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Abstract

The main goal of this paper is to show that if a finite connected CW complex admits a

continuous, symmetric, and unanimous choice function for some number n41 of agents, then
the choice space is contractible. On the other hand, if one removes the finiteness, we give a

complete characterization of the possible spaces; in particular, noncontractible spaces are

indeed possible. These results extend earlier well-known results of Chichilnisky and Heal.
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1. Introduction and statement of results

The goal of this paper is to give a new analysis of some aspects of the topological
social choice model, studied by Chichilnisky [3], Chichilnisky–Heal [5] and others.
We imagine n agents each picking elements out of X ; the choice space. The

problem is to give an aggregation of their choices Aðx1yxnÞ continuously in these
variables and subject to two axioms:

1. AðxyxÞ ¼ x (unanimity);
2. Aðx1y xnÞ is independent of the ordering (anonymity).

Note that the second condition is equivalent to asserting that the function A is
invariant with respect to an action of the symmetric group; much of our discussion

ARTICLE IN PRESS

�Fax: +509-694-3973.

E-mail address: shmuel@math.uchicago.edu.

0022-0531/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/S0022-0531(03)00257-6



would be unchanged if we instead demanded that A be invariant under an action of
any transitive group G of permutations (see [4]).
Without further assumption, we shall assume that our choice space X is connected

and of the homotopy type of a CW complex (or, equivalently, a simplicial complex).
The second assumption is a common one in algebraic topology and includes all
manifolds, algebraic varieties, many function spaces (see [11]). Connectedness may
not be such a natural assumption in economic applications, but one can readily see
that under the hypothesis of being a CW complex, one can find such an A for X iff
one can do so for every component. (However, the study of the set of such functions
does not reduce to their study on the individual components.)
The main result of [5] is that if such an A exists for every n; and X ; in addition, has

only finitely many cells in every dimension, then X is contractible (i.e. homotopy
equivalent to a point). A relation between these ideas and the Arrow impossibility
theorem is given in [1]. In this paper, we give some initial results on what happens
when these hypotheses fail, and give another contractibility result with weaker
conditions on the aggregation function (combined with a tronger finiteness
hypothesis on the space) and also give what seem to be the first examples of
noncontractible spaces on which choices may be aggregated.

Theorem 1.1. Suppose that X is as above and is, in addition (of the homotopy type of) a

finite complex, then if for some n41; a continuous map A; satisfying 1 and 2 exists (for

any transitive group of permutations), then X is contractible.

One can think of (homotopy) finiteness as a kind of compactness. A polyhedron is
compact iff it has finitely many cells, i.e. iff it is finite. The theorem asserts that under
such a hypothesis, social choice is impossible for noncontractible choice spaces, even
if we restrict our attention to specific small-size populations.
If X is contractible, then Chichilnisky–Heal [5] observed that such an A exists, for

every n; and invariant under the whole symmetric group. This is a special case of the
following:

Proposition 1.2. Let n and a transitive group G of permutations be given. Then the

question of whether or not for a space X ; a mapping A satisfying unanimity and G-
anonymity exists, just depends on the homotopy type of X :

Recall that spaces are homotopy equivalent iff they are both deformation retracts
of a common third space; informally, if they can be deformed into one another. The
proposition is a very straightforward consequence of the homotopy extension
principle (see [12]) and the result of reformulating condition 2 in terms of the
quotient space, X n=G; of the permutation G action on the product X n: we are asking
that the identity map on the ‘‘diagonal’’ of X n=G extend to a map (to X ) on the
whole space. (See [12] for a discussion of why extension problems are, aside from
pathology, homotopy invariant.) That the proposition is nonvacuous is a
consequence of the following theorem:
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Theorem 1.3. Suppose that X is a connected CW complex, then if for all n41; a

continuous map A; satisfying 1 and 2 exists (for any transitive group of permutations),
then X is of the homotopy type of a product of rational Eilenberg–MacLane spaces.

Conversely, any such X admits such A for all n; invariant under the entire symmetric

group.

Eilenberg–MacLane spaces are spaces with at most a single nonvanishing
homotopy group. Examples are the circle, hyperbolic manifolds, or the infinite-
dimensional complex projective space. An Eilenberg–MacLane space is rational, if
the homotopy group is actually an abelian group which is uniquely divisible by every
natural number, i.e. a vector space over the rational numbers, Q:
Below we will give examples, but, in any case, it is worth noting that any such A on

a noncontractible X must have unusual properties; we will discuss these below.
Suffice it to say that they have a kind of Pareto nonoptimality which we call
‘‘Solomonism’’. Thus, one can say that the overall institutional framework of
continuity, unanimity, and anonymity (justice?) forces Pareto nonoptimality.
Finally, we will give several examples below, one of which is also worth citing here:

Example 1.4. The infinite-dimensional real projective space RPN admits a social
choice function for any odd number of agents, but not for any even number.

In this example, the choice space does have finitely many cells in each dimension
(as in the Chichilnisky–Heal theorem), but there are arbitrarily large populations
for which choice is indeed possible. Moreover, it also shows that the problem
of solving choice problems does not grow monotonically more difficult with
population size.

2. Proofs of main theorems

All of our work depends on the theory of H-spaces. H-spaces are an algebraic
topological analogue of the notion of a Lie group, or more generally, of a
topological monoid, and it has been known from the very first paper to introduce
them [9] that they have a very particular structure.

Definition. A space Z is an H-space, if there is a function m :Z � Z-Z; and a point
pAZ such that mðz; pÞ ¼ mðp; zÞ ¼ z for all z in Z:

In the definition, there is no gain in generality if we merely assume that mðz; pÞ and
mðp; zÞ are both homotopy equivalences, i.e. induce isomorphisms on homotopy
groups (see [12]). (More precisely, this definition allows no more H-spaces, but it
does allow more ‘‘H-multiplications’’. As our interest is in the spaces, we will ignore
this issue.) This variant has a number of advantages, one being that for connected
complexes it only depends on the homotopy class of m; but not on which
representative map chosen within the class, nor on the point p:
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It follows from work of Hopf and Serre that an H-space whose homotopy groups
are rational vector spaces is a product of rational Eilenberg–MacLane spaces, see
e.g. [13]. The other main theorem aboutH-spaces that we will need is Browder’s deep
theorem [2] that a finite complex which is an H-space satisfies Poincare duality, and,
in particular, has some reduced homology group isomorphic to the integers Z:

Theorem 2.1. Suppose that X is a connected CW complex such that for some n41
there is a map A as above. Then X is an H-space. Moreover, the fundamental group

p1ðX Þ is abelian and for all i; the homotopy groups piðXÞ are uniquely n-divisible (i.e.

multiplication by n is an isomorphism on these groups).

Before proving this theorem, we note that it implies the main theorems. To prove
Theorem 1, note that Serre’s modC Hurewicz theorem (see [7,12]) asserts that the
condition of divisibility on homotopy groups is equivalent to it holding on homology
groups, but Browder’s theorem prevents that. To prove Theorem 2, note simply that
the divisibility of homotopy groups precisely implies the result in light of Hopf’s
theorem. (The construction of choice functions is deferred to the next section.)
Both parts of the theorem are proven simultaneously. Let A be as in the theorem.

We first consider A� : p1ðX nÞ-p1ðX Þ: Note first that p1ðX nÞ is isomorphic to the
direct sum of n copies of p1ðX Þ; and on each factor A� is the same homomorphism,
which we will call r� (by axiom 2). This notation is quite sensible, because in a
moment we will study the map r :X-X defined by rðxÞ ¼ mðx; p;ypÞ; which
induces r� on homotopy.
We first claim that r� is a surjection. This is immediate because we have the

diagonal mapW :X-X n defined byWðxÞ ¼ ðx; x;yxÞ satisfies AW ¼ I ; where I is
the identity map.
Since the individual summands of p1ðX nÞ commute with each other (if not, a

priori, with themselves!) their images commute with each other, and thus p1ðX Þ is
abelian, as each of these images is the whole group.
Furthermore, we now apply the equation nr� ¼ I (that comes from AW ¼ I ; and

the equality of each summand homomorphism) so that r� provides the unique n

divisibility.
The argument just given applies even more directly to the higher homotopy

groups, so they are also all uniquely n divisible. This conclusion directly implies as
well that r induces an isomorphism on homotopy groups, and is thus a homotopy
equivalence. We shall let p denote its homotopy inverse.
We claim that if we define mðx; yÞ ¼ AðpðxÞ; pðyÞ;y; pÞ; then m gives us an H-

space structure on X : This is clear, since on the set of points of the form ðx; pÞ; by the
definitions of r and p; it is clearly a map homotopic to the identity, and the result for
points of the form ðp; xÞ follows from the symmetry.
Our theorem is now proven.

Remark 2.2. Similar (but somewhat more elaborate at one technical point)
reasoning shows that a connected space X has a symmetric, unanimous, continuous
choice function for two agents, iff X is a ‘‘homotopy commutative’’ H-space and its
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homotopy groups are uniquely 2 divisible. For other values of n; it is harder to pin
down exactly what kind of extra structure one needs on the H-map, m:

3. Examples and further discussion

While none of the algebraic topology necessary for our examples is at all
nonstandard, we found it a bit difficult to find precise references in the literature.
As mentioned above, Eilenberg–MacLane spaces are spaces with at most a single

nontrivial homotopy group. X is said to be of type KðG; nÞ if piðXÞ ¼ 0 for ian and
pnðX Þ ¼ G: One knows that for every group G there is a space of type KðG; 1Þ; and
for all abelian G there is a space of type KðG; nÞ for n41:Moreover, these spaces are
uniquely determined, up to homotopy type, by G and n:
For any space X ; the homotopy classes of maps from X into a space of type

KðG; nÞ is isomorphic to the cohomology group HnðX ;GÞ: As a special case, if A and
B are of types KðG; nÞ and KðH; nÞ; respectively, then the homotopy classes of maps
from X to Y are in a one-to-one correspondence with homomorphisms from G toH:
(See [12] for all of this.)
The simplest example of a rational Eilenberg–MacLane space is a two-

dimensional space whose construction sheds some light on the phenomena present
whenever aggregation is possible. We first recall the mapping cylinder construction.
Let f :X-Y be a map, then Cylf ¼ X � ½0; 1�,Y ; such that ðx; 1Þ ¼ f ðxÞ in Y :

Note that Cylf always can be deformation retracted back to Y ; so it has the same

homotopy type as Y : As an interesting special case, the function f : S1-S1 given by

squaring, f ðzÞ ¼ z2 has as cylinder the Moebius strip.
Now if one considers maps f :X-Y and g :Y-Z; then one can glue the

cylinders Cylf and Cylg together along Y :We now do this with an infinite number of

maps from the circle to itself of all positive degrees. This infinite-iterated mapping
cylinder is of type KðQ; 1Þ: In fact the same construction works for any odd-
dimensional sphere Sn to give a model for KðQ; nÞ: A construction for even n can be
obtained using loop spaces (see [12]). The general rational Eilenberg–MacLane space
is a product of these spaces (up to homotopy type). For the verification of these
assertions and for further details, the reader can consult [7].
Observe that for a product of any number of spaces, one can aggregate the choices

of n agents iff one can do so for the individual spaces. So, to complete our proof of
the existence part of Theorem 2 we need only produce for all KðQ; kÞ and all n an

aggregating function on the symmetric power SnðKðQ; kÞÞ ¼ ðKðQ; kÞnÞ=Sn: Since
we are trying to build a map into an Eilenberg–MacLane space KðQ; kÞ; our task
boils down to finding an element of the cohomology group HkðSnðKðQ; kÞ;QÞ and
its restriction to the diagonal HkðKðQ; kÞ;QÞ=Q corresponds to the identity map
(equivalently the identity homomorphism).

We already know that HkðKðQ; kÞn;QÞ is isomorphic to HomðQn :QÞ (by the
result mentioned above about maps between Eilenberg–MacLane spaces. We easily
have a homomorphism which restricts correctly to the diagonal on this space (i.e.
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missing the symmetry), namely the average of all the coordinates. Moreover, this
homomorphism is invariant under the action of the symmetric group Sn: Happily,
this is enough by a general lemma of Groethendieck (see [8]) which identifies rational
cohomology of the quotient space under a finite group action with the cohomology
that is invariant under the action, completing our proof.

Definition 3.1. We say that an aggregating function on a metric space X of many
variables is Solomonic if there is a compact set C; such that for any real number D;
one can find an n-tuple ðc1ycnÞ of points of C; such that, Aðc1ycnÞ is of distance at
least D from the set C:

The idea of Solomonicity is that it captures the ‘‘cut the baby in half’’ solution (see
[10], although in the original case, this apparently was Pareto optimal). Justice then
demands a solution which all agents would agree is inferior to choosing the choice
any of the other agents suggest. (We assume that agents roughly prefer choices near
their choice to ones far away in this interpretation.) In this view, Solomonicity goes
strongly in the opposite direction of Pareto optimality.

Proposition 3.2. If X is a noncontractible connected CW complex with aggregation

functions for all n, and is a proper metric space (i.e. all metric balls contain only finitely

many cells), then the aggregation is necessarily Solomonic.

This is a straightforward consequence of our proof of Theorem 2 and our
understanding of rational Eilenberg–MacLane spaces. They all contain spheres,
which can act the compact set C; whose homology classes are not divisible in any
finite distance neighborhood. This failure tells us that some ‘‘tuple’’ of points from C

must aggregate outside of the neighborhood. In the model of KðQ; 1Þ given above,
one must go n stages down the iterated mapping cylinder to get divisibility by n when
n is a prime number.
We close this paper with some more examples.

Example 3.3. If, instead of using maps of arbitrary degree, one only uses degree 2
maps (still infinitely often), then starting with any odd-dimensional sphere, one can
show that the criteria of Remark 2.2 apply, and two agents can always aggregate on
these spaces.

I do not know whether any power of 2 number of agents can be aggregated on this

space. (They can be for a transitive group of permutations isomorphic to ððZ=2ÞnÞ;
I doubt whether they can be aggregated in a symmetric fashion with respect to the
whole symmetric group.

Example 3.4. For a group G one can ask whether there is a homomorphism from

Gk-G satisfying the usual aggregation axioms, and, of course, the answer is that
this is possible iff G is abelian and uniquely k-divisible. By using a good model (such
as the one given by [6]) one can see that for such G; KðG; nÞ always has such an
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aggregation map, by building an explicit map that corresponds to ‘‘averaging on the
group’’ that is explicitly symmetric.

More precisely, ‘‘averaging’’ is the composite of ‘‘sum’’ with ‘‘division by k’’.
Thus, one needs a model for KðG; nÞ for which addition is pointwise commutative
and associative. In the Dold–Thom model points in the Eilenberg–MacLane space
are finite subsets of some other space, and the addition corresponds to taking union,
which clearly has the desired properties.
In particular taking n ¼ 1 and G ¼ Z2 we see that some, and therefore any,

KðZ2; 1Þ has aggregation for all odd numbers of agents. Since RPN is such a space
(by covering space theory), it has such aggregation.
Of course, if we set, say, G ¼ Z15 then we would get a space that admitted

aggregation for any number of agents divisible by neither 3 nor 5.

Note added in proof

It has been brought to my attention that Theorem 1.1 with essentially the same
proof, as well as some of the nontrivial examples of spaces admitting social choice
functions, were already published in the paper B. Eckmann, T. Ganea, and P.
Hilton, Generalized means. 1962 Studies in mathematical analysis and related topics
pp. 82–92 Stanford Univ. Press, Stanford, Calif. Their motivation was quite
different. Another proof, when the group of symmetries of the aggregation
procedure is the whole symmetric group (or at least contains an involution) can
be obtained by replacing Browder’s theorem in the proof below with J. Hubbuck’s,
On homotopy commutative H-spaces, Topology 8 (1969) 119–126.
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