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Abstract—We consider coverage problems in robot sensor area coverage. Other approaches [15], [19] give percalatio
networks with minimal sensing capabilities. In particular, we type results about coverage and network integrity for ranigio
demonstrate that a “blind” swarm of robots with no localization  qistributed nodes. The drawback of these methods is the need

and only a weak form of distance estimation can rigorously f ¢ fi bout th t sh f the d .
determine coverage in a bounded planar domain of unknown or strong assumptions about the exact shape of the domain,

size and shape. The methods we introduce come from algebraic@s Well as the need for a uniform distribution of nodes.
topology. In the sensor networks community, there is a compelling
interest (and corresponding burgeoning literature) irhein-
|I. COVERAGE PROBLEMS ing properties of a network in which the nodes do not possess
coordinate data. One example of a coordinate-free approach
Many of the potential applications of robot swarms requirg i, [17], which gives a heuristic method for geographic
information about coverage in a given domain. For examplg,yting without coordinate data: among the large litemitur
using a swarm of robot sensors for surveillance and securgMSmg from this paper, we note in particular the mathecadti
applications carries with it the charge to maximize, orfere analysis of this approach in [11]. To our knowledge, noore ha

ably, guarantee coverage. Such applications include meSWOyeated the coverage problem in a coordinate-free setting.
of security cameras, mine field sweeping via networked ®bot |, this note. we introduce a new set of tools for an-

[18], and oceanographic sampling [4]. In these contextsh €3y ering coverage problems in robotics and sensor networks
robot has some coverage domain, and one wishes t0 kngih minimal assumptions about domain geometry and node
about the union of these coverage domains. Such pmb'e@éalization. We provide a sufficiency criterion for covgea

are also cruci_al in applications not involving robots difeC \we do not answer the problem of how the nodes should
€.g., communication networks. be placed in order to maximize coverage, nor the minimum

As a preliminary analysis, we consider the static “fieldnymber of such nodes necessary; neither do we address how
coverage problem, in which robots are assumed stationaty 3§ reallocate nodes to fill coverage holes.

the goal is to verify blanket coverage of a given domain.

There is a Iarg_e_ literature on this_ subject; see, e.g., [7, Assumptions

[1], [16]. In addition, there are variants on these problems

involving “barrier” coverage to separate regions. Dynamic The methods we introduce are meant to work in settings

or “Sweeping" Coverage [3] iS a common and Cha”engin‘ghere there are a |arge number of robots which are I’elatively

task with applications ranging from security to vacuuming/mple. They have very limited range and are devoid of

Although a sensor network composed of robots will hav@calization and orientation capabilities, possessingefyea

dynamic capabilities, we restrict attention in this brigfpper discrete form of distance measurement. More specificadlyhe

to the static case in order to lay the groundwork for futurdode has a unique ID which it broadcasts. All other robots

inquiry. within range can “hear” its neighbor as either a strong or
There are two primary approaches to static coverage prdbeak signal, depen.ding_ on the Qistance to that node. This

lems in the literature. The first uses computational gegmefimodal signal reading is not motivated by current hardware

tools applied to exact node coordinates. This typicallpives ~Capabilities. Recent work by the authors [6] allows for more

‘ruler-and-compass’ style geometry [10] or Delaunay fgian T€@listic sensor assumptions.

lations of the domain [16], [14], [20]. Such approaches are We work under the following assumptions:

very rigid with regards to inputs: one must know exact nodeA1l Nodes have radially symmetric covering domains (for

coordinates and one must know the geometry of the domain  sensing or broadcasting) ebver radiusr.,.

precisely to determine the Delaunay complex. A2 Nodes broadcast their unique ID numbers. Each robot
To alleviate the former requirement, many authors have can detect the identity of anyone within radius via
turned to probabilistic tools. For example, in [13], the et a strong signal, and via aveak signal within a larger

assumes a randomly and uniformly distributed collection of  radiusr,,.
nodes in a domain with a fixed geometry and proves expected3 The radii of communicatiorv,,r,, and the covering



radiusr, satisfy Our strategy is as follows. We build a nested collection of
graphs and corresponding simplicial complexes:

Te>T \/I ;o Tw T 13 (1) C C
e='s 3 ’ W= 3 Gs%Gw Rs—>Rw (3)
A4 Nodes lie in a bounded planar dom&hc R®. Nodes UT TU UT TU
can detect the presence (but not the location or direction) F_S.p F_CSoF
. . . . S w S w
of the boundaryoD within a fixed fence detection
radius r¢ > 0. The graphsG, and G, are determined as follows: the
A5 The restricted domairD — C is connected, wher€ vertices areX, the nodes of the network, and the edges
denotes the collar are present between nodes which are within distapcand

1 r respectively. These areommunication graphs for the
C= {x €D:||lx—0D| <ry+ 5%} . (2) strong and weak signals respectively. The graphsnd I,
are the strong and wedlence subgraphs— the maximal
subgraphs of7, (respectivelyG,,) whose nodes all lie within
the fence detection radius. These graphs are “filled in” ébdyi
the corresponding simplicial complexes. (Each is the Erge

min{ry + %7’5,7’.@}- . . . . .
_ ) o ... simplicial complex with the corresponding graph as its 1-d
AssumptionsA1-A4 specify the communication capabllltlesskdeton')

of the nodes. Assumptiof5 is needed to prevent the domain The sensor cover U

from being too ‘pinched’ (see Fig. 1[left]). This is clearly g s, Our results on the coverage of are all based
necessary since nodes with neither map nor coordlnatest:ath homology. an algebraic topological invariant of these

distinguish between a pinched domain and a disconnecig,jjicial complexes (see Section I1-B). The following Feet
domain. AssumptiolA6 means that the outermost bounda%rincipal criterion for coverage we derive in this paper.

cannot exhibit large-scale ‘wrinkling’ (see Fig. 1[right]This

assumption is used in the details of the proof of TheoremNain Theorem: For a system satisfying\1-A6, the region
for eliminating pathological configurations. See Remarkdtl D—C is contained in the sensor covirif there is a homology
discussion on weakening this condition. class inHz(Rs, Fs) which is nonzero iz (R, Fu)-

A6 The curve(s)fz € D : ||z — 9D| = r} have internal
injectivity radius 1r, and external injectivity radius

is the union overX of discs of

Il. TOPOLOGICAL TOOLS

We begin with two constructions for transforming network
data into topological spaces. Though these constructions a
classical in topology, they appear to be unused in sensor
networks problems. For reasons of space constraints, vee giv

a sparse primer: see [8], [12] for a complete introduction.
Fig. 1. Two types of illegal domains, violatiry5 and A6.
A. Complexes and communication

The problem of computing the topological type of a union

The last assumption$5 and A6, are the only restrictions . . > .
ptiong) y érsets is classical, and easily handled using the concegt of

on the geometry of the domain. We emphasize that the num
of boundary components is not assumed to be known: no %h .C(')r.nple>'<. . .

have no information about the boundary other than whether efinition 1. Given a cqllectlon of sety — {.Ua}’ the
they are within range;. Thisr is independent of the node-to- ech com_plex_of U, CU), is the abstract smp_hmal Comp'e"
node communication radii, andr,, and the coverage radiuswhosel<;-5|mpI|ces correspond to nonempty intersections of

r.. The area of the domain is not assumed to be known, a]ﬁdfl_ﬁ %stlr;cfrﬁlementst ?M that f Hicientl I-behaved
convexity is not at all required. eCec eoremstates that for sufficiently well-behave

setsi,, (convex will suffice), the unionJ, U, has the same
topological type as th€ech complex_. By “topological type”
we mean homotopy equivalence. See, e.g., [2] for definitions
Surprisingly, such coarse coordinate-free data is sufficieand a proof.
to rigorously verify coverage in many instances. More dpeci Unfortunately, it is highly nontrivial to compute @ech
ically, we give coverage verification criteria for the réted complex: one needs very precise data on robot locationsg sin
domain of points not too close to the boundary. Our resuksnall perturbations can change the overlap regions. In the
require a centralized computation. At this time, we do nabntext of a “blind” swarm of robots, th€ech complex is
solve the challenging problem of having the network aeemingly unattainable. Therefore, we consider the faligw
nodes perform local, asynchronous computations to determielated construction, which is more adapted to commurmioati
coverage (as in, e.g., [3]). network constraints.

B. Results



Definition 2: Given a set of pointst = {z,} C R" in For k larger than the dimension ok, C,(X) = 0. The
Euclideann-space and a fixed radius the Rips complex boundary map is defined to be the linear transformations

of X, R(X), is the abstract simplicial complex whode 0 : C), — Ci_1 which acts on basis elemerts), . .., v;] via
simplices correspond to unorderé#l + 1)-tuples of points &

in X which are pairwise within Euclidean distane®f each e vl = “ 1w T vl (5
other. [ 0 5 k] ;( ) [ 05 sy Ui—1, Ui+1, ) k?] ( )

The Rips complex is ideally suited to communication net- _ . . . .
works, since the entire complex is determined by pairwiseThIS gives rse to ahain co_mplex a sequence of vector
communication data. Unfortunately, the Rips complex dads rPPaces and linear transformations
necessarily capture the topology of the union of cover discs . 9, Crit 9, C, 9, Chq - 9, Cy 9, Co (6)
we have traded computability for accuracy. Figure 2 gives a
fundamental class_of examples for which the Rips complexConsider the following two subspaces ©f.: the cycles
fails to capture theCech complex. (those subcomplexes without boundary) and bioeindaries

(those subcomplexes which are themselves boundaries).

k-cycles D Zp(X) = ker(0:Ck — Cir_q) 7
k-boundaries : Bp(X) = im(9:Ciy1 — Cy)

A simple lemma demonstrates thab 0 = 0; that is, the
boundary of a chain has empty boundary. It follows that
is a subspace af;. The k-cycles in X are the basic objects
which count the presence of a ‘hole of dimensionin X.
But, certainly, many of thé-cycles inX are measuring the
o2 Ad . tos for which the Ri detects ‘ohantor same hole; still other cycles do not really detect a hole lat al
e e o et o — they bound a Subcomplex of cimensian- 1 in X.
75 + € wheree < 1. The Cech complex is homotopy equivalent to a circle, We say that two cycleg and» in Z,.(X) arehomologous

as theCech Theorem requires. The Rips complex however is isomotphic if their difference is a boundary:
the boundary of @ross-polytopén k + 1 dimensions. This Rips complex is

thus homeomorphic to the sphes# and accordingly is very different from [5] — [77] - &-nc Bk(X). (8)
the Cech complex fork > 1. [left] £k = 2, with R an octahedron. [right]
k=3.

The k-dimensionalhomology of X, denotedH(X) is the
quotient vector space,

B. Simplicial homology Hi () Zk(X). )

Homology is an algebraic procedure for counting various - By(X)

types of holes in a space. We briefly descrédplicial ho-  gpecifically, an element off;,(X) is an equivalence class of
mology with real coefficients see [8], [12] for comprehensive o mi0gousk-cycles. This inherits the structure of a vector

introductions. ;
space in the natural way¢] + [n] = [£ + n] and =
Let X denote an n-dimensional simplicial complex. f(?r ccR. Yel + n] = 1€ + ) cle] = let]

Roughly speaking, the homology of, denotedH.(X), is

The precise version of homology used in our theorems is
a sequence of vector spacé#l(X) : k£ = 0,1,2,3...},

i X g a ‘relative’ homology. Often, one wishes to compute holes
Where_Hk(X_) is called thek-dlmensmnhal homology ofX. modulo some region of the space. étC X be a subcomplex
The dimension off;,(.Y), called thek™ Betti number of = ot v \we define thaelative chains as followsCy, (X, Y) is

X, is a coarse measurement of the number of different holgs, quotient space obtained fro6i,(X) by collapsing the

in the spaceX that can be sensed by using subcomplexggpsace generated bysimplices inY. One verifies that this

of dimension. For us, Hi(X) and Hy(X) will be most o otient is respected b§ and that the subspaces defined by
important. A generator foff; (X) consists of a set of edges iy, o kernel and image are well-defined and satisfy
X forming an oriented loop. A generator féfy(X) consists

of 2-simplices which form an oriented simplicial surface Bi(X,Y) C Zp(X,Y) C Cr(X,Y). (10)
without boundary.

Let X denote a simplicial complex. Define for eakh> 0,
the vector spac€';(X) to be the vector space whose basis
is the set oforiented k-simplices of X; that is, ak-simplex

- Br(X,Y)
{vo,...,v;} together with an order type denotéd, ..., vx] .

. . ) : well-defined. This homologyH.(X,Y) measures holes

where a change in orientation corresponds to a change in . S
. o etected by chains whose boundaries li&’in

sign of the coefficient:

Consider two simplicial complexe¥ andX’. Let f : X —
[V0, -3 Viyevey Ujy ooy U] = —[V0,...,Uj,...,0;,...,0]. X’ be a continuous simplicial mag: takes eachk-simplex
(4) of X to ak’-simplex of X', wherek’ < k. Then, the magpf

It then follows that therelative homology

Ho(X,v) = ZHEY) (X.Y) (11)



induces a linear transformatiofy:. : C(X) — Cp(X'). It is
a simple lemma to show that, takes cycles to cycles and
boundaries to boundaries; hence there is a well-definedrline

transformation on the quotient spaces W
fo i Hy(X) — Hy(X') 0 fo:[f = [f(9)] (12)

This is called thenduced homomorphism of f. Functo- /

riality implies that (1) the identity mapd : X' — X induces Fig. 3. A fake generator foHs (R s, Fs) which is annihilated by inclusion

the identity map on homology; and (2) the compositioN ‘into Hy(R.,, F.). The strip illustrated is a collar of radius.
of two mapsg o f induces the composition of the linear

transformation:(g o f). = g« o fa.

[1l. A HOMOLOGICAL CRITERION B. Preliminary lemmas

We present and prove a criterion for coverage based on thd N following resuit tells us that théech complex can be
inclusion mape : (Ry, Fs) — (R, Fun) “squeezed” between two Rips complexes of different radii.
(R, Fou).

. . . =

Theorem 3:For a fixed set of robots’ in a domainD ¢, Lémma 4:Let X' be a set of points iR™ and C(X) the

R? satisfying assumption&1-A6, the sensor cové contains C€Ch complex of the cover ot by balls of radius:/2. Then
D — C if the induced homomorphism there is sequence of inclusions

€
o

Lo Hy(Rg, Fs) — Hy(Ru, Fu) (13)  Ro(X) C C(X) CR(X) whenever — > (14)

S

€

IS nonzero. Moreover, this ratio is the smallest for which the inclusion
hold in general.
Proof: The second inclusion is trivial because the criterion for
It is a fact that, under assumptidb, the relative homology inclusion of a simplex irR. is weaker than the criterion for
H,(D,C) has dimension exactly. Furthermore, it is true that inclusion of a simplex inC.. The first inclusion is equivalent
if 2/ is the union of the cover discs, thelf,(i/ U C,C) is to the following assertion: if a collection of points iR* is
nonzero if and only it/ containsD — C. such that every pair is separated by a distance at ehoten
However, we cannot comput& directly. As mentioned the balls of radius/2 centered on these points have a common
in Section 1I-A, the simplicial complex which captures théntersection.
topology of i/ — the Cech complex — is hard to compute, It suffices to prove this for a triple of points thanks to Hally
even with a global coordinate system. Rips complexes are,tireorem [9], which implies that a collection &f> 4 convex
contrast, very manageable with merely communication degats inR? has a nonempty common intersection provided only
(and hence computable on the hardware level). Thus, it woultht the same is true for each subset of sjzdf we have
make sense to hope that #»(Rs, Fs) is nonzero, then k points spanning a simplex iR.,, and if we show that each
U c D — C. Indeed, these two events coincide for systenigple of thee/2-balls at these vertices must have a nonempty
like those illustrated in Figs. 4-5. intersection, then, by Helly's theorem, the same is trueHer
But this is not always the case. Consider the setting efitire set of balls. Hence the vertices span a simplexCin
Fig. 3, in which there is a cycle of points withift; all of Therefore, consider a triple of points, b, ¢ which span
which are attached to a single vertexi — F,. This cycle is a triangle with side lengths at most We must show that
such that two of the edges are of lengthwhile the other two the three discs of radius/2 centered ona,b,c meet at a
edges are of length< r, As such, neither of the diagonals iscommon point. If the triangle is obtuse (or right-angletigrt
of lengthr, and is therefore not presentff,. This system has the midpoint of the longest side is common to all three discs.
Hy(Rs, Fs) # 0: there exist “fake” relative 2-cycles which dolndeed, this is even true with radiug/2. If the triangle
not imply coverage of the entire domain. Other fake relatiie acute then the largest angle, sdyat vertexa, satisfies
2-cycles can be generated from the examples of Fig. 2. /3 < A < /2 and sosin(A) > /3/2. We can compute the
Note, however, what happens to this relative 2-cycle undercumradiusk of the triangleabc as R = |bc|/2sin A and
increasing the communication radius fromto r,,, then the hence we deduc® < ¢//v/3 < ¢/2. Thus, in this case, the
loop in F; is “filled in” by diagonals, and the image ofthree discs meet at the circumcenter.
this fake class under, is the zero element oz (R, Fy)- To see that this ratio is optimal, consider an equilateral
Assuming that these points are a portion of a larger subsett@ngle of side length’. o
nodes, it isnot necessariljthe case thatiz(R.,, F.,) = 0,
since there may be a new fake 2-cycle which comes intoLemma 5:For any collection of nodes i®® which form a
existence at the longer communication lengths: but theéraig simplex of R, its convex hull lies withiri/ for r. satisfying
fake 2-cycle is annihilated by,. A3.

A. Intuition and persistence



Proof: This follows from the proof of Lemma 4 and the factherefore construct the following diagram:

that a collection of circular disks which meet at a common s

point = necessarily covers the convex hull ef and the Hy(Rs, Fs) — H1(Fs) . (16)
centers of the discs. o l" l"
. H — O —
Remark 6:1t follows from Lemma 5 that Theorem 3 is Hy(R%,C) —— H;(C)

true in the trivial situation wher® — C is entirely contained
inside some triangle oR,. We assume henceforth that our Here,d. acts on a clas$a] € Hy(R,, Fs) by taking the
configuration does not degenerate in this sense. boundary:d.[a] = [0a] € H1(F;). The diagram of Eqn. (16)
Lemma 7:Let C := R*> — (D — C) denote theextended IS commutative:d.o. = ... The homology class..d.[a]
collar of D. For any collection of nodes i® which form a Mmeasures how many times the boundary:dfvraps around”
simplex of 7, its convex hull lies withirC. the extended collaf.
Proof: It suffices, by Carattodory’s Theorem [9], to C@se lio.d.[a] # 0.
show that the triangles ofF, lie within C. In fact, since ~ BY commutativity of Eqn. (16)4.0.[a] = o.d.[a] # 0.
D —C =D —C is connected and since we have ruled out tH'elence'U* [a] # 0. Assume.thau does not contai® —C a_nq
situation of Remark 6, it suffices to consider edges. For af§00S€r € P — (C UU). Since, by Lemma 5, every point in
point p on an edge in., the distance fronp to a vertex in (/) lies withint/, this implies tha : (R, 7s) - (R, C)
F, is bounded by, /2. The triangle inequality completes thefactors through the pa{iR” —p, C). ';'OWGXeﬂHz(R gpv_c) =
proof. o 0since, by Alexander duality{>(R™—p,C) = HO(R*-C, p),
which vanishes sinc®”> — C is connected. Thusr, [a] = 0:
ac&)ntradiction.

Case 2:0,0.[a] = 0.

We demonstrate that this case is impossible under the
hypothesis..[«] # 0. We construct the following commutative
diagram with three rows, the top and bottom of which come

A and a collection of pointst’ ¢ S which forms a 1-cycle fr;;m 26 long ex?_ct Isegruhenceé_?j]d?f the palrs(RF,J’-‘s)tﬁmd .
[v] € H1(R.(X)), where~ is contained entirely withirs. If (R“” j__“’) respr:-:c Ig'e Y- deFm' € row Icomes rom (;a palr:
[v] = 0in H{(S), then it is also trivial in the’ Rips complex ( .’g’ m) y the I |pfs ag_ enc_e co\n/1&exes ﬁompulte | atthe
Ro(X), where midrange” signal of radius-,, = r;v/13/2. The inc usion
map: : (Rs,Fs) — (R, Fw) factors through the pair
€ = V €+ A2 (15) (Rma]:m)-

Proof: Denote by~ the cycle as a 1-d loop I8 and letl/’

The last and most technical lemma is a variant of Lemm
adapted to a cycle in an annular region of thickn@ssBy
this we mean a domain homeomorphic$% x [0, 1] which
can be foliated by line segments of length no more than

Lemma 8:Assume an annular regiafi in RR? of thickness

denote the union ovet of discs of radius’ /2. Note that by Hy(Ry) —L> Hy(Ry, Fy) — > H\(F,) 17)
our choice ofe’, U’ contains the sel{ obtained by covering . , ,
every point ofy (edges as well as vertices) with a ball of l : _ l i l i
radius A /2. Hy(Ron) —2 Hy(Ron, Fim) s H, (Fm)
Assume by way of contradiction thaty] # 0 in
Hi(Re (X)) yetis trivial in H1(S). From Lemma 4R (X) C l’* l’* l’*

Co(X) € Re(X). Thus,y is a nontrivial loop inC, (X). By

the Cech Theorem and Alexander duality, there exists a point

p € S — U’ enclosed byy. Here,j. is the map induced by the projection chain mjap
SinceS has thickness\, there is a line segmertin S of C2(R) — Ca(R, F), andd, is as in Egn. (16). The horizontal

length A passing througlp and connecting the two boundaryrows areexact meaning that the kernel @ is equal to the

components ofS. As « is trivial in H1(S), ¢ must intersect image ofj..

~ in at least two points; thus, sincé passes through, ¢ We claim that there exists a representativec [a] such

intersects/ in at least two disjoint segments. Each sucHat the geometric 1-cycle(da’) is contained in a particular
Segment must have |ength at |e$ﬁ2 contradiction. o annular ShEllS, defined as follows. Lek denote the curves

{zr € D: |z —0DJ| =r;}, and letS denote the set of points
in R? of distance%rs from & in the interior region and within
C. Proof of Theorem 3 distancemin{_rf + %rs,rs} of k in the exteri(_)r of th(_a region.
To determineca’, remove all triangles inac which are
Proof: We consider the simplicial realization map Rs; — contained inF, to get a new cycle. This represents the same
R* which sends vertices oR, to the pointsX¥ C D and class in relative homology, and, moreover, every edgéf
which sends &-simplex of R, to the (potentially singular) is the face of a triangle with a vertex fd, — F;. It follows that
k-simplex given by the convex hull of the vertices implicatedall edges of the 1-cycléa’ must lie withinS using arguments
From Lemma 7,0 takes the pair(R,,F,) to (R*C); we asin Lemma 7.

j O
H3(Ry) —2> Hy(Ruy, Fuy) —=> Hy(Fo)



From A6, we know thatS is a disjoint collection of annular quotient spacéR,/Fs. It follows from the Excision Theorem
regions each of thickness at mo%ts. Sinceo,d.[a] = 0, [8] and homotopy invariance that
we know that the 1-cycléqa’ is nullhomologous withinS.

Apply Lemma 8 withe = r,, A = 3r,/2, ande’ = r,1/13/2 H.(Rs, Fs) = Hi(Rs/Fs) = Hi(Q(Rs, 7)), (20)
to conch:lde that by Increasing the radius fremto r.,,, the  hence, this construction faithfully captures the homology
cycle da’ becomes trivial: hence,.d.[a] = 0 € H:(Fm). Remark 10:To avoid round-off error in homology compu-

We may now rule out Case 2 as follows. By hypothesigations, we use homology with coefficients . All of our
[a] € Hx(Rs, Fs) is nonzero, as i8.i.[a] € Ha(Ruw,Fw)-  arguments are independent of the field coefficients usedehen
In the present case,d.[a] = 0 in Hy(Fy). Commutativity the criterion is still valid with this assumption.
of Eqn. (17) implies thab...[o] = 0. By exactness of this  Remark 11:The precise statement 86 in terms of injec-
row, ¢.[a] = j.[(] for some[c] € Hz(R.,). An application ity radii requires the curve to be smooth. From the proof
of Lemma 4 implies that the map. : Hy(Rm) — Ha(Rw)  of Theorem 3, it is clear that the crucial condition is to have
factors through the homology of th@ech complexC., = the shellS represent annular domains of thickness bounded
Cuw(X) of the cover ofX’ with balls of radiusr,, /2: by 2r,. In practice, havingD piecewise-linear is admissible:
. even though the injectivity radii degenerate to zero, the se
tot Hy(Rm) — Ha(Cw) — Ha(Rouw). (18) s'is still an annular region(s) of width bounded by some

From the Cech Theorem(', has the homotopy type of alarger length, depending on the sharpness of the curves. For

subset ofR?. Any such subset has no homology in dimensiof Piecewise-lineat/D, an increase im,, based on the angle
2; henceH,(C,,) = 0. We conclude that.[c] = 0. It follows of the sharpest corner in the outermost boundary component

from commutativity of Eqn. (17) that makes the criterion rigorous. .
Note that in the figures and examples which follow, we
0 = 2 (t[C]) = 12 (G [C]) = 1a(ti]e]) # 0. (19) illustrate the cover using coordinates. The frontend keeps

track of coordinates for purposes of drawing pictures. How-
Contradiction. Case 2 is impossible under the assumptian tiever, Pl ex receives no information about coordinates: the
rw > rs(V13/2)(2/V/3), which agrees withA3. o homology criterion usenly connectivity data as per our
assumptions.
Examples of successful applications of the homological
IV. SIMULATIONS criterion of Theorem 3 appear in Figures 4 and 5. The first of

The past five years has witnessed the creation of seve%(?tse domtz;msdlst S|_mply—contnedcted, thi s;;:ogc_j |sthno:j. dt;]ﬂb_ot
algorithms for quickly computing homology of complexes:e(seIns ances the dala IS presented as embedded In the an

[5], [12], [21] and works cited there). In order to demontgra and the covet/ is illustrated. In neither case is the cover too

the homological criterion, we have successfully run dee(gdunda_nt - 'Fhere are regions Wh'(_:h are covered by only one
node. Simulations were run on a Linux/PC 1-Gbyte Memory

simulations using the computational homology softwarekpac .
. ; : ual Processor Intel Xeon CPU 1700MHz; cache size 256
agesPl ex [23]. Pl ex computes dimensions of persisten B: MATLAB ver 6.5. The run time for Plex to compute

homolo roups. X L . .
gy group the existence of a nontrivial persistent homology generiato
roughly 7 seconds and 16 seconds for the systems of Figs. 4

and 5 respectively. The vast majority of the run time is spent

Simulations for both pac_:kaggs have been wntten_ us'_'l%nstructing the simplicial complexes from the input date:
MATLAB as the frontend (primarily for generating the SImpl'?’:\ctual persistence computation is much faster. The sysfem o

cial compl_exes_ fro_m various point-data sets, data formgtti ig. 5 is the more complex of the two, having2 nodes and
and for visualization.) ThePl ex package has been use total 0f 135295 3-d simplices inR

for computing homology. We note also the utility of an
alternate homology software packagéHonP [22], which
returns explicit generators, and hence gives more precise
information thanPl ex, at the cost of running much more
slowly. The current implementation @&l ex computes only  The coverage criterion presented here is unique in its use
the dimensions of persistent homology groups (see, e1), [2 of ideas and methods from homology theory: this represents
which is enough to check whether the homomorphisnin  the first application of homology theory to sensor networks
the criterion of Theorem 3 is nonvanishing. problems. It is also unique in the minimal amount of knowl-
Remark 9:In order to compute homology relative to theedge of the environment required to guarantee coverage. We
fence subcomplexes, we use the following procedure. @e aware of no other results that can guarantee coverage
computeH,(Rs, Fs), we begin by adding an abstract vertexvithout information about either node coordinates or demai
to Rs and then augmenting this vertex to every simplex isize/topology.
Fs. This is called placing acone over F,, and it yields  There are however several drawbacks to the criterion as here
a complexQ(Rs, Fs) whose homotopy type is that of thepresented:

V. CONCLUSIONS



Fig. 5. An example of a system of 172 nodes in a domain with meltiundary components for which the homological criterionatisBed: [left] R,
[center] R, [right] U.

1) The criterion is not if-and-only-if and, indeed, worksA. Extensions and future work

only whenr, andr; are not too large with respect The result of this paper is our initial exploration of homo-

to the size of the domain. Figure 6 shows an exampiggical methods for coverage. Archival publications stengn
of a cover for which the homology criterion fails forfom this work will include the following:

several reasons. There are not enough points near th
boundary to get a relative homology class. As well, there
is a region of ‘fragile’ coverage which corresponds to a
nontrivial 1-cycle inR, with four edges.

2) The criterion requires a centralized computation of a
potentially large complexity. The input to the problem 2)
(the communication graphs) may be of size quadratic in
the number of robots. Current homology algorithms are
provably subquadratic in the size of the input complex 3)
only for special classes of spaces [5].

3) The need for a dual-ranged signal sensing devige ( 4)
versusr,,) is not necessarily concordant with current
technology. A recent improvement in our methods [6]
allows for a homological coverage criterion with a single
communication radius, so long as the nodes on the
boundary of the domain are appropriately controlled.

4) Bounds onr,, in A3 require knowing something about
injectivity radii. It would be preferable to have a critemio B, On the utility of blind swarms
that works with no restriction o@D apart from, say, a

‘::L) The coverage criterion works for nodes in any dimension
workspace. The constants &8, A5 and A6 change as

a function of dimensioni, and the criterion requires a
persistent homology class i, (R, F); otherwise, the
techniques are nearly identical.

By minimizing the persistent generator in its homology
classH»(Rs, Fs), one determines which robots may be
“turned off” or redeployed without sacrificing coverage.
Verifying multiple coverage (in, e.g., beacon navigajio

is possible via a modification of constantsAS3.
Time-dependent systems which have a sequence of
updates to the communication graphs are amenable
to homological methods. In particular, there exists a
homological criterion for guaranteeing that no evader
can avoid being in the cover for all time, even if the
system never enjoys coverage at a fixed time step.

S The promise of utilizing large swarms of small-scale au-
lack of pinching. : o : .
. S tonomous robots carries with it the challenge of dealinghwit
5) If the coverage criterion fails, it is important to have . - o
. . . . fewer and weaker sensing capabilities. Our thesis is that
means of rigorously proving the existence and locations : ; - . .
of holes very basic robots with only the ability to listen to neighbor

identification signals — a blind swarm — can effectively solv



(1]

(2]
(3]

(4]

(5]

(6]
(7]

(8]
(9]

Fig. 6. An example of a system for which the homology criteriaveg a
false negative (the system covers the domain inside a neigbbd of the
boundary). Note the fragility of the cover in the upper lefirfion, as is

suggested by the quadrilateral 1-cycleTn. [10]

(11]

global problems. Coverage is one such problem, but is itsglf;
a prelude to further capabilities.

For example, consider a situation in which a system aftf!
domain satisfyingA1-A6 contains an unknown number of
isolated objects of unknown shape and size on the flogi4]
Assume further that the “wall detection” sensorsAsf can
distinguish whether the nearby wall is the boundary of thes;
domain or if it is near one of the objects to be counted. It is
possible to verify the exact number of objects with a “inn?m]
swarm” of robots with the limited capabilities envisioned i
this paper. We outline the procedure.

1) Release a blind swarm in the domdahand let them
move according to a nearest-neighbor repulsion or by
random diffusion. After a sufficient time, record pairwisél8l
communication data.

Compute the Rips compleR and the fence subcom-[19]
plex F; of nodes that detect either a wall or an object.
Compute the coverage criterion : Hz(Rs, Fs) — 20]
H3(Ry, Fy). If this vanishes, remix the swarm andI
recompute.

Let O C F, be the subcomplex generated by nodqﬁ]
which detect the objects.

Proposition: The number of objects if® is equal to the [22]
dimension ofHy(O). [23]

(17]

2)

3)

4)

5)

We anticipate that topological tools will lead to more glbba
capabilities for swarms of simple devices.
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