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Abstract

A connected component of Nash equilibria is (dynamically) potentially stable if there exits

an evolutionary selection dynamics from a broad class for which the component is

asymptotically stable. A necessary condition for potential stability is that the component’s

index agrees with its Euler characteristic. Second, if the latter is nonzero, the component

contains a strategically stable set. If the Euler characteristic would be zero, the dynamics (that

justifies potential stability) could be slightly perturbed so as to remove all zeros close to the

component. Hence, any robustly potentially stable component contains equilibria that satisfy

the strongest rationalistic refinement criteria.
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1. Introduction

Nash equilibrium rests on two assumptions. One is that players maximize utility at
no cost, with absolute precision, and under complete information about the game.
The other is that expectations about the opponents are consistent, i.e., they are
correct in equilibrium. In the light of both everyday experience and experimental
evidence these assumptions appear controversial.

Therefore, theorists have turned to justifications for noncooperative solutions that
mitigate these assumptions. One such approach has already been suggested by Nash
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[42, pp. 21–23]. It has become known as the ‘‘mass-action’’ interpretation of Nash
equilibrium and refers to a quasi-biological setup (as initiated in biology by Maynard
Smith and Price [36], Maynard Smith [35], and Taylor and Jonker [50]). Players are
replaced by large populations, one for each player position, of boundedly rational
individuals with little or no information about the game. Period after period agents
are randomly drawn to interact. Individual agents come ‘‘programmed’’ to use a
particular strategy, but occasionally they ‘‘wake up’’ and revise their routines.
Strategy revisions may be guided by imitation, myopic best replies, learning, or
experimentation. In the aggregate this yields a dynamic process on the population
distributions over strategies available to the various player positions. (The literature
on such models is too large to be reviewed here; see e.g. the survey by Mailath [34],
or the textbooks by Hofbauer and Sigmund [27], Weibull [56], Vega-Redondo [54],
Samuelson [47], and Fudenberg and Levine [19].)

Evolutionary models combine two processes. A selection process favors some
strategies over others. The variety of strategies on which selection operates is created
by a mutation process. Modelling approaches can be distinguished by which of these
two processes they emphasize. Stochastic models of finite, but large populations
focus on the role of mutations (an approach pioneered by Foster and Young [16],
Fudenberg and Harris [18], Young [59,60], and Kandori et al. [30]). They generate
predictions in terms of stationary long run distributions (on appropriately specified
states). Deterministic continuous time dynamics emphasize the selection process and
take account of mutations by way of stability analysis (see e.g. [6,17,27,41,46,48,50]).
Predictions are obtained in terms of dynamically stable (mixed) strategy combina-
tions or sets thereof.

Evolutionary predictions often, but not always, support the rationalistic paradigm
of Nash equilibrium. In many cases evolutionary dynamics even select among Nash
equilibria. This has raised the issue under which conditions the predictions from
evolutionary dynamics will agree or disagree with noncooperative solutions.

Focussing on (deterministic continuous time) selection processes, it has been
shown for the ‘‘replicator dynamics’’ that either convergence (of an interior
trajectory) or (Lyapunov) stability imply Nash equilibrium ([6,41])—a result that
generalizes to a larger class of selection dynamics (see [17,41,46,48]). Swinkels [49]
shows that dynamic asymptotic stability of a set of Nash equilibria, in a selection
dynamics from a wide class, implies (together with a topological condition) that this
set meets certain refinement criteria. Ritzberger and Weibull [46] give a necessary and
sufficient condition in terms of the data of the game, ‘‘closure under better replies’’,
for (the face spanned by) a product of pure strategy sets to be asymptotically stable
in a large class of selection dynamics. Balkenborg and Schlag [1] show that every
(connected) asymptotically stable set of rest points, that contains a pure strategy
combination, is a ‘‘strict equilibrium set’’, viz. a set of Nash equilibria such that every
player’s strategy can (unilaterally) be replaced by an alternative best reply without
leaving the set. For two-player games and for convex strict equilibrium sets they also
show the converse.

Many of these results concern sets of strategy combinations rather than points. In
a dynamic model set-valuedness is easier to interpret than in a rationalistic approach.
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Dynamic stability simply predicts that, once in the set, the population state will
remain in the set, with no particular prescription about which of its elements will
obtain at any point in time.

This suggests that the appropriate objects for dynamic considerations may be
connected components of Nash equilibria. The set of all Nash equilibria for any finite
normal form game consists of finitely many such connected and closed components
(see [32]). For generic extensive form games the outcomes are even constant across
equilibria in the same component (see [33, Appendix A3]).

But that an evolutionary process supports Nash equilibrium requires conditions
on the dynamics. And this represents a major difficulty, because often the precise
form of the dynamics is unknown or only given by certain coarse properties. A goal
of research, therefore, is to find conditions, that apply to a class of selection
dynamics as broad as possible, and still allow conclusions on dynamic stability
properties. Ideally, one would like to infer directly from the data of the game
whether certain components of Nash equilibria can be dynamically stable for at least
some from a wide class of selection dynamics.

1.1. Results

This paper combines a focus on Nash equilibrium components with minimal
conditions on the selection dynamics. The latter is modelled by a deterministic
evolutionary selection dynamics in continuous time. In the light of recent
approximation results [2,4,7,8,44], however, the conclusions obtained also have
implication for some stochastic models of mutation processes.

More precisely, selection dynamics on finite normal form games are considered for
which all Nash equilibria are rest points, that do not point outwards at the boundary
of the strategy space, that are Lipschitz continuous in mixed strategy combinations,
and that satisfy a mild payoff consistency condition. These are truly minimal
conditions. All classes of (deterministic continuous time) selection dynamics studied
so far meet these criteria.

The first result of this paper gives a necessary condition for a Nash equilibrium
component (or, more generally, a connected set of rest points) to be asymptotically
stable in some dynamics from this class. And the second identifies a strong
rationalistic implication of dynamic stability.

The necessary condition is as follows. If there exists such a selection dynamics for
which a given Nash equilibrium component is asymptotically stable, the component
is called potentially stable and we show that its index (see [45]) equals its Euler

characteristic. Thus, for a component to be asymptotically stable in some selection
dynamics it is necessary that the topological structure of the component, as described
by the Euler characteristic, agrees with the index.

This condition depends purely on the data of the game. Indeed it can be shown
(see [13,14]) that the index of a Nash equilibrium component is independent of the
particular vector field used to compute it. It can be expressed as the local degree of
the projection mapping from the graph of the Nash equilibrium correspondence to
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the space of games. By ‘‘local degree’’ we mean that the relevant projection is from a
neighborhood of the component in the graph to a neighborhood of the game.

The first result is then used to identify a connection to the strongest rationalistic
solution concept. Under the mild condition that the Euler characteristic of the Nash
equilibrium component is nonzero, potential stability implies that the component
contains a strategically stable set in the sense of Mertens ([39,40], henceforth an
M-stable set).

This generalizes the result by Swinkels [49] in two respects. First, the topological
hypothesis of a nonzero Euler characteristic is weaker than the existence of a
neighborhood (contained in the component’s basin of attraction) that is home-
omorphic to the strategy space—which is what Swinkels assumes. Second, Swinkels
deduces that the component contains a hyperstable set (see [32]), while we obtain
strategic stability in its strongest form. (There are, of course, other notions of
strategic stability, for instance by Hillas [24], Vermeulen [55], or ‘‘homotopy-
stability’’ by Mertens [39]. But it is known (see [25]) that M-stability is the strongest
notion, i.e., it implies all the others.)

The added condition of a nonzero Euler characteristic in our second result also has
evolutionary significance. Call a Nash equilibrium component robustly potentially

stable if (it is potentially stable and) sufficiently small perturbations of the dynamics
(that justifies potential stability) still have zeros nearby. It can be shown that a
component with zero Euler characteristic cannot be robustly potentially stable.
Hence, the second result says that any robustly potentially stable component
contains an M-stable set.

1.2. Applications

There are a number of applications of these results. First, consider generic normal
form games for which all equilibria are regular (see [21,45,52]). The index of a regular
equilibrium can only be þ1 or �1: Moreover, if there are m equilibria with index þ1;
there must be at least m � 1 equilibria with index �1 (see [20,45]). Since the Euler
characteristic of a point is þ1; no equilibrium with index �1 can be asymptotically
stable in any selection dynamics. Hence, in many games quite a number of equilibria
are ruled out by evolutionary considerations. This is despite the fact that regular
equilibria meet all known refinement criteria.

Second, if for general games attention is restricted to convex (or merely
contractible) Nash equilibrium components, then the present result identifies those
(contractible) components that can be asymptotically stable: They must have index
þ1; because a contractible set has Euler characteristic þ1: This represents a
generalization of the stability criterion for regular rest points.

Consider, for instance, the widely studied class of ‘‘signaling games’’. Those are
two-player games, where first player 1 learns her type and sends a message; then
player 2 learns the message, but not the type, and chooses an action. For generic
such games every agent’s part of an equilibrium component consists either of a
singleton (if the agent is reached) or of a simplex (if the agent is not reached) (see [52,
p. 272]). Since the mapping from behavior to mixed strategies is an embedding, every
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component is contractible in mixed strategy combinations. Therefore, in such games
it suffices to determine the index of a component to test for potential stability: only
components with index þ1 qualify. In the well-known ‘‘beer-quiche game’’ (see [10]),
for example, only the component, that is generally viewed as more intuitive (and has
index þ1), can be asymptotically stable in some selection dynamics (because the
other component has index 0).

Third, the present approach reveals that there are games in which dynamic
stability will not support Nash equilibrium. Examples can be constructed (see
Examples 1 and 3 in Section 4) of games, that do not have any Nash equilibrium
component for which the Euler characteristic agrees with the index. For such games
no component will be asymptotically stable in any selection dynamics.

Fourth, the present result yields a straightforward evolutionary analysis of
‘‘forward induction’’ à la van Damme [53] and Hauk and Hurkens [23] (see Example
1 in Section 4). Consider a two-player game, where player 1 first chooses between an
outside option and a simultaneous move subgame, with a single equilibrium that
yields 1 more than the outside option. If the forward induction equilibrium in the
subgame has index þ1; the component, where player 1 takes the outside option, fails
potential stability. If it has index �1; the game has no potentially stable component.
In the first case evolution unambiguously supports forward induction, in the second
it remains agnostic. This reproduces results by Hauk and Hurkens [23].

Fifth, the role of assumptions explicitly or implicitly used in other models is
clarified. As mentioned, Swinkels [49] uses the topological condition that the
asymptotically stable set has a basin of attraction which contains a neighborhood
homeomorphic to the space of (mixed) strategy combinations. This is assuming a
version of contractibility. Ritzberger and Weibull [46] consider faces, that are convex
by construction, and, thus, have Euler characteristic þ1: Balkenborg and Schlag [1]
need convexity of the strict equilibrium set to establish asymptotic stability. (A
convex strict equilibrium set is either a strict equilibrium or a face that consists
entirely of Nash equilibria.) All these assumptions restrict the topological structure
of the set under scrutiny. In view of the present result this is necessary to enable
asymptotic stability.

The result can also be used to clarify an ambiguity in Corollary 4 of Ritzberger
and Weibull [46]. They conclude from asymptotic stability of a face (in a ‘‘sign-
preserving’’ dynamics) that it contains an essential component of Nash equilibria
and a hyperstable set. But an essential component need not contain a hyperstable set
(see [23] for an example). Still, their statement is correct for the following reason.

Given a selection dynamics in which a face is asymptotically stable, modify the
vector field such that the face consists entirely of zeros, by multiplying with the
(product of the weights of all) strategies that are not used in the face. Since (on
the interior) this is a reparameterization of time, it only changes the velocity, but not
the orbits implied by the vector field. Hence, the face remains asymptotically stable.
Since a face is convex by construction, our first result implies that its index must
equal the Euler characteristic þ1: Since the index sum of Nash equilibrium
components contained in the face is þ1; the asymptotically stable face must contain
a Nash equilibrium component with nonzero index. But a Nash equilibrium
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component with nonzero index does contain a hyperstable set (and, in fact, an M-
stable set).

Furthermore, our second result lends evolutionary support to ‘‘backwards
induction’’, by the same reasoning as in Swinkels [49]. Consider any (finite)
extensive form game. By the second result, no component, that fails to contain a
sequential equilibrium (see [33]), can be robustly potentially stable. Hence, if at all,
evolution favors backwards induction.

In particular, for generic perfect information extensive form games Kuhn’s
algorithm identifies a unique subgame perfect equilibrium. Since generically
outcomes are constant across each component, such a game has a unique Nash
equilibrium component that can be robustly potentially stable: The backwards
induction component. This observation parallels results by Cressman and Schlag [11]
and Hart [22].

Yet, the second result not only shows that robust asymptotic stability in some
dynamics supports strategic stability. It can also be used in a purely static
framework. In some games it is computationally easier to construct a dynamics for
which a component is asymptotically stable than to verify M-stability. Since the
Euler characteristic is also easy to compute, robust potential stability can be used to
identify M-stable sets.

The rest of the paper is organized as follows. Section 2 describes evolutionary
selection dynamics on games and briefly reviews index theory. Section 3 contains the
two main results. Section 4 considers examples, and Section 5 concludes.

2. The model

The analysis will focus on two objects. First, f will be a vector field on a smooth
orientable K-dimensional manifold Y; i.e., a Lipschitz continuous function from Y
to the tangent space of Y: Second, CDY will be a compact connected component of
zeros for f : To avoid pathologies, it is assumed that C is a semi-algebraic set and,
therefore, homeomorphic to a polyhedron.

The results apply to this general set-up. That the objects from evolutionary game
dynamics fit this general framework, is shown next.

2.1. Game dynamics

Consider a finite n-player normal form game G ¼ ðS; uÞ; where S ¼ �n
i¼1Si is the

product of the n sets Si of pure strategies for players i ¼ 1;y; n; each with a finite
number Ki ¼ jSij41 of elements, and u ¼ ðu1;y; unÞ : S-Rn is the payoff function.

For each player i number pure strategies from 1 to Ki; so Si ¼ fs
j

i g
Ki

j¼1: Let

Si ¼ siARKi�1
þ 1X

XKi�1

j¼1

s j
i

�����
( )

ð1Þ
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denote player i’s mixed strategy set, where s j
i ¼ siðs j

i ÞX0 for all j ¼ 1;y;Ki � 1

and 1 �
PKi�1

j¼1 s j
i ¼ siðsKi

i ÞX0 for all i ¼ 1;y; n: And let S ¼ �n
i¼1Si be the space of

mixed strategy combinations.
An evolutionary game dynamics is given by a vector field on the space of mixed

strategy combinations. Two minimal technical assumptions, invariably adopted on
such dynamics, are Lipschitz continuity in mixed strategy combinations and that the
vector field does not point outwards at the boundary of the strategy space. The first
ensures existence of a unique solution to the associated (system of ) differential
equation(s) for any initial condition by the Picard–Lindelöf theorem. The second
guarantees that the strategy space is forward invariant.

A minor technical difficulty is that the space of mixed strategy combinations is not
a smooth manifold. It is locally diffeomorphic to an orthant of a Euclidean space,
but not to a half-space. Yet, it will now be shown that any such vector field can be
continuously extended to a manifold with boundary that properly contains the
strategy space such that no zeros appear outside the space of mixed strategy
combinations.

Choose a convex manifold Y with boundary @Y such that SDðY\@YÞ: This can
always be done.1 For each player i and each sAY define xiðsiÞ ¼ arg minxASi

jjx �
sijj: This function is the identity on Si; satisfies xiðsiÞA@Si for all sieSi; and is such
that xiðsiÞ � si is perpendicular to the boundary @Si of Si wherever possible. Define
x : Y-S by xðsÞ ¼ ðx1ðs1Þ;y; xnðsnÞÞ:

Given a vector field f̂ on S; it is extended to Y by

f ðsÞ ¼ f̂ðxðsÞÞ þ xðsÞ � s: ð2Þ

If there would be some sAY\S such that f ðsÞ ¼ 0; then

f̂ðxðsÞÞ � ðxðsÞ � sÞ þ jjxðsÞ � sjj2 ¼ 0

would imply that f̂ðxðsÞÞ � ðs� xðsÞÞ40

because seS implies xðsÞas: But the latter contradicts the assumption that f̂ does
not point outwards at the boundary @S of S: Hence, the extension f has no zeros
outside of S: Moreover, since at the boundary @Y of Y the extended vector field f is
the sum of a vector field that does not point outwards and one that points inwards, it
is inward pointing at @Y:

The technical assumptions of Lipschitz continuity and that the vector field does
not point outwards at the boundary of S do not provide any link to the payoffs for
the game. The latter requires an extra condition. For the present purpose, the
weakest form of payoff consistency will do.

Definition 1. A payoff consistent selection dynamics is a Lipschitz continuous vector
field f ¼ ð f1;y; fnÞ on S; that does not point outwards along the boundary of S;
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and satisfies for all i ¼ 1;y; n and all sAS

fiðsÞ � rsi
UiðsÞX0; ð3Þ

where rsi
Ui denotes the gradient of the extension Ui of the payoff function ui to

mixed strategy combinations with respect to player i’s strategy siASi:

Condition (3) is a mild condition, satisfied by all classes of evolutionary selection
dynamics studied so far in the literature. It, roughly, says that unilaterally for each
player position/population i the vector field points in the direction of nondecreasing
average population payoffs. Swinkels [49] calls such vector fields ‘‘myopic
adjustment dynamics’’ if every Nash equilibrium is a zero.

The literature has focussed on two subclasses thereof, ‘‘payoff monotonic’’ and
‘‘payoff positive’’ (or ‘‘sign-preserving’’) selection dynamics. A regular selection

dynamics is a vector field f on S such that growth rate functions g
j

i satisfying

f
j

i ðsÞ ¼ g
j

i ðsÞs
j

i for all sAS; all j ¼ 1;y;Ki; and all i ¼ 1;y; n; can be chosen

satisfying Lipschitz continuity, where f Ki

i ðsÞ ¼ �
PKi�1

j¼1 f
j

i ðsÞ and sKi

i ¼
1 �

PKi�1
j¼1 s j

i for all i ¼ 1;y; n: A regular selection dynamics is payoff monotonic

if for all sAS; all i ¼ 1;y; n; and all s
j

i ; s h
i ASi

g
j

i ðsÞ4g h
i ðsÞ3Uiðs�i; s

j
i Þ4Uiðs�i; s h

i Þ ð4Þ

(see [56, Definition 5.5]; the same property appears under different names in
[17,41,48]). A regular selection dynamics is payoff positive if for all sAS; all i ¼
1;y; n; and all s

j
i ASi

signðg j
i ðsÞÞ ¼ signðUiðs�i; s

j
i Þ � UiðsÞÞ ð5Þ

(see [56, Definition 5.6]; see also [41,46]). These two classes are distinct, but overlap.
Their intersection contains the ‘‘payoff-linear’’ [56, Definition 5.7] or ‘‘aggregate
monotonic’’ [48] selection dynamics, of which the replicator dynamics is the most
prominent example.

Remark 1. It is easily seen that every payoff monotonic or payoff positive selection
dynamics is payoff consistent. For, let f be the vector field of a payoff monotonic
selection dynamics and g the associated growth rate function. Choose a player
position i and a strategy combination sAS and assume without loss of generality
that

g1
i ðsÞXg2

i ðsÞX?XgKi

i ðsÞ:

There are two possibilities: Either f
j

i ðsÞ ¼ 0 for all j ¼ 1;y;Ki or there is joKi such

that f
j

i ðsÞ40: In the first case fiðsÞ � rsi
UiðsÞ ¼ 0 verifies payoff consistency (3).

In the second case there exists l with Ki � 1Xl such that f
j

i ðsÞ40Xf h
i ðsÞ for
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all hXl4j: Hence,

fiðsÞ � rsi
UiðsÞ ¼

XKi�1

j¼1

f
j

i ðsÞ½Uiðs�i; s
j

i Þ � Uiðs�i; sKi

i Þ�

¼
Xl�1

j¼1

g
j

i ðsÞs
j

i ½Uiðs�i; s
j

i Þ � Uiðs�i; sl
iÞ�

þ
XKi

h¼l

g h
i ðsÞs h

i ½Uiðs�i; s h
i Þ � Uiðs�i; sl

iÞ�X0;

verifies (3).
Second, let f be the vector field associated with a payoff positive selection

dynamics. Then, for all i ¼ 1;y; n

fiðsÞ � rsi
UiðsÞ ¼

XKi�1

j¼1

f
j

i ðsÞ½Uiðs�i; s
j

i Þ � Uiðs�i; sKi

i Þ�

¼
XKi

j¼1

g
j

i ðsÞs
j

i ½Uiðs�i; s
j

i Þ � UiðsÞ�X0

verifies payoff consistency (3).

Since Remark 1 shows that the two most prominent classes of dynamics are
covered, adopting payoff consistency (3) represents a sufficiently broad class of
dynamics.

When dynamics on games are considered, the component CCY of zeros will be
assumed to be a connected component of Nash equilibria. This is done to exhibit the
relation between the noncooperative concept of the index of a Nash equilibrium

component with evolutionary stability properties.

Definition 2. A Nash dynamics is a payoff consistent selection dynamics such that
f ðsÞ ¼ 0 if and only if sAS is a Nash equilibrium. The set of all Nash dynamics is
denoted F:

Many selection dynamics on games, like the replicator dynamics, for instance,
allow rest points, that are not Nash equilibria. There are two reactions to this. One is
to let C simply be a connected set of zeros for the vector field, assign an index to C

the same way it would be done for Nash equilibrium components, and interpret the
first result as relating this index to the Euler characteristic of C: The other approach
is to slightly perturb the vector field such that its zeros coincide with the Nash
equilibria of the game. This has the advantage that the noncooperative concept of
Nash equilibrium gets one-to-one associated with the dynamic property of being a
rest point.
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Remark 2. Effectively, every payoff consistent selection dynamics is homotopic to a
Nash dynamics, i.e., for every payoff consistent selection dynamics f for which all

Nash equilibria are zeros there is a continuous function G : S� ½0; 1�-RK such that
gl � Gð:; lÞ is a Nash dynamics for all l40 and g0 ¼ f :

To see this, let f be a payoff consistent vector field on Y such that f �1ð0ÞDS and

all Nash equilibria of the game belong to f �1ð0Þ (but there may be more zeros). Let

b ¼ ðb1;y; bnÞ : S-RK be a smoothed version of the dynamics introduced by
Brown and von Neumann [9], i.e., for all i ¼ 1;y; n and sAS define

b
j

i ðsÞ ¼
jðUiðs�i; s

j
i Þ � UiðsÞÞ � s j

i

PKi

h¼1 jðUiðs�i; s h
i Þ � UiðsÞÞ

1 þ
PKi

h¼1

jðUiðs�i; s h
i Þ � UiðsÞÞ

;

for all j ¼ 1;y;Ki � 1; where jðyÞ ¼ 0 for all yp0 and jðyÞ ¼ e�1=y for all y40:
Since b is based on the Nash mapping [43], bðsÞ ¼ 0 if and only if s is a Nash

equilibrium, hence, bAF and b�1ð0ÞDf �1ð0Þ: Therefore, a family of vector fields gl

for lA½0; 1� can be defined by gl ¼ f þ lb (with gl extended to Y as in (2)), such that
g0 ¼ f and all zeros of gl for l40 are Nash equilibria.

To see the latter, first note that, by (2), g �1
l ð0ÞDS; for all lA½0; 1�: Suppose there is

%sAg �1
l ð0Þ that is not a Nash equilibrium for l40: Observe that b is payoff

consistent, (3), and biðsÞ � rsi
UiðsÞ ¼ 0 for all i if and only if s is a Nash

equilibrium. Then, glð %sÞ ¼ 0 implies for all i

fið %sÞ � rsi
Uið %sÞ þ lbið %sÞ � rsi

Uið %sÞ ¼ 0

so that fið %sÞ � rsi
Uið %sÞo0; in contradiction to the assumption that f is payoff

consistent, (3). Hence, all zeros for gl with l40 must be Nash equilibria.
Moreover, the Jacobian Dsb of the vector field b at any zero (i.e. at any Nash

equilibrium) is identically zero. Therefore, in first-order approximation the behavior
of gl around equilibria is locally the same as the behavior of f ; irrespective of the
homotopy parameter l; i.e., Dsglð %sÞ ¼ Ds f ð %sÞ whenever %sAS is a Nash
equilibrium, for all lA½0; 1�:2

While focussing on Nash dynamics narrows the allowed class of dynamics,
Remark 2 shows that the loss of generality is small. Therefore, the component C of
zeros will henceforth be taken to be a connected component of Nash equilibria, i.e.,
we focus on Nash dynamics fAF: Still, the two core results do not depend on this.
Theorem 1 applies to any suitable vector field and Theorem 2 applies to arbitrary
payoff consistent dynamics (see Corollary 1).

For a vector field fAF on Y; its associated flow is denoted FtðsÞ for all tAR;
where s ¼ FoðsÞ is the initial condition. A set BDY is invariant (resp. forward
invariant) if FtðsÞAB for all sAB and all tAR (resp. all tX0). A closed invariant set
BDY is (Lyapunov) stable if for every neighborhood V 0

B of B there is a
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neighborhood V 00
B of B such that FtðsÞAV 0

B for all sAV 00
B-Y and all tX0: It is an

attractor if there is a neighborhood VB of B such that minsABjjs� FtðsoÞjj-t-þN0
for all soAVB-Y: Finally, it is asymptotically stable if it is stable and an attractor.

An invariant, stable, or asymptotically stable set need not be a set of rest points. A
set of rest points, on the other hand, is always closed and invariant. Here we focus on
stability properties of sets of rest points or, more precisely, of connected components
of Nash equilibria. The key concepts are as follows.

Definition 3. (a) A connected component C of Nash equilibria for G is (dynamically)
potentially stable if there exists a Nash dynamics fAF such that C is asymptotically
stable for f :

(b) It is robustly potentially stable if it is potentially stable and any sufficiently

small (in the CN norm) perturbation f̃ of f has zeros close to C in Y (not necessarily
in S).3

The strengthening of potential to robust potential stability is again motivated by
the desire to eliminate a dependence on the precise specification of the dynamics.
After all, perturbations in the form of ‘‘drift’’ have been a concern in the literature on
evolution (see [3]).

2.2. Index theory

Next, we turn to a classification of Nash equilibrium components. If CCY is a
Nash equilibrium component, there exists a relatively compact neighborhood V of C

that isolates C; i.e. such that V-f �1ð0Þ ¼ C for any fAF: This isolating
neighborhood can be used to assign an index to the component (see [45]).

If C happens to be a regular zero, i.e. a point C ¼ f %sg; where the Jacobian Ds f ð %sÞ
is nonsingular, its index is given by

indf ð %sÞ ¼ signðj � Ds f ð %sÞjÞ; ð6Þ

where j � Ds f j denotes the determinant of (�1 times) the Jacobian Ds f evaluated at

%s: For an arbitrary component C; if f̃ is a (sufficiently small) perturbation of f that is
equal to f outside of V and such that all of its zeros in V are regular, then

IndðCÞ ¼
X

sAf̃ �1ð0Þ-V

indf̃ ðsÞ ð7Þ

provides an elementary definition of the index. Such ‘‘regular’’ perturbations f̃ of f

can be shown to exist by Sard’s theorem.
The subscript on IndðCÞ has been dropped in (7), because it can be shown that it

does not matter which particular vector field f is used to compute the index, as long
as f is Lipschitz continuous in strategies, continuous in payoffs, does not point
outwards at the boundary, and all Nash equilibria are zeros (see [13,14]). Moreover,
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3 If in a prisoners’ dilemma the vector field is perturbed by adding a small positive constant to all

coordinates, the zero approximating the dominant strategy equilibrium will indeed lie outside of S:
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due to the Poincaré–Hopf theorem, the index sum across all Nash equilibrium
components is a constant, the Euler characteristic þ1 of S:

It can be shown that the index of a component agrees with the local degree of the
projection mapping from the graph of the Nash equilibrium correspondence to the
space of games (see [12,13]). Hence, the index provides a classification of Nash
equilibrium components, that depends only on the (local) geometry of the
equilibrium correspondence. Still, it will be shown that the index—combined with
information on the topological structure of the component—also carries potential
information about dynamic stability.

The required extra information, the Euler characteristic, is also easy to compute.
Since every component C of Nash equilibria is a semi-algebraic set (see [5]), it admits
a finite triangulation. (That is, there exists a homeomorphism from C to a
polyhedron.) If rk denotes the number of its ‘‘faces’’ (i.e. the simplices of the
polyhedron) with dimension k; the Euler characteristic is given by the alternating
sum

wðCÞ ¼
XK

k¼0

ð�1Þk
rk: ð8Þ

The Euler characteristic is a topological invariant and, therefore, does not depend on
the choice of the triangulation.

3. Potential stability

The first result says that for a component to be potentially stable its index must
agree with its Euler characteristic. To develop some intuition, consider first the
normal form generic case of a regular equilibrium. Its index is either þ1 or �1: If it is
asymptotically stable for some fAF; then all eigenvalues of the Jacobian at the
equilibrium must have negative real parts. Hence, its index must be þ1; which is the
Euler characteristic of a point.

Yet, it is well known that regular equilibria are the exception rather than the rule.
Since any nontrivial extensive form gives rise to payoff ties, components of Nash
equilibria tend to be higher-dimensional in general.

In the general case the theorem would be more transparent to prove, if it could be
assumed that C admits an invariant neighborhood VC that is a manifold with
boundary and deformation retracts onto C: The logic of the proof would then, very
intuitively, run as follows. Since VC would be invariant, an appropriate perturbation
of f would give a vector field on VC that points inwards at the boundary @VC and
has only finitely many regular zeros. By the Poincaré–Hopf theorem, the index sum
across these zeros would then equal the Euler characteristic of VC which must agree
with wðCÞ; because C is a deformation retract of VC : By definition, this would then
agree with IndðCÞ:

For the case, where C is a smooth manifold, the existence of such an invariant
open (tubular) neighborhood is shown by Wilson (Theorem 3.4 of [58], using
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techniques developed in [57]).4 We believe that it is possible to adapt his argument to
a rigorous proof in the general case, where C is not a manifold, and to modify the
neighborhood such that it becomes a manifold with boundary. But, because this
would require a lengthy technical digression, we instead prefer to give two self-
contained proofs in the next section.

For the moment, the statement of the Theorem is presented.5 Note that the
Theorem does not require the vector field f to be a Nash dynamics, nor a payoff
consistent dynamics. Its assumptions are much more general indeed: Let f be a
Lipschitz continuous vector field on a smooth orientable K-dimensional manifold Y
and CDf �1ð0ÞDY a compact connected semi-algebraic set of zeros for f : Denote by
Ft the flow associated with f for all tAR and by wðCÞ the Euler characteristic of C:

Theorem 1. If C is asymptotically stable for Ft; then wðCÞ ¼ IndðCÞ:

For evolutionary selection dynamics on games Theorem 1 means that, if a
component of Nash equilibria is potentially stable, then its index equals its Euler
characteristic. The converse of Theorem 1 is not true. Example 2 in Section 4
illustrates this.

In the following subsection Theorem 1 is proved. Readers, who are not primarily
interested in the details of the proof, may skip the subsection and return to it later.

3.1. Proof of Theorem 1

Two conceptually equivalent proofs are provided. The first assumes familiarity
with an axiomatic approach to index theory, as described by McLennan [37].6 The
second requires some knowledge of elementary homology theory. But the two proofs
differ only in the last step. Therefore, we start with their common part, showing that
the vector field around C can be homotopically deformed into a retraction onto C:

Let C be the component of zeros for f and denote by FtðsÞ the associated flow at
time t for the initial condition sAY: Choose open neighborhoods V1+V2+V3 of C

with compact closures such that

(a) C is a deformation retract of V3; i.e., there is a family of maps rl : V3-V3 for
lA½0; 1� such that r0 is the identity, r1 : V3-C; and the restriction rljC is the
identity for all lA½0; 1�;

(b) the closure %V3 of V3 is a smooth manifold with boundary;
(c) FtðsÞAV1 for all sAV2 and all tX0;
(d) there is T40 such that FtðsÞAV3 for all s in the closure %V2 of V2 and all tXT ;
(e) there is a constant d40 such that jjf ðsÞjjXd for all sAV1 \V3:
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4 We are grateful to an anonymous referee for pointing out this reference.
5 The following Theorem is the result quoted in the CORE Working Paper version of Demichelis and

Germano [12] (CORE DP 2000/17, Corollary 2).
6 We are grateful to an anonymous referee for pointing out this reference and suggesting a simplification

in the proof.
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That V1 and V2 can be chosen such that (c) holds, follows from Lyapunov stability
of C: That V3 can be chosen such that (a) and (b) hold, follows from the assumption
that f is semi-algebraic. That (d) holds, follows from C being an attractor (as defined

at the end of Section 2.1): for every sA %V2 there is tsX0 such that FtðsÞAV3 for all

t4ts; because %V2 is compact, supsA %V2
ts is finite and yields T : That V1 and V3 can be

chosen such that (e) holds, follows from the fact that V1 can be chosen inside an
isolating compact neighborhood of C that contains no other zeros than those in C:

Let V ¼ ,tX0 FtðV2Þ ¼ ,tX0 ,sAV2
FtðsÞ; %V its closure, and @V ¼ %V \V : By

construction, V1+ %V+V3*C; Ftð %V ÞD %V for all tX0; and Ftð %V ÞDV3 for all tXT :

(Note that %V is not necessarily a smooth manifold with boundary.) Because

@V-V3 ¼ |; we have f j@Va0: Moreover, Ft on %V \V3 has no periodic orbits (i.e.,

FtðsÞas if ta0 for all sA %V \V3), because otherwise FT ð %V Þ could not be contained in

V3; as implied by (d). Now, let R : %V-C be defined by RðsÞ ¼ r1ðFTðsÞÞ for all sA %V:

Lemma 1. There is a homotopy h : %V � ½0; 1�-C between hðs; 0Þ ¼ f ðsÞ and hðs; 1Þ ¼
RðsÞ � s such that hðs; lÞa0 for all sA %V \V3 and all lA½0; 1�:

Proof. First, f is clearly homotopic to ef for e40: Second, ef is homotopic to
ðFe � idÞ for sufficiently small e40: by Lipschitz continuity, there is a constant g
such that ge2

Xjjef ðsÞ � ðFeðsÞ � sÞjj; choosing e small enough such that ge2ode=2
implies that the segment between ef ðsÞ and FeðsÞ � s does not contain a zero as long

as sA %V \V3; by (e).
Third, ðFe � idÞ is homotopic to ðFT � idÞ via ðFt � idÞ: Because there are no

periodic orbits in %V \V3; we conclude FtðsÞ � sa0 for all sA %V \V3: Fourth, ðFT �
idÞ is homotopic to ðR � idÞ via rl3FT � id: Because rlðFT ðsÞÞAV3 for all sA %V \V3; it

follows that rlðFTðsÞÞ � sa0 for all sA %V \V3 and all lA½0; 1�: Glueing these
homotopies together verifies the statement of the lemma. &

This first step shows that the vector field around C can be homotopically
deformed into a retraction onto C: It remains to show in the second step that the
index of this retraction equals the Euler characteristic of C: It is for this second and
last step that two versions are being offered.

We begin with the approach by axiomatic index theory. The homotopy identified

in Lemma 1 gives a homotopy from f þ id to R with no fixed points on @V ¼
%V \VD %V \V3: Now, given an open subset V of a topological space X and a map

V-X or an upper hemi-continuous correspondence M : %V-X with no fixed points
in @V ; a Lefschetz fixed point index LðM;VÞ is defined in McLennan ([37, p. 7]).

There it is shown in Section 2.3 that, if V is as here, X ¼ RK ; and M ¼ f þ id; then
this definition agrees with the elementary definition of the index given in (7), i.e.
Lð f þ id;VÞ ¼ IndðCÞ:

Now apply the six axioms given by McLennan [37, p. 17]. First, by the homotopy
between f and ðR � idÞ identified in Lemma 1, axiom I3 implies Lð f þ id;VÞ ¼
LðR;VÞ: Second, if i denotes the inclusion i : C+V ; one has R3i ¼ idC and i3R ¼ R;
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therefore, by commutativity (axiom I4),

LðR;VÞ ¼ Lði3R;VÞ ¼ LðR3i;CÞ ¼ Lðid;CÞ:

Now, Lðid;CÞ is McLennan’s definition of the Euler characteristic of C (see [37,
Definition 3.2, p. 32]). On p. 31 of McLennan [37] it is claimed that his definition of a

Lefschetz number agrees with the standard one, viz. Lð f Þ ¼
P

ið�1Þi trace f�jHi

(where f� denotes the homomorphism on homology groups Hi induced by f ); so, the

Euler characteristic defined by McLennan [37, p. 32] will be
P

ið�1Þidim HiðCÞ: That

the latter agrees with the elementary definition given in (8) is well known. It follows
that Lð f þ id;VÞ ¼ wðCÞ which completes the first variant of the proof.

Next, we give a direct proof in terms of homology. It is well known that the index
can be defined as the integer Indf ðCÞ that solves f�ðaÞ ¼ Indf ðCÞb; where

f� : ZCHKðY;Y\CÞ-HKðRK ;RK
\f0gÞCZ is the homomorphism induced on

relative homology by f ; and aAHKðY;Y\CÞ and bAHKðRK ;RK
\f0gÞ are the

respective orientation classes (and Z denotes the integers). The inclusion
ðY;Y\V3Þ+ðY;Y\CÞ is a homotopy equivalence, so the groups HKðY;Y\V3Þ and
HKðY;Y\CÞ are isomorphic. Therefore, one can think of a as an element in
HKðY;Y\V3Þ: Now, the homomorphism f� factorizes through

HKðY;Y\V3Þ!
e

HKð %V; %V \V3Þ!
f�

HKðRK ;RK
\f0gÞ;

where e is induced by excision. Let eðaÞ ¼ mAHKð %V; %V \V3Þ; since f is homotopic to
ðR � idÞ by Lemma 1, this composition is the same as

HKðY;Y\V3Þ!
e

HKð %V; %V \V3Þ ����!ðR�idÞ�
HKðRK ;RK

\f0gÞ;

i.e. ðR � idÞ�ðmÞ ¼ Indf ðCÞb: Since %V may not be a manifold, we aim at replacing it

by V3: If i denotes the inclusion of pairs i: ð %V; %V \V3Þ+ð %V; %V \CÞ and i�ðmÞ ¼ m0;
ðR � idÞ�ðm0Þ ¼ ðR � idÞ�ðmÞ ¼ Indf ðCÞb; because of the commutativity of the

diagram

mAHKð %V; %V \V3Þ ����!ðR�idÞ�
HKðRK ;RK

\f0gÞ

ki� kid

m0AHKð %V; %V \CÞ ����!ðR�idÞ�
HKðRK ;RK

\f0gÞ

Next, if e0 : HKð %V; %V \CÞ-HKð %V3; %V3 \CÞ is the isomorphism induced by excision
and e0ðm0Þ ¼ m00; one has ðR � idÞ�ðm00Þ ¼ ðR � idÞ�ðm0Þ ¼ Indf ðCÞb: Because the

diagram

m0AHKð %V; %V \CÞ ����!ðR�idÞ�
HKðRK ;RK

\f0gÞ

ke0 kid

m00AHKð %V3; %V3\CÞ ����!ðR�idÞ�
HKðRK ;RK

\f0gÞ
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commutes, ðR � idÞ�ðm0Þ can be computed as the Lefschetz index of the map R on the

smooth manifold with boundary %V3 (rather than on %V ).
By the Lefschetz fixed point theorem for manifolds with boundary (see [31,

Proposition 8.4.6]), ðR � idÞ�ðm00Þ ¼ Lb; where L ¼
PK

i¼0ð�1Þitrace R�jHið %V3Þ is the

associated Lefschetz number. But V3 deformation retracts onto C; so Hið %V3ÞCHiðCÞ
for all i ¼ 0;y;K ; and R� is the identity on C; so L ¼

PK
i¼0ð�1Þidim HiðV3Þ which is

wðCÞ: This completes the second variant of the proof. &

3.2. Rationalistic implications

That a component is potentially stable may be a knife-edge phenomenon.
Consider, for instance, a potentially stable component with zero index. The
definition of the index, (7), suggests that the vector field (for which the component is
asymptotically stable) may be slightly perturbed so as to remove all zeros close to the
component. For example, consider a component that is homeomorphic to a circle.
(The circle has Euler characteristic zero, so this is compatible with equality of Euler
characteristic and index.) The vector field could be slightly modified such as to
induce a slow motion along the circle, removing all rest points.

For evolutionary predictions this would cause a problem. If a component
can be asymptotically stable, but only in exceptional cases, then the prediction
requires deep trust in the precise specification of the dynamics. Unless the
application justifies such confidence, strengthening the criterion to robust potential

stability seems natural. Such robustness yields a first connection to rationalistic
criteria.

An equilibrium component is essential, roughly, if every nearby game has an
equilibrium close to the component (see [29]).7 Obviously, a robustly potentially
stable component must be essential. For, if it would be potentially stable, but
not essential, then around the component the dynamics could be modified towards
the dynamics of a nearby game with no equilibrium (rest point) close to the
component. Hence, it would not be robustly potentially stable. The next result makes
this precise.

Proposition 1. Any robustly potentially stable component has nonzero Euler

characteristic and is essential.8

Proof. Assuming that the equilibrium component C is asymptotically stable for

fAF; we show that if wðCÞ ¼ 0; then there is an arbitrary small perturbation f̃ of f

such that f̃ �1ð0Þ-V is empty, where V is the isolating neighborhood of C:
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only payoffs of the game are perturbed, but the whole map (see [37]).
8 A partial converse of the first part of Proposition 1 is obvious. If C is potentially stable and wðCÞa0;

then Ind ðCÞa0 by Theorem 1 and any perturbation of f must have zeros in V by the definition of the

index, (7).
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By the hypothesis and Theorem 1, Ind ðCÞ ¼ 0: Let f̂ be a small perturbation of f

such that f̂ ¼ f outside intðVÞ and

f̂ �1ð0Þ-V ¼ fs1;y; smgDintðVÞ;

where the s h’s are regular zeros for all h ¼ 1;y;m: By (7)
Pm

h¼1 ind
f̂
ðs hÞ ¼ 0 must

hold. By Lemma 2.9 of Hirsch [26, Chapter 5, p. 137] there is a function

g : V-RK
\f0g such that g ¼ f on @V : Finally, glue g and f on @V and smooth the

result by a small perturbation around @V such that no zeros are introduced. The

resulting map is f̃:
Hence, if C is robustly potentially stable, then wðCÞa0: Thus, by Theorem 1,

Ind ðCÞa0 and, therefore, C is essential by Theorem 4 of Ritzberger [45]. &

That robust potential stability has rationalistic implications is to be expected.
Many noncooperative refinement concepts, including strategic stability, are defined
by robustness criteria, albeit mostly in strategy perturbations. What is less obvious is
that robust potential stability is more than what is needed for even the strongest
rationalistic criterion.

The next theorem adds to potential stability only the condition that the Euler
characteristic of the component is nonzero, and continuity in payoffs. Proposition 1
shows that this is a weaker hypothesis than robust potential stability. Yet, it is
sufficient. By Theorem 1 potential stability and a nonzero Euler characteristic imply
that the index of the component is nonzero. And this is sufficient for the component
to contain an M-stable set.

Theorem 2. If C is asymptotically stable in a Nash dynamics fAF; that is continuous

in payoffs,9 and wðCÞa0; then C contains an M-stable set.

Proof. By potential stability and Theorem 1 the index of C agrees with wðCÞ which is
nonzero by hypothesis. Since, by continuity in payoffs, the index equals the local
degree (see [12,13]), the local degree is also nonzero. Then the proof of existence for
strategically stable sets [39, Theorem 1] can be adapted as follows.

Let D be a sufficiently small ball around u ¼ ððuiðsÞÞsASÞ
n
i¼1; the payoff vector for

the game G; and G the graph of the Nash equilibrium correspondence. Let N be a
neighborhood of C � fug in the ambient space such that ND ¼ G-N constitutes a
neighborhood of C in G which projects onto D: By the definition of the local degree
this projection is homologically nontrivial. Let W be the space of sufficiently small
strategy perturbations for the game G and GW the graph of the Nash equilibrium
correspondence on W : Since strategy trembles are particular payoff perturbations,
WDD and N 0

W ¼ GW-ND is the part of GW that is close to C: The projection of

N 0
W to W is not homologous to zero, due to the basic result of Mertens ([38],

explained in Remark 2 of Section 2 and the discussion of Theorem 1 in Mertens [39]).
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therefore, concerns continuity in payoff parameters.
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Replacing GW by N 0
W ; the existence part of the proof for Theorem 1 of Mertens [39]

can now be applied.
Briefly, the argument works as follows. Consider the projection map

P : ðN 0
W ; @N 0

W Þ-ðW ; @WÞ which is nontrivial in homology. Let N1;N2;y;Nk be

the connected components of N 0
W \@N 0

W : Once perturbations are small enough, the

number of components is constant, because everything is semi-algebraic. Let %Nj be

the closure of Nj in N 0
W and @Nj ¼ %Nj\Nj for all j: By the excision axiom

H�ðN 0
W ; @N 0

W ÞC"jH�ð %Nj; @NjÞ: So, at least one of the maps P : ð %Nj; @NjÞ-
ðW ; @WÞ is homologically nontrivial. Choosing this particular component, %Nj is a

closed connected set of equilibria (for the perturbed games) which projects
nontrivially on perturbation space. Hence, its (Hausdorff) limit is the set required
in the definition of M-stable sets. &

A converse of Theorem 2 is not true. A component can contain an M-stable set
and have nonzero Euler characteristic, but may still not be potentially stable.
Example 2 in Section 4 illustrates this possibility.

Theorem 2 constitutes strong evolutionary support for the rationalistic paradigm,
when robustly potentially stable components exist. In this case the evolutionary
prediction agrees with the strongest known noncooperative criterion. Unless a
component contains an M-stable set, it cannot be robustly potentially stable.

Indeed, Theorem 2 extends easily to all payoff consistent dynamics (that may have
rest points outside the set of Nash equilibria). Formally:

Corollary 1. If C is a connected component of rest points, that is asymptotically

stable in some payoff consistent dynamics for which all Nash equilibria are zeros,
and that is continuous in payoffs, and if C satisfies wðCÞa0; then it contains an M-

stable set.

Proof. By Theorem 1 Indf ðCÞ ¼ wðCÞa0; where Indf ðCÞ is computed with respect

to the payoff consistent dynamics f : Let f̃ be a perturbation of f such that f̃ is a Nash
dynamics (see Remark 2). Let C1;y;Ck be the components of Nash equilibria
contained in C: By the invariance of the index

Xk

j¼1

Ind ðCjÞ ¼ Indf ðCÞ

holds. Therefore, for at least one j we have Ind ðCjÞa0: Since Theorem 2 effectively

shows that every Nash equilibrium component with nonzero index contains an M-
stable set, it can now be applied directly. &

When G is the normal form of some extensive form game, this provides an
evolutionary foundation for backwards induction, because any M-stable set contains
a proper equilibrium, and any proper equilibrium induces a sequential equilibrium in
any compatible extensive form (see [51,32, Proposition 0]).
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Corollary 2. Any robustly potentially stable component, that is asymptotically stable

for a Nash dynamics, that is continuous in payoffs, contains a proper (and, hence,
sequential ) equilibrium.

For the normal form of a generic perfect information extensive form game there is
a unique component, that induces the backwards induction outcome. All other
equilibrium components must have index zero, because otherwise they would
contain an M-stable set (this is what the proof of Theorem 2 shows) and, hence, a
proper (sequential) equilibrium. Therefore, the unique backwards induction
component has index þ1: Moreover, all components for such games are contractible
(see [15]) and, thus, have Euler characteristic þ1: Since the backwards induction
component is the unique one with index þ1; it always meets the necessary condition
for potential stability. So, in these games either evolution unambiguously supports
backwards induction or there is no equilibrium outcome supported by potential
stability. This simple observation reproduces exactly, for all payoff consistent
selection dynamics, the result that Cressman and Schlag [11] obtain for the replicator
dynamics.10

Of course, by Corollary 1, in the statement of Corollary 2 ‘‘robustly potentially
stable’’ can be replaced by ‘‘asymptotically stable in some payoff consistent
dynamics and nonzero Euler characteristic’’.

4. Examples

Example 1. The first (class of ) example(s) illustrates both the cutting power of
potential stability and its possible failure of existence. Consider ‘‘outside option
games’’ with unique forward induction equilibria. These are two-player games where
player 1 can first choose either an outside option, or to move into a (finite)
simultaneous move subgame. The subgame is assumed to have only one equilibrium,
that yields player 1 more than the outside option (see [23,53]). Such a game has two
components of equilibria, one where player 1 moves into the subgame and his
preferred equilibrium is played—the ‘‘forward induction’’ equilibrium—and a
higher-dimensional component where player 1 takes the outside option.

The main argument about such games is that, if the ‘‘forward induction’’
equilibrium is ‘‘viable’’ [53], then player 2 should conclude from the fact, that she
gets to move, that player 1 intends to play her preferred equilibrium. Such a forward
induction argument, of course, depends on what ‘‘viable’’ means. In the present
context a straightforward interpretation is suggested.

Consider the generic case where the ‘‘forward induction’’ equilibrium is regular.
Then it has either index þ1 or �1: If it has index þ1 (e.g. because it is strict), then the
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outside option component must have index zero. If it has index �1; the outside
option component has index þ2 (for an example see [23, Fig. 8]). But the outside
option component is convex, because it consists of all strategies for player 2; that do
not induce player 1 to enter. Therefore, the outside option component has Euler
characteristic þ1: By Theorem 1 the outside component cannot be potentially stable
in either case. In the first case potential stability uniquely selects the ‘‘forward
induction’’ equilibrium. In the second case, where the equilibrium of the subgame is
mixed, there is no potentially stable component.

These simple calculations mimic the results by Hauk and Hurkens [23]. And the
suggested interpretation of a ‘‘viable’’ forward induction equilibrium is that it be
potentially stable.

Example 2. The second example (due to Hofbauer and Swinkels [28]) also serves
double purpose. Consider the three-player game in Table 1, parameterized by
qA½0; 1�: (Player 1’s payoff is in the upper left, 2’s in the middle, and 3’s in the lower
right corner.)

First, let q ¼ 0: Then the game has two components of equilibria. The first, C1; is a

singleton where all players use all their strategies with probability 1
2
: The second, C2;

is homeomorphic to a circle and connects, by the corresponding edges, the pure

strategy combinations ðs2
1; s2

2; s2
3Þ; ðs2

1; s1
2; s2

3Þ; ðs1
1; s1

2; s2
3Þ; ðs1

1; s1
2; s1

3Þ; ðs1
1; s2

2; s1
3Þ;

ðs2
1; s2

2; s1
3Þ; back to ðs2

1; s
2
2; s2

3Þ: (Hence, C2 does not satisfy the topological condition

used by Swinkels [49].)
We claim that the singleton component C1 ¼ f %sg cannot be potentially stable, but

that C2 is. At q ¼ 0 all three players have the same payoff function, that serves as a
Lyapunov function. By payoff consistency, (3),

dUiðsÞ
dt

¼
X3

j¼1

fjðsÞ � rsj
UiðsÞ ¼

X3

j¼1

fjðsÞ � rsj
UjðsÞX0

for all i: Choose sAint S arbitrary close to %s such that UiðsÞ4� 1
4
¼ Uið %sÞ: From

such an initial condition the trajectory can never converge to %s; because the payoff
cannot decrease. Hence, C1 ¼ f %sg is not potentially stable. On the other hand, since
C2 constitutes the unique set of payoff maximizing strategy combinations where
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UiðsÞ ¼ 0 for all i; the component C2 is asymptotically stable for any Nash dynamics
for which (3) holds with strict inequality outside the set of Nash equilibria.

It follows from Theorem 1, wðC2Þ ¼ 0; and the additivity of the index that
Ind ðC2Þ ¼ 0 and Ind ðC1Þ ¼ þ1: This shows that the converse of Theorem 1 is false.
For C1 ¼ f %sg the index agrees with the Euler characteristic, wðC1Þ ¼ þ1; but C1

cannot be potentially stable.
This example also shows that a converse of Theorem 2 is false. The component

C1 ¼ f %sg is a singleton M-stable set (because it is completely mixed) with nonzero
index and Euler characteristic (both equal to þ1), but it is not potentially stable.

Whether a potentially stable component with zero Euler characteristic may
occasionally contain an M-stable set we do not know. But we see no reason why
there should not be such cases.11

Certainly, a potentially stable component with zero Euler characteristic need not

contain an M-stable set. The easiest way to see this is to let qA½0; 1� be the (mixed)
strategy of a fourth player (with two pure strategies) for whom q ¼ 0 is strictly
dominant. By payoff consistency, (3), dq=dto0 must hold for any Nash dynamics, so
C2 remains asymptotically stable and equilibria and the index calculations remain as
before.

But now C2 does clearly not contain an M-stable set. To test for strategic stability
strategy trembles have to be considered. Yet, if q40 then there is no Nash
equilibrium (of the game among players i ¼ 1; 2; 3) close to C2: (The only
equilibrium for q40 is %s:) Note that all equilibria in C2 are perfect and, indeed,
proper (because each player has only two pure strategies). Still, C2 fails the test for
M-stability.

This shows that in Theorem 2 the hypothesis of a nonzero Euler characteristic is
necessary. With four players the component C2 is potentially stable, but has zero
Euler characteristic and does not contain an M-stable set. Indeed, by slightly
modifying the vector field the movement along the circle for q40 can be extended to
q ¼ 0 so as to remove all zeros at C2: So, C2 is not robustly potentially stable.

Example 3. The last example illustrates the limitations, that arise from using
asymptotic stability as the relevant dynamic stability criterion. In the two-player
game in Table 2 (due to Kohlberg and Mertens [32, p. 1034]) the set of all Nash
equilibria is a single connected component, that is again homeomorphic to a circle.

It consists of the edges connecting the pure strategy combinations ðs1
1; s1

2Þ and

ðs1
1; s3

2Þ; ðs1
1; s3

2Þ and ðs2
1; s3

2Þ , ðs2
1; s3

2Þ and ðs2
1; s2

2Þ; ðs2
1; s2

2Þ and ðs3
1; s2

2Þ; ðs3
1; s2

2Þ and ðs3
1; s1

2Þ;
and back again from ðs3

1; s1
2Þ to ðs1

1; s1
2Þ: Hence, the only component of equilibria has

index þ1 and Euler characteristic zero. By Theorem 1 it cannot be potentially stable.
Yet, both the second and third strategy for each player is weakly dominated (by

the first). It is known (see [56, Proposition 5.8]) that, if a weakly dominated strategy
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of Kohlberg and Mertens (1986). The argument demonstrating this claim is available from the authors

upon request.
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does not vanish along an interior solution path to a payoff-linear selection dynamics,
then the opponent’s strategy against which it does worse (than the dominating

strategy) must vanish along that path. Hence, if s2
i does not converge to zero, then

s1
3�i must converge to zero, for i ¼ 1; 2 and any interior trajectory. Likewise, if

s1
i þ s2

i does not converge to 1; then s1
3�i þ s2

3�i must converge to 1; for i ¼ 1; 2
along any interior trajectory.

If s2
i converges to zero along an interior path, then in a payoff-linear dynamics s1

i

must converge to 1: But this implies that s2
3�i converges to zero, so that limt-N si ¼

ð1; 0Þ and limt-N s3�i ¼ ðy; 0Þ for yA½0; 1�; for i ¼ 1; 2: Hence, the limit point is a

Nash equilibrium for any interior trajectory where s2
i converges to zero, for i ¼ 1; 2:

If s2
i does not converge to zero along an interior path, then s1

3�i must converge to

zero, for i ¼ 1; 2: But if s1
3�i converges to zero, then in a payoff-linear dynamics the

growth rates of s1
i and s2

i become identical and nonnegative. Thus, s1
i þ s2

i

converges to 1 along an interior path. But then either s2
3�i-0 or s1

i -0: In the fist

case we are back to the previous argument and conclude that the limit point is a

Nash equilibrium. If s1
i -0; then all limit points sit on the edges connecting ðs2

1; s2
2Þ

with ðs2
1; s3

2Þ or with ðs3
1; s2

2Þ: Those are again all Nash equilibria.

The conclusion is that all interior paths will converge to a Nash equilibrium. Yet,
Theorem 1 asserts that the set of Nash equilibria cannot be asymptotically stable.
This is due to a failure of Lyapunov stability.

Consider the face where s1
i þ s2

i ¼ 1 for i ¼ 1; 2 and, say, the replicator dynamics.

The latter becomes ’s1
i ¼ 2s1

i ð1 � s1
i Þs1

3�i; so s1
i ¼ 0 implies ’s1

i ¼ ’s1
3�i ¼ 0 for i ¼ 1; 2:

This means that the edges connecting ðs2
1; s2

2Þ with ðs1
1; s2

2Þ and with ðs2
1; s1

2Þ consist

entirely of zeros. Therefore, trajectories starting on these edges do not converge to

ðs2
1; s2

2Þ and the set of Nash equilibria is not asymptotically stable in the replicator

dynamics.
If the replicator dynamics would be slightly modified, as in Remark 2, then

the movement along the edges connecting ðs2
1; s2

2Þ with ðs1
1; s2

2Þ and with ðs2
1; s1

2Þ
would be away from ðs2

1; s2
2Þ: Hence, a trajectory starting close to ðs2

1; s2
2Þ would

leave a neighborhood of the component, cross the interior of the face, and eventually
return to a Nash equilibrium ‘‘at the other end’’, close to (an edge containing)

ðs1
1; s1

2Þ:
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While in this example the only component of Nash equilibria cannot be potential
stable, there is still a sense in which evolutionary (payoff-linear) dynamics lend
support to Nash equilibrium. The unique Nash equilibrium component is an
attractor for all interior trajectories. Theorem 1 only points out that it fails
Lyapunov stability (for a related example see [56, Example 3.6, p. 90]).

This example also shows that Lyapunov stability is necessary for Theorem 1. The
slight perturbation of the replicator dynamics pointed out above would make the
unique equilibrium component an attractor. Yet, its index ðþ1Þ does not agree with
its Euler characteristic ð0Þ:

5. Conclusions

This paper first identifies a necessary condition for dynamic evolutionary stability
of a component of Nash equilibria. If there exists a dynamics for which a given
component is asymptotically stable, then the component’s index must agree with its
Euler characteristic. Second, if moreover the component’s Euler characteristic is
nonzero, then it will contain a strategically stable set in the sense of Mertens
([39,40]). This is the weakest hypothesis on dynamic evolutionary stability so far
identified which implies the strongest known rationalistic refinement criterion.

If evolutionary dynamics are meant to be a selection criterion among Nash
equilibria, the present results provide strong cutting power. In generic normal form
games roughly half of the equilibria fail to be potentially stable, despite meeting all
rationalistic refinement criteria. Moreover, potential stability selects among
equilibria in classes of games, that have motivated certain refinement concepts. In
two-player outside option games either the ‘‘forward induction’’ equilibrium is
potentially stable, or no component is. Likewise, in generic perfect information
games either the subgame perfect equilibrium outcome is potentially stable, or no
component is. In signaling games it suffices to find equilibrium components with
index þ1 to identify the potentially stable outcomes.

Yet, the results also highlight that evolutionary stability may be overly selective.
There are games, that do not have any potentially stable Nash equilibrium
component.
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