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Abstract
In this paper, we introduce localized homology, a theory
for finding local geometric descriptions for topological at-
tributes. Given a space and a cover of subspaces, we con-
struct the blowup complex, a derived space that contains
both local and global information. The persistent homol-
ogy of the blowup complex localizes the topological at-
tributes of the space. Our theory is general and applies in
all dimensions. After an informal description, we formal-
ize our approach for general spaces, adapt it for simplicial
complexes, and develop a simple algorithm that works di-
rectly on the input. In each stage, we prove the theoretical
equivalence of the methods. We also implement our algo-
rithm and give preliminary results to validate our methods
in practice.

1 Introduction
In this paper, we address the problem of localizing topo-
logical attributes. Simply put, the question is whether we
can distinguish between the solid and dashed loops in Fig-
ure 1. They both describe the same tunnel, but one is ugly!

Topology describes how a space is connected. This in-
formation reflects the presence of certain qualitative fea-
tures in the space, such as the tunnel in the figure. While
algebraic topology, and specifically the formalism of ho-
mology, is capable of detecting the existence of such fea-
tures, it cannot directly tell us about their location. For
example, homology may produce the long solid loop as a
description of the tunnel in the figure. While topologically
correct, this description is geometrically useless. The lo-
calization problem is determining the location of topolog-
ical features within a space.

Algebraic topology is about functoriality. The critical
insight here is that the recent theory of persistent homol-
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Figure 1. The localization problem. Both loops describe the tun-
nel. But homology cannot distinguish between them.

ogy [9] is a computational view of functoriality. Our main
contribution in this paper is the synthesis of the classic
Mayer-Vietoris blowup construction [6] with persistent
homology, giving us a solution to localization. Unlike
prior work, our theory applies in all dimensions: we may
use the same method to localize tunnels, surfaces that en-
close empty spaces, or arbitrary-dimensional features in
arbitrary-dimensional spaces. We derive a simple practi-
cal algorithm, implement it, and show results at the end of
this paper to substantiate our approach.

The focus of this paper is on the theoretical foundations
of our work. In this section, we begin by briefly describ-
ing what topological attributes are, and why we are inter-
ested in both discovering and localizing them. We next
familiarize the reader with the difficulties associated with
localizing homology. To localize, we integrate geometry
into homology to arrive at our theory. We end this intro-
duction with a complete non-theoretical presentation of
the key ideas in this paper using a simple example. In the
sections that follow, we formalize the intuition.

1.1 The Problem
Most disciplines examine the geometry of a space, focus-
ing on quantitative questions and local properties. The
topology of a space, however, may have significant reper-
cussions on the ability of geometric algorithms to perform
effectively or even terminate. In computer graphics, un-
dersampling and noise often result in extraneous topology,
such as the spurious handles in the Stanford Buddha sur-
face in Figure 2 on the left. This false connectivity hin-
ders subsequent geometry processing, such as simplifica-
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Figure 2. The localization problem emerges. Left: The Buddha isosurface has genus 104, instead of the expected 6. The insidious
handles exist in the highlighted regions and hamper subsequent geometry processing [7]. Center: The failed black sensors in the
sensor network result in a large hole in network that breaks the geographical greedy forwarding method for routing [3]. Right: We may
identify the corner point through the topology of its fiber: three intersecting circles, instead of one for a smooth point [2].

tion, smoothing, and parametrization. In sensor networks,
nonuniform distribution, terrain features, or catastrophic
failure of nodes may lead to regions without working sen-
sors, as shown in Figure 2 in the center. These holes
break efficient but greedy communication algorithms [3].
In robotics, we require a compact representation of the
configuration space of a robot for the fast computation of
ensemble properties, such as the probability of folding p-
fold of a protein conformation [1]. In shape description,
we need geometric descriptions of topological attributes
of the tangent complex in order to identify singular fea-
tures, such as corner points or edges, as shown in Figure 2
on the right [2].

In each case, the existence of the topological attributes
like holes and handles cause complications. And the res-
olution of these complications require localized descrip-
tions. The emergence of topological questions in many
areas has given rise to the area of computational topology,
the area to which this question belongs [8].

Homology is the algebraic invariant often used to cap-
ture topological attributes since it is easily computable in
all dimensions. This method characterizes the topology of
a space through the structure of its holes [5]. It extends the
notion of a hole or cycle to all dimensions. A cycle has an
intuitive meaning in R

3: A 0-cycle is a component (piece)
of the space. A 1-cycle is a loop that goes around a tunnel.
And a 2-cycle is a surface that encloses an empty space. A
homology cycle is really a class of equivalent homologous
cycles, all of which characterize the same topological at-
tribute. In each dimension k, the cycles interact to form a
vector space of cycles Hk. Any basis for this vector space
Hk has the same rank, the Betti number βk of the space.

While effective in capturing topology, homology is in-
herently nonlocal. We already had a glimpse of this non-

locality in Figure 1. The nonlocality, however, is more
fundamental. A homology cycle may have multiple com-
ponents like the 1-cycle in Figure 3(a). Moreover, homol-
ogy computes a basis without regard to geometry, so any
cycle in the 1-skeleton of a tetrahedron in Figure 3(b) is a
candidate basis element and not those that are geometri-
cally local. Similarly, for the graph in Figure 4, homology
may choose one of the nonlocal bases instead of the local
one. The examples demonstrate that homology does not
favor localization by nature. It has no knowledge of the
geometry of the space and cannot identify local bases.

1.2 Adding Geometry
We need to incorporate geometrical selection into homol-
ogy. An immediate idea is to compute the topology of
local pieces of the space. Suppose we cover the graph in
Figure 4 with a number of local sets whose union con-
tains the graph, as shown in Figure 5(a). Computing the
homology within the sets gives us the desired local basis
in Figure 4: Each set contains one cycle and putting the
two cycles together yields the local basis.

We must be careful in assembling the cover, however,

Figure 3. Nonlocality. Left: A homology cycle may have mul-
tiple components. Right: A tetrahedron has four faces, but its
1-skeleton has cycles that form a vector space of rank β1 = 3.
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Figure 4. Bases. A graph (left) and three possible bases for its
H1. Only the first basis to its right is local.

(a) The Good (b) The Bad (c) The Ugly

Figure 5. Covers. (a) In the good cover, each cycle is localized in
a single set, resulting in the local basis in Figure 4. (b) In the bad
cover, the top cycle is in neither set, so local computation fails to
see it. (c) In the ugly cover, the tunnel appears in both sets and is
discovered twice.

as it may overlook topological attributes. For instance,
the cover in Figure 5(b) localizes only the bottom cycle.
Neither set in the cover contains the cycle on the top, so
the local computation fails to see it. This failure is benign,
however, as it is a consequent of the cover. We may detect
it easily by comparing the topology of the entire space to
the result of the local computation and patching our cover.

A more distressing problem emerges when a topolog-
ical attribute appears in multiple sets in the cover, as the
tunnel in Figure 5(c). Locally, the tunnel is discovered
twice, once in each set. Globally, the discovered 1-cycles
are equivalent as they both go around the same tunnel. To
recover the equivalence of the two tunnels, we need to
understand how the local pieces are glued to each other
within the intersection of the two cover sets. The theo-
retical gadget for exposing this relationship is the Mayer-
Vietoris sequence [5]. For any cover, the sequence relates
the homology of a space to the homology of the pieces
within the cover sets and their intersections. Unfortu-
nately, the sequence is only useful for computation by
hand. It does not yield an implementable algorithm for
arbitrary spaces.

1.3 Our Approach
Our approach may be viewed as a computational version
of the Mayer-Vietoris sequence. We begin by applying
the idea from the previous section, blowing up the space
into local pieces according to the cover. For example, the
graph containing three cycles covered by two sets in Fig-
ure 6(a) is blown up into two pieces in (b), each with two
1-cycles. Since the middle cycle of the original space
is contained in the intersection of the cover sets, it ex-
ists in both local pieces. To recover the global topology,
we equate the two copies of the middle cycle by gluing a
cylinder to them. The resulting Mayer-Vietoris blowup
complex in Figure 6(c) has the same number of cycles
as the original space but also incorporates the geometric
cover information within its structure.

We now need to compute homology bases for the
blowup complex that are compatible with bases for the
local pieces. Fortunately, the theory of persistent homol-
ogy furnishes the required bases [9]. We incrementally
assemble the blowup complex so that the local pieces are
included at time 0 and the cylinder is sewn in at time 1,
completing the structure. Persistence computes compati-
ble homology bases across this growth history. Therefore,
it can track individual basis elements, representing their
lifetimes in a multiset of intervals called a barcode. The
barcode for our example, shown in Figure 6(d), has three
half-infinite intervals, corresponding to the three 1-cycles
in both the original space and its blowup complex. But we
can also color the barcode to show where the 1-cycles are
located. There are four intervals at time ≤ 1, represent-
ing the four local 1-cycles in Figure 6(b). At time 1, the
cylinder equates the two copies of the middle 1-cycle, so
one of the two intervals that represent the two copies ends.
The choice of the interval corresponds to the choice of the
basis representative of the middle cycle lying in either of
the two sets of the cover. As the two are homologous, the
choice is arbitrary.

To summarize, given a space equipped with a cover, we
incorporate the geometry contained within the cover into
homology by building the blowup complex and comput-
ing its persistent homology. We call this method localized
homology.

1.4 Outline
We believe an important aspect of our approach is the
clear separation of geometry and topology. In this paper,
we focus purely on topology: the theory of localized ho-
mology and an algorithm for its computation. We empha-
size that different problems will require different covers
and a variety of algorithms may be employed to select
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(a) Space and cover (b) Local pieces (t = 0) (c) Blowup (t = 1)

0 1 1

(d) Persistence barcode

Figure 6. Our approach. Given a space equipped with a cover (a), we first blow up the space into local pieces (b) and then glue back
the pieces to get the blowup complex (c), giving us a filtration of two complexes at times t = 0 and t = 1. The persistent homology of
the blowup complex gives us a barcode (d) that localizes the topology of the original space with respect to the given cover.

appropriate covers. Moreover, a hierarchical approach to-
ward localization is feasible: if we can localize a cycle
within a set in any cover, we can improve the cycle de-
scription by recursively localizing within that set. But re-
gardless of the origin of the cover, we need to compute
localized homology. This is our task in the rest of this
paper. In Section 2, we present the algebraic concepts uti-
lized in the paper. Section 3 contains the contributions of
our paper. We begin with a formal definition of localized
homology for general spaces in Definition 5. We then pro-
vide alternate definitions for combinatorial spaces. These
definitions are computationally feasible and we prove that
they provide the same answer. They also allow us to arrive
at a simple implementable algorithm for computing local-
ized homology. We implement this algorithm and show
some experiments using simple cover constructions.

2 Background
In this section, we briefly discuss the algebraic tools re-
quired in our work. As it is infeasible to include a com-
plete treatment, we sketch some of the basic ideas and
include formal constructions only when necessary. For a
more complete account, we refer to standard texts in the
area [4, 5] and cite papers when needed. We organize this
section as a continuity of ideas on capturing the topology
of the spaces.

2.1 Topological Space
The fundamental object in topology is a topological
space, an abstraction of a metric space. Rather than us-
ing a metric to define open sets, a topological space X
is equipped with a set of open sets that define its con-
nectivity. A subset X0 ⊆ X that is a topological space
is a subspace and (X,X0) is called a pair. A family
U = {Xi}i of subspaces Xi ⊆ X is a cover (covering)
of X if X ⊆ ∪iX

i. We say that U covers X .

Suppose we have topological spaces X and Y and con-
tinuous maps f : X → Y and g : Y → X between
them. If gf and fg are equal to the identity maps on
the respective spaces, the spaces are homeomorphic and
have the same topological type: X ≈ Y . This is the
most restrictive notion of equivalence in topology. We
get a relaxation through the notion of homotopy. Given
two maps f0, f1 : X → Y , if there is a continuous map
h : X × [0, 1] → Y such that h(x, 0) = f0(x) and
h(x, 1) = f1(x), then f0 and f1 are homotopic via ho-
motopy h; f0 ' f1. Now, for our maps f and g above, if
gf and fg are merely homotopic to the respective identi-
ties, then X and Y are homotopy equivalent: X ' Y .

For computation, we need a combinatorial structure for
representing a topological space. Let [n] = {0, 1, . . . , n}
be the first n + 1 natural numbers. An n-simplex σ is
the convex hull of n + 1 affinely independent vertices
S = {vi}i∈[n] in R

d, d ≥ n. A simplex τ defined by
T ⊆ S is a face of σ. A simplicial complex K is a finite
set of simplices that meet along faces, all of which are in
K. A subcomplex of K is a subset L ⊆ K that is also a
simplicial complex. The underlying space |K| of a sim-
plicial complex K is |K| = ∪σ∈Kσ. A triangulation of a
topological space X is a simplicial complex K such that
|K| ≈ X .

There is a standard realization for an n-simplex as
follows. Let e0 be the origin in R

n and ei =
(0, . . . , 1, . . . , 0), 1 ≤ i ≤ n, be the ith standard basis
vector for R

n with a 1 in the ith position and 0’s else-
where. The standard n-simplex ∆n is the convex hull of
{ei}i∈[n]. The shaded triangle in Figure 7 is the standard
2-simplex. For any indexing set J ⊆ [n], ∆J is the face
of ∆n spanned by {ej}j∈J with dim(∆J ) = card J − 1.
Note that ∆[n] = ∆n. The standard simplex may be sub-
divided using the barycenters of its faces to produce the
simplicial complex Kn with |Kn| = ∆n. Each non-
empty face ∆J of ∆n has an associated vertex vJ in
Kn. ∆J is triangulated by subcomplex KJ ⊆ Kn with
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(0,0)

(0,1)

(1,0)

Figure 7. The shaded standard 2-simplex ∆2 is the convex hull
of the labeled vertices. Subdividing ∆2 using the barycenters of
the edges and the triangle gives the simplicial complex K2 with
underlying space ∆2.

|KJ | = ∆J . Figure 7 displays this subdivision on the
standard 2-simplex.

2.2 Homology
For a topological space X , the homology groups Hn(X)
are a family of Abelian groups for integers n ≥ 0 with the
following properties:

Functoriality: Each Hn is a functor, that is, for any con-
tinuous map f : X → Y , there is an induced ho-
momorphism Hn(f) : Hn(X) → Hn(Y ), such that
Hn(fg) = Hn(f)Hn(g) and Hn(iX) = iHn(X),
where i is the identity.

Homotopy Invariance: If f, g : X → Y are homotopic,
then Hn(f) = Hn(g). If f is a homotopy equiva-
lence, then Hn(f) is an isomorphism.

For any field F , there is a version of homology with
coefficients in F that takes values in F -vector spaces.
Throughout this paper, we always compute over a field.
The rank of the nth vector space is the nth Betti number
βn(X) of the space. In R

3, the Betti numbers have intu-
itive meanings. β0 measures the number of components
of the complex. β1 is the rank of a basis for the tunnels:
loops that cannot be deformed to a point. β2 counts the
number of surfaces that enclose empty spaces.

Since we are interested in localizing homology, we
need to understand the relationship between local and
global homology of a space. The algebraic gadget
that elucidates this relationship is the Mayer-Vietoris se-
quence. The Mayer-Vietoris sequence is does not give
an algorithm, however. Fortunately, there is a geometric
counter-part, the Mayer-Vietoris blowup which is defined
as a subspace of a product space. For topological spaces
X and Y , the product space X × Y is also a topological
space. The connectivity of a product space is clearly re-
lated to the connectivity of its factors. We describe this
relationship formally in the Appendix. For now, we note
that we can obtain the homology of a product space from
the homology of its factors.

2.3 Persistent Homology
As sketched in Section 1.3, we put together the blowup
complex incrementally to see the local and global topolo-
gies at different times. For a topological space X , this
construction gives a filtration {Xn}n≥0, a nested se-
quence of subspaces: ∅ = X0 ⊆ X1 · · · ⊆ X. We call
X a filtered space. We may similarly filter a simplicial
complex to obtain a filtered complex.

Over fields, each space Xj has a kth homology group
Hk(Xj), a vector space whose rank βk(Xj) counts the
number of topological attributes in dimension k. View-
ing a filtration as a growing space, we see that topologi-
cal attributes appear and cease. If we could track an at-
tribute through the filtration, we could talk about its life-
time within it. The theory of persistent homology vali-
dates this intuition [9]. A filtration yields a directed space

∅ = X0 i
↪→ · · ·

i
↪→ Xj · · ·

i
↪→ X,

where the maps i are the respective inclusions. Apply-
ing the kth dimensional homology functor Hk from Sec-
tion 2.2 to both the spaces and the maps, we get another
directed space

∅ = Hk

(

X0
) Hk(i)
−−−→ · · ·

Hk(i)
−−−→ Hk

(

Xj
) Hk(i)
−−−→

· · ·
Hk(i)
−−−→ Hk(X)

where Hk(i) are the respective induced maps. Persis-
tent homology states that any directed vector space has
a simple description. For an interval [a, b], a ∈ Z

+, b ∈
Z

+ ∪ {∞}, let F [a, b] = {Fi}n≥0 be a directed vector
space over field F that is equivalent to F within the in-
terval and empty elsewhere, and with identity transforma-
tions Fi → Fj within the interval. Under suitable finite-
ness hypotheses that are satisfied for all our spaces, the
homology directed space may be written as a direct sum

s
⊕

i=0

F [ai, bi],

where the description is unique up to reordering of sum-
mands. In layman’s terms, persistent homology states we
may indeed track topological attributes and measure their
lifetimes as intervals [ai, bi]. The persistence barcode is
the finite multiset of lifetime intervals [2]. We can com-
pute barcodes for arbitrary dimensional simplicial spaces
over arbitrary fields using the persistence algorithm [9].

For this paper, we have extended the persistence algo-
rithm to non-simplicial complexes, and we have enabled it
to compute descriptions for non-boundary cycles. Sadly,
the page limit prohibits further elaboration.
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Figure 8. Blowup complex. Left: The cover U = {X0, X1} for space X also defines intersection X{0,1} = X[1]. Center: The blowup
XU ⊆ X × ∆1 is the union of three pieces shown. Here, ∆1 is visualized as interval [0, 1]. Right: The function f on XU ⊆ X × ∆1.

3 Localized Homology
In this section, we formalize the approach outlined in Sec-
tion 1.3. We begin with a preliminary definition.

Definition 1 (localized homology) Given a topological
space X and a cover U = {X i}i∈[n−1], let i : Xi ↪→ X

be inclusion, inducing ι∗ : H∗

(

∪̇i∈[n−1]X
i
)

→ H∗(X),
where ∪̇ is disjoint union. The localized homology of X
with respect to U is the image of ι∗.

In the rest of this section, we make this definition com-
putational by deriving a filtered complex whose persistent
homology is the localized homology. We choose a rich
complex that carries more local information that the def-
inition requires. We hope to examine the additional in-
formation in the near future. Our complex is the Mayer-
Vietoris blowup complex XU, which we define and filter
in Section 3.1. This complex enables us to refine Defini-
tion 1 using persistent homology.

Singular homology is not computational, however, as
it deals with infinite-dimensional spaces. So, we adapt
our definitions to simplicial spaces in Section 3.2. Given
a simplicial complex X and a cover U of subcomplexes,
we construct a simplicial blowup XU that gives the same
barcodes as the singular definition. While computable, the
simplicial blowup is still a large complex. In Section 3.3,
we describe a method for avoiding this construction by di-
rectly computing a small chain complex that yields equiv-
alent barcodes. We then specify a natural basis and the
boundary operator for this chain complex in Section 3.4.
This specification allows us to construct a filtration di-
rectly from our space and cover, giving us a simple algo-
rithm. Finally, in Section 3.5, we show localization results
using an implementation of our algorithm.

3.1 Singular
Given an arbitrary topological space covered equipped
with a cover, we blow up the space to incorporate the

information contained in the cover: Each piece of the
space expands according to the number of cover sets it
falls within.

Definition 2 (Mayer-Vietoris blowup complex) Given
a topological space X with a cover U = {X i}i∈[n−1] of
n = cardU sets, let XJ = ∩j∈JXj for J ⊆ [n− 1]. The
blowup complex XU ⊆ X × ∆n−1 of X and U is

XU =
⋃

∅6=J⊆[n−1]

XJ × ∆J . (1)

XU is equipped with two natural projection maps
πX : XU → X and π∆ : XU → ∆n−1 given by the in-
clusion XU ↪→ X × ∆n−1 followed by projection onto
the respective factors.

Example 1 (cover of two sets) Suppose X comes with
cover U = {X0, X1} as shown on the left of Figure 8,
where we represent X as an interval and draw ellipses to
indicate the extent of the cover sets. The cover defines
the intersection piece X{0,1} = X [1]. The blowup XU

is a subset of X × ∆1 as shown the center of the figure,
where we draw ∆1 as the interval [0, 1]. Following Equa-
tion (1), XU is the union of three pieces, corresponding to
the three local regions the cover defines:

X0 × ∆{0} = X0 × {0},

X1 × ∆{1} = X1 × {1},

X [1] × ∆[1] = X [1] × [0, 1].

In constructing the blowup complex, we simply stretch
certain pieces. Clearly then, the blowup complex has the
same topology as the original space.

Proposition 1 (global) The projection πX : XU → X is
a homotopy equivalence in the following cases:

• U is an open covering of a normal space, e.g. any
subspace of R

n,
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• U is a covering of simplicial complexes by subcom-
plexes.

Therefore, πX induces an isomorphism at the homology
level. That is, XU ' X and H∗(X

U) ∼= H∗(X) [6].

We now define a function f on XU that assembles the
pieces such that the persistent homology of the resulting
filtration contains the localization solution. We first define
a function on ∆n−1 by utilizing its triangulation Kn−1.

Definition 3 (height functions f, g) For the face ∅ 6=
∆J of ∆n−1, let vJ be the associated vertex in Kn−1. De-
fine g : ∆n−1 → R linearly on the complex with g(vJ) =
card J − 1, and on ∆n−1 by identification. Define
f : XU → R by the composition XU π∆−−→ ∆n−1 g

−→ R.

We see f on the blowup complex on the right side of Fig-
ure 8. We filter the blowup complex using f .

Definition 4 (filtered blowup) Let XU
t = f−1([0, t]).

The filtered blowup complex is the family {XU
t }t≥0.

In other words, when we visualize f as a height function
on XU as in the figures, XU

t is everything in XU below
height t. At time 0, the blow up complex contains the
local pieces of X . For Example 1, XU

0 is the two segments
shown at the bottom of the hat shape in Figure 8.

Proposition 2 (local) The space XU
0 is the disjoint union

of the local pieces of the space, i.e. XU
0 ≈ ∪̇i∈[n−1]X

i.
Therefore,

Hk

(

XU

0

)

∼=
⊕

i∈[n−1]

Hk

(

Xi
)

,

that is, we get the homology of the local pieces at time 0.

So, we capture the local homology at time 0. At time
n − 1, the incremental construction is complete and
XU

n−1 = XU. Therefore, Proposition 1 asserts that XU
n−1

has the global homology of X . Applying persistent ho-
mology to the filtration, we get barcodes that describe the
relationship between the local and global homology of the
space. We may now state revise our definition for local-
ization.

Definition 5 (localized homology) Given a topological
space X and a cover U = {X i}i∈[n−1], let i : XU

0 ↪→

XU
n−1 be inclusion, inducing ι∗ : H∗(X

U
0 ) → H∗(X

U
n−1).

The localized homology of X with respect to U is the im-
age of ι∗.

Equivalently, localized homology consists of the homol-
ogy classes that exist at time 0 and continue to exist till
time n − 1. These classes correspond to persistence bar-
code intervals that contain both 0 and n − 1.

3.2 Simplicial
The definitions in the last section assumed that X was a
topological space, so the homology groups were all singu-
lar homology groups rather than those attached to a sim-
plicial complex. Singular homology examines arbitrary
maps of the standard simplex. The space of maps is an
infinite dimensional space that is not computable. In this
section, we modify our definitions for simplicial spaces
and use simplicial homology which is finitely-generated
and easily computable. We assume that we are given a
simplicial complex X that represents a space of interest.
We also restrict the cover U to consist of subcomplexes.
Our task is twofold: we need to triangulate the blowup
complex XU and show that the simplicial homology of
the resulting complex gives the same result as the singular
method.

We begin by triangulating XU. Equation (1) states that
XU is a union of pieces of form XJ × ∆J . Both terms
XJ = ∩j∈JXj and ∆J are simplicial, giving us a product
of simplicial complexes. Given total orderings on the ver-
tex sets, there is a canonical way to triangulate a product
space that we omit due to lack of space. This triangulation
gives us the simplicial blowup complex. We now define
both the simplicial blowup and its filtration at once.

Definition 6 (filtered simplicial blowup) Let X be a
simplicial complex and U = {X i}i∈[n−1] be a cover of
n subcomplexes. For J ⊆ [n− 1], let XJ = ∩j∈JXj and

XU

t =
⋃

J⊆[n−1]
0 < card J ≤ t+1

XJ × ∆J . (2)

The blowup complex of X and U is XU = XU
n−1 ⊆

X × ∆n−1 with projections πX : XU → X and
π∆ : XU → ∆n−1. The filtered blowup complex is the
family {XU

t }t≥0.

Note that XU
t is defined for all t ∈ R, t ≥ 0, but the

complex changes only at integer values. Figure 9 con-
structs the blowup complex for Example 1 in simplicial
form. Definition 6 mimics the singular definitions 3 and
4. For example, the piece X [1] × [0, 1] is completed at
time 1 in the hat shape in Figure 8, and the triangulation
of the corresponding piece X [1] × ∆[1] in Figure 9 also
arrives at time 1.
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Figure 9. Top: The simplicial cover U = {X0, X1} = {ac, bd} for
simplicial complex X defines X{0,1} = X[1] = bc. Bottom: The
simplicial blowup complex XU ⊆ X × ∆1.

To complete our task, we need to show that the new
simplicial definition has the same structure as the singular
one from the last section. The underlying space |X| of X
is a topological space with the cover |U| = {|X i|}i∈[n−1].
Applying Definition 2, we get the singular blowup com-
plex |X||U| that looks like the blowup in Figure 8. Clearly,
the blowups are identical at integer values for t. For
non-integer t, the two are homotopic since topology only
changes at integer values.

Proposition 3 Given a simplicial complex X and a
cover U = {Xi}i∈[n−1] of subcomplexes, let |U| =
{|Xi|}i∈[n−1]. There exists a canonical homeomorphism
ϕ : |XU| → |X||U| with restriction ϕt : |X

U
t | → |X||U|

such that:
1. For t ≥ 0, ϕt

(∣

∣XU
t

∣

∣

)

⊆ |X|
|U|
t .

2. For t ∈ [n − 1], ϕt is a homeomorphism onto its
image.

3. For t ≥ 0, ϕt is a homotopy equivalence.

Corollary 1 The map ϕ of filtered spaces in Proposi-
tion 3 induces an isomorphism of directed Abelian groups
from Hk(|XU

t |) to Hk(|X|
|U|
t ) for non-negative integers

k and t ≥ 0. So, their barcodes are equivalent.

Instead of using the singular definition in the last section,
we use the simplicial definition to compute the barcodes
of the blowup complex. The former definition was not
computable; the latter is.

3.3 Chain Complex
While the simplicial definition of the blowup complex
is computable, it is not efficient as we have to build the

blowup complex and triangulate all its pieces. In this sec-
tion, we eliminate the triangulation step and work directly
at the chain level. Rather than computing homology using
the chain complex attached to the simplicial blowup com-
plex, we utilize a smaller chain complex that gives equiv-
alent barcodes and is computed directly from the complex
and the cover. This is essentially a version of the cellular
complex.

We begin by examining the chain complex attached
to the simplicial blowup complex. It follows directly
from Equation (2) that the filtered chain complex for
the blowup complex is the family {C∗(X

U)t}t≥0, where
C∗(X

U)t ⊆ C∗(X × ∆n−1) is

C∗

(

XU
)

t
=

∑

J⊆[n−1]
0 < card J ≤ t+1

C∗

(

XJ × ∆J
)

, (3)

and C∗(X
U) = C∗(X

U)n−1. For each piece C∗(X
J ×

∆J ), we triangulated XJ×∆J in the previous section. To
avoid triangulating the product, we define a smaller chain
complex.

Definition 7 (filtered blowup chain complex) Let X be
a simplicial complex and U = {X i}i∈[n−1] be a cover of
n subcomplexes. For J ⊆ [n− 1], let XJ = ∩j∈JXj and
CU

∗ (X)t ⊆ C∗(X) ⊗ C∗(∆
n−1) be

CU

∗ (X)t =
∑

J⊆[n−1]
0 < card J ≤ t+1

C∗

(

XJ
)

⊗ C∗

(

∆J
)

. (4)

The blowup chain complex of X and U is CU
∗ (X) =

CU
∗ (X)n−1. The filtered blowup chain complex is the

family {CU
∗ (X)t}t≥0.

The two filtered complexes defined by Equations (3) and
(4) give the same localized homology.

Proposition 4 Given simplicial space X and simpli-
cial cover U = {X i}i∈[n−1], there is a chain map
A : C∗(X

U) → CU
∗ (X) that induces an isomor-

phism of directed Abelian groups from Hk(C∗(X
U)t) to

Hk(CU
∗ (X)t) for non-negative integers k and t ≥ 0.

Consequently, the barcodes of the two chain complexes
are equivalent.

The dearth of space relegates the definition of A and the
proof of the proposition to the Appendix.

3.4 Algorithm
In the previous section, we showed that the chain complex
CU

∗ (X) has the same localized homology as the simpli-
cial blowup complex. To compute the homology, we need
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a basis for CU
∗ (X) and the boundary homomorphism.

By Equation (4), CU
∗ (X) is a sum of terms of the form

C∗(X
J ) ⊗ C∗(∆

J ) over nonempty sets J ⊆ [n − 1]. As
both terms of the product are simplicial, they give rise to
a canonical basis.

Proposition 5 (basis) A basis for CU

k (X) is the set com-
posed of elements σ ⊗ ∆J for all ∅ 6= J ⊆ [n − 1] and
simplices σ ∈ XJ where dim σ + dim ∆J = k.

To define the boundary, we impose total orderings on the
vertices of X and ∆n−1.

Proposition 6 (boundary homomorphism) Let σ ⊗∆J

be a basis element for CU

k (X). Then,

∂
(

σ ⊗ ∆J
)

= ∂σ ⊗ ∆J + (−1)dim σσ ⊗ ∂∆J . (5)

Example 2 Consider our simplicial example in Figure 9.
We no longer triangulate the blowup complex. Its single
2-cell is represented by the basis element bc⊗∆[1] = bc⊗
[0, 1] for CU

2 (X). The boundary of this cell is composed
of the four 1-cells, represented as tensor products:

∂ (bc ⊗ [0, 1]) = c⊗[0, 1]−b⊗[0, 1]−bc⊗{1}+bc⊗{0}.

The first two terms originate from the first sum in Equa-
tion (5) and correspond to the two sides. The second
two originate from the second sum and represent the two
copies of bc on the top and the bottom of the cell, respec-
tively, oriented oppositely.

In practice, we represent basis element σ ⊗ ∆J as the
pair (σ, J) and use Equation (5) as the boundary operator.
This representation feeds directly into the persistence al-
gorithm, giving us the barcode, localization through Def-
inition 5, and cycle descriptions. We now have a simple
algorithm for computing localized homology.

In general, we also do not need to compute the entire
blowup complex. Computing the kth homology group re-
quires the (k +1)-skeleton, cells with dimension less than
or equal to k+1. Since only the first d homology groups of
a d-dimensional space may be nontrivial, the largest com-
plex we build is the (d + 1)-skeleton, which is generally
much smaller than the full blowup.

3.5 Experiments
We have implemented our algorithm as part of a library of
programs for algebraic topology. We use the same code
for computing homology and persistent homology of a
simplicial complex and that of its blowup complex, rep-
resented as a abstract complex of simplex products. Since

our focus here is on demonstrating our method, we only
consider two naive methods for cover generation based on
random ε-balls and tilings.

The space in Figure 10(a) is a 2-dimensional punctured
sheet embedded in R

2. The complex has 3,360 simplices.
Computing homology, we get the basis 1-cycles shown in
Figure 10(b), where one cycle goes around two holes. We
use a disc of radius 10% the diameter of the space as our
local element and take the closure of simplices that fall
within a disc as a set in the cover. Figure 10(a) highlights
the 54th set, the first set that contains the medium-sized
cycle. Our method covers the complex with 119 sets, col-
ored transparently in Figure 10(c) and the 2-skeleton of
resulting the blowup complex has 101,402 cells. In Fig-
ure 10(d), we show the projection of the blowup 1-cycles
to the base space: our random cover localizes the two
smaller holes but the not the largest since it is not con-
tained within a single set in the cover.

We next detect a two-dimensional cycle (void) carved
out from the center of the cubical block shown in Fig-
ure 11. We cover the complex of 67,370 simplices using a
systematic method based on tiling Euclidean spaces. The
method generates covers of size at most 2d + 1 for com-
plexes embedded in R

d (i.e. 9 in R
3) and guarantees lo-

calization of cycles half the size of a tile. The 3-skeleton
of the blowup complex has 474,416 cells and localizes the
void.

4 Conclusion
In this paper, we introduce the theory of localized homol-
ogy. The key contribution of our approach is combining
the classic blowup construction with the recent technique
of persistent homology. We ground our method in the
general setting of arbitrary spaces and singular homology.
As such, our theory does not consist of ad-hoc techniques
that only work in particular dimensions and spaces, such
as finding tunnels on surfaces, but in arbitrary dimensions
and spaces, such as the void in Figure 11. We know of no
other comparable work. We provide equivalent definitions
for simplicial spaces to arrive at an efficient method that
utilizes a smaller chain complex. Finally, we implement
our method and give results.

The major issue we do not address is cover construc-
tion. Our method is very flexible as it does not place any
restrictions on the geometry or topology of the cover sets,
as seen in the void example. We can tailor the cover con-
struction to the localization requirements in different set-
tings and even utilize multiple schemes in tandem. Hav-
ing constructed a robust localization engine, we plan to
examine cover construction next.
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(a) Complex and cover set (b) Homology cycles (c) ε-disc cover (d) Blowup cycles

Figure 10. Punctured sheet. The complex (a) highlights the first set in the cover that contains the medium hole. The 1-cycles
computed with homology (b) are nonlocal and one goes around multiple holes. The colored transparent sets (c), based on ε-discs,
cover the complex. We project the 1-cycles of the blowup complex (d) to get a localized description for the two smaller holes.

Figure 11. A void. We carve out the center of a cubical block. From left: the first set of a cover, the large 2-cycle computed with
homology, the complex covered by 8 sets, and the much smaller 2-cycle computed with localized homology.
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Appendix
The Alexander-Whitney map describes the relationship of
a product space to its factors.

Theorem 1 (Alexander-Whitney) Let X and Y be sim-
plicial complexes with vertex orderings <X and <Y

defining the product simplicial complex X ×Y . For maps
of simplicial complexes that preserve the vertex orderings,
there are natural chain maps

C∗(X × Y )
A

�
S

C∗(X) ⊗ C∗(Y ) , (6)

that induce isomorphisms on homology groups. Here, A

is the Alexander-Whitney map and S is the shuffle ho-
momorphism. For pairs (X,X0) and (Y, Y0), we get a
relative version

C∗(X × Y, (X × Y0) ∪ (X0 × Y ))
A

�
S

C∗(X,X0) ⊗ C∗(Y, Y0) . (7)

We now relate the two filtered complexes defined by
Equations (3) and (4) in Section 3.3. Observe that both
complexes sum over the same variable J , and the sum-
mand of the first complex C∗(X

J × ∆J ) maps naturally
via the Alexander-Whitney to the summand of the second
complex C∗(X

J) ⊗ C∗(∆
J ), according to Equation (6).

Definition 8 Let A : C∗(X
U) → CU

∗ (X) be the map
whose the restriction to any summand C∗(X

J × ∆J ) in
Equation (3) is the Alexander-Whitney map with values in
C∗(X

J ) ⊗ C∗(∆
J ).

There is at most one map A that satisfies the require-
ments as we specify the map on a generating family of
subcomplexes. The existence A is guaranteed by two
facts: the naturality of the Alexander-Whitney map and
C∗(X0 ∩ X1) = C∗(X0) ∩ C∗(X1) for subcomplexes
X0, X1 ⊆ X . Clearly, A(C∗(X

U)t) ⊆ CU
∗ (X)t, so A is

a chain map. We use this chain map to restate and prove
Proposition 4.

Proposition 4 Given simplicial space X and simplicial
cover U = {Xi}i∈[n−1], the chain map A : C∗(X

U) →

CU
∗ (X) induces an isomorphism of directed Abelian

groups from Hk(C∗(X
U)t) to Hk(CU

∗ (X)t) for non-
negative integers k and t ≥ 0. Consequently, the barcodes
of the two chain complexes are equivalent.

Proof: It suffices to show that the restriction
At : C∗(X

U)t → CU
∗ (X)t induces an isomorphism

on homology groups on the integer values of t where
topological changes occur. By inductive use of the long
exact homology sequence associated with the short exact
sequence of chain complexes, it suffices to prove that
the following induced map on subquotients induces an
isomorphism on homology groups:

Ât : C∗

(

XU
)

t
/C∗

(

XU
)

t−1
→ CU

∗ (X)t /CU

∗ (X)t−1 .

From Equation (3) we have a direct sum decomposition
for the domain of Ât:

C∗

(

XU
)

t
/C∗

(

XU
)

t−1
∼=

⊕

J⊆[n−1]
card J = t+1

C∗

(

XJ × ∆J, XJ × ∂∆J
)

, (8)

where ∂ is the boundary operator. Similarly, from Equa-
tion (4) we have a direct sum decomposition for the
codomain of Ât:

CU

∗ (X)t /CU

∗ (X)t−1
∼=

⊕

J⊆[n−1]
card J = t+1

C∗

(

XJ
)

⊗ C∗

(

∆J, ∂∆J
)

. (9)

The restriction of Ât to each summand in Equation (8)
maps the summand to the corresponding summand in
Equation (9),

C∗

(

XJ × ∆J , XJ × ∂∆J
) Ât−−→

C∗

(

XJ
)

⊗ C∗

(

∆J , ∂∆J
)

,

as the restriction is the Alexander-Whitney map obtained
by setting X = XJ , Y = ∆J , X0 = ∅, and Y0 = ∂∆J

in Equation (7). Therefore, the restriction induces an
isomorphism on homology groups and the theorem fol-
lows. �
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