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The topological complexity of an algorithm is defined as the number of its branchings 
(conditional transfer operators) (cf. [8]). In [8] Smale demonstrated a lower estimate of 
the minimal topological complexity of algorithms approximating all roots of polynomials of 
degree n, 

~ (n) ~> (lo~ n)~. (1) 
In this article we provide a two-sided estimate, 

n - - t ~ x ( n ) > n  --minD~(n), (2) 
where the minimum is taken over all primes p and D (n) is the sum of digits in the p-ary 

P pk decomposition of the number n. In particular, for n = pk, ~(n) = n -i. Moreover, for n = 
the minimal topological complexity of algorithms computing only one root is also equal to 
n - i. 

Smale's method is of very general character: it provides an estimate of the topological 
complexity of any nonlinear ill-posed problem by means of a topological characteristic of the 
corresponding fibration, namely, its genus introduced and studied by Shvarts in[7] (and re- 
discovered in [8]). In the case of the problem on polynomial roots, an estimate of the genus 
[of which the inequality (i) is a corollary] was proved in [8] by means of Fuks' results on 
Artin's braid group cohomologies [4]. The right-hand part estimate in (2) is based on a more 
detailed study of these cohomologies. 

The calculation of braid group cohomoloBies was initiated in [i, 3] in connection with 
the problem on representation of algebraic functions by compositions of functions in fewer 
variables. The study of genus of a covering associated with an algebraic function creates 
new obstacles for such a representation, see Sac. 6 of this article. 

I am grateful to V. I. Arnol'd and D. B. Fuks for discussions and for their interest 
in this work. 

i,~, Al~orithms~ Braids~ Shvarts Genus 

I.i. Problems. Let n be a natural number and e a positive number. We consider algo- 
rithms solving one of the following two problems. 

i I.i. Problem I. For each polynomial 

x ~ + a~x ~-~ -~  . . . + a ,_~x  --{- aa,  ( 3 )  

givenby the set of its coefficients a = ( a ~  . . , a ~ ) ,  satisfying the condition la~ I ~ i ~ i ,  com- 
pute all of its roots with an error no greater than e. 

1.1.2. Problem 2. This differs from Problem 1 only in that one has to compute only 
one root of the polynomial. 

We denote the domain of admissible entry data {a~C n IVZ la~ I< I} by B n. 

1.2. Algorithms. We use the definition of an algorithm in [8]. We recall this de- 
finition as it applies to Problem i. 

An algorithm is a finite oriented tree (a cycle-free graph) with knots of the following 
four types. 

i) A unique entry knot at which 2n real numbers Re at, Im a~ are entered .(such that (Re a~) 2 
+ (Ira a,) 2 ~<. 1). 
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2) Computing knots: at each of them are computed fixed real-valued rational functions 
in entry values Re a, Ima and in the values of such functions computed at other com- 
puting knots located higher up in the algorithm. 

3) Branching knots: in these knots the value of one of the rational functions in Be a, 
Im a computed earlier is compared with zero and, depending on the result, the con- 
trol is transferred along one of the two edges coming out of this knot. 

4) Exit knots: at each of them some 2n rational functions in a computed earlier in the 
algorithm are declared, in an act of will, to be the real and imaginary parts of the 
roots of polynomial (3) and are denoted by Re z~(a), and Imz~ (a), and this completes 
the implementation of the program. 

(The condition that the graph has no cycles implies that the number of exits is i more 
than the number of branchings.) 

Thus, each set of entry values a = (al,..., an)~C ~ determines the path of action of the 
algorithm and, therefore (if in the course of this path the division by zero never occurs), 
also one of the exits as well as an ordered set of complex numbers z1(a) .... ,zn(a). An algo- 
rithm is called an e-algorithm if for each set of empty data a~B n the division by zero 
never occurs in the course of the algorithm and one can order the roots gi of the correspond- 
ing polynomial (3) in such a way that Izi(a)--~(a)I_~<~..e for all i = l,...,n. 

1.3. The topological complexity of an algorithm is the number of branching knots in it. 
The topological complexity of a problem is the minimal topological complexity of algorithms 
solving it. We denote the topological complexity of Problem i by ~(e, n). Obviously, the 
number z(e, n) does not decrease as ~ is decreasing. We define ~(n) as Jim ~(~ ~). 

g~0 

1.4. Braids. Consider the subset Z of B n consisting of polynomials having multiple 
roots. Over the set B n - E one can define an n!-leaved covering fn: Mn + Bn - E: its fiber 
over a point a consists of all ordered sets of roots of the polynomial a. The exact (with 
e = O) solution of Problem 1 with entry data a includes a choice of one of the n! possible 
orderings of these roots. 

Proposition (cf. [I, 2]). The spaces B n - E and M n are spaces of the type K(~, i), 
where ~ is the braid group Br (n) and the Artin painted braid group I (n) of n threads, re- 
spectively. Both spaces have homotopy type of (n - l)-dimensional CW-complexes. The co- 
homologies of these spaces with trivial coefficients were described in [2, 4, 9, i0]. 

1.5. Shvarts Genus. Let X and Y be normal Hausdorff spaces (for instance, manifolds 
or subsets of the Euclidean space) and let f:X + Y be a continuous map such that Y = f(X). 
The genus of the map f is the smallest number j such that Y can be covered with j open sets 
over each of which there is a section of the map f. For instance the genus of each multi- 
leaved covering of the circle is equal to 2. The genus of a map f is denoted by g(f). 

I~5.1. THEOREM..[8..]. For each n there exists e0 > 0 such that for all e~(0, e0] the 
topological complexity of Problem i and the genus of the covering fn are related by the in- 
equality ~(~,~) ~ ~(~) --I. 

Indeed, the covering and the system of sections involved in the definition of the genus 
are, in fact, determined by the algorithm. To each one of its exits corresponds a semi- 
algebraic set W i c B n consisting of entry values such that their input would lead to that 
specific exit. Let E e be the set of polynomials having a pair of roots at the distance 
~-- ~I~2~. If e is small, then the covering fn: Mn + Bn - Z is equivalent to its restric- 
tion to B n - Ee; in particular, it has the same genus. The algorithm determines over each 
set M/~ ~ (B~ --Z~) an "g-section" of the covering fn, i.e., a map into M n differing from a 
section by the distance e. But, by the definition of Z e, an g-section can be deformed into 
an actual section. Finally, this section is extended to a section over some neighborhood 
of the set V{i ~ (~ --Z~), and we obtain the required covering of B n - E e. 
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The proof of the estimate (i) in [8] consists of this theorem along with an estimate 
of the genus of the covering fn by means of homological characteristics of the space B n - Z 
found in [4]. 

1.5.2. In conclusion, note that g(/~)~n; generally, according to [7], the genus of 
any fibration over a k-dimensional basis does not exceed k + I. 

. 

( 2 ) .  

A Lower Estimate for Algorithms Computing All Roots 

2.1. Fundamental Theorem. g (/n)~n --minD~ (n), where Dp(n) is the same as in formula 
9 

COROLLARIES. I. If n is a power of a prime, then g(/n)~z. 
. 

2. For all n, g(fn) > n - log2n. 

3. By virtue of Theorem 1.5.1, we can replace in Theorem 2.1 as well as in parts 1 and 
2 of the present corollary g(fn) by ~(n) + I. 

2.2. The Homolo~ical Genus of a Principal Coverings. Suppose a fibration f: X + Y is 
a principal G-fibration, where G is a discrete group. Let c: Y + K(G, i) be a classifying 
map of the covering f, i.e., this covering is isomorphic to that induced by the map c from 
the universal fibration over K(G, I). Let A be an arbitratry G-module. 

Definition. The homological A-genus of a principa~ covering f: X + Y is the smallest 
numbe~ Y ~ ~at the map' c*: Hj(K(G, i), A) + HJ(Y, c~A) is trivial for all/> L 

The h o m o l o g i c a l  A - g e n u s  i s  d e n o t e d  b y  h A ( f ) .  

THEOREM [ 7 ] .  F o r  e a c h  p r i n c i p a l  G - c o v e r i n g  f :  X + Y a n d  f o r  a n y  G - m o d u l e  A,,g( / )~hA(/) .  
2 . 3 .  I n  o u r  c a s e  Y i s  t h e  s p a c e  B n - X ~ K ( B r ( n ) ,  1 ) ,  G i s  t h e  g r o u p  S ( n )  o f  p e r m u t a -  

t i o n s  o f  n e l e m e n t s ,  a n d  t h e  map c = C ( f n ) :  B n - Z + K ( S ( n ) ,  1)  c o r r e s p o n d s  t o  t h e  o b v i o u s  
h o m o m o r p h i s m  Br ( n )  + S ( n ) .  

We will denote by the same symbol-~Z the following three objects: a) the only nontrivial 
representation S (~)-~Aut(Z); b) the system of groups on the space K(S(n), i) locally iso- 
morphic to Z and turning over under translations over the paths corresponding to odd per- 
mutations; c) the local system on the space B n - E induced by the previous one under the map 
C(fn). 

2.3.1.. THEOREM. If n is a power of a prime, then hlz(fn) = n. 

More generally, suppose that for some prime p, n = n~ + ... + nt, where n i = p ki. Let 
a~B~--OB ~ be a polynomial having t distinct roots whose multiplicities are n~,...,n t. Let 
U c B n be any neighborhood of the point a and let fu be the restriction of the covering fn 
to the domain U - E. 

2.3.2. THEOREM. h_+z(/u)~n+i --t. 

This immediately implies Theorem 2.1. The proof of Theorems 2.3.1 and 2.3.2 occupies 
the rest of Sec. 2. Theorem 2.3.1 follows from the two statements below. 

2.3.3. THEOREM. The group H ~-I (Br (n), ~--~Z) is trivial if n is not a power of a prime 
and is isomorphic to Zp if n = pk. 

2.3.4. THEOREM. The homomorphism c* :H*(S(r~),+__Z)--~H*(B~--~.,-/Z) is an epimorphism. 

The last theorem has the following generalization.. Let z (~, m) denote the configuratio n 
space consisting of all unordered sets of n points in R "~. The space B n - Z is homotopically 
equivalent to -x (~, 2), and the space K(S(n), I) can be realized as the limit of the spaces 

. . . - ~  ~ (n, m ) - ~  (n, m + t ) - ~  . . . . .  (4 )  
. ,  . 

in which all arrows are defined by the obvious embeddings R m-~ R m+1 -~ .... The map ~ (n, 2) + 
K(S(n), i) determined by the sequence of maps (4) coincides with the map c: B n - E + K(S(n), 
i) corresponding to the homomorphism Br(n) + S(n). 

.. 

2.3.5. THEOREM. All homomorphisms /{* (S (n), __-~-Z)-~ H* (x (n, m), -__~Z), H* (S (n), Z=)-+ 
H* (x (n, m), Z~). determined by the sequences of maps (4) are epimorphisms for all n and m. . In. 
particular , all intermediate maps H * (x (n., m 4-. I), ___~Z) -~ H* (~ (N, m), ~ Z), HO (× (~, m + J), Z=)-+ 
H* (~ (n, m), Z.~) are also epimorphic. 
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Fig. 3 

2.4. The proof of Theorem 2.5.5 is based on the following cellular partition of the 
one-point compactifications of the configuration spaces (for m = 2 these partitions coincide 
with those• constructed in [4]). 

2.4.1. We fix a linear function £ on the real plane and the corresponding orientation 
of lines £ = const. We construct m + i parallel lines L i = {£ = i}, i = O, i, .... m. Let 
x~, .... x m be coordinates in R "~, let e i be the corresponding orthonormal vectors, let ~j be 

• • R ~ I  • • • • the projection of the space onto the j-dlmenslonal plane {el,...,ej} along {ej+l,...,en} 
Let ~ ~ (m, n) be a family o5 n points kl,...,% n in Rm. We put on each line Lj several 
points which are in a one-to-one correspondence with the set ~j(%), and the order of these 
points on the line Lj corresponds to the lexicographic order of the points of the set ~j(l) 
defined by the coordxnates x I .... ,xj. For each j < m we join a pair of selected points 
on the lines Lj and Lj+I with a segment if there exists a point in the set % which is mapped 
by ~j and ~j+l to the-points corresponding to these ones. in particular, the only point on 
L 0 is joined to all poitns on L~. Each graph obtained in this manner and viewed up to homeo- 
morphisms of the plane preserving the function Z as well as the orientation of the lines L i 
is called a standard (n, m)-tree. Like in See. 3.2 in [4], we can see that partition of the 
configuration space ~ (n, ~) into sets of points corresponding to a single tree provides a 
cellular partition of the one-point compactification of ~ (n~ ~). 

Let E(n, m) he the cochain complex whose generators are the pairs (a transversally 
oriented cell of this partition, a basic section of the system ~___Z over it), a replacement of 
a transversal orientation or a basic section corresponds to multiplication of the generator 
by -i, the degree of such a generator is equal to the codimension of the cell, and the inci- 
dence coefficients are defined by the mutual behavior of the transversal orientations of in- 
cident cells of the adjacent dimensions, so //* (E (n, ~)) = H* (× (~, m), ~__~ Z). 

The complex E(n, m) has an obvious filtration: a generator lies in a subgroup Fj if the 
intersection of the corresponding tree with the line Lj consists of n points. 

The embedding ~ (~, m)-+~ (m, ~ + I) defines a homomorphism E(n, m + i) + E(n, m) whose 
kernel is spanned by all cells not lying in Fm; each cell in F m corresponding to the (n, m + 
l)-tree T is thereby mapped to the cell corresponding to the intersection of T with the strip 
£-~([0, m]) and equipped with the induced transversal orientation. This map is compatible 
with the cohomology map. Theorem 2.3.5 now follows from this geometrical statement whose 
verification is straightforward. 

2.4.2. LEMMA. For all n, m the subgroup Em~E (~, ~-i) is a subcomplex. 

2.5. The Proof of Theorem 2.3.3. In the case of m = 2 the cellu.lar partition of 2.4.1 
coincides with the one constructed in [4]: the trees of height 2 are in a one-to-one corre- 
spondence with ordered partitions of the number n, and the codimension of the cell corre- 
sponding to a partition n = n~ +... + n t is equal to n - t. The cell is denoted by (n~,..., 
nt). 

Note also that for m = 2 (and, generally, for an even m) the space x (~, m) is orientable 
and, therefore, one can consider the usual orientation of cells instead of their transversal 
orientation. 

2.5.1. THEOREM. With a suitable choice of basic sections of the system ±Z over cells 
of the complex E(n, 2) and orientations of these cells, the incidence coefficient [(n~,..., 
nt), (n[, .... n~_l)] is determined by the following conditions: 

if there exists k such that 

~ = ~] for / < ~, n~ = ~ + nk+[, n i = N]+~ for ] > A'. (5) 
• 

then the incidence coefficient is equal to (--~)~-~CII~; 
~ 
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if there is no such k, then this coefficient is equal to 0 (moreover, these cells are 
not geometrically incident). 

Theorem 2.3.3 immediately follows from this theorem applied to the case of t = 2. To 
prove Theorem 2.5.1, we will make the sections of the local system~__~'~ Z over different cells 
compatible. For each cell (n~ .... ,n t) we take a path in ~ (n, 2), which lies entirely in this 
.cell, except for its end lying in a cell of maximal codimension (n), in such a wayy that if a 
point z i in the set {z~,...,Zn} corresponding to the beginning of the path lies to the right 
of z~, then the points ~i and ~j obtained from them at the end of the path satisfy the condi- 
tion~Imz i < Imzj (see Fig. 3). Fix some basic section of the system ~-Z over a cell (n) and 
extend it to the cell (n~, .... n t) using translations along such paths; obviously, the result 
does not depend on the choice of a path. Now, we define orientation of cells. Enumerate the 
points z~ .... ,z n of a set lying in this cell in such a way that for each i < n either Rez i < 
Re zi+ ~ or Re z i = Re zi+x, Imz i > Imzi+ ~. The orientation of the cell (n~, .... n t) is defined 
by means of the differential form d (Re of the first group of n~ points) A d (Re of the group 
of n= points) A...Ad (Re of the group of n t points) AImz~ A...AImz n. This family of orien- 
tation and compatibility of sections provides the coefficient promised in Theorem 2.5.1. Note 
that if the conditions (5) are satisfied, then the cell (n~, .... nt_ ~) occurs in the boundary 

~ 

of the cell (nl,...,nt) exactly C~2 times. All these occurrence provide the same~ contribu- 

tion in the incidence coefficient: for each loop (S I, *) + ((n l,...,nt), (n[,...,nt_l))' the 
K 

respective orientations of these cells at its beginning and its end are distinct exactly when 
the local system ~-Z is turned over this loop. 

2.5.2. The group //'~-~(Br(n), ~-~ Z) is generated by a single cell (n); by Theorem 2.5.1, it 
n~ n~(n - n~) > 0 do not generate the group Z. This is is not trivial only if all numbers C n , 

true if and only if n is a power of a prime, and Theorem 2.3.1 is proved. The generator of 
the group H~-~(Br(~),~Z) also has the following description. 

Following [4], we consider the map K(S(n), i) + BO(n - i) corresponding to the standard 
homomorphism S(n) + O(n - i) (S(n) acts on ~ by permutations of the basis vectors and, 
therefore, it also acts on the hyperplane R ~-~ = {z Iz, + ... + z~ = 0}). On the space BO(n - 
i) there is an orienting sheaf Or - a system~f groups locally isomorphic to Z and controlling 
the orientation of the universal vector fibration. It is easily seen that the system ~__Z is 
induced on K(S(n); i), and therefore also on K(Br(n), i), by this sheaf. 

THEOREM. Under the homomorphism H~-~(BO(e--~),Or)--+H~-~(Br(~)~___.Z) the Euler class of the 
universal fibration over BO(n - I) is mapped to the class of the cell (n). 

2.6. Proof of Theorem 2.3.2. We may assume that the domain U is a small ball centered at a. 
Then the space U -- E is homotopically equivalent to the product 

( ~ , -  ~ )  x . . .  x (B ~ -  ~t ) ,  ( 6 )  

where B ni is the polycircle in the space of polynomials of degree n i with leading coeffi- 
cient i, E i are sets of polynomials with multiple roots. The covering fu is decomposed into 
a disjoined union of C~ ~' .... nt copies of n~! .....~nt!-leaved coverings each of which is 
isomorphic to the product of ni!-leaved coverings induced by the coverings fni: Mni + Bni - 

n. 
E i under the projection of the product (6) onto its factor B ~ - E i. Therefore, in its re- 
striction to U - Z, the covering group S(n) is reduced to its subgroup S (~) × ... × S (~z~), 
and the map U - Z + K(S(n), I) classifying this covering can be written as a composition 
U -- E-~K(S (~), ~) X ... X K(S (nt), I) -~K(S (n), ~)~ The right arrow of this composition maps 
the local system-~Z on K(S(n), I) into the tensor product of the systems -~Z on K(S(ni), i). 
Now, Theorem 2.3.2 follows from Theorem 2.3.1 and the KOnneth formula. 

3:.. A Lower Estimate of the Topological Complexity for Algorithms 

Computing One Root 

Over the base B n - Z of our n!-leaved covering fn there is another n-leaved covering 
~:~V~-+B ~- Z, consisting of all pairs (a point a ~-3B~--E, one of the roots of the poly- 
nomial a); the covering fn can be viewed as the fibration of transformation groups asso- 
ciated with it. The following statement is proved just like Theorem 1.5.1. 

3.1. THEOREM. There exists e 0 > 0 such that for each e~(0, e 0] the topological com- 
plexity • ~(e, n) of Problem 1.1.2 satisfies the inequality ~i(~, ~)~g(~)--~- 

Below, we will point out a topological obstacle to the inequality ~(~,)~; for n = pk 
this is a nontrivial obstacle, and we obtain the following theorem. 
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3.2. THEOREM. If n is a power of a prime, then g (~) = n, and the topological complexity 
of Problem 1.1.2 is no less than n - i. 

3.3. Consider the fibratiQn @ : ?"-+B~--Z, which is obtained from the covering ~n by 
fiberwise joining of n - I copies of its fibers [in particular, a fiber of the fibration @ 
is homotopically equivalent to the wedge of (n - i) n-~ copies of the (n - 2)-dimensional 
sphere]. 

THEOREM (cf. [7]). g (q~)<n if and only if the fibration 8 has a section. 

The o~ly obstacle = iO) to the existence of such a section lies in the group Hn-~(B b - Z, 
~), where @ is the system of groups associated with ~ whose fiber is equal to the (n - 2)-nd 
homotopy group of the fiber of the fibration 8. By the definition of the join and Hurewitz' 
theorem, ~ is the (n -- l)-st tensor power of the local system/{~whose fiber is the group of 
zero-dimensional homologies of the fiber of the covering ~ reduced modulo a point. We have 
to compute the value of the obstacle = (8) on the only cell of codimension n - i. We order 
the leaves gi of the covering ~ over this cell in the decreasing order of the imaginary 
parts of the corresponding root~. A basis of the system ~ over this cell is given by the 
elements ~ -- ~z, • .., ~n-1 - -  ~" 

3.4. THEOREM. The value of the obstacle a (@)~ H ~-~ (B~ ~n-~) on the cell (n) is 
homologous to (~-~-- ~) ®. • • ~ (~,-- ~). 

For the proof, we will construct a section of the fibration @ over the complement to the 
cell (n). We realize the join of (n - i) copies ~i, .... An_ ~ of an n-point set as an (n - 2)- 
dimensional polyhedron whose vertices are all n(n - i) points A t ~ • . ..~ A~_~, and whose sim- 
plices are spanned by all sets of these points in such a way that none of these simplices has 
two vertices lying in the same set A i (in our case all Ai are fibers of the covering ~n; the 
(n - l)-dimensional simplex spanned by points .~A~, ~- ~ ~ . . . ,  ~;nI~---A~i~ is naturally denoted by 
~ ~© ... ® ~_~.) 

First we construct a section over the union of cells of the form (n~,...,l), i.e.~ over 
the set of families {Z~ .... , za)~_C ~, such that Re z n > Re z i for each i < n. Namely, for each 
such point {z~ .... ,Zn} the image of this section belongs to the vertex of A~ corresponding to 
z n. This section is discontinuous near all cells of the form (n~ .... ,Z), % > i. We will 
modify it as to remove these discontinuities near the union of cells of the form (n~ ..... 2). 
A point of this union corresponds to a family {z~ .... ,Zn} such that Re z n = Re Zn_ ~ > Re z i for 
all i < n - i. For such a point we consider the vertex of the set A 2 corresponding either 
to z n or to Zn-~, depending which point has a greater imaginary part. The. part of the one- 
dimensional skeleton of the set 8 -~ ({z~, .... Zn}) consisting of segments joining this point 
of A= to all points of A~ is obviously contractible, so we can deform the section chosen 
earlier in a small neighborhood of the cells (n~ .... ,2) in such a way that it would become 
continuous there and its image would lie in this part of the l-skeleton. We continue to act 
in a similar manner: at the r-th step there is a section over the union of cells of the form 
(n~ .... ,i), i ~ r, such that the image of this section lies in the union of simplices whose 
vertices lie only in Az,...,A r. Near each point {z~, .... Zn} of each cell of the form (n~,..., 
r + I) we remove the discontinuity of this section using a deformation whose image lies in 
the cone joining this union {A I .... ,Ar} to the vertex of the set At+ ~ corresponding to the 
point z i having the maximal imaginary part among the r + 1 points having the maximal real 
part. Finally, we obtain a section over the complement to the cell (n). Consider now a 
small (n - l)-dimensional disk transversal to the cell (n). We identify the fibers of the 
fibration ® over it, then the constructed section over its boundary defines an (n - 2)-dimen- 
sional spheroid in the fiber of this fibration. Let us compute it. Suppose our disk con- 
sists of families {z~ ..... zn), zinc ~, such that Im zj = -je and the families of real parts run 
over a simplex in R n spanned by the n points u i = {x i = e, x I =... x i... = x n = -e/(n - I)}. 
We denote by ~i. the face of this simplex spanned by the vertices u~, .... 6i ..... Un" By the 
induction hypothesis, before the last step in the construction of the section over the com- 
plement to the cell (n) the obstacle to the section over Ai lying in {A~ ..... An_~} is equal 
to (~a-I -- ~n) ~ .... ~ (~+~ -- ~+e) ~ (~-~ -- ~+~) ~ " " " ~ (~ -- ~2)" At the last step almost all of 
these obstacles are closed with cones connecting {A~ ..... An-=} with the first point in An- ~ 
and only one of them, that corresponding to ~, is joined to the second point. Orienting 
these simplices A i as elements of the boundary of our (n - l)-dimensional simplex, we con- 
clude that the sum of these cones in {A~ ..... A~_~) = ~-~(.) is equal to 

[ ~(- ~)~(~-~ L) ®..- ® (~÷~ -~+~) ® (~-~ ~ ~ • - -~+~) ~... ® (~ -~)l ® L-- 
Z~ 
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- (~_~ - ~) ® . . .  ® (~ - ~ )  ® ~ ~ ( ~ - ,  - B,) ® . . .  ® ( ~  - B~). 

3.5. THEOREM. If n is a power of a prime p, then the obstacle ~ (8) is not trivial. 

Indeed, under the obvious transformation of coefficients ~-i~{-~A~-*${~______Z the ele- 
ment ~ is mapped to the generator of this group, and all elements homologous to zero are 
mapped to multiples of p by Theorem 2.5.1. 

4. An ~IKorithm. of Complexity n - 1 

THEOREM. For each n and any e > 0 there exists an e-algorithm for Problem I.i.i whose 
topological complexity is equal to n - i. 

Proof. We introduce a metric in the polycircle Bn: the distance between polynomials al, 
and is equal to the minimum of the number max l~i(~,)--~i(~) I over all orderings of the 

roots ~(~i)~ ~(az) of these polynomials. We partition B n into sets SI,...,Sn: S t consists of 
polynomials in which the real parts of the roots assume exactly t distinct values. Obviously, 
S t is a real semialgebraic subset of B n of codimension n - t and its connected components are 
in a one-to-one correspondence with ordered partitions of the number n into a sum of t natural 
numbers. By the Weierstrass approximation theorem, for each t = l,...,n, there exists a poly- 
nomial %t: B~-~B, such that the domain V~= {X~0} lies in a 2-~t+~'e-neighborhood of the set 
S t and contains its 2-=t'e-neighborhood (in particular, V n = Bn). Note that each point e of 
the set V t - ~t-~ lies in a 2-=t+~'e-neighborhood of exactly one. component of the set S t . 
Suppoe that this component corresponds to a partition n = nl + ... + n t. We break the roots 
~,"-,~n of the polynomial ~ into piles of cardinalities n~,...,n t according to the ordering 
of their real parts; within each pile these real~parts differ~o more than by 2-=t+='e, We 

assign to the point e the following 2n numbers: Re~(~) = ...= Be,, (e) = (the arithmetic mean of 

the real parts of the roots in the first pile), B~n,+~ = ... = ~+n~----- (the arithmetic mean of 

the real parts of the roots in the second pile), etc.; ~m~(~), [mz(~) ..... ~mn*(~) are, respec- 

tively, the greatest, the second greatest, .... , the smallest of the numbers Im (~), ?=i~ ..., 

n~; [mn,+~(a) ..... [m,,+% (~) are the similarly ordered imaginary parts of the roots in the second 

pile, etc. Acting in a similar manner for every point of the set V t - Vt_ ~, we obtain 2n con- 
tinuous functions on entire B n and, using the Weierstrass theorem again, approximate them, 
with accuracy of e/2, by the polynomials ~e~,..., Re~, Im~ ..... Iml. 

The required algorithm is described as follows: 

Entry. Compute X~i~). Is Xl(e)~0? If so, then, compute the values of the polynomials 
Re~, Re~, .... Im~ at the point ~ and output them. If not, then compute Xz(a) and ask whether 
X~(e)/0~ . If so, then compute the polynomials Re~,...,Im~ and output them. If not, then 
work with Xs, etc. 

5. Braid Group Cohomolo~ies with Coefficients in Coxeter's Representation 

Coxeter's representation of the group S(n) [and, therefore, also of Br(n)] is the repre- 
sentation S (n)-~ AuG (Z~)~ which acts by permutations of the basis vectors. The restriction of 
this representation to the sublattice {c I ci q- . . . ~- cn = 0) ~.Z n is called the reduced Coxeter 
representation. These representations are denoted by X n and ~n, respectively. 

THEOREM. The group Hi(Br(n), X n) is trivial for i > n - I, isomorphic to Z for i = 0, 
n - i, to Z 2 for i = i, and to Z~O torsion for i = 2, .... n - 2. The group Hi(Br (n), ~n) is 
trivial for i = 0 and i > n - i, isomorphic to Z for i = i, n - i, and to Z~<+~ torsion for 
i = 2, 3,. .... n - 2. 

• 

The proof of the theorem will be done by induction on n. We denote by Br I (n) the sub- 
group of index n in Br (n) consisting of braids in which the end of the n-th thread is located 
again at the n-th place. The representation X n of the gro_up Br (n) is induced by the trivial 
Z-representation of Br I (n). Therefore, ~H ~ (Br (n), Xn) ~ H ~ (Br~ (n), Z). If n = 2, then Br~ (n) 
is the painted braid group of two threads which is isomorphic to Z. Let now n> 3. Consider 
the S~rre--Hochschild spectral sequence for the homomorphism ~: Br~ (n)-+ Br (n- i), given by 
erasing the n-th thread. The kernel of £ is a free group with n - 1 generators, therefore, 
H ~ (Ker l, Z) is trivial for i ~ 2, isomorphic to Z for i = 0, and to Z ~-~ for i = i. The action 
of the group Br (n - i) on H ~ (Ker A Z) is trivial and on /f~ (Bierl~ Z) it is isomorphic to 
Coxeter's representation Xn_ z. Therefore, acording to [i], the term EP~ '°  is Z for p = 0, i, 
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trivial for p = 2 or p > n - i, and finite for p > 2, and E~'~-~_-~H~(Br(n--i), X,_~). The 
statement of the theorem on the cghomologies with coefficients in X n is now obtained by in- 
duction on n. The statement on H~(Br(n), ~n ) is obtained from the first statement and the 
results of [i] by means of the exact sequence of coefficients 0-+2n-+Xn-~Z-~0. 

6. On Compositions of. Algebraic Fungtion s 

The study of the cohomologies of the group Br (n) began in [i] in connection with the 
problem of representing algebraic functions by compositions of functions in fewer variables°  
The following theorem was proved in [3]. Let D2(n) be the number of ones in the binary ex- 
pression of the number n. 

6.1. THEOREM. A universal n-valued algebraic function (3) in variables a I ..... a~ can- 
not be written as a complete composition of algebraic functions in k variables if k < n - 
D2(n). 

(For the definition of complete composition, see [3].) 

6.2. The proof of this theorem is based on the following two results. Let ~ be the 
n-leaved covering over B n - Z considered in See. 3. 

6.2.1. LEMMA [.3]. If a universal algebraic function (3) can be written as a complete 
composition of algebraic functions in k variables, then there exist a k-dimensional Stein 
variety K, an n-leaved covering ~-~ K and a map ×:(Bn--Z)-~K such that the covering ~ 
is isomorphic to the map induced from the covering ~. 

Consider the n-dimensional vector fibration E + B n - Z whose fiber over a point ~ con- 
sists of all real-valued functions on the Set of roots of the polynomial a. This fibration 
is isomorphic to the fibration induced by the universal vector fibration over BO(n) under the 
obvious homomorphism Br(n) ~ S(n) + O(n). 

6 . 2 . 2 .  THEOREM [ 4 ] .  1. The m a p H *  (BO(n), Z~)-~H* (Br(n), Z~) c o r r e s p o n d i n g  t o  t h i s  
homomorphism i s  an e p i m o r p h i s m ,  i . e . ,  t h e  r i n g  H* (Br (n), Z ~ ) i s  g e n e r a t e d  by t h e  S t i e f e l -  
Whi tney  c l a s s e s  o f  t h e  f i b r a t i o n  E. 

2. The g r o u p  HnCg,(~)(Br(n), Z~) i s  n o t  t r i v i a l .  

I t  r e m a i n s  t o  n o t e  t h a t  u n d e r  t h e  h y p o t h e s e s  o f  Lemma 5 . 2 . 1  t h e  f i b r a t i o n  E i s  i n d u c e d  
by  some f i b r a t i o n  o v e r  K. B u t ,  w i t h  k < n - D = ( n ) ,  t h i s  c o n t r a d i c t s  Theorem 6 . 2 . 2  a s  w e l l  
as the fact that the group Hi(K) is trivial for i > k because of the functoriality of the 
Stiefel-Whitney classes. 

The results of Sec. 2 permit to improve the estimate of Theorem 6.1. 

6.3. THEOREM. In the statement of Theorem 6.1 one may replace n - D=(n) by any n - 
Dp(n), where p is a prime. 

This theorem is of purely methodological interest because in [6] an even stronger state- 
ment was proved: in Theorem 6.1 one can always replace n - D~(n) by n - i. However, Lin~s 
proof is algebraic whereas our proof of Theorem 6.3 is again topological and is based on the 
same Lemma 6.3.1. Namely, it follows from Theorem 2.1, Remark 1.5.2, and the fact that the 
genus of the induced fibration is no greater than the genus of the original one. 
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EFFECTIVE SUFFICIENT CONDITIONS FOR THE SOLVABILITY OF THE INVERSE PROBLEM 

OF MONODROMY THEORYFOR SYSTEMS OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS 

A. R. Its and V. Yu. Novokshenov UDC 517.9 

Since the time of the classical papers of Fuchs [i] and Birkhoff [2, 3], the problem 
of constructing a system of ordinary differential equations with rational coefficients 

• d~ ~7. =A(~)~, ~ C ,  
(1) 7~ ?'~ r ~  

22 2 A 0~) = (X - T 7~'+~ + A ~, ~X ~-~ 
- -  %,) 

' ~'=i k=a ~=I 

from a given monodromy group (the Riemann-Hilbert problem) has been discussed in the litera- 
ture. Here Av, k are m x m-matrices which are constant with respect to %, .(m >~)~ e~ ..... ~, 
~ = ~ are n + 1 distinct fixed points on the Riemann sphere .£P~. The monodromy group (cf., 
e.g., [4, 5] for precise definition) defines a transformation of a fund~ental matrix solu- 
tion • upon passage about each singular point ~v 

(~. -- ~) ~ (X -- =~) ~ ~ ~ ~ VM~. 

The matrices M~ are called monodromy matrices. 

In its most f~ous version the inverse probl~ formulated above is posed for systems 
of Fuchsian type (Hilbert's 21-st problem [6]). The system (i) is called a system of Fuchsian 
t~e if ~,k = 0, r~ = 0 for all k, v ~ I. For such systems the inverse problem of monodromy 
theory (IPMT) is solved for an arbitrary domain ~ < ~, which is conformally equivalent to the 
disc [4, p. 135]. For systems of Fuchsian type on CP ~ the IPMT is also solvable [7], but 
under specific supplementary restrictions on the monodromy group (cf. [4, 8] for details). 

In the case of systems with irregular singular point (r~) in the collection of mono- 
dromy data it is necessary to include, along with the monodromy matrices, the so-called 
Stokes matrices which are defined as follows. Let ~ ~ have the distinct eigenvalues U~- 
We cover a neighborhood of infinity by a finite n~be~f sectors ~k, k = i, 2,... ,2r~ + 1 
such that ~ ~ ~+~ ~ ~ and each sector, contains only one separating ray defined by the con- 
dition ~e [(~=- ~) X~] = 0, ~, ~ = ~, 2 ..... ~. In each sector one can find a holomorphic 
nondegenerate solution ~k of (i) with as~ptotics [5] 

r~ 
T~ = (1 + X~.-* + X :)~-' + O (~-~)). exp ( ~ D ~  ~ + D 0 In X), ~ ~ .~, (2)  

~=1 
where  D] = diag (d~ . . . . .  din)), ] = 0 . . . . .  r~. 

~ e  S t o k e s  m a t r i c e s  S k r e l a t e  s o l u t i o n s  ~k in.  t h e  i n t e r s e c t i o n  o f  n e i g h b o r i n g  s e c t o r s :  
• ~+~(~) = ~  ( i ) S ~  k = t ,  2 . . . . .  2 t l .  

Fo r  s y s t e m s  w i t h  a u n i q u e  s i n g u l a r i t y  o f  i r r e g u l a r  t y p e  a t  i n f i n i t y  a w e b e r  r e s u l t  
t h a n  t h a t  g i v e n  a b o v e  f o r  F u c h s i a n  s y s t e m s  i s  e s t a b l i s h e d .  Namely ,  f o r  ]l~ > 10 t h e r e  e x i s t s  

T~ 

a s y s t e m  (1 )  w i t h  m a t r i x  A which  h a s  a s ~ p t o t i c s  A (t) = ~, A ~ , ~ - ~  + O (~-~), ~ ~ ~ ,  s u c h  t h a t  
k ~ l  

i t s  S t o k e s  f a c t o r s  and m a t r i c e s  Dj c o i n c i d e  w i t h  t h e  g i v s n  o n e s .  The m a t r i x  A(k)  i s  non -  
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