
ar
X

iv
:m

at
h.

ST
/0

51
15

02
 v

1
 2

0
N

ov
 2

00
5

The Volume-of-Tubes formula: Computational

Methods and Statistical Applications

Catherine Loader

Department of Statistics

Case Western Reserve University

Cleveland, OH 44106

September 7, 2006

Abstract

The volume-of-tube formula was first introduced by Hotelling (1939), to
solve significance of terms in nonlinear regression models. Since this pioneer-
ing paper, there has been significant work on extending the tube formula to
more general settings, including multidimensional problems, and many new
applications in statistical inference, including confidence bands in regression
and smoothing models; applications to functional data analysis; testing in
mixture models; and spatial scan analysis.

Implementation of the tube formula requires numerical evaluation of cer-
tain problem-specific geometric constants that appear in Hotelling’s formula
and its extensions. The purpose of this note is to describe a software library,
libtube, that performs the calculations. A variety of illustrative examples
are given.

Source code for the libtube library and examples can be downloaded from
http://www.herine.net/stat/libtube/.

1 Introduction

The volume-of-tube problem can be stated rather simply. Given a curve (or
manifold) M lying in n-dimensional Euclidean space, what is the volume
of the set of all points lying within a radius r of the curve? In statistical
applications, the spherical version of this problem often arises; the manifold
lies on the surface of the unit sphere in n dimensions, and one wishes to
compute the (n− 1)-dimensional volume (or surface area) of the set of points
lying within a distance r of the manifold.

The volume-of-tubes formula was formulated and solved by Hotelling (1939),
motivated by application to significance testing in nonparametric regression.
A companion paper, Weyl (1939), extended the results to higher dimensional
manifolds; that is, when M is a surface, or more generally when M is a
manifold of dimension d ≤ n.

The main purpose of this article is to describe a set of routines written by
the author to implement the volume-of-tube formula in statistical problems.
In section 2 the tube formula (with boundary corrections) is described. The
libtube software is described in Section 3. Applications to non-linear regres-
sion, simultaneous confidence bands and mixture modeling are described in
Sections 4, 5 and 6 respectively.

1

http://www.herine.net/stat/libtube/

Figure 1: The manifold is represented by the red curve. The tubular neighborhood

is approximated by trapezoids, plus the two end-point caps.

2 The Volume-of-Tubes Formula

The volume-of-tubes formula was first derived by Hotelling (1939). The result
can be illustrated on the plane by reference to Figure 1. The manifold is
represented by the red curve. The tubular neighborhood of a given radius r
is approximated by trapezoids, plus the two end-point caps. Adding up the
area of the trapezoids and letting the partition become increasingly fine shows
that the area (or two-dimensional volume) of the tube is

Length of Manifold × 2r + πr2.

The 2r represents the cross-sectional area of the manifold, while πr2 rep-
resents the area of the end-point caps. The result extends to manifolds em-
bedded in n-dimensional space;

Volume = κ0Vn−1r
n−1 +

l0
2
Vnr

n.

Here κ0 is the length of the manifold and l0 is the number of end-points (often,
l0 = 2). The functions ψ0(r) are the cross-sectional area and volume of the
end-point caps respectively, and Vk = πk/2/Γ(1 + k/2) is the volume of the
k-dimensional unit sphere.

When the manifold lies on the unit sphere, the result is similar, but the
cross-sectional area is replaced by a certain partial beta function. The result
is

Volume =
κ0An

2π
P (B1,(n−2)/2 ≥ w2) +

l0An

4
P (B1/2,(n−1)/2 ≥ w2),

where Ba,b denotes a random variable following a beta distribution with pa-
rameters a and b; An = 2πn/2/Γ(n/2) is the surface area of the unit sphere
in Rn, and w = 1 − r2/2.

Multidimensional Manifolds

Figure 2 shows a tube around a two-dimensional manifold. To compute the
volume of the tubular neighborhood, one divides the tube into different pieces:
a main piece, the half-cylinders around each edge, and wedges at each corner
of the manifold. For higher dimensional manifolds, the ideas are similar, but
there are more pieces to take care of.

2

Figure 2: Tube around a two dimensional manifold. The manifold is shown in red,

and the tube is divided into a main part, half-cylinders around the edges, and corner

wedges.

A version of the tube formula, without boundary corrections, was first
derived by Weyl (1939). Naiman (1990) provided boundary corrections. The
result is a series with d+ 1 terms. The first four terms (for manifolds on the
unit sphere) are

Volume =
κ0An

Ad+1
P (B(d+1)/2,(n−d−1)/2 > w2)

+
l0An

2Ad
P (Bd/2,(n−d)/2 > w2)

+
κ2 + l1 +m0

2π

An

Ad−1
P (B(d−1)/2,(n−d+1)/2 > w2)

+
l2 +m1 + n0

4π

An

Ad−2
P (B(d−2)/2,(n−d+2)/2 > w2).

The constants l0, l1 and l2 arise from the corresponding series for the half-
tubes around the boundaries of the manifold. l0 is the (d − 1)-dimensional
volume of the boundaries (or the total length of the four edges in Figure 2).
l1 and l2 are higher order terms representing boundary curvature.

m0 and m1 arise from the ‘corner wedges’ where two boundary faces meet.
In figure 2, m0 is the sum of the four wedge angles at each corner of the
manifold.

n0 arises for manifolds with d ≥ 3, from the corners where three (or more)
boundary faces meet.

2.1 Random Processes

In statistical applications, the fundamental use of the tube formula is to find
(or at least approximate) the distribution of the maximum of certain random

3

processes. As a simple example, consider the process

Z(λ) = 〈T (λ), U〉

where T (λ) is an Rn-valued vector function, and U is uniformly distributed
over the unit sphere. Suppose that one is interested in finding

P (sup
λ

Z(λ) ≥ w)

for some w.
The inner product exceeds w if, and only if, U is sufficiently close to T (λ).

Specifically,

‖T (λ) − U‖2 = ‖T (λ)‖2 − 2 〈T (λ), U〉 + ‖U‖2 = 2(1 − 〈T (λ), U〉).

Hence, ‖T (λ) − U‖ ≤ r if, and only if, 〈T (λ), U〉 ≥ w, where r2 = 2(1 − w).
The probability (2.1) is therefore simply

Area of tube of radius r around {T (λ)}

Surface area of unit sphere in Rn .

In many statistical applications, one is interested in the distribution of the
maximum of a Gaussian process,

Z(λ) = 〈T (λ), ǫ〉

where ǫ follows the standard multivariate normal distribution. To reduce this
to the uniform process, one needs to condition on the length of the ǫ vector,
and integrate over the conditional distribution; see Sun and Loader (1994).
The final result, up to fourth order, is

P (supZ(λ) ≥ c) ≈
κ0

Ad+1
P (χ2

(d+1)/2 ≥ c2)

+
l0

2Ad
P (χ2

d/2 > c2)

+
κ2 + l1 +m0

2πAd−1
P (χ2

(d−1)/2 > c2)

+
l2 +m1 + n0

4πAd−2
P (χ2

(d−2)/2 > c2),

where χ2
k denotes a chi-square random variable with k degrees of freedom.

3 The libtube Library

The main computational problem in implementing results based on the tube
formula is evaluation of the constants κ0, κ2, l0 e.t.c. The libtube library
implements the tube library up to fourth order terms. To use the library, one
must first write a ‘manifold function’ defining the problem. libtube takes
the manifold function as input, and uses numerical integration methods to
compute the constants.

The library can be downloaded from http://www.herine.net/stat/libtube.
The library is written in C, and can be compiled on Linux systems using

% make

% make install

to install the libraries in /usr/local/lib.

% cc -o nlreg nlreg.c -ltube -lmut -lm

The library (and the examples given in this paper) have been written and
tested using the Gnu C compiler available in most Linux distributions. The C
code should be compatible with most other compilers and operating systems.

4

http://www.herine.net/stat/libtube

3.1 Manifold Functions

Suppose the manifold is defined by a vector function T (x) mapping a d-
dimensional domain X to the manifold M in n-dimensional space. The con-
stants in the tube formula can be computed from T (x) and its derivatives, so
in it’s simplest form, the manifold function simply computes these. In sta-
tistical applications, one usually doesn’t get T (x) naturally, but rather one
gets a vector l(x) such that T (x) = l(x)/‖l(x)‖ (see the regression examples
in Sections 4 and 5). The manifold function can instead provide l(x) and its
derivatives.

In still other examples, one doesn’t even obtain l(x) directly, but instead
obtains a covariance function σ(x, x′) = 〈l(x), l(x′)〉 (see the mixture example,
Section 6). Since the distance between any two points on the manifold is given
by

‖l(x) − l(x′)‖2 = σ(x, x) + σ(x′, x′) − 2σ(x, x′),

knowledge of the covariance function determines l(x) up to an orthogonal
transformation. The manifold function can provide σ(x, x′) and its derivatives.

The precise form of the manifold functions is illustrated by the examples.
After writing the manifold function, the most useful functions in libtube are:

• tube_contstants(), to numerically evaluate κ0 and the other constants
appearing in (??).

• tailp() and critval(), which compute tail probabilities corresponding
to a specified cut-off, and critical values corresponding to a specified
significance level.

Calling sequence for tube_constants().

The function to compute the constants is

int tube_constants(f, d, n, ev, mg, fl, kap, wk, deb, uc);

int (*f)();

int d, n, ev, mg;

double *fl, *kap, *wk;

int deb, uc;

The arguments to this function are:

• f The manifold function to compute l(x) and its derivatives.

• d The dimension of the manifold.

• m The maximum length of the l(x) vectors. The argument provided is
only used to allocate work space; the actual length of l(x) is returned by
the manifold function.

• ev Integration type. For rectangular domains, ISIMPSON is the most
useful.

• mg Integer vector, giving the number of partitions to use in each dimen-
sion of the numerical integration rules.

• fl Integration limits. A numeric vector with length 2d. The first d com-
ponents give lower limits for each variable; the remaining d components
give upper limits.

• kap is the vector through which the computed constants are returned.
It should be allocated with at least min(d + 1, 4) terms. The values
returned are κ0, l0/2, (κ2 + l1 +m0)/(2π) and (l2 +m1 + n0)/(4π).

• wk is a workspace vector. If wk=NULL, the required workspace will be allo-
cated and freed within the tube_constants() function. To pre-allocate
the space, the required length can be found by calling k0_reqd(d,m).

5

• terms Number of terms to compute, from 1 to 4.

• uc An indicator variable indicating whether the manifold function com-
putes the weight vectors uc=0 or covariance derivative matrix uc=1.

Calling sequence for tailp() and critval().

Tail probabilities are computed using the function tailp:

double tailp(c,k0,m,d,s,n,process)

double c, *k0, n;

int m, d, s, process;

Critical values corresponding to a specified tail probability are computed
using the critval function:

double critval(alpha,k0,m,d,s,n,process)

double *k0, al, n;

int m, d, it, s;

These arguments represent:

• c Cut-off value for tailp().

• alpha tail probability for critval().

• k0 is the vector of constants computed by the tube_constants() func-
tion.

• m is the number of terms in k0. This is the returned value of tube_constants(),
and is equal to min(d+ 1, 4).

• d is the dimension of the manifold.

• c critical value (tailp() only).

• s Either ONE_SIDED or TWO_SIDED.

• n For the t-process, the residual degrees of freedom used to estimate
σ. For the uniform process, the dimension n. Ignored for the Gaussian
process. Beware that n must have type double.

• process Either GAUSS (when ǫ is multivariate Gaussian); TPROC (Gaus-
sian process with estimated variance); or UNIF (when ǫ is uniform on the
unit sphere).

3.2 Writing a Manifold Function with vectors

The manifold function computes the vector l(x) and its derivatives. The basic
form of the function is

int mymf(x,l,reqd)

double *x, *l;

int reqd;

{ /* function body goes here */

}

The x argument is a point in the input space; l is a vector to be filled in by
the manifold function. The final argument, reqd, is an integer indicating what
the library requires from the manifold function. If reqd=0, only the vector
l(x) is required. If reqd=1, then both l(x) and l′(x) (or all the first-order
partial derivative vectors of l(x)) are required. If reqd=2, then additionally
the second-order partial derivative vectors are required.

In statistical applications, the manifold function will generally require a
data vector, sample size n, dimension d and variables other than x in order to
perform its calculations. These variables should be assigned to global variables
so that they are accessible in the manifold function.

6

The results of the computations are returned through the l vector. The
vector l(x) is placed in the first n elements. The first-order derivatives are
placed in the next n× d elements. The second-order derivatives are placed in
the next n× d× d elements.

The function should return n, the length of the vector l(x). Generally,
this should be equal to the n value provided in the tube_constants() call;
it should never be larger. It can be less. An example where it may be less
is for a kernel regression with compactly supported kernel; only the non-zero
elements of l(x) need be retained.

3.3 Writing a Manifold Function with a covariance

function.

The structure of a manifold function based on the covariance is identical to
the vector case; it differs in what is computed.

Given a covariance function σ(x, x′), the manifold function needs to com-
pute (in the one-dimensional case),

σ(x, x′) ∂σ(x,x′)
∂x′

∂2σ(x,x′)

∂x′2

∂σ(x,x′)
∂x

∂2σ(x,x′)
∂x∂x′

∂3σ(x,x′)

∂x∂x′2

∂2σ(x,x′)

∂x2

∂3σ(x,x′)

∂x2∂x′

∂4σ(x,x′)

∂x2∂x′2

,

evaluated at x′ = x. Again, the matrix is stored in the vector l, with the
columns stacked atop each other.

In higher dimensions, the required matrix is most easily written in terms
of differential operators. The required (1 + d+ d2) × (1 + d+ d2) matrix is

I
Dx1

...
Dxd

Dx1,x1

...
Dxd,xd

σ(x, x′)
(

I Dx′

1

. . . Dx′

d

Dx′

1
,x′

1

. . . Dx′

d
,x′

d

)

where D represents the partial derivative operator with respect to the sub-
scripted variables.

Another view is as follows. If L is the matrix computed by a manifold func-
tion with vectors, then LT L is the matrix computed by a manifold function
with a covariance function.

4 Example: Testing in Nonlinear Regres-

sion

This was the motivating example for Hotelling (1939), and was developed in
much more detail by Knowles and Siegmund (1989). Suppose one has data
(xi, Yi), i = 1, . . . , n, and a nonlinear regression model, such as

Yi = αeγxi + ǫi. (1)

The important feature of this model is that the parameter α enters the model
linearly, while γ enters nonlinearly. Assume that the errors are independent
N(0, σ2).

7

Consider the problem of testing H0 : α = 0 vs H1 : α 6= 0. It can be shown
that the log-likelihood ratio test statistic is equivalent to

L =
minα,γ ‖Y − al(γ)‖2

‖Y ‖2
(2)

where l(γ)T = (eγx1 , . . . , eγxn).
In classical statistical theory, log-likeliood ratio statistics often have asymp-

totic χ2 distributions. However, this is not the case for the statistic (2). One
way to see this is to recall that proofs of the χ2 results are based on a quadratic
expansion of the statistic under the null parameters. For the present problem
this would require an expansion around (0, γ0) where γ0 is ‘the’ null value of
γ. Unfortunately this is undefined: when α = 0, the parameter γ does not
appear in (1); it is not identifiable!

For fixed γ, minimizing over a is a linear least-sqaures problem. It follows
that

L = 1 − sup
γ

〈

l(γ)

‖l(γ)‖
,
Y

‖Y ‖

〉2

.

The null hypothesisH0 is rejected if L ≤ 1−w2 for some w > 0, or equivalently,
if

sup
γ

∣

∣

∣

∣

〈

l(γ)

‖l(γ)‖
,
Y

‖Y ‖

〉∣

∣

∣

∣

≥ w.

The constant w must be chosen to obtain a specified significance level. That
is, we need to be able to evaluate probabilities of the form

P (sup
γ

| 〈T (γ), U〉 | ≥ w) (3)

where T (γ) = l(γ)/‖l(γ)‖ defines a curve on the unit sphere, and U = Y/‖Y ‖
is (under H0 : α = 0) uniformly distributed on the surface of the sphere.

4.1 Non-linear Regression: Implementation

Code implementing the tube formla for the non-linear regression problem is
shown below. The program consists of the manifold function regmf(), and the
main routine main() that reads in the data and computes the tube constants.
Note that the data vectors and sample size are stored as global variables, so
that they can be accessed within the manifold function.

The manifold function computes the components of l(γ); li(γ) = eγxi , and
of l′(γ), l′i(γ) = γeγxi . These vectors are stored end-to-end in the l argument.

#include <stdio.h>

#include <math.h>

#include <tube.h>

#define MAXN 1000

double x[MAXN], y[MAXN];

int n;

int regmf(gam,l,reqd)

double *gam, *l;

int reqd;

{ int i;

double *l1;

l1 = &l[n];

for (i=0; i<n; i++)

{ l[i] = exp(gam[0]*x[i]);

8

l1[i] = x[i]*exp(gam[0]*x[i]);

}

return(n);

}

int main()

{ FILE *infile;

char filename[100];

int i, mg;

double gamlimits[2], kappa[4];

printf("Data filename ? "); scanf("%s",filename);

printf("n = ? "); scanf("%d",&n);

infile = fopen(filename,"r");

for (i=0; i<n; i++) fscanf(infile,"%lf%lf",&x[i],&y[i]);

gamlimits[0] = -2.0;

gamlimits[1] = 2.0;

mg = 100;

tube_constants(regmf,1,n,ISIMPSON,&mg,gamlimits,kappa,NULL,0,0);

printf("%8.5f %8.5f\n",kappa[0],kappa[1]);

}

5 Example: Simultaneous Confidence Bands

Application of the tube formula to find simultaneous confidence bands for
regression models has been studied in Naiman (1987), Sun and Loader (1994)
among others. Consider again regression data, but now suppose that the
model is

Yi = a0 + a1xi + a2x
2
i + ǫi = µ(xi) + ǫi

(although we formulate the problem for quadratic regression, extension to
other linear models is straightforward). The goal is to find confidence bands

µ̂(x) ± c
√

var(µ̂(x))

with simultaneous coverage over some nice domain X :

P (|µ̂(x) − µ(x)| ≤ cσ‖l(x)‖ for all x ∈ X) = 1 − α. (4)

The least-squares estimates of the parameters are

(

â0

â1

â2

)

= (XT
X)−1

X
TY

where X is the design matrix. For fixed x, µ(x) is estimated by

µ̂(x) = â0 + â1x+ â2x
2 = (1 x x2) (XT

X)−1
X

TY = 〈l(x), Y 〉 ,

and the variance of the estimate is var(µ̂(x)) = σ2‖l(x)‖.
Now, µ̂(x) − µ(x) = 〈l(x), ǫ〉, and the probability (4) is equivalent to

α = P

(

sup
x

|

〈

l(x)

‖l(x)‖
, ǫ

〉

| > c

)

.

This problem can be solved using the Gaussian process variant of the tube
problem.

9

Suppose X = QR is the QR-decomposition of the design matrix. Then
l(x) lies in the column space of Q for all x, and so

Z(γ) =

〈

QT l(x)

‖QT l(x)‖
,QT ǫ

〉

,

so it suffices to work with the vector l∗(x) = QT l(x) = (RT)−1f(x) where
f(x) is a vector of the polynomial basis functions. The derivatives are easily
found;

d

dx
l∗(x) = (RT)−1 d

dx
f(x)

and so on.

5.1 Simultaneous Confidence Bands: Implementa-

tion

Code for the quadratic regression computations, in an arbitrary number of
dimensions, is shown below. The functions quad(), quadi() and quadij()

compute the quadratic basis functions f(x); first-order partial derivatives
and second-order partial derivatives respectively. The manifold function is
quadmf(). The main() function reads the data from a file; computes the de-
sign matrix and its QR-decomposition; and then calls the tube_constants()

function (The QR functions, qr() and qrtinvx(), as well as transpose(),
are part of the mut library).

When the program is run, the user is prompted for a data file (containing
a matrix of the predictor variables); data dimension (n and d), and limits for
the confidence band computation.

The tube constants are computed, then the critical value c for 95% confi-
dence bands. Note that the final argument to critval is the residual degrees
of freedom used to estimate σ; Sun and Loader (1994) give the modification
of (??) for this case.

#include <stdio.h>

#include <tube.h>

#include <mutil.h>

int dim, n, p;

double *X;

void quad(x,f)

double *x, *f;

{ int i, j, k;

k = 0;

f[k++] = 1.0;

for (i=0; i<dim; i++) f[k++] = x[i];

for (i=0; i<dim; i++)

for (j=i; j<dim; j++)

f[k++] = x[i]*x[j];

}

void quadi(x,f,i0)

double *x, *f;

int i0;

{ int i, j, k;

k = 0;

f[k++] = 0.0;

10

for (i=0; i<dim; i++) f[k++] = (i==i0);

for (i=0; i<dim; i++)

for (j=i; j<dim; j++)

f[k++] = (i==i0)*x[j] + (j==i0)*x[i];

}

void quadij(x,f,i0,j0)

double *x, *f;

int i0, j0;

{ int i, j, k;

k = 0;

f[k++] = 0.0;

for (i=0; i<dim; i++) f[k++] = 0.0;

for (i=0; i<dim; i++)

for (j=i; j<dim; j++)

f[k++] = ((i==i0) & (j==j0)) + ((i==j0) & (j==i0));

}

int quadmf(x,l,reqd)

double *x, *l;

int reqd;

{ int i, j, k;

k = 0;

quad(x,l);

qrtinvx(X,l,n,p);

k++;

for (i=0; i<dim; i++)

{ quadi(x,&l[k*p],i);

qrtinvx(X,&l[k*p],n,p);

k++;

}

for (i=0; i<dim; i++)

for (j=0; j<dim; j++)

{ quadij(x,&l[k*p],i,j);

qrtinvx(X,&l[k*p],n,p);

k++;

}

return(p);

}

int main()

{ FILE *infile;

char filename[100];

int i, j, mg[100];

double xlim[100], kappa[4], datarow[100];

printf("Data filename ? "); scanf("%s",filename);

printf("n = ? "); scanf("%d",&n);

printf("dim = ? "); scanf("%d",&dim);

infile = fopen(filename,"r");

if (infile==NULL)

{ printf("Error: can’t read input file\n");

return(0);

}

p = 1 + dim + dim*(dim+1)/2;

X = (double *)calloc(n*p,sizeof(double));

11

for (i=0; i<n; i++)

{ for (j=0; j<dim; j++)

fscanf(infile,"%lf",&datarow[j]);

quad(datarow,&X[i*p]);

}

transpose(X,n,p);

qr(X,n,p,NULL);

for (i=0; i<dim; i++) mg[i] = 20;

xlim[0] = -2; xlim[1] = -2;

xlim[2] = 2; xlim[3] = 2;

tube_constants(quadmf,dim,p,ISIMPSON,mg,xlim,kappa,NULL,3,0);

printf("kappa: %8.5f %8.5f %8.5f %8.5f\n",kappa[0],kappa[1],kappa[2],kappa[3]);

}

6 Example: Mixture Models

Suppose X1, . . . ,Xn are an i.i.d. sample from a density

fα,λ(x) = (1 − α)f0(x) + αφ(x, λ)

where α and λ are unknown parameters, with 0 ≤ α ≤ 1. The object is to
test H0 : α = 0 vs H1 : α > 0. This is a simple example of mixture testing:
under H0, the single component f0(x) describes the data, while under H1, the
two components are required.

Consider the normalized score process proposed by Pilla and Loader (2003).
The score process is

S(λ) =

n
∑

i=1

φ(Xi, λ)

f0(Xi)
− 1.

Under the null hypothesis, this has mean 0 and covariance function nσ(λ,λ†),
where

σ(λ,λ†) =

∫

φ(x, λ)φ(x, λ†)

f0(x)
dx− 1.

The normalized score process is S∗(λ) = S(λ)/
√

nσ(λ, λ). This asymptot-
ically behaves like a Gaussian process Z(λ), with mean 0 under H0, and
a nonzero mean under H1. The maximum of the normalized score process
serves as the test statistic.

Since an explicit vector representation of Z(λ) is not readily available,
the manifold function (mixmf in the code below) must be written using the
covariance function and its partial derivatives.

There is one additional difficulty. The normalized score process has a
singularity at µ = 0. For this reason, the manifold function works with Taylor
series expansions of the covariance in this reason. Also, the singularity results
in a discontinuity in S∗(λ), and l0 = 4.

The main routine in the program below sets limits for µ, calls the tube_constants()
function, and computes the 5% critical value.

kappa0 = 5.27449

l0/2 = 2.00000

Level 0.05 critical value = 2.49455

#include <stdio.h>

#include <math.h>

#include <tube.h>

#define MAXN 1000

12

double x[MAXN], y[MAXN];

int n;

int mixmf(mu,l,reqd)

double *mu, *l;

int reqd;

{ double emm, mm;

if (fabs(mu[0]) < 0.01)

{ mm = mu[0]*mu[0];

l[0] = 1 + mm/2*(1 + mm/3*(1 + mm/4*(1 + mm/5)));

l[1] = 0.5*(1 + mm/3*(2 + mm/4*(3 + mm/5*(4 + 5/6*mm))));

l[1] = l[2] = mu[0]*l[1];

l[3] = 0.5*(1 + mm/3*(4 + mm/4*(9 + mm/5*(16+25/6*mm))));

} else

{ emm = exp(mu[0]*mu[0]);

l[0] = emm-1;

l[1] = l[2] = mu[0]*emm;

l[3] = emm*(1+mu[0]*mu[0]);

}

return(2);

}

int main()

{ int i, mg, t;

double mulimits[2], kappa[4];

mulimits[0] = -3.0;

mulimits[1] = 3.0;

mg = 200;

t = tube_constants(mixmf,1,n,ISIMPSON,&mg,mulimits,kappa,NULL,2,1);

/* modify kappa[1] = l0/2 for the singularity */

kappa[1] += 1.0;

printf("kappa0 = %8.5f\n",kappa[0]);

printf(" l0/2 = %8.5f\n",kappa[1]);

printf("Level 0.05 critical value = %8.5f\n",critval(kappa,t,1,0.05,10,1,0.0));

}

References

Hotelling, H. (1939). Tubes and spheres in n-spaces, and a class of statistical
problems. American Journal of Mathematics, 61:440–460.

Knowles, M. and Siegmund, D. (1989). On Hotelling’s geometric approach
to testing for a nonlinear parameter in regression. International Statistical

Review, 57:205–220.

Naiman, D. Q. (1987). Simultaneous confidence bounds in multiple regression
using predictor variable constraints. Journal of the American Statistical

Association, 82:214–219.

Naiman, D. Q. (1990). On volumes of tubular neighborhoods of spherical
polyhedra and statistical inference. The Annals of Statistics, 18:685–716.

Pilla, R. S. and Loader, C. (2003). The volume-of-tube formula: Perturbation
tests, mixture models and scan statistics. Unpublished Manuscript.

13

Sun, J. and Loader, C. (1994). Simultaneous confidence bands for linear
regression and smoothing. The Annals of Statistics, 22:1328–1345.

Weyl, H. (1939). On the volume of tubes. American Journal of Mathematics,
61:461–472.

14

	Introduction
	The Volume-of-Tubes Formula
	Random Processes

	The libtube Library
	Manifold Functions
	Writing a Manifold Function with vectors
	Writing a Manifold Function with a covariance function.

	Example: Testing in Nonlinear Regression
	Non-linear Regression: Implementation

	Example: Simultaneous Confidence Bands
	Simultaneous Confidence Bands: Implementation

	Example: Mixture Models

