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One main goal of this work is to show how the existence proof for equilibria can 
be based on Sard's theorem and calculus foundations. At the same time, 
equations such as "supply equals demand", are used rather than fixed points 
methods. The existence proofs given here are constructive in some reasonable 
and practical sense. These equilibria can be found on a machine using numerical 
analysis methods. 

Our motivation for providing a proof of the Arrow-Debreu  theorem (Ap- 
pendix A) is to show that calculus can be used for the foundations of equilibrium 
theory. 

Also in the paper optimization and the fundamental theorems of welfare 
economics are developed via the calculus. Abstract optimization theorems are 
proved in Section 3 and applied in Section 4 to pure exchange economies. 
Debreu's finiteness of equilibria theorem is proved in Section 5. In this section a 
manifold structure is put on the set of optima and on a certain set of equilibria 
as well. 

The reader can see Smale (1976b) for a general motivation for a calculus 
approach to equilibrium theory (as well as references to other topics in Global 
Analysis and Economics). Furthermore some justification is given in this refer- 
ence for the continued study of classical equilibrium theory in spite of its deep 
inadequacies for analyzing the problems of our day. 

The account here could be used as a basis for a short course and in fact it was 
written when giving such a course at Berkeley in the winter of 1977. Much of the 
background for this exposition is to be found in our papers in the Journal of 
Mathematical Economics. 

1. The existence of equilibria 

The basic idea of equilibrium theory is to study solutions of the equation; supply 
equals demand or S ( p ) =  D(p). For the simple case of one market, where prices 
are measured in terms of some extra market standard, the familiar diagram 
below gives some justification for existence of the equilibrium price p*. 
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p* 

Figure 1.1 

General equilibrium theory treats this problem for several markets. Let us be 
more precise: Suppose an economy with e commodities is given. Then the space 
Re+ = ( (x  1 . . . . .  xe)@Re; x i >10, each i} will play two roles for us: The first is as 
commodity space; so x ERe+ will be interpreted as a commodity bundle. Thus x is 
the ~-tuple (x 1 . . . . .  x l) with the first coordinate measuring the units of good 
number one, etc. But also Re+ with the origin 0 removed will be the space of 
price systems; thus if p E R e + -  O, p = (p~ . . . . .  pe) represents a set of prices of the e 
goods, p~ being the price of one unit of the first good, etc. 

We suppose that the economy under study presents us (axiomatically) with 
demand and supply functions D, S:  Re+ -O---~Re+, from the set of price systems to 
commodity space. Thus D ( p )  will be the commodity bundle demanded by the 
economy (or its agents in sum) at prices p. In other words, at prices (pl  . . . . .  pe), 
the vector of goods that would be purchased is D(p) .  The equilibrium problem is 
to find (and study) under suitable conditions on D, S a price system p * E  Re+ - 0  
such that D ( p * ) =  S(p*)  (equality as vectors). 

Let us write Z ( p ) = D ( p ) - - S ( p )  so that the excess demand is a map 
Z:  R e -O--~R e, and we look for solution p * E  R e+ _ 0 of 

Z ( p * ) = 0 .  (1.1) 

The goal of this section is to put conditions on Z which are reasonable from 
economics and then to show the existence of solutions of (1.1) by a constructive 
method through the differential calculus. This will be done without passing to 
the micro-foundations of the excess demand. Then in Section 2 we will give a 
classical micro-foundational development for the excess demand via aggregation 
of demand functions of individual economic agents for a pure exchange econ- 
omy. In Appendix A, we prove the full Ar row-Debreu  theorem this way. 

Also in this exposition, existence will at first be shown under strong hypothe- 
ses, so that one can see the methods in their simplest form. Later the hypotheses 
will be relaxed. 
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The conditions on the excess demand Z are 

Z :  Re+ -O--~R g is continuous, (1.2) 

Z ( ~ p ) = Z ( p )  for all ~ > 0 .  (1.3) 

Thus Z is homogeneous; if the price of each good is raised or lowered by the 
same factor, the excess demand is not changed. This supposes we are in a 
complete or self-contained economy so that the prices of the commodities are 
not based on a commodi ty  lying outside the system, 

p . Z ( p )  = 0  using the dot product, Y~ p iZ i (p )=0 . (1.4) 
i=1 

This expression states that the value of the excess demand is zero and (1.4) is 
called Walras Law. One can think of this as asserting that the demand in an 
economy is consistent with the assets of that economy. It  is a budget constraint. 
The total value demanded is equal to the total value of the supply of the agents. 
Walras Law is no doubt  the most subtle of the conditions we impose on Z here, 
and a micro-foundational justification will be given subsequently. 

Before we state our final condition on the excess demand we give a geometric 
interpretation of the preceding conditions. Let  Se+ - 1 =  (p  ~Rel II p II 2__ ~](pi)2= 
1 } be the space of normalized price systems. By homogeneity, it is sufficient to 
s tudy  the restriction Z : e- 1 S+ ~ R .  By Walras Law Z is tangent to S e-1 at each + 
point; p. Z(p)= 0 says that the vector Z(p) is perpendicular top .  Thus one can 

g--I interpret Z as a field of tangent vectors on S+ . 

The final condition on the excess demand Z is the boundary condition 

Z i ( p ) ) . ~ O  if f l i = O .  (1,5)  

Here Z(p) = ( Z l ( p )  . . . . .  Ze(p)) ER e and p = (pl  . . . . .  pC). Condition (1.5) can be 
interpreted simply as: if the i th good is free then there will be a positive (or at 
least non-negative) excess demand for it. Goods have a positive value in our 
model. 

Theorem1.1 

If an excess demand Z :  R e+ -O---~R e is continuous, homogeneous, and satisfies 
Walras Law and the boundary  condition [i.e., (1.2), (1.3), (1.4) and  (1.5)], then 
there is a price sys temp*  E R  e --0 such that Z ( p * ) = 0 .  This price system p* is 
given constructively. 
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The last sentence will be elucidated in the proof.  

The proof  of Theorem 1.1 is proved via Theorems 1.2 and 1.3. These theorems 
are general, purely mathemat ica l  theorems about  solutions of  equations systems. 

Theorem 1.2 

Let f :  De-->R e be a continuous map satisfying the boundary  condit ion:  

(Bo)  if xEOD e t h e n f ( x )  is no t  of the fo rm/~x  
for  any/~ > 0. 

Then  there is x* ~ D e with f ( x  * ) = 0. 

Here Oe=(x~Relllxll<<.l ) and ooe=(x~oelllxll=l ). 

We use for the proof  of this theorem two results that  have been  central to 
global analysis and its applications to economics,  the inverse mapp ing  theorem 
(or implicit funct ion theorem) and Sard 's  theorem. To state these results, one 
uses the idea of a singular point  (a critical point) of a differentiable map,  
f :  U--->R ~ where U is some open  set of  a Cartesian space, say R k. We will say 
that  f is C r if its r t h  derivatives exist and  are continuous.  Fo r  x in U, the 
derivative D f ( x )  (i.e., matrix of  partial derivatives) is a linear ma p  f rom R k to 
R ". Then  x is called a singular point if this derivative is not  surjective ("onto") .  
No te  that  if k < n  all points are singular. The singular values are simply the 
images under  f of all of the singular points;  and y in R" is a regular value if it is 
not  singular. 

lnverse Mapping Theorem 

If  y ~ R  n is a regular value of a C 1 m ap  f :  U--->R ~, U open in R k, then either 
f - l ( y )  is empty or  it is a submanifo ld  V of U of  dimension k- -n .  

Here V is a submanifold of U of d imension m = k -  n if given x ~ V, one can  
find a differentiable map h:  N(x)---~(9 with the following properties: 

(a) h has a differentiable inverse. 
(b) N ( x )  is an open ne ighborhood  of x in U. 
(c) 0 is an  open set containing 0 in R e. 
(d) h ( N ( x )  A V) = 0 N C where C is a coordinate  subspace of R k of  d imension m. 

Sard Theorem 

If f :  U--->R n, U c R  k is sufficiently differentiable (of class C r, r > 0  and  r > k - n ) ,  
then the set of singular values has measure  zero. 
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For a proof see, for example, Abraham and Robbin (1967); general back- 
ground material can be found here. We say in this case that the set of regular 
values has full  measure. Both of these theorems apply directly to the case of 
maps f :  U ~ C  where U is a submanifold of dimension k of Cartesian space of 
some dimension and V is a submanifold of dimension n (perhaps of some other 
Cartesian space). In that case the derivative D f ( x )  : Tx(U)---~Ty(x)(V ) is a linear 
map on the tangent spaces. 

The above summarizes the basic mathematics that one uses in the application 
of global analysis to economics. 

Toward the proof of Theorem 1.2 consider the following problem of finding a 
Zero of a system of equations. Suppose f :  D e ~ R  e is a C 2 map satisfying the very 
strong boundary condition: 

(SB) f ( x ) = - x  for all x E O D  e. 

The problem is to find x* E D  e with f ( x * ) = 0 .  We are following Smale (1976a), 
influenced by a modification of Varian (1977); for history see the paper  by 
Smale. 

To solve this problem define an auxiliary map  g: De-E---~S e-1 by g ( x ) =  
f ( x ) / [ ] f ( x ) [ [  where E = { x E D ~ [ f ( x ) = O }  is the solution set. Since g is C 2, 
Sard's theorem yields that the set of regular values of g is of full measure in S e- i 
(using a natural measure on Se- l ) .  Let y be such a value. Then by the inverse 
function theorem g - l ( y )  is a 1-dimensional submanifold which n~ust contain 
- y  by the boundary condition. Let V be the component  of g - l ( y ) s t a r t i n g  f rom 
- y .  So V must be a non-singular arc starting f rom - y  and open at the opposite 
end. Also V does not meet OD e at any point other than - y  by the boundary  
condition and meets - y  only at its initial point, since it is non-singular at - y .  
Now V is a closed subset of D e - E  and so all its limit points lie in E. In 
particular E is not empty and by following along V starting from - y ,  one must 
eventually converge to E. This gives a geometrically constructive proof of the 
existence of x* E D e with f ( x * )  = O. 

We remark that to further explicate the constructive nature of this solution, 
one can show that V is a solution curve of the "Global  Newton"  ordinary 
differential equation D f ( x ) ( d x / d t ) = - X f ( x )  where X= _+ 1 is chosen accord- 
ing to the sign of the determinant of D r ( x )  and changes with x. If D r ( x )  is 
non-singular, then Eulers method of discrete approximation yields 

x ,  =Xn_ ~ -Y- D f ( x , _  1)--lf(xn--1)'  

which, with fixed sign, is Newton's  method for solving f ( x ) = 0 .  Thus the 
"Global  Newton" indeed is a global version of Newton's  method in some 
reasonable sense. M. Hirsch and I have had some success with the computer  
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using the Global Newton as a tool of numerical analysis in solving systems of 
equations. 

Now suppose only that f :  De->R eis only continuous and still sa t i s f i es f (x )=  - x  
for x E OD e. Define a new continuous map  fo:D~-->R e by 

f o ( x ) = f ( x )  for [ Ix l [< l ,  

fo(x)  = - x  for [[xl[ >/1. 

Take a sequence of ei---~O. For  each i we construct a C ~ approximation f /o f fo ,  
so I l f ( x ) - f o ( x ) l  [ < e  i, all x E D  2. One can use "convolution" here. See Lang 
(1969) for details. Let % be a C °~ function on R e such that f % =  1 and the 
support  of % is contained in the disk D r of radius r. 

Then def iner  (y )  -- ffo(Y - x ) % ( x ) d x  = f fo(X)%(y - x ) d x  with r small enough 
1 relative to e i, and always r <  ~. Then f/ approximates f0 and f ( x ) = - x  for 

x E 8D 2. We can apply the result proved above to obtain x i ED~ with f / (x~)=0.  
Clearly x i E D eand also xi--->(x E D e I f ( x ) =  0} as i---> o¢. This proves Theorem 1.2 
in case of the strong boundary condition (SB). Finally, suppose only f :  De->R e is 
continuous and satisfies (BD) as in the Theorem 1.2. 

We will define a continuous map f :  D~-->R e such that f ( x ) = - x  for x ~ 0D~, 
as follows: 

f ( x ) = f ( x )  for Ilxl[< 1, 

f ( x ) = ( 2 - l [ x ] l ) f ( x / l l x l l ) + ( l l x l l - 1 ) ( - x )  for Ilxll/> 1. 

Now by the preceding result there is x*ED~ with f ( x * ) = 0 .  But ][x*]l < 1, for 
otherwise the boundary condition (BD) would be violated. Thus f ( x * ) = 0  and 
the proof  of Theorem 1.2 is finished. 

For the main result on the existence of equilibria, we need to modify Theorem 
1.2 f rom disks to simplices. Define 

A I = ( p ~ R ~ [ ~ , p i = I } ,  a A , = { p ~ A ,  l somep i=0  ),  

 0=(z RerEz'=0), 
and 

Pc = ( 1 / ~  . . . . .  l / e )  EA 1,pc being the center of A 1. 

We will deal with continuous maps q,: A1-->A 0 which satisfy the boundary 
condition: 

(B) q,(p) is not of the form I~(p-pc), # > 0  forp~0A~.  
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If one thinks of q,(p) as a vector based a t p  in 3Dl, then q~(p) does not point 
radially outward in A~ according to condition (B). 

Theorem 1.3 

Let q~ : A x ---~A 0 be a continuous map satisfying the boundary condition (B). Then 
there isp* ~A l with q~(p*)=0. 

For the proof of Theorem 1.3. we will construct a "ray" preserving homeo- 
morphism into the situation of Theorem 1.2 and apply that theorem. Define 
h :  AI---~A 0 by h(p)=p-p¢;  let ~ :  A0--0--+R + be the map X ( p ) =  
-(1/g)(1/miniPi). Then let D=DeNA0;  ~p:D---~h(A1) defined by ~p(p)= 
k(p/[[  p ][)p is a ray preserving homeomorphism. 

Consider the composition a:  D-~A0, 
~b h -1  

D---~h(A1) ~ A1 ~--~Ao . 

We assert that a satisfies the boundary condition (BD) of Theorem 1.2. To 
that end, consider qE3D and let p=~p(q)+p~ =h-l~p(q).  Now by (B) there is 
no # >  0 with ~ ( p ) = ~ ( p - p c )  or w i th /~ (p -pc )  =a (q ) .  Equivalently there is no 
/~>0 with a(q)=l~(q), and since ~ is ray preserving that means a(q)~l~q, 
/~ > 0. This proves our assertion. 

We conclude from Theorem 1.2 that there is q*ED with a(q*)--0;  or if 
p* =+(q*)+pc  then 4~(p*)=0. This proves Theorem 1.3. 

To obtain Theorem 1.1, define from Z:  Re+-0---~R e of that theorem, a new 
map q~:AI~A 0 by qf fp)=Z(p)- (EZg(p) )p .  Note ~ 4 ( p ) = ~ Z i ( p )  - 

Zi(p)~, p i = 0, so that e? is well-defined; q, is clearly continuous. Also if p ~ 3A 1, 
p i = 0  for some i and so qY(p)=Zi(p)~0. Thus (B) of Theorem 1.3 is satisfied 
for ~. Thus by Theorem 1.3 there isp* ~A 1 with ~(p*)---0 or Z(p*)= ~ Zi(p*)p *. 
Take the dot product of both sides with Z(p*) to obtain, using Walras Law, that 
[[ Z(p*)[] 2 = 0  or that Z(p*)--0. This proves Theorem 1.1. 

There can be natural equilibrium situations where D(p*)vaS(p *) as in the 
following one-market example for p = 0. 

Figure 1.2 
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Thus for an excess demand Z: R e -O---~R e, anyp* in Re+-0 with Z(p*)<~0, 
i.e., Zi(p *) < 0 all i, is sometimes called an equilibrium, e.g. as in Ar row-Hahn  
(1971). One might also think of such ap*  as a free disposal equilibrium for after 
destroying excess supplies, one has an equilibrium with Z(p)= O. 

Proposition 

If Z: Re+ - 0--->R + satisfies Walras law, p. Z(p)  = 0, and Z(p*) < 0, then for each 
i, either Zi(p *) = 0 o r  p, i  ~_ O. 

Otherwise for some i, Zi(p *) < 0 and p.i  > 0; and for all i, p*iZi(p*) <~ 0 which 
contradicts Walras Law. 

With weaker hypotheses than those of Theorem 1.1 one can obtain a free 
disposal equilibrium. 

Theorem 1.4 (Debreu-Gale-Nikaid6) 

Let Z: Re+-O--->R e be continuous and satisfy this weak form of Walras Law, 
namely, p.Z(p)<<.O. Then there is p*~Re+-O with Z(p*)<0 .  See Debreu 
(1959). 

Note first that Theorem 1.4 implies Theorem 1.1. For let Z satisfy the 
hypotheses of Theorem 1.1, then by Theorem 1.4 there is p* with Z(p*)< 0. By 
the above proposition, for each i, Zi(p*)=O or p ' i = 0 .  But by the boundary 
condition of Theorem 1.1, if p* ;=0  then Zi(p *) >1 O, so in fact Z"(p*)=0  and 
thus Z ( p ) = 0 .  

For the proof of Theorem 1.4, let/3: R-->R be the function/3(t) = 0  for t < 0, 
and f l( t)=t for t~> 0. Define Z :  Re+-0--->Re+ by ~(p)=/3(Zi(p))  for all i, p. 
Now just as in the proof of Theorem 1.1 above, define ~: A:-->A 0 by 4~(p)= 
Z ( p ) - ( ~ Z i ( p ) )  p. This q~ satisfies the hypotheses of Theorem 1.3 and so there 
is p* cA ,  with ~(p*)=  0 or Z (p* )=  Y.Z~(p*)p *. Take the inner product of both 
sides by Z(p) and use the weak Walras to obtain ~Zi(p*)/3(Zi(p*))<~ O. But 
t/3(t)>O unless t<  0 in which case t/3(t)=0. Therefore Zi (p  *) <~0 all i. This 
proves Theorem 1.4. 

P 

~ D  

Figure 1.3 
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Another generalization of Theorem 1.1, and Theorem 1.4 as well, will be 
proved to account for Zi(p)---~oo as pi--~0, e.g. the phenomenon illustrated in 
Figure 1.3. This theorem, Theorem 1.5 below, is a slight generalization of a 
theorem in Ar row-Hahn  (1971, ch. 2, theorem 3). 

Suppose now that the excess demand Z is defined only on a subset @ of 
Re+-0 where @ contains all of the interior of R e and if p c@, so does Xp for 
each ~ > 0. Consider 

Z: 6~----~R1 is continuous, (1.2') 

Z ( ~ p ) = Z ( p ) ,  all pE@,  ~>0 ,  (1.3') 

p.Z(p)<O,  all p E ® ,  (1.4') 

~,, zi(pk)----~oo if pk---~/3~®. (1.5') 

Theorem 1.5 

Let Z : @ E R  ~ satisfy (1.2'), (1.3'), (1.4') and (1.5'). Then there is a p* E@ with 
Z(p*) <40. 

Let fl: R---~R be as in the previous proof and define a:  R----~R by fixing c > 0  
and letting 

a ( t ) = 0  for t < 0 ,  

= 1 for t/> c, 

= t/c otherwise. 

Define Z:  Re+- 0---~R e by 

Z ; ( p ) = l  if p ~ ® ,  

= ( 1 - a (  ~ Z'(p)))fl( Z ' (p) )+a(  ~, Z'(p))  otherwise. 

Then Z is continuous. 
Just as_ in the_proof of Theorems 1.1 and 1.4 above, define ~: A1---~A 0 by 

q~(p) = Z ( p ) -  Y.Zi(p)p. Then ~? satisfies the hypotheses of Theorem 1.3, and so 
there isp* EA 1 with @(p*)=0 or 

Z(p*)--  ~, Zi(p*)p * . 

First suppose that p* E@. Take the inner product of both sides with Z(p*) to 
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obtain Z(p*).Z(p*)< 0 (using the weak Walras Law). Then 

~ / ( 1 - a (  ~i z i (p*)))  zi(p*)fl(Zi(p*))+°t(  ~ Zi(P*)) E l i ( p * )  

Since for any t, ta(t) >1 o, we have as a consequence that 

( 1 - a (  ~ Zi(p*))) E Zi(P*)]~( Zi(P*)) ~0, 

<0 .  

and even 

~,, Zi(p*)fl( Z'(p*)) < O. 

But tfl(t) is strictly positive unless t < 0. Therefore Zi(p *) < 0 all i. 
On the other hand if p* ~@, it follows f rom the above equation on Z t h a t p *  is 

(1 . . . . .  1 ) l / f  which is in @. So in fac tp* can ' t  be outside 0~. This proves Theorem 
1.5. 

2. Pure exchange economy: Existence of equilibria 

This section has two parts; in the first we make stronger hypotheses and 
emphasize differentiability, while the second is more general. The two are pretty 
much independent. The existence theorems are special cases of the Ar row-  
Debreu theorem; see Debreu (1959) and Appendix A. 

To start with, consider a single trader with commodity space P= (x ERe Ix = 
(x I . . . . .  xe), xi> 0}. Thus x in P will represent a commodity  bundle associated 
with this economic agent. It will be supposed that a preference relation on P is 
represented by a "utility function" u : P---~R so that the trader prefers x to y in P 
exactly when u(x)>u(y) .  The sets u-l(c) in P for c in R are called the 
indifference surfaces. Strong hypotheses of classical type are postulated: 

u: P---~R is C 2. (2.1) 

Now let g(x) be the oriented unit normal  vector to the indifference surface 
u-l(c) at x, c=u(x). One can express g(x) as gradu(x)/llgradu(x)[[ where 
grad u=(Ou/Ox 1 ..... Ou/Ox"). Then g is a C l map  from P to S e- 1, Se-I= (p 
Re[ liP I[ = 1). It plays a basic role in the analysis of consumer preferences and 
demand theory. 

Our second hypothesis is a strong differentiable version of free disposal, 
"more is better", or monotonicity, 

g(x)~PASt - l=in tSe+ -1 fo reach  x ~ P .  (2.2) 
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The word interior is shortened to int. So (2.2) means that all of the partial 
derivatives Ou/Ox i are positive. 

Our third hypothesis is one of convexity, again in a strong and differentiable 
form. For  x EP ,  the derivative D g ( x )  is a linear map from R e to the perpendicu- 
lar hyperplane g(x)  ± of g(x).  One may think of g(x)  ± as either the tangent 
space Tg(x)(S e-l) or as the tangent plane of the indifference surface at x. The 
restriction of D g ( x )  to g(x)  ± is a symmetric linear map of g(x)  ± into itself, 

D g ( x )  restricted to g(x )  ± has (2.3) 

strictly negative eigenvalues. 

We have sometimes called this condition (2.3) "differentiably convex". One 
can restate (2.3) equivalently as 

The second derivative D2u(x)  as a symmetric bilinear form 
restricted to the tangent hyperplane g(x)  ± of the indif- 
ference surface at x is negative definite. 

(2.3') 

We can see the equivalence of (2.3) and (2.3') as follows: Let D u ( x ) :  Re---~R 
be  the first derivative of u at x with kernel denoted by KerDu(x) .  Then 
since v .g (x )  = Du(x)(v) / l lgrad u(x)ll, v E Ker D u ( x )  is the same condition as 
v .gradu(x)=O or  v .g (x )=O or yet v ~ g ( x )  ±. Let vl, v 2 E K e r D u ( x ) .  Then 
v l "g (x )  = D u ( x ) ( v l ) / l l g r a d  u(x)ll and v l . D g ( x ) ( v 2 )  = D 2 u ( x ) ( v l ,  v2) / 
Hgrad u(x)ll. This implies that (2.3) and (2.3') are equivalent. 

Next we show: 

Proposition 2.1 

If u: P---~R satisfies (2.3) then u-l[c, oe) is strictly convex for each c. 

Proof 

We show that the minimum of u on any segment can not be in the interior of 
that segment. More precisely let x, x '  E P  with u(x)>i c, u(x')>> c. Let S be the 
segment ( ? t x + ( 1 - 2 t ) x ' ] 0 < ~ <  1}. Let x* = ? t ' x + ( 1  - ~ * ) x '  be a minimum for u 
on S. Then Du(x*) (v )=O where v = x ' - x ;  since x* is a minimum, 
D2u(x* ) (v , v ) )O .  This contradicts our hypothesis (2.3') that D 2 u ( x * ) < 0  on 
KerDu(x*) .  Therefore u is greater than c on S. 

The final condition on u is a boundary condition and has the effect of 
avoiding problems associated with the boundary of Re+: 

The indifference surface u - l ( c )  (2.4) 

is closed in R e for each c. 
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This may be interpreted as the condition that the agent desires to keep at least 
a little of each good. It is used in Debreu (1959). 

We derive now the demand function f rom the utility function of the trader. 
For  this suppose given a price system p Ein t  Re+ (of course int R e+ = P )  and a 
wealth w E R + = { w E R [ w > O } .  This definition of R+ is convenient though 
maybe not consistent. Consider the budget set B p , w = ( X ~ P l p . x = w  ). One 
thinks of Bp, w as the set of goods attainable at prices p with wealth w. The 
demand f ( p ,  w) is the commodity  bundle maximizing satisfaction (or utility) on 
Bp, w. Note  that Bp, w is bounded and non-empty,  and that u restricted to Bp, w has 
compact  level surfaces. Therefore u has a maximum x on Bp, w which is unique 
by our convexity hypothesis (2.3) (Proposition 2.1). 

Then x = f (p ,  w) is the demand of our agent at prices p with wealth w. It can 
be seen that the demand is a continuous map  f :  int Re+ x R+---~P. Since x = f (p ,  w) 
is a maximum for u on Bp,w, the derivative D u ( x )  restricted to Bp, w i s ze ro  or 
g ( x ) = P / l l  P II- From the definition p . f (p ,  w ) = w  and f (~p ,  ~ w ) = f ( p ,  w) for all 
X > 0. Thus: 

Proposition 2.2 

The individual demand f :  int Re+ x R +---~P is continuous and satisfies 

(a) g ( f ( p ,  w)) =P/[I  P [], 
(b) p . f (p ,  w) = w, 
(c) f ( ~ p ,  ~w) = f (p ,  w) if ~ > O. 

Furthermore we will show the following classical fact with a m o d e m  version 
in Debreu (1972). 

Proposition 2.3 

The demand is C a (and will have the class of differentiability of g in general). 

For the proof, note that f rom Proposition 2.2, we can obtain 

q): P-->(intSe+-I)xR+, q ) ( x ) = ( g ( x ) , x . g ( x ) ) ,  

which is an inverse to the restriction o f f  to (int Se-I~xR++ , . Since ~ is C ~, by a 
version of the inverse function theorem, f will be C 1 if the derivative Dqg(x), of ep 
at an arbitrary x E P is non-singular. To show that D~o(x) is non-singular, it is 
sufficient to prove, Dcp(x) (~)=  0 implies ~/= 0. For  7/ER e, we may write 

Dcp(x)(~/) = (D~g(x)(~), v / 'g (x)  + x" Dg(x)(~/) ) .  

So if Dep(x)(~)=0,  by this expression surely D g ( x ) 0 / ) = 0 ,  so ~ /EKerDg(x ) .  
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But also ~/ .g(x)=0,  ~lEg(x) ~ and we know (3) that Dg(x)  restricted to g(x) ± 
is non-singular. In other words g(x )±A K e r D g ( x ) =  0. This proves Proposition 
2.3. 

Let us elucidate this a bit. From what we have just said we may write R e as a 
direct sum Re=g(x) ± ~ K e r D g ( x )  or write 7/ER e uniquely as 77 =~h +~2 with 
~h .g(x)=0 ,  Dg(x)0 /2)  = 0. See Figure 2.1. 

Here we are basing vectors at x. We may orient the line K e r D g ( x )  by saying 
~/E Ker Dg(x)  is positive if ~/. g(x)> 0. The following interpretation can be given 
to this line: Since Dg(x )  is always non-singular, the curve g - l ( p )  withp =g(x) ,  
p fixed in Se+ -1 is non-singular. It is called the income expansion path. At x ~ P ,  
the tangent line to g - l ( p )  is exactly K e r D g ( x )  (from the definition). This curve 
may be interpreted as the path of demand increasing with wealth as long as 
prices are fixed. One may consider wealth as a function w:P--~R defined by 
w(x) = x.g(x).  Then w is strictly increasing along each income expansion path, 
and in fact g - l ( p )  c a n  be differentiably parameterized by w. 

Suppose now that the trader's wealth comes from an endowment e in P, and is 
the function w=p.e ofp .  Then the last property of the demand is given by: 

Proposition 2.4 

Let Pi be a sequence of price vectors in int Re+ tending to p* in are+ as i---~.  
Then [[f(pi, Pi.e)[[-+~ as i---~.  

Proof 

If the conclusion were false, by taking a subsequence and re-indexing we have 
f(pi,  pie)---~x*. Since u(f(pi, Pi.e))>u(e ) all i, by use of (2.4), x* is in P. 
Therefore g(x*) is defined and equals p*. But since p*~3Re+, we have a 
contradiction with our monotonicity hypothesis (2.2). This proves Proposition 
2.4. 

Ker Dg(x) 

) 

U z C  

g(x) L 

Figure 2.1 
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A pure exchange economy consists of the following: there are m agents, who 
are traders, and to each is associated the same commodity space P. Agent 
number i for i=  1 . . . . .  m has a preference represented by a utility function 
ui:P--->R satisfying the conditions (2.1)-(2.4). We suppose also that to the ith 
agent is associated an endowment e iEP.  Thus at a price system, p ER~+-0,  the 
income or wealth of the ith agent is p . e  r 

One may interpret this model as a trading economy where each agent would 
like to trade his endowed goods for a commodity bundle which would improve 
or even maximize h is /her  satisfaction (constrained by the budget). The notion 
of economy may be posed as follows: 

A state consists of an allocation x E (P)m,  X = (X 1 . . . . .  X,,), X i ~ P together with 
g--1 a price system p E S +  . An allocation is called feasible if ~ x i = Y . e  i. Thus the 

total resources of the economy impose a limit on allocations; there is no 
production. The state (x, p ) E ( P ) m ×  S~ - l  will be called a competitive or Walras 
equilibrium if it satisfies conditions (A) and (B): 

(A) Ex;=Eel. 

This is the feasibility condition mentioned above. 

(B) For each i, x i maximizes u i on the budget set B = {y  E P [ p . y  =P.e i} .  

Note that by the monotonicity condition (2.2) above, (B) does not change if in 
the definition of the budget set p .y = p . e  i is replaced by p . y  < p . e  r 

Note that (B) can be replaced by conditions (B1) and (BE): 

(B1) p . x i =  p . e  i for each i. 

(B2) g i ( x l ) = p  for each i. 

With (A), (B1), and (BE), equilibrium is given explicitly as the solution of a 
system of equations. We will show: 

Theorem 2.5 

Suppose given a pure exchange economy. More precisely let there be m traders 
with endowments e i ¢ P ,  i--1 . . . . .  m, and preferences represented by utilities 
u~: P-->R, each satisfying conditions (2.1)-(2.4). Then there is an equilibrium; 
i.e., there a r e  x i E P  , i= 1 . . . . .  m ,  andpESe+ -1 satisfying (A) and (B). 

We may translate the equilibrium conditions (A) and (B) into a problem of 
supply and demand. Let S: R~+ --0--->Re+ be the constant map, S ( p ) = ~ e  i. Let 
D:intRe+--->Re+ be defined by O ( p ) = ~ . f i ( p , p . e i )  where f i ( p , p . e i )  is the 
demand generated by u~ (Proposition 2.2). Define the excess demand Z : i n t  Re+ 
--->R e by Z ( p ) = D ( p ) - S ( p ) .  We note that the equilibrium conditions (A) and 
(B) are satisfied for ( x , p )  if and only if Z ( p ) = 0  and x i = f i ( p , p . e  ). So if we 
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can find a solution of Z ( p ) = 0  by Section 1, we will have shown the existence of 
an economic equilibrium in the setting of a pure exchange economy. 

Walras Law for Z [(1.4)] is verified directly; if p ~ in t  Re+, 

p ' Z ( p )  = p ' D ( p ) - p ' S ( p ) =  ~ , p ' f ( p ,  p" e i ) -p .  • ei=O. 

Homogeneity, that Z()~p)= Z(p)  for X > 0  is checked as easily. 
To apply the existence theorem, Theorem 1.6, we take @ to be int Re+. It 

remains only to verify the boundary condition (2.5'), that i fp  tends to a point in 
the boundary of Re+ - 0 ,  the Y, Zi(p)---~oo. But that is a consequence of Proposi- 
tion 2.4, using the fact that Z is bounded below. Thus we have shown the 
existence of p* ~ ®  with Z(p*)<0. But by the proposition preceding Theorem 
1.4, it must be that Z(p*)= 0 since Walras Law is satisfied. This proves Theorem 
2.5. 

We give another setting for a pure exchange economy where we use only 
continuous preferences. 

For this consider a preference relation on the full R e + as commodity space 
(rather than its interior P )  represented by a continuous utility function u : Re+---~R. 
We replace conditions (2.1) to (2.4) simply by: 

and 

u: Re+--~R is continuous, (2.1') 

u()~x+(1-)Qx ' )>c if u(x)>~c, u(x')>~c and 0<)~<1 .  (2.2') 

The latter is a strict convexity condition on the preference relation. 
Suppose that to each trader, in addition to a preference of the above type, is 

associated an endowment e i in P. Thus each agent has a positive amount  of each 
commodity. 

Theorem 2.6 

Given a utility ui: Re+--~R for agents i=  1,..., m satisfying (2.1'), (2.2') above and 
endowments ei~P, i= 1 .. . . .  m, there is a ("free disposal") equilibrium (x*, p*). 
Thus: 

(a) Y,x* < ~ei, and 

(b) x* maximizes u i on the budget set {x i ~ R e l p  *.x i <<,p*.ei) at x* for each i. 

Proof 

Before constructing a demand, we cut off commodity space near oo to avoid 
problems with unboundedness. We are able to get away with this because of the 
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feasibility condition. More precisely choose c > II~,e i II and let D c be the ball of 
radius c or D C = {p ~Rel II p II < c). Define an associated false demand function 
fi: (Re+ TO)XR+---~Xc, Xc=DcnRe+,  by takin~g~ at ( p , w )  to be the maximum of 
ui on Bp, w = { x ~ X ~ l p ' x  <<. w ) .  Then since Bp. w is COl;npact, convex, and non- 

empty, by the strict convexity property of ui, f~(p, w) is well-defined. 

Proposition 2. 7 

The false demand f~ : (R  e - O) × R +--->X c is continuous, ~(Xp, )tw) =j~(p, w) for 
X > 0, a n d p  .~(p, w) < w. Also if II J~(P, w)[I < c, then the maximum, f/(p,  w), of U i 

on Bp. w = {x ~ Re+ I P" x < w} exists (the true demand!) and f/(p,  w) =f / (p ,  w). 

Proof 

This is straightforward except perhaps for the last. Let 2i=fi(p, w) with II ~i II < c  
and consider x i EBp, w with ui (x i )  > ui(2i).  Let S be the segment between )~i and 
x i in Re+. For any X~=~.~i o n  S N X  c, u ( x ~ ) > u i ( x i )  by strict convexity (2.2'), 
contradicting the choice of 2 i. This proves Proposition 2.7. 

Next define £3(p) = Y' f i (P,  P" ei), S ( p )  = ~.e i, and ;~ : Re+ - O---~R e by 2~ = £3 - S. 
Then 2~ satisfies the weak Walras Law, so by Theorem 1.4, there exists p with 

2~(p)=0. Thus i f f i ( p , p . e i ) = f c  i, ~,,xi=~,,ei and II~gll <c .  Therefore by Proposi- 
tion 2.7, fCi=xi=fi(p, p "el) and (x 1 . . . . .  x m, p )  is an equilibrium; Theorem 2.6 is 
proved. 

Suppose u; : R~+-->R satisfies: 

No Satiation Condition: ui: Re+--~R has no maximum. 

Then we claim that the commodity vector x i= f i (p ,  w) at the end of the proof 
of Theorem 2.6 satisfies p-f~(p, w)=  w (rather than inequality). Otherwise choose 
x* in Re+ outside Bp, w with ui (x*  ) >1 ui(f~(p, w)) by the No Satiation Condition. 
By strict convexity, as in the proof of Proposition 2.7, we get a contradiction. 
Thus in this case we have that for the excess demand Z ( p )  = Y ' f i (P,  P" ei) --S(p), 
the usual Walras Law is satisfied at equilibrium and we obtain a more satisfac- 
tory interpretation of the free disposal equilibrium (see the proposition pre- 
ceding Theorem 1.4.). 

The question of relaxing strict convexity in Theorem 2.6, as well as questions 
of production, we defer to Appendix A. 

3. Pareto optimality 

Towards the problems of Pareto optimality in equilibrium theory and the 
"fundamental  theorem of welfare economics", we consider abstract optimization 
problems in this section. 
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Our  setting is an  open set W in R" ( W  could  be a smooth  mani fo ld  or  
submanifold  in wha t  follows) together with C 2 functions u i : W-- .R,  i = 1 . . . . .  m. 
One might  think of W as the space of states of society and the members  of  that 
society have preferences represented by the u i. A point  x E W is called Pareto 
optimal (or just opt imal)  if there is no  y ~ W with ui (y  ) >>. u i ( x  ) all i and  strict 
inequality for some i. Such a y could be called Pareto superior to x. If m = 1, an  
op t imum is the same thing as an ordinary maximum.  The point  x E W is a local 
optimum if there is a ne ighborhood  N of x and  x is an op t imum for u 1 . . . . .  u,, 
restricted to N. A point  x ~ W is a strict optimum if whenever  y ~ W satisfies 
ui(y)>>-ui(x ), all i, then y = x  (like a strict maximum).  Final ly a local strict 
optimum is defined similarly. Note  that  these definitions apply  generally, e.g. to 
non-open  W in R ~. The  goal of  this section is to give calculus condit ions for 
local optima. The fol lowing theorem is proved in Smale (1975) and  W a n  (1975); 
we follow the Smale paper  especially, which one can see for more  history. 

Theorem 3.1 

Let u I . . . . .  u m : W---~R be C 2 functions where W i s  an open set in R ". If  x E  W i s  a 
local opt imum, then there exist 2~1," " ", ?'m/> 0, no t  all zero and  

E ?~,Dui(x) = 0. (3.1) 

Further  suppose ~1 . . . . .  A m, x are as above and  

~ i D 2 u i ( x )  is negative definite on the space 

{ v ~ R " l ) ~ i D u i ( x ) ( v  ) = 0 ,  i =  1 . . . . .  m) .  
(3.2) 

Then x is a local strict opt imum.  

Here D u i ( x  ) is the derivative of u i at x as a real valued linear funct ion on R n, 
and D2ui(x) is the second derivative as a quadrat ic  form on R n [one could think 
of DZui ( x )  as the square matrix of second partial derivatives]. Y, YkiD2ui(x) is 
then also a quadrat ic  form. 

Note  that if one  takes m =  1 and  n =  1, the theorem becomes  the basic 
beginning calculus theorem on maxima.  For  m = 1, and  n arbitrary, the theorem 
might  be in an advanced  calculus course. It has  been pointed out  to me  by 
several people that  one can reduce the proof  of  Theorem 3.1 to this case of 
m =  1. However  the direct proof  we will give has some advantages  with the 
geometry and symmet ry  in the u i's. In  the following Im  stands for image. 

Proof o f  Theorem 3.1 

Let P o s = { v ~ R m I v = ( v l  . . . . .  Vm), v i>O) and Pos its closure. Then  the first 
condit ion of the theorem m ay  be stated as there is ~ E P o s - O  with ~ . D u ( x ) = 0  
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(dot product). Here u = ( u l , . . . ,  Urn) maps W into R m. Let x be a local opt imum 
and suppose I m D u ( x ) N  Pos¢q~. Then choose v ~ R "  with D u ( x ) ( v ) E P o s ,  and 
a ( t )  a curve through x in W with o~(0)=x and the a ' ( 0 )=v .  Clearly for small 
values of t, u i ( a ( t ) ) > u i ( a ( O ) ) = u i ( x )  so that x is no local optimum. Thus we 
know that I m D u ( x ) A P o s = q , .  

From this it follows from an exercise in linear algebra that there is some 
X ~ P o s - 0  with X orthogonal to I m D u ( x ) .  Thus X. D u ( x ) =  0, and the first part  
of the theorem is proved. 

Suppose that the theorem (second part) is true in case Xi>0,  all i, and 
consider the general case. Let  the indices be such that X 1 . . . . .  Xk>0,  Xk+ 1 
. . . . .  Xm=0. Then conditions (3.1) and (3.2) are the same for optimizing 
u I . . . . .  u,, at x and optimizing u 1 . . . . .  u k at x. So (3.1) and (3.2) are satisfied for 
u~ . . . . .  u k also; and since by assumption the theorem is true in this case, x is a 
strict local optimum for the u I . . . . .  u k. But then it is also a strict local opt imum 
for u~ . . . . .  um. From this it is sufficient to prove the theorem in the case all the X i 
are strictly positive. 

We may  suppose that x is the origin of R n and u(x)---0 in R m, s o  that the 
symbol x will remain free to denote any point in W. Then the condition that 
0 E W is a local strict opt imum is that there is some neighborhood N of 0 in W 
with ( u ( N ) - O ) A P o s = O .  We will show that under the conditions of Theorem 
3.1, indeed there is such an N. 

Denote by K or KerDu(0)  the kernel of Du(0) as a linear subspace of R n and 
by K ± its orthogonal complement. 

L e m m a  3.2 

There exist r, 8 > 0 with the property that when ]l x ]1 < r, x = ( x  1, x2),  x 1 ~ K ,  

x 2 ~ K  ± and 811x~[I/> IIx211 then X . u ( x ) < 0  if x4=0. 

Proof 

Let H =  Y, X i D2ui(0). By (3.2) there is some o > 0 so that H ( x ,  x)  < - o 1[ x [I 2 for 
x E K .  For  x E R  n, x = ( x l ~ x 2 ) ,  x l ~ K ,  x 2 E K  ±, we may write H ( x , x ) =  

H ( x l ,  x l ) +  2 H ( x  l, x 2 ) +  H ( x  2, x2).  Since I n ( x l ,  x2) 1 < C II x~ I[ II x2 II, [ n (x2 ,  x2)l 
< C~ IIx2 II 2, we choose ~/ ,8>0 so that if 811xll[ 1> IIx211 then H ( x ,  x ) <  -~ l lx l l  2. 
Write by Taylor 's theorem for Ilxll < r ,  u ( x ) = D u ( O ) ( x ) + D 2 u ( O ) ( x , x ) + R 3 ( x )  
where II ~" R3(x)[] < ~/211 x II 2. Taking the dot product with X yields the lemma. 

Now write J = I m D u ( 0 )  and write u in R m a s  U=(Ua, Ub) , Ua~J , Ub ~ J  ±. 

L e m m a  3.3 

Given a > 0  and 8 > 0  there is s > 0  so that if [Ixll<s,  x=(x~,x2), x l~K,  
x 2 E K  ± with IIx211 >~3]lXl[I, then IlUb(X)ll <<~llUa(X)l I. 
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Proof 

The restriction 

Du(0)K~ : K ±- ->ImDu(0)  

is a linear i somorphism so there are positive constants  c 1, c with 
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IIDu(0)(x)ll = IIDu(0)(x2)ll ~ clllx= II all x = ( x l ,  x2), 

~> cllxll if IIx~ll >~811xlll. 

By the Taylor 's  series 

Ua(X ) "~ Ub(X ) = U(X) = Du(O)(x) "I-R(x), 

SO that g i v e n / 3 > 0 ,  we m ay  assume IIR(x)II <311xll  for Ilxll < s o m e  number  s. 
With  R = ( R ~ ,  Rb) we have 

II Ua(X)ll = IIDu(0)(X) +Ro(X)I [ ~>(c -B) I Ix  II, 

and 

II Ub(X)ll = II Rb(X)ll • 3 IIx II, 

say with fl small enough  and  f l / ( c - f l ) < a .  Then  II Ub(X)[[ < a I[ Ub(X)[ 1, finishing 
the proof  of the lemma. 

To finish the p roof  of Theorem 3.1, choose  a of L e m m a  3.3 so that  if 
II ua(x)ll <. '~l[ u.(x)l[ then u ( x ) ~ P o s - O .  This can  be done since ImDu(O)APos  
=0 ,  all the )tis being strictly positive. Choose a disk a round  0 of radius r 0, r 0 < r  
of L e m m a  3.2 and r 0 < s  of  L e m m a  3.3. Let the 6 of L e m m a  3.3. be given by  
Lemma 3.2. N o w  f rom the two lemmas we have that u(x)q~Pos if xva0, 
II x l[ < r0, proving x to be a local strict op t imum and  Theorem 3.1. 

We pass now to an  extension of Theorem 3.1 to the setting of  constrained 
optimization. Thus let C 2 functions u I . . . . .  u m be defined on an  open  set W c R  e, 
subject to constraints given by conditions of the fo rm g¢(x) >1 O, fl = 1 . . . . .  k, with 
g: W---~R of class C 2. One m ay  express the p rob lem by defining W0= { x E  
W] g¢(x)>/0, f l =  1 . . . . .  k} and  seeking condit ions for opt ima of the restrictions 
Ul,..., u m to W o. 
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Theorem3.4 

Suppose x ~ W  o is a local op t imum for the functions u I . . . . .  Urn on W 0, W 0 as 
above. Then  there exist non-negat ive numbers  ~;, FB, not  all zero such that 

~,iDui(x) "4- E ff~Dg~(x) =0, (3.1') 
i = 1  

where 

# ~ = 0  if ga(x)4=O. 

Fur thermore  suppose x ~  W o, ~0 ~> 0, /x~/> 0 with not  all the Ai,/za zero, are 
given so that (3.1') is true. If the bilinear symmetr ic  form 

m 

~ , D 2 u i ( x )  + ~ ~t .D2g~(x) (3.2') 
i = 1  

is negative definite on the linear space 

{ v E R e [ v . ~ i g r a d u i ( x ) = O ,  all i, and  

v.#~ grad g~(x) = O, all a} 

then x is a local strict op t imum for u 1 . . . . .  u m restricted to W 0. 

For  the first part  let us suppose that  g a ( x ) =  0 (by renumber ing if necessary) 
precise ly  for  all r =  1 . . . . .  k, a n d  def ine  q~:W---~R "+k  b y  ~ =  
( U l  . . . . .  Um, gl . . . . .  gk)" Then we claim that  ImDea(x) f lPos=q, .  Otherwise let 
Dq~(x)(v)EPos  and let a(t)  be a curve in W satisfying a ( 0 ) = x ,  a ' ( 0 ) = v .  For  
small enough ~, a(e) is in W o and a Pareto improvement  over a ( 0 ) = x .  So x 
could no t  be locally optimal. So ImDq~(x)nPos=q~ and  there is a vector 
(~1 . . . . .  ~ , , , tq  . . . . .  f f ~ ) E P o s - O  normal  to I m D ~ ( x ) ,  as in Theorem 3.1. This 
proves the first part  of Theorem 3.4. 

For  the proof  of the last par t  we first note, with q~ : W---)R m+k as above, that  if 
x E W 0 is a local strict op t imum for q~ on W, then it is also a local strict op t imum 
for u 1 . . . . .  u m on W o. This follows f rom the definitions. But the hypotheses on x 
in the second part  of Theorem 3.4 imply that  x is a local strict op t imum of ¢ as a 
consequence of Theorem 3.1. Thus  Theorem 3.4 is proved. 

We end this section with some final remarks:  

(1) No te  Theorem 3.1 is the special case of Theorem 3.4 when k = 0 .  
(2) Suppose the g ,  satisfies the Non-Degeneracy Condition at x E W 0. The set 
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Dg~(x)  for fl with g ~ ( x ) = 0  is linearly independent. If  this condition is 
satisfied then in (1) at least one of the 2t i is not zero. 

(3) If in Theorem 3.4 r e = l ,  the first part  is related to the K u h n - T u c k e r  
theorem, and if the Non-Degeneracy Condition is met, one has ~k I = 1. 

Theorem 3.4 is in Smale 0974-76 ,  V) and Wan (1975). See also Simon 
(forthcoming) for further information on this. 

4. Fundamental theorem of weffare economics 

We return to a pure exchange economy as in Section 2, with traders preferences 
represented by C 2 utility functions u~:P---~R, P = i n t  Re+, i - -1  . . . . .  m, satisfying 
the differentiable convexity, monotonicity and strong boundary conditions (2.2), 
(2.3), and (2.4). Also as in Section 2, the maps gi: P--->Se+ -1 defined by g i ( x ) =  

grad ui(x)/ l lgrad ui(x)l I will be used in our approach.  While we do not presume 
that each agent is given an endowment, it will be supposed that the total 
resources r of the economy are a fixed vector in P. 

Thus the set W of attainable allocations or states has the form 

W = ( x ~ ( e ) ' n l x = ( x l  . . . . .  x m ) , x i ~ e ,  E x i = r } .  

The individual utility ui: P-->R of the ith agent induces a map  l)i: W--->R, 
v / (x )=  ui(x~). After Section 3 it is natural to ask, what the optimal states in W 
for the functions v i, i= 1 . . . . .  m, are. The answer is in: 

Theorem 4.1 

The following three conditions on an allocation x ~ W (relative to the induced 
utilities v i : W ~ R )  are equivalent: 

(1) x is a local Pareto optimum. 
(2) x is a strict Pareto optimum. 
(3) g i ( x i )  is a vector in Se+ - x, independent of i. 

Let 0 be the set of x ~ W satisfying one of these conditions. Then 0 is a 
submanifold of W of dimension m -  1. 

In this theorem as in this whole section, we are following Smale (1974-76). 

Proof 

Note (2) implies (1). We will show that (1) implies (3). For this we do not use 
any conditions on ui: P--->R except that the u / a r e  C 1. 
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Thus suppose that x E W is a local optimum. We apply the first part of 
Theorem 3.1 to obtain 2~1 . . . . .  )~,~> 0, not all zero, such that ~ A , . D v ; ( x ) = 0  or 
Y.)~iDu,.(xi) =0. We may suppose that X 14=0 by a change of notation. Apply the 
sum to the vector ~ ( R e )  m with x = ( x l  . . . . .  Zm), Y'Xi = 0  (a tangent vector to 
W). If .~=(:~1,0 . . . . .  0 , - £ 1 , 0  . . . . .  0) with - x l  in the k th  place we have 
~iDui (Xi ) ( .~ i ) '~ I  DUl(Xl)(X1)--~kkDUk(Xk)(.~I)=O for all YI ~ R  e. Thus 
~kDU~(Xk) is not zero all k and equal to hi Du~(xl). This yields condition (3). 

For the equivalence of the three conditions, it remains to prove that if x 
satisfies (3) then (2), x is a strict optimum. So let x satisfy (3) and let y E W with 
vi(y ) >1 Vi(X), all i, or equivalently, ui(Yi) >1 ui(xi), all i. 

We use now: 

Lernma 4.2 

Let u : P---~R satisfy differentiable convexity (2.3). I f y  EP, u(y) > u(x) andyv~x ,  
then D u ( x ) ( y - x ) >  0. Thus also in this case, y .g(x)>x.g(x) .  

Proof 

For t/> 0 and t < 1, Proposition 2.1 (strict convexity) implies that u ( t ( y - x ) + x )  
>~u(x), and so (d/dt)u(t(y-x)+x)]t=o>~O. Therefore by the chain rule 
Du(x)(y-x)>~O. On the other hand by Taylor 's  series if D u ( x ) ( y - x ) = O ,  
u(x + t(y - x)) = u(x) + D2u(x)((t(y - x)) 2) + R 3 which yields by differentiable 
convexity [(2.3')] u(x + t ( y -  x))< u(x) for small t. This lies in contradiction with 
the convexity. The lemma is proved. 

By the lemma, for each i, yi'gi(Xi)>/xi'gi(xi) with inequality in case yi=i&xi . 
Then letp=g~(xi) using (2.8), so Y,p.yi>~ ~ p . x  i with inequality i fyi@x i any i. 
But s incey ~ W, ~yi=r=~,,xi and  Y,p.yi=~P.Xl ,  ThusYi=Xi, each i , y = x  and 
x is a strict optimum. 

For Theorem 4.1 it remains to prove that 8 is an ( m - l )  dimensional 
submanifold. For this we use the inverse function theorem in the form of the 
transversality theorem of Thorn which goes as follows: 

Let W, V be submanifolds of some Cartesian space (or abstract manifolds) and 
let A be a submanifold of V. Thus given y E A ,  there is a diffeomorphism h 
(differentiable map with a differentiable inverse) of a neighborhood U of Y in V 
onto a neighborhood N of 0 in R k, k = dim V, and h(A A U) = NN C where C is a 
coordinate subspace of R ~. Then  a :  W--~V is transversal to A if whenever x E  W 
with a(x )=yEA,  Ty(V)=ImDa(x)+Ty(A).  In other words, the image of the 
derivative D a ( x ) :  T, (W)~Ty(V)  together with tangent vectors to A at y spans 
the tangent space of V at Y. Also one can think of D a ( x )  mapping surjectively 
onto the complement of the tangent space of A in Ty(V). 
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Then the inverse function theorem implies: 

Transversality Theorem 

Let a:W--->V be transversal to the closed submanifold A of V. Then a - I ( A )  is a 
submanifold of W with either a - l ( A )  empty or d i m W - d i m a - l ( A ) = d i m V  - 
dim A (codimension is preserved). 

Here, the dimension is shortened to dim. References with details are Abraham 
and Robbin (1967) and Golubitsky and Guilemin (1973). 

For the proof let a ( x ) = y  CA and apply the usual inverse function theorem to 
the composition ~r o h o a : W--~C ± with h as above, C ± is the orthogonal comple- 
ment of C above and ~r: R ~ C  ± is the projection. 

Now take the W of the Transversality Theorem as the W in Theorem 4.1 and 
let V be the Cartesian product of m spheres, V=(Se-~)  '' and A to be the 
diagonal in V, 

A =  ( y ~ ( S  ~- 1)m l y = ( y  ' . . . . .  Ym),Y, ~se-',Y, =Y2 . . . . .  Ym}" 

Define g:  W--~(S~-I) m by g(x)  having ith coordinate given by gi(xi) where 
gi: P ~ S l - I  is the normalized gradient of the utility of the i th trader. By 
definition [first part  of Theorem 4.1, condition (3)], g - I ( A ) = 0 .  We will show 
that g is transversal to A as follows: 

Let K x = K e r D u ( x  ) where u: W--~R m is the map  with the ith coordinate of 
u(x)  given by ui(xi): Then 

K x = ( x ~ ( R e ) m l x i E R  e, E ~ i = O ,  Y i ' g i ( x i )=O) .  

Let L x for xEO be the set of 2 E T x ( W )  with Dg(x) (Y)ETg(x) (A  ) or 

- -  ~ t n  - -  - -  • Zx= { x E (  R ) ] E xi-O, Dgi( xi)( xi) is independent of i} 

[Eventually we will see that L x = Tx(O ) is the tangent space to 0 at x.] 

Lemma 4.3 

Lx A Kx = 0 for all x E O. Moreover dim K x = m ~-  ~- m + 1. 

Proof 

Let p=gi (x i )  and yi:p±---~p ± be the restriction of Dgi(xi)  to p ± .  Then Yi is 
symmetric with negative eigenvalues [see condition (2.3)]. Also Y, yi -1 is an 
isomorphism since Yi-~ is symmetric with negative eigenvalues and the sum of 
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negative definite symmetric linear maps is negative definite (from linear algebra, 
or look at the corresponding bilinear symmetric forms). 

Let ~EL~f lKx and Dgi(xi)(Y~i)=fi. Then 7i-l(fi)=£i since ~i.gi(xi)=O and 
Y@ = Y~,,.-l(p) = 0  so/7=0.  Thus also ~ i = 0  each i, proving the first part  of the 
lemma. The dimension of K x is easily counted. 

To finish the proof of Theorem 4.1, let us count more dimensions. It  is easy to 
see that d i m W = m e - e ,  dim(Se-1)=mf-m,  d i m A = e - 1 .  From these dimen- 
sions and the lemma, D g ( x )  restricted to K~ maps K s injectively into the 
complement  of Ty(A) in T),((Se-1)m), y = ( p  ..... p). This proves that g is trans- 
versal to A and therefore by the transversality theorem, g - I ( A )  is empty or a 
submanifold of dimension m -  1. However, it cannot  be empty by Theorem 2.5. 
using any endowments e i which sums to r. This finishes the proof of Theorem 
4.1. 

Remark 

By the definitions, Lx= T~(O) and so dim L x = m - 1 ,  and so 

Tx(W ) = T~(O)@K~ (direct sum). 

We give some consequences of Theorem 4.1: 

Corollary 4.4 

Let W be the space of attainable states of a pure exchange economy with fixed 
total resources r as above. Consider the map  u : W--~R" defined by: u(x) has ith 
coordinate ui(xi), i= 1 ..... m, where ui: P---~R is the utility of agent i. Let 0 be 
the submanifold of Pareto optimal points. Then u/O, the restriction of u to 0 is 
an imbedding of 0 into R m. 

Here an imbedding means that  the derivative is injective as a linear map from 
Tx(O)---~R", and the map is injective. 

In fact, the corollary is an immediate consequence of the remark that 
Ker  D u ( x )  N Tx(O ) =0.  

Then since u(O) has codimension 1 in R m, o n e  may define the Gauss map 
G: O---~S m- 1 by letting G(x) be the unit normal to u(O) at u(x), oriented so that 
it lies in Re+. By definition G(x) is perpendicular to the image Du/O(x) or 
G(x).Du(x)(~)=O for all YETx(O ). Since T~(O)OKerDu(x)=O, this is the 
same as G(x).Du(x)(Y)=O for all x = ( x l , - . . ,  x , , )  with Y, YI=0. Thus if we take 
)t = (?~ 1 . . . . .  ~m)=)tx as in Theorem 4.1 and normalized as well, so that [I)txl I = 1, 
then ~x=G(x).  In a certain way the Gauss map  G is the curvature of the 
imbedded manifold u(O), so that  the ~ of Theorem 4.1 may be thought of as a 
curvature. Note that the previous discussion, in contrast to the rest of this 
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article, depends on the utility representations ui, not just the underlying prefer- 
ence. 

Remark  

In connection with Corollary 4.4, it is worth noting that if x ~0,  then it can be 
shown that Du(x )  : Tx(W)--~R m is surjective. If x EO, then the image (see above) 
of D u ( x )  : Tx(W)--~R m has dimension m -  1 and it can be shown that the map u 
is a fo ld  at x in the sense of singularities of maps. See Smale (1974-76); this 
aspect of the subject is developed in work of de Melo, Saari, Simon, Titus, and 
Wan [see Simon (forthcoming) for some references]. 

Corollary 4.5 

Given e E W, there is some x in 0 so that e - x @ K ~ .  Furthermore there is a 
neighborhood N(O) of 0 in W so that for each e ~ N ( O ) ,  there is a unique x in 0 
with e - x E K ~ .  For  an endowment vector e in N(O), e = ( e  1 . . . . .  era) there is a 
corresponding unique Walras equilibrium, (x, p) ,  with x CO, p =g;(xi) ,  all i, and 
the budget condition p . e  i = p . x  i, all i. 

For the proof note that for every x E W the attainability condition of 
equilibrium is satisfied. If  x E 0, then the satisfaction condition defining p = g i (x i )  

for some i (hence all i) is also satisfied. Finally the budget condition p . e i =  p . x i  
all i may be restated as gi (xi)"  (el - xi  ), all i, or simply as e - x E Kx(  = Ker D u(x ) ) .  
Then the first sentence of Corollary 4.5 just re-expresses the existence Theorem 
2.5. The uniqueness theorem, second or third sentence of the corollary, follows 
from the tubular neighborhood theorem of differential topology [see Golubitsky 
and Guilemin (1973, ch. 2, sect. 7)]. While we are following Smale (1974-76, 
VI), this is also close to work of Balasko (1975). 

Towards the final corollary of Theorem 4.1 we give the concept of welfare 
equilibrium. We say that a state (x, p ) E  W ×  S~+ -1 is a welfare equilibrium if x~ is 
a (in this case the) max imum of u i on the budget  set Bp,p .x, ~ (X E P i p .  x = p .  xi} .  
The subset of welfare equilibria in W×Se+ -1 will be called A. From this 
definition it follows that (x ,  p) ,  x = ( x  1 . . . . .  Xm), X i E P ,  p ~S~+ - 1 is in A provided 
(1E) , (2E) hold: 

(1E) ~, ,x i=r .  
(2E) g i ( x i )  =p,  each i =  1 . . . . .  m (from the maximization condition on ui). 

If one has the further data of individual initial endowments, e i E P ,  i =  1 . . . . .  m,  
summing to r, then a third condition (3z), with (1E) and (2E), defines the 
equilibria of Section 2 or the Walras equilibria: 

(3E) P . e i = P . x i ,  i =  1 . . . . .  m. 

The welfare equilibria are called "equilibria relative to a price system" in 
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Debreu (1959). They play a central role in theorems of welfare economics as 
well as non-tatonment dynamics. It is important to distinguish these two kinds 
of related concepts of equilibria. When there is a danger of confusion, we use 
the words Walras equilibria with emphasis on the budget condition (3E). 

A very sharp, though perhaps not general, version of the fundamental theorem 
of welfare economics is the following: 

Corollary 4.6 

All as above, 0, A are (m-1)-d imensional  submanifolds, closed as subsets of 
W, WxS~+ -1, respectively, and the map fl: A---~W defined by (x,p)--~x is a 
diffeomorphism of A onto 0 c W. 

We recall that a diffeomorphism is a differentiable map with differentiable 
inverse so that it is bijective (one to one and onto). 

The usual form [compare Debreu (1959), A r r o w - H a h n  (1971)] states that 
A ~ 0  is well-defined and surjective, i.e., every optimal allocation is supported by 
a price system and the allocation part of a welfare equilibrium is optimal. 

The proof of Corollary 4.6 goes as follows: Define an imbedding a :  W---~Wx 
Se+ -1 by a(x)=(x ,  gl(xO). Then a ( 0 ) = A  using Theorem 4.1; a/O and f l /A  are 
inverse to each other with a/O an imbedding of the submanifold 0. Then A is a 
submanifold and the corollary follows. 

We now indicate how some of this goes without assuming any properties on 
the utilities ui: P--~R besides differentiability, i.e., C 2. Let 0 s be the subset of the 
space W of attainable allocations which consists of local strict optima. Em- 
phasizing no hypotheses on the u i, we still have: 

Proposition 4. 7 

If x ~ W is a local optimum for the utility induced functions on W, then 

(a) there exists h i >/0 not all 0 with ~ i D u i ( x i ) = O  (which implies that gi(xi) is 
independent of i). 

Further let x satisfy (a) and also 

(b) ~iDEui (x i ) ( (~ i )  2) is negative whenever Y, Yi=0, ~i.gi(xi)=O, all i, and 
Yiva0, some i. 

Then x ~ O s. 

For the proof note that the first part is done (Theorem 4.1). The last part just 
goes by applying the second part  of Theorem 3.1; the situation is similar to the 
proof of Theorem 4.1. 
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The condition (b) is considerably weaker than differentiable convexity at x i, 
each i. In general one may hope to circumvent convexity hypotheses by using 
the second-order conditions (as in Theorem 3.1). On the other hand, x may be a 
strict opt imum with no supporting price equilibrium. In that case there is only 
an "extended price equilibrium" [see e.g. Smale (1974-76, III)]. 

We now cons ider  the situation of Theorem 4.1 for commodi ty  space with 
boundary. Up to now in this section the analysis has been interior. Thus suppose 
that trader i, for i = l , . . . , m ,  has a C 2 utility representation ui:Re---~R of 
h is /her  preference (so u i is defined on the full R e ,  not just  the interior). The 
conditions of differentiable monotonicity and differentiable convexity of Section 
2 will be assumed for the rest of this section. We suppose that each u,.: Re+-->R is 
the restriction of a C 2 function defined on some open set of R e containing Re+. 
Then u i off Re+ will never be used. In this way the derivatives Dui (x ) ,D2u i ( x )  
still make sense for x E ORe+ and so the conditions (2.2) and (2.3) make sense on 
the boundary as well. 

Fix a vector r ~ i n t R  e+ of total resources and let W0= ( x ~ ( R e + ) r n l ~ x i = r ) .  
Then W 0 is the space of attainable states of our pure exchange economy. Let W 
be a neighborhood of W 0 in {x E (Re)m i~ .xi = r} on which the functions v i : W ~  
R, can be defined by v i (x )=ui (x i ) ,  i = l , . . . , m .  Let g/k: W--->R be given by 
g~(x)  =xi  k. Then we are in the situation of optimizing several functions subject 
to constraints, or Theorem 3.4. These g/k are constraints as above and bear no 
relation to the normalized gradients of utility functions. The problem of opt ima 
in W 0 relative to the v;: Wo~R is equivalent to optimizing the v~: W ~ R  subject 
to g~(x)  >10. 

Theorem4.8 

For i=  1 . . . . .  m, let ui: Re+--,R satisfy 

grad ui(xi)  

Ilgrad Ui(Xi)H 
=gi(xi)ESe+ -1, each Xi, (4.1) 

and 

D2ui(xi)  o n  g i ( x i )  ± is negative definite. (4.2) 

Suppose W o = {x ~ (R  +)m I~Xi = r) with vi: Wo--->R defined by  vi(x ) = ui(xi). If 
x ~ W 0 is a local op t imum for the vi: 

(a) there e x i s t s p ~ S  e-1 and )t 1 . . . . .  )~m~>0, not all 0, withp>~hiDui(x i )  each i, 
where one has equality in the k th  coordinate if x~vS0. 

Conversely le tp,  x I . . . . .  Xm, ~1 . . . . .  7t,, be as in (a) w i t h p . x i ~ O  each i. Then x is 
a strict optimum. 
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For the proof let g / :W-- .R  be defined as above so that g / ( x ) = x {  are 
constraints for v~ on W. Then the derivatives satisfy Dg/(x ) (E)=E{  where 
EE(Re)  m with E = ( E  1 . . . . .  2m) and N,Y,.=0. Also 2 i=(E]  . . . . .  Y~). If x in W 0 is a 
local opt imum for the v;, then Theorem 3.4 applies to yield the existence of 
2t~>~O, tL{>O, i= 1 . . . . .  re , j= 1 . . . . .  ~, not all zero w i t h / z / = 0  if x/=/=0 and 

Z ~iDui(xl)(xi) + ~" / " t j ~ j = 0 ,  al l  -~i as  a b o v e .  

Take E / =  1, E j = - 1, all other components  of 2 zero to obtain 

J j__ J j XiDui(xi)  +/Z,--X~DUk(Xk) +/~/,, 

where D'ui.(xi) j den0tes - the j th  coordinate of Dui(xi). 
Alternately we see that q=XiDui(xi)+t~i  is independent of i where /~i = 

(/tli . . . . .  ~ei), th>>.O and i~i.x~=O. Note that qv~0, for otherwise all the Ai and/~i 
would be zero [recall Dui(xi)5t=O]. Let P=q/llq[I and multiply through q.= 
}kiDui(xi)+]l,i by 1/]lq[I. By renaming the A~, ~i we have now 

p = A i D u i ( x i ) + l h ,  /~i> 0, ~ki>O , ~£i'xi=O. 

This yields the first part  of Theorem 4.8. 
For  the converse let y E W  o, ui(Yi) ~/ Ui(Xi) , i= 1 . . . . .  m, Xi, YiERe+. We must 

show that y~=x i for each i. By the first lemma in the proof of Theorem 4.1, 
Dui(xi)(Yi-xi) ~ 0 with equality only if Yi=xi . By our main condition above 
P'Xi=~iDui(xi)(xi) and so Aiva0 since p .x i~O.  Then by this same condition 
p'(Yi--Xi) ~ I~i'Yi o rp ' y  i >~p'xi, with equality only i fy i=x i ,  each i. On the other 
hand ~ y i = ~ x i = r ;  putting this together indeed yields yi=xi  each i. This 
finishes the proof. 

Remark 

Note that if u~ satisfies the stronger monotonicity condition, that Dui(xi)E 
e--1 int S+ , thenp.xi4=O in Theorem 4.8 can be omitted. 

Say that (x, p )  is a welfare equilibrium (as before), or (x, p ) E A  C WoXSe+ - l  if 
x~ is a maximum of u~ on the budget set Bp,p .x=(xERe+lp ' x<p .x i ) ,  each i. 
Thus for ( x , p ) ~ A ,  ~,xi=r , since x ~  W o. 

Proposition 4.9 

If ( x , p ) E A ,  then there exist numbers ~k i ~ 0 ,  i = 1  . . . . .  m, and t~iER e, /~ i>0 
with x i •/~i = 0 and p = h i • Dui(x  i) + I~i. Conversely, given (x, p )  E W o x Se+ - l, with 
p .x i  ~0 ,  all i, and hi, I~i as above wi thp=Ai .Dui (x i )+ t t i ,  then (x, p ) E A .  
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Proof 

Since x i is a m a x i m u m  of u i on  Bp p x,  for  each i, there exist ;k i I> O, ~i ERe+ 
o i >10 not  all zero, with 

X i D u i ( x i ) ( 2 i ) +  ~, ~ { D g / ( x i ) ( 2 i ) - o i P . 2 i  = 0 ,  all 2i  E R  e, 

or  

oiP=}kiDui (x i ) - - ] -~ i  , ]~i.xi = 0 .  

If the o i were 0, then so would be h i,/z i. Thus we may  rescale by  dividing by  o i to 
obtain p = XgDui(xi)+/~,.,/~i'xi = 0. This proves the first part. For  the second let 
YiEBp,p.x, with u(yg)>u(xi) .  Then  by  L e m m a  4.2 in the proof  of Theorem 4.1, 
D u i ( x i ) ( Y i - X i ) > O  , and P'Yi >>'Yi'XiDui(xi)>P'Xi' ~ki=/=O, as in an earlier argu- 
ment. Then yiEBp.p.x,, contrary  to hypothesis.  Thus  (x, p ) E A .  This proves the 
proposition. 

For  the rest of  this section, let us assume for  simplicity the strong monotonic-  
ity hypothesis, tha t  Dui(xi)EintSe+ -~. The projection m a p  W0× e-l S+ ~W0, 
(x, p)---~x, induces a m ap  a : A---~0, f rom welfare equilibria to Pareto optima. By 
the proposi t ion above  and  Theorem 4.8, a is well-defined and it is surjective. 
While these results have an extensive literature under  the topic of " fundamenta l  
theorems of welfare economics",  the question of  uniqueness of a support ing 
price system seems not  so standard.  Is a injective? 

The answer is affirmative under  the further mild hypothesis  of  "no  isolated 
communit ies"  [Smale (1974-76,  V)]. For  x E W o, an isolated community is a 
non-empty  proper  subset SC_(1 . . . . .  m} with the property that wherever i E S  
and x{ v ~ O, then x~ = 0 for  all k ~ S. 

Theorem 4.10 

If  x is an op t imum in W 0 with no isolated communit ies ,  then there is a unique 
support ing price system. 

Here we are supposing W 0 is the space of  at tainable states; the utility 
functions ui:Re+---~R are C a with D u i ( x i ) E i n t S  e-l a n d  D2ui(x i )<O on 
KerDui(x i ) .  

Lemma 4.11 

Suppose x E W 0 has no isolated communit ies  and  i, q E { 1 . . . . .  m) are two agents. 
Then there is a sequence i~ . . . . .  i n of agents with i I = i, i n = q, and a sequence of 
goods Jl . . . . .  Jn such that  x / ~ 0 ,  all k and for  any  k, e i t h e r j k + l = j k  or ik+l=i  k. 
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Proof 

Otherwise take any agent, say agent number 1 for convenience, and consider all 
above such sequences (i 1 . . . . .  in), (Jl . . . . .  Jn) with i 1 = 1. Let S be the subset of 
(1 . . . . .  m} of all possible i,, reached in this way. If S is proper, then it is an 
isolated community. This proves the lemma. 

To prove Theorem 4.10, first obtain p, Xi,/~g as in Theorem 4.8, with p =  
~kiDui(xi)+~i, ~ki~O , ~i~Rg+ and ]~i'xi=O. The problem has to do with the 
ambiguity of the Ai,/~,. Suppose by renumbering, that agent 1 has some of the 
first good so x~v~0. Normalize p by taking p l = l  (and not I [p[ l=l) .  Then 
1 = p l = A l D u l ( x l )  1 since /~]=0, and Al is thus determined. Let q be any other 
agent; choose a sequence (i 1 . . . . .  in), i1= 1, in= q, (Jl . . . . .  in) as in the lemma. 
We claim that Agk is determined for each i~. Suppose inductively that Agk_, is 
determined, and ik4 = i k_ r Then Jk =J~,-1, both agents ik and i k_ 1 have some of 
goodjk. Thereforep j*-- ~ik_l Duik_,(Xik_l )jk determinesp jk andp  j* = ~kikDuik(Xik )jk 
determines ~,.. Here we used the fact that the corresponding/~[ 's are 0. Once all 
the ~g's are determined uniquely, let k be any good. Choose i so that x/kv~0. 
Then pk = hi Dui(xi)k de te rmines  pk. This proves Theorem 4.10. 

5. Finiteness and stability of equilibria 

The first goal is to give a proof that the pure exchange economy described in the 
first part of Section 2 has only a finite number of Walras equilibria, at least for 
almost all endowment allocations. At the same time we show that these equilibria 
are stable (better "robust") in the sense that they persist under perturbations of 
the endowment allocation. These results are due to Debreu (1970). Our ap- 
proach to this result is to define an "equilibrium manifold" without passing to 
the demand functions. The hypotheses, framework (pure exchange economy), 
and notation will be the same as in the first part of Section 2. 

Thus define the equilibrium "'manifoM" Z as follows: The space ( P ) m x ( p ) m  
consists of (e , x ) ,  e = ( e  1 . . . . .  era) , X = ( X  1 . . . . .  Xm) with el, xi~P. Here e will be 
thought of as an endowment allocation parameterizing an economy. Then X will 
be the subset of (p)m)< (p)m of (e,  x )  satisfying: 

~, e i = ~, Xg (a total resource or attainability condition), 

gi(Xg) is independent of i 

(the first-order condition; 

gi( xi)  = grad ui( x i)  /[[grad ui( xi)l] ), 

p .  ( e i -  x i) = 0 (budget condition). 

(5.1) 

(5.2) 

(5.3) 
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Thus if e is fixed, (e, x ) E  Z, then (x, p)  wherep =-gi(xi), is a Walras equilibrium 
and conversely [see Section 2, (A), (B 0, (B2) ]. 

Theorem 5.1 

Y. is a submanifold of (P)mx (P)m of dimension mL 

Proof 

Define a map 

t~: ( e ) m x ( e ) m - - - ~ R e X R m - I  X (Se-1) m, 

by sending 

(e, x ) ~ (  • e,- Y~ x i , p. ( e , -  x l )  . . . . .  p.  ( e , , , _ , - x  m_ ,), gl(xl  ) . . . . .  g,,,(Xm) ) . 

Then from the definition of E we may write E = q , - I ( 0 x O x A )  where A---- 
( (p  . . . . .  p )  E ( S  e- l)m), and we have used the fact that conditions ~.ei= ~.x i and 
p . (  e i -  xi)=O, i= 1 . . . . .  m -  1, imply p(  em- Xm)=O. 

As in Section 4, Theorem 5.1 would be a consequence of 0 being transversal 
to 0 x 0 x A, using a simple counting of equations. Following the line of proof of 
Theorem 4.1; if 0(e,  x) EA define 

Le,x = {(e, .,~)E(Re)mX(Re)mlDo(e, x)(~., ~)EOXO× T(A)), 

or, equivalently, from differentiating (1), (2) and (3), 

Le,~= ((e,  x )  E (ge)m X (Re)m[ ~ ei = ~,, x i ,Dg i (x i ) ( x i )  =fiEp ± , 

p" ( ei-- x i )  .-I-p. ( ~i-- ~i) =0). 
Here we takep=gl(Xl )  and /7= Dgl(Xl )(yl ). 

Now we define a second linear subspace Ke, x of (Re)m× (Re) " by 

Ke,~ = (g, 2)[ ~] ~i=0, ~,'p=O, i<m--  1, qrSi=O, i<~m-- 1}. 

Here 7rp: RL.->p ± is the orthogonal projection so that Yi = ~pei + P ' e i ,  each i. This 
space Ke, x is motivated only by the proof of Theorem 5.1. Clearly dim Ke, x = mg, 
and one also can see that dim Rex R m- l× (S  e- 1) , , ,  dim A----me. Thus if Le, x f-) 
Ke, x=O, we have that 0 is transversal to 0XOXA, just as the situation was in 
Section 4. 
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Lemma 5.2" 

Le, xYlge, x=O. 

For  the lemma let (~, ~) belong to the intersection. As in Section 4, ~/; : P ±--~P ± 
denotes the restriction of Dg i (x  i). Then ~ ~i = 0 since Y. ei = 0 and ~, ei--" ~ x i .  So 
~i.p=O, all i, and ~//-l(/~)=~i, each i. Also ~ , % - 1 ( / ~ ) = ~ i = 0  and i f=0 ,  
therefore xi = 0. Finally one sees that ei = 0 proving the lemma and hence the 
theorem. 

We emphasize that we are taking ui: P---~R, i= 1 . . . . .  m, as in the first part  of 
Section 2. 

Theorem 5.3 

There is a closed set F c ( P )  m of measure 0 so that if eq~F then there exist a 
finite (positive) number  of Walras equilibria relative to the endowment e =  
( e  I . . . . .  era). This finite set varies continuously in e as long as e does not meet F. 
Let ~r : (P)m× (p),~__~(p)m be the projection defined by ~r(e, x ) =  e. Let ~r0: Y~---~ 
(p)m be the restriction of ~r. 

Lemma 5.4 

The map  ~r0: E--~(P) '~ is closed. The image of a closed set is closed. 

Proof 

Consider a sequence (e(J),x (j)) in ( P ) " X ( p ) m , j = I , 2 , 3  . . . . .  SO that e (J) con- 
verges to e E ( P )  m. Then by the equilibrium conditions defining Z, and the 
boundary  condition on u i, the x (j) have a subsequence converging to some 
x ~ ( P )  m. This is enough to show that ~r 0 is closed. 

Let CCY~ be the closed set of critical points of % and F = % ( C ) .  Then F is 
closed by Lemma and has measure 0 by Sard's theorem. Theorem now is a 
consequence of the inverse function theorem applied to the map ~r o. 

A study of comparative statics of equilibria can now be done using these 
theorems. 

While the above approach comes from Smale (1974-76) a closely related way 
of proving Debreu's  theorem is in Balasko (1975). 

Appendix A. Existence of economic equilibrium with production 

We prove the theorem of A r r o w - D e b r e u  on the existence of economic 
equilibrium with production as treated in Debreu (1959). The reason we include 
the proof is to show that calculus can indeed be the starting point of equilibrium 
theory with proofs at least as short and natural as those emphasizing Kakutani 's  
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fixed point theorem. On the other hand, our approach has much in common 
with that of Debreu; we owe much to his exposition as well as to conversations 
with him. 

Here the treatment is brief. One can see Debreu (1959) for economic interpre- 
tations. The proof here is based on Theorem 1.5, and it is somewhat similar to 
the proofs in Section 2. 

An economy consists, first, of a production side. We suppose ~ commodities 
including labor. To  each of n producers, j = 1 . . . . .  n, is associated a "technology" 
Y2 C Re with the conditions: 

(T) (a) 0 E Y2, each j (possibility of no production). 

Let Y= ~ Yj, 

(b) Y f ~ ( - Y ) =  (0) (an irreversibility condition). 

(c) Y is closed and convex. 

(d) Y - R e +  c Y (free disposal). 

It can be shown that (d) is a consequence of YD -Re+ in the presence of (c); 
see Debreu (1959). Here Y2 may be thought of as the set of productions that are 
available to firm j .  We suppose that the firm is driven by profit maximization. 
Thus if a price system p is operative, the production y E Y, is sought so that the 
profit p .y is a maximum. 

Pass now to the consumer side of the economy. To each of m consumers, 
i = 1  . . . . .  m, is associated a "consumption set" S i c R  e and a utility function 
ui: Xi---~R which represents  h is /her  preference. The following is assumed: 

(c) (a) X i is a closed convex set. 

(b) X i is bounded below. 

That  is, there exist d 1 . . . . .  d ,  E R e with S i C ( x  ~ g e l x  >I di)  o r  S i ~ d i. (Here 
x >1 d i means that each component  of x is /> the corresponding component  
of dl. ) 

(c) u i satisfies the convexity condition: if x , x ' @ X  i with u i ( x ) > u i ( x ' ) ,  

then u i ( t x + ( 1 - t ) x ' ) > u ( x ' )  for each tE(O, 1). 

(d) u i has no maximum (no satiatfon condition) 

R e m a r k  

One could have used directly a preference relation here, as in Debreu (1959), 
rather than utility function. No generality is gained as one can see in Debreu 's  
paper. 



364 s. Smale 

Furthermore, to each consumer is associated an endowment e i ~ X  i with e i 
having all coordinates strictly larger than some element of X i. As in Debreu 
(1959), this is an unhappy hypothesis. Finally (private ownership economy) let 
Oi, be the share of agent i in firm j .  Then it is assumed that 0 < 0 u <  1 and 
~m= IOu= 1. If a price system p prevails, then the wealth of agent i is given by 

w i =p.  e, + ~,jOijP .yj. 

A n  equilibrium for an economy above is a "state" ( x , y , p )  with xEHm=Ixi ,  
y E I-[]= 1Yj, p E Se+ -1 which satisfies 

A) Attainability, or ~ x i = ~ y j + ~ e  i. 

B) Each consumer maximizes satisfaction or: 

x i is a maximum of u~ on the budget set 

B= { - ~ E X i l p ' x < p ' e i +  ~Oi jP 'Y j ) .  
J 

C) Each producer maximizes profit  or: 

yj is a maximum of lip on Yj, where 

lip : Yj~R is r i p ( y )  =p-)7. 

Arrow-Debreu Theorem 

For  an economy above there is always an equilibrium. 

We first give a proof under additional restrictions; then we extend that proof 
to the General A r r o w - D e b r e u  Theorem. 

Theorem A.1 

Suppose that the economy described above satisfies the further conditions: 

(1) Each Yj is closed and strictly convex. 
(2) Each u /has  the strict convexity property of Section 2 or, more precisely, if 

ui(x ) > c, ui(x'  ) > c and 0 < t < 1, then u(tx + (1 - t)x') > c. 

Then there is an equilibrium. 

Toward proving Theorem A.1 we use the following basic lemma for which 
Bowen gave me this analytic version of my more geometric account: 

Lemma A.2 (basic estimate) 

Let Y be a closed convex subset ofR e with Y n ( -  Y ) =  {0) and YD -Re+. Then 
given b ~ R  e and n > 0  there is a constant c so that i f y  1 . . . . .  y,  E Y  and ~ ,y j>b  
then II&ll < e  eachj .  
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For  the proof  let K =  {y E Y Ill y II = 1 }. W e  prove  three assertions: 

Assertion 1 

The origin 0 of R e is not  in the convex hull of g .  
If  a~xl+ . . .  "~OLrXr=O with O ( c t i <  1, 0~1+' '"  +Otr= 1 , x i E g  , then 

- - 0 t l X  l = 0 g  1 " 0 " 1 - a 2 3 ¢ 2 - 1 -  • . . q-arXr E Y ,  

and alx 1 clearly is in Y. Thus a l x  1 ¢ Y M ( - Y )  reaching a contradict ion.  

Assertion 2 

There  is a q = ( q l  . . . . .  qe)ER e, each qi>O, such that  q.x<O for  every XEK.  

As K is compact ,  so is its convex hull. By Asser t ion 1 there is a q in R e with 
q.K<O. If e i is a coordinate  basis vector  then - -e iEK and  - - q i = q . ( - - e i ) ( O .  

Assertion 3 

There  are constants  e > 0, fl > 0, so that  if x E Y then q. x < fl + e -  e II x J]. 

Let - e = m a x ( q . x [ x E K )  and  f l=max(q .x  I I[xll < 1). T h e  inequali ty is clear 
if II x [I << 1. For  II x I[ > 1, x E Y, and  one has  x~ I] x 1[ E K  since Y is convex  and  
contains  0. Then  -~>~q'x/llxfl  or q.x< -~ l lx l l .  

We finish the p roo f  of L e m m a  1 as follows: Suppose  Y~yj ~ b w i t h y j E  Y. Then  

q.b < Y.q'yj<n(fl+~)-eY.llYj][, so Y'IlYj [I "<< (n ( f l+e) -q .b ) / e .  

An analogous  l e m m a  for the consumpt ion  side is: 

Lemma A.3 

Given  c 1 ER e, there is a > 0  such that  if xi~Xi ,  Xi>/d i [as in (C) above]  for 
i =  1 . . . . .  m, and  Y.xi<<.c 1, then Ilxil] -<<a, each  i. 

We omit  the very  easy proof.  

N o w  let b = Y . d i - ~ e  i and choose c as in L e m m a  A.2, so that  if ~,yj>~ b, then 
Ilyj II <e ,  each j .  Let  Yj.= YjAD c where Dr= (yEDe[ ][y 1[ < r ) .  For^p ERe+ --0,  let 
S j ( p ) = t h e  m a x i m u m  of l ip :  Yj--~R where IIp(y)=p.y.  T h e n  Sj is the "false 
supply funct ion"  of  f i rm j .  

Lemma A. 4 

~ - R e + - 0 ~  is well-defined, cont inuous,  ~ ( ? , p ) = S j . ( p )  for ) t > 0 ,  and  if 
IISj(P)II < c ,  then ~ ( p )  is the m a x i m u m  of H e on Yj (the t rue  supply). 

This is clear f r o m  the definitions, recalling that  we are in the si tuat ion of 
T h e o r e m  A. 1, so that  ~ is strictly convex. 
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Remark 

If Yj is merely assumed closed and convex (not necessarily strictly convex), one 
still has ~ defined as a correspondence; i.e., 4 :  Re+-0--->S(~) is a map with 
values, convex subsets of Yj. It is homogeneous and when restricted to S e-1 has 
a compact graph 

Furthermore in this case if y E ~ ( p )  has norm i[Y L[ <c,  then y is a maximum of 
IIp on Yj. Note that Ylp(y) is independent o f y E S / ( p ) .  

Define ~i: Re+ -O--->R, the "false income" of consumer i, by ~i (p )=P.e i  + 
~ j O u p . ~ ( p ) .  Then wi is continuous. Let b, c, e, be as above and choose c I E R  e 
such that Y . y j + e < c  1 if Ily:ll<c each j .  Choose a by Lemma A.3 and let 
X i = X i A D a  • 

Define a "false demand" / ) , :  Re+--0----->S i f o r  e a c h / b y / ) i ( p ) - - t h e  maximum 
of u i on/}p = {x E)(i[ p .x < ~i(P)} (compare Proposition 2.7). 

Lemma A.5 

The false demand /);: Re+-0--->)~ i is well-defined, continuous, 19i (~p)=Di(p)  
for ~>0 ,  a n d p . D i ( P ) = w i ( P ) .  Also if 11/Si(p)ll < a  then ~i (P)  is the maximum 
of Ug on the budget set Bp= (xEXilp .x  <<. ¢'i(P)) a n d p ' D i ( P ) = w i ( P ) .  

The proof uses the same arguments as that at the end of Section 2, uses the 
No Satiation Condition, and the convexity of X;. The continuity uses the fact 
that e/dominates some element of X,. (the basic hypothesis on el). We leave the 
detailed proof, which is not difficult, to the reader. 

Remark 

In case u i satisfies the convexity condition (c) of (C) rather than strict convexity 
of Theorem A.1, then /)i is defined as a correspondence with values, convex 
subsets of X i. It is homogeneous, and the restriction/)i : Se- ~ " + --->a i has a compact 
graph. Also if x E D  i satisfies Ilxll <a ,  then x is a maximum of u i on {~EXilp.~ 
< wi(P))  a n d p ' x = w i ( p ) .  

Now define these aggregate functions from Re+-0 to Re: S = ~ 4 - b Y ~ e i ,  
/9=Y'/)i~ and 2 ~ = / ) - S .  From Lemmas A.4 and A.5, 2~ satisfies homogeneity 
and weak Walras, so Theorem 1.5 applies to produce * e-~ p ES+ with Z(p*)<0 .  
Le ty  7 = $7 (p*), x* =/)j(p*), so then Y,x* <<. Y'Y7 +~ei"  Since each x* E X i c X i ,  
this implies b< Y, yj* (definition of b). Thus IlyTIl<e (Lemma A.2), and by 
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Lemma A.4,y* is the maximum of ~p  on Yj. By the choices of c I and a, via 
Lemma A.3, IIx? II < a ,  each i. By Lemma A.5, x* is the maximum of u i on 
(~ EXilP*. Y < #i(p*)) ,  with ki(P*) =P* "ei -1- ~' jOijP* "Y?" 

We may choose zERe+ so that Y .x*=~y*+Y ,e~ - z .  Applyp*  to this to see 
(using Lemma A.5 a g a i n ) p * . z = 0 .  Then ~ y * - z  is in Y=YWj by (T)  so we 
have yj ~ Yj. with ~ y /=  Y.yj.* - z. Then p.  ~ y / = p -  ~yj*,  which implies that y/also 
(as well as YT) maximizes H e on Yj, and (x*,  y/, p*) is an equilibrium, proving 
Theorem A.1. Note in fact yj=y7 by the strict convexity, but our argument 
covers the more general case of Theorem A.6. 

We next weaken the convexity hypotheses of Theorem A.1 by using the 
approximation theorem of Appendix B: 

Theorem A. 6 

Theorem A.1 remains true if each Yj is closed and convex (rather than strictly 
convex), and instead of the strict convexity hypothesis on each u;, we only 
assume (C) as in the Ar row-Debreu  Theorem. 

Proof 

Proceed as in the proof of Theorem A. 1. As in the remark after Lemma A.4, we 
~--1 ^ can consider ~ :  S+ --->Yj, j =  1 . . . . .  n, as correspondences. 

Suppose e > 0 is given. Apply the theorem of Appendix B to obtain continuous 
functions ~ :  Se+ - l__>~ for each j =  1 . . . . .  n, with Fg+ cB,(Fg ). Next note that 
~ : Se+ - 1-+R, defined by ̂ l~i(p) =p'e+ + ~jOij p • ~(p) ,  "is a well-defined continu- 
ous function, even with Sj a correspondence. As in the remark after Lemma A.5, 

^ . e-l___>)~ i defined as a correspondence. Apply the theorem we can consider D i . S+ 
of Appendix B to obtain functions JVie: Se+-l>Xi such that Ffi, cB~(Ffi,) and 
Ip.fi,~(p)-r~i(p) I <e, al lp  ESe+- k 

Define Z~: Se+-L+R e by Z~(p)=Y, D i ~ ( p ) - E ~ ( p ) - Y , e  i, and Z,~(p)=Z~(p) 
- (p. Z,(p))p. Thenf l .  Z~(p) -- 0 and p. Z,(p)-+O as e-+0. Apply Theorem 1.5 to 
obtain p~ such that Z~(p~)=0. 

Let yj~=~(p~), xi~=Di~(p~). Now take a sequence of ek tending to 0. By 
taking subsequences we obtain yj,--~yj, xi~---~x~, p~/-~p to obtain an equilibrium. 
This finishes the proof of Theorem A.6 as in Theorem A.1. 

Now we give the proof of the General Ar row-Debreu  Theorem. We need: 

Lemma A. 7 

Let~ 'deno te  the convex hull of a subset Z of Euclidean space. Then 
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Proof 

Since ~Y,. is convex it contains Y~Y,. We will show A'+ " f f c A ~ .  Let a,. >/0 with 
Y~ai---l. ~Then A'~+yc~'-~ since~ ~aixi+Y---~ai(xi+y). Therefore A ' + B c  
~-+--~. Finally B+A'cB"-+--~cA-"~-ff,, showing indeed that A-'+B'cA"'+-B. By 
induction the proof of Lemma A.7 is finished. 

With the hypotheses and notation of the beginning of Appendix A, let Y7 be 
the closure of the convex hull of Yj. Recalling Y= Y~Yj, we have: 

Lemma A.8 

EYT=Y.  

Proof 

Since Yjc YT, Y'YTD~'YJ • On the other hand, since the sum of the closure of 
sets is contained in the closure of the sum, it follows from Lemma A.7 that 
~Yj* c Y (recall Y is closed and convex). This proves Lemma A.8. 

Apply Theorem A.6 to obtain an equilibrium (x*, y*,p)  for the economy 
above with Y7 replacing Yj. Now Y~yj* ~ Y (Lemma a.8) and so Y'Y7 =Y~YJ=Y 
with yj E Yj. 

Furthermore p .yj =p .y*. This is so since y/* is a maximum of IIp on Y7 and 
thereforey is a maximum of lip on Y. This implies (sincey = Y~y/) that IIp(yj) is 
at least as much as IIp(y*) and hence equal. The rest follows and the Arrow- 
Debreu Theorem is proved. 

Appendix B. A theorem on the approximation of multi-valued mappings 

We prove the following theorem of Cellina (1969), using extensively an unpub- 
lished exposition of W. Hildenbrand: 

Theorem B. 1 

Let K be a compact set (say in some Euclidean space), T a compact convex set 
of R e, and ~p : K--+S(T) a correspondence with values convex subsets of T such 
that the graph F~ -- ( (x, y )  ~ K x T [ y E ep (x) } is compact. Then given e > 0 there 
is a continuous funct ion/ :  K---~T such that 1PfcB2,(]7~). / 

Here Ff is the graph of f i n  K ×  T and B2, is the open set of all points of K x  T 
within 2e of F~. 

For the proof define cpS:K-+S(T) by ep*(x)=convex hull of [..Jy~Bn(xfp(y ). 
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Lemma B.2 

Let e > 0  be given. Then there is a 6 > 0  such that F~0~ cB~(£~o ). 

Proof 

If the lemma were false, one could take 6= 1/n and obtain a sequence (x , ,  Yn) 
in K ×  T, with (x, ,  yn)~B~(F~), all n, andy~ = Y.N~y/, Z~i~ = 1, N~ > 0,y/~cp(z~), 
d(zi~, x,,) <~ 1In. By taking subsequences, i i i " " we get Xn----~x, y;~----~y , ~ n - - ~ n ,  Zln--->ZJ = X. 
So y = ~ i y i ,  ~ i > 0 ,  ~,,~i_. 1 and ( x , y  i) is in the closure of F~0. Since ~0(x) is 
convex, (x, y)  is in the closure of F~0, contradicting (x, ,  y~)~B~(F). The lemma 
is proved. 

Next let 6 be as in the lemma and 

Uy=(X~Kly@B(qg'~(x))) foreach y E T ,  

and then choose Uy,, . . . .  Uy, a finite covering of K. Let fli be a corresponding 
partition of unity so fli: K~[0,  1], i=  1 . . . .  , k, are continuous functions, fl~(x)=0 
exactly if x ~  U~ and Y, fli ~ 1. For example, one could take 

.;(x) 
/ ~ i ( X ) =  k where cg(x)= inf d(x ,x ' ) .  

x,~Uj 
E "A x)  

j = l  

Define f ( x )=~ f l i ( x ) y  i. Then f is clearly a continuous function, f :  K---~R e, such 
that for x ~K, f (x )  is a convex combination of those points Yi such that x ~ Uy, 
or Yi E B~(cp~(x)). 

Since an e-neighborhood of convex sets is convex, B~(cpa(x)) is convex and 
f ( x )  is in it. Therefore (x, f(x))EB~(F~O and by the lemma (x, f(x))~B2~(F~) 
proving the approximation theorem. 
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