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Sensors and sense-ability

A sensor is a device which measures a domain
or environment and returns a signal from which
information may be extracted. Sensors vary in
scope, resolution, and ability. The information
they return can be a simple as a binary flag, as
with a metal detector which beeps to indicate a de-
tection threshold being crossed. A more complex
sensor, such as a video camera, can return a signal
requiring sophisticated analysis to extract relevant
data.

An increasingly common application for sensors
is to scan a region for a particular object or sub-
stance. For example, one might wish to determine
the existence and location of an outbreak of fire in
a national forest. Questions of more interest to na-
tional security involve detection of radiological or
biological hazards, hidden mines and munitions,
or specific individuals in a crowd. All of these sce-
narios pose difficult and challenging integration
problems.

Numerous strategies exist, aided by the fact that
sensor technology provides an expansive array of
available hardware. A fundamental dichotomy ex-
ists in the approach to sensing an environment
based on the number and complexity of sensors.
For a fixed cost (monetary, or, perhaps, ‘total com-
plexity’), one can deploy a small number of sophis-
ticated ‘global’ sensors with high signal complex-
ity and fine sensitivity to error. In contrast, one
can deploy a large number of small, coarse, ‘lo-
cal’ devices which may have larger tolerance to
error. Different strategies are appropriate for dif-
ferent tasks: the human body contains examples
of sensor systems with small numbers of complex
devices (for sight) as well as vast networks of local
sensors (for touch).

Technology promises to push the envelope on
both sides of this spectrum, yielding new types of
powerful, global sensors, as well as local sensors
of surprisingly small size. The relevant question

for the mathematician is which types of mathemat-
ics will be useful in analyzing sophisticated sensor
networks.

It may be that the most exciting possibilities lie
in the domain of the small. Swarms of local sen-
sors at micro- or nano- scale have the potential to
revolutionize the way that we think about security
and surveillance problems. However, this brings
with it the difficulty of integration. How does one
collect local information and collate it into global
environmental data?

From local to global

Fortunately, mathematicians have spent cen-
turies carefully contemplating the local-to-global
transition. The very term we use to indicate the
collection and collation of local data — integration
— hearkens to the well-established means of relat-
ing local information about a function (pointwise
derivatives) with a global quantity (the integral).

A more relevant example for our purposes is to
be found in simple ideas about the topology of sur-
faces. Given a triangulated surface, one can ask
about its global features. The Classification Theo-
rem for Surfaces implies that the Euler characteris-
tic suffices to determine the homeomorphism type
of the surface. The Euler characteristic is as a sim-
ple a computation as one could hope for:

χ(Σ) = #V −#E + #F,

where the triangulated surface Σ has #V vertices
#E edges and #F faces.

The efficacy of the Euler characteristic in this ex-
ample is a consequence of the restricted nature of
surfaces. If one were given a more arbitrary space,
then the challenge of characterizing global features
of the space becomes a more fundamental problem
in algebraic topology. Roughly speaking, algebraic
topology provides two ways in which to associate
to a given space X a collection of algebraic objects
which gauge the global features of X .

The first such set of invariants are the homo-
topy groups, πk(X), for k = 0, 1, . . ., the funda-
mental group π1(X) being very well-known. These
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Figure 1: A network of small, local sensors samples an environment at a set of nodes. How can one
answer global questions from this network of local data?

groups measure in how many and which ways one
can map a k-dimensional sphere Sk into X , two
spheres in X being deemed equivalent if they are
homotopic relative to some fixed basepoint. Ho-
motopy groups are a very powerful data; how-
ever, they are in practice quite difficult to compute.
The general computation of homotopy groups of
spheres is unknown, and, indeed, is the premier
unsolved problem in algebraic topology at this
time.

The second set of invariants provide a weaker
but more computable option. These are the ho-
mology groups, Hk(X), for k = 0, 1, . . .. (Properly
speaking, homology defers to its algebraic dual —
the cohomology groups Hk(X) — as a finer invari-
ant.) Instead of measuring k-spheres in a space up
to homotopy, homology measures certain types of
chains, or objects built from simple oriented pieces
(simplices). Depending on the type of homology
used, these simplices are defined differently, the
simplest being in the case of a simplicial complex
where the combinatorial simplices from which the
space X is built form a basis for simplicial chains.
The elements of Hk(X) are cycles, or chains with
vanishing boundary, and two k-cycles are deemed
homologous if there is an oriented (k + 1)-chain
which has as its boundary the pair of cycles (with
opposite orientation).

Like homotopy groups, the homology groups
are an invariant of the homotopy type of the un-
derlying space. This explains why the Euler char-
acteristic χ of a surface is independent of both the
triangulation and the homeomorphism type of the
surface: χ is the alternating sum of the dimensions
of the homology groups.

Unlike homotopy groups, homology groups can
be computed via linear algebra. Note: this does
not imply that homology can be computed quickly.
However, recent advances in algorithms for ho-
mology (see [11] and references therein) make ho-
mology groups a feasible tool for realistic prob-
lems.

A simple local network

Motivated by the potential future of sensor-rich
environments, we consider a class of simple sen-
sors which can solve global problems based on
local communication. For concreteness, we con-
sider the case where nodes lie in a planar polygo-
nal Euclidean domain. Assuming a preference for
small-scale devices without GPS or other sophisti-
cated sensors, we eschew a global coordinate sys-
tem. The topological methods make it possible to
work with sensors which are remarkably minimal,
having no means of measuring distance, orienta-
tion, or otherwise localizing themselves in their
environment.

The following assumptions are intended for a
sensor network which has two types of capabili-
ties. First, each node can perform some sensing
task within a certain radially-symmetric neighbor-
hood. Within this coverage disk, the sensor per-
forms its unspecified task, whether it involves
video surveillance, detection of radiological or bio-
hazard material, or motion detection. The second
capability is node-to-node communication. This is
assumed to be very weak: each node broadcasts its
unique ID and listens to determine its neighbors.

The one strong assumption we make concerns
the boundary of the domain D in which the nodes
lie. We assume for simplicity that the boundary
∂D is defined by a collection of special fence nodes
which, though without absolute coordinates, nev-
ertheless possess a sense of “winding” about ∂D.
Our precise assumptions are as follows:

A1: Nodes X broadcast their unique ID numbers.
Each node can detect the identity of any node
within broadcast radius rb.

A2: Nodes have radially symmetric covering do-
mains of cover radius rc ≥ rb/

√
3.

A3: Nodes X lie in a compact connected domain
D ⊂ R2 whose boundary ∂D is connected and
piecewise-linear with vertices marked fence
nodes Xf .
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A4: Each fence node v ∈ Xf knows the identities
of its neighbors on ∂D and these neighbors
both lie within distance rb of v.

To summarize, each node is aware of the iden-
tities of those nodes which are within broadcast
range rb. The orientations and distances of these
neighboring nodes are unknown. The fence nodes
have two additional pieces of data: (1) they know
that they are on the boundary of the domain; and
(2) each knows the identities of the two neighbor-
ing fence nodes.

Apart from the fence nodes (which are used to
simplify the statements of theorems), the type of
information which this network encodes is very
similar to that encoded by a simplicial complex.
Local combinatorial data about how elementary
pieces are assembled give rise to a global object
whose large-scale topological features are of inter-
est.

Simplices for sensors

For such a network, we consider the problem of
blanket coverage.

Does the union of the coverage discs
about the nodes cover the domain D?

In the context of a surveillance network, the cov-
erage problem is of clear significance. A more be-
nign type of coverage problem vexes anyone with
a cell phone in an area of low cell phone tower
density. This version of the coverage problem is
simpler because the network of cell phone tow-
ers is fixed and intentional. The company that
built the towers knows exactly where they were
built and can compute the union of the coverage
discs “by hand” with ease (assuming no hardware
failure). Standard algorithms from computational
geometry can check for holes quickly, even in cases
with many nodes, so long as the node positions are
known.

The scenario that we envision differs in that
there is no localization, or means of determining rel-
ative position. This, too, is not an insurmountable
difficulty. Indeed, there is an extensive literature
on probabilistic methods for coverage problems
in networks of randomly distributed points. See,
e.g., [12]. Unfortunately, these methods have the
very strong restriction of assuming a uniform dis-
tribution of points. We would like to solve cover-
age problems in more realistic settings where one
“dumps a bucketful” of sensors in a field, forest, or
ocean and then queries the network, perhaps after
environmental influences have moved the sensors
to unknown positions (except for the fixed fence
nodes).

The obvious way to begin is to build the net-
work graph of the system. This is a combinator-
ial graph, Γ, in which vertices correspond to the
labeled nodes and (undirected) edges correspond
to pairs of nodes which are in mutual broadcast
range (within distance rb). In this graph, the
boundary ∂D is naturally identified with a par-
ticular cycle F ⊂ Γ traversing the fence nodes,
thanks to A4. The problem at hand is to determine
whether the set U given by the union of radius rc

balls at X contains the domain D. The input for
this problem is the pair of graphs (Γ,F).

Determining the topology of a union of balls
is a classical problem, and is easily solved us-
ing the notion of a Čech complex (also known as
the nerve). Given a collection of sets U = {Uα},
the Čech complex of U , C(U), is the abstract sim-
plicial complex whose k-simplices correspond to
nonempty intersections of k + 1 distinct elements
of U . Thus, the vertices are in bijective correspon-
dence with the cover sets Uα, and edges of C(U) are
in bijective correspondence with nonempty inter-
sections between two cover sets. Higher order in-
tersections generate higher dimensional simplices:
see Fig. 2.

Figure 2: The Čech complex of a cover by convex
sets captures the homotopy type of the cover.

Theorem 1 (The Čech Theorem). If the sets {Uα}
and all nonempty finite intersections are contractible,
then the union ∪αUα has the homotopy type of the Čech
complex C.

The equivalence in the Čech theorem is functo-
rial, and in particular there is a relative version
which gives us the following result.

Corollary 2. Under assumptions A1-A4 above, the
coverage area

⋃
α Uα contains the domainD if and only

if the fence cycle F is null-homologous in C(U).

This would appear to be exactly what one wants
for sensor networks. Unfortunately, it is highly
nontrivial to compute the Čech complex from the
network graph Γ. One needs data on the precise
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distances between nodes in order to generate the
higher dimensional simplices of C(U). We have
two radii to contend with: the broadcast radius rb

and the coverage radius rc. For no (physically re-
alistic) choice of these radii can the radius rc Čech
complex be derived from the radius rb network
graph: see Fig. 3 for one example of the difficulty.

Figure 3: Changing the positions of nodes can
change the topology of the radius rc cover with-
out changing the radius rb network graph.

On the other hand, with the bound on cover-
age and broadcast radii in A2, it follows that for
any triple of nodes which are in pairwise commu-
nication distance, the convex hull of these nodes
in R2 is contained in the cover U . The limiting
case, in which all three nodes are at pairwise dis-
tance rb yields an equilateral triangle in R2 which
is covered by balls at the nodes of radius rc only if
rc ≥ rb/

√
3.

This motivates the following construction. We
consider the network graph as the 1-dimensional
skeleton of a larger simplicial complex. Denote by
R the largest simplicial complex whose 1-skeleton
is the network graph. That is, for every collection
of k nodes which are pairwise within distance rb,
we assign an abstract k − 1 simplex. This is also
known as the flag complex associated to the net-
work graph.

A nearly identical construction was used by Vi-
etoris in the 1930’s in the beginnings of homology
theory [14]. It was largely forgotten and later refor-
mulated by Rips in his work on geometric groups
[9]. Given a set of pointsX = {xα} ⊂ Rn in Euclid-
ean n-space and a fixed radius ε, the Vietoris-
Rips complex of X , is the abstract simplicial com-
plex whose k-simplices correspond to unordered
(k + 1)-tuples of points in X which are pairwise
within Euclidean distance ε of each other.

For brevity, we refer to the complex R con-
structed above as the Rips complex of the net-
work, with the radius rb understood implicitly.
Unfortunately, the Rips complex does not neces-
sarily capture the topology of the union of cover

discs: we have traded accuracy for computability.
However, for the remainder of this article, we will
outline two methods for extracting coverage infor-
mation from a Rips complex, the latter of which
infers Čech data.

The homological criterion

The Rips complex does contain enough topolog-
ical information about the cover to certify cover-
age, if the cover is sufficiently robust. One might
guess that the right criterion measures H1(R),
since H1(U) collates holes in the cover. For rea-
sons to be seen, it is more natural to consider the
second homology of R relative to the fence F ⊂ R
which defines ∂D.

Theorem 3 ([4]). For a set of nodesX in a domainD ⊂
R2 satisfying Assumptions A1-A4, the sensor cover U
contains D if there exists [α] ∈ H2(R,F) such that
∂α 6= 0.

The proof of this result is straightforward with
an elementary knowledge of homology as in, say,
Chapter 2 of [10]. We present an abbreviated proof.

Proof sketch. Define a simplicial realization map
σ : R → R2 which sends vertices ofR to the nodes
X ⊂ D and sends a k-simplex of R to the (poten-
tially degenerate) k-simplex given by the convex
hull of the vertices implicated. This σ takes the
pair (R,F) to (R2, ∂D). The long exact sequences
on these two pairs yields the following commuta-
tive square:

H2(R,F)
δ∗ //

σ∗

��

H1(F)

σ∗

��
H2(R2, ∂D)

δ∗ // H1(∂D)

. (1)

The homology class σ∗δ∗[α] is the winding num-
ber of ∂α about ∂D. Observe that σ∗δ∗[α] =
σ∗[∂α] 6= 0, since, by assumption, ∂α 6= 0. By
commutativity of Eqn. (1), δ∗σ∗[α] 6= 0, and thus
σ∗[α] 6= 0.

Assume that U does not contain D and choose
p ∈ D − U . Since, by the choice of rc, every point
in σ(R) lies within U , we have that σ : (R,F) →
(R2, ∂D) factors through the pair (R2 − p, ∂D).
However, H2(R2 − p, ∂D) = 0: contradiction.

This homological criterion is sufficient but not
necessary to verify coverage. The two networks
illustrated in Fig. 4 both cover the domain com-
pletely. Yet the homological criterion holds for one
[top] and fails for the other [bottom]. The culprit in
the case of failure is a cycle of length four in H1(R).
This creates a hole in the Rips complex which is not
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Figure 4: The homological criterion holds for some
covers [top] but not for others [middle]. Failure is
caused by a 1-cycle in the Rips complex [bottom].

present in the cover. Note, however, that a small
change in the positions of the nodes implicated in
this 4-cycle can create a hole in the cover without
changing the topology of the network. No tech-
nique which relies solely upon the network topol-
ogy can determine coverage in such a case. The
homological criterion is effective for covers which
are sufficiently robust with respect to perturbing
the points while maintaining the network topol-
ogy.

Generators for power conservation

The addition of some homological algebra to the
sensor network can do more than confirm cover-
age. Indeed, it is a straightforward consequence of
the proof that the domain D lies within the sub-
cover of U generated by those nodes implicated in

the generator [α].
For a sensor network which has a highly redun-

dant cover, one can save power and bandwidth by
placing non-essential nodes in a sleep mode. The
crucial question: which nodes can be so deacti-
vated without sacrificing coverage? In a dynamic
setting, how does one cycle nodes from sleep to
wake modes without losing coverage? The an-
swer lies in choosing the appropriate “minimal”
generators for H2(R,F) which implicate as few 0-
simplices as possible. Fig. 5 gives an example of a
“small” generator yielding a more efficient cover.

Figure 5: A redundant cover [top] can be simpli-
fied [bottom] by the appropriate choice of genera-
tor for H2(R,F) [middle].

Pursuit and evasion

There are a number of related contexts in which
a homological criterion can solve a global problem.
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Consider the situation in which the nodes change
position as a function of time. For simplicity, as-
sume that the fence nodes are fixed. Such a situa-
tion might arise with sensors used to detect a forest
fire, since one could establish a ring of fixed nodes
outside the forest and allow the nodes inside the
forest to be passively locomoted by environmental
forces (e.g., animals).

It may well be the case that there are not enough
sensors to cover the domain bounded by the outer
ring. However, as the sensors change locations,
holes in the cover can open and close in a complex
fashion. The evasion problem for this scenario is
whether an unknown evader can navigate through
holes in the sensor cover without being detected.
Even if coverage is never attained, one can still
hope that any hole in which the evader begins is
‘squeezed’ out eventually.

To address this problem, one proceeds as fol-
lows. Assume that the network communication
graph is updated at certain time intervals 0 =
t1 < . . . < ti < . . . < tN = 1, producing an or-
dered sequence of communication graphs Γi, for
i = 1 . . . N . These induce a corresponding se-
quence of Rips complexes Ri. We impose the fol-
lowing assumptions:

A5: If two nodes are connected at time steps ti and
ti+1, then they remain connected for all ti ≤
t ≤ ti+1.

A6: Nodes may go off-line or come on-line, rep-
resented by deleting or inserting the nodes in
the appropriate graph Γi.

A7: Fence nodes always remain fixed and on-line.

Given this sequence of network graphs (see
Fig. 6), it is by no means obvious whether there
is a wandering hole in the coverage network. We
amalgamate the sequence of Rips complexes into
a single simplicial cell complexAR as follows. For
each i = 1, . . . , N − 1, let Ri ∩ Ri+1 denote the
largest subcomplex common to Ri and Ri+1. This
is well-defined since all vertices (and thus all sim-
plices) have unique labels. We define the amalga-
mated Rips complex to be the quotient of the disjoint
union

∐
Ri obtained by identifying Ri ∩ Ri+1 ⊂

Ri with Ri ∩Ri+1 ⊂ Ri+1 for each i. This yields a
cell complex built from simplices, though not nec-
essarily a combinatorial simplicial complex, since
multiple simplices may share the same vertex set.
Note that, given A7, the fence F is a subcomplex
of each Ri and thus is identified to a well-defined
subcomplex F ⊂ AR.

Figure 6: A time-sequence of network graphs for a
mobile network. Does this network admit a wan-
dering hole?

Theorem 4. Consider a set of mobile nodes X (t) in a
domain D ⊂ R2 satisfying A1-A7. Given any con-
tinuous curve p : [0, 1] → D, p(t) must lie in the
mobile cover U(t) for some 0 ≤ t ≤ 1 if there exists
[α] ∈ H2(AR,F) such that ∂α 6= 0.

The proof of this result is in the same spirit as
that of Theorem 3 [4].

Persistence of homology

The ease with which Theorem 3 is proved is due
chiefly to the restrictions placed on the fence nodes
in A4. It is relatively easy to extend these results
to domains which are not simply connected, to
barrier coverage problems in 3-d, to systems with
communication errors or variable radii [4], assum-
ing one has control of the fence nodes. This con-
trol over the fence nodes is manifested in the proof
of Theorem 3 in Eqn. (1), where σ∗ : H1(F) →
H1(∂D) is known to be an isomorphism.

Such control over the fence may be physically
realistic in some settings where, say, one can ex-
plicitly build a ring of sensors around a potentially
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hazardous environment and then inject sensors in
the interior of the domain. However, there are cer-
tainly settings for which a fixed ring of sensors
is not possible. A more realistic setting is one in
which nodes can sense if they are near the bound-
ary ∂D and can register themselves as fence nodes.
For example, a very coarse range-finder can detect
the presence of a wall within a set distance, with-
out necessarily knowing the distance to the wall.

We therefore consider a system of stationary
nodes which can detect the presence of the bound-
ary of the domain ∂D within some fixed fence ra-
dius rf . This choice of system leads to a collec-
tion of fence nodes Xf ⊂ X which spans a fence
subcomplex F ⊂ R, the maximal simplicial com-
plex generated by the fence nodes and edges be-
tween them. The analogous coverage criterion in
this case should be the existence of a generator
[α] ∈ H2(R,F) such that ∂α 6= 0. Unfortunately,
this is no longer sufficient for coverage. Consider
the network in Fig. 7, in which the fence subcom-
plex F has a loop which is coned off to a disc
in R. This complex has H2(R,F) 6= 0, yet the
map σ∗ : H1(F) → H1(∂D) is the zero-map, and
Eqn. (1) is no longer useful in guaranteeing a cover.
It is the existence of these fake cycles which compli-
cates matters.

Figure 7: A fake relative 2-cycle in a system with a
1-cycle in the fence complex which is nullhomolo-
gous in the boundary collar.

There is a simple homological criterion for cov-
erage in this setting where the fence nodes are not
controlled [5]: it uses persistent homology and re-
quires some additional capabilities on the part of
the sensor network. The intuition behind this use
of persistence is to note that the fake cycle of Fig. 7
could be detected as fake if the network could in-
crease the broadcast radius a bit. Were this to hap-
pen, the ‘diagonals’ of the 1-cycle in the fence sub-
complex would be filled in, killing the relative 2-
cycle.

We can generalize this one example to deal with
arbitrary fake cycles by allowing for two broadcast
radii: a “weak” and a “strong” signal. This also
has the advantage of generalizing easily to com-
pact domains D ⊂ Rn for any n ≥ 2. The precise
assumptions are as follows:

P1: Nodes broadcast their unique ID numbers.
Each node can detect the identity of any node
within radius rs via a strong signal, or via a
weak signal within a larger radius rw, where
rw ≥ rs/

√
10.

P2: Nodes have radially symmetric covering do-
mains of cover radius rc ≥ rs/

√
2.

P3: Nodes lie in a compact domain D ⊂ Rd and
can detect the presence of the boundary ∂D
within a fence detection radius rf .

P4: The restricted domain D − C is connected,
where

C =
{

x ∈ D : ‖x− ∂D‖ ≤ rf + rs/
√

2
}

.

P5: The fence detection hypersurface {x ∈ D :
‖x− ∂D‖ = rf} has internal injectivity radius
at least rs/

√
2 and external injectivity radius

at least rs.

The crucial feature is that sensors which are within
signal detection range can distinguish weak ver-
sus strong signals, yielding a binary measure of in-
range distance. The fence nodes are not controlled,
but there is a need for (somewhat severe) restric-
tions on the shape of the domain so as to exclude
pinching (P4) and wrinkling (P5).

Such a system gives rise to a pair of Rips com-
plexes, Rs and Rw, computed at the strong and
weak radii respectively. Each is outfitted with a
fence subcomplex, Fs ⊂ Rs and Fw ⊂ Rw. There
is a natural inclusion of pairs

ι : (Rs,Fs) ↪→ (Rw,Fw), (2)

since increasing the signal detection radius from rs

to rw only increases network connectivity.

Theorem 5 ([5]). For a set of nodesX in a domainD ⊂
Rd satisfying P1-P5, the sensor cover U contains the
restricted domain D − C if the induced homomorphism

ι∗ : Hd(Rs,Fs) → Hd(Rw,Fw)

is nonzero.

The key which makes this theorem work is a
squeezing theorem for the Čech complex. For a
set of points X ⊂ Rd, let Cε(X ) denote the Čech
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complex of the cover of X by balls of radius ε/2.
LetRε(X ) denote the Rips complex of the network
graph having vertices X and edges between ver-
tices within distance ε in Rd.

Theorem 6 ([5]). Fix X a set of points in Rd. Given
ε′ < ε, There is chain of inclusions

Rε′(X ) ⊂ Cε(X ) ⊂ Rε(X ) if
ε

ε′
≥

√
2d

d + 1
.

Moreover, this ratio is the smallest for which the inclu-
sions hold in general.

This is the type of result that is ideal for engi-
neering applications. The Rips complex is com-
putable, but does not give an accurate represen-
tation of the topology of the cover. The Čech com-
plex gives the exact homotopy type of the cover,
but it is not computable with the coarse metric in-
formation available. Theorem 6 tells how to infer
Čech data from Rips data.

This technique of comparison between Rips
complexes at two different scales ε, ε′ is the sim-
plest instance of a more general theory of persis-
tent homology [7, 15]. This concerns the homo-
logical properties of nested families of topological
spaces. Although the algebra and ideas involved
are classical, the subject has been heavily driven by
applications in computational geometry and non-
linear data analysis. Persistent homology is an al-
gebraic topology for the 21st century.

Theorem 5 is not the final word in homologi-
cal coverage criteria for systems with a fence ra-
dius, and is best thought of as a proof-of-concept
for homological methods. The hypotheses for this
theorem flow from the mathematical details as op-
posed to the engineering details. For topological
methods to make a serious contribution to security
and sensor networks, it is important for the math-
ematics (and mathematicians) to work in conjunc-
tion with the engineers designing the sensor net-
works.

The homological coverage criteria surveyed
here are the beginning of a larger foray of topolog-
ical ideas in the theory of sensor networks, with
plenty of work to be done. We note in particular
the need for these coverage criteria to be distrib-
uted (so that networks can compute local homol-
ogy and agree on global coverage) and asynchro-
nous (so that updates to the network are not de-
pendent on an instantaneous sampling of the net-
work).

On computational topology

“Topology! The stratosphere of human
thought! In the twenty-fourth century it

might possibly be of use to someone...” —
The First Circle, A. Solzhenitsyn

The results we review here are but one branch
of the rapidly evolving area of applied computa-
tional topology. The need to move from local to
global is one which a large spectrum of engineers
and scientists are finding to be prevalent. Very
few of the calculus-based tools with which they
are most familiar prove sufficient. Recently, it has
been demonstrated that homology theory is use-
ful for problems in data analysis and shape recon-
struction [3], computer vision [1], robotics [8], rig-
orous dynamics from experimental data [13], and
control theory [2]. See [11] for an overview of some
current applications.

Topology is especially keen at giving criteria for
when one can or cannot find a particular global
object (a homeomorphism, a nonzero section, an
isotopy, etc.): this falls under the rubric of obstruc-
tion theory. This perspective is one which has not
yet permeated the applied sciences, in which the
question, “What is possible?” is usually approached
from the top-down, “Here’s something we can build,”
as opposed to the bottom-up approach that topo-
logical methods yield. A particularly good exam-
ple of this obstruction-theoretic viewpoint in an
applied context is Farber’s use of topological com-
plexity in robot motion planning [8].

In this article, we use homology theory to give
coverage criteria for networked sensors which are
‘nearly senseless.’ It seems counterintuitive that
one can provide rigorous answers for a network
with neither localization capabilities nor distance
measurements. Most topologist will not be sur-
prised that such coarse data can be integrated into
a global picture, but most engineers will. Our ho-
mological methods have the pleasant consequence
that they may allow engineers to focus on design-
ing miniaturizing simpler sensors which are nev-
ertheless useful in a security network. Why bother
miniaturizing GPS for “smart dust” if you can
solve the problem without it? If topological meth-
ods can determine the minimal sensing needed to
solve a global problem, then such methods may
have significant impact on the way systems and
sensors are developed and deployed.



Bibliography

[1] M. Allili, K. Mischaikow, and A. Tannenbaum, “Cu-
bical homology and the topological classification of
2D and 3D imagery,” in IEEE Intl. Conf. Image Proc.,
pp. 173–176, 2001.

[2] A. Ames, “A homology theory for hybrid systems:
hybrid homology,” Lect. Notes in Computer Science
3414, pp. 86–102, 2005.

[3] G. Carlsson, A. Zomorodian, A. Collins, and L.
Guibas, “ Persistent barcodes for shapes”, Intl. J.
Shape Modeling (to appear).

[4] V. de Silva and R. Ghrist, “Coordinate-free coverage
in sensor networks with controlled boundaries via
homology,” preprint.

[5] V. de Silva and R. Ghrist, “Coverage in sensor net-
works via persistent homology,” preprint.

[6] V. de Silva, R. Ghrist, and A. Muhammad, “Blind
swarms for coverage in 2-d,” in Proc. Robotics: Sys-
tems & Science, 2005.

[7] H. Edelsbrunner, D. Letscher, and A. Zomorodian,
“Topological persistence and simplification,” Disc.
and Comp. Geom. 28 (2002), 511–533.

[8] M. Farber, “Topological complexity of motion plan-
ning” Discrete Comput. Geom. 29, no. 2, 211–221,
2003.

[9] M. Gromov, Hyperbolic groups, in Essays in Group
Theory, MSRI Publ. 8, Springer-Verlag, 1987.

[10] A. Hatcher, Algebraic Topology, Cambridge Univer-
sity Press, 2002.

[11] T. Kaczynski, K. Mischaikow, and M. Mrozek, Com-
putational Homology, Applied Mathematical Sciences
157, Springer-Verlag, 2004.

[12] H. Koskinen, “On the coverage of a random sen-
sor network in a bounded domain,” in Proceedings
of 16th ITC Specialist Seminar, pp. 11-18, 2004.

[13] K. Mischaikow, M. Mrozek, J. Reiss, and A. Szym-
czak, “Construction of symbolic dynamics from ex-
perimental time series,” Phys. Rev. Lett. 82(6), p.
1144, 1999.
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