
Blind Swarms for Coverage in 2-D
Vin de Silva

Department of Mathematics
Stanford University

Palo Alto, CA 94305 USA

Robert Ghrist
Department of Mathematics and
Coordinated Sciences Laboratory

University of Illinois
Urbana, IL 61801 USA

Abubakr Muhammad
Department of Electrical Engineering

Georgia Institute of Technology
Atlanta, GA 30332 USA

Abstract— We consider coverage problems in robot sensor
networks with minimal sensing capabilities. In particular, we
demonstrate that a “blind” swarm of robots with no localization
and only a weak form of distance estimation can rigorously
determine coverage in a bounded planar domain of unknown
size and shape. The methods we introduce come from algebraic
topology.

I. COVERAGE PROBLEMS

Many of the potential applications of robot swarms require
information about coverage in a given domain. For example,
using a swarm of robot sensors for surveillance and security
applications carries with it the charge to maximize, or, prefer-
ably, guarantee coverage. Such applications include networks
of security cameras, mine field sweeping via networked robots
[18], and oceanographic sampling [4]. In these contexts, each
robot has some coverage domain, and one wishes to know
about the union of these coverage domains. Such problems
are also crucial in applications not involving robots directly,
e.g., communication networks.

As a preliminary analysis, we consider the static “field”
coverage problem, in which robots are assumed stationary and
the goal is to verify blanket coverage of a given domain.
There is a large literature on this subject; see, e.g., [7],
[1], [16]. In addition, there are variants on these problems
involving “barrier” coverage to separate regions. Dynamic
or “sweeping” coverage [3] is a common and challenging
task with applications ranging from security to vacuuming.
Although a sensor network composed of robots will have
dynamic capabilities, we restrict attention in this brief paper
to the static case in order to lay the groundwork for future
inquiry.

There are two primary approaches to static coverage prob-
lems in the literature. The first uses computational geometry
tools applied to exact node coordinates. This typically involves
‘ruler-and-compass’ style geometry [10] or Delaunay triangu-
lations of the domain [16], [14], [20]. Such approaches are
very rigid with regards to inputs: one must know exact node
coordinates and one must know the geometry of the domain
precisely to determine the Delaunay complex.

To alleviate the former requirement, many authors have
turned to probabilistic tools. For example, in [13], the author
assumes a randomly and uniformly distributed collection of
nodes in a domain with a fixed geometry and proves expected

area coverage. Other approaches [15], [19] give percolation-
type results about coverage and network integrity for randomly
distributed nodes. The drawback of these methods is the need
for strong assumptions about the exact shape of the domain,
as well as the need for a uniform distribution of nodes.

In the sensor networks community, there is a compelling
interest (and corresponding burgeoning literature) in determin-
ing properties of a network in which the nodes do not possess
coordinate data. One example of a coordinate-free approach
is in [17], which gives a heuristic method for geographic
routing without coordinate data: among the large literature
arising from this paper, we note in particular the mathematical
analysis of this approach in [11]. To our knowledge, noone has
treated the coverage problem in a coordinate-free setting.

In this note, we introduce a new set of tools for an-
swering coverage problems in robotics and sensor networks
with minimal assumptions about domain geometry and node
localization. We provide a sufficiency criterion for coverage.
We do not answer the problem of how the nodes should
be placed in order to maximize coverage, nor the minimum
number of such nodes necessary; neither do we address how
to reallocate nodes to fill coverage holes.

A. Assumptions

The methods we introduce are meant to work in settings
where there are a large number of robots which are relatively
simple. They have very limited range and are devoid of
localization and orientation capabilities, possessing merely a
discrete form of distance measurement. More specifically, each
node has a unique ID which it broadcasts. All other robots
within range can “hear” its neighbor as either a strong or
weak signal, depending on the distance to that node. This
bimodal signal reading is not motivated by current hardware
capabilities. Recent work by the authors [6] allows for more
realistic sensor assumptions.

We work under the following assumptions:

A1 Nodes have radially symmetric covering domains (for
sensing or broadcasting) ofcover radiusrc.

A2 Nodes broadcast their unique ID numbers. Each robot
can detect the identity of anyone within radiusrs via
a strong signal, and via aweak signal within a larger
radiusrw.

A3 The radii of communicationrs, rw and the covering



radiusrc satisfy

rc ≥ rs

√

1

3
; rw ≥ rs

√

13

3
. (1)

A4 Nodes lie in a bounded planar domainD ⊂ R
2. Nodes

can detect the presence (but not the location or direction)
of the boundary∂D within a fixed fence detection
radius rf ≥ 0.

A5 The restricted domainD − C is connected, whereC
denotes the collar

C =

{

x ∈ D : ‖x − ∂D‖ ≤ rf +
1

2
rs

}

. (2)

A6 The curve(s){x ∈ D : ‖x − ∂D‖ = rf} have internal
injectivity radius 1

2
rs and external injectivity radius

min{rf + 1
2
rs, rs}.

AssumptionsA1-A4 specify the communication capabilities
of the nodes. AssumptionA5 is needed to prevent the domain
from being too ‘pinched’ (see Fig. 1[left]). This is clearly
necessary since nodes with neither map nor coordinates cannot
distinguish between a pinched domain and a disconnected
domain. AssumptionA6 means that the outermost boundary
cannot exhibit large-scale ‘wrinkling’ (see Fig. 1[right]). This
assumption is used in the details of the proof of Theorem 3
for eliminating pathological configurations. See Remark 11for
discussion on weakening this condition.

Fig. 1. Two types of illegal domains, violatingA5 andA6.

The last assumptions,A5 andA6, are the only restrictions
on the geometry of the domain. We emphasize that the number
of boundary components is not assumed to be known: nodes
have no information about the boundary other than whether
they are within rangerf . Thisrf is independent of the node-to-
node communication radiirs andrw and the coverage radius
rc. The area of the domain is not assumed to be known, and
convexity is not at all required.

B. Results

Surprisingly, such coarse coordinate-free data is sufficient
to rigorously verify coverage in many instances. More specif-
ically, we give coverage verification criteria for the restricted
domain of points not too close to the boundary. Our results
require a centralized computation. At this time, we do not
solve the challenging problem of having the network of
nodes perform local, asynchronous computations to determine
coverage (as in, e.g., [3]).

Our strategy is as follows. We build a nested collection of
graphs and corresponding simplicial complexes:

Gs
⊂ // Gw

Fs

∪

OO

⊂ // Fw

∪

OO Rs
⊂ // Rw

Fs

∪

OO

⊂ // Fw

∪

OO (3)

The graphsGs and Gw are determined as follows: the
vertices areX , the nodes of the network, and the edges
are present between nodes which are within distancers and
rw respectively. These arecommunication graphs for the
strong and weak signals respectively. The graphsFs andFw

are the strong and weakfence subgraphs— the maximal
subgraphs ofGs (respectivelyGw) whose nodes all lie within
the fence detection radius. These graphs are “filled in” to yield
the corresponding simplicial complexes. (Each is the largest
simplicial complex with the corresponding graph as its 1-d
skeleton.)

The sensor cover, U , is the union overX of discs of
radius rc. Our results on the coverage ofU are all based
on homology: an algebraic topological invariant of these
simplicial complexes (see Section II-B). The following is the
principal criterion for coverage we derive in this paper.

Main Theorem: For a system satisfyingA1-A6, the region
D−C is contained in the sensor coverU if there is a homology
class inH2(Rs,Fs) which is nonzero inH2(Rw,Fw).

II. TOPOLOGICAL TOOLS

We begin with two constructions for transforming network
data into topological spaces. Though these constructions are
classical in topology, they appear to be unused in sensor
networks problems. For reasons of space constraints, we give
a sparse primer: see [8], [12] for a complete introduction.

A. Complexes and communication

The problem of computing the topological type of a union
of sets is classical, and easily handled using the concept ofa
Čech complex.

Definition 1: Given a collection of setsU = {Uα}, the
Čech complexof U , Č(U), is the abstract simplicial complex
whosek-simplices correspond to nonempty intersections of
k + 1 distinct elements ofU .

TheČech Theoremstates that for sufficiently well-behaved
setsUα (convex will suffice), the union∪αUα has the same
topological type as thěCech complex̌C. By “topological type”
we mean homotopy equivalence. See, e.g., [2] for definitions
and a proof.

Unfortunately, it is highly nontrivial to compute ǎCech
complex: one needs very precise data on robot locations, since
small perturbations can change the overlap regions. In the
context of a “blind” swarm of robots, thěCech complex is
seemingly unattainable. Therefore, we consider the following
related construction, which is more adapted to communication
network constraints.



Definition 2: Given a set of pointsX = {xα} ⊂ R
n in

Euclideann-space and a fixed radiusǫ, the Rips complex
of X , R(X ), is the abstract simplicial complex whosek-
simplices correspond to unordered(k + 1)-tuples of points
in X which are pairwise within Euclidean distanceǫ of each
other.

The Rips complex is ideally suited to communication net-
works, since the entire complex is determined by pairwise
communication data. Unfortunately, the Rips complex does not
necessarily capture the topology of the union of cover discs:
we have traded computability for accuracy. Figure 2 gives a
fundamental class of examples for which the Rips complex
fails to capture thěCech complex.

Fig. 2. A class of examples for which the Rips complexRs detects ‘phantom’
topological features. Take2k+2 points equidistributed on a circle of diameter
rs + ǫ whereǫ ≪ 1. The Čech complex is homotopy equivalent to a circle,
as theČech Theorem requires. The Rips complex however is isomorphicto
the boundary of across-polytopein k + 1 dimensions. This Rips complex is
thus homeomorphic to the sphereSk and accordingly is very different from
the Čech complex fork > 1. [left] k = 2, with Rs an octahedron. [right]
k = 3.

B. Simplicial homology

Homology is an algebraic procedure for counting various
types of holes in a space. We briefly describesimplicial ho-
mology with real coefficients: see [8], [12] for comprehensive
introductions.

Let X denote an n-dimensional simplicial complex.
Roughly speaking, the homology ofX, denotedH∗(X), is
a sequence of vector spaces{Hk(X) : k = 0, 1, 2, 3 . . .},
whereHk(X) is called thek-dimensional homology ofX.
The dimension ofHk(X), called thekth Betti number of
X, is a coarse measurement of the number of different holes
in the spaceX that can be sensed by using subcomplexes
of dimensionk. For us, H1(X) and H2(X) will be most
important. A generator forH1(X) consists of a set of edges in
X forming an oriented loop. A generator forH2(X) consists
of 2-simplices which form an oriented simplicial surface
without boundary.

Let X denote a simplicial complex. Define for eachk ≥ 0,
the vector spaceCk(X) to be the vector space whose basis
is the set oforiented k-simplices ofX; that is, ak-simplex
{v0, . . . , vk} together with an order type denoted[v0, . . . , vk]
where a change in orientation corresponds to a change in the
sign of the coefficient:

[v0, . . . , vi, . . . , vj , . . . , vk] = −[v0, . . . , vj , . . . , vi, . . . , vk].
(4)

For k larger than the dimension ofX, Ck(X) = 0. The
boundary map is defined to be the linear transformations
∂ : Ck → Ck−1 which acts on basis elements[v0, . . . , vk] via

∂[v0, . . . , vk] :=

k
∑

i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk]. (5)

This gives rise to achain complex: a sequence of vector
spaces and linear transformations

· · · ∂−→ Ck+1
∂−→ Ck

∂−→ Ck−1 · · · ∂−→ C1
∂−→ C0 (6)

Consider the following two subspaces ofCk: the cycles
(those subcomplexes without boundary) and theboundaries
(those subcomplexes which are themselves boundaries).

k-cycles : Zk(X) = ker(∂ : Ck → Ck−1)
k-boundaries : Bk(X) = im(∂ : Ck+1 → Ck)

(7)

A simple lemma demonstrates that∂ ◦ ∂ = 0; that is, the
boundary of a chain has empty boundary. It follows thatBk

is a subspace ofZk. The k-cycles inX are the basic objects
which count the presence of a ‘hole of dimensionk’ in X.
But, certainly, many of thek-cycles inX are measuring the
same hole; still other cycles do not really detect a hole at all
— they bound a subcomplex of dimensionk + 1 in X.

We say that two cyclesξ andη in Zk(X) arehomologous
if their difference is a boundary:

[ξ] = [η] ↔ ξ − η ∈ Bk(X). (8)

The k-dimensionalhomology of X, denotedHk(X) is the
quotient vector space,

Hk(X) =
Zk(X)

Bk(X)
. (9)

Specifically, an element ofHk(X) is an equivalence class of
homologousk-cycles. This inherits the structure of a vector
space in the natural way:[ξ] + [η] = [ξ + η] and c[ξ] = [cξ]
for c ∈ R.

The precise version of homology used in our theorems is
a ‘relative’ homology. Often, one wishes to compute holes
modulo some region of the space. LetY ⊂ X be a subcomplex
of X. We define therelative chains as follows:Ck(X,Y ) is
the quotient space obtained fromCk(X) by collapsing the
subspace generated byk-simplices inY . One verifies that this
quotient is respected by∂ and that the subspaces defined by
the kernel and image are well-defined and satisfy

Bk(X,Y ) ⊂ Zk(X,Y ) ⊂ Ck(X,Y ). (10)

It then follows that therelative homology

Hk(X,Y ) =
Zk(X,Y )

Bk(X,Y )
(11)

is well-defined. This homologyH∗(X,Y ) measures holes
detected by chains whose boundaries lie inY .

Consider two simplicial complexesX andX ′. Let f : X →
X ′ be a continuous simplicial map:f takes eachk-simplex
of X to a k′-simplex ofX ′, wherek′ ≤ k. Then, the mapf



induces a linear transformationf# : Ck(X) → Ck(X ′). It is
a simple lemma to show thatf# takes cycles to cycles and
boundaries to boundaries; hence there is a well-defined linear
transformation on the quotient spaces

f∗ : Hk(X) → Hk(X ′) : f∗ : [ξ] 7→ [f#(ξ)]. (12)

This is called theinduced homomorphism of f . Functo-
riality implies that (1) the identity mapId : X → X induces
the identity map on homology; and (2) the composition
of two maps g ◦ f induces the composition of the linear
transformation:(g ◦ f)∗ = g∗ ◦ f∗.

III. A HOMOLOGICAL CRITERION

We present and prove a criterion for coverage based on the
inclusion mapι : (Rs,Fs) →֒ (Rw,Fw).

Theorem 3:For a fixed set of robotsX in a domainD ⊂
R

2 satisfying assumptionsA1-A6, the sensor coverU contains
D − C if the induced homomorphism

ι∗ : H2(Rs,Fs) → H2(Rw,Fw) (13)

is nonzero.

A. Intuition and persistence

It is a fact that, under assumptionA5, the relative homology
H2(D, C) has dimension exactly1. Furthermore, it is true that
if U is the union of the cover discs, thenH2(U ∪ C, C) is
nonzero if and only ifU containsD − C.

However, we cannot computeU directly. As mentioned
in Section II-A, the simplicial complex which captures the
topology ofU — the Čech complex — is hard to compute,
even with a global coordinate system. Rips complexes are, in
contrast, very manageable with merely communication data
(and hence computable on the hardware level). Thus, it would
make sense to hope that ifH2(Rs,Fs) is nonzero, then
U ⊂ D − C. Indeed, these two events coincide for systems
like those illustrated in Figs. 4-5.

But this is not always the case. Consider the setting of
Fig. 3, in which there is a cycle of points withinFs all of
which are attached to a single vertex inRs−Fs. This cycle is
such that two of the edges are of lengthrs, while the other two
edges are of lengthǫ ≪ rs As such, neither of the diagonals is
of lengthrs and is therefore not present inFs. This system has
H2(Rs,Fs) 6= 0: there exist “fake” relative 2-cycles which do
not imply coverage of the entire domain. Other fake relative
2-cycles can be generated from the examples of Fig. 2.

Note, however, what happens to this relative 2-cycle under
increasing the communication radius fromrs to rw, then the
loop in Fs is “filled in” by diagonals, and the image of
this fake class underι∗ is the zero element ofH2(Rw,Fw).
Assuming that these points are a portion of a larger subset of
nodes, it isnot necessarilythe case thatH2(Rw,Fw) = 0,
since there may be a new fake 2-cycle which comes into
existence at the longer communication lengths: but the original
fake 2-cycle is annihilated byι∗.

Fig. 3. A fake generator forH2(Rs,Fs) which is annihilated by inclusion
ι∗ into H2(Rw,Fw). The strip illustrated is a collar of radiusrf .

B. Preliminary lemmas

The following result tells us that thěCech complex can be
“squeezed” between two Rips complexes of different radii.

Lemma 4:Let X be a set of points inR2 and Čǫ(X ) the
Čech complex of the cover ofX by balls of radiusǫ/2. Then
there is sequence of inclusions

Rǫ′(X ) ⊂ Čǫ(X ) ⊂ Rǫ(X ) whenever
ǫ

ǫ′
≥ 2√

3
. (14)

Moreover, this ratio is the smallest for which the inclusions
hold in general.
Proof: The second inclusion is trivial because the criterion for
inclusion of a simplex inRǫ is weaker than the criterion for
inclusion of a simplex iňCǫ. The first inclusion is equivalent
to the following assertion: if a collection of points inR2 is
such that every pair is separated by a distance at mostǫ′, then
the balls of radiusǫ/2 centered on these points have a common
intersection.

It suffices to prove this for a triple of points thanks to Helly’s
theorem [9], which implies that a collection ofk ≥ 4 convex
sets inR

2 has a nonempty common intersection provided only
that the same is true for each subset of size3. If we have
k points spanning a simplex inRǫ′ , and if we show that each
triple of theǫ/2-balls at these vertices must have a nonempty
intersection, then, by Helly’s theorem, the same is true forthe
entire set ofk balls. Hence the vertices span a simplex inČǫ.

Therefore, consider a triple of pointsa, b, c which span
a triangle with side lengths at mostǫ′. We must show that
the three discs of radiusǫ/2 centered ona, b, c meet at a
common point. If the triangle is obtuse (or right-angled), then
the midpoint of the longest side is common to all three discs.
Indeed, this is even true with radiusǫ′/2. If the triangle
is acute then the largest angle, sayA at vertexa, satisfies
π/3 ≤ A ≤ π/2 and sosin(A) ≥

√
3/2. We can compute the

circumradiusR of the triangleabc as R = |bc|/2 sin A and
hence we deduceR ≤ ǫ′/

√
3 ≤ ǫ/2. Thus, in this case, the

three discs meet at the circumcenter.
To see that this ratio is optimal, consider an equilateral

triangle of side lengthǫ′. ⋄

Lemma 5:For any collection of nodes inD which form a
simplex ofRs, its convex hull lies withinU for rc satisfying
A3.



Proof: This follows from the proof of Lemma 4 and the fact
that a collection of circular disks which meet at a common
point x necessarily covers the convex hull ofx and the
centers of the discs. ⋄

Remark 6: It follows from Lemma 5 that Theorem 3 is
true in the trivial situation whereD − C is entirely contained
inside some triangle ofRs. We assume henceforth that our
configuration does not degenerate in this sense.

Lemma 7:Let C := R
2 − (D − C) denote theextended

collar of D. For any collection of nodes inD which form a
simplex ofFs, its convex hull lies withinC.
Proof: It suffices, by Carath́eodory’s Theorem [9], to
show that the triangles ofFs lie within C. In fact, since
D−C = D−C is connected and since we have ruled out the
situation of Remark 6, it suffices to consider edges. For any
point p on an edge inFs, the distance fromp to a vertex in
Fs is bounded byrs/2. The triangle inequality completes the
proof. ⋄

The last and most technical lemma is a variant of Lemma 4
adapted to a cycle in an annular region of thickness∆. By
this we mean a domain homeomorphic toS1 × [0, 1] which
can be foliated by line segments of length no more than∆.

Lemma 8:Assume an annular regionS in R
2 of thickness

∆ and a collection of pointsX ⊂ S which forms a 1-cycle
[γ] ∈ H1(Rǫ(X )), whereγ is contained entirely withinS. If
[γ] = 0 in H1(S), then it is also trivial in theǫ′ Rips complex
Rǫ′(X ), where

ǫ′ =
√

ǫ2 + ∆2. (15)
Proof: Denote byγ the cycle as a 1-d loop inS and letU ′

denote the union overX of discs of radiusǫ′/2. Note that by
our choice ofǫ′, U ′ contains the setU obtained by covering
every point ofγ (edges as well as vertices) with a ball of
radius∆/2.

Assume by way of contradiction that[γ] 6= 0 in
H1(Rǫ′(X )) yet is trivial inH1(S). From Lemma 4,Rǫ(X ) ⊆
Čǫ′(X ) ⊆ Rǫ′(X ). Thus,γ is a nontrivial loop inČǫ′(X ). By
the Čech Theorem and Alexander duality, there exists a point
p ∈ S − U ′ enclosed byγ.

SinceS has thickness∆, there is a line segmentℓ in S of
length∆ passing throughp and connecting the two boundary
components ofS. As γ is trivial in H1(S), ℓ must intersect
γ in at least two points; thus, sinceℓ passes throughp, ℓ
intersectsU in at least two disjoint segments. Each such
segment must have length at least∆/2: contradiction. ⋄

C. Proof of Theorem 3

Proof: We consider the simplicial realization mapσ : Rs →
R

2 which sends vertices ofRs to the pointsX ⊂ D and
which sends ak-simplex of Rs to the (potentially singular)
k-simplex given by the convex hull of the vertices implicated.
From Lemma 7,σ takes the pair(Rs,Fs) to (R

2
, C); we

therefore construct the following diagram:

H2(Rs,Fs)
δ∗ //

σ∗

��

H1(Fs)

σ∗

��
H2(R

2
, C)

δ∗ // H1(C)

. (16)

Here, δ∗ acts on a class[α] ∈ H2(Rs,Fs) by taking the
boundary:δ∗[α] = [∂α] ∈ H1(Fs). The diagram of Eqn. (16)
is commutative:δ∗σ∗ = σ∗δ∗. The homology classσ∗δ∗[α]
measures how many times the boundary ofα “wraps around”
the extended collarC.

Case 1:σ∗δ∗[α] 6= 0.
By commutativity of Eqn. (16),δ∗σ∗[α] = σ∗δ∗[α] 6= 0.

Hence,σ∗[α] 6= 0. Assume thatU does not containD−C and
choosep ∈ D − (C ∪ U). Since, by Lemma 5, every point in
σ(Rs) lies withinU , this implies thatσ : (Rs,Fs) → (R

2
, C)

factors through the pair(R2−p, C). However,H2(R
2−p, C) =

0 since, by Alexander duality,H2(R
2−p, C) = H0(R

2−C, p),
which vanishes sinceR2 − C is connected. Thus,σ∗[α] = 0:
contradiction.

Case 2:σ∗δ∗[α] = 0.
We demonstrate that this case is impossible under the

hypothesisι∗[α] 6= 0. We construct the following commutative
diagram with three rows, the top and bottom of which come
from the long exact sequence[8] of the pairs(Rs,Fs) and
(Rw,Fw) respectively. The middle row comes from the pair
(Rm,Fm) — the Rips and Fence complexes computed at the
“midrange” signal of radiusrm = rs

√
13/2. The inclusion

map ι : (Rs,Fs) →֒ (Rw,Fw) factors through the pair
(Rm,Fm).

H2(Rs)
j∗ //

ι∗

��

H2(Rs,Fs)
δ∗ //

ι∗

��

H1(Fs)

ι∗

��
H2(Rm)

j∗ //

ι∗

��

H2(Rm,Fm)
δ∗ //

ι∗

��

H1(Fm)

ι∗

��
H2(Rw)

j∗ // H2(Rw,Fw)
δ∗ // H1(Fw)

(17)

Here,j∗ is the map induced by the projection chain mapj :
C2(R) → C2(R,F), andδ∗ is as in Eqn. (16). The horizontal
rows areexact, meaning that the kernel ofδ∗ is equal to the
image ofj∗.

We claim that there exists a representativeα′ ∈ [α] such
that the geometric 1-cycleσ(∂α′) is contained in a particular
annular shellS, defined as follows. Letκ denote the curves
{x ∈ D : ‖x− ∂D‖ = rf}, and letS denote the set of points
in R

2 of distance1
2
rs from κ in the interior region and within

distancemin{rf + 1
2
rs, rs} of κ in the exterior of the region.

To determineα′, remove all triangles inα which are
contained inFs to get a new cycle. This represents the same
class in relative homology, and, moreover, every edge of∂α′

is the face of a triangle with a vertex inRs−Fs. It follows that
all edges of the 1-cycle∂α′ must lie withinS using arguments
as in Lemma 7.



FromA6, we know thatS is a disjoint collection of annular
regions each of thickness at most3

2
rs. Sinceσ∗δ∗[α] = 0,

we know that the 1-cycle∂α′ is nullhomologous withinS.
Apply Lemma 8 withǫ = rs, ∆ = 3rs/2, andǫ′ = rs

√
13/2

to conclude that by increasing the radius fromrs to rm, the
cycle ∂α′ becomes trivial: hence,ι∗δ∗[α] = 0 ∈ H1(Fm).

We may now rule out Case 2 as follows. By hypothesis,
[α] ∈ H2(Rs,Fs) is nonzero, as isι∗ι∗[α] ∈ H2(Rw,Fw).
In the present case,ι∗δ∗[α] = 0 in H1(Fm). Commutativity
of Eqn. (17) implies thatδ∗ι∗[α] = 0. By exactness of this
row, ι∗[α] = j∗[ζ] for some [ζ] ∈ H2(Rm). An application
of Lemma 4 implies that the mapι∗ : H2(Rm) → H2(Rw)
factors through the homology of thěCech complexČw =
Čw(X ) of the cover ofX with balls of radiusrw/2:

ι∗ : H2(Rm) → H2(Čw) → H2(Rw). (18)

From the Čech Theorem,̌Cw has the homotopy type of a
subset ofR2. Any such subset has no homology in dimension
2; henceH2(Čw) = 0. We conclude thatι∗[ζ] = 0. It follows
from commutativity of Eqn. (17) that

0 = j∗(ι∗[ζ]) = ι∗(j∗[ζ]) = ι∗(ι∗[α]) 6= 0. (19)

Contradiction. Case 2 is impossible under the assumption that
rw ≥ rs(

√
13/2)(2/

√
3), which agrees withA3. ⋄

IV. SIMULATIONS

The past five years has witnessed the creation of several
algorithms for quickly computing homology of complexes (see
[5], [12], [21] and works cited there). In order to demonstrate
the homological criterion, we have successfully run several
simulations using the computational homology software pack-
agesPlex [23]. Plex computes dimensions of persistent
homology groups.

Simulations for both packages have been written using
MATLAB as the frontend (primarily for generating the simpli-
cial complexes from various point-data sets, data formatting
and for visualization.) ThePlex package has been used
for computing homology. We note also the utility of an
alternate homology software package,CHomP [22], which
returns explicit generators, and hence gives more precise
information thanPlex, at the cost of running much more
slowly. The current implementation ofPlex computes only
the dimensions of persistent homology groups (see, e.g., [21]),
which is enough to check whether the homomorphismι∗ in
the criterion of Theorem 3 is nonvanishing.

Remark 9: In order to compute homology relative to the
fence subcomplexes, we use the following procedure. To
computeH2(Rs,Fs), we begin by adding an abstract vertex
to Rs and then augmenting this vertex to every simplex in
Fs. This is called placing acone over Fs, and it yields
a complexQ(Rs,Fs) whose homotopy type is that of the

quotient spaceRs/Fs. It follows from the Excision Theorem
[8] and homotopy invariance that

H∗(Rs,Fs) ∼= H∗(Rs/Fs) ∼= H∗(Q(Rs,Fs)), (20)

hence, this construction faithfully captures the homology.
Remark 10:To avoid round-off error in homology compu-

tations, we use homology with coefficients inZ2. All of our
arguments are independent of the field coefficients used; hence
the criterion is still valid with this assumption.

Remark 11:The precise statement ofA6 in terms of injec-
tivity radii requires the curve to be smooth. From the proof
of Theorem 3, it is clear that the crucial condition is to have
the shellS represent annular domains of thickness bounded
by 3

2
rs. In practice, havingD piecewise-linear is admissible:

even though the injectivity radii degenerate to zero, the set
S is still an annular region(s) of width bounded by some
larger length, depending on the sharpness of the curves. For
a piecewise-linear∂D, an increase inrw based on the angle
of the sharpest corner in the outermost boundary component
makes the criterion rigorous.

Note that in the figures and examples which follow, we
illustrate the cover using coordinates. The frontend keeps
track of coordinates for purposes of drawing pictures. How-
ever, Plex receives no information about coordinates: the
homology criterion usesonly connectivity data as per our
assumptions.

Examples of successful applications of the homological
criterion of Theorem 3 appear in Figures 4 and 5. The first of
these domains is simply-connected, the second is not. In both
instances the data is presented as embedded in the domainD
and the coverU is illustrated. In neither case is the cover too
redundant — there are regions which are covered by only one
node. Simulations were run on a Linux/PC 1-Gbyte Memory
Dual Processor Intel Xeon CPU 1700MHz; cache size 256
KB; MATLAB ver 6.5. The run time for Plex to compute
the existence of a nontrivial persistent homology generator is
roughly 7 seconds and 16 seconds for the systems of Figs. 4
and 5 respectively. The vast majority of the run time is spent
constructing the simplicial complexes from the input data:the
actual persistence computation is much faster. The system of
Fig. 5 is the more complex of the two, having172 nodes and
a total of135295 3-d simplices inRw.

V. CONCLUSIONS

The coverage criterion presented here is unique in its use
of ideas and methods from homology theory: this represents
the first application of homology theory to sensor networks
problems. It is also unique in the minimal amount of knowl-
edge of the environment required to guarantee coverage. We
are aware of no other results that can guarantee coverage
without information about either node coordinates or domain
size/topology.

There are however several drawbacks to the criterion as here
presented:



Fig. 4. An example of a system of 60 nodes in a simply-connected domain for which the homological criterion holds: [left]Rs, [center]Rw , [right] U .

Fig. 5. An example of a system of 172 nodes in a domain with multiple boundary components for which the homological criterion is satisfied: [left]Rs,
[center]Rw , [right] U .

1) The criterion is not if-and-only-if and, indeed, works
only when rw and rf are not too large with respect
to the size of the domain. Figure 6 shows an example
of a cover for which the homology criterion fails for
several reasons. There are not enough points near the
boundary to get a relative homology class. As well, there
is a region of ‘fragile’ coverage which corresponds to a
nontrivial 1-cycle inRs with four edges.

2) The criterion requires a centralized computation of a
potentially large complexity. The input to the problem
(the communication graphs) may be of size quadratic in
the number of robots. Current homology algorithms are
provably subquadratic in the size of the input complex
only for special classes of spaces [5].

3) The need for a dual-ranged signal sensing device (rs

versusrw) is not necessarily concordant with current
technology. A recent improvement in our methods [6]
allows for a homological coverage criterion with a single
communication radius, so long as the nodes on the
boundary of the domain are appropriately controlled.

4) Bounds onrw in A3 require knowing something about
injectivity radii. It would be preferable to have a criterion
that works with no restriction on∂D apart from, say, a
lack of pinching.

5) If the coverage criterion fails, it is important to have a
means of rigorously proving the existence and locations
of holes.

A. Extensions and future work

The result of this paper is our initial exploration of homo-
logical methods for coverage. Archival publications stemming
from this work will include the following:

1) The coverage criterion works for nodes in any dimension
workspace. The constants inA3, A5 andA6 change as
a function of dimensiond, and the criterion requires a
persistent homology class inHd(Rs,Fs); otherwise, the
techniques are nearly identical.

2) By minimizing the persistent generator in its homology
classH2(Rs,Fs), one determines which robots may be
“turned off” or redeployed without sacrificing coverage.

3) Verifying multiple coverage (in, e.g., beacon navigation)
is possible via a modification of constants inA3.

4) Time-dependent systems which have a sequence of
updates to the communication graphs are amenable
to homological methods. In particular, there exists a
homological criterion for guaranteeing that no evader
can avoid being in the cover for all time, even if the
system never enjoys coverage at a fixed time step.

B. On the utility of blind swarms

The promise of utilizing large swarms of small-scale au-
tonomous robots carries with it the challenge of dealing with
fewer and weaker sensing capabilities. Our thesis is that
very basic robots with only the ability to listen to neighbor
identification signals — a blind swarm — can effectively solve



Fig. 6. An example of a system for which the homology criterion gives a
false negative (the system covers the domain inside a neighborhood of the
boundary). Note the fragility of the cover in the upper left portion, as is
suggested by the quadrilateral 1-cycle inRs.

global problems. Coverage is one such problem, but is itself
a prelude to further capabilities.

For example, consider a situation in which a system and
domain satisfyingA1-A6 contains an unknown number of
isolated objects of unknown shape and size on the floor.
Assume further that the “wall detection” sensors ofA4 can
distinguish whether the nearby wall is the boundary of the
domain or if it is near one of the objects to be counted. It is
possible to verify the exact number of objects with a “blind
swarm” of robots with the limited capabilities envisioned in
this paper. We outline the procedure.

1) Release a blind swarm in the domainD and let them
move according to a nearest-neighbor repulsion or by
random diffusion. After a sufficient time, record pairwise
communication data.

2) Compute the Rips complexRs and the fence subcom-
plex Fs of nodes that detect either a wall or an object.

3) Compute the coverage criterionι∗ : H2(Rs,Fs) →
H2(Rw,Fw). If this vanishes, remix the swarm and
recompute.

4) Let O ⊂ Fs be the subcomplex generated by nodes
which detect the objects.

5) Proposition:The number of objects inD is equal to the
dimension ofH0(O).

We anticipate that topological tools will lead to more global
capabilities for swarms of simple devices.
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