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Abstract

We propose a new method for estimating intrinsic dimension of a
dataset derived by applying the principle of maximum likelihood to
the distances between close neighbors. We derive the estimator by
a Poisson process approximation, assess its bias and variance theo-
retically and by simulations, and apply it to a number of simulated
and real datasets. We also show it has the best overall performance
compared with two other intrinsic dimension estimators.

1 Introduction

There is a consensus in the high-dimensional data analysis community that the only
reason any methods work in very high dimensions is that, in fact, the data are not
truly high-dimensional. Rather, they are embedded in a high-dimensional space,
but can be efficiently summarized in a space of a much lower dimension, such as a
nonlinear manifold. Then one can reduce dimension without losing much informa-
tion for many types of real-life high-dimensional data, such as images, and avoid
many of the “curses of dimensionality”. Learning these data manifolds can improve
performance in classification and other applications, but if the data structure is
complex and nonlinear, dimensionality reduction can be a hard problem.

Traditional methods for dimensionality reduction include principal component anal-
ysis (PCA), which only deals with linear projections of the data, and multidimen-
sional scaling (MDS), which aims at preserving pairwise distances and traditionally
is used for visualizing data. Recently, there has been a surge of interest in manifold
projection methods (Locally Linear Embedding (LLE) [1], Isomap [2], Laplacian
and Hessian Eigenmaps [3, 4], and others), which focus on finding a nonlinear
low-dimensional embedding of high-dimensional data. So far, these methods have
mostly been used for exploratory tasks such as visualization, but they have also
been successfully applied to classification problems [5, 6].

The dimension of the embedding is a key parameter for manifold projection meth-
ods: if the dimension is too small, important data features are “collapsed” onto the
same dimension, and if the dimension is too large, the projections become noisy
and, in some cases, unstable. There is no consensus, however, on how this dimen-
sion should be determined. LLE [1] and its variants assume the manifold dimension



is provided by the user. Isomap [2] provides error curves that can be “eyeballed” to
estimate dimension. The charting algorithm, a recent LLE variant [7], uses a heuris-
tic estimate of dimension which is essentially equivalent to the regression estimator
of [8] discussed below. Constructing a reliable estimator of intrinsic dimension and
understanding its statistical properties will clearly facilitate further applications of
manifold projection methods and improve their performance.

We note that for applications such as classification, cross-validation is in principle
the simplest solution – just pick the dimension which gives the lowest classifica-
tion error. However, in practice the computational cost of cross-validating for the
dimension is prohibitive, and an estimate of the intrinsic dimension will still be
helpful, either to be used directly or to narrow down the range for cross-validation.

In this paper, we present a new estimator of intrinsic dimension, study its statistical
properties, and compare it to other estimators on both simulated and real datasets.
Section 2 reviews previous work on intrinsic dimension. In Section 3 we derive the
estimator and give its approximate asymptotic bias and variance. Section 4 presents
results on datasets and compares our estimator to two other estimators of intrinsic
dimension. Section 5 concludes with discussion.

2 Previous Work on Intrinsic Dimension Estimation

The existing approaches to estimating the intrinsic dimension can be roughly di-
vided into two groups: eigenvalue or projection methods, and geometric methods.
Eigenvalue methods, from the early proposal of [9] to a recent variant [10] are based
on a global or local PCA, with intrinsic dimension determined by the number of
eigenvalues greater than a given threshold. Global PCA methods fail on nonlinear
manifolds, and local methods depend heavily on the precise choice of local regions
and thresholds [11]. The eigenvalue methods may be a good tool for exploratory
data analysis, where one might plot the eigenvalues and look for a clear-cut bound-
ary, but not for providing reliable estimates of intrinsic dimension.

The geometric methods exploit the intrinsic geometry of the dataset and are most
often based on fractal dimensions or nearest neighbor (NN) distances. Perhaps the
most popular fractal dimension is the correlation dimension [12, 13]: given a set
Sn = {x1, . . . , xn} in a metric space, define

Cn(r) =
2

n(n− 1)

n∑

i=1

n∑

j=i+1

1{‖xi − xj‖ < r}. (1)

The correlation dimension is then estimated by plotting logCn(r) against log r and
estimating the slope of the linear part [12]. A recent variant [13] proposed plotting
this estimate against the true dimension for some simulated data and then using
this calibrating curve to estimate the dimension of a new dataset. This requires a
different curve for each n, and the choice of calibration data may affect performance.
The capacity dimension and packing numbers have also been used [14]. While
the fractal methods successfully exploit certain geometric aspects of the data, the
statistical properties of these methods have not been studied.

The correlation dimension (1) implicitly uses NN distances, and there are methods
that focus on them explicitly. The use of NN distances relies on the following fact: if
X1, . . . , Xn are an independent identically distributed (i.i.d.) sample from a density
f(x) in Rm, and Tk(x) is the Euclidean distance from a fixed point x to its k-th
NN in the sample, then

k

n
≈ f(x)V (m)[Tk(x)]m, (2)



where V (m) = πm/2[Γ(m/2+1)]−1 is the volume of the unit sphere in Rm. That is,
the proportion of sample points falling into a ball around x is roughly f(x) times
the volume of the ball.

The relationship (2) can be used to estimate the dimension by regressing log T̄k
on log k over a suitable range of k, where T̄k = n−1

∑n
i=1 Tk(Xi) is the average of

distances from each point to its k-th NN [8, 11]. A comparison of this method to
a local eigenvalue method [11] found that the NN method suffered more from un-
derestimating dimension for high-dimensional datasets, but the eigenvalue method
was sensitive to noise and parameter settings. A more sophisticated NN approach
was recently proposed in [15], where the dimension is estimated from the length of
the minimal spanning tree on the geodesic NN distances computed by Isomap.

While there are certainly existing methods available for estimating intrinsic dimen-
sion, there are some issues that have not been adequately addressed. The behavior
of the estimators as a function of sample size and dimension is not well understood
or studied beyond the obvious “curse of dimensionality”; the statistical properties
of the estimators, such as bias and variance, have not been looked at (with the
exception of [15]); and comparisons between methods are not always presented.

3 A Maximum Likelihood Estimator of Intrinsic Dimension

Here we derive the maximum likelihood estimator (MLE) of the dimension m from
i.i.d. observations X1, . . . , Xn in Rp. The observations represent an embedding of a
lower-dimensional sample, i.e., Xi = g(Yi), where Yi are sampled from an unknown
smooth density f on Rm, with unknown m ≤ p, and g is a continuous and sufficiently
smooth (but not necessarily globally isometric) mapping. This assumption ensures
that close neighbors in Rm are mapped to close neighbors in the embedding.

The basic idea is to fix a point x, assume f(x) ≈ const in a small sphere Sx(R) of
radius R around x, and treat the observations as a homogeneous Poisson process in
Sx(R). Consider the inhomogeneous process {N(t, x), 0 ≤ t ≤ R},

N(t, x) =

n∑

i=1

1{Xi ∈ Sx(t)} (3)

which counts observations within distance t from x. Approximating this binomial
(fixed n) process by a Poisson process and suppressing the dependence on x for
now, we can write the rate λ(t) of the process N(t) as

λ(t) = f(x)V (m)mtm−1 (4)

This follows immediately from the Poisson process properties since V (m)mtm−1 =
d
dt [V (m)tm] is the surface area of the sphere Sx(t). Letting θ = log f(x), we can
write the log-likelihood of the observed process N(t) as (see e.g., [16])

L(m, θ) =

∫ R

0

log λ(t) dN(t)−
∫ R

0

λ(t) dt

This is an exponential family for which MLEs exist with probability→ 1 as n→∞
and are unique. The MLEs must satisfy the likelihood equations

∂L

∂θ
=

∫ R

0

dN(t)−
∫ R

0

λ(t)dt = N(R)− eθV (m)Rm = 0, (5)

∂L

∂m
=

(
1

m
+
V ′(m)

V (m)

)
N(R) +

∫ R

0

log t dN(t)−

−eθV (m)Rm
(

logR+
V ′(m)

V (m)

)
= 0. (6)



Substituting (5) into (6) gives the MLE for m:

m̂R(x) =


 1

N(R, x)

N(R,x)∑

j=1

log
R

Tj(x)



−1

. (7)

In practice, it may be more convenient to fix the number of neighbors k rather than
the radius of the sphere R. Then the estimate in (7) becomes

m̂k(x) =


 1

k − 1

k−1∑

j=1

log
Tk(x)

Tj(x)



−1

. (8)

Note that we omit the last (zero) term in the sum in (7). One could divide by
k− 2 rather than k− 1 to make the estimator asymptotically unbiased, as we show
below. Also note that the MLE of θ can be used to obtain an instant estimate of
the entropy of f , which was also provided by the method used in [15].

For some applications, one may want to evaluate local dimension estimates at every
data point, or average estimated dimensions within data clusters. We will, however,
assume that all the data points come from the same “manifold”, and therefore
average over all observations.

The choice of k clearly affects the estimate. It can be the case that a dataset has
different intrinsic dimensions at different scales, e.g., a line with noise added to it
can be viewed as either 1-d or 2-d (this is discussed in detail in [14]). In such a
case, it is informative to have different estimates at different scales. In general,
for our estimator to work well the sphere should be small and contain sufficiently
many points, and we have work in progress on choosing such a k automatically.
For this paper, though, we simply average over a range of small to moderate values
k = k1 . . . k2 to get the final estimates

m̂k =
1

n

n∑

i=1

m̂k(Xi) , m̂ =
1

k2 − k1 + 1

k2∑

k=k1

m̂k . (9)

The choice of k1 and k2 and behavior of m̂k as a function of k are discussed further
in Section 4. The only parameters to set for this method are k1 and k2, and the
computational cost is essentially the cost of finding k2 nearest neighbors for every
point, which has to be done for most manifold projection methods anyway.

3.1 Asymptotic behavior of the estimator for m fixed, n→∞.

Here we give a sketchy discussion of the asymptotic bias and variance of our estima-
tor, to be elaborated elsewhere. The computations here are under the assumption
that m is fixed, n→∞, k →∞, and k/n→ 0.

As we remarked, for a given x if n → ∞ and R → 0, the inhomogeneous binomial
process N(t, x) in (3) converges weakly to the inhomogeneous Poisson process with
rate λ(t) given by (4). If we condition on the distance Tk(x) and assume the Poisson
approximation is exact, then

{
m−1 log(Tk/Tj) : 1 ≤ j ≤ k − 1

}
are distributed as

the order statistics of a sample of size k−1 from a standard exponential distribution.

Hence U = m−1
∑k−1
j=1 log(Tk/Tj) has a Gamma(k−1, 1) distribution, and EU−1 =

1/(k − 2). If we use k − 2 to normalize, then under these assumptions, to a first
order approximation

E (m̂k(x)) = m, Var (m̂k(x)) =
m2

k − 3
(10)



As this analysis is asymptotic in both k and n, the factor (k − 1)/(k − 2) makes
no difference. There are, of course, higher order terms since N(t, x) is in fact a
binomial process with EN(t, x) = λ(t)

(
1 +O(t2)

)
, where O(t2) depends on m.

With approximations (10), we have Em̂ = Em̂k = m, but the computation of
Var(m̂) is complicated by the dependence among m̂k(Xi). We have a heuristic
argument (omitted for lack of space) that, by dividing m̂k(Xi) into n/k roughly
independent groups of size k each, the variance can be shown to be of order n−1,
as it would if the estimators were independent. Our simulations confirm that this
approximation is reasonable – for instance, for m-d Gaussians the ratio of the theo-
retical SD = C(k1, k2)m/

√
n (where C(k1, k2) is calculated as if all the terms in (9)

were independent) to the actual SD of m̂ was between 0.7 and 1.3 for the range of
values of m and n considered in Section 4. The bias, however, behaves worse than
the asymptotics predict, as we discuss further in Section 5.

4 Numerical Results
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Figure 1: The estimator m̂k as a function of k. (a) 5-dimensional normal for several
sample sizes. (b) Various m-dimensional normals with sample size n = 1000.

We first investigate the properties of our estimator in detail by simulations, and
then apply it to real datasets. The first issue is the behavior of m̂k as a function
of k. The results shown in Fig. 1 are for m-d Gaussians Nm(0, I), and a similar
pattern holds for observations in a unit cube, on a hypersphere, and on the popular
“Swiss roll” manifold. Fig. 1(a) shows m̂k for a 5-d Gaussian as a function of k for
several sample sizes n. For very small k the approximation does not work yet and
m̂k is unreasonably high, but for k as small as 10, the estimate is near the true value
m = 5. The estimate shows some negative bias for large k, which decreases with
growing sample size n, and, as Fig. 1(b) shows, increases with dimension. Note,
however, that it is the intrinsic dimension m rather than the embedding dimension
p ≥ m that matters; and as our examples below and many examples elsewhere
show, the intrinsic dimension for real data is frequently low.

The plots in Fig. 1 show that the “ideal” range k1 . . . k2 is different for every com-
bination of m and n, but the estimator is fairly stable as a function of k, apart
from the first few values. While fine-tuning the range k1 . . . k2 for different n is
possible and would reduce the bias, for simplicity and reproducibility of our results
we fix k1 = 10, k2 = 20 throughout this paper. In this range, the estimates are not



affected much by sample size or the positive bias for very small k, at least for the
range of m and n under consideration.

Next, we investigate an important and often overlooked issue of what happens when
the data are near a manifold as opposed to exactly on a manifold. Fig. 2(a) shows
simulation results for a 5-d correlated Gaussian with mean 0, and covariance matrix
[σij ] = [ρ+ (1− ρ)δij ], with δij = 1{i = j}. As ρ changes from 0 to 1, the dimension
changes from 5 (full spherical Gaussian) to 1 (a line in R5), with intermediate values
of ρ providing noisy versions.
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Figure 2: (a) Data near a manifold: estimated dimension for correlated 5-d normal
as a function of 1 − ρ. (b) The MLE, regression, and correlation dimension for
uniform distributions on spheres with n = 1000. The three lines for each method
show the mean ±2 SD (95% confidence intervals) over 1000 replications.

The plots in Fig. 2(a) show that the MLE of dimension does not drop unless ρ
is very close to 1, so the estimate is not affected by whether the data cloud is
spherical or elongated. For ρ close to 1, when the dimension really drops, the
estimate depends significantly on the sample size, which is to be expected: n = 100
highly correlated points look like a line, but n = 2000 points fill out the space
around the line. This highlights the fundamental dependence of intrinsic dimension
on the neighborhood scale, particularly when the data may be observed with noise.
The MLE of dimension, while reflecting this dependence, behaves reasonably and
robustly as a function of both ρ and n.

A comparison of the MLE, the regression estimator (regressing log T k on log k),
and the correlation dimension is shown in Fig. 2(b). The comparison is shown
on uniformly distributed points on the surface of an m−dimensional sphere, but
a similar pattern held in all our simulations. The regression range was held at
k = 10 . . . 20 (the same as the MLE) for fair comparison, and the regression for
correlation dimension was based on the first 10 . . . 100 distinct values of logCn(r),
to reflect the fact there are many more points for the logCn(r) regression than for
the log T k regression. We found in general that the correlation dimension graph can
have more than one linear part, and is more sensitive to the choice of range than
either the MLE or the regression estimator, but we tried to set the parameters for
all methods in a way that does not give an unfair advantage to any and is easily
reproducible.

The comparison shows that, while all methods suffer from negative bias for higher
dimensions, the correlation dimension has the smallest bias, with the MLE coming



in close second. However, the variance of correlation dimension is much higher
than that of the MLE (the SD is at least 10 times higher for all dimensions). The
regression estimator, on the other hand, has relatively low variance (though always
higher than the MLE) but the largest negative bias. On the balance of bias and
variance, MLE is clearly the best choice.

Figure 3: Two image datasets: hand rotation and Isomap faces (example images).

Table 1: Estimated dimensions for popular manifold datasets. For the Swiss roll,
the table gives mean(SD) over 1000 uniform samples.

Dataset Data dim. Sample size MLE Regression Corr. dim.
Swiss roll 3 1000 2.1(0.02) 1.8(0.03) 2.0(0.24)
Faces 64× 64 698 4.3 4.0 3.5
Hands 480× 512 481 3.1 2.5 3.91

Finally, we compare the estimators on three popular manifold datasets (Table 1):
the Swiss roll, and two image datasets shown on Fig. 3: the Isomap face database2,
and the hand rotation sequence3 used in [14]. For the Swiss roll, the MLE again
provides the best combination of bias and variance.

The face database consists of images of an artificial face under three changing con-
ditions: illumination, and vertical and horizontal orientation. Hence the intrinsic
dimension of the dataset should be 3, but only if we had the full 3-d images of the
face. All we have, however, are 2-d projections of the face, and it is clear that one
needs more than one “basis” image to represent different poses (from casual inspec-
tion, front view and profile seem sufficient). The estimated dimension of about 4 is
therefore very reasonable.

The hand image data is a real video sequence of a hand rotating along a 1-d curve in
space, but again several basis 2-d images are needed to represent different poses (in
this case, front, back, and profile seem sufficient). The estimated dimension around
3 therefore seems reasonable. We note that the correlation dimension provides two
completely different answers for this dataset, depending on which linear part of the
curve is used; this is further evidence of its high variance, which makes it a less
reliable estimate that the MLE.

5 Discussion

In this paper, we have derived a maximum likelihood estimator of intrinsic dimen-
sion and some asymptotic approximations to its bias and variance. We have shown

1This estimate is obtained from the range 500...1000. For this dataset, the correlation
dimension curve has two distinct linear parts, with the first part over the range we would
normally use, 10...100, producing dimension 19.7, which is clearly unreasonable.

2http://isomap.stanford.edu/datasets.html
3http://vasc.ri.cmu.edu//idb/html/motion/hand/index.html



that the MLE produces good results on a range of simulated and real datasets
and outperforms two other dimension estimators. It does, however, suffer from a
negative bias for high dimensions, which is a problem shared by all dimension esti-
mators. One reason for this is that our approximation is based on sufficiently many
observations falling into a small sphere, and that requires very large sample sizes in
high dimensions (we shall elaborate and quantify this further elsewhere). For some
datasets, such as points in a unit cube, there is also the issue of edge effects, which
generally become more severe in high dimensions. One can potentially reduce the
negative bias by removing the edge points by some criterion, but we found that
the edge effects are small compared to the sample size problem, and we have been
unable to achieve significant improvement in this manner. Another option used by
[13] is calibration on simulated datasets with known dimension, but since the bias
depends on the sampling distribution, and a different curve would be needed for
every sample size, calibration does not solve the problem either. One should keep in
mind, however, that for most interesting applications intrinsic dimension will not be
very high – otherwise there is not much benefit in dimensionality reduction; hence
in practice the MLE will provide a good estimate of dimension most of the time.
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