
Before proving that Nash equilibria in mixed strategies exist, we need a theorem that a fundamental com-
ponent of many equilibrium existence proofs.

1. Brouwer Fixed Point Theorem

Brouwer Fixed Point Theorem. Let S ⊂ Rn be convex and compact. If T : S → S is continuous, then

there exists a fixed point. I.e., there exists x∗ ∈ S such that T (x∗) = x∗.

One-dimensional case. I won’t prove the general case. However, the one-dimensional case is much easier.
We saw a diagrammatic argument in class. Here is the proof. When n = 1, the only compact and convex
sets are closed intervals [a, b]. Let T : [a, b] → [a, b]. If T (a) = a or T (b) = b, we are done. Now suppose
T (a) > a and T (b) < b. Consider g(x) = T (x)−x. Then g(a) > 0 and g(b) < 0. The function g is continuous
because T is continuous. The Intermediate Value Theorem (from calculus) tells us that there is some x∗,
a < x∗ < b, where g(x∗) = 0. This x∗ is the required fixed point. �

2. Existence of Nash Equilibrium

Consider a two-person finite game in strategic form. Label the strategies of player 1 by 1, 2, . . . , m and label
player two’s strategies by 1, 2, . . . , n. Define the k-simplex by ∆k = {x ∈ Rk+1

+ :
∑k+1

i=1 xi = 1}. We can
regard any mixed strategy of player one as a point ∆m−1 and any mixed strategy of player two as a point
in ∆n−1. The payoff functions are defined on S = ∆m−1 ×∆n−1, which is the product of the strategy sets.

Given strategies p ∈ ∆m−1 and q ∈ ∆n−1, the expected payoff are Eu`(p, q) =
∑m

i=1

∑n
j=1 piqju`(i, j).

We define matrices A and B by aij = u1(i, j) and bij = u2(i, j). The expected payoffs can then be written
Eu1(p, q) = p′Aq and Eu2(p, q) = p′Bq where p and q are regarded as column vectors and the prime denotes
transpose.

We will denote the ith column of A by Ai and the jth row of B by Bj . Thus Aiq gives the expected payoff
to player one when playing the pure strategy i against player two’s mixed strategy q. Similarly, p′Bj gives
the expected payoff to player two when playing the pure strategy j against player one’s mixed strategy p.

Theorem 1. Every two-person finite game has a Nash equilibrium in mixed strategies.

Proof. Define ci(p, q) = max{Aiq − p′Aq, 0} for i = 1, . . . , m and dj(p, q) = max{p′Bj − p′Bq, 0} for
j = 1, . . . , n. Thus ci and dj represent the gain (if any) from switching to the pure strategy i (j) from the
mixed strategy p (q).

Now define functions

Pi(p, q) =
pi + ci(p, q)

1 +
∑m

k=1 ck(p, q)

Qj(p, q) =
qj + dj(p, q)

1 +
∑n

k=1 dj(p, q)

Since Aiq− p′Aq and p′Bj − p′Bq are linear functions, they are continuous. Moreover, the maximum of two
continuous functions is continuous, which implies both ci and dj are continuous. Finally, both numerator
and denominator of Pi and Qi are continuous and the denominator is strictly positive. It follows that Pi

and Qi are continuous.
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Furthermore,
m∑

i=1

Pi(p, q) =
∑m

i=1 pi +
∑m

i=1 ci(p, q)
1 +

∑m
k=1 ck(p, q)

=
1 +

∑m
k=1 ck(p, q)

1 +
∑m

k=1 ck(p, q)
= 1

which means P ∈ ∆m−1. Similarly,
∑n

j=1 Qj(p, q) = 1 and so Q ∈ ∆n−1. Define the function T , T : ∆m−1×
∆n−1 → ∆m−1 ×∆n−1 by T (p, q) = (P (p, q), Q(p, q)). Note that T is continuous.

Moreover, S = ∆m−1×∆n−1 is compact and convex. The Brouwer Fixed Point Theorem yields (p∗, q∗) ∈
∆m−1 ×∆n−1 such that T (p∗, q∗) = (p∗, q∗). Let u∗1 = p∗′Aq∗ be player one’s expected utility at (p∗, q∗).

I claim that:
∑m

k=1 ck(p∗, q∗) = 0 Suppose the claim is false. Then
∑m

k=1 ck(p∗, q∗) > 0.

Because (p∗, q∗) is a fixed point,

p∗i =
p∗i + ci(p∗, q∗)

1 +
∑m

k=1 ck(p∗, q∗)

for every i. Clearing the fraction and cancelling p∗i yields p∗i [
∑

k ck(p∗, q∗)] = ci(p∗, q∗). Thus p∗i = 0
whenever ci(p∗, q∗) = 0.

Let I = {i : p∗i > 0}. Note that I 6= ∅ because
∑

i p∗i = 1. By the previous paragraph, I ⊂ {i : ci(p∗, q∗) >

0}. Finally, the definition of I implies
∑m

i=1 p∗i =
∑

i∈I p∗i = 1.

For i ∈ I, ci(p∗, q∗) > 0 which means Aiq
∗ > u∗1. Multiplying by p∗i > 0 yields p∗i Aiq

∗ > p∗i u
∗
1. Summing

over i ∈ I yields

u∗1 =
m∑

i=1

p∗i Aiq
∗ ≥

∑
i∈I

p∗i Aiq
∗ > (

∑
i∈I

p∗i )u
∗
1 = u∗1.

But this is a contradiction, which means our supposition that
∑m

k=1 ck(p∗, q∗) > 0 must be false. This
establishes our claim.

Since
∑m

k=1 ck(p∗, q∗) = 0, ci(p∗, q∗) = 0 for every i = 1, . . . , m. Expanding ci yields Aiq
∗ ≤ u∗1. Let

p ∈ ∆m−1. Then p′Aq∗ =
∑

i piAiq
∗ ≤ (

∑
i pi)u∗1 = u∗1. In other words, p∗ is a best response to q∗. A

similar argument shows that q∗ is a best response to p∗. Since p∗ and q∗ are mutual best responses, we have
a Nash equilibrium. �


