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HOW MANY ZEROS OF A RANDOM POLYNOMIAL ARE

REAL?

ALAN EDELMAN AND ERIC KOSTLAN

Abstract. We provide an elementary geometric derivation of the Kac inte-
gral formula for the expected number of real zeros of a random polynomial
with independent standard normally distributed coefficients. We show that
the expected number of real zeros is simply the length of the moment curve
(1, t, . . . , tn) projected onto the surface of the unit sphere, divided by π. The
probability density of the real zeros is proportional to how fast this curve is
traced out.

We then relax Kac’s assumptions by considering a variety of random sums,
series, and distributions, and we also illustrate such ideas as integral geometry
and the Fubini-Study metric.
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1. Introduction

What is the expected number of real zeros En of a random polynomial of degree
n? If the coefficients are independent standard normals, we show that as n→∞,

En =
2

π
log(n) + 0.6257358072... +

2

nπ
+ O(1/n2) .

The 2
π logn term was derived by Kac in 1943 [26], who produced an integral formula

for the expected number of real zeros. Papers on zeros of random polynomials
include [3], [16], [23], [34], [41, 42] and [36]. There is also the comprehensive book
of Bharucha-Reid and Sambandham [2].

We will derive the Kac formula for the expected number of real zeros with an
elementary geometric argument that is related to the Buffon needle problem. We
present the argument in a manner such that precalculus level mathematics is suffi-
cient for understanding (and enjoying) the introductory arguments, while elemen-
tary calculus and linear algebra are sufficient prerequisites for much of the paper.
Nevertheless, we introduce connections with advanced areas of mathematics.

A seemingly small variation of our opening problem considers random nth degree
polynomials with independent normally distributed coefficients, each with mean
zero, but with the variance of the ith coefficient equal to

(n
i

)
(see [4], [31], [46]).

This particular random polynomial is probably the more natural definition of a
random polynomial. It has

En =
√
n

real zeros on average.
As indicated in our table of contents, these problems serve as the departure point

for generalizations to systems of equations and the real or complex zeros of other
collections of random functions. For example, we consider power series, Fourier
series, sums of orthogonal polynomials, Dirichlet series, matrix polynomials, and
systems of equations.

Section 2 begins with our elementary geometric derivation. Section 3 shows how
a large class of random problems may be covered in this framework. In Section 4 we
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reveal what is going on mathematically. Section 5 studies arbitrary distributions but
focuses on the non-central normal. Section 6 relates random polynomials to random
matrices, while Section 7 extends our results to systems of equations. Complex
roots, which are ignored in the rest of paper, are addressed in Section 8. We relate
random polynomials to the Buffon needle problem in Section 9.

2. Random polynomials and elementary geometry

Section 2.1 is restricted to elementary geometry. Polynomials are never men-
tioned. The relationship is revealed in Section 2.2.

2.1. How fast do equators sweep out area? We will denote (the surface of)
the unit sphere centered at the origin in Rn+1 by Sn. Our figures correspond to
the case n = 2. Higher dimensions provide no further complications.

Definition 2.1. If P ∈ Sn is any point, the associated equator P⊥ is the set of
points of Sn on the plane perpendicular to the line from the origin to P .

This generalizes our familiar notion of the earth’s equator, which is equal to
(north pole)⊥ and also equal to (south pole)⊥. See Figure 1. Notice that P⊥ is
always a unit sphere (“great hypercircle”) of dimension n− 1.

Let γ(t) be a (rectifiable) curve on the sphere Sn.

Definition 2.2. Let γ⊥, the equators of a curve, be the set {P⊥|P ∈ γ}.
Assume that γ has a finite length |γ|. Let |γ⊥| to be the area “swept out” by γ⊥

(we will provide a precise definition shortly). We wish to relate |γ| to |γ⊥|.
If the curve γ is a small section of a great circle, then ∪γ⊥ is a lune, the area

bounded by two equators as illustrated in Figure 2. If γ is an arc of length θ, then
our lune covers θ/π of the area of the sphere. The simplest case is θ = π. We thus
obtain the formula valid for arcs of great circles, namely,

|γ⊥|
area of Sn

=
|γ|
π
.

If γ is not a section of a great circle, we may approximate it by a union of small
great circular arcs, and the argument is still seen to apply.

The alert reader may notice something wrong. What if we continue our γ so
that it is more than just half of a great circle, or what if our curve γ spirals many
times around a point? Clearly, whenever γ is not a piece of a great circle, the lunes
will overlap. The correct definition for |γ⊥| is the area swept out by γ(t)⊥, as t
varies, counting multiplicities. We now give the precise definitions.

P

P

P

P

Figure 1. Points P and associated equators P⊥.
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γ

⊥ γ

Figure 2. The lune ∪γ⊥ when γ is a great circular arc.

Definition 2.3. The multiplicity of a point Q ∈ ∪γ⊥ is the number of equators in
γ⊥ that contain Q, i.e., the cardinality of {t ∈ R|Q ∈ γ(t)⊥}.

Definition 2.4. We define |γ⊥| to be the area of ∪γ⊥ counting multiplicity. More
precisely, we define |γ⊥| to be the integral of the multiplicity over ∪γ⊥.

Lemma 2.1. If γ is a rectifiable curve, then

|γ⊥|
area of Sn

=
|γ|
π
.(1)

As an example, consider a point P on the surface of the Earth. If we assume that
the point P is receiving the direct ray of the sun—for our purposes, we consider
the sun to be fixed in space relative to the Earth during the course of a day, with
rays arriving in parallel—then P⊥ is the great circle that divides day from night.
This great circle is known to astronomers as the terminator (Figure 3). During the
Earth’s daily rotation, the point P runs through all the points on a circle γ of fixed
latitude. Similarly, the Earth’s rotation generates the collection of terminators γ⊥.

The multiplicity in γ⊥ is two on a region between two latitudes. This is a fancy
mathematical way of saying that unless you are too close to the poles, you witness
both a sunrise and a sunset every day! The summer solstice is a convenient example.
P is on the Tropic of Cancer and Equation (1) becomes

2× (The surface area of the Earth between the Arctic/Antarctic Circles)

The surface area of the Earth

=
The length of the Tropic of Cancer

π × (The radius of the Earth)

or equivalently

The surface area of the Earth between the Arctic/Antarctic Circles

The surface area of the Earth

=
The length of the Tropic of Cancer

The length of the Equator
.

2.2. The expected number of real zeros of a random polynomial. What
does the geometric argument in the previous section and formula (1) in particular
have to do with the number of real zeros of a random polynomial? Let

p(x) = a0 + a1x+ · · · + anx
n
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P

Day

Night

γ

Terminator

Figure 3. On the summer solstice, the direct ray of the sun
reaches P on the Tropic of Cancer γ.

be a non-zero polynomial. Define the two vectors

a =





a0

a1

a2

...
an




and v(t) =





1
t
t2

...
tn




.

The curve in Rn+1 traced out by v(t) as t runs over the real line is called the
moment curve.

The condition that x = t is a zero of the polynomial a0 + a1x + · · · + anxn is
precisely the condition that a is perpendicular to v(t). Another way of saying this
is that v(t)⊥ is the set of polynomials which have t as a zero.

Define unit vectors

a ≡ a/‖a‖, γ(t) ≡ v(t)/‖v(t)‖.

As before, γ(t)⊥ corresponds to the polynomials which have t as a zero.
When n = 2, the curve γ is the intersection of an elliptical (squashed) cone and

the unit sphere. In particular, γ is not planar. If we include the point at infinity,
γ becomes a simple closed curve when n is even. (In projective space, the curve is
closed for all n.) The number of times that a point a on our sphere is covered by
an equator is the multiplicity of a in γ⊥. This is exactly the number of real zeros
of the corresponding polynomial.

So far, we have not discussed random polynomials. If the ai are independent
standard normals, then the vector a is uniformly distributed on the sphere Sn since
the joint density function in spherical coordinates is a function of the radius alone.
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Figure 4. When n = 2, γ is the intersection of the sphere and
cone. The intersection is a curve that includes the North Pole and
a point on the Equator.

What is En ≡ the expected number of real zeros of a random polynomial? A
random polynomial is identified with a uniformly distributed random point on the
sphere, so En is the area of the sphere with our convention of counting multiplicities.

Equation (1) (read backwards!) states that

En =
1

π
|γ|.

Our question about the expected number of real zeros of a random polynomial is
reduced to finding the length of the curve γ. We compute this length in Section
2.3.

When n = 2, γ is the intersection of the sphere and cone (Figure 4). The
intersection is a curve that includes the North Pole and a point on the Equator.

2.3. Calculating the length of γ. We invoke calculus to obtain the integral
formula for the length of γ and hence the expected number of zeros of a random
polynomial. The result was first obtained by Kac in 1943.

Theorem 2.1 (Kac formula). The expected number of real zeros of a degree n poly-
nomial with independent standard normal coefficients is

En =
1

π

∫ ∞

−∞

√
1

(t2 − 1)2
− (n+ 1)2t2n

(t2n+2 − 1)2
dt

=
4

π

∫ 1

0

√
1

(1− t2)2
− (n+ 1)2t2n

(1− t2n+2)2
dt.

(2)
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Proof. The standard arclength formula is

|γ| =

∫ ∞

−∞
‖γ′(t)‖ dt.

We may proceed in two different ways.

Method I (Direct approach). To calculate the integrand, we first consider any dif-
ferentiable v(t) : R → Rn+1. It is not hard to show that

γ′(t) =

(
v(t)√

v(t) · v(t)

)′
=

[v(t) · v(t)]v′(t)− [v(t) · v′(t)]v(t)
[v(t) · v(t)]3/2

,

and therefore,

‖γ′(t)‖2 =

(
v(t)√

v(t) · v(t)

)′
·
(

v(t)√
v(t) · v(t)

)′

=
[v(t) · v(t)][v′(t) · v′(t)]− [v(t) · v′(t)]2

[v(t) · v(t)]2 .

If v(t) is the moment curve, then we may calculate ‖γ′(t)‖ with the help of the
following observations and some messy algebra:

v(t) · v(t) = 1 + t2 + t4 + · · · + t2n =
1− t2n+2

1− t2
;

v′(t) · v(t) = t+ 2t3 + 3t5 + · · ·+ nt2n−1

=
1

2

d

dt

(
1− t2n+2

1− t2

)
=
t
(
1− t2 n − n t2n + n t2n+2

)

(t2 − 1)2
;

v′(t) · v′(t) = 1 + 4t2 + 9t4 + · · ·+ n2t2n−2

=
1

4t

d

dt
t
d

dt

(
1− t2n+2

1− t2

)
=
t2n+2 − t2 − 1 + t2n

(
n t2 − n− 1

)2

(t2 − 1)3
.

Thus we arrive at the Kac formula:

En =
1

π

∫ ∞

−∞

√
(t2n+2 − 1)2 − (n+ 1)2t2n(t2 − 1)2

(t2 − 1)(t2n+2 − 1)
dt

=
1

π

∫ ∞

−∞

√
1

(t2 − 1)2
− (n+ 1)2t2n

(t2n+2 − 1)2
dt.

Method II (Sneaky version). By introducing a logarithmic derivative, we can avoid
the messy algebra in Method I. Let v(t) : R → Rn+1 be any differentiable curve.
Then it is easy to check that

∂2

∂x∂y
log[v(x) · v(y)]

∣∣∣∣
y=x=t

= ‖γ′(t)‖2.(3)

Thus we have an alternative expression for ‖γ′(t)‖2.
When v(t) is the moment curve,

v(x) · v(y) = 1 + xy + x2y2 + · · ·+ xnyn =
1− (xy)n+1

1− xy
,
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the Kac formula is then

En =
1

π

∫ ∞

−∞

√
∂2

∂x∂y
log

1− (xy)n+1

1− xy

∣∣∣∣
y=x=t

dt.

This version of the Kac formula first appeared in [31]. In Section 4.4, we relate this
sneaky approach to the so-called “Fubini-Study” metric.

2.4. The density of zeros. Up until now, we have focused on the length of γ =
{γ(t)| −∞ < t < ∞} and concluded that it equals the expected number of zeros
on the real line multiplied by π. What we really did, however, was compute the
density of real zeros. Thus

ρn(t) ≡ 1

π

√
1

(t2 − 1)2
− (n + 1)2t2n

(t2n+2 − 1)2

is the expected number of real zeros per unit length at the point t ∈ R. This is
a true density: integrating ρn(t) over any interval produces the expected number
of real zeros on that interval. The probability density for a random real zero is
ρn(t)/En. It is straightforward [26, 27] to see that as n → ∞, the real zeros are
concentrated near the point t = ±1.

The asymptotic behavior of both the density and expected number of real zeros
is derived in the subsection below.

2.5. The asymptotics of the Kac formula. A short argument could have shown
that En ∼ 2

π logn [26], but since several researchers, including Christensen, Sam-
bandham, Stevens, and Wilkins have sharpened Kac’s original estimate, we show
here how successive terms of the asymptotic series may be derived, although we
will derive only a few terms of the series explicitly. The constant C1 and the next
term 2

nπ were unknown to previous researchers. See [2, pp. 90–91] for a summary
of previous estimates of C1.

Theorem 2.2. As n→∞,

En =
2

π
log(n) + C1 +

2

nπ
+ O(1/n2) ,

where

C1 =
2

π

(
log(2) +

∫ ∞

0

{√
1

x2
− 4e−2x

(1− e−2x)2
− 1

x+ 1

}
dx

)

= 0.6257358072... .

Proof. We now study the asymptotic behavior of the density of zeros. To do this,
we make the change of variables t = 1 + x/n, so

En = 4

∫ ∞

0
ρ̂n(x) dx ,

where

ρ̂n(x) =
1

nπ

√
n4

x2(2n+ x)2
− (n+ 1)2(1 + x/n)2n

[(1 + x/n)2n+2 − 1]2

is the (transformed) density of zeros. Using
(
1 +

x

n

)n
= ex

(
1− x2

2n

)
+O(1/n2) ,
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we see that for any fixed x, as n→∞, the density of zeros is given by

ρ̂n(x) = ρ̂∞(x) +

[
x(2− x)

2n
ρ̂∞(x)

]′
+ O(1/n2) ,(4)

where

ρ̂∞(x) ≡ 1

2π

[
1

x2
− 4e−2x

(1− e−2x)2

]1/2
.

This asymptotic series cannot be integrated term by term. We solve this problem
by noting that

χ[x > 1]

2πx
− 1

2π(2n+ x)
=

χ[x > 1]

2πx
− 1

4nπ
+ O(1/n2) ,(5)

where we have introduced the factor

χ[x > 1] ≡
{

1 if x > 1,

0 if x ≤ 1

to avoid the pole at x = 0. Subtracting (5) from (4), we obtain

ρ̂n(x) −
{
χ[x > 1]

2πx
− 1

2π(2n+ x)

}

=

{
ρ̂∞(x)− χ[x > 1]

2πx

}
+

{[
x(2− x)

2n
ρ̂∞(x)

]′
+

1

4πn

}
+ O(1/n2) .

We then integrate term by term from 0 to ∞ to get
∫ ∞

0
ρ̂n(x) dx − 1

2π
log(2n)

=

∫ ∞

0

{
ρ̂∞(x)−

χ[x > 1]

2πx

}
dx+

1

2nπ
+ O(1/n2) .

The theorem immediately follows from this formula and one final trick: we replace
χ[x > 1]/x with 1/(x + 1) in the definition of C1 so we can express it as a single
integral of an elementary function.

3. Random functions with central normal coefficients

Reviewing the discussion in Section 2, we see that we could omit some members
of our basis set {1, x, x2, . . . , xn} and ask how many zeros are expected to be real
of an nth degree polynomial with, say, its cubic term deleted. The proof would
hardly change. Or we can change the function space entirely and ask how many
zeros of the random function

a0 + a1 sin(x) + a2e
|x|

are expected to be real—the answer is 0.63662. The only assumption is that the
coefficients are independent standard normals. If f0, f1, . . . , fn is any collection of
rectifiable functions, we may define the analogue of the moment curve

v(t) =





f0(t)
f1(t)

...
fn(t)




.(6)
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The function 1
π‖γ

′(t)‖ is the density of a real zero; its integral over R is the expected
number of real zeros.

We may relax the assumption that the coefficient vector a = (a0, . . . , an)T con-
tains independent standard normals by allowing for any multivariate distribution
with zero mean. If the ai are normally distributed, E(a) = 0 and E(aaT ) = C,
then a is a (central) multivariate normal distribution with covariance matrix C.
It is easy to see that a has this distribution if and only if C−1/2a is a vector of
standard normals. Since

a · v(t) = C−1/2a · C1/2v(t),

the density of real zeros with coefficients from an arbitrary central multivariate
normal distribution is

1

π
‖w′(t)‖, where w(t) = C1/2v(t), and w(t) = w(t)/‖w(t)‖.(7)

The expected number of real zeros is the integral of 1
π ‖w

′(t)‖.
We now state our general result.

Theorem 3.1. Let v(t) = (f0(t), . . . , fn(t))T be any collection of differ-
entiable functions and a0, . . . , an be the elements of a multivariate normal dis-
tribution with mean zero and covariance matrix C. The expected number of real
zeros on an interval (or measurable set) I of the equation

a0f0(t) + a1f1(t) + · · · + anfn(t) = 0

is ∫

I

1

π
‖w′(t)‖dt,

where w is defined by Equations (7). In logarithmic derivative notation this is

1

π

∫

I

(
∂2

∂x∂y

(
log v(x)TCv(y)

)∣∣
y=x=t

)1/2

dt.

Geometrically, changing the covariance is the same as changing the inner product
on the space of functions.

We now enumerate several examples of Theorem 3.1. We consider examples for
which v(x)TCv(y) is a nice enough function of x and y that the density of zeros
can be easily described. For a survey of the literature, see [2], which also includes
the results of numerical experiments. In our discussion of random series, proofs
of convergence are omitted. Interested readers may refer to [45]. We also suggest
the classic book of J.-P. Kahane [28], where other problems about random series of
functions are considered.

3.1. Random polynomials.

3.1.1. The Kac formula. If the coefficients of random polynomials are independent
standard normal random variables, we saw in the previous section that from

v(x)TCv(y) =
1− (xy)n+1

1− xy
,(8)

we can derive the Kac formula.
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3.1.2. A random polynomial with a simple answer. Consider random polynomials

a0 + a1x+ · · · + anx
n,

where the ai are independent normals with variances
(n
i

)
. Such random polynomials

have been studied because of their mathematical properties [31, 46] and because of
their relationship to quantum physics [4].

By the binomial theorem,

v(x)TCv(y) =
n∑

k=0

(
n

k

)
xkyk = (1 + xy)n.

We see that the density of zeros is given by

ρ(t) =

√
n

π(1 + t2)
.

This is a Cauchy distribution, that is, arctan(t) is uniformly distributed on [−π/2, π/2].
Integrating the density shows that the expected number of real zeros is

√
n. As we

shall see in Section 4.1, this simple expected value and density is reflected in the
geometry of γ.

As an application, assume that p(t) and q(t) are independent random polynomi-
als of degree n with coefficients distributed as in this example. By considering the
equation p(t) − tq(t) = 0, it is possible to show that the expected number of fixed
points of the rational mapping

p(t)/q(t) : R U{∞}→ R U{∞}

is exactly
√
n+ 1.

3.1.3. Application: Spijker’s lemma on the Riemann sphere. Any curve in Rn can
be interpreted as v(t) for some space of random functions. Let

r(t) =
a(t) + ib(t)

c(t) + id(t)

be any rational function, where a, b, c, and d are real polynomials of a real variable
t. Let γ be the stereographic projection of r(t) onto the Riemann sphere. It is not
difficult to show that γ is the projection of the curve

(f0(t), f1(t), f2(t))

onto the unit (Riemann) sphere, where f0 = 2(ac + bd), f1 = 2(bc − ad), and
f2 = a2 + b2 − c2 − d2. The geometry is illustrated in Figure 5.

Therefore the length of γ is π times the expected number of real zeros of the
random function

a0f0 + a1f1 + a2f2,

where the ai are independent standard normals. For example, if a, b, c, and d are
polynomials of degrees no more than n, then any such function has degree at most
2n, so the length of γ can be no more than 2nπ. By taking a Möbius transformation,
we arrive at Spijker’s lemma:

The image, on the Riemann sphere, of any circle under a complex rational mapping,
with numerator and denominator having degrees no more than n, has length no
longer than 2nπ.

This example was obtained from Wegert and Trefethen [51].
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Figure 5

3.1.4. Random sums of orthogonal polynomials. Consider the vector space of poly-
nomials of the form

∑n
k=0 akPk(x) where ak are independent standard normal ran-

dom variables and where {Pk(x)} is a set of normalized orthogonal polynomials
with any non-negative weight function on any interval. The Darboux-Christoffel
formula [21, 8.902] states that

n∑

k=0

Pk(x)Pk(y) =

(
qn
qn+1

)
Pn(y)Pn+1(x)− Pn(x)Pn+1(y)

x− y
,

where qn (resp. qn+1) is the leading coefficient of Pn (resp. Pn+1). With this
formula and a bit of work, we see that

ρ(t) =

√
3

6π

√
2G′(t)−G2(t),

where

G(t) =
d

dt
log

d

dt

(
Pn+1(t)

Pn(t)

)
.

This is equivalent to formula (5.21) in [2]. Interesting asymptotic results have been
derived by Das and Bhatt. The easiest example to consider is that of random sums
of Chebyshev polynomials, for which the density of zeros is an elementary function
of n and t.

3.2. Random infinite series.

3.2.1. Power series with uncorrelated coefficients. Consider a random power series

f(x) = a0 + a1x+ a2x
2 + · · · ,

where ak are independent standard normal random variables. This has radius of
convergence one with probability one. Thus we will assume that −1 < x < 1. In
this case,

v(x)TCv(y) =
1

1− xy
.

The logarithmic derivative reveals a density of zeros of the form

ρ(t) =
1

π(1− t2)
.
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We see that the expected number of zeros on any subinterval [a, b] of (−1, 1) is

1

2π
log

(1− a)(1 + b)

(1 + a)(1− b)
.

This result may also be derived from the original Kac formula by letting n→∞.

3.2.2. Power series with correlated coefficients. What effect does correlation have
on the density of zeros? We will consider a simple generalization of the previous
example. Consider the random power series

f(x) = a0 + a1x+ a2x
2 + · · · ,

where ak are standard normal random variables, but assume that the correlation
between ak and ak+1 equals some constant r for all k. Thus the covariance matrix
is tridiagonal with one on the diagonal and r on the superdiagonal and subdiagonal.
In order to assure that this matrix be positive definite, we will assume that |r| ≤ 1

2 .
By the Gershgorin Theorem the spectral radius of the covariance matrix is less
than or equal to 1 + 2r, and therefore the radius of convergence of the random
sequence is independent of r. Thus we will, as in the previous example, assume
that −1 < x < 1. We see that

v(x)TCv(y) =
1 + r(x+ y)

1− xy
,

so

ρ(t) =
1

π

√
1

(1− t2)2
− r2

(1 + 2rt)2
.

Notice that the correlation between coefficients has decreased the density of zeros
throughout the interval.

3.2.3. Random entire functions. Consider a random power series

f(x) = a0 + a1x+ a2x
2 + · · · ,

where ak are independent central normal random variables with variances 1/k!, i.e.,
the covariance matrix is diagonal with the numbers 1/k! down the diagonal. This
series has infinite radius of convergence with probability one. Now clearly

v(x)TCv(y) = exy,

so ρ(t) = 1/π. In other words, the real zeros are uniformly distributed on the real
line, with a density of 1/π zeros per unit length.

3.2.4. Random trigonometric sums and Fourier series. Consider the trigonometric
sum

∞∑

k=0

ak cos νkθ + bk sin νkθ,

where ak and bk are independent normal random variables with means zero and
variances σ2

k. Notice that

v(x)TCv(y) =
∞∑

k=0

σ2
k(sin νkx sinνky + cos νkx cos νky) =

∞∑

k=0

σ2
k cos νk(x− y),
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and we see that the density of roots is constant. Thus the real zeros of the random
trigonometric sum are uniformly distributed on the real line, and the expected
number of zeros on the interval [a, b] is

b− a

π

√∑
ν2
kσ

2
k∑

σ2
k

.

Note that the slower the rate of convergence of the series, the higher the root density.
For example, if σk = k−3/2 and vk = k, then the series converges uniformly with
probability one, but the root density is infinite.

The similarity between this formula and the Pythagorean theorem is more than
superficial, as we will see when we discuss the geodesics of flat tori in Section 4.2.
Several authors, including Christensen, Das, Dunnage, Jamrom, Maruthachalam,
Qualls, and Sambandham [2] have derived results about the expected number of
zeros of these and other trigonometric sums.

3.2.5. Random Dirichlet series. Consider a random Dirichlet series

f(x) = a1 +
a2

2x
+
a3

3x
+ · · · ,

where ak are independent standard normal random variables. This converges with
probability one if x > 1/2. We see that

v(x)TCv(y) =
∞∑

k=1

1

kx+y
= ζ(x+ y)

and that the expected number of zeros on any interval [a, b], a > 1/2, is

1

2π

∫ b

a

√
[log ζ(2t)]′′ dt.

4. Theoretical considerations

4.1. A curve with more symmetries than meet the eye. We return to the
example in Section 3.1.2 and explore why the distribution of the real zeros was so
simple. Take the curve v(t) and make the change of variables t = tan θ and scale
to obtain

γ(θ) = (cosn θ)(v(tan θ)).

Doing so shows that

γ(θ) =





(n
0

)1/2
cosn θ(n

1

)1/2
cosn−1 θ sin θ

(n
2

)1/2
cosn−2 θ sin2 θ

...(n
n

)1/2
sinn θ





,

i.e., γk(θ) =
(n
k

)1/2
cosn−k θ sink θ, where the dimension index k runs from 0 to n.

We have chosen to denote this curve the super-circle. The binomial expansion of
(cos2 θ + sin2 θ)n = 1 tells us that our super-circle lives on the unit sphere. Indeed
when n = 2, the super-circle is merely a small-circle on the unit sphere in R3. When
n = 1, the super-circle is the unit circle in the plane.

What is not immediately obvious is that every point on this curve “looks” exactly
the same. We will display an orthogonal matrix Q(φ) that rotates Rn+1 in such a
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manner that each and every point on the super-circle γ(θ) is sent to γ(θ + φ). To
do this, we show that γ is a solution to a “nice” ordinary differential equation.

By a simple differentiation of the kth component of γ(θ), we see that

d

dθ
γk(θ) = αkγk−1(θ) − αk+1γk+1(θ), k = 0, . . . , n,

where αk ≡
√
k(n+ 1− k). In matrix–vector notation this means that

d

dθ
γ(θ) = Aγ(θ), where A =





0 −α1

α1 0 −α2

α2 0 −α3

. . .
. . .

. . .
αn−1 0 −αn

αn 0





;

(9)

i.e., A has the αi on the subdiagonal, the −αi on the superdiagonal, and 0 every-
where else, including the main diagonal.

The solution to the ordinary differential equation (9) is

γ(θ) = eAθγ(0).(10)

The matrix Q(φ) ≡ eAφ is orthogonal because A is anti-symmetric, and indeed Q(φ)
is the orthogonal matrix that we promised would send γ(θ) to γ(θ+φ). We suspect
that (10) with the specification that γ(0) = (1, 0, . . . , 0)T is the most convenient
description of the super-circle. Differentiating (10) any number of times shows
explicitly that

djγ

dθj
(θ) = eAθ

djγ

dθj
(0).

In particular, the speed is invariant. A quick check shows that it is
√
n. If we let θ

run from −π/2 to π/2, we trace out a curve of length π
√
n.

The ideas here may also be expressed in the language of invariant measures for
polynomials [31]. This gives a deeper understanding of the symmetries that we will
only sketch here. Rather than representing a polynomial as

p(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n,

we homogenize the polynomial and consider

p̂(t1, t2) = a0t
n
2 + a1t1t

n−1
2 + · · ·+ an−1t

n−1
1 + ant

n
1 .

For any angle α, a new “rotated” polynomial may be defined by

p̂α(t1, t2) = p̂(t1 cosα + t2 sinα,−t1 sinα + t2 cosα).

It is not difficult to show directly that if the ai are independent and normally
distributed with variance

(n
i

)
, then so are the coefficients of the rotated polynomial.

The symmetry of the curve and the symmetry of the polynomial distribution are
equivalent. An immediate consequence of the rotational invariance is that the
distribution of the real zeros must be Cauchy.
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4.2. Geodesics on flat tori. We now a take a closer look at the random trigono-
metric sums in Section 3.2.4. Fix a finite interval [a, b]. For simplicity assume
that

n∑

k=0

σ2
k = 1 .

The curve γ(θ) is given by

(σ0 cos ν0θ, σ0 sin ν0θ, . . . , σn cos νnθ, σn sin νnθ) .

This curve is a geodesic on the flat (n + 1)-dimensional torus

(σ0 cos θ0, σ0 sin θ0, . . . , σn cos θn, σn sin θn) .

Therefore if we lift to the universal covering space of the torus, γ becomes a straight
line in Rn+1. By the Pythagorean theorem, the length of γ is

(b − a)

√√√√
n∑

k=0

ν2
kσ

2
k ,

which equals π times the expected number of zeros on the interval [a, b].
Now replace [a, b] with (−∞,∞). If νi/νj is rational for all i and j, then γ is

closed; otherwise it is dense in some subtorus.
Now consider the γ(θ) discussed in Section 4.1. Observe that γ(x)T γ(y) =

cosn(x−y). Thus if we choose the νk and the σk correctly, the polynomial example
in Section 3.1.2 becomes a special case of a random trigonometric sum. Thus the
super-circle discussed in Section 4.1 is a geodesic on a flat torus.

4.3. The Kac matrix. Mark Kac was the first mathematician to obtain an exact
formula for the expected number of real zeros of a random polynomial. Ironically, he
also has his name attached to a certain matrix that is important to understanding
random polynomials, yet we have no evidence that he ever made the connection.

The (n+ 1)× (n + 1) Kac matrix is defined as the tridiagonal matrix

Sn =





0 n
1 0 n− 1

2 0 n − 2
. . .

. . .
. . .

n − 1 0 1
n 0





.

The history of this matrix is documented in [49], where there are several proofs
that Sn has eigenvalues −n,−n + 2,−n + 4, . . . , n − 2, n. One of the proofs is
denoted as “mild trickery by Kac”. We will derive the eigenvalues by employing a
different trick.

Theorem 4.1. The eigenvalues of Sn are the integers 2k − n for k = 0, 1, . . . , n.

Proof. Define
fk(x) ≡ sinhk(x) coshn−k(x), k = 0, . . . , n,

gk(x) ≡ (sinh(x) + cosh(x))k(sinh(x) − cosh(x))n−k, k = 0, . . . , n.

If V is the vector space of functions with basis {fk(x)}, then the gk(x) are clearly
in this vector space. Also, d

dxfk(x) = kfk−1(x) + (n− k)fk+1(x), so that the Kac
matrix is the representation of the operator d/dx in V . We actually wrote gk(x)
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in a more complicated way than we needed to so that we could emphasize that
gk(x) ∈ V . Actually, gk(x) = exp((2k − n)x) is an eigenfunction of d/dx with
eigenvalue 2k − n for k = 0, . . . , n. The eigenvector is obtained by expanding the
above expression for gk(x).

An alternative tricky proof using graph theory is to consider the 2n×2n incidence
matrix of an n-dimensional hypercube. This matrix is the tensor (or Kronecker)
product of

(
0 1
1 0

)
n times, so the eigenvalues of this matrix are sums of the form∑n

i=1 ±1, i.e., this matrix has 2n eigenvalues all of which have the form 2k − n
for k = 0, . . . , n. This matrix is closely related to the discrete Laplacian of the
hypercube graph and the n-fold discrete Fourier transform on a grid with edge
length 2. So far we have the right set of eigenvalues but the wrong matrix. However,
if we collapse the matrix by identifying those nodes with k = 0, 1, . . . , n ones in
their binary representation, we obtain the (n+1)× (n+1) Kac matrix transposed.
(Any node with k ones has k neighbors with k − 1 ones and n− k neighbors with
k + 1 ones.) It is an interesting exercise to check that by summing eigenvectors
over all possible symmetries of the hypercube, the projected operator inherits the
eigenvalues 2k− n (k = 0, . . . , n), each with multiplicity 1.

We learned of this second tricky proof from Persi Diaconis, who explained it
to us in terms of random walks on the hypercube and the Ehrenfest urn model of
diffusion [8, 9]. The Kac matrix is also known as the “Clement matrix” in Higham’s
Test matrix toolbox for Matlab [25] because of Clement’s [7] proposed use of this
matrix as a test matrix. Numerically, it can be quite difficult to obtain all of these
integer eigenvalues.

The symmetrized Kac matrix looks exactly like the matrix A in (9) without any
minus signs. Indeed iSn is similar to the matrix in (9).

4.4. The Fubini-Study metric. We now reveal the secret that inspired the
“sneaky” approach to the calculation of the length of the curve γ(t)= v(t)/‖v(t)‖
that appears in Section 2.3. (See (3).) The secret that we will describe is the
Fubini-Study metric.

An interesting struggle occurs in mathematics when quotient spaces are defined.
Psychologically, it is often easier to think of an individual representative of an
equivalence class rather than the class itself. As mathematicians, we train ourselves
to overcome this; but practically speaking, when it is time to compute, we still must
choose a representative. As an example, consider vectors v ∈ Rn and its projection
v/‖v‖ onto the sphere. (If we do not distinguish ±v/‖v‖, we are then in projective
space.) The normalization obtained from the division by ‖v‖ is a distraction that
we would like to avoid.

Perhaps a more compelling example may be taken from the set of n×p matrices
M with n > p. The Grassman manifold is obtained by forming the equivalence
class of all rank p matrices M whose columns span the same subspace of Rn. To
compute a canonical form for M may be an unnecessary bother that we would like
to avoid. When p = 1, the Grassman manifold reduces to the projective space
example in the previous paragraph.

The Fubini-Study metric on projective space allows us to keep the v for our co-
ordinates in the first example. The more general version for the Grassman manifold
allows us to keep the M . A historical discussion of Fubini’s original ideas may be
found in [35]. We have seen only the complex version in the standard texts [22, 29],
but for simplicity, we discuss the real case here.
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We see that γ(t) is independent of ‖v(t)‖, i.e., it is invariant under scaling. The
logarithmic derivative is specifically tailored to be invariant under scaling by any
λ(t):

∂2

∂x∂y
log[λ(x)v(x) · λ(y)v(y)] =

∂2

∂x∂y
{log[v(x) · v(y)] + log(λ(x)) + log(λ(y))}

=
∂2

∂x∂y
log[v(x) · v(y)].

The logarithmic derivative may appear complicated, but it is a fair price to pay to
eliminate ‖v(t)‖. The length of the projected version of v(t) traced out by t ∈ [a, b]
is ∫ b

a

√
∂2

∂x∂y
log[v(x) · v(y)]

∣∣∣∣
y=x=t

dt.

The integrand is the square root of the determinant of the metric tensor. This is
the “pull-back” of a metric tensor on projective space.

The Grassman version is almost the same; it takes the form
∫ b

a

√
∂2

∂x∂y
logdet[M(x)TM(y)],

∣∣∣∣
y=x=t

dt,

where M(t) denotes a curve in matrix space.

4.5. Integral geometry. Integral geometry (sometimes known as Geometric
Probability) relates the measures of random manifolds and their intersections. Ref-
erences (such as [43], [47], [44, p. 253], and [5, p. 73]) vary in terms of setting and
degree of generality.

For our purposes we will consider two submanifolds M and N of the sphere
Sm+n, where M has dimension m and N has dimension n. If Q is a random
orthogonal matrix (i.e., a random rotation), then

E(#(M ∩QN)) =
2

|Sm||Sn| |M ||N |.(11)

In words, the formula states that the expected number of intersections of M with
a randomly rotated N is twice the product of the volumes of M and N divided by
the product of the volumes of spheres.

For us “number of intersections” has the interpretation of “number of zeros”
so that we may relate the average number of zeros with the lengths of curves (or
more generally volumes of surfaces). We will apply this formula directly when we
consider random systems of equations in Section 7.

If the manifold N is itself random and independent of Q, then the formula above
is correct with the understanding that |N | refers to the average volume of N . This
formulation is needed for Lemma 6.1.

The factor of 2 often disappears in practical computations. Mathematically, all
of the action is on the half-sized projective space rather than on the sphere.

4.6. The evaluation mapping. The defining property of a function space is that
its elements can be evaluated. To be precise, if F is a vector space of real-valued
functions defined on some set S, we have an evaluation mapping, ev : S → F ∗,
defined by ev(s)(f) = f(s), that tells us everything about the function space.
Conversely, if we are given any vector space F and any function from S to F ∗, we
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may take this function to be the evaluation mapping and thus convert F into a
function space.

Pick an element f of F (at random). The annihilator of f is the set f⊥ = {θ ∈
F ∗|θ(f) = 0}. Checking definitions, we see that the intersections of f⊥ with the
image of ev correspond to zeros of f . Thus the average number of intersections is
the average number of zeros.

Now let us choose an inner product for F , or equivalently, let us choose a cen-
tral normal measure for F . If ev(S) is a rectifiable curve, we may apply integral
geometry and conclude the following:

Theorem 4.2. The expected number of zeros is the length of the projection of the
image of the evaluation mapping onto the unit sphere in the dual space divided by
π.

Thus the expected number of zeros is proportional to the “size” of the image of the
evaluation mapping.

The inner product also gives rise to an isomorphism ι : F → F ∗, defined by
ι(f)(g) = f · g. It is just a matter of checking definitions to see that

v(t) = ι−1ev(t)

is the dual of the evaluation mapping. Thus v(t) is the natural object that describes
both the function space F and the choice of inner product.

5. Extensions to other distributions

This paper began by considering random polynomials with standard normal co-
efficients, and then we realized quickly that any multivariate normal distribution
with mean zero (the so-called “central distributions”) hardly presented any further
difficulty. We now generalize to arbitrary distributions, with a particular focus on
the non-central multivariate normal distributions. The basic theme is the same:
the density of zeros is equal to the rate at which the equators of a curve sweeps
out area. Previous investigations are surveyed in [2]. In the closely related work
of Rice [41] and [42, p. 52], expressions are obtained for the distributions of zeros.
Unfortunately, these expressions appeared unwieldy for computing even the distri-
bution for the quadratic [41, p. 414]. There is also the interesting recent work of
Odlyzko and Poonen on zeros of polynomials with 0, 1 coefficients [40].

5.1. Arbitrary distributions. Given f0(t), f1(t), . . . , fn(t), we now ask for the
expected number of real roots of the random equation

a0f0(t) + a1f1(t) + · · ·+ anfn(t) = 0,

where we will assume that the ai have an arbitrary joint probability density function
σ(a).

Define v(t) ∈ Rn+1 by

v(t) =




f0(t)

...
fn(t)



 ,

and let

γ(t) ≡ v(t)/‖v(t)‖.(12)
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Instead of working on the sphere, let us work in Rn+1 by defining γ(t)⊥ to be the
hyperplane through the origin perpendicular to γ(t).

Fix t and choose an orthonormal basis such that e0 = γ(t) and e1 = γ′(t)/||γ′(t)||.
As we change t to t + dt, the volume swept out by the hyperplanes will form an
infinitesimal wedge. (See Figure 6.)

This wedge is the Cartesian product of a two-dimensional wedge in the plane
span(e0,e1) with Rn−1, the entire span of the remaining n−1 basis directions. The
volume of the wedge is

||γ′(t)|| dt
∫

Rn≡{e0·a=0}
|e1 · a|σ(a)dan ,

where the domain of integration is the n-dimensional space perpendicular to e0 and
an denotes n-dimensional Lebesgue measure in that space. Intuitively ‖γ′(t)‖dt is
the rate at which the wedge is being swept out. The width of the wedge is infinites-
imally proportional to |e1 · a|, where a is in this perpendicular hyperspace. The
factor σ(a) scales the volume in accordance with our chosen probability measure.

e0

e1

(t+dt)γ

γ(t)

a 1(e a) ’(t)  dt ||γ ||

’(t)  dt ||γ ||

Figure 6. Infinitesimal wedge area.

Theorem 5.1. If a has a joint probability density σ(a), then the density of the real
zeros of a0f0(t) + · · ·+ anfn(t) = 0 is

ρ(t) = ||γ′(t)||
∫

γ(t)·a=0

|γ′(t) · a|
‖γ′(t)‖ σ(a) dan =

∫

γ(t)·a=0
|γ′(t) · a| σ(a) dan ,

where dan is standard Lesbesgue measure in the subspace perpendicular to γ(t).

5.2. Non-central multivariate normals: Theory. We apply the results in the
previous subsection to the case of multivariate normal distributions. We begin by
assuming that our distribution has mean m and covariance matrix I. We then show
that the restriction on the covariance matrix is readily removed. Thus we assume
that

σ(a) = (2π)−(n+1)/2e−
∑

(a−mi)
2/2, and m = (m0, . . . , mn)T .

Theorem 5.2. Assume that (a0, . . . , an)T has the multivariate normal distribution
with mean m and covariance matrix I. Let γ(t) be defined as in (12). Let m0(t)
and m1(t) be the components of m in the γ(t) and γ′(t) directions, respectively.
The density of the real zeros of the equation

∑
aifi(t) = 0 is
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ρn(t) =
1

π
‖γ′(t)‖e− 1

2m0(t)
2

{
e−

1
2m1(t)

2

+

√
π

2
m1(t)erf

[
m1(t)√

2

]}
.

For polynomials with identically distributed normal coefficients, this formula is
equivalent to [2, Section 4.3C].

Proof. Since we are considering the multivariate normal distribution, we may rewrite
σ(a) in coordinates x0, . . . , xn in the directions e0, . . . , en respectively. Thus

σ(x0, . . . , xn) = (2π)−(n+1)/2e−
1
2

∑
(x−mi(t))

2

,

where mi(t) denotes the coordinate of m in the ei direction. The n-dimensional
integral formula that appears in Theorem 5.1 reduces to

1

2π

∫ ∞

−∞
|x1| e−

1
2 (m0(t)

2)e−
1
2 (x1−m1(t))

2

dx1

after integrating out the n − 1 directions orthogonal to the wedge. From this, the
formula in the theorem is obtained by direct integration.

We can now generalize these formulas to allow for arbitrary covariance matrices
as we did with Theorem 3.1. We phrase this corollary in a manner that is self-
contained: no reference to definitions anywhere else in the paper is necessary.

Corollary 5.1. Let v(t) = (f0(t), f1(t), . . . , fn(t))T , and let a = (a0, . . . , an) be
a multivariate normal distribution with mean m = (m0, . . . , mn)T and covariance
matrix C. Equivalently consider random functions of the form∑

aifi(t) with mean µ(t) = m0f0(t) + · · · + mnfn(t) and covariance matrix C.
The expected number of real roots of the equation

∑
aifi(t) = 0 on the interval

[a, b] is

1

π

∫ b

a
‖γ′(t)‖e−

1
2m

2
0(t)

{
e−

1
2m

2
1(t) +

√
π

2
m1(t)erf

[
m1(t)√

2

]}
dt ,

where

w(t) = C1/2v(t), γ(t) =
w(t)

‖w(t)‖
, m0(t) =

µ(t)

‖w(t)‖
, and m1(t) =

m′0(t)

‖γ′(t)‖
.

Proof. There is no difference between the equation a · v = 0 and C−1/2a · C1/2v =
0. The latter equation describes a random equation problem with coefficients
from a multivariate normal with mean C−1/2m and covariance matrix I. Since
µ(t)/‖w(t)‖ = γ(t) ·C−1/2m and m′0(t)/‖γ′(t)‖ = γ′(t) ·C−1/2m/‖γ′(t)‖, the result
follows immediately from Theorem 5.2.

The reader may use this corollary to compute the expected number of roots
of a random monic polynomial. In this case m = en and C is singular, but this
singularity causes no trouble. We now proceed to consider more general examples.

5.3. Non-central multivariate normals: Applications. We explore two cases
in which non-central normal distributions have particularly simple zero densities:

• Case I. m0(t) = m and m1(t) = 0.
• Case II. m0(t) = m1(t).
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Case I . m0(t) = m and m1(t) = 0. If we can arrange for m0 = m to be a constant,
then m1(t) = 0 and the density reduces to

ρ(t) =
1

π
‖γ′(t)‖e−

1
2m

2

.

In this very special case, the density function for the mean m case is just a constant
factor (e−

1
2m

2

) times the mean zero case.

This can be arranged if and only if the function ‖w(t)‖ is in the linear space
spanned by the fi. The next few examples show when this is possible. In parenthe-
ses, we indicate the subsection of this paper where the reader may find the mean
zero case for comparison.

Example 1 (3.1.2). A random polynomial with a simple answer, even degree: Let
fi(t) = ti, i = 0, . . . , n, and C = diag[

(n
i

)
], so that ‖w(t)‖ = (1 + t2)n/2. Choose

µ(t) = m(1 + t2)n/2, so that m0(t) = m is a constant.
For example, if n = 2 and a0, a1, and a2 are independent standard Gaussians,

then the random polynomial

(a0 +m) + a1

√
2t+ (a2 +m)t2

is expected to have √
2e−m

2/2

real zeros. The density is

ρ(t) =
1

π

√
2

(1 + t2)
e−m

2/2.

Note that as m → ∞, we are looking at perturbations to the equation t2 + 1 = 0
with no real zeros, so we expect the number of real zeros to converge to 0.

Example 2 (3.2.4). Trigonometric sums: µ(t) = m
√
σ2

0 + · · ·+ σ2
n.

Example 3 (3.2.2). Random power series: µ(t) = m(1− t2)−1/2.

Example 4 (3.2.3). Entire functions: µ(t) = met
2/2.

Example 5 (3.2.5). Dirichlet series:

µ(t) = m
√
ζ(2t) =

∞∑

k=1

mk

kt
,

where mk = 0 if k is not a square, and mk = m
∏

i
(2ni−1)!!
(2ni)!!

if k has the prime

factorization
∏

i p
2ni
i .

Case II . m0(t) = m1(t). We may pick a µ(t) for which m0(t) = m1(t) by solving
the first-order ordinary differential equation m0(t) = m′0(t)/‖γ′(t)‖. The solution
is

µ(t) = m‖w(t)‖ exp

[∫ t

K
||γ′(x)|| dx

]
.

There is really only one integration constant since the result of shifting by K can
be absorbed into the m factor. If the resulting µ(t) is in the linear space spanned
by the fi, then we choose this as our mean.
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Though there is no reason to expect this, it turns out that if we make this choice
of µ(t), then the density may be integrated in closed form. The expected number
of zeros on the interval [a, b] is

∫ b

a
ρ(t)dt =

1

4
erf2(m0(t)/

√
2) − 1

2π
Γ[0, m2

0(t)]

∣∣∣∣
b

a

.

Example 6 (3.2.2). Random power series: Consider a power series with indepen-
dent, identically distributed normal coefficients. In this case µ(t) = m

1−t , where

m = (mean/standard deviation), so m0(t) = m
√

1+t
1−t . A short calculation shows

that m1(t) = m0(t).

Example 7 (3.2.3). Entire functions: In this case µ(t) = met+t2/2, so m0(t) =
met.

Example 8 (3.2.5). Dirichlet series: This we leave as an exercise. Choose K >
1/2.

Theorem 5.3. Consider a random polynomial of degree n with coefficients that
are independent and identically distributed normal random variables. Define m -= 0
to be the mean divided by the standard deviation. Then as n→∞,

En =
1

π
log(n) +

C1

2
+

1

2
− γ

π
− 2

π
log |m| + O(1/n) ,

where C1 = 0.6257358072... is defined in Theorem 2.2 and γ = 0.5772156649... is
Euler’s constant. Furthermore, the expected number of positive zeros is asymptotic
to

1

2
− 1

2
erf 2(|m|/

√
2) +

1

π
Γ[0, m2].

Sketch of proof. We break up the domain of integration into four subdomains:
(−∞,−1], [−1, 0], [0, 1], and [1,∞). Observe that the expected number of ze-
ros on the first and second intervals are the same, as are the expected number of
zeros on the third and fourth intervals. Thus we will focus on the first and third
interval, doubling our final answer.

The asymptotics of the density of zeros is easy to analyze on [0,1] because it
converges quickly to that of the power series (Example 6, above). Doubling this
gives us the expected number of positive zeros.

On the interval (−∞,−1], one can parallel the proof of Theorem 2.2. We make
the change of variables −t = 1 + x/n. The weight due to the non-zero mean can
be shown to be 1 +O(1/n). Therefore, the asymptotic series for the density of the
zeros is the same up to O(1/n). We subtract the asymptotic series for the density
of the zeros of the non-central random power series and then integrate term by
term.

The 1
π log(n) term was first derived by Sambandham. Farahmand [17] has im-

proved on his results.

6. Eigenvalues of random matrices

Eigenvalues of random matrices arise in a surprising number of disciplines of
both pure and applied mathematics. Already three major books [19], [37], [38] on
the subject exist, each specializing in different disciplines, yet these books serve as
mere stepping-stones to the vast literature on the subject. The book by Mehta [37]
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covers developments of random matrices (mostly symmetric) that began with the
work of Wigner, who modeled heavy atom energies with random matrix eigenvalues.
Muirhead’s book [38] focuses on applications to multivariate statistics, including
eigenvalue distributions of Wishart matrices. These are equivalent to singular value
distributions of rectangular matrices whose columns are iid multivariate normal.
His exposition is easily read with almost no background. Girko’s large book [19]
translates his earlier books from Russian and includes more recent work as well.

An entire semester’s interdisciplinary graduate course [12] was inadequate for
reviewing the subject of eigenvalues of random matrices. Some exciting recent
developments may be found in books by Voiculescu, Dykema, and Nica [50] relating
Wigner’s theory to free random variables and by Faraut and Koranyi [18], which
extend the special functions of matrix argument described in [38] from the harmonic
analysis viewpoint. Other new areas that we wish to mention quickly concern
matrix models for quantum gravity [1], Lyapunov exponents [39], and combinatorial
interpretations of random matrix formulas [20], [24]. By no means should the
handful of papers mentioned be thought of as an exhaustive list.

Developers of numerical algorithms often use random matrices as test matrices
for their software. An important lesson is that a random matrix should not be
equated to the intuitive notion of a “typical” matrix or the vague concept of “any
old” matrix. Random matrices, particularly large ones, have special properties of
their own. Often there is little more information obtained from 1,000 random trials
than from one trial [14].

6.1. How many eigenvalues of a random matrix are real? Assume that we
have a random matrix with independent standard normal entries. If n is even, the
expected number of real eigenvalues is

En =
√

2

n/2−1∑

k=0

(4k − 1)!!

(4k)!!
,

while if n is odd,

En = 1 +
√

2

(n−1)/2∑

k=1

(4k − 3)!!

(4k − 2)!!
.

As n→∞,

En ∼
√

2n/π.

This is derived in [13] using zonal polynomials. The random eigenvalues form an
interesting Saturn-like picture in the complex plane. Figure 7 plots normalized
eigenvalues λ/

√
50 in the complex plane for fifty matrices of size 50 × 50. There

are 2,500 dots in the figure. Girko’s [19] circular law (which we have not verified)
states under general conditions that as n → ∞, λ/

√
n is uniformly distributed on

the disk. If the entries are independent standard normals, a proof may be found in
[15], where also may be found a derivation of the repulsion from the real axis that
is clearly visible.

Girko’s circular law stands in contrast to the result that roots of random poly-
nomials are uniformly distributed on the unit circle rather than the disk.
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Figure 7. 2,500 dots representing normalized eigenvalues of fifty
random matrices of size n = 50. Clearly visible are the points on
the real axis.

6.2. Matrix polynomials. This may come as a shock to some readers, but char-
acteristic polynomials are a somewhat unnatural way to discuss the eigenvalues of
a matrix. It seems irrelevant that a random matrix happens to have a random
characteristic polynomial, so we will not discuss random characteristic polynomi-
als any further. An analogous situation occurs in the numerical computation of
eigenvalues, where nobody would dream of forming the characteristic polynomial.

The proper generalization that includes polynomials and matrices as special cases
is the so-called matrix polynomial. A matrix polynomial has the form

P (t) = A0 + A1t+A2t
2 + · · ·+ Ant

n,

where the Ai are p × p matrices and t is a scalar. The solutions to detP (t) = 0
are the eigenvalues of the matrix polynomial. Notice that we are not trying to set
P (t) to be the zero matrix, but rather we are trying to find a t for which P (t)
is a singular matrix. It is sometimes convenient to take An = I. The standard
eigenvalue problem takes n = 1 and A1 = I. When n = 1 and A1 -= I, the problem
is known as the generalized eigenvalue problem. Pure polynomials correspond to
p = 1.

The beauty of random matrix polynomials is that the expected number of real
eigenvalues depends on p by a geometric factor:



26 ALAN EDELMAN AND ERIC KOSTLAN

Theorem 6.1. Let f0(t), . . . , fn(t) be any collection of differentiable functions,
and let A0, . . . , An be p × p random matrices with the property that the p2

random vectors ((A0)ij , (A1)ij , . . . , (An)ij) (i, j = 1, . . . , p) are iid multivariate
normals with mean zero and covariance matrix C. Let αp denote the expected
number of real solutions in the interval [a, b] to the equation

0 = det [A0f0(t) +A1f1(t) + · · · +Anfn(t)] .

We then have that

αp/α1 =
√
π

Γ((p+ 1)/2)

Γ(p/2)
.

α1 may be computed from Theorem 3.1.

In particular, if all of the matrices are independent standard normals, the ex-
pected number of real solutions is

En ×
√
π

Γ((p+ 1)/2)

Γ(p/2)
,

where En is the quantity that appears in Theorem 2.1. The proof of Theorem 6.1
follows from a simple consequence of the integral geometry formula.

Lemma 6.1. Choose an interval [a, b] and a random function

a0f0(t) + a1f1(t) + · · ·+ anfn(t), t ∈ [a, b],

where the ai are independent standard normals. Generate a random curve in Rk

by choosing an independent sample of k such functions. The expected length of the
projection of this curve onto the unit sphere in Rk is equal to the expected number
of zeros of the chosen random function on the chosen interval, multiplied by π.

Proof. The lemma follows from (11). Let N be the random curve. Since the
distribution of QN is the same as that of N , we may take M to be any fixed
hyperplane, say x1 = 0. The intersections of a curve with this hyperplane are
exactly the zeros of the first coordinate of the curve and thus the zeros of our
random function.

Notice that the expected length does not depend on k. This result generalizes
to random embeddings of manifolds in Euclidean space. See [33] for a discussion of
these and other random varieties.

Proof of Theorem 6.1. We prove this theorem by using integral geometry twice to
obtain expressions for the average length of the random curve γ defined by

A(t) = A0f0(t) + A1f1(t) + · · · +Anfn(t),

on some interval [a, b], and γ(t) = A(t)/‖A(t)‖F .
On the one hand, Lemma 6.1 states that the expected length of the projection

γ(t) is α1π.
On the other hand, (11) may be used with M chosen to be the set of singular

matrices on Sp
2−1, and N is the random curve γ. Thus the expected number of t

for which γ(t) is singular is

αp =
1

π

|M ||N |
|Sp2−2|

.(13)
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The volume of M is known [13] to be

|M | = 2πp
2/2Γ((p+ 1)/2)

Γ((p/2)Γ((p2 − 1)/2)
.

The average length of N is πα1. The volume of Sp
2−2 is 2π(p2−1)/2/Γ((p2 − 1)/2).

Plugging these volumes back into (13) yields the result.

7. Systems of equations

The results that we have derived about random equations in one variable may
be generalized to systems of m equations in m unknowns. What used to be a curve
v(t) : R → Rn+1 is now an m-dimensional surface v(t) : Rm → Rn+1 defined in the
same way. The random coefficients now form an m× (n+ 1) matrix A.

Theorem 7.1. Let v(t) = (f0(t), . . . , fn(t))T be any differentiable from Rm to
Rn+1, let U be a measurable subset of Rm, and let A be a random m× (n+ 1)
matrix. Assume that the rows of A are iid multivariate normal random vectors
with mean zero and covariance matrix C. The expected number of real roots of
the system of equations

Av(t) = 0

that lie in the set U is

π−
m+1

2 Γ

(
m+ 1

2

)∫

U

(
det

[
∂2

∂xi∂yj

(
log v(x)TCv(y)

)∣∣
y=x=t

]

ij

)1/2

dt.

Proof. This is an application of the integral geometry formula (11). To apply this
formula on the unit sphere Sn ⊂ Rn+1, we choose a submanifold M of dimension
m and a submanifold N of dimension n−m.

For simplicity assume first that C = I. We take M to be the projection of
{v(t) : t ∈ U} to the unit sphere. For N we take the intersection of a plane of
dimension n−m+ 1 with the sphere, i.e., N = Sn−m ⊂ Sn.

According to (11), if we intersect M with a random (n − m + 1)-dimensional
plane, the expected number of intersections is

E(#(M ∩QN)) =
2

|Sm||Sn−m| |M ||N | = 2|M |/|Sm| = π−
m+1

2 Γ

(
m+ 1

2

)
|M |.

The Fubini-Study metric conveniently tells us that |M | is the integral in the state-
ment of the theorem.

Of course, the number of real roots of Av(t) = 0 is the number of intersections
of M with the null-space of A (counting multiplicity). Since for the moment we
assume that C = I, the random null-space of A is invariant under rotations, proving
that the average number of intersections is the average number of real roots.

For arbitrary C the entire derivation applies by replacing A with AC−1/2.

We now extend our previous examples to random systems of equations.

7.1. The Kac formula. Consider systems of polynomial equations with indepen-
dent standard normal coefficients. The most straightforward generalization occurs
if the components of v are all the monomials {

∏m
k=1 x

ik
k }, where for all k, ik ≤ d.

In other words, the Newton polyhedron is a hypercube.
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Clearly,

v(x)T v(y) =
m∏

i=1

d∑

k=0

(xiyi)
k,

from which we see that the matrix in the formula above is diagonal and that the

density of the zeros on Rm breaks up as a product of densities on R. Thus if E(m)
d

represents the expected number of zeros for the system,

E(m)
d = π−

m+1
2 Γ

(
m+ 1

2

)
(πE(1)

d )m.

The asymptotics of the univariate Kac formula shows that as d→∞,

E(m)
d ∼ π−

m+1
2 Γ

(
m+ 1

2

)
(2 logd)m.

We suspect that the same asymptotic formula holds for a wide range of Newton
polyhedra, including the usual definition of degree:

∑m
k=1 ik ≤ d [32].

7.2. A random polynomial with a simple answer. Consider a system of m
random polynomials, each of the form

∑

i1,... ,im

ai1...imΠm
k=1x

ik
k ,

where
∑m

k=1 ik ≤ d and where the ai1...im are independent normals with mean zero
and variances equal to multinomial coefficients:

(
d

i1, . . . , im

)
=

d!

(d−
∑m

k=1 ik)!
∏m

k=1 ik!
.

The multinomial theorem simplifies the computation of

v(x)TCv(y) =
∑

i1,... ,im

(
d

i1, . . . , im

) m∏

k=1

xikyik = (1 + x · y)d.

We see that the density of zeros is

ρ(t) = π−
m+1

2 Γ

(
m+ 1

2

)
dm/2

(1 + t · t)(m+1)/2
.

In other words, the zeros are uniformly distributed on real projective space, and
the expected number of zeros is dm/2.

Shub and Smale [46] have generalized this result as follows. Consider m inde-
pendent equations of degrees d1, . . . , dm, each defined as in this example. Then the
expected number of real zeros of the system is

√√√√
m∏

k=1

dk.

The result has also been generalized to underdetermined systems of equations [31].
That is to say, we may consider the expected volume of a random real projective
variety. The degrees of the equations need not be the same. The key result is as
follows. The expected volume of a real projective variety is the square root of the
product of the degrees of the equations defining the variety, multiplied by the volume
of the real projective space of the same dimension as the variety. For a detailed
discussion of random real projective varieties, see [33].
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7.3. Random harmonic polynomials. Consider the vector space of homoge-
neous polynomials of degree d in m + 1 variables that are harmonic, that is, the
Laplacians of the polynomials are equal to zero. If Q is an orthogonal (m+1)×(m+
1) matrix, then the map that sends p(x) to p(Qx) is a linear map from our vector
space to itself, i.e., we have a representation of the orthogonal group O(m+1). It is
a classical result in Lie group theory that there is, up to a constant, a unique normal
measure on harmonic polynomials that is invariant under orthogonal rotations of
the argument. It follows that this representation is irreducible.

We outline a proof by considering the invariance of v(x)TCv(y). Assume that
for any orthogonal matrix Q, v(Qx)TCv(Qy) = v(x)TCv(y). This implies that
v(x)TCv(y) must be a polynomial in x ·x, x · y, and y · y. This is classical invariant
theory. For proofs and discussion of such results, see [48, Vol. 5, pp. 466–486]. We
thus deduce that v(x)TCv(y) must be of the form

[d/2]∑

k=0

βk(x · x)k(y · y)k(x · y)d−2k.

Setting the Laplacian of this expression to zero, we see that

2k(m+ 2d− 2k − 1)βk + (d− 2k + 2)(d− 2k + 1)βk−1 = 0

and therefore that
βk
β0

=
(−1)kd!(m+ 2d− 2k − 3)!!

2kk!(d− 2k)!(m+ 2d− 3)!!
.

Thus we see that v(x)TCv(y) is uniquely determined (up to a constant).
From this formula we can show that the expected number of roots for a system

of m such random harmonic polynomial equations is
(
d(d+m− 1)

m

)m/2

.

Because of the orthogonal invariance of these random polynomials, results hold
in the generality of the polynomials in Section 7.2. Thus we may consider systems of
harmonic polynomials of different degrees, or we may consider
underdetermined systems, and the obvious generalizations of the above result will
hold. See [32] for a detailed discussion.

7.4. Random power series. For a power series in m variables with independent
standard normal coefficients, we see that the density of zeros on Rm breaks up as
the product of m densities:

ρ(t) = π−
m+1

2 Γ

(
m+ 1

2

) m∏

k=1

1

(1− t2k)
.

Notice that the power series converges with probability one on the unit hypercube,
and that at the boundaries of this domain the density of zeros becomes infinite.

7.5. Random entire functions. Consider a random power series

f(x) =
∑

i1,...,in

ai1...imΠm
k=1x

ik
k ,

where the ai1...im are independent normals with mean zero and variance

(
∏m

k=1 ik!)
−1

. Clearly
v(x)TCv(y) = ex·y,
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so the zeros are uniformly distributed on Rm with

π−
m+1

2 Γ

(
m+ 1

2

)

zeros per unit volume.

8. Complex zeros

We now present the complex version of Theorem 7.1 and discuss some conse-
quences. We define a complex (multivariate) normal vector to be a random vector
for which the real and imaginary parts are independent identically distributed (mul-
tivariate) normal vectors.

Theorem 8.1. Let v(z) = (f0(z), . . . , fn(z))T be any complex analytic func-
tion from an open subset of Cm to Cn+1, let U be a measurable subset of Cm,
and let A be a random m× (n+ 1) matrix. Assume that the rows of A are iid
complex multivariate normal vectors with mean zero and covariance matrix C.
The expected number of roots of the system of equations

Av(z) = 0

that lie in the set U is
m!

πm

∫

U
det

[
∂2

∂zi∂z̄j

(
log v(z)TCv(z̄)

)]

ij

∏

i

dxi dyi .

Sketch of proof. The proof is analogous to that of Theorem 7.1 but uses complex
integral geometry [43, p. 342]. The volume of the projection of v(z) is calculated
using the complex Fubini-Study metric [22, pp. 30–31].

If U is Zariski open, then by Bertini’s theorem, the number of intersections is
constant almost everywhere. This number is called the degree of the embedding (or
of the complete linear system of divisors, if we wish to emphasize the intersections).
From what we have seen, the volume of the embedding is this degree multiplied by
the volume of complex projective space of dimension m. For example, the volume
of the Veronese surface v : P(C3) → P(C6), defined by

v(x, y, z) = (x2, y2, z2, xy, xz, yz),

is 4×π2/2!. This corresponds to the fact that pairs of plane conics intersect at four
points.

For the univariate case, if the coefficients are complex independent standard
normals, the zeros concentrate on the unit circle (not the disk!) as the degree
grows.

For the complex version of the polynomial considered in Sections 3.1.2 and 7.2,
the zeros are uniformly distributed on complex projective space. Just as was ob-
served for the real version of this example in Section 4.1, this uniformity is a con-
sequence of (unitary) invariance of the homogeneous version of these random poly-
nomials. But for the complex case more can be said: these polynomials provide
the unique normal measure (up to a constant) on the space of polynomials that is
unitarily invariant. A simple proof and discussion of this may be found in [30].
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8.1. Growth rates of analytic functions. Complex analysts know that there is
a connection between the asymptotic growth of analytic functions and the number
of zeros inside disks of large radius. Functions whose growth may be modeled by
the function exp(τzρ) are said to have order ρ and type τ . Precise definitions may
be found in [6, p. 8]. Let n(r) be the number of zeros of f(z) in the disk |z| < r.
If f(z) has at least one zero anywhere on the complex plane, then [6, Eq. (2.5.19)]

lim sup
r→∞

logn(r)

log r
≤ ρ.(14)

It is possible [6, (2.2.2) and (2.2.9)] to compute the order and type from the
Taylor coefficients of f(z) = a0 + a1z + a2z2 + · · · , by using

ρ = lim sup
n→∞

−n logn

log |an|
(15)

and

τ =
1

eρ
lim sup
n→∞

n|an|ρ/n.(16)

We now illustrate these concepts with random power series. We shall restrict to
the univariate case, and we shall assume that the coefficients are independent.

Theorem 8.2. Let
f(z) = a0 + a1z + a2z

2 + · · ·
be a random power series (or polynomial), where the ai are independent complex
normals with mean zero and variances σ2

i ≥ 0. Let

φ(z) = σ2
0 + σ2

1z + σ2
2z

2 + · · ·
be the generating function of the variances, and assume that φ(z) has a non-zero
radius of convergence. Let n(r) be the expected number of zeros of the random
function f(z) in the disk |z| < r. Then

n(r) =
r

2

d

dr
logφ(r2).

Proof. Observe that v(z)TCv(z̄) = φ(zz̄) = φ(r2), where v(z) is the (infinite-
dimensional) moment curve. Thus it is easy to check that

∂2

∂z∂z̄
log v(z)TCv(z̄) =

1

4r

d

dr
r
d

dr
logφ(r2).

This is multiplied by rdrdθ/π and then integrated over the disk |z| < r.

This theorem, together with the fact that the distribution of zeros is radially
symmetric, completely describes the distribution of zeros for these random func-
tions. In fact, n(r) is exactly the unnormalized cumulative distribution function
for the absolute values of the zeros.

As a simple example, let

φ(z) = e2τz
ρ/2

.

By applying the Borel-Cantelli Lemma [45, p. 253] to (15) and (16), we see that the
random function f(z) has order ρ and type τ with probability one. The theorem
we have just established then gives

n(r) = τρrρ .

This result is reasonable in light of (14).
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8.2. A probabilistic Riemann hypothesis. We conclude our discussion of com-
plex zeros with a probabilistic analogue of the Riemann hypothesis.

Theorem 8.3. Consider the random Dirichlet series

f(z) = a1 +
a2

2z
+
a3

3z
+ · · · ,(17)

where ak are independent complex standard normal random variables. This con-
verges with probability one if Re(z) > 1/2. Then the expected number of zeros in
the rectangle 1/2 < x1 < Re(z) < x2, y1 < Im(z) < y2, is

1

2π

(
ζ′(2x2)

ζ(2x2)
− ζ′(2x1)

ζ(2x1)

)
(y2 − y1) .

In particular, the density of zeros becomes infinite as we approach the critical line
{z | Re(z) = 1/2} from the right.

Proof. Following Section 3.2.5, we see that v(z)TCv(z̄) = ζ(z + z̄), so the density
of zeros is

1

4π

d2

dx2
log ζ(2x) ,

where x = Re(z).

Since (17) converges with probability one for Re(z) > 1/2, one might try using
random Dirichlet series to study the Riemann zeta function inside the critical strip.
Unfortunately, as Section 3.2.5 and Theorem 8.3 suggest, random Dirichlet series
are more closely related to ζ(z + z̄) than to ζ(z), and so the penetration of the
critical strip is illusory.

9. The Buffon needle problem revisited

In 1777, Buffon showed that if you drop a needle of length L on a plane containing
parallel lines spaced a distance D from each other, then the expected number of
intersections of the needle with the lines is

2L

πD
.

Buffon assumed L = D, but the restriction is not necessary. In fact the needle may
be bent into any reasonable plane curve and the formula still holds. This is perhaps
the most celebrated theorem in integral geometry and is considered by many to be
the first [43].

Let us translate the Buffon needle problem to the sphere as was first done by
Barbier in 1860—see [51] for a history. Consider a sphere with a fixed great circle.
Draw a “needle” (a small piece of a great circle) on the sphere at random, and
consider the expected number of intersections of the needle with the great circle. If
we instead fix the needle and vary the great circle, it is clear that the answer would
be the same.

Any rectifiable curve on the sphere can be approximated by a series of small
needles. The expected number of intersections of the curve with a great circle is
the sum of the expected number of intersections of each needle with a great circle.
Thus the expected number of intersections of a fixed curve with a random great
circle is a constant multiple of L, the length of the curve. To find the constant,
consider the case where the fixed curve is itself a great circle. Then the average
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number of intersections is clearly 2 and L is clearly 2π. Thus the formula for the
expected number of intersections of the curve with a random great circle must be

L

π
.

Of course the theorem generalizes to curves on a sphere of any dimension.
To relate Barbier’s result to random polynomials, we consider the curve γ on

the unit sphere in Rn+1. By Barbier, the length of γ is π times the expected num-
ber of intersections of γ with a random great circle. What are these intersections?
Consider a polynomial p(x) =

∑n
0 anx

n, and let p⊥ be the equatorial Sn−1 perpen-
dicular to the vector p ≡ (a0, . . . , an). Clearly γ(t) ∈ p⊥ for the values of t where
γ(t) ⊥ p. As we saw in Section 2, these are the values of t for which p(t) = 0. Thus
the number of intersections of γ with p⊥ is exactly the number of real zeros of p,
and the expected number of real zeros is therefore the length of γ divided by π.
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