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Abstract

The existence of Nash and Walras equilibrium is proved via Brouwer’s Fixed
Point Theorem, without recourse to Kakutani’s Fixed Point Theorem for corre-
spondences. The domain of the Walras fixed point map is confined to the price
simplex, even when there is production and weakly quasi-convex preferences.
The key idea is to replace optimization with “satisficing improvement,” i.e., to
replace the Maximum Principle with the “Satisficing Principle.”

The standard proofs of the existence of Nash and Walras equilibrium (including
the original proofs by Nash [17], Arrow and Debreu [2], and McKenzie [15]) rely on
Kakutani’s Fixed Point Theorem for correspondences. I show that a slight pertur-
bation of the standard arguments enables one to work entirely with Brouwer’s Fixed
Point Theorem for continuous functions.

Nash himself [18] gave a Brouwer fixed point proof of Nash equilibrium for matrix
games. McKenzie [16] derived the existence of Walras equilibrium with production
from Brouwer’s Fixed Point Theorem. The only advantage of the maps I propose is
that some readers may think they are simpler. For example, in my Walras existence
proof the domain of the fixed point map is the price simplex. There is no need to
enlarge the domain to include excess demands, as done by Gale [9] and Debreu [6], [7],
or the demands of each consumer, as done in the generalized game proofs of Debreu
[5] and Arrow and Debreu [2], or to add the auxiliary commodities introduced by
McKenzie [16].

In Section 1, the existence of Nash equilibrium in concave games is proved. Let
a game G = (uy, Xpn)nen be described by its payoffs w,, and strategy spaces ¥,,, for
agents n € N. The original proof by Nash relied on the best response correspon-
dence B, (Gp, 0—p) = argmax, s, Un(0n, 0y). My proof simply replaces B,, with a

*I wish to thank Ken Arrow, Don Brown, and Andreu Mas-Colell for helpful comments. I first
thought about using Brouwer’s theorem without Kakutani’s extension when I heard Herb Scarf’s
lectures on mathematical economics as an undergraduate in 1974, and then again when I read Tim
Kehoe’s 1980 Ph.D dissertation under Herb Scarf, but I did not resolve my confusion until I had to
discuss Kehoe’s presentation at the celebration for Herb Scarf’s 65th birthday in September, 1995.



satisficing improvement function

BT, T—p) = argmax [ty (0, T—n) — ||0n — Tnl|?]
on€EXn
in which agent n moves part of the way to his optimal response. Moving all the way
to a best response is irrelevant to demonstrating that a fixed point is an equilibrium.
Section I also includes a discussion of earlier demonstrations of Nash equilibrium
based on Brouwer’s FPT for matriz games.

In Section 2 the existence of Walras equilibrium is proved for economies F =
(", e ner, (Y)rer, (9?)?2? ) with quasi-concave utilities u" and convex tech-
nologies Yy. Let M "(p,p) be the minimum net expenditure household ~ must make
at prices p beyond its income I"(p) in order to achieve the same utility it would
obtain if it faced prices 7 and income I"(p)." It is well-known that M”" is continuous
in (p,p) and concave in p for any fixed p. Let M(p,p) be the sum of the M"(p,p)
over all households h. Let S be the price simplex. In Section II it is shown that the
function ¢ : S — S defined for each p in S by

©(p) = argmax [M(p,p) — |lp—D||*]
peES

is continuous and has Walras equilibrium as its fixed points.?

The minimum expenditure function and its properties have been very closely stud-
ied since Hicks showed that the so-called Hicksian demand is more regular than the
Marshallian demand. Intermediate textbooks often emphasize the duality between
utility maximization and expenditure minimization, which guarantees (through the
Maxmin theorem) that a fixed point of the function ¢ must be a Walras equilibrium.
Nevertheless, though there are many closely related ideas to be found in the litera-
ture, to the best of my knowledge nobody has used the function M to demonstrate
the existence of equilibrium.

To get a piccture of the function M, let Di (p) be the set of all consumption
bundles (budget feasible and not) that make agent h at least as well off as his Wal-
rasian demands D"(p), and define the “better than excess demand correspondence”
by Zy(P) =Y pen(Dh(D) —e") — >_ter Yy in which the firms choose anything fea-
sible. Similarly, let Z(p) = Y., (D"(p) — ") — > ser Yr(p) be the usual excess
demand correspondence. We shall see that

M(p,p) = Zergiﬁﬁ)p -z,

Note that M(p,p) < N(p,p) = min,cyz p - 2; usually M(p,p) < N(p,p). Indeed
when excess demand Z is a correspondence, as will typically be the case without

Tncome is defined by I"(p) =p- e + EfeFQI; maxy ev; P - Ys-

2This Walrasian existence proof is evidently idential to our Nash equilibrium existence proof for
a “psychological game” (not a generalized game) with only one player, the price player, whose payoff
M (p,P) depends on the P he is expected to play as well as the p he chooses.



further assumptions, N(p,p) is not continuous.?> Even when Z(p) is a function, and
N is continuous, M(p,p) # N(p,p). A diagram illustrates that max,cs M(p,p) #
max,cs N(p,p) in an economy consisting of one consumer with a strictly concave
utility.

X2

In Section 3 we examine several special cases (e.g., the u” strictly quasi-concave
and the Y strictly convex) in which excess demand Z(p) is a function z(p). In
these special cases there are already standard proofs of Walras equilibrium based
on Brouwer’s FPT. In order to facilitate comparisons with these standard proofs, in
Section 3 we modify our fixed point map by replacing M with N, obtaining

Y (p) =argmax [p- 2(p) — [p — PII’]-
peS
Once again 9 is continuous and all its fixed points are Walras equilibria. Our per-
turbation —||p — p||? still simplifies matters, even with dealing with excess demand
functions. We apply similar maps in other special cases, e.g., with constant-returns-
to-scale technologies. Much of the paper is devoted to these special cases, because
many readers will find these cases to be all they are really interested in. Our map
1 is quite different from the standard mpa (deriving from Nash’s matrix game map)
that is exposited in most textbooks, but ¥ turns out to be closely related to the

3The function N has nevertheless often been used to prove the existence of equilibrium. In one
such approach the prices p are called “better” than the prices p if N(p,p) > 0. Walras equilibrium
then exists if it can be shown that this partial ordering on prices has a maximal element. The problem
is thus reduced to one of maximizing a (nontransitive) binary relation, for which see Nikaido [20],
Fan [8], Sonnenschein [22], and Aliprantis and Brown [1]. For a lucid exposition of these ideas, see
Border [3].

4An interesting feature of each successive Walras existence proof is that Brouwer’s fixed point
theorem must be augmented by Farkas’ Lemma (when technology is given by a finite number of
activities), the separating hyperplane theorem (when technology is given more generally by a cone),
and the MinMax theorem (when technological possibilities are given by arbitrary convex sets).



maps used by Todd [23] and Kehoe [12] to compute equilibria of economies with
fixed coefficient technologies.

An advantage to the map 1 based on N over the map ¢ based on M is that
requires less information on the part of the auctioneer to implement: just like with
Walrasian tatonnement, the bigger the excess demand the greater the price increase.

However, like Walrasian tatonnement, the algorithm p(t+1) = ¢ (p(t)) does not
necessarily converge. It is an open question whether the algorithm p(t+1) = ¢(p(t))
converges more generally.

The only technical point in this paper occurs in showing that the function M (p,p)
is continuous, which is tantamount to showing that the “better than” correspon-
dence Z, (p) is upper semi-continuous (USC) and lower semi-continuous (LSC). The
standard Kakutani based argument requires proving that the excess demand corre-
spondence Z(p) is USC, which is accomplished by invoking the Maximum Principle.
Kakutani’s fixed point theorem does not require Z to be LSC, which is fortunate,
because the Maximum Principle does not guarantee LSC and in general Z is not
LSC. The impression the student is sometimes left holding is that LSC is less central
than USC, but we should not forget that the Maximum Principle cannot be applied
unless the budget correspondence of each agent is USC and LSC. Here we introduce
new lemma called the Satisficing Principle, which could perhaps stand just behind
the Maximum Principle as a useful tool in the theory of choice, because it guarantees
LSC and USC.

The Satisficing Principle supposes that an agent maximizing a quasi-concave util-
ity subject to a convex constraint is satisfied with a payoff w(«) < v(a), where v(a)
is the maximum achievable utility given the exogenous parameters «, and w is any
continuous function. It asserts that the correspondence W («) of all choices achieving
payoff at least w(«) is lower semi-continuous (LSC) as well as upper semi-continuous
(USC) in a. The Satisficing Principle complements the Maximum Principle, which
guarantees that v(«) is continuous and that the set of choices achieving v(«a) is USC
but not necessarily LSC. One immediate application of the Satisficing Principle is
that the Walrasian budget correspondence is LSC and USC when the endowment is
strictly positive. More importantly, since the Walrasian indirect utility function is
continuous, and by non-satiation, strictly less than the maximal utility achievable
without a budget constraint, the Satisficing Principle guarantees the LSC and USC
of D" (p), and hence of Z_(p).

The Satisficing Principle is stated and proved in Section 4, where it is also used
to give a Brouwer FPT proof that quasi-concave games have Nash equilibria. In
some sense the whole idea of this paper comes down to replacing optimization with
satisficing improvement; first for the game players and the auctioneer, by subtracting
|l[or, — @nl|? or ||p — P||?, and second for the households, in substituting Z, (p) for

Z(p)-



1 Games and Nash Equilibrium

1.1 Concave Games

Let a game G among N players be defined by compact and convex strategy spaces
¥1,..., X in finite-dimensional Euclidean spaces, and by continuous payoff functions
U1, ..., upn, where for eachn € N, u, : X =31 X --- x Xy — R. We call G a concave
game if for any fixed T_,, = (G1, ..., 0n-1,0n41,0N) € Zp = X1 X+ X By 1 X
Ynt1 X oo X Zn, Up(0p,T—p) is concave in o,,.

The two player matrix games are defined by r x s matrices A and B. Player a
has strategy space Xo = {p € R, : Y7 ; p; = 1} and player § has strategy space
Y ={q € R} : X7 1¢; = 1}. The payoffs are defined by ua(p,q) = p'Ag and
ug(p,q) = p'Bgq. Since u,, is linear on ¥,, for n = a and (3, these matrix games are
indeed concave games.

Given a game G = (X1,...,Xn; U1, ...,un), a Nash equilibrium is a choice 7 =
(@1, ..., oN) € 2 such that for all n € N and all o, € %,

Un () > up(op, T_pn) .
THEOREM: Every concave game has a Nash equilibrium.
PROOF: Define the function
Yn X — X, by

On (@1, ooy Ty oy O ) = AIEMAX [y (T, Ty) — ||0m — T ||
0n€Xn
Observe that the maximand is the sum of a continuous, concave function in 7, and
a negative quadratic function in ¢, and hence is continuous and strictly concave.
Since Y, is compact and convex, ¢, is a well-defined function. Furthermore, the
maximand is continuous in the parameter & = (1, ..., 7,), hence ¢, is a continuous
function.

Now define ¢ : ¥ — X by ¢ = (¢1, ..., pn). Clearly ¢ is continuous, and so by
Brouwer’s theorem it has a fixed point ¢(7) = 7.

Suppose for some o0, € %,, un(0n,0-n) — up(@) = E > 0. Then by con-
cavity of uy, for 0 < ¢ < 1, uy(eoy + (1 — €)Gp,0_p) — up(G) > €E > 0 while
(eon + (1 — €)Ty) — Tpl|? = €2||0n — Tn||?> < €E, if € is small enough, contradicting
the definition of ¢,. Hence 7 is a Nash equilibrium. O

Nash [1950] suggested the correspondence ¢, : ¥ = 3, defined by ¢, (7) =
arg maxXe, ey, Un(0n,0—p). Since u, is not necessarily strictly concave, 1, (@) may
contain multiple elements.

The maximand above is simply a perturbation of the Nash maximand. It guaran-
tees that a player will always make some improvement when there is an opportunity
to improve, but he will not necessarily move all the way to his best response. Another
difference is that the Nash correspondence v, throws away some information, since



1y, actually is defined on ¥_,,. The map ¢,, depends on all the coordinates, including
Y.

Nash [18] also showed that for matrix games, Brouwer’s Fixed Point Theorem
sufficed. He suggested using the excess return functions z4(p, ) = Ag — (p’Ag)1 and
23(p,q) = p'B— (pBq)1, which specify the surplus each agent can get by playing each
pure strategy instead of his designated mixed strategy. He then defined the map

p+[Ag—- P A9l" g+ [pB-@Bgl* >
1+ [Aq— (P'Ag))*- 1" 1+[p'B—-@Bgl]*t-1)’

s =

where for any vector y, [y|T is the vector with ith coordinate max(0, y;), and 1
is the vector of all 1’s, or just the scalar 1, depending on the context. A fixed
point of the Nash map can be shown to be a Nash equilibrium by observing that
7' [AG — (P’ Aq)1] = 0. Indeed this same trick is copied in the now standard existence
proof for Walrasian equilibrium, where it crops up as Walras law. The Nash map f
expoits the special form of matrix games.

The map ¢ can be used for any concave game. In the special case of matrix games
it reduces to

¢(®,9) =h({@,q = Uz, P+ 5A7), Oy, (7+ 37'B)),

where II4(z) is the closest point in A to x. The map h has been used to prove the
existence of Nash equilibrium in matrix games by Lemke-Howson [14], and to study
the index of matrix game Nash equilibrium by Gul-Pearce-Stacchetti [11]. To see
that ¢ reduces to h for matrix games, one needs to use the Kuhn—Tucker theorem.
Indeed, one needs the Kuhn-Tucker theorem to verify that a fixed point of A is a
Nash equilibrium.?

2 Walrasian Economies

2.1 The Walrasian Economy

Let us represent an economy by
E = {H7 (Xh7 €h7 uh)h€H7 F7 (Yf)fEFa (9?)?22’[} )

where H is a finite set of households, X" C R¥ is the consumption set of household
h, " is the endowment, and u” is the utility function of agent h € H, F is a finite set
of firms, Yy is the technology of firm f € F, and (‘)}JZ‘ € R, is the ownership share of

firm f by agent h, Y ;. g 6)}; =1 for all f € F. We assume in addition that Vh € H,

®By the Kuhn-Tucker theorem, (5, ) — (va (P, §), —ps(P, 7)) satisfies AG— 2(pa(B, ) —P) — Ae+
A =0, where A > 0 is a diagonal matrix with A;; > 0 only if ¢.;(P,g) = 0. By the Kuhn—Tucker
theorem, the map h(p,q) = (ha(P,q), hs(P, 7)) satisfies —2(ha(P,q) — 3 A7 — D) + pe + Q = 0, where
Q > 0 is a diagonal matrix with €;; > 0 only if ha;(P,g) = 0. Our definition of ¢ avoids the need
for the Kuhn—Tucker theorem.



(1) X" is closed, convex, and bounded from below: 3d" such that d" < z for all
r e Xh

(2) e € X" and 3d" € X" with d" < "
(3a) u" : X" — R is continuous

(3b) ! is quasi-concave, i.e., [u"(x) > u(y) and 0 < A < 1] = [u"(Az+ (1 —N)y) >
u”(y)], for all x, y € X"

(3¢) u” is non-satiated, i.e., Vy € X", 3o € X" with u"(z) > u"(y)
and for all f € F,
(4) Yy is a closed convex subset of RY, and 0 € Yy
and furthermore,
(5) Ip* e RY | with p* Yy <7y <oo0,VfEF
(6) themap o : Y1 X --- X Yr — RY defined by o(y1, ..., yr) =y1 + -+ +yp is
proper, i.e., 0~ }(K) is compact whenever K C R” is compact.
2.2 Walras Equilibrium
A Walras equilibrium (WE) for the economy F is a tuple (p, (Z")ncm, Us)rer) €
]Ri X Xpeg X x XrerYy satisfying

(1) X< 3 e+ 3 7y

heH heH fer

(2) Yy € argmaxp-yy, Vf € F
yrEYy

(3) T e Bh"p)={r e X" : p-a <pe + 3 9? max pys = I"(p)}, Vh € H
fer T Yr€Yy

(4) 7" € argmax u”(z).
z€Bh(p)

By non-satiation we know that at a WE each agent spends all his income, so the
budget inequality in (3) reduces to equality, and we therefore conclude that in a WE,

ZT?<Z€?+Z@J%:T%’:0' (1.1)

heH hey fer



2.3 Easy Consequences of the Assumptions

An irreversibility assumption similar in spirit to (6) was proposed by Debreu. It
has the consequence that Y = o71({y € R : p* .y < > terpTrand e +y > d})
is compact in Y X .-+ X Yp, wheree = ), 4 e and d = ZheHglh. We may
therefore find ?f C Yy for all f € F that are compact, convex, contain 0, and such
that}A/C?l X e ><§A’F.

Furthermore, let us define Xh = {z € XM Viwith1<i<L, ; <1+ (p*-e+
> ter 77)/Pi}. Then by quasi-concavity of the utilities, restricting the consumption
sets from X" to X" and restricting the technologies from Y7 to }A’f gives rise to an
economy E with exactly the same Walras equilibria as . Thus without loss of gen-
erality, we may add assumption (7):

(7) X" and Y/ are compact for all h € H and f € F.

We list three more simple observations. Lemmas 1 and 2 rely on the definitions of
USC and LSC, and on the Satisficing Principle, all of which are deferred to Section
IV. Only Lemma 3 is directly used in the Walras existence proof.

LEMMA 1: The budget correspondence B*(p) is USC, LSC, non-empty valued,
convez-valued and compact-valued on S = {p e R : " p, =1}.

PROOF:
B'p)={zeX":p-a<I"p}={zeX":—p-2>-1"p)}.

Since e >> d*, —I"(p) < —p-e" < —p-d* < argmax,. yn —p-7, so the lemma follows
from the compactness of X", the continuity of I"(p), and the Satisficing Principle
O

Let v"(p) = max, Bh(p) u"(z) be the so-called indirect utility function of agent
h. Since B"(p) is USC and LSC, non-empty valued and compact-valued, by the
Maximum Principle, v"(p) must be continuous on S. Furthermore, let

D"(p) =arg max u"(x)
z€Bh(p)
be the demand correspondence of agent h. Again by the Maximum Principle, D" (p)
is USC. Unfortunately, D"(p) may not be LSC, as is well known.

A central element of the existence proof given in Section B is the replacement of
the demand correspondence D"(p), which may fail to be LSC, with the “demand or
better” correspondence D" (p), which is always LSC. McKenzie [16] used a similar
correspondence.

LEMMA 2: D"(p) = {x € X" : u"(z) > v"(p)} is USC, LSC, non-empty-valued,
convez-valued, and compact-valued for p € S. Hence so is the better than excess

demand Z1.(p) = Y ey D (D) = Ypem € — Y jer Yr-

8



PROOF: Apply the Satisficing Principle, noting that X" and u" are independent of
p, and that v"(p) is continuous.

LEMMA 3: The minimum expenditure function

M(p.7) = min p-
(p,D) oin_p-2

is continuous in (p,p) € S X S, and concave in p for any firedp € S.

PROOF': Lemma 2 and the Maximum Principle guarantee the continuity of M (p,p).
For any fixed p, M(p,p) is the minimum of a family of linear functions in p, hence it
must be concave. O

In the next section we prove in passing that M(p,p) = > ey M h(p,p) where
M"(p,p) = min{p -z : x € DL (p)} — I"(p).

2.4 Existence of Walras Equilibrium

We now construct an existence proof of Walras equilibrium for general quasi-concave
preferences and convex production sets, that uses only the domain of prices S, and
only Brouwer’s fixed point theorem.

THEOREM: Let E = (H, (u")pen, F, (Y¢)fer, (9?)?2?) be a Walras economy sat-
isfying assumptions (1)—(6). Then E has a Walras Equilibrium (p, (T)nem, Us)ser)-

Recalling that Z,.(p) = > ey DV (D) =Y pep € — > ser Yr(p) is the at least as
good as excess demand, and that M (p,p) = min,cy (p) P - 2, define p : S — S by

o(p) = argmax [M(p,p) — lIp — PII]

= argmax[ min_p-z —[|p —p|*.
z€2Z(p)
Since M is concave in p for any fixed p, and ||p — P||? is quadratic, the maximand
is strictly concave, so it has a unique maximum and ¢(p) is a function. Since M is
continuous (equivalently, since Z; (p) is USC and LSC), ¢ is a continuous function.
Therefore by Brouwer’s fixed point theorem, ¢ has a fixed point p.
At the fixed point D,

P €argmax M (p,p) =argmax min p- z.
peS pesS  z€Z4(D)
This is because of our familiar argument that the first term of the maximand is
concave, and the second term has derivative zero around p = p.
We now invoke the convexity of Z, (p) for the first time to derive from the Maxmin
theorem the existence of Z € Z, (p) such that

P-Z=maxp-zZ= min p-z
peS 2€Z4 (D)



Since Z € Z4 (D) = Y pepyy D) =Y pem € — > fer Yy, we can find z" € D" (p) and
yreYpsuchthat z=3, ;7" =3, e — > ter Yy Furthermore, from the fact
that z € arg minz€2+(]_9) P -z, we deduce that §; € argmaxy cy, p - yy. Furthermore,
p-T" < I"(p), otherwise replacing " with some element of D"(p) would improve on
Z. Hence indeed T" € D"(p).

It now follows that

D P <) I'O)=D [t ) Oyl = P ) Py

heH heH heH feF heH feF

Hence p -z < 0. But then from argmax,csp -z =P -2z < 0, we deduce that z < 0.
O

One notable aspect of the proof is that convexity (of Z,(p)) was not needed
until after we found a fixed point p. In the usual proof, the excess demand Z(p) is
required to be convex in order to guarantee the existence of a fixed point. McKenzie
[16] showed that one could always reduce convex technologies to CRS-technologies
by adding F' auxiliary commodities, representing the contributions of the owners to
each firm. The fixed point map must then be carried out in a simplex of dimension
L+ F — 1. In the above proof the domain is the original L — 1 dimensional simplex.

3 Walras Equilibrium with Strictly Convex Preferences

In this section we specialize the general Walrasian economy given in Section II to
cases where we can work with excess demand functions. For these cases it is already
known that Brouwer’s Theorem suffices to prove the existence of Walras equilibrium.
But we show here that the perturbation —||p — P||? can still simplify matters.

3.1 Pure Exchange and Strictly Convex Technologies

Let S={pe R : Zle pi = 1} be the usual price simplex.
Let z be called an excess demand function whenever z : S — R is a continuous
function satisfying Walras Law: p- z(p) =0 Vp € S.5
We define a Walras equilibrium for the excess demand function z as a price vector
P € S satisfying
2(5) <0.

5Suppose that, in addition to assumptions (1)—(7) from Section 2, for all h € H,
[u"(z) > u"(y)] = " Az + (1-N)y) > u" (y)]
if0<A<l,z#yandz,y€ X", and forall f € F
[x£yeYr, 0<A<1] = [Tz €Y withz> Az + (1-N)y] .

Then 2(p) = >, cn D"(p) — > ohen el — > fer @TEMAXy cy; p- Yy is a continuous function satisfying
Walras Law. In the special case Y; = {0} Vf € F', we have a pure exchange economy.

10



Note that by Walras Law, z;(p) = 0 unless p; = 0, in which case we may have
Z; (ﬁ) < 0.

THEOREM: Every excess demand function has a Walras equilibrium.

PROOF: Define the map ¢ : S —S by
¢(p) = argmaxp - 2(p) — |lp — P||%]-
pES

Observe that the maximand is the sum of a linear function in p and a quadratic
function in p, hence it is strictly concave and continuous in p. Since S is compact
and convex, ¢(p) is a single point, and so ¢ is a function. By the maximum principle,
¢ is a continuous function (since the parameters z(p) and p move continuously as p
varies).

Hence by Brouwer’s Fixed Point Theorem, ¢ has a fixed point p. At this fixed
point, we cannot have p-z(p) > 0 =p-2(p) for any p € S, because then the first term
of the maximand would have a positive derivative at p in the direction p—p, while
the second term has derivative 0 at p in every direction, contradicting the optimality
of P.

Hence p € S = p- 2(p) <0, which implies 2(p) <0. O

Debreu’s [7] proof of Walras equilibrium uses the correspondence (z) =
arg maxpes p - z. As Debreu said, v is motivated by the principle that when there is
excess demand in some commodity, z; > 0, prices should go up, at least where excess
demand is greatest. The only drawback to Debreu’s construction is that 1/(z) may be
multi-valued, thus forcing the use of Kakutani’s Fixed Point Theorem. The function
©(p) is obtained by a slight perturbation of Debreu’s construction.

The best known continuous function for proving Walras equilibrium is obtained by
imitating the Nash [18] fixed point map for matrix games: g;(p) = {p;+[z:(p)]T}/{1+
Zle[zj (p)]*}, where [z]t = max{x,0}, for ¢ = 1,...,L. A simple, but slightly
awkward argument, using Walras law, shows that a fixed point of g is a Walras
equilibrium.

The function ¢(p) is (surprisingly) identical to the map h(p) = Is(p + 52(p)),
where TIg(z) is the closest point in S to 2.7 By deriving ¢ from the above maxi-
mization, one can see transparently that a fixed point is a Walrasian equilibrium. To
show that a fixed point of h on the boundary of S is an equilibrium, the Kuhn—Tucker
theorem must be invoked.

"By the Kuhn-Tucker theorem, ©(F) = argmaxpes[p - 2() — ||p — P||?] satisfies
(¢(P) —P) = 32(P) — Ae + A where A > 0 is a diagonal matrix with A; > 0 only if ¢;(p) = 0.
Similarly by the Kuhn-Tucker theorem h(p) = argminpes ||p — [p + 32(P)]||* satisfies the same
equation.

11



3.2 Production with Constant Returns-to-Scale Technologies

We now consider CRS production. A constant returns-to-scale (CRS) technology is a
set Y C RY such that Y is a closed, convex, cone (y € Y implies ty € Y for all ¢ > 0;
in particular, 0 € Y). Furthermore we suppose that Y allows for free disposal; z < y
and y € Y implies z € Y. Finally, we suppose there is some p* € S with p*-Y <0,
ie,p*-y<0forallyeY.

A Walras equilibrium with production for an excess demand function, CRS-
technology pair (z,Y) is a price p € S such that z(p) € Y and pY < 0. Note that by
Walras Law the production plan z(p) chosen makes zero profits, while alternatives
either lose money or do no better.

The central example of a CRS-technology is an activity analysis production tech-
nology given by the matrix B = [—I A] where [ is the L x L identity matrix and A is
an L x n vector of activities. Each column of the B matrix represents an “activity.”
Positive elements correspond to outputs, negative entries in B correspond to inputs.
The first L columns of B represent pure disposal. The activity matrix B determines
the CRS-technology

Y = {Bz|r e RLT"} .

Clearly Y is a convex, closed cone allowing for free disposal. If for some vector W > 0,
{x e RE™™ . Bx+W > 0} is bounded, then there must be a p* € S with p* -V < 0.

TECHNOLOGY LEMMA: IfY is a CRS-technology and for some vector z € R-,
[peS and pY <0] = pz<0, thenz €Y.

PROOF: Suppose z ¢ Y. Since Y is closed and convex, by the separating hyperplane
theorem we can strictly separate Y and z, that is find some p € RY such that
P-Y <Pp-z ButY is acone, sop-Y bounded above impliesp-Y < 0; also 0 € Y,
so we have p-Y <0 <p-z. By free disposal, p-Y < 0 implies p > 0. Scaling p, we
get p € § and pY <0 < p- 2, contradicting the hypothesis. O

THEOREM: Every excess demand function, CRS-technology pair (z,Y’) has a Wal-
ras equilibrium.

PROOF: We seek pe Sy ={p€ S : p-Y <0} with 2(p) € Y. By the technology
lemma, it suffices to find p € Sy such that p € Sy = p-2(p) <0=7- 2(p).

By hypothesis, Sy is non-empty. Furthermore, Sy = ﬂyey{p €S :p-y<O0}is
the intersection of closed and convex sets, and so is closed and convex.

Define ¢ : Sy — Sy by

p(p) =argmax [p- 2(p) — |lp — 7] -
pESY

As we argued earlier, ¢ is a continuous function. Since Sy is compact and convex,
Brouwer’s Fixed Point Theorem guarantees ¢ has a fixed point p.

Again as we argued earlier, at the fixed point p, p € Sy = p-2(p) <p-2(p) = 0.
O
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The idea that Brouwer’s theorem alone can be used to prove the existence of
Walras equilibrium with production is due to McKenzie [16] who also used the set
Sy. His mapping is much more elaborate than ¢, but it allows for excess demand
correspondences.

Todd [23] suggested the map h(p) = Ig, [p + z(p)]. (A similar map is in Kehoe
[12].) He showed by the Kuhn—Tucker theorem that a fixed point of h must be a
Walras equilibrium, when Y is given by an activity analysis technology. The map ¢
is identical, its only advantage being a perhaps more transparent proof that a fixed
point is a Walras equilibrium (and the incorporation of general CRS Y).

3.3 Monotonic Preferences and Boundary Behavior

In Sections 3.1 and 3.2 we assumed that the excess demand function z is continuous
on all of S, including at p € S where some prices p; may be zero. We now consider
the possibility that preferences might be strictly monotonic, so that excess demand
becomes infinite as p approaches the boundary, and z is not even defined on all
of S. Let S° be the interior of S, and 05 be its boundary. For every ¢ > 0, let
Se={pesS : p>ce} be the trimmed simplex, and 9S° its boundary, where
1=(1,..,1).

We say that (z,Y) is an excess demand function, CRS-technology pair with proper
boundary behavior whenever z : S — R’ is a continuous function satisfying Walras
Law for all p € S°, and such that 3¢ > 0 and Jp* € S¢, satisfying

p*-Y <0. (1)

pedS =p"-z(p) >0, (2)

When preferences are strictly monotonic, p — 95 = some z;(p) — oco. Since
excess demand is bounded from below by the aggregate endowment of goods, strict
monotonicity implies that for any p* > 0, p* - z(p) > 0 if p is close enough to
the boundary. Thus proper boundary behavior is automatically satisfied by excess
demand functions derived from strictly monotonic preferences, provided we can find
some strictly positive prices p* at which p* - Y < 0. This latter condition is trivially
verified if for example there is some indispensable input like labor that is never
produced.®

THEOREM: Every monotonic excess demand function, CRS-technology pair with
proper boundary behavior has a Walras equilibrium.

PROOF: S¢ is compact and convex. Hence S = S* N Sy is also compact and
convex. Define ¢ : S5 — 55 by

o(p) = arg max p-2(@) — lp— 2% -

®For a refinement of this boundary condition, see Neuefeind [19)].
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As before, ¢ is a continuous function, hence it has a fixed point p. Again by the
familiar argument, p € S5 = p - 2(p) <p- z(p) = 0.

If some Pp; = €, then by proper boundary behavior, p* - z(p) > 0, a contradiction,
since p* € S5,. Hence p >> ce. But then by concavity of the maximand, p € Sy =
p - z(p) < 0. By the technology lemma, z(p) € Y, so p is a Walras equilibrium. O

4 The Satisficing Principle and Quasi-Concave Games

4.1 The Satisficing Principle

Recall that the famous Maximum Principle asserts that the best response correspon-
dence is upper semi-continuous (USC). The USC property is the crucial hypothesis
in Kakutani’s fixed point theorem for correspondences. Kakutani’s theorem is used
instead of Brouwer precisely because the best response correspondence may not be
lower semi-continuous (LSC). What I show below is that if we replace maximiza-
tion with almost maximization (satisficing), then the satisficing correspondence is
LSC and USC. For the purpose of proving existence of equilibrium, we shall see that
nothing is lost by replacing best response with better than.

Let ACR™and X C R”, and let ¢ : A = X be a correspondence associating
with each a € A a subset ¥(a) C X. We say that 1 is upper semi-continuous (USC)
if

ap — @
Ty — T =z € Y(a)
Ty € Y(aw,)

for any {x,, x} C X, {ay,, a} C A. We say that v is lower semi-continuous (LSC) iff

p — Q N dx, — =
z € Y(a) Ty € V(o)
for any {a,,, a} C Aand z € X.

We say that ¢ is USC or LSC at a point @ € A if the above conditions hold when
a =a. Clearly v is USC or LSC if it is USC or LSC at each point @ € A.

SATISFICING PRINCIPLE: Let v : X x A — R be a continuous function,
where X x A € R™ x R™, and X is convex. Let u be quasi-concave in X, for
any fixed « € A. Let 8 : A = X be a non-empty, USC and LSC, convex-valued
correspondence. Let v : A — R U {oo} be the maximum value function defined
by v(a) = supgeg(e) u(z,@). Finally, let w : A — R be continuous and satisfy
w(a) < v(a) for all @ € A. Then the correspondence W : A = X defined by

W(a) ={x € f(a) : u(z,a) > w(a)}

is USC and LSC, and non-empty and convex-valued.
If in addition B(a) = B for all & € A, and u(z,a) = u(x) for all (z,a) € X x A,
then the same conclusion holds even with a weak inequality w(a) < v(a) = v for all

ae A
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PROOF: The non-emptiness and convex-valuedness of W are evident. USC follows
as in the maximum principle, and does not depend on the convexity of X or the
quasi-concavity of u, or on the strict inequality w(a) < v(«). Simply note that if
{zy, € W(ay,) for all n, and a,, — « and z,, — z}, then by USC of 3, z € f(a). By
hypothesis, u(y, @) > w(ay,). Passing to the limit, and recalling the continuity of
wand w, u(x, ) > w(a), so z € W(a).

To prove LSC of W, let a,, — o and let x € W (a). By hypothesis, there is some
T € f(a) with u(Z,a) > w(a). From the LSC of 3, we can find T, € f(a,), Tn — 7.
From the continuity of v and w, for large n, say, n > N, u(Z,, an,) > w(ow,).

From the LSC of 3, we can also find ¥,, € f(ay,) with Z,, — =. For each n > N,
let t(n) be the smallest ¢t € [0,1] such that w((1—t)Z, + tTp, an) > w(ay). Let
xn = (1—t(n))Zp + t(n)Ty, for n > N, and let x,, be any point in W(ay,) for n < N.
By convexity of 3, xz, € B(ay), and hence z, € W(ay,). I claim t(n) — 0, and
Ty — T

Suppose otherwise. Then there is a subsequence t(ny) — ¢ > 0. Note that for
n > N, if 2, # &, then u(xy, o) = w(ay). Let & = (1—%)z +#7. By the continuity
of u and w, u(Z, ) = w(a). But from the quasi-concavity of u, u(Z,a) > w(a), since
u(z, ) > w(a) and u(ZT,) > w(a) and ¢ > 0, a contradiction. Thus LSC is proved.

Now, suppose neither 3 nor u depends on a. To verify LSC even when w(a) =
v(a), let z € B(a) = B, u(zr,a) = u(r) = w(a) = v(a) = v. Let @, — a. Then
x € B(an) = B for all n. Furthermore, u(x,a) = v > w(ay,) for all n. Hence
x € W(ay) foralln. O

4.2 Quasi-Concave Games

We can weaken the hypothesis that wu, is concave in ¢, to the hypothesis of quasi-
concavity: (0, T_p) > Uy (Tp, T_p) implies wy, (Ao, +(1-N)Tp, Tp) > U (T, Tp)
for all 0 < A < 1. The result is called a quasi-concave game.

THEOREM: Every quasi-concave game has a Nash equilibrium.

PROOF: Let v,(7_,) = maxy, ey, Un(0n, 0—y) define a continuous function from
Y_, to R, called the “indirect utility function.” Let 6,(7) = vn(T—rn) — un(d), let
§(7) = maxpen 6,(7), let wy(T) = v, (F_p) — 36(7), and let
Wi (G, T—pn) = {0n € Xy ¢ Un(On, T—pn) > wn(G-p)} .

Suppose G has no Nash equilibrium. Then for each @ € X, §(7) > 0 and for each
n, wy(7) < vy (7). Moreover, for some player n, u,(7) < wy,(7), so 7, ¢ W, (7). By
the Satisficing Principle, W, is in non-empty, USC, LSC, and convex-valued. Define
©On P Yy X Xy — Xy by

on (T, T—p) = min _ |joy, — 7)) .

on€EWn (Gn,0—n)

Clearly ¢, is a function, since W), is convex-valued. Furthermore, if W, is USC
and LSC, then by the Maximum Principle, ¢,, is a continuous function. Let ¢ =
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(p1, .., ©n). If G has no Nash equilibrium, then ¢ is a continuous function with no
fixed point, a contradiction. O
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