidable if and only if n−m is odd.

m = n− 2: In codimension 2, there are two notions of PL immersion: in a locally flat im-
mersion, links of vertices are always unknotted in the ambient space; but one may also
study PL immersions which are not necessarily locally flat. Here, smooth immersibility is
undecidable at least when n ≥ 10, as is PL locally flat immersibility, which is equivalent;
PL not necessarily locally flat immersibility is decidable.

m = n− 1: In codimension 1, immersibility is decidable.

This parallels the overall picture for embedding theory, about which we still know much less.
Note that the stable and metastable ranges are slightly different from the immersion case.

The stable range, m ≤ n/2: The Whitney embedding theorem states that every manifold
in this range has an embedding in Rn. For simplicial complexes, one needs m < n/2; for
n = 2m, embeddability is obstructed by the Van Kampen obstruction.
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The metastable range, m ≤ 2
3n− 1: Here the embeddability of simplicial complexes is de-

cidable; this is a theorem of Čadek, Krčál and Vokř́ınek [ČKV]. Moreover, PL embeddings
in this range are smoothable, so smooth embeddability is decidable as well.

2
3n ≤ m ≤ 10

11n: In this range, nothing is known about whether embeddability is decidable;
however, see [MTW] for some lower bounds on computational complexity. Moreover, on-
going work of Filakovský, Wagner and Zhechev on the embedding extension problem (is it
possible to extend an embedding of a subcomplex to an embedding of the whole space?)
suggests that the more general problem of classifying embeddings of simplicial complexes
up to isotopy is undecidable in the vast majority of this range.

10
11n < m ≤ n− 2: The state of the art on embeddability of simplicial complexes is much the
same here as in the previous range. However, our results on immersions are enough to show:

Theorem 4.2. When 10
11n < m ≤ n− 2 and n−m is even, the embeddability of a smooth

m-manifold with boundary in Rn is undecidable.

The examples we create are always PL embeddable, however; the construction relies on
the smooth structure of the manifold. Moreover, we do not know whether embeddability is
decidable when restricted to closed manifolds; as discussed in §4.1, the method of Theorem
4.2 cannot work in that case.

n = m− 1: Here, PL embeddability is undecidable, as shown in [MTW].

1.3. Methods. Questions of immersibility and embeddability are classically handled by reducing
them first to pure homotopy theory and then reducing the homotopy theory to algebra. To resolve
any particular instance, then, one has to do the corresponding algebraic computation. To decide
whether the answers can be obtained algorithmically, one has to (1) find an algorithm to perform
the reduction and (2) determine whether the resulting algebra problem is decidable.

The homotopy-theoretic side of these questions is fairly well-studied. Novikov showed in 1955
that it is undecidable whether a given finite presentation yields the trivial group; in particular,
this means that whether a given simplicial complex is simply connected is undecidable. This was
extended by Adian to show that many other properties of groups are likewise undecidable. Soon
after, Brown [Brown] showed, by way of contrast, that the higher homotopy groups of a simply
connected space are computable.

Much more recently, Čadek, Krčál, Matoušek, Vokř́ınek and Wagner [ČKMVW1] showed that the
set of homotopy classes [X,Y ] is in general uncomputable, even when Y is a simply connected space.
This is because the problem of determining which rational invariants can be attained is tantamount
to resolving a system of diophantine equations; this is the famously undecidable Hilbert’s tenth
problem.

It seems as if fundamental group issues and Hilbert’s tenth problem are the only obstructions to
computability in homotopy theory. The same group of authors, along with Filakovský, Franek, and
Zhechev, have authored a number of papers [ČKMVW2] [FiVo] [Vok] [ČKV] [FFWZ] describing
algorithms for various problems in homotopy theory that do not encounter these. While some open
questions do remain, all of the homotopy-theoretic problems encountered in this paper can easily
be reduced to ones covered by their results.

The main issue, then, is that of the reduction. The h-principles of Hirsch–Smale [Hir] and
Haefliger–Poénaru [HaeP], respectively, show that immersions of codimension k in the smooth and
PL categories are classified via lifts of the stable tangent bundle to the classifying spaces BOk and
BPLk. While BOk can easily be approximated by a Grassmannian of k-planes in a high-dimensional
Euclidean space, and therefore classifying maps are also not difficult to compute, BPLk is more
recalcitrant. While it is known to be of finite type, that is, homotopy equivalent to a complex
with finite skeleta, this equivalence is inexplicit and it is not clear how to algorithmically reduce
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the tangential data of a PL manifold to a finite amount of data. In this paper, we employ various
workarounds; the question of understanding BPL more directly remains open and is also relevant
to the quantitative topology of PL manifolds.

1.4. Complexity. Our algorithms do not give any information about the complexity of the com-
putations. In many cases, we perform a construction by iterating through all objects of a given
form until we find the needed one; this uses the fact that its existence is known and that it is algo-
rithmically recognizable. However, often such an object only exists when the input is a manifold;
this means that the algorithm will not terminate if presented with an invalid input (for example, a
simplicial complex all of whose links are homology spheres, but not spheres.)

We believe that this issue can be circumvented and that these algorithms can be made much
more efficient, but this is beyond the scope of this paper.

1.5. Acknowledgements. The authors would like to thank the Israel Institute for Advanced
Studies for a stay in fall 2017 during which this work was conceived, and Uli Wagner for his
encouragement and helpful comments.

2. Effective representation

In this section, we discuss algorithms and data structures to represent certain objects which have
not been worked out in detail in the past.

2.1. Smooth manifolds. There are several possible ways of representing smooth manifolds com-
putationally; as far as we know, this topic has not been thoroughly explored. According to the
Nash–Tognoli theorem, every smooth n-manifold embedded in R2n+1 is closely approximated by a
smooth real algebraic variety. This is one way of specifying smooth manifolds, however it is not
clear whether it can be computed from other possible representations.

For our purposes, smooth n-manifolds will be specified via C1 triangulations. That is, we take
a triangulation and specify a polynomial map of each top-dimensional simplex to RN , for some N ,
such that the tangent spaces coincide where simplices meet. For a sufficiently fine triangulation,
the polynomials can be taken to be of degree depending only on n.

This structure gives a way to easily read off the classifying map to Grn(RN ) of the tangent
bundle. This lets us compute the Pontryagin classes as pullbacks of cohomology classes of the
Grassmannian, obtaining simplicial representatives by integrating over each simplex.

We note that there are a number of other ways of specifying a smooth manifold via a combina-
torial structure. We list some of these here; the extent to which they can be transformed into each
other requires further study.

A more general way of specifying smooth (that is, C1) n-dimensional submanifolds of RN is by
patching them together from smooth real semialgebraic sets, with a consistent derivative along the
boundaries of the patches. This includes the case of a single smooth variety; a triangulated smooth
manifold with semialgebraic simplices; and a handle decomposition with semialgebraic handles.

One can dispense with the explicit embedding by taking a triangulated manifold and assigning
an element of Grn(RN ) to each vertex. If the triangulation is sufficiently fine, we can send adjacent
vertices close enough to each other (at most some constant distance depending on n and N) that
one can interpolate linearly over the simplices, uniquely determining a smooth structure on the
manifold. One must ensure, of course, that this structure is compatible with the PL structure.

Finally, one can specify a manifold via an atlas of coordinate patches and transition functions;
for example one may require the patches to be real semialgebraic and the transition functions to
be rational functions (in one direction).
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2.2. Classifying spaces for spherical fibrations. Manifold topology makes use of a variety of
classifying spaces, the most familiar of which are the classifying spaces BOn and BSOn for unori-
ented and oriented vector bundles. These have relatively straightforward models as Grassmannians
of n-planes in R∞. The classifying spaces BPLn for PL structures are much more complicated to
model combinatorially; while some work in this direction has been done by Mnëv [Mnëv], in this
paper we do not attempt to make BPLn and classifying maps to it concrete enough to manipulate
algorithmically. Instead, we use some well-known computations to avoid talking about BPLn at all
and focus instead on BGn, the classifying space for the much weaker structure of Sn−1-fibrations.

Transition functions between fibers in an Sn−1-fibration are chosen from the topological monoid
Gn of homotopy automorphisms of Sn−1; this fits into a fiber sequence

Ωn−1Sn−1 → Gn → Sn−1,

where the latter map is induced by evaluation at the basepoint. This monoid has a classifying space
BGn; as n → ∞, this converges to a stable object BG. In order to compute with BGn and BG,
we need to construct finite models for its skeleta as well as the tautological bundles over them.

Lemma 2.1. (i) There is an algorithm which, given natural numbers m and n, constructs a
finite simplicial set Bm,n with an m-connected map to BGn, together with any stage of the
relative Postnikov tower of the pullback to Bm,n of the tautological bundle over BGn.

(ii) There is an algorithm that constructs the map Bm,n → Bm,m+1 induced by suspension. Note
that this models the stabilization BGn → BG, since the map BGm+1 → BG is m-connected.

(iii) There is an algorithm which, given a stable range PL embedding Mm → R2m+k, k ≥ 1,
constructs the classifying map M → Bm,m+k of the normal bundle.

We note that the model we compute is extremely inexplicit in how it classifies fibrations.

Proof. We will need to cite the existence of a number of algorithms in computational homotopy.
These are:

• The isomorphism type of homotopy groups of spheres can be computed [Brown].
• Moreover, for any element of πk(Sn), an explicit simplicial representative may be computed
[FFWZ].

• Given a map Y → B between simply connected spaces, its relative (or Moore–)Postnikov
tower may be computed to any finite stage [ČKV].

• Given two maps X → Sn, for any simplicial complex X, there is an algorithm to determine
whether they are homotopic [FiVo].

• Moreover, given a map X → Y known to be nullhomotopic, we can compute an explicit
nullhomotopy. This can be done through an exhaustive search for maps from increasingly
fine subdivisions of CX.

We start by outlining the algorithm for (i). We first show that we can compute πk(Gn), given n
and k. From the aforementioned fiber sequence

Ωn−1Sn−1 i
−→ Gn

j
−→ Sn−1,

we obtain the homotopy exact sequence

πn+k−1(S
n−1)

i∗−→ πk(Gn)
j∗
−→ πk(S

n−1)
φk−→ πn+k−2(S

n−1)

Thus it is enough to perform the following steps:

(1) Compute representatives of generators for πk(Sn−1) and πk+1(Sn−1).
(2) Compute the obstruction theoretic map φk : πk(Sn−1) → πn+k−2(Sn−1). Given a map

f : Sk → Sn−1, φk(f) is the obstruction to extending the map

f ∨ id : Sk ∨ Sn−1 → Sn−1
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to Sk × Sn−1. That is, φk(f) is the Whitehead product [f, idSn−1 ], the composition

Sn−k−2 → Sk ∨ Sn−1 → Sn−1

where the first map is homotopic to the attaching map of the top cell of Sk × Sn−1. From
this map, we compute its homotopy class as an element of πn−k−2(Sn−1); doing this for a
representative of each generator gives a finite description of the map φk.

(3) Now πk(Gn) is generated by lifts of ker φk and the image of πn−k−1(Sn−1). We compute, via
exhaustive search, a homotopy lift of each generator of kerφk to a map Sk ×Sn−1 → Sn−1;
the generators of πn−k−1(Sn−1) determine maps Sk × Sn−1 → Sn−1 by precomposing with
the map collapsing Sk ∨ Sn−1. We then determine the isomorphism type of πk(Gn) by
computing all relations.

When both groups are finite, this is a finite computation. There remain the following
cases:
k = n− 2, n odd: Then πk+n−1(Sn−1) ∼= Z, but the map

φk+1 : πk+1(S
n−1) → πn+k−1(S

n−1)

is either surjective or has cokernel Z/2Z, depending on the resolution of the Hopf
invariant one problem in that dimension, since [id, id] always has Hopf invariant two.
Thus im i∗ is finite; this can be hardcoded into the computation.

k = n− 1, n even: In this case ker φk = Z, whereas πk+n−1(Sn−1) is finite. Therefore

πk(Gn) = Z⊕ im(i∗),

and we only need to compute the relations within the image of i∗.
k = 2n− 3, n odd: In this case ker φk = Z and πk+n−1(Sn−1) is again finite, making this

case the same as the previous one.
In addition, the case k = 0 must be coded separately: Gn always has two components.

Now we use the fact that πk(Gn) = πk+1(BGn) to build successive approximations Bi,n of BGn,
together with the pullbacks pi : Ei,n → Bi,n of the tautological Sn−1-fibration.

Given a map f : Sk × Sn−1 → Sn−1 representing an element α ∈ πk(Gn) (in particular with
f |∗×Sn−1 = id) we define the space

Ef = Dk+1 × Sn−1/{(x, y) ∼ (∗, f(x, y)) : x ∈ ∂Dk+1, y ∈ Sn−1};

then the projection Ef → Sk+1 onto the first factor has homotopy fiber Sn−1, and α is the ob-
struction to constructing a fiberwise homotopy equivalence Sn−1 × Sk+1 → Ef . We use the Ef ’s
as building blocks for our construction.

We set p1 : E1,n → B1,n to be the map
∨

[f ] generating π0(Gn)

Ef →
∨

S1.

Now suppose we have constructed pi : Ei,n → Bi,n which is the homotopy pullback of the tauto-
logical bundle over BGn along an i-connected map. Then we construct pi+1 using the following
algorithm. Here the CW structure can be given via simplicial maps from subdivided simplices
corresponding to each cell.

(1) First, we compute the kernel of the map πi(Bi,n) → πi(BGn); since Ei,n is the pullback of
the tautological bundle, this means determining which elements of πi(Bi,n) pull Ei,n back
to a trivial fibration. We do this in two stages: first, compute the kernel of the obstruction
map πi(Bi,n) → πi−1(Sn−1) to lifting a given map Si → Bi,n to Ei,n; then, compute the
kernel of the obstruction in πn+i−3(Sn−1) to extending this to a map Si × Sn−1 → Ei,n

whose restriction to ∗ × Sn−1 is the homotopy fiber.
6



(2) Now given a generating set for this kernel, we glue in an (i + 1)-cell for each generator
to Bi,n and a corresponding copy of Di+1 × Sn−1 to Ei,n. This ensures that the map
πi(Bi,n) → πi(BGn) is an isomorphism.

(3) Finally, we wedge on Ef → Bf for a set of functions f which generate πi(Gn). This ensures
that Bi+1,n → BGn is an (i+ 1)-connected map.

Finally, we construct the relative Postnikov tower of the map pm : Em,n → Bm,n. This completes
the proof of (i).

For both (ii) and (iii), we will need a subroutine which, given a map f : E → B whose homotopy
fiber is Sn−1 and such that B is m-dimensional, computes the classifying map to Bm,m+1. We note
that since the homotopy groups of BG are finite, so are the homotopy groups of Bm,m+1 through
dimension m. Therefore there are a finite number of homotopy classes of maps B → Bm,m+1, which
can be enumerated via obstruction theory; we choose the one for which f is the homotopy pullback
of pm, which can be verified by induction on the relative Postnikov tower.

For (ii), we can construct the map f by repeatedly taking the double mapping cone of pm.
For (iii), given a PL embedding of M , we need to compute the Spivak normal Sm+k−1-fibration

E → M before we compute its classifying map. It is enough to find the following data:

• a compact PL (2m+k)-manifold with boundary N(M) embedded in R2m+k which contains
a subdivision of M in its interior;

• a strong deformation retraction of N(M) to M .

Then the induced map ∂N → M is the Spivak normal fibration. Since these properties are checkable
and we can iterate through all subdivisions of M , simplicial complexes in R2m+k with rational
vertices, and simplicial maps from a subdivision of N(M) × I to M , we can find this data via
exhaustive search. !

3. Immersibility

Theorem 3.1. Let n ≥ 4 and m < n be natural numbers.

(i) Whenever n − m is odd or 3m ≤ 2n − 1, the immersibility of a smooth m-manifold with
boundary (given as a semialgebraic set in some RN) in Rn is algorithmically decidable.

(ii) Whenever n − m is even and 5m ≥ 4n, the immersibility of a smooth m-manifold in Rn is
undecidable (including if only closed manifolds are considered.)

(iii) Whenever n−m ≠ 2, the immersibility of a PL m-manifold with boundary in Rn is decidable.
(iv) When n−m = 2, it is undecidable (at least for n ≥ 10) whether a PL m-manifold has a locally

flat immersion in Rn, but there is an algorithm to decide whether it has a not necessarily locally
flat immersion.

Moreover, over the cases for which an algorithm exists, it can be made uniform with respect to m
and n.

Note that for certain pairs with n − m even, we have not determined whether immersibility
is decidable. We suspect that it is in fact undecidable in those cases, since the corresponding
homotopy-theoretic problem is undecidable.

Proof. We assume at first that the manifold is oriented, to avoid fundamental group issues.
In each case, the problem of immersibility can be reduced to a homotopy lifting problem: these

are the h-principles of Smale–Hirsch [Hir] in the smooth case and Haefliger–Poenaru [HaeP] in the
PL case. Both of these results state that the space of immersions M → N in the appropriate
category is homotopy equivalent to the space of tangent bundle monomorphisms TM → TN , or
simply TM → Rn when N = Rn. These in turn can be thought of as lifts of the classifying map of
the tangent bundle to the Grassmannian of m-planes in Rn.
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The smooth case. We have reduced immersibility to the homotopy lifting problem

Grm(Rn)

!!

M
κ

""

##
✉

✉
✉

✉
✉

BSOm

where κ is the classifying map of the tangent bundle of M . Moreover, this lifting property is stable:
such a lift exists if and only if the corresponding lift

Grm(Rn) ""

!!

Grm+1(Rn+1)

!!

M
κ

""

$$❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤ BSOm
"" BSOm+1

exists. This is because the map between the corresponding homotopy fibers

Vm(Rn) → Vm+1(R
n+1)

is (n − 1)-connected. Therefore, when m < n, it suffices to resolve the lifting problem

BSOn−m

!!

M
κ

""

##
#

#
#

#
#

BSO.

Since BSOn−m and BSO are both formal spaces, to understand this map rationally it is enough
to consider their rational cohomology. H∗(BSO) is a free algebra generated by the Pontryagin
classes in degree 4k for every k. H∗(BSOn−m) is generated by Pontryagin classes in degree 4k
where 2k ≤ n−m; when n−m is even, there is also an Euler class in degree n−m whose square
is the top Pontryagin class.

The smooth case in odd codimension. In the case when n−m is odd, the immersibility of M in Rn

can be determined via the following algorithm. Let M be given to us by a C1 triangulation. Then:

(1) Test whether the ith Pontryagin classes of M are zero, for 2(n −m) < 4i ≤ m, by pulling
back the relevant cohomology classes along f . If any of them are not, then M cannot be
immersed in Rn. Otherwise, we have a unique lift f̂ : X → B̂ to a space B̂ in between
Grm(Rn) and B; moreover, the map Grm(Rn) → B̂ is rationally m-connected.

(2) Now we can determine the existence of a lift of f̂ to Grm(Rn) via obstruction theory, by
testing all possibilities. Since the homotopy groups of the fiber are finite, so is the universe
of potential lifts.

The smooth case in the metastable range. When 2n ≥ 3m+1, all Pontryagin classes in the relevant
range are zero. However, when n−m is even, there may be a nonzero Euler class in degree n−m,
whose square is always zero. This is the only infinite-order homotopy group of the fiber of the map
BSOn−m → BSO below dimension n. Moreover, this map is (n−m)-connected. To show that the
resulting lifting problem is decidable, we can use the results of Vokř́ınek [Vok], who shows that a
lifting problem through a k-connected fiber is decidable if the only infinite-dimensional homotopy
groups of this fiber are dimensions < 2k.
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The smooth case in even codimension. Now suppose that n−m is even. Then the lifting problem

BSOc

!!

X
f

""

%%
①

①
①

①
①

BSO

is undecidable for general 2c-complexes X and maps f : X → BSO. We prove this by a method
used in [ČKMVW1], reducing an undecidable algebraic problem to a question about lifts. This is a
special case of Hilbert’s 10th problem: determining the existence of an integer solution to a system
of equations each of the form

∑

1≤i<j≤r

a(k)ij xixj = bk,

where x1, . . . , xr are variables and bk and a(k)ij are coefficients. Given such a system of s equations,
we can form a CW complex X as follows. We take the wedge of r copies of Sc and attach s 2c-cells
the kth one via an attaching map whose homotopy class is

∑

1≤i<j≤r

a(k)ij [idi, idj],

where idi is the inclusion map of the ith c-cell. We fix a map f : X → BSO by taking the c-cells
to the basepoint and the kth 2c-cell to bk times the generator of π2c(BSO) dual to the Pontryagin
class in that degree. Then choosing a lift to BSOc means determining an Euler class in Hc(X)
whose square is the top Pontryagin class; that is, choosing an assignment of the variables xi so that
the system is satisfied.

It remains to show that one can construct a manifold whose homotopy type and Pontryagin
classes determine any such system. This can be done, at the cost of some increase in dimension;
our examples are of dimension 4c, which is probably not optimal.

Such manifolds exist by an argument of Wall [Wall66, §5], who shows that for any 2c-complex
X and map f : X → BSO, there is a corresponding (4c + 1)-dimensional thickening of X, i.e. a
manifold with boundary M homotopy equivalent to X such that the classifying map of its tangent
bundle is homotopic to f . Moreover, the pair (M, ∂M) is 2c-connected and any extra topology of
∂M is sent to zero by the classifying map. Thus ∂M is a closed 4c-manifold which immerses in R5c

if and only if the system of equations above has a solution.
Now suppose there were an algorithm to decide smooth immersibility of 4c-manifolds in R5c

for some fixed even c. Then given a system of equations, we could iterate over smooth closed
4c-manifolds M and bases for Hc(M) until we find one with the right cohomology algebra and
classifying map. This search terminates since Wall guarantees the existence of such a manifold.
Then we could decide whether the system has a solution using our solution to the immersibility
problem. Thus immersibility cannot be decidable.

The PL case in codimension ≥ 3. Here the unstable lifting problem reduces to the stable problem

B̃PLn−m

!!

M
κ

""

%%
✇

✇

✇

✇

✇

B̃PL.
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Moreover, when n−m ≥ 3, the diagram

BPLn−m
""

!!

BPL

!!

BGn−m
"" BG,

where BG is the classifying space of spherical fibrations, is a homotopy pullback square [WallBk,
p. 123]. Thus, equivalently, we must solve the lifting problem

B̃Gn−m

!!

M
κ

""

%%
①

①

①

①

①

B̃G.

The argument in §2 shows that the only infinite homotopy group of Gn−m is
{
πn−m−1 when n−m is even
π2(n−m)−3 when n−m is odd,

and therefore BGn−m only has an infinite homotopy group in dimension n −m or 2(n − m) − 2.

Moreover, in both cases the map B̃Gn−m → B̃G is (n − m − 2)-connected, by the stability of
homotopy groups of spheres.

Thus to decide immersibility we can use the following algorithm. Suppose M is given to us as a
simplicial complex.

(1) We embed the simplicial complex linearly in RN , for some large N .

(2) This gives us a map M → B̃GN which can be computed by Lemma 2.1(iii).

(3) Decide whether the map lifts to a map M → B̃Gn−m. In the even case, this can be done
by the aforementioned work of Vokř́ınek [Vok], since the only infinite obstruction is below

twice the connectivity of the map B̃Gn−m → B̃G. In the odd-dimensional case, we can
split the work into two steps:

• Compute all possible lifts to the (2(n−m)− 3)rd stage of the relative Postnikov tower

of B̃Gn−m → B̃G. This can be done since all the obstructions are finite.
• For each lift computed, use the algorithm of Vokř́ınek to decide whether it can be
extended to B̃Gn−m.

PL immersions in codimension 2. In codimension 2, there are two somewhat different things we
may mean by PL immersion: locally flat immersion, in which the link of every vertex is unknotted,
and immersion which is not necessarily locally flat.

A PL manifold M has a locally flat immersion in codimension 2 if and only if it has a smooth-
ing which immerses smoothly in codimension 2. This is because by the fundamental theorem of

smoothing theory [HirM, Part II], M is smoothable if and only if the classifying map M → B̃PL of
the stable tangent bundle lifts to BSO; but immersibility is equivalent to the existence of a further
lift

BSO2
∼= B̃PL2

!!

BSO

!!

M ""

&&
✂

✂

✂

✂

✂

✂

✂

✂

✂

B̃PL.
10



Moreover, the homotopy fiber PL/O has finite homotopy groups, so the rational obstructions
discussed above are the same in the PL case as in the smooth case. Therefore, this problem is
undecidable for dimM ≥ 8 by the same argument as above: the examples we produced are PL
immersible if and only if they are smoothly immersible.

The case of immersions which are not necessarily locally flat was studied by Cappell and Shaneson
[CS76] [CS73]. Such immersions are classified by maps to a space BSRN2. Unlike in the higher
codimension case, the diagram

BSRN2
""

!!

B̃G2

!!

B̃PL "" B̃G

is not a homotopy pullback square, but the map from BSRN2 to the pullback splits up to homotopy.

Therefore it is again sufficient to solve the lifting problem from B̃G to B̃G2.

Codimension 1. In codimension one, the lifting problem above, and therefore the question of smooth
immersibility, boils down to whether the suspension of the tangent bundle is trivial, that is, whether
the composition

M → BSOm → BSOm+1

is nullhomotopic. Once this composition is given as an explicit map, we use the fact that whether
two explicit maps between finite complexes are homotopic is a decidable question, a theorem of
[FiVo].

The oriented PL case is formally identical: one needs to determine whether the map M →

B̃PLm+1 induced by the tangent bundle, or equivalently the map M → B̃PL, is trivial. However,
up until now we have gotten away with only studying maps to B̃G, and we have neither an explicit

finite-type model for B̃PL nor a way of constructing the map. One way of getting around this
would be to first determine whether the map to B̃G is trivial; if it is, then there is an induced
map to G/PL which must also be trivial. To determine its triviality, we would need to compute
the Pontryagin and Kervaire classes of M from its combinatorial structure. Such an algorithm was
produced for the rational Pontryagin classes by Gelfand and MacPherson [GeMP] (see also the
survey paper [Gai]), but the integral version remains open.

The path we take uses smoothing theory. As in the codimension 2 case, if the classifying map

M → B̃PL is trivial, M admits a smoothing which immerses smoothly in Rm+1. Thus it is enough
to construct all possible smoothings of M (finitely many, and perhaps none); then we can use the
smooth algorithm to determine whether one of them immerses. This construction is given in §5.

Non-orientable manifolds. In this case constructing an immersion is equivalent to constructing a
Z/2Z-equivariant immersion of the oriented double cover. In other words, we must do what we did
above but in a way that respects the natural free Z/2Z-action on each of the classifying spaces.
This action is easy to encode computationally; moreover, as pointed out by Vokř́ınek [Vok, §5] and
elaborated in [ČKV], the relevant homotopy theory can be done as easily as in the non-equivariant
case. !

4. Applications to embeddings

4.1. Immersions which extend to embeddings. The following is a well-known fact, noted for
example in [Mas].

Lemma 4.1. The normal bundle to an embedded smooth closed oriented submanifold Mm ⊆ Rn

always has vanishing Euler class.
11



Proof. Consider the diagram

Hn−m(Rn,Rn \M) ""

!!

Hn−m(Rn)

!!

Hn−m(νM , νM \M)
(∗)

"" Hn−m(νM ) "" Hn−m(M).

The Euler class is the image of the generator of Hn−m(νM , νM \M) along the bottom row. The
left vertical arrow is an isomorphism by excision. Since Hn−m(Rn) = 0, the arrow labeled (∗) is
zero. !

This means that if M is closed and oriented, an immersion of M can only be regularly homotopic
to an embedding if it has zero Euler class. Unlike the existence of an immersion in general, the
existence of such an immersion is decidable via the same algorithm as in odd codimension: test
whether all Pontryagin classes in degrees 2(n − m) ≤ 4i ≤ 2m are zero, and then resolve the
remaining finite-order questions.

In other words, while it may well be that the embeddability of closed smooth manifolds in Rn is
undecidable outside the metastable range, this cannot be a result of immersion theory.

4.2. Embeddability is undecidable.

Theorem 4.2. Whenever n − m is even and 11m ≥ 10n + 1, the embeddability of a smooth m-
manifold with boundary in Rn is undecidable.

We note that the method used here depends both on using the smooth category and on allowing
the manifold to have boundary.

Proof. We reduce this statement to Theorem 3.1(ii). We note first that by the stability property
discussed above, when n ≥ m+2, an m-manifold M immerses smoothly in Rn if and only if M×Dk

immerses smoothly in Rn+k.
In general position, the self-intersection of an immersion f : M → N is a (2m− n)-dimensional

CW complex. If we stabilize by crossing with Rk for k ≥ 4m − 2n + 1, then this complex always
has an embedding in Rk; therefore the immersion

f × id : M ×Dk → Rn+k

can be deformed to an embedding, by pushing a neighborhood of the self-intersection off itself in
the Rk direction. Conversely, if M does not immerse in Rn, then M ×Dk does not embed in Rn+k.

If m = 4c and n = 5c, then we can choose k = 6c+ 1. In other words, it is undecidable whether
a (10c + 1)-manifold embeds into R11c+1 when c is even. !

5. Computing all smoothings of a PL manifold

In this section we sketch an algorithm which, given a triangulation of a PL manifold Mm,
computes a set of smoothings which contains at least one (but usually many) representatives of
each diffeomorphism type of smoothing. Of course, if M is not smoothable, the algorithm yields
the empty set.

The basic algorithm is as follows. We start by finding a subdivision M ′ of M so that for each
simplex σ of M , there is a subcomplex Vσ of M ′ which is a “thickened version” of σ, that is:

•
⋃
τ∈σ Vτ contains a neighborhood of σ.

• All the Vσ are homeomorphic to closed m-balls, have disjoint interiors, and deformation
retract to Vσ ∩ σ.

12



This can be done by applying the same symmetric subdivision to every k-simplex. Furthermore,
we embed M ′ in some RN , N ≥ 2m+ 1.

We then inductively construct all possible smoothings first away from the (m− 1)-skeleton of M
(that is, on those Vσ corresponding to m-simplices σ of M), then away from the (m− 2)-skeleton,
and so on. At each step each subsequent representative will be encoded via a smooth map from a
further subdivision to RN . Once we have filled in the neighborhoods of vertices, we have generated
representatives of all possible smoothings.

Write Vk =
⋃

dimσ>m−k Vσ for the part of M ′ away from the (m− k)-skeleton of M . Suppose we
have defined a particular smoothing on Vk. Then the kth step of the induction proceeds as follows,
for every (m− k)-simplex σ of M :

(1) Determine whether the map on Vk ∩ Vσ is diffeomorphic to the standard cylinder Sk−1 ×
Dm−k. If it isn’t, then the smoothing does not extend.

(2) If the smoothing extends, we extend it by iterating over all possible piecewise polynomial
smooth maps until we find one that works.

(3) Finally, for every exotic k-sphere, we glue in a Dk ×Dm−k which modifies the smoothing
on Vσ by that k-sphere. This entails a further subdivision of Vσ.

It remains to describe algorithms for constructing and classifying exotic spheres. In every di-
mension k, the exotic spheres are classified by a finite abelian group Θk whose group operation
is connect sum. To perform steps (1) and (3), it would be enough to have an algorithm which,
given a smooth manifold PL homeomorphic to the sphere, computes the corresponding element of
Θk. By the stability of smoothing theory, for step (1), we must simply test whether the element
of Θk corresponding to some arbitrarily chosen Sk−1 fiber is zero. For step (3), we can generate
all the necessary exotic disks by iterating over all possible piecewise polynomial smooth maps from
subdivisions of ∂∆k+1 to R2k+1 until we find representatives for every element of Θk. Then we can
get the desired disks by cutting out a k-simplex from each of these.

In fact, we find something slightly weaker. To analyze the group Θk, we look at the original paper
of Kervaire and Milnor [KM] where it is defined, as well as an expository paper of Levine [Lev]
which fills in certain details developed later. It turns out that Θk naturally fits into an exact
sequence, whose terms we will define later:

0 → bPk+1 → Θk
ψ
−→ coker

(
πk(SOk+1)

Jk−→ π2k+1(S
k+1)

) φ
−→ Pk.

We sketch algorithms which, given a smooth manifold PL homeomorphic to the sphere,

(∗) compute the corresponding element of Θk/bPk+1;
(†) if this element is zero, compute the corresponding element of bPk+1.

This is clearly enough for step (1); for step (3), if we generate representatives of all elements of
Θk/bPk+1 and all elements of bPk+1, we can generate representatives of all elements of Θk by taking
connect sums.

We now discuss the terms of the exact sequence above:

• The group Pk =

⎧
⎨

⎩

0 k odd
Z/2Z k ≡ 2 mod 4
Z k ≡ 0 mod 4.

• The map φ sends a smooth map f : S2k+1 → Sk+1 to the Kervaire invariant (if k ≡ 2
mod 4) or 1/8 times the signature (if k ≡ 0 mod 4) of the preimage of a regular point.

• The map Jk is the usual J-homomorphism, defined as follows. An element of πr(SOq) can
be interpreted as a map Sr × Sq−1 → Sq−1. This in turn induces a map from the join
Sr ∗ Sq−1 ∼= Sr+q to the suspension of Sq−1, that is, Sq.

13



• The group bPk+1 is a certain finite quotient of Pk+1. In the nontrivial case k+1 = 2r, this
has order which divides

22r−1 · (22r−1 − 1) · numerator(Br/r),

where 2r = k + 1 and Br is the rth Bernoulli number.
• The map ψ is constructed as follows. Every smooth homotopy sphere Σ is stably paralleliz-
able. This means that given an embedding Σ ↪→ S2k+1, one can construct a trivialization of
the normal bundle and use the Pontryagin–Thom construction to give a map S2k+1 → Sk+1.
This depends on the choice of trivialization, and the indeterminacy is exactly the image of
the J-homomorphism.

• Finally, an isomorphism between kerψ and bPk+1 is given as follows. If Σ ∈ kerψ, then Σ
is framed nullcobordant. Then the corresponding element in Pk+1 is given by the Kervaire
invariant (when k + 1 is odd) or 1/8 signature (rel boundary, when k + 1 is even) of a
nullcobordism with parallelizable normal bundle; this has an indeterminacy which induces
the quotient map b.

It remains to show that all of these elements can be computed.
The signature and Kervaire invariant are cohomological notions and so are unproblematic to

compute from a triangulation.
A generator for πk(SOk+1) can be constructed explicitly as a simplicial map by the main theorem

of [FFWZ]. Then a corresponding simplicial map Sr×Sq−1 → Sq−1 can be constructed by induction
on skeleta of Sr. Finally, the Hopf construction of a map from the join to the suspension is clearly
algorithmic. This gives an algorithm for determining the image of the J-homomorphism.

By results of [ČKMVW2], π2k+1(Sk+1) is fully effective: that is, we can compute a set of genera-
tors and find the combination of generators corresponding to a given simplicial map. In particular,
this allows us to compute the cokernel of the J-homomorphism.

The main remaining obstacle is constructing a framing of a manifold known to be stably paral-
lelizable. That is, given an oriented smooth manifold Mm embedded in Rn, perhaps with boundary,
we would like to lift the classifying map M → Gr(n − m,n) of the normal bundle to the Stiefel
manifold V (n −m,n).

There are many formalisms we could use to do this algorithmically. One is as follows. We first
fix a simplicial structure on Gr(n−m,n) which is sufficiently fine that every point within the star
of a vertex corresponds to a subspace whose angle is at most π/8 from that at the vertex. Then
the simplicial approximation to the classifying map M → Gr(n−m,n) is at most at an angle π/8
from the “true” normal bundle. Now we fix a simplicial structure on V (n − m,n) with a similar
property and construct (by exhaustion) a simplicial map which approximates a lift. This may
require a further subdivision of M , beyond that required for the original simplicial approximation.
Then at every point of M the corresponding frame spans a subspace at an angle at most π/4 from
the normal space. In particular, none of the vectors are tangent to M .

By minimizing over all simplices and pairs of simplices of the subdivision of M , we obtain a
lower bound on the thickness of the resulting tubular neighborhood. Then given a framing, the
Pontryagin–Thom construction can be implemented, and thus we can compute the image of a
homotopy sphere under ψ. Moreover, given a map in kerψ, we can find a framed nullcobordism
by iterating over all candidate nullcobordisms and framings. Thus, given a homotopy sphere, we
can assign it either to a nonzero element of Θk/bPk+1 or an element of bPk+1. By iterating over all
smooth triangulations corresponding to barycentric subdivisions of ∂∆k+1, we eventually generate
representatives for all the elements of both the subgroup and the quotient group.
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[ČKV] Martin Čadek, Marek Krčál, and Lukáš Vokř́ınek, Algorithmic solvability of the lifting-extension problem,
Discrete & Computational Geometry 57 (2017), no. 4, 915–965.

[CS73] Sylvain Cappell and Julius Shaneson, Nonlocally flat embeddings, smoothings, and group actions, Bulletin
of the American Mathematical Society 79 (1973), no. 3, 577–582.

[CS76] , Piecewise linear embeddings and their singularities, Annals of Mathematics (1976), 163–228.
[EM02] Y. Eliashberg and N. Mishachev, Introduction to the h-principle, Graduate Studies in Mathematics,

vol. 48, American Mathematical Society, Providence, RI, 2002. MR 1909245
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